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A rather easy structured permethylated dinitro calix[4]arene was found to exhibit large, 

stable and rigid channels in the solid state. These were obtained as guest free as well as solvent 

filled species and proved to reversibly adsorb selected organic solvents. Combined use of 

QMB measurements and X-ray powder diffraction revealed the predominantly reversible 

interaction of dichloromethane vapour with the channel structure as well as the integrity of 

the nanopores during adsorption and desorption. Examination of the flexible host component 

by NMR spectroscopy revealed a mixture of interchanging conformational isomers which 

could explain the high sensitivity of the crystallization process from the employed solvents. 
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Introduction 
 

   Microporous solids
1
 are still of an unbroken interest in supramolecular chemistry

2
 since they show 

outstanding properties, e. g. as catalysts or for the purpose of gas storage
3
 and nonlinear optics.

4
 

Currently, the well-examined zeolites
5
 of purely inorganic nature go through an extension by the 

use of organic constituents, leading to the concept of metal-organic frameworks (MOFs)
6
 rapidly 

developing due to their promising applications.
7
 A third emerging class of porous materials is 

generated via self-assembling of purely organic compounds to yield the so-called ‘organic 

zeolites’.
8
 Hence, the creation of stable, non-penetrated or guest-independent non-collapsing porous 

materials is a highly topical challenge. In order to satisfy the requirements of such a porous 

material, the molecular components assembling the aggregate structure are expected to behave as 

rigid tectonic building units.
9
 In a few examples, derivatives of calixarenes that correspond to this 

concept have actually been described to yield a nanoporous supramolecular structure.
10

  

   Here, we report on a special case of a porous material featuring hydrophobic channels formed by 

a conformationally flexible, rather simple structured calix[4]arene (Scheme 1). Most remarkably, 

the channels can be obtained as guest free and solvent filled species or the channels are not formed 

at all dependent on the solvent of crystallization. 

 

 
 

Scheme 1. Compounds studied in this paper. 

 

 

 

Results and discussion 
 

The crystal structure of the solvent-free calixarene 1 and its inclusion compound with acetone 

(1a) have the rhombohedral space group R-3 with nearly identical cell parameters (Table 1). 

According to the three-fold crystal symmetry, the smallest supramolecular entities of the crystal 

structures are represented by cyclic hexamers of calixarene molecules (Fig. 1a) which are further 

arranged in a columnar fashion along the crystallographic c-axis thus creating channel-like voids 

with a diameter of approximately 6 Å. The total solvent accessible void volume per unit cell is 1675 



Å
3
 for 1 and 1612 Å

3
 for 1a which corresponds to 12.0 and 11.6% of the respective cell volume. 

Due to the absence of strong hydrogen bond donors, each of the hexamers is stabilized by a close 

network of C-H···O hydrogen bonds
11

 [d(H···O) = 2.60 – 2.72 Å] in which the nitro groups as well 

as methylene and arene hydrogens take part (Table 2). 

 

 

 
Table 1. Crystal data and selected details of the data collection and refinement calculations of compounds 1, 

1a and 1b 

 

Compound 1 1a 1b 

empirical formula C32H30N2O8 C32H30N2O8 ∙ 0.33 C3H6O C32H30N2O8 ∙ CHCl3   

formula weight 570.58 589.94 689.95 

crystal system rhombohedral rhombohedral orthorhombic 

space group  R-3 R-3 Pbca 

   a/Å 39.4134(4) 39.3244(3) 16.1514(5) 

   b/Å 39.4134(4) 39.3244(3) 16.4165(5) 

   c/Å 10.4024(2) 10.4186(2) 24.4814(8) 

   /° 90.0 90.0 90.0 

   ° 90.0 90.0 90.0 

   °  120.0 120.0 90.0 

   V/Å3 13994.3(3) 13952.9(3) 6491.2(4) 

   Z 18 18 8 

F(000) 5400 5592 2864 

Dc/g cm-3 1.219 1.264 1.412 

/mm-1) 0.088 0.092 0.337 

data collection:    

temperature/K 93(2) 103(2) 100(2) 

no. of collected reflections 114418 105784 45746 

within the -limit/° 2.1 – 29.1 2.1 – 28.6 1.7 – 26.1 

index ranges ±h, ±k, ±l 
-53/53, -53/52, -

14/11 

-45/52, -51/52, -13/14 -19/19, -20/20, -

30/29 

no. of unique reflections 8290 7896 6445 

Rint 0.0477 0.0566 0.0369 

refinement calculations:  

full-matrix least- squares 

on all F
2
 values 

   

weighting expression w 
a
 

[
2
(Fo

2
)+(0.0877P)

2
 

+ 17.1128P]
-1

 

[
2
(Fo

2
)+(0.0600P)

2
 

+ 22.8232P]
-1

 

[
2
(Fo

2
)+(0.0957P)

2
 

+ 9.2233P]
-1

 

no. of refined parameters 383 399 444 

no. of F values used [I>2(I)] 6448 5211 5278 

final R-Indices    

R(=|F| / |Fo |) 0.0496 0.0531 0.0678 

wR on F2 0.1494 0.1462 0.2150 

S (=Goodness of fit on F2) 0.995 1.041 1.284 

   final max/min /e Å-3 0.55/-0.36 0.44/-0.29 0.88/-0.53 

     

                      a  P =(Fo
2 + 2Fc

2)/3. 

 

 

 

 

 

 



Table 2. Distances (Å) and angles (°) of hydrogen bonds of 1 and its inclusion compounds with 

acetone (1a) and chloroform (1b)  
 

  
Distances (Å) Angles (°) 

Atoms Symmetry 

  D···A H···A D–H···A 

1     

C(9)-H(9A)...O(2) 0.33+y, 0.66-x+y, 0.66-z 3.451(2) 2.63 140 

C(1)-H(1B)...O(3) 0.33+x-y, -0.33+x, 0.66-z 3.439(2) 2.63 139 

C(29)-H(29)...O(5) 0.33+x-y, -0.33+x, 0.66-z 3.282(2) 2.61 128 

C(11)-H(11)...O(6) 0.33+y, 0.33-x+y, 0.66-z 3.349(2) 2.70 127 

1a 
    

C(9)-H(9A)...O(1) 1+x, 1-x+y, 2-z 3.416(3) 2.61 138 

C(1)-H(1B)...O(2) x-y, -1+x, 2-z 3.428(3) 2.62 139 

C(29)-H(29)...O(5) x-y, -1+x, 2-z 3.343(3) 2.70 126 

C(11)-H(11)...O(6) 1+x, 1-x+y, 2-z 3.264(3) 2.60 127 

1b     

C(17)-H(17A)...O(5) 0.5+x, y, 0.5-z 3.414(4) 2.49 156 

C(1G)-H(1G)...O(5) -0.5+x, y, 0.5-z 3.106(5) 2.44 123 

C(1H)-(H1H)...O(5) -0.5+x, y, 0.5-z 3.361(4) 2.56 137 

C(25)-H(25B)...O(6) 2-x, -0.5+y, 0.5-z 3.263(5) 2.51 133 

C(11)-(H11)...O(8) 2-x, 0.5+y, 0.5-z 3.378(5) 2.64 135 

C(1G)-(H1G)...O(8) -0.5+x, y, 0.5-z 3.332(5) 2.61 130 

C(1H)-C(1H)...O(8) -0.5+x, y, 0.5-z 3.420(5) 2.64 135 

C(27)-H(27)...Cl(2H) 1.5-x, -0.5+y, 1-z 2.686(5) 1.84 147 

C(1H)-Cl(3H)...Cl(3H) 1-x, y, 1-z 4.387(5) 2.902(5) 141.7(1) 

     

 

 

                       
 

(a)                                                                                    (b) 

 

Fig. 1. a) Structure of the hexameric calixarene unit of 1a viewed down the crystallographic c-axis. 

Broken lines represent hydrogen bonds. Because of the high grade of disorder, the acetone molecule 

in the channel have been omitted for clarity and is marked by a light blue circle. A detailed 

representation of the acetone disorder is shown in Fig. S1. b) Molecular structure of 1. 



When a chloroform/toluene mixture was used for crystallization, the crystal structure turned out 

to be the guest-free species, viz. the cavity spanned by six calixarene molecules is empty. On the 

other hand, crystallization from acetone/toluene yielded an isostructural 3:1 exo-complex with 

acetone (1a), showing the acetone molecule disordered around a three-fold rotational inversion axis 

within this very cavity (Fig. S1, ESI†). The partially solvated structure can be explained by an 

incomplete evaporation of the acetone during or after formation of the crystals and is probably 

associated with its perfect match and slightly better host-guest van der Waals interactions in 

comparison to chloroform or toluene.  

On closer examination, one can find that in both structures of 1, the calixarenes are deviating 

significantly from the characteristic cup-shapes and adopt extremely pinched cone conformations 

(C2v symmetry, Fig. 1b). In general, the adoption of a cone conformation of the flexible 

tetramethoxy calix[4]arenes in the solid state is, with exception of the respective sodium complex
12

, 

a rather atypical behaviour as previously shown by our and other groups.
13

 However so far, only 

phenyl substituted and some laterally derivatized tetramethoxy calixarenes were found to be in the 

cone conformation in the crystal.
14

 Furthermore, in the present structures of title compound 1, the 

cone conformation is rather impaired and could probably be best described as inverted: the arene 

units A and C are almost coplanar (interplanary angles 16.7° and 16.0°, resp.) with the nitro groups 

pointing at each other, forcing the aromatic rings B and D to open widely (apex angles 115.1° and 

114.7°, resp.) (Table 3). This striking arrangement of the aromatic building units is accompanied by 

a narrowing of the intramolecular cavity, preventing cavitate formation with the respective solvent 

molecules and can be explained on the one hand by the absence of coordinating substituents at the 

lower rim and on the other hand by strong sterical demands of the crystal packing.  

 

 

Table 3. Selected conformational parameters of the compounds studied in this paper 

compound 1 1a 1b 

    

interplanar angles (°)
a

    

    

A/C 16.7(1) 16.0(1) 24.9(1) 

B/D 64.9(1) 65.3(1) 70.6(1) 

mpla
b
/A 84.7(1) 85.2(1) 78.0(1) 

mpla/B 30.4(1) 34.6(1) 24.6(1) 

mpla/C 78.6(1) 78.9(1) 77.1(1) 

mpla/D 34.5(1) 30.7(1) 85.0(1) 

    

ring A/NO2 group 3.5(2) 2.8(1) 22.1(1) 

ring C/NO2 group 6.4(2) 6.6(2) 13.4(1) 

    
a
 Aromatic rings: ring A: C(2)…C(7); ring B: C(10)…C(15); 

ring C: C(18)…C(23); ring D: C(26)…C(31). 
b
 Best plane 

through atoms C(1), C(9), C(17) and C(25).
 

    
 

 

 

 



As depicted in Fig. 2, the overall packing structure is characterized by a columnar arrangement 

of calixarene hexamers which extends along the crystallographic c-axis. Because of the relatively 

low polar nature of the hexamers, the crystal structure is predominantly stabilized by van der Waals 

type forces and weak intermolecular packing interactions. The surface of the hexameric unit as well 

as the interior of its cavity is formed by the methoxy groups, creating a more or less hydrophobic 

environment. 

 

 
 

Fig. 2. Structure of the crystal lattice of 1 viewed down the crystallographic c-axis. Corbon atoms 

are displayed as grey, oxygens as red spheres.  

 

 

Surprinsingly, only slight changes of the solvent system used for crystallization of the title 

compound, result in a completely different crystal structure. When we used chloroform/n-hexane 

instead of chloroform/toluene, a 1:1 inclusion compound of 1 with CHCl3 (1b) in the orthorhombic 

space group Pbca was recovered. Remarkably, the calixarene adopts in this case the partial cone 

conformation (Fig. 3) with interplanary angles of 70.6(1) for rings B/D and 24.9(1) ° for rings A/C, 

respectively. Like in the above cone form, the very narrow cavity prohibits the formation of an endo 

complex with solvent molecules. And yet, in the present case, chloroform is clathrat-like 

accommodated in the lattice voids. The guest molecule shows a twofold disorder with SOF’s of 

0.858 (C1G, Cl1G, Cl2G, Cl3G, H1G) and 0.142 (C1H, Cl1H, Cl2S, Cl3H, H1H), respectively. 

Interestingly, within the packing of the sheet-like arranged calixarene molecules the two differently 

occupied positions of the chloroform display distinct intermolecular interactions. For disorder 

position 1 (Fig. 4a), the CHCl3 guest is only engaged into one bifurcated C-H···O hydrogen bond,
16

 

though in the minor occupied chloroform position 2, additional strong C-H···Cl hydrogen bonds
15

 

[d(H···Cl) 1.84 Å] and weak head-on Cl···Cl contacts
16

 [d(Cl···Cl) 2.902(5) Å] can be observed 

(Fig. 4b). The interconnection of the calixarene molecules among themselves is restricted to two 



weak C-H···O-contacts involving two of the methylene bridges and two oxygen atoms of the nitro 

groups.   

 

 
 

Figure 3 

 

 

Fig. 3. Molecular structure of the 1:1 complex of 1 with CHCl3 (1b). Broken lines represent 

hydrogen bonds. The two disorder sites of the guest molecule are marked by different styles of 

bonds.   

 

  



 
a) 

 

 
b) 

 

 

Fig. 4. Packing structure of the 1:1 complex of 1 with CHCl3 (1b) viewed down the crystallographic 

a-axis with the respective major-occupancy component (a) and minor-occupancy-component of the 

solvent molecule (b). Broken lines indicate intermolecular interactions.  

 

 

Above findings stimulated a thorough conformational analysis of the title molecule in solution. A 

complex pattern of signals in the NMR spectra in CDCl3 and CDCl3/toluene-d8 indicates the 

existence of different conformers. Detailed 2D NMR study using COSY, 
1
H/

13
C-correlated HSQC 

and HMBC as well as subsequently applied NOESY and ROESY methods leads to a full 

assignment of the conformative structures (Tables S1 and S2, ESI†) and their distribution in 



solution, summarized in Fig. 5 and Table 4. In general, only cone and two partial cone 

conformations are observed in this system, though potential alternate conformations are not 

detected in any case. For 1 in chloroform/toluene (from which the respective guest free channel 

structure was obtained) all three forms occur in a 1:2:2 ratio at room temperature with 21 % cone, 

39 % partial cone 1 and 40 % partial cone 2. By using CDCl3/n-hexane-d14 or pure chloroform, the 

ratios of the different conformers not change significantly. In all cases, the somewhat non-polar 

partial cone species are favoured, which leads also to the manifestation of one of these 

conformations in the solid state in the case of crystallization from chloroform/n-hexane. However, 

crystal formation of 1 in chloroform/toluene prefers the cone form of the title molecule. It seems 

feasible that the chloroform evaporates more easily, leaving behind a solution of 1 rich in toluene. 

In that, the formation of 1:1 inclusion complexes of the title compound with toluene can be 

discussed, accompanied by a conformational swing towards the cone form, which is also present in 

the inclusion compounds 1a and 1b. The subtle influence of solvents and respective mixtures on the 

solid state behaviour of a calixarene was only recently discussed in the literature.
17

       

 

 

 
 

Fig. 5. Conformational transformations of 1 in solution. 

 

 

 

 



Table 4. Distribution of the conformers of 1 in solutions of CDCl3, CDCl3/toluene-d8 or CDCl3/n-

hexane-d14 at different temperature (mol%). Alternate conformations were not observed. Please 

note, that it was not possible to determine the conformational distribution of 1 in pure toluene-d8 as 

the compound is only sparingly soluble in this solvent  

 

conformer cone 
partial  

cone 1 

partial  

cone 2 

    
CDCl3/toluene-d8,  

T = 295 K 
21 39 40 

CDCl3/toluene-d8,  

T = 262 K 
20 48 32 

    

CDCl3,  

T = 295 K 
20 43 37 

CDCl3,  

T = 262 K 
19 48 33 

    

CDCl3/n-hexane-d14,  

T = 295 K 
23 43 34 

CDCl3/n-hexane-d14,  

T = 262 K 
21 43 36 

    
 

 

 

For a general estimation of the conformational changes caused by the nitration of the parent 

tetramethoxy calix[4]arene, it seemed reasonable to include the conformer distribution of the 

respective unsubstituted
18

 and tetranitro
19

 calix[4]arenes (22 % cone, 78 % partial cone and 7 % 

cone, 93 % partial cone, respectively, vs. 79 % partial cone and 21 % cone for 1). Hence, the 

conformational behaviour of the tetramethoxycalix[4]arene in CDCl3 varies only little by 

introduction of two nitro groups at the upper rim. However, exhaustive nitration of the upper rim 

increases the rate of partial cone conformation up to 93 %. 

 

In a next step, a quartz micro balance device
20

 was used to determine the sorptive property of 

apo-host 1 towards varying solvent vapours being exemplary of high and low polarity as well as of 

a protic and aprotic nature (n-hexane, dichloromethane, tetrahydrofuran, acetone, ethanol, toluene, 

cyclohexene and cyclohexane). The results obtained are as follows (Fig. 6): the vapours of the more 

or less polar aprotic solvents dichloromethane, acetone and tetrahydrofuran are adsorbed rather 

intensively, while the adsorption of the polar protic (ethanol) and non-polar solvents (n-hexane, 

cyclohexene, cyclohexane, toluene) is not significant. All this behaviour is likely to be connected 

with the polarity interrelation between the adsorbed compound and solid adsorbent. 

 



 
 

Fig. 6. Responses of a QMB device coated with 1 for vapours of various solvents: (1) n-hexane, (2) 

dichloromethane, (3) tetrahydrofuran, (4) acetone, (5) ethanol, (6) toluene, (7) cyclohexene, (8) 

cyclohexane. 

 

 

As demonstrated by previous studies,
21

 depending on size and interaction of the analyte 

molecules, the regeneration step of a quartz mirco balance does not always return the sensor 

frequency to the starting value, which is undoubtedly necessary for a possible application of this 

nanoporous material for the sensing or storage of organic vapours. As shown in Fig. 7 for 

dichloromethane as an example, the rate of regeneration, viz. the return of the frequency of the 

oscillating quartz to the original level, for this special case is larger than 99.99 %. Hence, the pores 

display a rather low host affinity, which is a consequence of missing interaction between host and 

guest, but nevertheless, enable fast and reversible guest diffusion.  

 



 
 

Fig. 7. QMB dichloromethane vapour sorption measurements of a coating of 1 showing four 

adsorption/desorption cycles. Solvent adsorption leads to a spontaneous decrease in frequency and 

finally a frequency equilibration. Desorption and the related approach to equilibrium frequency 

occur more slowly. 

 

 

Despite the weak intermolecular interactions within the solid, the macroscopic crystals of guest-

free 1 turned out to be perfectly air-stable. To demonstrate the preservation of the nanopores even 

after adsorption and desorption of organic guests, powder diffraction was used, whose results are 

displayed in Fig. 8. Comparison of X-ray powder diffraction patterns of 1 before adsorption and 

after desorption of dichloromethane reveals no significant differences and suggests the integrity of 

the nanopores even in the presence of solvent vapour. 

 



 
 

 

Fig. 8. X-ray powder pattern of 1 before adsorption (a) and after desorption (b) of dichloromethane. 

For comparison, (c) shows the pattern calculated from the single crystal analysis of the guest-free 

structure of the title compound. 

 

 

 

Conclusion 
 

In summary, we have identified a total organic framework featuring large, stable and rigid 

channels, being composed of hexameric units of a dinitro tetramethoxy calixarene, which was also 

examined by NMR spectroscopy revealing a high sensitivity of the crystallization process from the 

employed solvents. In order to elucidate the adsorption properties of the nanoporous material in 

hands, we combined the use of QMB measurements and X-ray powder diffraction. By examining 

selected organic solvent vapours, dichloromethane turned out to be the most promising candidate 

for further inclusion experiments, which revealed the predominantly reversible interaction of the 

dichloromethane vapour with the channel structure as well as the integrity of the nanopores during 

adsorption and desorption. In subsequent studies, we will elucidate to which extent the title 

calixarene can be derivatised without loosing the ability to form a nanoporous material in the solid 

state. 

 

 

 



Experimental section  
 

Materials 

 

The title calixarene 1, possessing only two distal nitro groups attached to the upper rim site and four 

methoxy groups in lower rim position, was obtained straightforward by nitration of the 

corresponding dimethoxy calix[4]arene
22

 followed by exhaustive methylation using methyl iodide 

and potassium carbonate.
23

 Thereupon, compound 1 was dissolved in mixtures of chloro-

form/toluene (1:1) or acetone/toluene (1:1), respectively, and the solvents were allowed to 

evaporate completely, which afforded diffraction quality single crystals of 1 and 1a in both cases. 

When we used chloroform/n-hexane instead chloroform/toluene, a 1:1 inclusion compound of 1 

with CHCl3 (1b) was recovered. 

 

 

X-ray crystal structure analysis 

 

Diffraction data were collected on a Bruker Kappa APEX II CCD diffractometer with MoKα 

radiation (λ = 0.71073 Å). Intensities were corrected for absorption using the multi-scan technique 

SADABS.
24

 Structure solution and refinement were carried out using SHELXS-97 and SHELXL-97.
25

 

All non-hydrogen atoms were refined anisotropically (except for the case of the disordered acetone 

in 1a); H atoms were fixed in calculated positions; the H atoms of the acetone molecule in 1a were 

not included in the refinement.  

 

 

QMB vapour sorption measurments 

 

The experimental setup of the quartz crystal microbalance consists of two 10 MHz standard 

electronic quartzes with gold electrodes (FOQ Piezo Technik, Germany). One of them is uncoated 

and used as reference; the other one is coated with the receptor. Both quartzes are located in a 

thermostated metal block (controlled to 25 °C by a water thermostat). The measurements are carried 

out with a constant flow of synthetic air. The resonance frequencies of the quartzes are measured by 

a multi-channel frequency counter (HKR sensor systems Munich, Germany) with a resolution of 1 

Hz. The frequency data can be read by the computer via a serial interface and the coating of the 

quartzes was performed by dipping the quartz into 10 mM solution of compound 1 in 

chloroform/toluene (1:1). According to the Sauerbrey equation,
26

 the measured frequency change is 

proportional to the increase of mass caused by the adsorbed solvent, which is given as per cent of 

the coating. Therefore the adsorption relates to the thickness of the coating and the data meet the 

requirement for a reasonable comparison. 

 

 

X-ray powder diffraction 

 

X-ray powder diffraction measurements were performed on a Siemens D5000 powder 

diffractometer at room temperature using the CuKα line. 
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