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Abstract— In order to allow humans and robots to work
closely together and as a team, we need to equip robots not
only with a general understanding of joint action, but also with
an understanding of the idiosyncratic differences in the ways
humans perform certain tasks. This will allow robots to be
better colleagues, by anticipating an individual’s actions, and
acting accordingly. In this paper, we present a way of encoding
a human’s course of action as a probabilistic sequence of
qualitative states, and show that such a model can be employed
to identify individual humans from their respective course of
action, even when accomplishing the very same goal state. We
conclude from our findings that there are significant variations
in the ways humans accomplish the very same task, and that
our representation could in future work inform robot (task)
planning in collaborative settings.

I. INTRODUCTION

Facilitating close human-robot collaboration to bring about
productivity gains and to relieve human workers from mun-
dane and straining tasks while still benefiting from the immi-
nent dexterity of humans is one of the most cited prospects
of advances in robot design and automation. While a lot of
research is dedicated to the development of frameworks of
general joint action and to mutually understand the actions
taken by a human and a robot in a collaborative setting,
very little research has been looking at the idiosyncratic
differences in which humans engage with a robot. We put
forward the hypothesis that indeed humans accomplish tasks
very differently, even when asked to accomplish the very
same goal state. We believe that a robot collaborating with
a human should not only have a reactive planning model to
account for specific deviations from a pre-learned routine,
but instead have an explicit model of an individual’s way of
accomplishing a certain task, to be able to adapt in a better
and more anticipating way to the humans actions. While
still at the beginning of our work to facilitate individualised
adaptation in human-robot collaborative assembly, in this
paper we present a first analysis of the different ways
in which humans accomplish given tasks, and present a
representation based on Hidden Markov Model (HMM)
and Qualitative Spacial Relations (QSR) that are suitable
to later feed into the task planning framework of our Baxter
robot. Hence, the aim of this research is to identify and
analyse any underlying patterns in the way humans perform
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Fig. 1. Experiment set-up through the left camera. A tabletop workplace
to make a ham and cheese sandwich showing the objects in the starting
positions.

these tasks, and to show that indeed idiosyncratic patters can
be identified, even strong enough to be able to distinguish
different subjects solely based on their course of action
taken very reliably. These results confirm our hypothesis that
indeed there are significant difference in the course of action
between individuals.

Summarised, the main contributions of this paper are i) a
probabilistic model of individuals’ course of action in defined
assembly tasks utilising qualitative state descriptors joint into
a Markov Model of individual action traits, and ii) an analysis
as to how specific these models are and their suitability to
recognise an specific worker based on their course of action.
We have analysed three different simple tasks involving four
objects being manipulated and show compelling recognition
rates based on those idiosyncratic differences.

A. RELATED WORK

Much of the work currently being done in the field of
Human-Robot Interaction (HRI) views a collaboration as a
human acting upon a system, giving the impression that an
autonomous robotic collaborator is “merely an intelligent
tool that a human operator commands, at times relinquishing
some level of control” [1]. In order for this to change,
the level of individualisation must increase from the col-
laborating robot without performing irrational behaviours
which would otherwise decrease the relations between the
collaborating pair. However, many manufacturing based im-
plementations are motivated towards performing a specific
task in a set way such as [2] in which the near optimal task
is worked out and performed, resulting in the human worker
still having to make allowances for the robots inability to
comprehend the scene around it. However, a slightly different
approach was taken in [3] in which the system tried to
learn the humans preference and adapt to them, rather than
attempting to find the optimal behaviour. The focus of this
was on applying properties to objects and using explicit



Fig. 2. The overall process flow of our system.

feedback to allow the user to convey how proficient the
robots trajectories were. This reinforcement based learning
meant that over a period of time the robot is able to learn
what the specific individual thought was a good trajectory
and what was not, whilst also generalising well to tasks
which it had not seen before. This is particularly relevant to
work presented in this paper, as it suggests that an individuals
preferences can not only be identified but also learnt, by
the way in which the human uses the items around them to
complete a joint task.

II. MODELLING INDIVIDUAL TASK ACTIVITY

The cornerstone of our approach is to represent the current
situation and how it changes due to the course of action taken
by a human accomplishing a task. Here, we model activity as
a sequence S of states si of the objects in the environment
S = s1, s2, . . . sn. Each of these states is represented as
a set of qualitative spatial relations Rt(oi, oj) between the
objects ok that hold true. The idea here is that the set of
relations changes due to the manipulation actions carried
out by the human. So, rather than having an explicit model
of actions, we observe a sequence of changing environment
states represented by the relation between all involved objects
at a given time t. A state st is therefore described by the set
of all possible relations between any two of the m objects:

st =
{
Rt(oi, oj)|i, j ∈ {0, 1, . . . ,m} , j > i

}
. (1)

An action trace is hence composed of a sequence of such
states st, where t is an index of time given by the rate of
the tracker (10Hz).

Given this approach, our computational models consists of
components to i) track manipulated objects, to ii) generate
respective QSR relations from those tracked and augment the
states for invisible (occluded) objects), and to iii) either build
Markov models from the observed sequences or test any test
sequence against those trained models to identify different
users based on their model. The process flow is indicated in
Fig. 2.

A. Tracking

The ability to effectively track the movement of the objects
during their manipulation is essential for the system to work.
To track the detected objects, we use a Bayesian tracking
framework from [4], [5] which integrates results from object
detection utilising multiple sensors and can estimate the
3D position of tracked objects at a fixed rate independent
of the frame rate of the sensors. Tracking here employs
an unscented Kalman Filter configured with a constant
velocity motion model for prediction and fixed noise models

for observations made by the individual detectors. These
compensate for the temporary loss of detection; an aspect
which is presented in [6]. In order to reduce the chance of
assigning false positives and wrong observations, a gating
procedure is applied which uses a validation region relative
to the target for each new predicted observation [7]. New
detections are then associated to the correct target using
a Nearest Neighbour (NN) association algorithm where as
only detections of the same object type are associated with
corresponding tracks. If no suitable target track could be
found, the detections were stored and eventually used to
create a new track, providing they were stable over a prede-
fined time frame. While this tracking-by-detection approach
is generic and can work with any object detection and
recognition approach, in our study we employed a marker
detection algorithm, which allows to reliably discriminate a
fixed number of predefined markers, as detailed in Sec. III-A.

B. QSR generation

In order to represent the constellation of objects in the
world as the undergo changes due to them being manipulated,
we employ QSR. QSRs are a well-established approach in
activity recognition [8], with many different QSR calculi hav-
ing been developed over the last decades in computing. They
have in common that a specific situation can be represented
as a set of finite states rather than using a continuum. In this
work we look at QSRs to represent the relation of two objects
on a 2D plane, obtained from projecting the 3D tracks onto
the table surface (our camera setup is calibrated).

Our implementation supports a variety of different Qual-
itative Spatial Representation, facilitated by a third-party
multi-purpose QSR library1. In this work, we analysed
data mainly using two representation, namely the RCC3
calculus, a simplified version of the RCC8 calculus, and
a qualitative representation of distances between two objects
termed DIST. These two representation are simple enough to
avoid having too many potential states to keep the problems
we are looking at tractable. The basic relations for RCC3
and DIST for two objects oi and oj at a time t, are

R̂t
RCC3(oi, oj) ∈ {dc, po, eq}

R̂t
DIST (oi, oj) ∈ {cl, ne, fa}

In RCC3, the basic relations are disconnected (dc, objects
do not touch each other), partial overlapping (po, object
boundaries overlap), and equal (eq, one fully covers another).
In DIST, these are close (cl, less than 20cm between the
centre points of the object), near (ne, less than 50cm), and
far (fa, centres more than 50cm apart). It shall be noted that
due to the nature of occlusion when tracking the objects, the
basic relation eq is not occurring, and is subsumed by na in
our actual data recordings.

In order to account for the absence of specific objects
or their temporary occlusion, either by the manipulating
hand or when actually occluded by an object placed on
top of another, we extended the sets of basic relations by

1
https://github.com/strands-project/strands_qsr_lib/
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an additional basic relation na (not available), given the
following final sets: Rt

RCC3(oi, oj) ∈ {dc, po, eq, na} and
Rt

DIST (oi, oj) ∈ {cl, ne, fa, na}.

C. Probabilistic Activity Model

In order to encode and facilitate automatic recognition
of different activities – or in our case different subjects –
and reasoning about the observed interactions, the sequence
of qualitative states needs to be represented in a coherent
model accounting for individual variations. We employ a
HMM [9] based representation that models the automatically
recognised QSR relation as emissions of the underlying
activity, allowing for uncertainty in the actual recognition
process. This allows us to deal with state classification
errors that arise from the discretisation of human move-
ment and unobservable objects due to occlusion into the
respective qualitative states. We initialised our HMMs with
actually observed state sequences, and created such models
for each individual human performing a task. Hence we
have created individualised models of activity, that can be
employed to recognise individuals based on an observed
QSR state sequence. To improve the initial models and
obtain optimised transition probabilities between states and
corresponding emission probability tables for these states, we
trained the individual HMMs using Baum-Welch training [9]
(Expectation Maximisation) for each activity behaviour and
person, respectively. In order to overcome the problem of a
lack of sufficient amounts of training data and unobserved
transitions therein, we allow for pseudo transitions with a
very low probability, by following the idea of the add one [9]
approach for unobserved state transition.

III. EXPERIMENT

In order to test the representational power of our models
and to gain evidence towards our hypothesis that the actual
accomplishment of a task varies between individuals, we
performed a user study based on a number of quite simple
tasks. The aim of this study was therefore to identify if
trained models are indeed specific for individuals. In a
way this is negating the goal generally pursued in pattern
recognition: While generally models are sought that are
generally applicable, here we aim to develop models that al-
low discrimination between indivudals by their idiosyncratic
differences in the course of their actions.

A. Study Design

The study was designed as a tabletop workplace, using two
extrinsically calibrated RGB cameras on either side focusing
the centre of the table to ensure optimal coverage for the
object tracking (see Fig. 1). As objects, we used two slices
of bread, one slice of cheese, and one slice of ham from
a toy felt food set with attached circular markers to bypass
costly object detection. The markers were detected using the
WhyCon algorithm [10] to not only detect their position but
also distinguish them based on the shape of the marker. The
results were fed into the tracker described earlier to achieve
data association between the two cameras. The experiment

TABLE I
CONFUSION MATRIX OF VERTICALLY ALIGNING THE OBJECTS IN RCC3

P1 P2 P3 P4 P5 P6 Total
P1 8 2 10
P2 10 10
P3 10 10
P4 10 10
P5 1 2 1 1 5 10
P6 1 9 10
Total 10 14 11 11 5 9 60

was sitting on the table next to the participants to ensure the
correct recording of the sequences.

We had a total of 6 participants (4 male and 2 female) of
which 5 are working in computer science. The participants
were equally distributed over the three age ranges 18-24,
25-34, and 35-44; each of the participants was right-handed.
During the study, the QSRs were recorded online using the
system described above.

B. Tasks

The tasks required each participant to complete repetitions
of three pre-set activities. The participants were asked to
move the four objects from a set locations to another, final
position. The starting positions of each of the objects, to
which they were reset after each trial, can be seen in Fig 1
and were clearly marked on the table.

Participants were instructed to
1) Move the objects into a vertical line on the table with

one slice of bread on either end
2) Move the objects into a horizontal line on the table

with one slice of bread at either end
3) Stack the items to build a ham and cheese sandwich

with one slice of bread at both the top and bottom of
the sandwich

All the tasks were always performed in this order. For the
stacking task, participants were instructed to only use one
hand where in the other two tasks, no specific instructions
were given. Each of the six participants was asked to repeat
every tasks ten times resulting in 60 recorded actions for
each task.

C. Evaluation

To evaluate the recorded actions, we employed standard
Leave-one-out cross-validation using the described HMM
and training method. Therefore, we had a test-set of one
action and trained an HMM on the remaining 9. Using this
test-set we generated the log-likelihood of it being produced
by the HMM created from the training-set and the HMMs
created for each of the remaining participants. If the test-
set of the person produced the maximum log-likelihood on
the training-set of the same person, compared to any of the
HMMs for the other participants, it was counted as correctly
classified.

D. Results

In Fig. 3 we can see two different examples of participants
accomplishing the same task. Whereas in Fig. 3(a) we can



(a) Action 1 for par-
ticipant 6.

(b) Action 1 for participant 2.

Fig. 3. These graphs show the transition probabilities of the HMM
(disregarding self-transitions) on the arcs and the grey level denotes the a-
priori probability of being in that state form white (“S”) to dark grey (“E”).
The graph has been pruned of transition probabilities p < 0.1 for visibility.
Both show the same action encoded in RCC3 using an artificial (S)tart and
(E)nd state, showing the difference in complexity between participants.

see that the whole interaction consists of 2 states where
everything is disconnected in state 3 and the same for state 4
with the exception of the ham being occluded. For Fig. 3(b)
we can see a more complicated structure with 3 and 4 still
being the states with the highest a-priori probability but with
the second most likely state chain of 3 all disconnected, 13
and 2 where either the top bread slice or the bottom one was
partially overlapping with the cheese, and 8 where cheese
and ham partially overlapped; all remaining objects where
disconnected.

From Tab. I showing the vertical alignment task classified
using RCC3, we can see that the majority of people used
working patterns that are distinguishable from the other
participants. With the exception of Participant P5 the major-
ity was classified correctly with P2 accumulating additional
matches. Tab. I also represents the most interesting example
compared to DIST scoring 100% classification rate in all
three tasks and RCC3 with 88.33%, 91.67%, and 96.67%
for the three tasks respectively.

E. Discussion

Our results show that we can reliably classify the person
executing an action using simple QSRs like DIST and RCC3.
We have shown that for our experiment, using DIST we
can distinguish participants with 100% reliability whereas
using RCC3 only resulted in 88.33% to 96.67% reliability.
This loss of precision can be explained with RCC3 being
unable to reason about disconnected (DC) objects which
especially in the first two tasks of putting the objects into a
vertical or horizontal line plays an important role. In these
tasks, the DIST QSR clearly outperforms RCC3 compared to
the stacking task where we achieve correct classification in
96.67% of the cases even when using RCC3. One of the main
influencing factors for this high classification rate is time.
Since we did not exclude self transitions, a person doing
the task slower will have a higher self transition probability

compared to a fast working participant and, therefore, is less
likely to achieve a high log-likelihood value when comparing
the two.

One of the main limiting factors of this work is the number
of participants. However, this pilot-study mainly served the
purposed of investigating if we can capture the differences
between the execution of the given tasks using basic QSRs
which we could demonstrate, despite the low amount of
training data.

IV. CONCLUSION

In this paper we used the identification of individuals from
their course of action to make a case for the representation of
idiosyncrasies of humans accomplishing the same task. We
showed that our probabilistic sequential model of qualitative
states, despite it being relatively simple, can capture the
essence of those differences and allows to very reliably
identify the humans acting. Despite all participants being
predominantly right handed and being given very simple
tasks to complete with the same start and end states, there
was a large number of variations in the way in which
they performed. The future work for this project includes
extending this study not only to further study the suitability
of different QSRs, but also to use such models to inform the
collaborative task planning, allowing the robot to anticipate
the human’s next step from the most probable next states in
our model.
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