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The influence of viscosity on the motility 

and sensory ability of the dinoflagellate 

Heterocapsa triquetra. 
 

Michael J. Orchard
1*
, Stuart Humphries

1
, Rudi Schuech

1
, Susanne Menden-Deuer

2
,  

1, School of Life Sciences, The University of Lincoln, Brayford Pool, Lincoln, UK.  

2, The Graduate School of Oceanography, The University of Rhode Island, Narragansett, Rhode Island, USA. 

Abstract:  

Seawater viscosity is influenced by temperature as well as through excretion of exopolymers by some 

plankton. We examined the role of viscosity on the movement patterns and sensory abilities of the 

dinoflagellate Heterocapsa triquetra, manipulating the viscosity of seawater to simulate a 10 ±1.5 °C 

temperature change. In a second treatment, we seeded the water with microbeads to examine swimming 

behaviours in the presence of a mechanical stimulus. Increased viscosity reduced distances between 

conspecifics 4.7 fold and increased distances between protists and microbeads by 3.4 fold.  Increased 

viscosity also affected other aspects of motility, with an overall reduction in swimming speed of 2.0 and 7.0 

fold for treatments with and without mechanical stimuli. Higher viscosities were associated with upward 

vertical migration, in both the presence and absence of microbeads. Cells were highly sensitive to 

disturbances to the velocity field, by as little as 1.5%, and different approach distances of H. triquetra to 

conspecifics over mechanical stimuli suggests sensory capacity to distinguish types of particles. Mediation 

of motility and migratory behaviours through viscosity implies ramifications for the distribution of protists 

and their encounters with resources, predators and conspecifics triggered by events such as temperature 

changes and phytoplankton bloom events. 

*Author for correspondence: M Orchard 

Keywords: Viscosity, Protist, Motility, Sensing 

Introduction  

Planktonic organisms are constantly moving, either passively via entrainment in the surrounding 

(usually turbulent) fluid, or through active propulsion.  Through the act of locomotion and 

associated fluid movement, a plankter leaves behind chemical compounds and fluid disturbances in 

its wake that can be sensed and followed by conspecifics and predators, or avoided by prey, using 

chemo- or mechanosensory abilities (Yen 2000; Weissburg 2000; Codling et al. 2010).  

 

Due to their small sizes, planktonic organisms generally operate at low Reynolds numbers (Re), 

where the fluid dynamics governing their actions are non-intuitive and the effects of viscosity 

dominate those of inertia. Although there have been studies investigating the influence of viscosity 

on fish larvae (Johnson et al. 1998), zooplankton (Podolsky and Emlet 1993; Podolsky 1994) and 

bacteria (Chen and Berg 2000), the influence of viscosity on behaviours in protists is poorly 
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understood.  Viscosity affects the transmission of fluid perturbations through the water such that for 

a given power output, the strength of the resulting fluid perturbation some distance away will be 

inversely related to viscosity.  Viscosity might also affect signal generation (e.g. through qualitative 

changes in flagellar motion (Qin et al. 2015)), as well as signal detection (e.g. varying the ability to 

detect a given perturbation strength at the sensor location). Viscosity changes in nature are most 

commonly driven by changes in temperature, with the two being negatively correlated (Podolsky 

and Emlet 1993). The viscosity and viscoelastic properties of seawater are also influenced by the 

presence of biopolymers, proteins and macromolecules (Qin et al. 2015), and some phytoplankton 

are able to alter the local viscosity of seawater through the excretion of mucous exopolymers 

(Prairie et al. 2012; Seuront et al. 2007; Seuront et al. 2010).  

 

Protistan motility not only transmits information via fluid disturbances, but also has a direct 

relationship to encounter rates with particles such as predators, prey, and conspecifics.  Animal 

movement patterns are often classified as either diffusive or ballistic (Codling et al. 2008), or may 

lie between these two ideals: At a sufficiently small scale, organism movement appears straight and 

highly correlated (ballistic), but the accumulated effects of random turns or reorientations typically 

cause trajectories to appear convoluted at larger scales, akin to diffusive transport of molecules.  

The fundamental differences between diffusive and ballistic movements lead to predicted encounter 

rates between organisms moving in the ballistic regime that are much higher than those in the 

diffusive regime.  This is due to displacement increasing linearly with time in the ballistic case (as 

opposed to non-linear displacement in the diffusive case), with no back-tracking of previously 

transited space (Visser and Kiørboe 2006).  Taylor’s equation (Taylor 1921; Codling et al. 2008) 

can be used to describe the transition between these two movement regimes in a particle such as a 

dinoflagellate undergoing a continuous random walk, with the transition occurring at what are 

termed the correlation time- and length-scales. For an application of these theoretical considerations 

see Schuech and Menden-Deuer (Schuech and Menden-Deuer 2014).  

 

Plankton generate fluid disturbances by moving through water (Jiang and Paffenhöfer 2008; Jiang 

and Osborn 2003; Kiørboe and Visser 1999; Kiørboe 2013; Svensen and Kiørboe 2000). If a 

plankter becomes entrained in an external fluid flow, such as the flow field generated by a feeding 

copepod, then at a large distance from the copepod, the ‘perception’ of acceleration and 

deformation to its own flow field falls below a threshold value and elicits no escape response (Jiang 

and Osborn 2003). Only when the plankter is sufficiently close to the copepod is a sensory 
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threshold for flow field perturbation reached (Jakobsen 2001). This sensing of flow perturbations 

could theoretically be bidirectional such that a motionless ambush predator might detect swimming 

plankters, and a swimming plankter might detect a motionless ambush predator (Zaret 1980; Bundy 

et al. 1998; Visser 2001). These ideas have been supported by experiments: the free-swimming 

copepod Diaptomus sicilis (length 1.2 mm) was observed to detect and ‘attack’ polystyrene beads 

suspended in the water body when within a distance of approximately one body length (1 mm) 

(Bundy et al. 1998), and swimming dinoflagellates (Heterocapsa rotundata, Gymnodinium simplex 

and Rhodomonas salina) approaching the neutrally buoyant and passively drifting ciliate 

Mesodinium pulex were able to detect the ciliate and escape capture in response to hydromechanical 

cues (Jakobsen 2001).  Nonetheless, a mechanistic understanding of sensory capabilities of 

plankters has been hindered by lack of experimental data.   

 

While hydrodynamic disturbances due to conspecifics might be identified as being from non-

threatening moving bodies of similar size, the inert microbeads in our experiments might be 

perceived as, stationary ambush predators (Jakobsen 2001; Titelman 2001; Jakobsen et al. 2006; 

Gemmell et al. 2013; Kiørboe 2013). Here we investigate the influence of both viscosity and 

microbeads on the swimming behaviour of the mixotrophic marine dinoflagellate Heterocapsa 

triquetra (diameter 25 µm) at a range of manipulated viscosities corresponding to a 10° C 

temperature change. We manipulate viscosity using the polymer Ficoll, which has been shown to 

increase viscosity with no significant effect on fluid density or protist behaviour  and can be 

modelled with Newtonian dynamics (Beveridge et al. 2010). The use of Ficoll gives a uniform 

polymer mesh size and allows for shear tress vs shear rate curves to be described with Newtonian 

hydrodynamics (Martinez et al. 2014).  Although plankton are typically embedded in background 

shear flow in the environment, in the interest of distinguishing organism autonomous motility from 

advection here we only address swimming in still water. We predict that lower swimming speeds 

and lower turn rates should be associated with higher viscosity due to the increased energy costs 

associated with swimming (Dusenbery 2009). We use 3D video capture to determine the effect of 

changes in viscosity on sensory ability (estimated using nearest neighbour analysis) and other 

motility parameters, in both the presence and absence of large inert microbeads (63 to 75 µm in 

diameter). Specifically, we make predictions of biological sensitivity to flow perturbations from a 

model that has been shown to be reasonable in cases of copepods detecting microbeads (Visser 

2001). Although the fluid surrounding the protist behaves in a simple linear way versus viscosity, 

the mechanical behaviour of the cell membrane or sensory organs may not behave in a simple way 

as viscosity changes.  For example, if viscosity increases and the cell moves at the same speed as 
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before, the hydrodynamic forces on it increase proportionally, but properties of the cell such as 

mechanical stiffness might change in a nonlinear way, resulting in nonlinear changes in sensitivity 

when viscosity changes. In addition to nearest neighbour distance (nearest approach to objects), we 

quantify changes in other protist motility parameters (e.g. swimming speed, vertical migration rate, 

correlation time and length scales) with viscosity and the presence of microbeads.
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Methods 

Culturing 

Cultures of Heterocapsa triquetra (Stein, 1883) were reared in sterile f/2 (Guillard 1975) nutrient-

enriched filtered sea water (FSW). The strain was derived from Narragansett Bay, RI, USA and has 

the internal strain designation PA160310. Water for culturing and experimentation was collected 

from Narragansett Bay (Rhode Island, USA), filtered with a 0.2 µm column filter, and autoclaved to 

remove particulate matter. Cultures were refreshed twice weekly with fresh culture medium. Cell 

density was determined every 12 hours using a Coulter Counter (Kim and Menden-Deuer 2013), 

with only cultures in exponential growth phase used for experiments. Cultures for all experiments 

were maintained in a 12:12h light/dark cycle at 15°C and a salinity of 31.6‰. 

 

Experimental set up 

All experiments were undertaken in transparent, octagonal, acrylic tanks, 30 cm tall, 5 cm wide, 

each with an internal volume of 1 L. The stereoscopic filming apparatus was calibrated using 

submerged grid plates, following Harvey and Menden-Deuer (Harvey and Menden-Deuer 2012; 

Harvey and Menden-Deuer 2011).  All video footage was recorded in the horizontal centre of the 

filming tank to minimise possible wall effects.  Five equally spaced, vertical horizons were filmed 

for three minutes every hour, for a six hour period, to provide 30 three-minute videos per replicate. 

Three replicates were performed for each treatment, resulting in a total of 90 three-minute videos 

per treatment.  To ensure a sufficient number of organisms to allow robust statistical analysis of 

behaviours to be carried out, a density of approximately 500 (range 492 to 523) cells ml
-1

 was used 

in all treatments.  

 

Control replicates were performed using FSW at an ambient temperature of 24 °C ± 1.5 °C and 0.99 

centipoise (cP). We used the nontoxic non-ionic sucrose polymer Ficoll (Sigma-Aldrich) molecular 

weight 400k ± 100k, to artificially manipulate the viscosity of FSW at 24 °C ± 1.5 °C to reflect that 

of 20 °C (1.04 cP) and 15 °C (1.182 cP) seawater, an increase of 9.2% low to medium viscosity and 

23.6% low to high viscosity independent of any temperature change. To ensure changes to viscosity 

were temperature independent, temperature in the room was maintained at 24 +- 1.5 °C. This 

resulted in three treatment viscosities that we define for brevity as low, medium and high viscosity 

(equivalent to seawater at 25 °C, 20 °C and 15 °C respectively) both with (WS) and without (NS) 

mechanical stimuli, giving a total of six treatments. Viscosity was measured using an Ubbelohde 
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type viscometer (Cannon C457) with a 2.5% positive difference between the measured viscosity 

and the tabulated (Kennish 1989), viscosity of seawater at each of our reference temperatures. 

Treatments were then repeated with the inclusion of chemically inert, neutrally buoyant plastic 

microbeads (Cospheric, Santa Barbra, USA), 63 to 75 µm in diameter, at a concentration of 

approximately 500 beads ml
-1

, to assess behavioural changes in the presence of passive mechanical 

stimuli. 

 

Video capture and analysis 

Filming was carried out in a manner similar to Menden-Deuer and Grünbaum (Menden-Deuer and 

Grünbaum 2006), and Harvey and Menden-Deuer (Harvey and Menden-Deuer 2012; Harvey and 

Menden-Deuer 2011),  in a dark room to minimise light disturbance and possible light-mediated 

behaviours.  Due to logistic constraints the experiments were commenced between 13:00-17:00 

during the latter half of the light phase of the cultures. Illumination of the experimental tanks was 

provided by infrared LEDs (960nm) mounted in a bank, giving dark field illumination of the 

protists within the tanks. Two HD cameras (Allied Vision Technologies, AVT 1394), attached to 

Nikon 60-mm Micro Nikkon lenses, gave an overlapping field of view. The cameras were used to 

capture 2D video images (15 fps), which were later assembled to yield 3D movement paths and 

associated movement statistics using custom Python and MATLAB (Version: 7.14.0.739) scripts.  

 

Protists and microbeads were identified, distinguished from each other and tracked, based on pixel 

intensity, with an algorithm similar to that used by Harvey and Menden-Deuer (Harvey and 

Menden-Deuer 2012; Harvey and Menden-Deuer 2011).  Identical parameters (e.g. tracking 

settings, background extraction method) were applied to all of the video footage. To ensure 

individual behaviour was representative of the population, only videos with more than 50 tracks 

were analysed.  Swimming behaviours were calculated from cubic splines fitted to the 3D paths, 

subsampled at 0.07s intervals to match the frame rate of the original recorded video. These 

behaviours included estimates of instantaneous swimming speed and vertical migration speed (µms
-

1
), turning rate (rad cm

-1
), and nearest neighbour distances (µm) between protists as well as between 

protists and the mechanical stimulus, at each time point for the duration of each recorded trajectory. 

Nearest neighbour distance was determined by a K-nearest neighbour algorithm. 

 

Following Schuech and Menden-Deuer (Schuech and Menden-Deuer 2014), horizontal and vertical 

swimming kinematics were analysed separately due to a clear vertical bias in movement.  
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Correlation time (τxy) and length (λxy) scales for horizontal movement components were obtained 

using curve fits of our data to Taylor’s equation (Taylor 1921; Schuech & Menden-Deuer 2013).  

Effective swimming speed in the x-y plane (Vxy), was also taken from the fitting of Taylor’s 

equation.  Horizontal diffusivity was then calculated as  and a large-scale diffusive 

migration range in the x-y plane over time interval t estimated as .  However, 

vertical correlation scales τz and λz  could  not be calculated from fitting Taylor’s equation as 

movements in the z direction remained ballistic for as long as the tracks were recorded.  Therefore, 

we present minimum possible bounds on τz and λz, and average instantaneous vertical swimming 

velocity Vz directly calculated from the swimming trajectories.  These average vertical speeds can 

provide an estimate of large-scale ballistic migration ranges over a time interval t: . 

Similarly to previous studies (Heuschele and Kiørboe 2012; Schuech and Menden-Deuer 2014 ), 

Taylor’s model allowed us to simultaneously assess the effects of swimming speed and correlation 

length scale on large-scale effective diffusivity in each of our treatments. 

 

Velocity field sensitivity 

To estimate the hypothesized velocity field sensitivity to microbeads in each manipulated viscosity, 

we used an equation from Visser (Visser 2001) (eqn 31, p15) describing a situation where passive 

particles were approached by a self-propelled predator:   

    [1] 

where a is the predator (protist) radius, b is the radius of the stationary object the protist is 

swimming towards, U is the swimming speed of the protist, s (µm/s) is the threshold velocity 

perturbation required for detection by the protist and R is the distance at which detection occurs. We 

take R as the closest approach distance to a microbead over the duration of each track.  By 

rearranging equation 1, we predicted an average threshold velocity perturbation by substituting our 

empirical values for average sizes, approach distances and speeds in the differing treatments:  

      [2] 
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Statistical analysis 

Comparisons of approach distances, components of swimming velocity in the horizontal plane and 

vertical direction (Vxy, Vz), and turning rates across all horizons, over all time points, and between 

replicates were carried out using a Kruskal-Wallis test followed by a posthoc test (Kruskal-Wallis 

pairwise comparison of means). If no significant differences in behaviours were found between time 

points or horizons between replicates of the same treatment, the datasets for each treatment were 

combined and the same statistical analysis was rerun with the aggregated dataset to compare for 

differences between treatments. Nonparametric tests were used due to the non-normal distribution 

of the data.  This approach allowed us to compare nearest neighbour distances and movement 

parameters between all treatments and tanks in relation to manipulated viscosity and the 

presence/absence of the mechanical stimuli.   

 

For all treatments, the sample size was the number of protists with sufficiently long tracks (> 5 s). 

All data processing was undertaken in MATLAB (v7.14), while statistical analyses were carried out 

in R (Version 2.15.1, 2012).  
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Results 

Significance of time and vertical horizon 

Filming horizon did not significantly affect the recorded approach distances between individual 

protists either in the presence (χ
2

4, 5130 = 35.5, p >0.05), or absence (χ
2
4, 6845 = 72.33, p >0.05) of 

microbeads.  Likewise, approach distances between protists and microbeads were not affected by 

horizon (χ
2
4, 3671 = 459.49, p >0.05). There were no significant differences in approach distances 

between protists in the presence (χ
2
5, 5130 = 9.6, p >0.05) or absence (χ

2
5, 6845 = 7.91, p >0.05) of 

microbeads across the duration of the experiments. There were also no significant differences in 

minimum approach distances to microbeads (χ
2
5, 3671 = 7.05, p >0.05) over the duration of the 

experiments among replicates. Turning rate (Tr) varied significantly between treatments, with the 

number of radians per micron, τ (time between direction decorrelation) and λ (distance travelled 

between turning events) varying over time, in both in relation to changing viscosity, and the 

presence (with stimulus, WS) or absence (no stimulus, NS)  (Table 1). Viscosity and the elapsed 

time during the experiment, had a significant effect on velocity in the x-y orientation (Vxy), again in 

both treatments (NS, WS). Example 3D swimming trajectories of H. triquetra in all treatments is 

shown in Fig 1.  

 

Swimming speed 

X-Y plane 

Swimming speed in the x-y plane (Vxy) exhibited non-monotonic trends with viscosity, with a 

relative minimum at medium viscosity for NS treatments, but a relative maximum at the same 

viscosity for WS treatments.  Overall, a decrease from low to high viscosity occurred in NS and WS 

treatments:  Vxy decreased by 51% overall from 176 µm s
-1

 to 86 µm s
-1

 NS, and by 67 % overall 

from 78 µm s
-1

 to 25 µm s
-1

 WS (Fig 2, Table 1).  

 

The presence of microbeads resulted in lower Vxy at the low and high viscosities, but resulted in a 

peak Vxy at the medium viscosity (Fig 2, Table 1).  The non-monotonic behaviour of Vxy, both in 

regards to viscosity and the presence/absence of microbeads, was much larger in relative magnitude 

than the non-monotonicity of nearest approach distance. 
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Z-dimension 

In all cases, mean Vz was in excess of 300 µm s
-1

 (Fig 3, Table 2) histograms of Vz in all treatments 

is presented in Fig 4. Vz increased substantially at the highest viscosity tested, both in the absence 

and presence of mechanical stimuli, which appeared to have almost no effect on vertical swimming 

speed at any viscosity. 

 

Nearest approach distances 

Nearest approach distances between individual protists were negatively correlated with increasing 

viscosity (χ
2

2, 6845 = 647.32, p < 0.01).  Distances between individual protists in filtered seawater 

lacking microbeads decreased by 12% (40 µm) between the low and medium viscosity treatments, 

and by 75% (204 µm) between the medium and high viscosity treatments, yielding an overall 

reduction of 78% (244 µm) between the lowest and highest viscosity treatments (Table 3). From 

trajectories we determined the density distributions of approach distances for protists in each 

treatment (Fig 5).  

 

The presence of mechanical stimuli/beads significantly reduced nearest approach distances between 

protists compared to the no-stimuli cases, for the low and medium viscosity treatments (χ
2
2, 5130 = 

724.45, p < 0.05)
 
(Table 3). Nearest approach distances decreased by 261 µm (from 309 to 48 µm, a 

reduction of 84%) and 234 µm (from 269 to 35 µm, a reduction of 86%) for the low and medium 

viscosity treatments respectively.  However, in the high viscosity treatment, distances between 

protists increased by 24 µm (from 65 to 89 µm, an increase of 36%).   

 

Nearest approach distances between individual protists and microbeads decreased slightly (5%) 

from low to medium viscosity (122 to 116 µm), but increased by 52% overall (122 to 186 µm, an 

increase of approximately 4 body lengths) between the lowest and highest viscosity treatments 

(Table 3).  

 

For all viscosity treatments, distances to microbeads were consistently greater than those to other 

protists by at least a factor of two.  In all cases, nearest approach distances were much less than 

would be predicted if protists and microbeads were uniformly arranged on a rectangular lattice 
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throughout the tank volume; in that instance, the distance between particles for NS treatments 

would be 1241 µm, and 973 µm for WS treatments.   

 

Velocity field sensitivity 

Sensitivity values for velocity flow field perturbations, estimated from nearest approach distances 

between protists and microbeads according to equation 2, again behaved non-monotonically with 

increasing viscosity, initially increasing by more than a factor of three but with an overall decrease 

of 97% (Table 4).   

 

Turning rate 

Turning rate (Tr) was significantly different between viscosity treatments. In the absence of beads 

(NS) it showed a strong maximum at intermediate viscosity, while in the presence of beads (WS) Tr 

was much higher at medium and high viscosity than in low viscosity (Fig 6). The presence of 

microbeads significantly increased Tr at medium and high viscosities, but did not have a significant 

effect at low viscosity (Fig 6). In the absence of microbeads, λxy decreased by 40 % overall from 

low to high viscosity (668 to 396), while Tr increased by 389 % (0.037 to 0.181 radians per µm), so 

these trends were consistent, with both indicating more convoluted paths at higher viscosity. 

However, in the presence of microbeads, Tr still increased with viscosity by an order of magnitude 

(0.035 to 0.39 radians per µm), while λxy displayed non-monotonic behaviour with a minimum at 

medium viscosity.  

 

Correlation scales 

Correlation time (τxy) and length (λxy) scales in the horizontal plane displayed non-monotonic trends 

with viscosity. For NS treatments, τxy increased by 21% (3.79 to 4.58) while λxy decreased by 41% 

overall (668 to 396) (Table 1).  This was concomitant with an overall 51% decrease in horizontal 

swimming speed Vxy (176 to 86 µm/s), indicating that the cells swam both slower and in a more 

convoluted pattern at the highest viscosity compared to the lowest.  However, in the presence of 

mechanical stimuli, both τxy and λxy were positively correlated with viscosity, with τxy increasing by 

232% (6.86 to 22.83), and λxy increasing by 6% (538 to 573), while Vxy again decreased (by 68% 

(78.4 to 25.12)) overall from the low to high viscosity treatments.  Therefore, at high viscosity and 

in the presence of microbeads, cells swam slower, but along paths of approximately the same 

tortuosity compared to the lowest viscosity treatment.   
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Movement in the vertical (z) direction was ballistic for as long as our observations lasted in all 

treatments, so only minimum bounds on τz and λz are reported (Table 2).  Interestingly, substantial 

fractions of upward and downward swimming individuals existed at the same locations and times 

during each experiment, as seen in (Schuech and Menden-Deuer 2014).  However, vertical 

swimming direction of the population did exhibit a large change from mostly downward to mostly 

upward, between low and high viscosity conditions (Table 2).  

 

Extrapolated large scale behaviour 

Diffusivity in the horizontal plane (Dxy) was overall negatively correlated with viscosity (Table 1), 

decreasing by 71% in NS treatments (from 5.88 x 10
-4

 to 1.7 x 10
-4

 cm
2
 s

-1
), and by 66% (from 2.1 x 

10
-4

 to 7.2 x 10
 -5 

cm
2
 s

-1
) in the presence of microbeads (Table 1). In the absence of microbeads, the 

decrease in Dxy was due to both increased track tortuosity (indicated by lower λxy) as well as lower 

swimming speeds (Vxy).  However, in the presence of microbeads, decreased diffusivity at high 

viscosity was almost entirely due to three fold reduced horizontal swimming speeds. 

While horizontal displacement (Hmr) via diffusive movement would only be expected to cover 

several cm over 12 hours (Table 5), ballistic vertical migration range (Vmr) of H. triquetra over the 

same time period is predicted to range from 14 to 17 m depending on viscosity and 

presence/absence of microbeads (Table 5).  Increased viscosity had a much stronger influence on 

direction of vertical migration, with 77% of cells swimming downwards at low viscosity, but 78% 

of cells swimming upwards at high viscosity in the absence of microbeads, with similar changes in 

frequency of upward/downward swimming cells in the presence of microbeads.  At the end of all 

experiments, large numbers of cells were observed to be aggregating at the surface. Due to the 

limited extent of our observation volume, it is unknown whether all the cells in the tank displayed 

the same qualitative behaviour at a given time, or if e.g. there was a circulation of cells swimming 

up in the centre and down near the walls. 
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Discussion  

Swimming speed 

XY- plane 

Swimming speed in the horizontal plane (Vxy), displayed non-monotonic behaviour with viscosity, 

with a relative minimum at medium viscosity with NS and a relative maximum with stimuli. Vxy 

were less than the observed average swimming speeds (xy) of 370 µm/s, and below the maximum 

496 µm/s reported for H. triquetra by Jeong et al. (Jeong et al. 2002).  Higher resolution 

microscopic observations are required to determine whether this trend is robust and due to varying 

flagellar beat frequency, beat pattern, or both. For instance, flagellar movements of the alga 

Chlamydomonas reinhardtii are influenced by changes in viscosity, but while beat frequency is 

positively correlated with increasing viscosity, net swimming speeds are negatively correlated 

(Johnson et al. 1998). Flagellar movement of C. reinhardtii close to the cell body was severely 

restricted when swimming in viscoelastic fluids, with movements displaying ‘spatio-temporal’ 

changes over a range of viscosities (Johnson et al. 1998).  In the dinoflagellate Prorocentrum 

minimum beat frequency of the transverse and longitudinal flagella decrease with increasing 

viscosity with a subsequent reduction in swimming speeds (Sohn et al. 2013). Hence, both beat 

frequency and beat pattern can simultaneously change with viscosity in a range of organisms from 

sperm (Brokaw 1975; Rikmenspoel 1984; Smith et al. 2009) to bacteria (Atsumi et al. 1996) and 

dinoflagellates (Sohn et al. 2013) with the overall effect on swimming speed impossible to predict 

without detailed observations of the flagella (for more information see review by Brennen and 

Winet (1977), and Qin et al., (2015)).  

  

As with the non-monotonic trend of Vxy with viscosity in the NS treatments, the addition of 

microbeads decreased Vxy at low and high viscosity but increased Vxy at medium viscosity.  Cell 

concentration during filming was 500 cells ml
-1

, and the introduction of microbeads increased total 

particle density in the filming tank to 1000 particles ml
-1

.  It is logical to expect that swimming 

speeds would decrease with more particles in the water, as suggested by Zaret (Zaret 1980) or with 

increases in the energy required to swim at higher viscosites (Schneider and Doetsch 1974; Sleigh 

1991; Humphries 2013), and this is indeed what we found at low and high viscosity.  However, the 

opposite effect of microbeads at medium viscosity may be consistent with observations of copepods 

(Zaret 1980), where swimming speeds first increased and then decreased with increasing population 

density. The observed density-induced swimming speed increases in H. triquetra might reduce 
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competition for light or nutrients by allowing individuals to disperse and avoid localised 

competition, while the reduction in swimming speeds at higher densities could suggest behaviours 

to avoid collisions at higher population densities that could potentially cause cells to stick together 

or entangle their flagella.   

 

Z-dimension 

Vertical swimming velocity (Vz) was positively correlated with increasing viscosity. Maximum 

recorded Vz was 30% higher than the maximum 2D swimming speed of 273 µm s
-1

 reported by 

Jakobsen (Jakobsen 2005), but within 5% of the 370 (± 14) µm s
-1

 reported by Jeong et al., (Jeong 

et al. 2002).The increase in Vz with viscosity led to an increase in calculated vertical migration 

range (Vmr) to a maximum of 17 meters in the high viscosity treatments.   

It is possible that the positive correlation between Vz and viscosity is consistent with the hypothesis 

put forward by Machemer (Machemer 1996) that microorganisms can modulate swimming speed as 

a function of spatial orientation.  It is also possible that during cold periods (in temperate regions 

during winter with shorter light periods), adaptation to the increased viscosity of seawater might 

induce higher vertical swimming speeds and upward migration, thus increasing time spent in the 

surface layers for photosynthesis. Although, it should be noted that movement would be moderated 

by physiological changes within the cell due to changes in environmental temperatures (Podolsky & 

Emlet 1993). Finally, increases in viscosity may be indicative of high rates of photosynthesis and 

exudate production and might signal increased nutrient competition and thus induce cells to 

increase their vertical migration to access depths with lower levels of competition from 

photoauthotrophs. A competition-induced, pH-mediated alteration of phytoplankton vertical 

migration has been suggested previously for the raphidophyte Heterosigma akashiwo (Kim et al. 

2013). 

 

Approach distances  

Our observations suggest a complex relationship between viscosity and putative sensory responses, 

with increasing viscosity reducing the approach distances between protists but increasing approach 

distance between protists and microbeads. In addition, approach distances between protists and 

microbeads were always larger (2-fold) than approach distances among protists regardless of 

viscosity, suggesting some method of differentiation between the hydromechanical signals 

produced by conspecifics and the signals produced by a physical object (microbeads). This is likely 

due, at least in part, to the active swimming of the protists, which would act to decrease the closest 
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approach distance achieved over a given time period relative to a stationary arrangement.  Although 

trends in nearest approach distance versus viscosity with microbeads present were non-monotonic, 

we suspect that the relatively small changes in approach distances (approximately ¼ of a body 

length) between low and medium viscosity are likely to be biologically insignificant.  This approach 

distance of 6 µm is substantially less than the 1000 µm over which copepods have been observed to 

attack stationary beads (Bundy et al. 1998; Bundy and Vanderploeg 2002). Overall this result 

suggests that this dinoflagellate species is able to sense particles at several body lengths away and 

distinguish among types of particles as well. This sensory capacity allows H. triquetra, and likely 

other species to navigate its environment with information about surrounding abiotic and biotic 

particles. 

 

The ability to recognise differences in the signal profile between conspecifics and predators over a 

range of viscosities may be important over seasonal changes. While vertically migrating 

phytoplankton can experience temperature changes of only a few degrees C (resulting in relatively 

small changes in viscosity) over vertical migration ranges (Vmr) (see below) in coastal waters during 

warm periods, during colder seasons the change in viscosity with depth might be more pronounced. 

Thus, an ability to determine the hydromechanical signals of approaching predators over a range of 

viscosities would be advantageous. In addition, planktonic communities have been shown to 

increase the viscosity of surrounding seawater by up to 85% in sub-surface waters through the 

excretion of viscous photosynthate (Seuront et al. 2010) which may help maintain blooms by 

reducing turbulence through exoploymer excretion (Prairie et al. 2012, Seuront and Vincent 2008; 

Seuront et al. 2007), much higher than the 19% increase in viscosity used in this study.  Thus, the 

development or dispersal of a phytoplankton bloom may well result in large viscosity changes that a 

cells’ sensory systems must cope with. 

 

Velocity field sensitivity  

The calculated velocity threshold sensitivities based on nearest approach distances to microbeads 

suggest that H. triquetra can detect differences in flow fields of less than 2% of their own 

swimming speed. Some unicellular organisms (specifically diatoms) are able to sense changes in 

osmotic conditions as well as those of nutrients (Fe) and fluid motion (Falciatore et al. 2000), as 

witnessed by changes in the concentration changes in their second messenger, cytosolic Ca
++

. We 

note that in unicellular organisms such as ciliates and dinoflagellates, a response occurs above a 

critical fluid deformation rate (Jakobsen 2001; Maldonado & Latz 2007), equivalent to a threshold 
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velocity difference across the cell. However, sensitivities measured in our study seem quite high for 

a mixotrophic organism with no obvious mechanosensory structures analogous to copepod antenna, 

but we do note that some cruising copepods appear to have sensitivity values around 1% of their 

swimming speeds (Visser 2001). It is possible that H. triquetra can sense and respond to shear 

stress through deformation of the cell wall in a similar manner as suggested for the dinoflagellate 

Pyrocystis lunula (Tesson and Latz 2015). This species has been shown to respond to high levels of 

shear stress (e.g. the interactions between boundary layers of swimming animals) causing 

deformation of the cell body as well as through direct mechanical interactions (applied force), again 

causing deformation of the cell body (Tesson and Latz 2015).  

 

Our results further indicate that average velocity sensitivity decreases (i.e. detection precision 

increases) over the manipulated viscosity range from low to high.  Enhanced remote detection of 

microbeads might allow plankton that increase local viscosity during blooms (Prairie et al. 2012, 

Seuront et al. 2007; Jenkinson and Biddanda 1995) to detect ambush predators over a larger 

distance, thereby reducing individual predation levels and maintaining the bloom for a longer time.  

H. triquetra is known to form dense blooms (Jeong et al. 2005) with cultures able to grow in a 

range of pH conditions with cell densities up to 7 x10
4
 cells mL

-1
 (Havskum & Hansen 2006). Other 

bloom forming protists that secrete mucus do change viscosity (Jenkinson 1986; Jenkinson & Sun 

2010), including within blooms (Seuront and Vincent 2008; Seuront et al. 2007; Jenkinson and 

Biddanda 1995). The ability to increase localised viscosity which reduces turbulence and helps 

maintain the bloom for a longer duration might also allow for detection of predators over a larger 

distance and increase the survival rates of individual protists and duration of blooms overall. Any 

H. triquetra and other flagellates present are likely to be influenced by and respond to such 

viscosity changes.   

 

Turning rate 

Trends in turning rate (Tr) can naturally be compared with the trends in horizontal correlation length 

scale λxy, since both parameters are measures of path tortuosity. One would intuitively expect an 

inverse relationship between the two, since a large λxy is indicative of a straight path with low 

turning rate.  

 

We found a non-monotonic trend in turning rate (Tr) with an overall increase in Tr in relation to 

increased viscosity, however, maximum Tr was recorded in the medium viscosity treatment with no 
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mechanical stimuli present. We also found a non-monotonic effect of microbeads (an increase in 

turning rate in the presence of microbeads at medium and high viscosity but no effect at low 

viscosity). Tr in our treatments increased by 4.8 fold between lowest and highest viscosity in 

treatments with NS (0.037 to 0.181 turns per micron), while in treatments WS present, Tr increased 

by 10.2 fold (0.035 to 0.359 turns per micron). The increase in Tr between the lowest and highest 

viscosity NS treatments is consistent with the reduction in λxy, with both describing an increase in 

path tortuosity at high viscosity. In the treatments with no mechanical stimulus the relative 

maximum in Tr at medium viscosity is inconsistent with the relative in maximum in λxy at medium 

viscosity. In addition the trend in Tr with stimuli is inconsistent with the non-monotonic trend in λxy 

with viscosity in treatments with stimuli.  One possible explanation for these apparent 

inconsistencies is the fact that Tr is a three-dimensional parameter, while λxy describes only 

horizontal components of movement. Perhaps more importantly, Tr is affected by any turns along 

the path regardless of spatial scale, while λxy, by definition, should not be affected by very small-

scale turns, such as those making up the helical paths that many microorganisms display. For 

example, it is possible that in the absence of microbeads, cells travelled along the straightest paths 

in a large-scale sense at medium viscosity, even though the most tightly coiled helical paths also 

occurred at the highest viscosity. 

 

The rotation rates of swimming paramecium (Paramecium caudatum) decrease with both reduced 

swimming speeds and increased viscosity (Jung et al. 2014) and the straightening of trajectories 

seen in our experiments (changes in τxy, λxy and radians per µm) were also coupled with reduced 

swimming speeds, diffusion and increased viscosity. It is likely that the reduction in swimming 

speeds associated with increased viscosity similar to that observed by Qin et al. (Qin et al. 2015) 

affected the number of turns and helical turn magnitude in our study. We note that paths such as 

helices can be ballistic and convoluted (Bianco et al. 2014), however, we use the term ballistic here 

as described in the context of Taylor's equation (Taylor 1921), which we apply to movement at a 

scale much larger than the fine details of the path.  

 

Correlation scales and dispersal rates 

Our reported values for τxy, λxy (Fig 7 and Fig 8), and Dxy are within a factor of ten of those 

previously published for a different strain of the same species H. triquetra  CCMP 448 (Schuech 

and Menden-Deuer 2014).  Intra-specific variability in movement parameters among clones of the 

same species have previously been observed and thus are to be expected (Menden-Deuer & 

Montalbano 2015). As with swimming speeds, we found a non-monotonic trend between each of 
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these parameters and viscosity (Table 1), with the exception of Dxy in WS treatments.  In NS 

treatments, both τxy and λxy were largest at medium viscosity, leading to Dxy being largest there as 

well, despite Vxy being smallest at medium viscosity.  This pattern indicates a qualitative change in 

flagellar movements (Qin et al. 2015) as swimming speeds decreased, but cells swam along 

straighter paths.  If the effect of increased viscosity were to simply slow down all movements, no 

changes in λxy would be expected and similar trajectories would be observed for all treatments.  

However, the largest λxy found at medium viscosity suggests a flagellar beating pattern that may 

have been more regular than at low or high viscosity, resulting in fewer random turns. Thus, our 

data again suggest cells actively modulate flagellar beating patterns in response to viscosity, rather 

than a passive effect of viscosity on movement pattern. 

 

Movement is inherently risky as it increases the probability of encounters with predators.  However, 

it can also increase the probability of encounters with potential mates and resources (Kiørboe 2013). 

It has even been suggested that the use of ballistic movement and adjustments to the timing of 

relocations may be common mechanisms to efficient random search strategies (Kiørboe and Visser 

1999).  Many plankters are simultaneously both predator and prey and consequently the motility 

behaviours of these organisms might have evolved to maximize encounters with prey and potential 

mates, while minimizing encounters with predators (Visser 2007; Kiørboe 2013).   This might be 

accomplished by maintaining a correlation length scale λxy larger than the detection distance for 

resources, but smaller than the encounter radius of a typical predator, so that encounters with 

resources are in the efficient ballistic regime but encounters with predators are in the inefficient 

diffusive regime (Visser 2007). The protists studied here have high λxy of approximately 100 to 760 

µm which is quite risky and essentially identical to values reported for copepods of typically 

between 100 to 500 µm (Visser 2001).  Hence, the species studied here does not appear to be 

following a simple, hypothetically optimal movement strategy of modulating motility to minimize 

predator and maximize resource encounters. At the observed lambda and sub xy, encounters with 

zooplankton grazers are likely to be in the transitional region between fully ballistic and diffusive 

encounter regimes. However, predicted encounter rates with copepods would still be lower than if 

the protists had λxy much larger than that of copepods. 

 

The presence of microbeads influenced correlation length and time scales λxy and τxy in a complex 

fashion, leading to both increases and decreases, depending on viscosity.  However, the addition of 

microbeads always lead to a decrease in Dxy, indicating a robust decrease in overall horizontal 
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dispersal rate.  Since the presence of microbeads had little effect on vertical swimming patterns, we 

suggest that H. triquetra might decrease horizontal diffusivity to avoid lethal encounters but 

maintain the vertically ballistic behaviour necessary to traverse critical gradients in light and 

nutrients, despite the higher encounter rates associated with ballistic movement. This kind of 

strategy seems likely, given the prevalence of this type of behaviour amongst microplankton 

(Schuech and Menden-Deuer 2012). 

 

While the horizontal component of swimming was always diffusive (with a minimum at medium 

viscosity), movement in the z direction was always ballistic regardless of viscosity.  Using our 

measured vertical speeds, the Vmr range of H. triquetra over a 12 hour period would be 

approximately 14 m in the lower viscosity treatments (0.99 to 1.04 cP), increasing to 17 m in the 

highest viscosity treatment (1.18 cP). These predicted vertical distances are 140 to 480 times larger 

than diffusive horizontal dispersal (6.02 to 10.8 cm) over 12 hours.  The large difference in ranges 

covered between the xy plane and z direction is likely to be adaptive since the marine environment 

is often vertically stratified and horizontal movements are not likely to offer significant 

improvements in resource availability, while vertical movements result in dramatic changes in light 

exposure and increase the chances of encountering a potentially nutrient rich environment 

(reviewed in Stocker & Durham 2009), although this motility pattern could also increase encounters 

with predators compared with isotropic diffusive movement (Seuront and Strutton 2004).   

 

Conclusion 

Due to the drag forces on beating appendages such as cilia and flagella, microorganism motility and 

performance are directly linked to the viscosity of the surrounding fluid (Humphries 2013). 

Manipulation of viscosity without alteration of seawater density allowed us to disentangle the role 

of viscosity and temperature on protist swimming behaviours. Our data indicate that viscosity has a 

significant and often complex effect on the behaviour of the photosynthetic dinoflagellate 

Heterocapsa triquetra. The non-monotonic responses observed are likely due to organism mediated 

alteration of flagellar beat frequency and patterns that overcome constraints by changes in viscosity. 

Our results clearly show that this dinoflagellate species has the sensory capacity for sophisticated 

distinction among different particle types in the surrounding fluid, which suggests that organisms 

can not only respond to external resource or internal cellular conditions (Grünbaum 2001), but also 

modulate their movements in response to the presence and types of particles.  
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Overall, both swimming speeds and diffusive dispersal ranges in the horizontal plane were 

negatively correlated with viscosity. While movements in the vertical direction were always 

ballistic for the duration of the experiments, high viscosity was also associated with a switch from 

downward to upward migration. Hence, at low viscosity (e.g. higher temperature, low 

phytoplankton exudate concentration), cells would tend to migrate downward and diffuse more 

horizontally, while at high viscosity (e.g. lower temperature, deeper water, or alternately, bloom 

conditions), cells of this species would tend to migrate upward and cover less horizontal area.  The 

increase in upward movement during bloom conditions might increase the amount of light available 

to H. triquetra and as such increase photosynthetic output. Future research should attempt to 

determine whether viscosity might act as a proxy for sensing depth or population density of 

conspecifics, and more generally, further investigate the influence of viscosity on encounter rates 

between predators and prey in marine environments (Beveridge et al. 2010).  

 

While the presence of microbeads had a strong and treatment-specific effect on horizontal 

swimming behaviour, protistan movements in the vertical direction were relatively unaffected by 

the presence of microbeads.  This result suggests that vertical migration may be robustly 

maintained, even at the cost of an elevated predation risk due to ballistic movement.  However, this 

risk may be partially mitigated by the lower horizontal diffusivities that occurred in the presence of 

microbeads at all viscosities. The effects of elastic liquids on flagella movement (Qin et al, 2015) 

and the role this has on mediating behaviour and interactions in moving microorganisms is open for 

further investigation. If beat frequency changes, one would expect changes in any swimming 

parameters that depend on time, but not entirely spatial parameters such as λxy. However, if the 

beating pattern qualitatively changes (e.g. changing amplitude), all swimming parameters could 

theoretically be affected. Since both beat frequency and beat pattern could change simultaneously at 

different viscosities, future work must include high resolution observations of flagellar movement if 

these two aspects of swimming kinematics are to be disentangled. 
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Fig 1: 3D swimming trajectoreis of H. triquetra in experimetnal treatments A-C, low, medium and high 
viscosity treatments without microbeads present, D-F, low, medium and high viscosity treatments with 

microbeads present.  
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Fig 2: Swimming velocity in x-y plane (µm s-1) Heterocapsa triquetra; without (white bars, NS) and with 
microbeads present (grey bars, WS). Error bars represent the standard errors. Sample size N = 1800 to 
2200 depending on treatment. All treatments were significantly different from each other at the 95 %.    
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Fig 3: Vertical swimming velocity (Vz) (µm s-1) Heterocapsa triquetra; without (white bars, NS) and with 
microbeads present (grey bars, WS). Error bars represent the standard errors. Sample size N = 1800 to 
2200 depending on treatment. Negative values indicate downward swimming. Upward and downward 

velocities were significantly different from each other at the 95% (indicated with *), however, no significant 
difference was found between populations moving in the same orientation (e.g. high viscosity treatment 

without microbeads compared against high viscosity treatment with microbeads).  
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Fig 4: Frequency histogram of Vz for H. triquetra in all treatments, A – C, low, medium and high viscosity 
with no mechanical stimuli present, D – F, low, medium and high viscosity with mechanical stimuli present. 
Sample size N = 1800 to 2200 depending on treatment. Negative values indicate downward swimming.  
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Fig 5: Density distribution plots of approach distances in all treatments, A, approach distances between 
protists with no microbeads in the water column, B, approach distances between protists with microbeads in 

the water column, C, approach distance between protists and microbeads.  
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Fig 6: Turning rate (radians per micron) both without (NS, white bars) and with microbeads present (WS, 
gray bars).  Error bars represent standard error. N = 1800 to 2200 depending on treatment. * denotes 
significant differences at the 95 % level for comparisons between treatments of manipulated viscosity but 
same stimuli level (eg. NS), † denotes significant differences at the 95% level for comparisons between 

treatments of same viscosity but differing stimuli levels.    
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Fig 7: Distance between turning events (λ) x-y plane in µm both without (NS, white bars) and with 
microbeads present (WS, gray bars). Error bars represent one standard error of the mean. N = 1800 to 

2200 depending on treatment. All treatments were significantly different from each other at the 95 % level 
for comparison.    
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Fig 8: Average time (s) between turning events in x-y plane both without (NS, white bars) and with 
microbeads present (WS, gray bars). Error bars represent standard error. N = 1800 to 2200 depending on 
treatment. All treatments were significantly different from each other at the 95 % level for comparison.    
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1 Swimming metrics for xy-plane  

Viscosity 

treatment 

τxy (s) ± se λxy  (µm) ± se Swimming speed Vxy 

(µm s
-1

) ± se 

Dxy (cm
2
 s

-1
) 

Low NS 3.7 ± 0.1 668.2 ± 15 176.1 ± 1.9  5.8 × 10
-4 

Low WS 6.8 ± 0.0 538.1 ± 2.3 78.4 ± 0.2 2.1 × 10-4 

Medium NS 18.3 ± 0.3 763.3 ± 10 41.6 ± 0.2 1.5 x 10
-4 

Medium WS 0.4 ± 0.16 104.0 ± 8.7 253.5 ± 21.0 1.3 x 10
-4 

High NS 4.5 ± 0.1 396.8 ± 5.8 86.6 ± 5.8 1.7 x 10
-4 

High WS 22.8 ± 0.1 573.7 ± 2 25.1 ± 0.0 7.2 x 10
-5 
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2 Swimming metrics for z-dimension 

Viscosity 

treatment 

Minimum τz (s) Minimum λz (µm) Vz (µm/s) 

± se 

Upward 

moving 

fraction (%) 

Low NS 120 1000 329.3 ±  82 33 

Low WS 100 3000 319.4 ± 43 29 

Medium NS 120 2600 324.8 ± 31 20 

Medium WS 40 2000 317.6 ± 47 36 

High NS 100 1200 394.2 ± 36 78 

High WS 40 1000 395.6 ± 35 83 
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3 Empirically measured approach distances 

Treatment Approach distance (µm) ± 95% confidence bounds 

conspecifics microbeads 

Low NS 309 (271, 350) N/A 

Low WS 48 (35, 63) 122 (121, 122) 

Medium NS 269 (238, 300) N/A 

Medium WS 35 (22, 50) 116 (110, 121) 

High NS 65 (52, 79) N/A 

High WS 89 (83, 96) 186 (179, 192) 
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4 Calculated velocity field sensitivity 

Viscosity treatment Sensitivity to velocity field perturbation 

(µm s
-1

) 

Sensitivity as % of average 

swimming speed 

Low NS 0.90 0.51 

Medium NS 3.82 1.50 

High NS 0.03 0.12 
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5 Calculated horizontal migration range over 12 hour period  

Viscosity treatment Vmr (m)  Hmr (m) over 12 hour period 

Low NS 14.2 0.10 

Low WS 13.8 0.06 

Medium NS 13.9 0.05 

Medium WS 13.7 0.04 

High NS 17.0 0.05 

High WS 17.0 0.03 
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