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7 ABSTRACT: The two-dimensional self-assembly of 4′,4⁗-
8 (1,4-phenylene)bis(2,2′:6′,2″-terpyridine) molecules is exper-
9 imentally and theoretically investigated. Scanning tunneling
10 microscopy (STM) shows that this molecular building block
11 forms a compact chiral supramolecular network on graphite at
12 the 1-octanol/graphite interface. The molecules adopt a side-
13 by-side arrangement inside the organic domains. In contrast,
14 the molecules are arranged perpendicularly at the domain
15 boundary. Detailed theoretical analysis based on the density
16 functional theory (DFT) shows that these arrangements are stabilized by double and single hydrogen bonds between pyridine
17 groups. Only the molecular peripheral pyridine groups are involved in the hydrogen bonds stabilizing the long-range ordered
18 molecular nanoarchitectures.

19 ■ INTRODUCTION

20 Engineering novel organic nanoarchitectures through bottom-
21 up strategy and molecular self-assembly1−16 is attracting
22 increasing interest over the past decade. Predicting and
23 controlling self-assembly is a prerequisite to fabricate well-
24 defined nanoarchitectures with specific local electronic proper-
25 ties.17−19 Hydrogen bonding is an appealing intermolecular
26 interaction to govern molecular self-assembly due to the high
27 selectivity and high directionality of this bond.20−27 Imide and
28 carboxylic groups are functional units that can drive molecular
29 self-assembly through the formation of double (N−H···O) or
30 (O−H···O) hydrogen bonds, respectively.28−30 The pyridine
31 group is an interesting alternative to these substituents because
32 of its flexibility. This group is not only expected to drive
33 molecular self-assembly through the formation of double
34 hydrogen bonds (C−H···N) between neighboring molecules,
35 but the N atom can be located in different position of the
36 benzene ring. The flexibility of this group opens new
37 opportunities to engineer new architectures. Specific pyridine-
38 based molecular building blocks have been recently synthe-
39 sized31,32 for application in the fields of supramolecular
40 chemistry and materials science.31 Hydrogen-bonded two-
41 dimensional nanoarchitectures have been engineered using
42 pyridine-based molecular building blocks.33,34 The conforma-
43 tion of terpyridine compounds can change in organic
44 nanoarchitectures according to Wang et al.35 Perypherical
45 pyridine groups can adopt a trans or cis conformation to confer
46 stability to the molecular self-assembly. However, the strength
47 of molecular bonds has not yet been assessed in terpyridine-
48 compound self-assembly.
49 In this paper, we investigate the self-assembly of 4′,4⁗-(1,4-
50 phenylene)bis(2,2′:6′,2″-terpyridine) molecules at the 1-

51octanol/graphite interface. Scanning tunneling microscopy
52(STM) reveals that the molecules self-assembled into a two-
53dimensional close-packed chiral nanoarchitecture. Molecules
54are arranged side-by-side inside the molecular domain whereas
55molecular are arranged perpendicularly at the domain
56boundary. Density functional theory (DFT) modeling reveals
57that this structures is stabilized by double and single hydrogen
58bonds between pyridine groups.

59■ EXPERIMENTAL AND THEORETICAL METHODS

60Solutions of 4′,4⁗-(1,4-phenylene)bis(2,2′:6′,2″-terpyridine) in
611-octanol (99%, Acros) were prepared. A droplet of this
62solution was then deposited on a graphite substrate. STM
63imaging of the samples was performed at the liquid/solid
64interface36 using a Pico-SPM (Molecular Imaging, Agilent
65Technology) scanning tunneling microscope. Cut Pt/Ir tips
66were used to obtain constant current images at room
67temperature with a bias voltage applied to the sample. STM
68images were processed and analyzed using the application
69FabViewer.37

70To model the molecular arrangement of the calculations
714′,4⁗-(1,4-phenylene)bis(2,2′:6′,2″-terpyridine) molecules
72simulations were performed using the ab initio SIESTA
73package.38 SIESTA is based on the localized numerical orbital
74basis set, periodic boundary conditions, and the first-principles
75scalar-relativistic norm-conserving Troullier−Martins39 pseudo-
76potential factorized in the Kleinman−Bylander40 form. We
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77 used Perdew, Becke, and Ernzerhof (PBE)41 generalized
78 gradient approximation for the exchange and correlation,
79 which was found previously to be adequate in representing
80 hydrogen bonding between DNA base molecules.42 In each
81 calculation, atomic relaxation was performed until forces on
82 atoms were less than 0.01 eV/Å in the cases of dimers and 0.03
83 eV/Å in the cases of monolayers. The effect of the vdW forces
84 in the assembly of molecules on the surface has been
85 considered thanks to the vdW-DF ab initio method.43−45 The
86 energetics of each gas-phase monolayer, calculated using
87 SIESTA, is characterized by its stabilization energy, which is
88 composed of two components: the interaction and deformation
89 energies. If the former characterizes the strength of
90 intermolecular interaction (it is negative), the latter shows
91 the energy penalty due to inevitable deformation of molecules
92 in the final structure (and is positive). The calculated energies
93 include the basis set superposition error (BSSE) correction46

94 due to the localized basis set used. To analyze bonding in the
95 relaxed structures, the electron density difference (between the
96 total density and that of all individual molecules in the
97 geometry of the combined system) was found to be especially
98 useful because the hydrogen bonding is known to be well
99 characterized by the “kebab” structure associated with
100 alternating regions of excess and depletion of the electron
101 density along the donor−hydrogen−acceptor line of atoms.42

102 ■ RESULTS AND DISCUSSION
103 The chemical structure of the 4′,4⁗-(1,4-phenylene)bis-

f1 104 (2,2′:6′,2″-terpyridine) molecule is presented in Figure 1.
105 This 2-fold symmetry molecule is a H-shaped molecule. Its
106 skeleton consists of a central benzene ring connected to two
107 peripheral terpyridine groups.

f2 108 Figure 2a, the large scale STM image, reveals that 4′,4⁗-(1,4-
109 phenylene)bis(2,2′:6′,2″-terpyridine) molecules self-assemble
110 into large close-packed nanoarchitectures at the 1-octanol/
111 graphite interface. The molecules are entirely covering the
112 graphite surface. This molecular arrangement is chiral and is
113 stable during STM imaging. The two enantiomeric structures
114 are visible in the high resolution STM images presented in
115 Figure 2b,c. Intramolecular features corresponding to the
116 integrated density of states of the molecule appear distinctly in
117 the high resolution STM images, Figure 2b,c. The molecules
118 forming the chiral network unit cells have been colored in
119 yellow, red, blue, and green as a guide for the eyes. Neighboring
120 molecules are arranged parallel to each other. The model of this
121 self-assembled nanoarchitecture is presented in Figure 4a. The

122network unit cell of this close-packed structure is a parallelo-
123gram with 2.0 ± 0.2 and 1.4 ± 0.2 nm unit cell constants (A1,
124 t1A2) and an angle θ of 67 ± 3° between the axes, Table 1. The
125lattice vectors (A1, A2) are represented by purple arrows in
126Figure 4a.
127An STM image of the domain boundary is presented in
128 f3Figure 3. The molecules at the edge of the domains have been
129colored in red and green, as a guide for the eyes. The molecules
130of neighboring domains are aligned (red, green molecules). The
131two domains are separated by a molecular row (molecules
132colored in yellow and blue). The molecules of this row are
133parallel to each other, but they are rotated by 80° with respect
134to the molecules of the domains. The molecules of the side-by-
135side arrangement are epitaxially oriented on the graphite
136surface. The perpendicular molecules are in contrast aligned in

Figure 1. 4′,4⁗-(1,4-Phenylene)bis(2,2′:6′,2″-terpyridine) molecule
(C36H24N6). Carbon atoms are gray, hydrogen atoms are white, and
nitrogen atoms are blue, respectively.

Figure 2. (a) Large scale STM image of 4′,4⁗-(1,4-phenylene)bis-
(2,2′:6′,2″-terpyridine) chiral nanoarchitecture on graphite, 30 × 26
nm2; Vs = 0.5 V, It = 180 pA. The two enantiomeric domains are
presented in the high-resolution STM images: (b) 9 × 8 nm2, Vs = 0.5
V, It = 180 pA; (c) 9 × 7 nm2, Vs = 0.5 V, It = 180 pA. Molecules
comprising the unit cell are in red, green, blue, and yellow in (b) and
(c).
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137 another crystalline direction of the graphite surface. The
138 network unit cell at the domain boundary is represented by a
139 purple dashed line in the model shown in Figure 5a. The
140 boundary unit cell is a parallelogram with 3.4 ± 0.3 and 1.4 ±
141 0.3 nm unit cell constants and an angle θ of 85 ± 4° between
142 the axes, Table 1. The lattice vectors (A1, A2) are represented
143 by purple arrows in Figure 5a.
144 Hoster et al. previously investigated the hydrogen-binging in
145 bis(terpyridine) derivative arrangements.47 They theoretically
146 estimated intermolecular interaction by modeling the inter-
147 action of free benzene and pyridine rings. Their calculations
148 show that N···H interaction energy is drastically stronger than
149 H···H interaction. Their model, however, does not take into
150 account the whole molecular structure. It was also assumed that

151the molecules were adopting a planar configuration in these
152calculations.
153In our calculations, the whole molecular structure is modeled
154and the possibility that molecular structure can adopt different
155configurations is also taken into account. For the parallel and
156perpendicular networks, two unit cells were considered. The
157unit cells are composed of two and four molecules, respectively.
158The two geometries reveal a similar stabilization energy and
159 t2energy per molecule for the two nanoarchitectures (Table 2).
160The perpendicular arrangement of molecular dimers is slightly
161more stable than the parallel configuration when two molecules
162are considered. In contrast, the perpendicular arrangement
163appears to be less stable when four molecules in the unit cell are
164considered (Table 2). The density of the perpendicular
165arrangement (0.47 mol/nm2) is slightly larger than the one
166of the parallel arrangement (0.44 mol/nm2). In fact, the
167perpendicular configuration of tetramers becomes less stable
168because it induces a distortion of molecular conformation in the
169unit cell. The molecular peripherical pyridine groups are
170rotating with respect to the molecular plane; i.e., the terpyridine
171groups are then not flat. This rotation weakens the hydrogen
172bond between neighboring molecules and increases the energy
173of the molecular arrangement.
174The calculations reveal that the unit cell (containing one
175molecule) of the parallel arrangement is stabilized by two
176 f4double H-bonds highlighted by dark blue circles in Figure 4c. In
177comparison, the monolayer based on the perpendicular
178 f5tetramers (Figure 5c) contains two molecules per unit cell,
179which is stabilized by two double H-bond (dark blue circles)
180and two single H-bonds (light blue circles), Figure 5c. The gray
181circle highlights a charge rearrangement, which does not
182correspond to a H-bond. The unit cell of the parallel
183arrangement is therefore stabilized by a higher number of H-
184bonds per molecules than the unit cell of the perpendicular
185arrangement. However, calculations only reveal a small
186 t3difference in energy between the two assemblies (Table 3),
187which indicates that the hydrogen bonds between neighboring
188molecules are stronger in the perpendicular tetramer than in
189the aligned tetramers when the monolayer is formed. The
190difference in strength between the two assembles can be
191observed in the “kebab” plot in Figures 4 and 5. In these plots,
192the alternating regions of depletion and excess of the density
193along the H-bonds characterize the strength of the bonding.
194The molecules are bonded to each other through two N···H−C
195bonds between their peripheral terpyridine groups in the
196parallel arrangement, Figure 4b. In contrast, the N atom of the
197molecular central terpyridine group is not involved in any H-

Table 1. Unit Cell Parameters: Lengths of the Two Lattice
Vectors (A1, A2) and the Angle θ between Them for the
4′,4⁗-(1,4-Phenylene)bis(2,2′:6′,2″-terpyridine)
Nanoarchitecturea

phase parallel perpendicular

technique: STM DFT STM DFT

A1 (Å) 20 18.8 34 31.5
A2 (Å) 14 13.4 14 12.9
θ (deg) 67 65 85 89
τ (deg) 0 0 77 77

aThe difference in the orientations of the two molecules within the cell
is shown by the angle τ.

Figure 3. STM image of the 4′,4⁗-(1,4-phenylene)bis(2,2′:6′,2″-
terpyridine) nanoarchitecture domain boundary, 10 × 8 nm2; Vs = 0.5
V, It = 180 pA. Molecules of the domain edge are in red and green.
Molecules separating the neighboring domains are in yellow and blue.

Table 2. Calculated Energies: Building Blocks and Calculated Energies of the 4′,4⁗-(1,4-Phenylene)bis(2,2′:6′,2″-terpyridine)
Networks (PBE, BSSE, and Cohesion Energies, Ecoh)
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198 bond. In comparison, the central pyridine group is forming a H-
199 bond with the periperical pyridine group of a neighboring
200 molecule in the perpendicular arrangement, when only four
201 molecules are considered, Figure 5b. It should be noticed that
202 the electrostatic plot shows an incomplete “kebab” in the
203 proximity of the nitrogen atom of each terpyridine groups,
204 which underlines the weakness of this bond. The calculations
205 presented in Figure 5c reveal that the central pyridine group is
206 not involved in H-bonding when the tetramer periodic images
207 are chosen to interact between each other to mimic the
208 monomer periodic structure experimentally observed in Figure
209 3.
210 The calculated gas-phase close-packed and perpendicular
211 configurations are in good agreement with experimental

212observations, Table 1. The perpendicular configuration does,
213however, present some slight differences. These are probably
214induced by the molecular distortion, which leads to a noticeable
215nonplanar configuration. The presence of a surface is expected
216to reduce this effect and limit the variation of molecular

Figure 4. (a) Model of the 4′,4⁗-(1,4-phenylene)bis(2,2′:6′,2″-
terpyridine) nanoarchitecture. The lattice vectors A1 and A2 are
indicated by arrows, and the unit cell is indicated by a dashed box for
convenience. (b) Geometries of the 4′,4⁗-(1,4-phenylene)bis-
(2,2′:6′,2″-terpyridine) tetramer shown together with the electron
density difference plots corresponding to ±0.005 Å−3. The green
surfaces correspond to the regions of positive electron density
difference (excess) and the red areas correspond to the regions of
negative electron density difference (depletion). (c) Electron density
difference plot of the molecular network.

Figure 5. Geometries of the 4′,4⁗-(1,4-phenylene)bis(2,2′:6′,2″-
terpyridine) tetramer shown together with the electron density
difference plots corresponding to ±0.005 Å−3. The green surfaces
correspond to the regions of positive electron density difference
(excess), and the red areas correspond to the regions of negative
electron density difference (depletion). (c) Electron density difference
plot of the molecular perpendicular arrangement.

Table 3. Cohesion Energies: Number of Molecules per Unit
Cell and Calculated Cohesion Energies Ecoh per Molecule of
the 4′,4⁗-(1,4-Phenylene)bis(2,2′:6′,2″-terpyridine)
Network

structure parallel perpendicular

energy (eV) (PBE) −1.16 −1.06
BSSE energy (eV) 0.28 0.30
Ecoh (eV) −0.29 −0.27
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217 conformation in comparison with the gas-phase configuration.
218 In contrast, the parallel arrangement is expected to be less
219 influenced by the presence of the surface as the molecular
220 distortion is smaller in this structure. In addition, these
221 molecules appear to be aligned in a preferential direction of
222 the graphite surface (epitaxial domains). This is not the case for
223 the perpendicular molecules. The experimental stabilization
224 energy of this perpendicular arrangement will therefore
225 decrease and so be less favorable when compared with that
226 of the parallel arrangement. This explains, therefore, why the
227 perpendicular arrangement is only locally observed at the
228 domain boundary in the STM images. It should be noticed that
229 a Moire ́ pattern can be observed in the STM images for the
230 parallel arrangement. This suggests some electronic coupling
231 between the molecules and the substrate,48 but this also reveals
232 that there is no preferential adsorption site for the molecules
233 along the graphite direction.

234 ■ CONCLUSION
235 In this paper we investigated the two-dimensional self-assembly
236 of 4′,4⁗-(1,4-phenylene)bis(2,2′:6′,2″-terpyridine) on a graph-
237 ite surface. Molecules adopt a side-by-side arrangement inside
238 the monolayer but are arranged perpendicularly at the domain
239 boundary. Experimental observations and calculations reveal
240 that the molecule forms a close-packed structure stabilized by
241 double and single hydrogen-bonds. Calculations show that the
242 molecular conformation is less planar in the perpendicular
243 molecular packing than in the molecular parallel packing. The
244 flexibility of terpyridine groups open new opportunities to
245 engineer new organic nanoarchitectures on surfaces.
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390 Density-Functional Method for Very Large Systems with LCAO Basis
391 Sets. Int. J. Quantum Chem. 1997, 65, 453−461.

(39)392 Troullier, N.; Martins, J. L. Efficient Pseudopotentials for Plane-
393 Wave Calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 1991, 43,
394 1993.

(40)395 Kleinman, L. Relativistic Norm-Conserving Pseudopotential.
396 Phys. Rev. B: Condens. Matter Mater. Phys. 1980, 21, 2630.

(41)397 Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient
398 Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865−3868.

(42)399 Kelly, R. E. A.; Lee, Y. J.; Kantorovich, L. N. Homopairing
400 Possibilities of the DNA Bases Cytosine and Guanine: An ab Initio
401 DFT Study. J. Phys. Chem. B 2005, 109, 22045−22052.

(43)402 Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.;
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