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ABSTRACT 

One of the major limitations to exploit enzymes in industrial processes is their dependence on 

expensive reduction equivalents like NADPH to drive their catalytic cycle. Soluble electron 

transfer (ET) mediators like Cobalt(II)Sepulchrate have been proposed as a cost-effective 

alternative to shuttle electrons between an inexpensive electron source and enzyme redox center. 

The interactions of these molecules with enzymes are not elucidated at molecular level yet. 

Herein, molecular dynamics simulations are performed to understand the binding and ET 

mechanism of the Cobalt(II)Sepulchrate with the heme domain of cytochrome P450BM-3. The 

study provides a detailed map of ET mediator binding sites on protein surface that resulted 

prevalently composed by Asp and Glu amino acids. The Cobalt(II)Sepulchrate do not show a 

preferential binding to these sites. However, among the observed binding sites, only few of them 

provide efficient ET pathways to heme iron. The results of this study can be used to improve the 

ET mediator efficiency of the enzyme for possible biotechnological applications. 

 

 

 

 

 

 Keywords: mediated electron transfer, Marcus theory, electron pathways, protein stability, co-

solute effect. 
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INTRODUCTION 

Enzymatic electrocatalysis is a flourishing area of bioengineering with a plenty of 

applications in analytics, organic synthesis and diagnostics.1-7 A class of enzymes that targets 

these applications is cytochrome P450 monooxygenases, a super family of heme-containing 

proteins.8-14 In the presence of reduction equivalents, they catalyze the oxidation of substrates12 

involved in biosynthesis and biodegradation pathways, or in xenobiotic metabolism. The high 

stereoselectivity of these enzymes on a broad range of substrates is a treasure trove for potential 

industrial applications. However, their exploitation has been limited by their complex nature, low 

solubility and catalytic turnover and, in particular, the utilization of expensive electron source as 

nicotinamide adenine dinucleotide phosphate (NADPH).12 Cytochrome P450BM-3, from soil 

bacterium Bacillus megaterium, is the most widely studied member of this family.15-16 P450BM-3 

has a high catalytic turnover with an easy expression and purification, being a soluble, multi-

domain and self-sufficient system. One heme and two reductase domains (FAD domain and 

FMN domain, containing the flavin adenine dinucleotide and flavin mononucleotide molecule 

cofactors, respectively) are linked together as Heme-FMN-FAD in a single polypeptide chain.17-19  

The enzymatic reaction requires that two electrons be transferred from NADPH molecules to the 

heme iron by the two reductase domains. Protein engineering approaches successfully improved 

the technological viability of P450BM-3 by fine-tuning its catalytic parameters and substrate 

recognition.20-21 Recently, fast advancements have been made toward cost effective catalysis in 

P450BM-3 by regeneration or substitution of expensive cofactor (NADPH/NADH) as a source 

of electrons.13, 17 In last decades, electrochemistry of P450BM-3 received considerable attention 

and various methods have investigated to drive catalytic cycle either by direct contact with 

electrodes22-23 or using molecules as electron transfer (ET) mediators. In the latter case, small 
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soluble compounds, such as cobalt(III)sepulchrate (Co(III)Sep), shuttle electrons from electrodes 

or other inexpensive electron sources (e.g. zinc dust) to enzyme redox site.13, 24-25 However, little 

is known about the binding and ET mechanism of these mediators to the P450BM-3 at molecular 

level. To the best of our knowledge, only few experimental studies are devoted to identify the 

binding sites of ET mediators on the enzyme surface, which are relevant for ET mechanism in 

these systems. In particular, few mutagenesis studies have also been performed on the enzyme to 

obtain variants with improved mediated ET capabilities using directed evolution approaches.24, 26 

Strohle et al. proposed a computational method to identify suitable mediators for an artificial ET 

between an electrode and P450.6, 27 Some of binding sites of the ET mediators were identified 

using conventional docking methods. Measured product formation rates could be qualitatively 

correlated with calculated ET rates providing a simple approach for the prediction of suitable 

mediators for P450s. However, this approach does not take in account the dynamics of the 

enzyme, the explicit solvent effects on the protein conformation and ET mediator binding.  

Molecular dynamics (MD) simulation is so far the best theoretical approach to study at 

atomistic level both protein dynamics, and molecular binding mechanisms. MD simulations have 

been used to investigate the structure and dynamics of P450BM-3 heme28-29 and FMN30 domains 

in solution as isolated and in their complex.31 In the last case, we have studied how the dynamics 

of FMN/heme complex affects the inter-domain ET rate.31 These simulations evidenced an inter-

domain conformational rearrangement that reduces the average distance between FMN and heme 

cofactors. The result was in agreement with the proposed hypothesis that the crystallographic 

FMN/heme complex is not in the optimal arrangement for favorable ET rate under physiological 

conditions.19 ET rate calculations on the conformations sampled along the simulation, 

demonstrated the occurrence of seven ET pathways between two redox centers, while three of 
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them have ET rates (kET) comparable with experimentally observed values.31 Collective modes 

analysis of FMN/heme complex also evidenced an interesting correlation between first two 

essential modes and ET pathways activation along the trajectory. 

Here, we have combined MD docking simulations and ET calculations to garner insight 

into the interaction mechanism of P450BM-3 heme domain with Cobalt(II)sepulchrate 

(Co(II)Sep) as an ET mediator. We report a new model of Co(III/II)Sep based on GROMOS96 

force field32 parameters. The model was used for MD simulations of P450BM-3 heme domain in 

solution at different Co(II)Sep concentrations. The absorption of Co(II)Sep molecules on the 

heme domain surface provided a detailed map of its binding sites. Finally, the Co(II)Sep bound 

conformations of the protein were used to estimate using the Pathways method33-34 the ET rates 

from Co(II) atom to the heme iron along different electron tunneling pathways.  

 

  

Figure 1: Crystallographic structure of the Co(III)Sep molecule in ball and stick representation. 

Nitrogen, hydrogen, carbon, and cobalt atoms are colored in blue, white, cyan and pink color, 

respectively.  

 

COMPUTATIONAL METHODS 
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Co(III/II)Sep model. In Figure 1, the crystallographic structure of Co(III)Sep, obtained from 

Bacchi et al.35, is represented. The force field parameters for bond lengths and bond angles of the 

Co(II)Sep model were adapted from Dehayes et al.36 and they are reported in Table S1 of the 

Supporting Information (SI).  Density functional theory (DFT) calculations37-38 using Becke3LYP 

method37 with the LanL2DZ basic set38 were performed on both Co(II)Sep and Co(III)Sep 

molecules for geometry optimization. In the calculations, Co(III)Sep and Co(II)Sep have been 

considered in the experimental39 observed low and high spin state, respectively. Atomic partial 

charges were derived using the ChelpG scheme40 with dipole moment constraint, and they are 

reported in Table S2 of SI. All the calculations were performed using Gaussian09 package.41  

The Lennard-Jones interaction parameters were taken from the GROMOS96 43a1 force 

field32 library. The quality of models was assessed by comparing calculated self-diffusion 

coefficients (D) for Co(II/III)Sep with the experimental one.14 The calculation of D were 

performed on three sets of 20 ns simulations started by assigning different initial velocities from 

Maxwell-Boltzmann velocity distributions at 300 K in a 3 nm cubic box of water (SPC model42) 

with a ET mediator molecule and Cl- counter ions. The values of D obtained from Einstein 

relation43 were (0.84 ± 0.01) × 10-5 cm2/s and (0.98 ± 0.07) × 10-5 cm2/s for Co(II)Sep and 

Co(III)Sep, respectively. By taking in account a rescaling factor ~1.7 due to the reduced 

viscosity of the SPC model with respect the experimental value of the water at the same 

temperature, the values reduce to 0.49 and 0.58× 10-5 cm2/s, respectively. For Co(III)Sep, the 

calculated value is within 15% of the available experimental value14 of (0.67 ± 0.02) × 10-5 cm2/s. 

Simulations setup.  As starting crystallographic coordinates of heme domain (HEME) the 

chain A: 20 - 450) from the non-stoichiometric complex having one FMN domain and two heme 

domains (PDB ID: 1BVY, resolution of 0.2 nm).44 In the starting conformation, the coordinates 

Page 6 of 38

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



	 7	

of crystallographic water molecules within 0.60 nm from the HEME domain were also retained, 

while 1,2-ethanediol molecules were removed. The protonation state of protein residues was 

assumed to be the same as of corresponding isolated amino acids in solution at pH 7. 

GROMOS96 43a1 force field32 used for all simulations was adopted for consistency with the 

previous simulation studies of the same enzyme.45 Parameters of heme cofactor were the same as 

in our previous paper.31  

 The MD simulations were set up for HEME in water and aqueous Co(II)Sep 

solution at different Co(II)Sep concentrations. The simulation of isolated heme domain (150 ns) 

in water, used for the comparison, is an extension (up to 150 ns) of the one from our previous 

publication.31 HEME was centered in a cubic periodic box of size ~9 nm. Co(II)Sep molecules 

were randomly placed in the simulation box. The simulations were performed at Co(II)Sep 

concentrations of 12.5 mM, 25.0 mM and 100.0 mM. We have used concentrations at least 2 

times higher than those used in the available experimental studies (~5 mM)13, 24 with the purpose 

to improve the sampling of protein binding sites using more Co(II)Sep molecules. At 12.5 mM 

Co(II)Sep concentration, three sets of simulations were performed starting with different 

conformations.  These simulations though do not promise an exhaustive sampling of the protein 

surface at lower concentration, they still can provide a reliable mapping of the protein surface. 

Hence, the starting confirmation was solvated by stacking an equilibrated box of water molecules 

to fill the empty space in the simulation box. All the water molecules within 0.15 nm of another 

atoms were removed. SPC model42 was used for the water molecules. Finally, chloride counter 

ions were added by replacing the solvent molecules at the most negative electrostatic potential to 

obtain a neutral system. These salt conditions have been used for consistency with previous 

simulations, however, we cannot exclude that the presence of higher concentration of buffering 
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salts as those used in experimental conditions may have an effect on the CoSep binding. We are 

planning to explore this aspect in future simulations of the enzyme. Compositions of all 

simulated systems are summarized in Table 1. 

 

Table 1: Simulation summary of P450BM-3 HEME in water and aqueous Co(II)Sep solution. 

Simulation 
name 

No. of 
atoms 

No. of 
Co(II)Sep 

Co(II)Sep 
conc. (mM) 

No. of solvent 
molecules 

No. of 
counter ions 

Set of 
simulations 

WAT 65650 - 00.0 20365 16 Na+ 1 

5CoS(I-III) 65550 5 12.5 20290 6 Na+ 3 

10CoS 65434 10 25.0 20207 4 Cl− 1 

40CoS 64597 40 100.0 19638 64 Cl− 1 
 

Molecular dynamics simulation protocol. The LINCS46 algorithm was used to constrain 

all bond lengths and SETTLE47 algorithm was used for water molecules. Electrostatic 

interactions were calculated using Particle Mesh Ewalds method.48 For the calculation of long-

range interactions, a grid spacing of 0.12 nm, combined with a fourth-order B-spline 

interpolation were used to compute the potential and forces between grid points. A non-bonded 

pair-list cutoff of 1.3 nm was used and updated at every 5 time-steps. Berendsen’s thermostat49 

was used to keep temperature at 300 K by weak coupling system to an external thermal bath with 

a relaxation time constant τ = 0.1 ps. Pressure of the system was kept at 1 bar by using 

Berendsen’s barostat49 with a time constant of 1 ps.  

The systems were first energy minimized for at least 2000 steps using steepest descent 

method to remove possible clashes between atoms. After energy minimization, all atoms were 

given an initial velocity obtained from a Maxwellian distribution at 300 K. A time step of 2 fs 
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was used to integrate the equation of motions. First, the system was equilibrated for 100 ps by 

applying position restraints to the heavy atoms for solvent equilibration. Hence, position 

restraints were removed and the systems were gradually heated up from 50 K to 300 K during 

200 ps simulation. Finally, production runs of 150 ns were performed for all simulations at 300 

K. The GROMACS software package was used to run MD simulations and analysis of 

trajectories.50 VMD 1.9.151 and UCSF Chimera52 molecular visualization packages were used for 

figure preparation. The crystal structure of HEME was used as reference for the analysis of 

trajectories. 

Cluster analysis. Cluster analysis was performed to characterize conformational diversity 

of protein conformations selected for ET pathway analysis. The Gromos clustering algorithm53 

was used for the cluster analysis. The clustering method is based on the analysis of the root-mean 

square deviation (RMSD) matrix of a set of atoms from selected conformations along the 

simulation.53 A structure is assigned to a cluster if its RMSD from the cluster median structure is 

within a given cutoff. In this work, the method was applied to the backbone atoms and a RMSD 

cutoff of 0.11 nm was used.  

Electron transfer tunneling. ET tunneling from Co(II) atoms to heme iron was 

calculated using Pathways program.33, 54 The model for the ET transfer calculation, as 

implemented in Pathways, gives an approximate description of electronic coupling matrix and 

rate constants since it is based on empirical approximations. 

For a given protein conformation, the program identifies an effective ET coupling by 

evaluating the highest electronic tunneling coupling (TDA) through different pathways connecting 

donor and acceptor through bonds and space.33 In particular, the program identify a series of 

consecutive inter-atomic distances from a given electron donor to acceptor, and whether the 
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electron travel along each of them via a covalent bond (cb), hydrogen bond (hb) or through space 

jump (sj), contribution (ε) to the pathway TDA are calculated using following empirical 

expressions:  

 

                             (1) 

                   (2) 

 

 

                   (3) 

 

where R (in Ångstrom) is the distance between two atoms in a path segment. Hence, TDA value is 

calculated as proportional to the product of all contributions along the electron pathway:  

 

                            (4) 

 

Finally, a non-adiabatic ET reaction rate (kET) for a given pathway was estimated using following 

equation:55 

kET =
2π
!

exp − ΔG +λ( )2 4λkBT#
$

%
&

4πλkBT
TDA

2                          (5) 

 

where ΔG is driving force and λ is Marcus reorganization energy for the ET reaction, ħ = h/2π 

with Plank constant, h, and kB is Boltzmann constant. Difference in the reduction potential of 

Co(II)Sep and heme cofactor (0.188 eV) was used as a value for ΔG.19, 26, 56-57 λ is equal to 0.7 

60.0=cb
iε

sj
kk

hb
jj

cb
iiDAT εεεα ΠΠΠ

( )40.170.160.0 −−= Rsj
k eε

ε j
hb = 0.36e−1.70 R−2.80( )
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eV as a good approximation for ET in a system with more than 1.0 nm distance between donor to 

acceptor.57-58 Characteristic ET pathways and the average values of TDA and kET were calculated 

from 25 conformations extracted in 2 ns intervals over the last 50 ns simulations. The 2D graphs 

of the pathways were generated using the graphviz software (http://www.graphviz.org). 

ET mediator binding energy. The binding energies of the Co(II)Sep molecules to the 

enzyme was estimated in each simulation by calculating their averaged non-bonding interactions 

(electrostatics and van der Waals) with the rest of the system in their bound and unbound state. A 

Co(II)Sep molecule was considered bound to the protein if its minimum distance from the 

protein surface amino acids was less then 0.4 nm. The binding energy was thus calculated from 

the averaged energy of bounded and unbounded ET mediator states as ΔE=<Ebound>-<Eunbound>. 

 

RESULTS AND DISCUSSIONS 

General Structural and Dynamics Properties. In Table 2 and Figure S1 of SI, backbone-

backbone root mean square deviation (RMSD) curves and their average values calculated on last 

50 ns simulations are reported, respectively. The values indicates a possible effect of Co(II)Sep 

concentration on the protein structure and dynamics. At 0 mM and 12.5 mM Co(II)Sep 

concentrations, RMSD curves deviate the most from the crystal structure and stabilize to a 

average value of ~0.33 nm. At 25 mM Co(II)Sep, the curve shows plateau after 110 ns 

simulation to an average value of 0.31 ± 0.01 nm. The lowest RMSD value was observed for 100 

mM Co(II)Sep conc., where RMSD curve leveled to the constant value of ~0.25 nm after 50 ns 

of simulation. Average values of both radius of gyration (Rg) and surface accessible area 

(SASA), in Table 2 show small differences in CoSep-water simulations (even at high Co(II)Sep 
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concentrations) that suggests the slight effect of ET mediator on the compactness and overall 

stability of HEME.  

 

Table 2: Average values of the backbone RMSD, RMSF, Rg, and total (T), hydrophobic (Ho) and 

hydrophilic (Hi) SASA calculated from the last 50 ns of each simulation. 

 WAT 5CoS(I) 5CoS(II) 5CoS(III) 10CoS 40CoS 

RMSD 0.35±0.01 0.36±0.01 0.31±0.01 0.34±0.01 0.31±0.01 0.25±0.01 

RMSF 0.08±0.03 0.09±0.09 0.09±0.06 0.10±0.05 0.08±0.04 0.07±0.03 

Rg 2.13±0.01 2.14±0.01 2.11±0.01 2.11±0.01 2.13±0.01 2.14±0.01 

Ho.SASA 101±2 102±2 104±2 103±2 106±2 102±2 

Hi.SASA 90±2 93±2 93±2 94±2 95±2 97±2 

T. SASA 192±3 195±3 198±3 197±3 200±3 198±3 

 

The average conformation variations of HEME were analyzed using RMSD per residue 

(bottom panel in Figure 2). At higher Co(II)Sep concentrations (at 25 mM and, in particular, at 

100 mM Co(II)Sep conc.), HEME shows smaller deviations from the crystallographic structure 

than the one observed in simulations at 12.5 mM concentration. In particular, significant 

differences between the highest and lowest Co(II)Sep concentrations were observed only in 

correspondence to E/F, F/G and G/H loop regions.  

In Figure 2 (top panel), the root mean square fluctuations (RMSF) per residue are 

reported. The curves follow the trend observed for the RMSD per residue curves. As expected 

from previous simulation studies of P450BM-3,28-29, 31 the highest mobility was observed in the 
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loop regions. The presence of Co(II)Sep slightly increased the RMSFs in correspondence of A 

helix and A/B, C/D, F/G and K/L loop regions.  

 

 

Figure 2: Backbone RMSD (bottom panel) and RMSF (top panel) per residue with respect to crystal 

structure for HEME at 0.0, 12.5, 25.0 and 100 mM Co(II)Sep, respectively. Horizontal bars represent 

helices and β-strands locations at the bottom panel (in black color), and two structural subdomains of 

HEME at the top panel (in orange color).  

 

A relevant aspect of HEME structure is the accessibility of its active site that is regulated 

by the opening of substrate access channel (SAC). SAC opening can be monitored by distance 

between Cα of Pro45 and Ala191 residues that is equal to 1.61 nm in the starting 
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crystallographic structure.59 Time series of the latter distances are reported in Figure S2 of SI for 

all simulations.28, 30 The protein remains in the open conformation with an average distance of 

1.19 ± 0.09 nm calculated in the last 10 ns of water simulation. This value is in agreement with 

the result from our previous study.28, 30 During the 12.5 mM Co(II)Sep conc. simulation, the SAC 

opening fluctuates between the open and close states until it adopts the close one (average 

distance of 0.58 ± 0.05 nm) at the end of the simulation. Moreover, the increase of Co(II)Sep 

concentration tends to stabilize SAC opening state with P45Cα-A191Cα distance comparable of  

or even higher than the one observed in the crystallographic structure. Interestingly, previous 

MD simulation studies of the HEME domain in 14% (v/v) DMSO/water mixtures28-29 have also 

showed the tendency of the protein to adopt the open conformation. 

CoSep binding to the HEME surface. Co(II)Sep binding to the HEME was monitored by 

counting the number of contacts between ions and protein within a cutoff distance of 0.6 nm. The 

Co(II)Sep molecules diffuse and bind to the HEME in the first 10-25 ns of simulations. In the 

last 50 ns of the 5CoS (I, II, III), 10CoS and 40CoS simulations, 4, 8 and 37 Co(II)Sep 

molecules, respectively, steadily bound to the HEME surface with an average distance of 0.17 ± 

0.01 nm. Figure 3 shows Co(II)Sep molecules absorbed on HEME surface at the end of 5CoS II  

(A), 10CoS (B) and 40CoS (C) simulations.  

The amino acid composition of the HEME surface was calculated by counting all 

residues with the solvent accessible surface area, averaged in the last 50 ns of the simulation, 

larger than 0.35 nm2. In Table S3 of SI, the surface amino acids composition for each simulation 

are reported as the number of hydrophobic, charged, polar, aromatic and glycine amino acids. 

The trend is similar for all the simulations.  The negatively charged Asp is the most abundant 

amino acid (~26%), followed by positively charged (22-23%, mainly Lys), polar (22%), 
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hydrophobic (~18%), aromatics (~7%) and Gly (3-4%). Number of amino acid types having 

more than 6 contacts with Co(II)Sep molecules are reported in Table S4 for each simulation. 

Co(II)Sep binding sites, as expected from being positively charged, are prevalently bound to 

negatively charged (31-49%) and polar (21-27%) amino acids.  

In Figure S4 of SI, time series of contact occurrences between Co(II)Sep molecules and 

HEME residues in the last 50 ns of the simulations are reported. Only the residues with a 

percentage number of contact occurrence along the trajectory larger than 80% are reported.  In 

all these cases, Co(II)Sep molecules bind very steadily to the protein with few and short 

unbinding events.  

A total number of 130 surface residues, corresponding to ~63 % of the total surface 

amino acids (206), are involved in the binding in all the simulations. The simulations 

5CoS(I+II+III), 10CoS and 40CoS accounts for 41, 29 and 108 amino acids respectively. These 

common amino acids are 10, 23 and 26 for the pairs 5CoS-10CoS, 5CoS-40CoS and 10CoS-

40CoS, respectively. In 40CoS simulation, most of the negatively charged and polar residues on 

HEME surface are occupied by Co(II)Sep molecules providing an extensive list of binding sites 

on protein surface. As shown in previous section, our study suggests that Co(II)Sep 

concentrations also influence the extend of SAC opening (Figure S2 of SI). However, despite the 

widening of the SAC entrance in the simulations at the highest Co(II)Sep concentration, none of 

the Co(II)Sep molecule was able to diffuse inside the protein. It is possible that the positive 

charged residues in the proximity of entrance and inside SAC (as the Arg47) can indeed impede 

to positive ions the access into the SAC. However, a recently solved crystallographic structure of 

a P450BM-3 multivariant with also Arg47àPhe47, obtained from protein crystals soaked in 5 
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mM Co(III)Sep solution, do not show the presence of ET mediator molecules in the active site 

pocket .60 

 

 

Figure 3: Co(II)Sep binding on HEME is in the last frame of 150 ns simulation of water-Co(II)Sep 

solutions at a conc. of 12.5 mM (A), 25.0 mM (B) and 100 mM (C). Co atom of Co(II)Sep molecules is 

in blue colored vdw representation. HEME is in cartoon representation (sky blue) with surface colored by 
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charged residue type (positive charge in green and negative charge in red color) and hydrophobic residues 

(in yellow color). Heme cofactor is in black colored licorice representation.  

  

ET tunneling of Co(II)Sep to the Heme. ET tunneling and rate constants have been 

estimated using 25 conformations, sampled every 2 ns in the last 50 ns of each simulation. The 

structural differences in the conformers were analyzed using cluster analysis (see Methods) using 

a combined trajectory of 150 conformations from all simulations. In Figure S3 of SI, backbone 

RMSD matrix calculated on the combined trajectory is reported. RMSD values are up to 0.16 nm 

within each simulation, and larger than 0.3 nm among the six simulations evidencing in this case 

a large conformational diversity.  

 

Table 3: Number of bound Co(II)Sep molecules in each simulation grouped by calculated kET value, and statistics of 

different amino acid types involved in Co(II)Sep binding.	

 5CoS 
(I) 

5CoS 
(II) 

5CoS 
(III) 

10CoS 40CoS 

kET (s-1) <10 <10 ≥10 <10 ≥10 

No. Co(II)Sep 4 3 3 8 2 28 11 

Hydrophobic 1 0 0 3 1 7 2 

Polar 6 4 0 8 4 25 6 

Positive charged 0 1 0 3 0 8 2 

Negative charged 6 5 5 13 1 40 6 

Glycine 0 1 0 0 0 2 0 

Aromatic 0 0 0 1 0 6 1 
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Total bound 
Amino acids  

12 11 5 28 6 88 17 

 

 

The largest deviations occur between the conformations from WAT, 5CoS and 10CoS 

simulations. Cluster analysis on the combined trajectory gives 61 clusters, which are mainly 

localized within each simulation, as shown in the lower triangular part of RMSD matrix in 

Figure S3 of SI. 

The 25 conformations were used to perform the calculation of the ET pathways as 

described in the Methods section. The pathway analysis gives a total of 112 surface residues 

involved ET pathways. In Table 3, amino acid type statistics of Co(II)Sep binding sites is 

reported. As expected, the bonding sites of Co(II)Sep in all the pathways are prevalently 

negatively charged or polar. Since accurate experimental measurements of kET for this system are 

not available, we grouped ET pathways based on calculated kET values as low rate (kET < 10 s-1) 

or high rate (kET ≥ 10 s-1) for a qualitatively assessment. Half of these amino acids are involved in 

pathways with kET ≥ 0.1 s-1 and they are reported in Table 5S. From 5CoS simulations only 

pathways yielding kET < 10 s-1  have been observed. For the other simulations, 35% of Co(II)Sep 

binding sites (18) are wired to the heme iron through pathways yielding kET ≥ 10 s-1.   

The eighteen amino acids involved in pathways with kET ≥ 10 s-1 are reported in Table 4. 

These residues are the part of B, C and I helices, and B/B’, B’/C, C/D and H/I loops. Among 

these, H100, P105, E244, H388 and N397 amino acids are also localized at FMN/HEME 

interface as in the crystal structure (PDB-ID: 1BVY), and from our recent simulation study of 

HEME/FMN complex.31 The other binding site residues are observed on distal side of HEME in 

proximity of near the SAC. 
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Table 4: List of HEME residues involved in Co(II)Sep binding and in the pathways of ET rates ≥ 10 s-1. 

Third column reports secondary structure element in which amino acids is located. The fourth column 

report the maximum value of kET observed for the Co(II)Sep bound to this residue. Amino acids located in 

correspondence of HEME/FMN domain interface are indicated with ‘X’ in column 5. Columns 6-10 

indicate Co(II)Sep binding to HEME residues. Last column indicates amino acid mutation(s) reported in 

literature for HEME residues involved in Co(II)Sep binding.  

N. Res. 
No. 

 

Res. 
Name 

Secondary 
Structure 

kET(s-1) Heme/
FMN 
Interf. 

5Co
S  

(II) 

10C
oS 

40CoS Reported mutations 

1 23 ASP coil-loop: lc1 174.8    30, 35, 38  

2 63 ASP coil-loop: lc5 10.8    19  

3 71 LEU coil-loop: lc6 406.1    10  

4 76 LYS α-helix: B' 971.8    10 SER61-62 

5 80 ASP α-helix: B' 1146.3    10 PRO61-62 

6 84 ASP coil-loop: lc7 1706.5   1 6 THR61-62 

7 95 ASN α-helix: C 3027.6   1   

8 96 TRP α-helix: C 398.3    5 ALA/PHE/TYR63-65 

9 100 HIS α-helix: C 34950.4 X   5 ARG66-67 

10 105 PRO 310-helix: a 470.2 X  5   

11 106 SER 310-helix: a 46.9   5 12 ARG67 

12 244 GLU coil-loop: lc13 297.3 X   5, 8  

13 253 ASN α-helix: I 259.6   1 6  

14 351 ASP coil-loop: lc20 27.7  1 6 14, 35  

15 359 GLN α-helix: K' 156.3  3    

16 388 HIS coil-loop: lc22 468.6 X   19  

17 397 GLN Cys-pocket: p1 1321.9 X   5  

18 440 LYS β-sheet: 4.2 31.3    29 ASN68 
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In Figure 4A, Co(II)Sep binding residues, listed in Table 5S, are represented as van der 

Walls (VdW) sphere on the crystal structure of FMN/HEME complex.44 Figure 4B is the same 

representation of the protein with the binding residues involved in pathways colored according to 

the kET values. The distribution of Co(II)Sep binding sites on the protein surface follows the 

surface electrostatic properties. However, only few binding residues act as electron acceptors for 

ET to heme iron, and they are localized in specific locations as in proximity of the SAC and at 

the FMN/HEME interface. Interestingly, the last one has been optimized by the nature to 

enhance the ET between reductase and HEME domains.  

	

		

 

Figure 4: HEME/FMN complex is in cartoon representation colored by gray color. Heme cofactor is in 

red (A) and green (B) colors, and FMN cofactor is in orange colored licorice representation. FMN domain 

has green color surface representation. (A) Co(II)Sep binding residues are in VdW representation colored 

by yellow, cyan and blue for 5CoS, 10CoS and 40CoS simulations, respectively. (B) Residues involved in 

ET pathways with kET < 1, 1 < kET < 10, and kET ≥ 10 are in cartoon representation colored by pink, ice 

blue and blue color, respectively. 
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The pathways formed by cluster of residues from the selected Co(II)Sep molecules are 

partially interconnected and forming a network. In Figure 5 and S6, the combined ET pathways 

network obtained from all the simulations are reported. In order to simplify the visualization, the 

network of Figure 5 shows only the pathways with kET ≥ 10 s-1 and occurring in the analyzed 

conformations more than 5 times. The number of bonded Co(II)Sep molecules are in total three, 

two and six from the 5CoS(II), 10CoS and 40CoS simulations, respectively. For kET ≥ 10 s-1, this 

number reduces to 9 since only one pathway 5CoS simulation fulfills this condition. 

 The different pathways are represented in different colors and the line thickness is 

proportional to the number of protein conformations in which the same pathway was observed. 

In Table S5, S6 and S6 of SI, these pathways are listed with their average kET values and 

occurrences in the selected conformations in the different simulations. The graph clearly shows 

that most of the Co(II)Sep molecules docked to gateway residues for 7 preferential pathways 

(tick lines). Beside the residues present in these main pathways, there are several other ones 

involved in the formation of transient and secondary ET lanes along the main routes (see Figure 

S5). In addition, although in a less extended, interconnectivity among principal pathways from 

different Co(II)Sep molecules is also observed (see Figure S5).  The main pathways comprise 

from 1 to 6 intermediate amino acids (in the extended graph of Figure 5S, pathways can 

comprise up to 8 amino acids). The pathways amino acids composition is 20% hydrophobic, 

40% polar, 20% charged, 10% glycine and 10% aromatics, with the charged residues as binding 

residues as mentioned before. 

 These networks reflect the local structural organization of the residues involved. In Figure 

6, as representative examples, residues involved in the ET for the last simulation conformation 

from the 10CoS and 40CoS simulations are shown. For the 10CoSep simulation, two preferential 
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pathways have starting from Asp84 (Co1_10) and Ser106 (Co5_10) residues (see Figure 5) are 

present. As shown in Figure6A, they comprise 3 and 4 amino acids, respectively located in B’/C 

loop (D84, G85 and A86), helix C (S106 and F107), and K/L loop (I401 and C400). The 

pathways starting from Co5_10 are located in proximity of the FMN/HEME binding interface of 

the complex, the other one on the opposite side (see Figure 4 and 6A). 

 In the 40CoSep simulation, six dominant pathways, with two in common with the 5CoS(II) 

and 10CoS simulations (see Figure 6B) respectively, have been observed. The pathways start 

from two His residues (100 and 388), three Asp (84, 351 and 23), Ser106 and Lys76. The shorter 

pathway (from Co5) comprises the His100 only, while the longer one from Co19 5 and from 

Co14 6 residues, respectively. These pathways involve residues of N-terminus (D23), helix B’ 

(Q73 and K76), and B/B’ (S72), B’C (D84, G85 and A86), K/L (L333, S332, D351, E352, L353, 

H388, F393, G394, N395, C400) loops. As shown in Figure 6B, two pathways (from Co19 and 

Co5) have residues facing the FMN/HEME interface region (see Figure 4) while the other are 

more distant with two of them near to the SAC entrance (Co38, Co10). Interestingly, the binding 

site of Co14 is common to the one of Co1 in the 5CoS(II) simulation.  

 The average binding energies (ΔE) of each Co(II)Sep in the last 50 ns of each simulation is 

reported in Table7S of SI. For the 5CoS(II) simulation, three Co(II)Sep molecules involved in 

ET with kET > 10 s-1  have values of  -68 (Co1, Co4) and -119 (Co3) kJ/mol. The Co3 molecule 

has the lowest energy among all the binding molecules but its pathways is a transient one 

occurring less than 6 time in the 25 sampled conformations. The more stable Co1 share the same 

pathway with the Co14 in the 40CoS simulation. The last one has a binding energy of -77 kJ/mol 

that it is close to the value of the Co1 in 5CoS simulation. For the 10CoS simulation, the two 

Co(II)Sep molecules involved in the ET have value of ΔE of -80 (Co1) and -73 (Co5) kJ/mol, 
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respectively. These values are higher than the average one of -85.9 kJ/mol. The Co1 molecule 

share the same pathway of the Co6 one in the 40CoS simulation that it has also a very similar ΔE 

value (-79 kJ/mol). Finally, for the 40CoS simulation, the six Co(II)Sep involved have ΔE values 

equal to -74, -79, -74, -77, -87, -81 kJ/mol that are lower than the average (-70.8 kJ/mol) but not 

the lowest ones (see Table 7Sb) among the binding molecules.  

 Overall these results indicate a poor discrimination of the Co(II0Sep for the different 

binding sites of the enzyme and a lack of correlations between the best binding energy and the 

most efficient pathways kET. Several amino acids, which are involved in the observed ET 

pathways, are also targeted in mutagenesis experiments of P450 BM-3 (for a complete and recent 

list of P450 BM-3 mutants see Ref.17).  
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Figure 5: Combined representation of ET pathways with kET ≥ 10 s-1 and occurring more then 25% of the 

analyzed conformations from 5CoS, 10CoS and 40CoS simulation. The pathways are indicated using 

separate colors. The line thickness represents the number of conformations in which the pathway was 

observed. The color of ellipse around the amino acids names reflects the chemical nature of the amino 

acid (red: polar, brown: charged, blue: hydrophobic and aromatic; yellow: glycine). 
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 Experimental mutagenesis studies at the HEME binding positions of Co(II)Sep observed in 

this study are indicated in the last column of Table 4 and Table 5S of SI. To the best of our 

knowledge, only one experimental study on the activity of P450 BM-3 wild-type and mutants, 

with improved activity with respect WT P450 BM-3, has been reported in the literature for this 

system.24 The improved HEME mutant, obtained by directed mutagenesis methods, contains the 

following substitutions F87A, R47F, V281G, M354S, D363H. Interestingly, the mutation 

D363H (see Table 4 and Table S5) coincides with one of the identified residues involved in low 

rate ET pathway (kET< 1).  However, considering the large number of mutations, it is difficult to 

make any conclusion on its role on the enhanced enzymatic activity of this mutant.  

 

 

Figure 6: HEME conformation is in cartoon representation using the last frame of (A) 10CoS and (B) 

40CoS 150ns simulations. Cobalt and iron atoms are shown in VdW representation. Heme cofactor and 

residues involved in the main ET pathways in Figure 5 are represented as colored sticks.		
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CONCLUSIONS 

 A MD simulations study of P450 BM-3 heme domain has been performed in aqueous 

solution of ET mediator cobalt(II)sepulchrate at three different concentrations. The results of 

simulations illustrate the absorption mechanism of ET mediator on protein surface at molecular 

level, its effect on enzyme structure and dynamics, and possible ET pathways from binding site 

to heme iron.  

Although P450 domain structure does not change significantly from the crystallographic 

starting one, a dependence of protein conformational variations on the Co(II)Sep concentration 

was observed. In particular, at high Co(II)Sep concentrations, the protein has a reduced backbone 

fluctuations as a consequence of large number of Co(II)Sep ions absorbed on its surface. In 

addition, high Co(II)Sep concentrations tend to open of substrate access channel with possible 

effects on the enzymatic activity. Co(II)Sep ions typically bind on the exposed loop regions of 

the protein surface (containing more negatively charged amino acids) reducing their flexibility. 

Unfortunately, experimental structural studies of the protein at high Co(II)Sep concentration are 

not yet available. However, it would be interesting to experimentally verify the effect of the ET 

mediators on the structural and dynamics properties of the enzyme.  

The results also showed that Co(II)Sep ions tend to be absorbed rapidly by the protein 

surface and remain bounded to it. This suggests that the oxidized form Co(III) of the mediator,  

having a stronger electrostatic affinity with negative amino acids than the reduced one, can more 

strongly bound and, eventually, saturate all the binding sites of the protein surface. In this 

conditions the reduction of Co(III)Sep ions might take place either directly by electron source 

(e.g. zinc dust) or indirectly by other reduced electron mediators present in solution. 
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Only 25-28% of identified Co(II)Sep binding sites are connected to heme iron with ET 

pathways yielding ET rates kET ≥ 10 s-1. This percentage drops even more if constraints on 

frequency of pathway occurrence in the analyses conformation are introduced. Some of these 

sites are located in regions proximal to interface with FMN domain as from the crystallographic 

structure of FMN/HEME complex. However, other high ET rate pathways have been identified 

starting from regions closed to SAC region. The analysis of the binding energy reveals poor 

binding specificity and no correlation with the calculated ET rate. This is not surprising since the 

heme domain of P450BM-3 structure is not naturally evolved to efficiently drive its catalysis 

using small ET mediators as electron source. 

In order to achieve a high productivity in electro-enzymatic processes, ET from mediator 

to enzyme redox center is one of the most important parameters to achieve the overall goal of 

high product formation.69 Mutations at the amino acids positions involved in calculated ET 

pathways are reported in the literature, but only very few of these mutants have been studied in 

the presence of Co(II)Sep.  The results of our study show that there are few amino acids that are 

potential binding sites that can have also favorable ET pathways. Unfortunately, there are not 

experimental data on the kinetics of ET between Co(II)Sep and heme domain. However, 

considering the short contact distances it is probably on the order of nanosecond time scale 

though for a more accurate estimation quantum mechanics studies of the tunneling effect 

between Co(II)Sep molecule and the binding residues are required. Nevertheless, this study is the 

first of this type on P450 BM3 and, in the limit of the approximation adopted, it provided useful 

information to further experimental study on mediated electron transfer of this important 

enzyme. In this sense, our results provide guidelines to the design of novel mutants of the 

enzyme with a more efficient mediated ET catalysis. 
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Finally, the presented study evidences how MD simulation is an important tool for a 

rational process development of electro-enzymatic processes.70 The more knowledge gained 

about the process on a molecular level, the more accurate models can be developed, and thereby 

improved predictions for future designs are possible. 

 

Acknowledgement 

We thank the European Union 7th framework program (project “OXYGREEN”, Project 

Reference: 212281) for financial support. This study was performed using the computational 

resources of Computer Laboratories for Animation, Modeling and Visualization (CLAMV) at 

Jacobs University Bremen. 

 

Author Information 

Corresponding Author: 

Prof. Dr. Danilo Roccatano 

E-mail: droccatano@lincoln.ac.uk  

Current Address: School of Mathematics and Physics, University of Lincoln, Brayford 

Pool, Lincoln, LN6 7TS, United Kingdom 

 

Associated content 

Supporting Information 

Tables: GROMOS96 43a1 force field parameters for Co(II)Sep and partial charges on 

Co(II/III)Sep, backbone-backbone RMSD,  Radius of gyrations, average SASA values, ET 

pathways from 10CoS and 40CoS simulations. Figures: RMSD matrix and cluster analysis, 

Page 28 of 38

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



	 29	

contact map of CoSep binding on heme domain and P45Cα and A191Cα distance as a function 

of time. This information is available free of charge via the Internet at http://pubs.acs.org. 
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