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Abstract. This paper aims at improving non-negative matrix factor-
ization (NMF) to facilitate data compression. An evolutionary updat-
ing strategy is proposed to solve the NMF problem iteratively based
on three sets of updating rules including multiplicative, firefly and sur-
vival of the fittest rules. For data compression application, the quality of
the factorized matrices can be evaluated by measurements such as spar-
sity, orthogonality and factorization error to assess compression quality
in terms of storage space consumption, redundancy in data matrix and
data approximation accuracy. Thus, the fitness score function that drives
the evolving procedure is designed as a composite score that takes into
account all these measurements. A hybrid initialization scheme is per-
formed to improve the rate of convergence, allowing multiple initial can-
didates generated by different types of NMF initialization approaches.
Effectiveness of the proposed method is demonstrated using Yale and
ORL image datasets.

Keywords: Non-negative matrix factorization; data compression, evo-
lutionary computation

1 Introduction

Non-negative matrix factorization (NMF) is an algorithm based on decompo-
sition by parts the input data matrix, which can reduce the dimensionality of
the datasets while keep the most information about the datasets. It is suitable
for redundancy reduction in image data, known as image compression, to opti-
mize storage space and increase transmission rate. Different from compression
methods such as principal component analysis (PCA) and independent compo-
nent analysis (ICA), NMF introduces non-negative constraints which offer more
clear interpretation. Recent advances on NMF are focused on formulating more
sophisticated objective function for NMF to better serve a dimensionality reduc-
tion, clustering or classification task, by incorporating extra concerns into the
original reconstruction error such as preservation of local data geometry [12] and
enhancement of class separation[5].
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In traditional NMF, the initial values of the factorization variables of NMF
are usually set as random values. However, this is not the most effective setup.
Many algorithms have been proposed to obtain the initial values of the factor-
ization variables in a more sophisticated way, in order to improve the rate of
convergence. For example, spherical k-means clustering is used to initialize one
factorization matrix, then nonnegative least square is used to derive the other
factorization matrix [8]. Principal component analysis (PCA) can also be used
to perform such initialization, for which non-negativity of the factorization vari-
ables can be enforced by either converting all the negative elements of the PCA
output to zero [11] or keeping the absolute values [10]. Another way is to uti-
lize fuzzy c-means clustering (FCM), where the FCM cluster centroids can be
used as one factorization matrix while the cluster membership degrees to derive
the other factorization matrix [11, 7]. Performances of six initialization meth-
ods of random, centroid, singular value decomposition (SVD) centroid, random
acol, random C and co-occurrence based ones is compared in [3]. When applying
NMF to data compression, an appropriate initialization method has the poten-
tial to enhance both convergence rate and compression performance. On the
other hand, sensitivity of the NMF performance to different initialization meth-
ods makes it challenging for the user to choose an appropriate one for a given
task.

Instead of choosing one particular initialization scheme, we propose an evo-
lutionary NMF updating procedure, which learns from multiple seed candidates
initialized in the solution space, and effectively updates the candidate set along
multiple directions in order to obtain better quality of factorization matrices to
facilitate data compression. The proposed method is general, and there is no lim-
itation on the used number and types of the initialization methods. The major
contributions of the proposed design include to improve the the most commonly
used multiplicative NMF update [4] so that it can serve better the data compres-
sion task, and to take advantage of the hybrid of different NMF initialization
setups to produce NMF approximations that suits better the data compression
purpose and save the users’ effort on initialization determination. Effectiveness
of the proposed method will be demonstrated thoroughly through benchmark
testing and comparison with existing approaches using Yale and ORL image
datasets.

The rest of the paper is organized as follows: Section 2 explains the pro-
posed method. Performance evaluation and comparative analysis are conducted
in Section 3 by experimenting with the proposed and state-of-the-art methods.
Finally, a conclusion is drawn in Section 4.

2 Proposed Method

Given a d × n non-negative matrix X = [xij ] with each element xij ≥ 0, its
columns represent images to be analyzed. NMF seeks two non-negative matrices,
a d × k one W = [wij ] and an n × k one H = [hij ], so that the following
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factorization error is minimized:

min
wij≥0,
hij≥0

∥∥∥X−WHT
∥∥∥2
F
, (1)

where ‖ · ‖F denotes the Frobenius norm. Each column of W is known as the
basic vector, while each column of H as the encoding coefficient vector. For the
image compression analysis, each column of W indicates one basic image and
k ≤ min(d, n) is often assumed as the number of the basic images determined
by the user or the specific purpose.

We propose an evolutionary strategy to improve the iterative updating pro-
cedure of NMF, named as ENMF. It aims at producing higher-quality basis and
encoding coefficient matrices W and H to suit the data compression purpose.
The algorithm starts from multiple pairs of initialization matrices for the basis
and encoding coefficient matrices, which form an initial candidate set denoted
as S0 =

{(
Wi

0,H
i
0

)}m
i=1

where
{
Wi

0

}m
i=1

and
{
Hi

0

}m
i=1

are referred as the seed
matrices. The algorithm then evolves, creating an updated candidate set at each
iteration, denoted as St =

{(
Wi

t,H
i
t

)}mt

i=1
for the tth iteration with mt denot-

ing the new candidate number. In the end, the optimal basis matrix and its
corresponding encoding coefficient matrix are selected from the finally evolved
candidate set based on a score function formulated to suit data compression.

2.1 Seed Matrix Generation

To take advantage of the state-of-the-art NMF initialization strategies and to
achieve local improvement of the optimal solution, multiple NMF initialization
approaches are utilized to construct the initial candidate set, which contains var-
ious seed matrices of the basis and encoding coefficient ones: (1) The clustering-
based initialization (CI) approach is first conducted via performing k-means
clustering [2]. The resulting binary cluster membership matrix is used as H1

0,
and the resulting clustering centroid matrix as W1

0. (2) A similar CI approach is
conducted again but via FCM clustering [1]. The obtained cluster membership
and centroid matrices are used as H2

0 and W2
0, respectively. (3) The random

initialization (RI) [4] and random acol initialization (RAI) [3] are used to gener-
ate the two candidates of

(
W3

0,H
3
0

)
and

(
W4

0,H
4
0

)
. It is worth to note that the

proposed NMF updating algorithm is a general method. The users can freely
include any type and any number of initial candidates to suit their needs apart
from the above ones.

2.2 Evolving Strategy

In each iteration, three new subsets of candidates S
(M)
t+1 , S

(F )
t+1 and S

(S)
t+1 are gener-

ated from the previous set St, according to three types of evolving rules proposed,
including the multiplicative, firefly and the survival of the fittest rules. The three

subsets together constitute the updated set St+1 = S
(M)
t+1 ∪ S

(F )
t+1 ∪ S

(S)
t+1 at the

(t+ 1)th iteration, from which the best candidate is selected as the final output
in the last iteration. In the following, we explain the three rules in detail.
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Multiplicative Rule: This rule is constructed to take advantage of the classical
multiplicative update rules for NMF approximation [4]. It generates the new
candidate subset by

S
(M)
1 = Φ1 (S0,X) , (2)

for the first iteration and

S
(M)
t+1 = Φ1

(
S
(M)
t ,X

)
, (3)

for the (t+ 1)th iteration (t ≥ 1). The operation S′ = Φ1(S,X) takes one set of
matrix pairs S = {(Wi,Hi)}mi=1 and one d × n matrix X as the input, outputs

a set of matrix pairs denoted as S′ =
{(

W′
i,H

′
i

)}m
i=1

, and is formulated as

H′i = Hi ◦
(
XTWi

)
�
(
HiW

T
i Wi

)
, (4)

W′
i = Wi ◦ (XHi)�

(
WiH

T
i Hi

)
. (5)

where ◦ and � denote the Hadamard product and division, respectively. This
rule updates the candidates separately from the other rules in order to enable
the inclusion of multiple NMF solutions obtained by the multiplicative update
rules to the final evolved candidate set. These solutions are driven by the same
factorization error minimization but initialized through different ways.

Firefly Rule: This rule encourages the generation of new candidate matrix
pairs that may contain higher quality of basic matrix than those obtained by
the previous multiplicative rule, in order to facilitate the data compression task
more effectively.

In the first iteration, the firefly rule operates on the candidate subset S
(M)
1

of the multiplicative rule, and further creates another candidate subset by

S
(F )
1 = Φ2

(
S
(M)
1 ,W∗

1

)
. (6)

The operation S′ = Φ2(S,A) takes a set S = {(Wi,Hi)}mi=1 and an d×k matrix

A as input, while outputs a new set S′ =
{(

W′
i,H

′
i

)}m
i=1

. The corresponding
relationship between its input and output is defined by

W′
i = Wi + β (A−Wi) , (7)

H′i = Hi, (8)

where 0 < β ≤ 1 is set by the user. It is obvious that, given 0 < β ≤ 1, W′
i is

always non-negative when Wi and A are both non-negative. These guarantee
that the generated matrix pairs

(
W′

i,H
′
i

)
are eligible to be used as NMF candi-

dates. The matrix W∗
1 used in Eq. (6) is selected through searching within the

combined set of S
(M)
1 ∪S0 based on a predefined score function O(·) for assessing

the compression quality, which will be explained in Section 2.3.
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Eq. (7) drives {Wi}mi=1 generated by the multiplicative rule to move towards
a pre-selected optimal basis matrix W∗

1. This design is motivated by a recent
evolutionary optimization algorithm inspired by the flashing behaviour of firefly,
known as firefly algorithm [9]. It assumes that attractiveness between fireflies
is proportional to their brightness, thus, given any two fireflies, one will move

towards the other that glows brighter. Following Eq. (7), each candidate in S
(M)
1

is viewed as a firefly. The quality of the basic matrix for each candidate, evaluated
by the score function O(·), represents the brightness degree of the firefly. The
evolving rule is constructed by letting all the fireflies move towards the brightest
one in each iteration. This procedure offers an opportunity to evolve higher
quality of basic matrices to better serve the data compression task.

From the second iteration, the firefly rule starts to create new candidate

subset S
(F )
t+1 by operating on its previously generated subset S

(F )
t . It first modifies

S
(F )
t by the multiplicative rule Φ1, and then updates the resulting set based on

the firefly operation Φ2. This gives the following new candidate subset for the
(t+ 1)th iteration (t ≥ 0):

S
(F )
t+1 = Φ2

(
Φ1

(
S
(F )
t ,X

)
,W∗

t

)
, (9)

where W∗
t is selected according to the score function O(·), through searching

within not only the whole previous candidate set but also its update via multi-
plicative rule St∪Φ1 (St,X) to maintain its quality. Instead of directly updating

S
(F )
t with Φ2, Eq. (9) uses the multiplicative rule to smoothen out the given

candidates, which may potentially reduce the factorization error. The mixed ap-
plication of Φ1 and Φ2 attempts to evolve matrix paris offering good quality
of basic matrix while alternatively ensuring the joint quality of the basis and
encoding coefficient matrices.

Survival of the Fittest Rule: This rule ensures the candidates containing the
best basic matrix are always included in the evolved set. At the first iteration,

the candidate subset S
(S)
1 is generated by

S
(S)
1 = Φ3

(
S
(M)
1 ,W∗

1

)
, (10)

After that, it modifies its previously generated subset S
(S)
t by

S
(S)
t+1 = Φ3

(
Φ1

(
S
(S)
t ,X

)
,W∗

t

)
. (11)

Here, the operation S′ = Φ3(S,A) creates m matrix paris S′ =
{(

W′
i,H

′
i

)}m
i=1

from the input set S = {(Wi,Hi)}mi=1, and is formulated as W′
i = A and

H′i = Hi. It combines the best basic matrix W∗
t selected in each iteration with

various encoding coefficient matrices. The use of W′
i = A can be viewed as a

special case of Eq. (7) with the fixed parameter β = 1, equivalent to forcing
all the weaker fireflies to eliminate themselves but let the brightest one survive.
Thus, this rule is named as the survival of the fittest.
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Fig. 1. Data flow of the proposed ENMF. The circle, triangle and rectangle symbols
represent candidates derived during the generation of the S

(M)
t , S

(F )
t and S

(S)
t subsets,

respectively.

2.3 Score Function

Since the primary goal of this work is to improve NMF so that it can serve
better the data compression task, it is important to design an appropriate score
function to assess compression quality. Usually, in addition to factorization error,
data compression performance is also indicated by sparsity and orthogonality of
the resulting basis matrix. Given the data matrix X and the basis matrix W,
the following measurements are usually computed [11]:

error(W) =

∥∥∥X−WHT
W

∥∥∥
F

‖X‖F
, (12)

sparsity(W) =

∑d
i=1

∑k
j=1 |wij |
k

, (13)
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orthogonality(W) =

√
d
∑k
i,j=1,i6=j w

T
i wj

k(k − 1)/2
, (14)

where wij denotes the ij-th element of the basis matrix W while the vector wi

denotes its ith column, and the encoding matrix HT
W is computed from W by

applying non-negative least square analysis [4]. Based on the formulations of all
the three measurements, the lower value they possess, the better compression
quality they indicate. To take into account all these three measurements, the
following composite score function is proposed, given as

O(W) =

{
sparsity(W)+orthogonality(W)

2 , if error(W) ≤ α,
sparsity(W)+orthogonality(W)

2β , otherwise.
(15)

The parameter 0 < α < 1 is defined by the user, providing a threshold of the
minimum allowed factorization error rate. This proposed score examines the av-
eraged sparsity and orthogonality performance within a pre-defined factorization
error range. When the allowed error threshold α is exceeded, the other two quan-
tities are heavily penalized by 1

β , where β can be set as a very small positive

value to impose high penalty, e.g., 10−6. The overall data flow of the proposed
ENMF is shown in Fig. 1.

3 Experimental Results and Analysis

Two face image datasets of Yale and ORL are used to examine the performance.
Yale contains grayscale images representing 15 subjects with 11 images per sub-
ject including center-light, w/glasses, happy, left-light, w/no glasses, normal,
right-light, sad, sleepy, surprised and wink. ORL contains 400 images represent-
ing 40 distinct subjects, with 10 images per subject taken at different times
varying the lighting, facial expressions (open/closed eyes, smiling/not smiling)
and facial details (glasses/no glasses). Each image is scaled by its maximum
pixel value so that the resulting data matrix X possesses elements between 0

Table 1. Performance comparison for different methods.

Datasets Sparsity Orthogonality Factorization Error RAND

Yale RI: 18.8 RI:19.2 RI:0.2 RI:91.9
RAI:19.3 RAI:19.8 RAI:0.2 RAI:91.8
CI1:28.1 CI1:29.8 CI1:0.3 CI1:93.1
CI2:18.6 CI2:19.0 CI2:0.2 CI2:91.6
ENMF: 15.3 ENMF: 15.4 ENMF:0.2 ENMF: 90.8

ORL RI: 22.9 RI:22.9 RI:0.1 RI:95.0
RAI:24.1 RAI:24.2 RAI:0.1 RAI:95.1
CI1:31.0 CI1:31.5 CI1:0.2 CI1:95.1
CI2:22.5 CI2:22.6 CI2:0.1 CI2:94.9
ENMF: 20.6 ENMF:20.4 ENMF: 0.1 ENMF: 94.1
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Fig. 2. Convergence and compression performance comparison for different methods
with Yale in terms of different measurements

and 1. The images are compressed by k = 25, which was empirically observed to
be sufficient for representing image data in our study. The proposed ENMF is
compared with the most commonly used multiplicative NMF approach based on
four different initialization methods including RI, RAI, CI by k-means (CI1) and
CI by FCM (CI2). The error threshold α is set as 0.3 and 0.15 for Yale and ORL,
respectively, which was chosen by comparing the output sample images with the
original ones given different threshold values. The maximum iteration number
for ENMF is set as 500 for Yale and 1000 for ORL to allow good convergence, for
which we have observed that the score measure converges approximately after
200 interactions for Yale while after 500 iterations for ORL (see Figs. 2 and 3) .
Each algorithm is run five times for each dataset and the averaged performance
is reported. In addition to the three measurements for data compression, we also
report the RAND index [6], which evaluates the quality of the encoding matrix
H to see how well it preserves the ground truth partition of the data.

In Figs. 2 and 3, we compare the convergence of the proposed ENMF with
the competing methods, in terms of the three quality measurements of sparsity,
orthogonality and factorization error, as well as the proposed composite score
function. The x-axis of each plot represents the iteration number while the y-axis
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Fig. 3. Convergence and compression performance comparison for different methods
with ORL in terms of different measurements.

represents the values of the relevant score function as indicated in the figures.
It can be seen that ENMF offers the fastest convergence and the best data
compression performance including much better sparsity and orthogonality and
equally low factorization error. We also provide examples of the learned basis
images by different methods for Yale and ORL in Figs. 4 and 5, respectively.
It can be seen that ENMF achieves higher sparsity than the others after 50
iterations for Yale and after 100 iterations for ORL. In general, the basis matrix
computed by CI1 possesses pretty low sparsity. Also, observing in detail each
column of the learned basis matrix that is corresponding to one patch of the
5 × 5 face patches in each subfigure, ENMF offers more distinct face patches
that indicate good orthogonality between the columns of the basis matrix.

Table 1 reports the averaged performance of the proposed ENMF and the
competing methods by repeating the experiments five times for each method.
Sparsity, orthogonality and factorization error evaluate the quality of the basis
matrix W that is important for data compression, while the RAND index mea-
sures the possible information loss of the encoding matrix H in terms of cluster
structure preservation. It can be seen that the proposed method possesses signif-
icantly better sparsity and orthogonality, meanwhile comparative factorization
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error and RAND index as compared to the others. The competitive performance
of the proposed method demonstrated in Fig. 2, Fig. 3 and Table 1 benefits
from its three-rule-driven update procedure. It inherits good quality of candi-
dates derived by the classical multiplicative rule, while introduces more diver-
sified offsprings generated from the strongest parents (the brightest fireflies) to
avoid local optimum but maintain competent searching direction.
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Fig. 4. Demonstration of the basis images learned by different methods for Yale. The
rows represent different methods including multiplicative NMF with RI, RAI, CI1 and
CI2 initializations and ENMF from top to bottom. The columns represent the compared
iteration numbers of 1, 50, 100, 200 and 500 from left to right.
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Fig. 5. Demonstration of the basis images learned by different methods for ORL. The
rows represent different methods including multiplicative NMF with RI, RAI, CI1 and
CI2 initializations and ENMF from top to bottom. The columns represent the compared
iteration numbers of 1, 100, 200, 500 and 1000 from left to right.
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4 Conclusions

We have proposed a novel evolutionary updating strategy to improve NMF for
data compression. The hybrid initialization takes advantages of multiple initial-
ized seed candidates in the solution space and saves the users’ effort on selection
of an appropriate initialization scheme. Three sets of updating rules including
multiplicative, firefly and survival of the fittest rules have been proposed driven
by a composite score function for assessing data compression quality in terms of
sparsity, orthogonality and factorization error. This enables effective searching of
an optimal candidate along multiple directions directly controlled by the perfor-
mance of the targeted data compression task. Experiments have been carried out
using two image datasets of Yale and ORL and the results have shown that the
proposed ENMF outperforms the most popular multiplicative NMF methods for
data compression in terms of both convergence and compression performance.
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