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Abstract (196 words) 26 

Why attention lapses during prolonged tasks is debated, specifically whether errors 27 

are a consequence of under-arousal or exerted effort. To explore this we investigated whether 28 

increased impulsivity is associated with effortful processing by modifying the demand of a 29 

task by presenting it at a quiet intensity.  Here, we consider whether attending at low but 30 

detectable levels affects impulsivity in a population with intact hearing. A modification of the 31 

Sustained Attention to Response Task (SART) was used with auditory stimuli at two levels: 32 

the participants’ personal ‘lowest detectable’ level and a ‘normal speaking’ level. At the quiet 33 

intensity, we found that more impulsive responses were made compared to listening at a 34 

normal speaking level. These errors were not due to a failure in discrimination. The findings 35 

suggest an increase in processing time for auditory stimuli at low levels that exceeds the time 36 

needed to interrupt a planned habitual motor response. This leads to a more impulsive and 37 

erroneous response style. These findings have important implications for understanding the 38 

nature of impulsivity in relation to effortful processing. They may explain why a high 39 

proportion of individuals with hearing loss are also diagnosed with Attention Deficit 40 

Hyperactivity Disorder (ADHD).   41 

 42 

Keywords: Auditory attention; Effortful listening; Impulsivity; Sustained attention; SART 43 

 44 
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1 Introduction 45 

Impulsivity can be measured by failures to inhibit habitual responses. For example in 46 

the Sustained Attention to Response Task (SART) (Robertson, Manly, Andrade, Baddeley, & 47 

Yiend, 1997), participants have to respond speedily to each of a rapidly presented sequence of 48 

numerical targets with a simple button press, but to withhold their response to one specified 49 

number. Unless people are actively attending to each stimulus, a ‘false alarm’ response is 50 

often made to the stimulus that does not require a button press (Chamberlain & Sahakian, 51 

2007). After people make such errors they typically realise it and this is reflected 52 

behaviourally in a slowing down of reaction times to subsequent stimuli (Fellows & Farah, 53 

2005; Manly, Robertson, Galloway, & Hawkins, 1999). Such errors are referred to as 54 

‘impulsive’. Despite the name of the task, it has been suggested that the SART may be a 55 

better measure of this impulsivity than it is of sustained attention (Carter, Russell, Helton, 56 

2013). It is thought that the repetitive nature of the task establishes a strong tendency for a 57 

response to be made unless there is a counteracting signal that prevents its initiation or 58 

execution. Impulsive errors are made when the time needed to identify the target is longer 59 

than the time allocated to initiate the motor response (Logan & Cowan, 1984; Logan, 60 

Schachar, & Tannock, 1997; Molenberghs et al., 2009).  It is also suggested that such errors 61 

may be a result of a speed accuracy trade off in response strategy (Peebles and Bothell, 62 

2004). In the SART faster response times to go targets are associated with increased 63 

impulsive errors (Manly et al. 2000). This outcome may result in a competing response 64 

strategy, respond quickly but make more errors, or respond slowly and be more accurate. 65 

Why the counteracting signal fails to stop, and the response is initiated in such tasks is 66 

still unclear. One view is that errors arise because the mind drifts due to the boring and 67 

undemanding nature of the task, an underload theory (Nachreiner & Hanecke, 1992). 68 

However, more recent research suggests a very different explanation. Despite the monotony 69 
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of continuous performance tasks they tend to be rated as very high on measures of cognitive 70 

load (e.g. NASA task load index (Hitchcock, Dember, Warm, Moroney, & See, 1999)). This 71 

high workload might be produced by the need to continuously process and identify every 72 

target to decide on an appropriate response (Hitchcock, et al., 1999). Therefore, instead of the 73 

attentional lapses that lead to impulsive responses being made due to the monotony of the 74 

task, the attentional lapses may arise due to an inability to maintain the effortful processing 75 

required to deal with the continuous workload, an overload theory. Increasing the task load 76 

with a concurrent task has been shown to increase errors made (Head and Helton, 2014).  77 

The possibility that effortful processing may be responsible for attention failures and 78 

impulsive responding in these tasks may explain a curious relationship that exists between 79 

hearing impairment and difficulties with sustained attention. The cognitive and behavioural 80 

problems seen in those with hearing loss overlap considerably with the diagnostic criteria of 81 

Attention Deficit Disorder. Indeed, a high proportion of individuals with hearing impairments 82 

are also diagnosed with Attention Deficit Hyperactivity Disorder (ADHD) (Williams & 83 

Abeles, 2004).  In the current context, these difficulties may be a reflection of the effort 84 

required to process auditory information, rather than an independent behavioural problem. It 85 

may be that degraded auditory processing makes it more difficult, rather than impossible to 86 

discriminate words (Shinn-Cunningham & Best, 2008). Those with hearing loss may 87 

effectively have greater demands on their attention to enable the successful processing of 88 

what are effectively low but detectable levels of auditory input. Given that we know that 89 

sustained attention cannot be maintained indefinitely (Robertson, et al., 1997), errors can be 90 

expected as sustained attention fails. As a consequence impulsivity, mind-wandering, 91 

inattentiveness, not paying attention would all be predicted. 92 

Whilst in a hearing impaired population developmental history makes it difficult to 93 

investigate whether attentional difficulties are a consequence of effortful processing, effortful 94 
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listening can be simulated in a population with intact hearing. This can be achieved by using 95 

a modified version of the SART, whereby low intensity auditory stimuli are used instead of 96 

stimuli in the visual modality. An auditory SART variant of the traditionally visual task has 97 

been successfully adapted for use in another study (Seli, Cheyne, Barton, & Smilek, 2012). 98 

Moreover, the auditory SART has been shown to delay the motor response, which may in part 99 

mitigate the speed accuracy trade off aspect of the SART (Seli et al., 2013; Head and Helton, 100 

2013). In the current study, an auditory SART is used to investigate the effect of effortful 101 

processing on impulsivity by changing the demand of the task, i.e. stimuli played at low or 102 

normal intensities. 103 

Here, each of the participants performed the auditory SART under two conditions: at 104 

their lowest accurate detectable threshold level and at an intensity associated with normal 105 

speech levels. In this way the attentional effort needed to support auditory processing is 106 

compared whilst the monotonous aspect of the task is held consistent. We predicted that 107 

participants would make more errors (i.e. respond when they should withhold their response) 108 

under the low intensity condition, compared to the normal intensity condition. Critically, we 109 

predicted that these errors would not be a consequence of a failure in detection and that this 110 

would be reflected in increased reaction times after an error has been made (Fellows & Farah, 111 

2005; Manly, et al., 1999). 112 

2 Method 113 

2.1. Ethics statement 114 

This study was approved by the School of Psychology Research Ethics Committee at 115 

the University of Lincoln. Informed written consent was received by all participants that took 116 

part in this study. All experimental procedures complied with the British Psychological 117 



6 

 

Society Code of Ethics and Conduct and with the World Medical Association Helsinki 118 

Declaration as revised in October 2008. 119 

 120 

2.2. Participants 121 

Thirty participants aged between 18 and 47 (24 female, 6 male, mean age ± SD = 23 ± 122 

7 years) took part in the study. Initial inclusion criteria included not having any known 123 

existing hearing impairments or self-reported attention deficits. In addition, participants 124 

undertook a hearing test prior to the experiment. The Hughson-Westlake procedure (Carhart 125 

& Jerger, 1959), an established modification of the Hughson-Westlake limits technique 126 

(Hughson & Westlake, 1944), was used to detect whether any of the participants had any 127 

unknown hearing difficulties. If participants had problems in the hearing test that were 128 

greater than mild hearing loss (above 25dB hearing level) they were excluded post hoc. No 129 

exclusions had to be made on this basis, average hearing level ranged from 5-20dB.  130 

 131 

2.3. Design 132 

The experiment used a repeated measures design with two conditions. Participants 133 

undertook a modified version of the SART (Robertson, et al., 1997); the task was adapted to 134 

present auditory instead of visual stimuli. Participants listened to a random sequence of 135 

auditory presented spoken numbers (i.e. numbers one to nine) presented at regular intervals. 136 

Participants were required to withhold response to one specified number (NO GO trial) and 137 

initiate a response to all other numbers (GO trials). Participants completed the task at two dB 138 

levels: ‘normal speech level’ and ‘low intensity level’. The normal intensity was set at that of 139 

conversational speech, defined as 60dB SPL (Pearsons, Bennett, & Fidell, 1977). The low 140 

intensity condition was set to each individual participant’s lowest detection level. Set at a 141 
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level at which all targets could still be heard and repeated back correctly (see below for 142 

details). The order of conditions was counterbalanced between participants. 143 

 144 

2.4. Determining the Lowest Detection Thresholds 145 

Before the experiments were conducted, lowest detection thresholds were measured 146 

for each participant using an Oscilla SM930 screening memory audiometer. A single 147 

handheld thumb press response button was used. Tones were presented through passive noise 148 

reducing headphones (TDH39 headphones SILENTA noise reducing headset). An audiogram 149 

including the threshold of their lowest audible frequency in hertz (Hz) and intensity in 150 

decibels (dB) was established. This identified their optimum level of hearing with sustained 151 

attention and without distraction. The same closed-cup headphones that were used for the 152 

hearing test were also used for stimuli presentation in the experiment (see below). 153 

Participants were seated in a sound proof booth and tested independently. The ambient sound 154 

levels within the booth complied with the specifications according to British 155 

Standards/European Norm (BS EN) ISO 8253-1:1998 which allow thresholds as low as 0 dB 156 

HL to be established. 157 

In addition to ruling out any possible hearing difficulty, the audiogram provided a 158 

starting point to further specify an appropriate level for the low intensity condition. Because 159 

the dB range of speech is more complex than pure tones, the audibility of the number stimuli 160 

were defined further. For this task, it was not only important that participants could detect a 161 

sound but identify what it was. To establish the level of the stimuli for the ‘low intensity’ 162 

condition, participants were played a sequence of numbers from one to nine in a random 163 

order. The presentation of each list was also presented in a stepwise manner. Participants 164 

were asked to repeat the numbers to ensure that they could discriminate the number stimuli. If 165 

participants were unable to repeat all of the nine numbers the intensity of the stimuli was 166 
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increased by 5dB SPL. If participants could accurately identify the numbers the level was 167 

tested 5dB SPL quieter. This continued until participants were no longer able to identify all 168 

nine numbers. The intensity above was then tested again with the numbers in a random 169 

sequence. Lowest detection threshold was defined as the lowest level at which the participant 170 

could accurately identify the numbers. The level used was checked twice. Using number 171 

stimuli for the task meant that participant could verbally demonstrate correct identification of 172 

the stimuli by repeating the value of the number. This clarified that participants could hear 173 

and identify the meaning of all of the targets, presented at an individually specified intensity 174 

before they started the full test. 175 

 176 

2.5. Procedure 177 

Participants sat in front of a desk with a 17 inch computer monitor, showing only a 178 

black fixation cross presented centrally in the screen. They were provided with a standard 179 

keyboard and were required to press a single button on all specified ‘GO trials’.  Participants 180 

were instructed to rest their finger on the response key. 181 

At the beginning of the task a start screen was presented, with a reminder of the 182 

correct key to press. Participants were asked to respond to all GO trials as soon as they heard 183 

them and not press the button when they heard the NO-GO trial. The participant initiated the 184 

experiment by pressing the response button when they were ready to begin. This was 185 

followed by a two second interval with no sound to ensure that the first number of the trial 186 

would not be missed. The stimuli were presented in a random sequence. Auditory stimuli 187 

consisted of the numbers one to nine presented simultaneously to both ears spoken in a 188 

human voice. All numbers were articulated with the same female human voice, read as 189 

neutrally as possible. 190 
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 Each number was presented randomly and lasted for 605ms, with an inter-stimulus 191 

interval (ISI) of 895ms. Participants were able to respond at any time within the presentation 192 

of the stimulus and the ISI, a response window of 1500ms. Reaction time was measure from 193 

the onset of the stimulus. Each of the two conditions lasted for 13 minutes and consisted of 194 

522 trials. Within each condition there were 58 ‘NO-GO’ trials (one specified number), 195 

making up 11% of trials. There were 464 ‘GO’ trials (the eight remaining number stimuli) 196 

making up 89% of trials. ‘NO-GO’ trials corresponded to a single number, which were 197 

randomly specified for each participant. Participants were asked to inhibit their response for 198 

this number by not pressing the button.  Following the ‘GO’ targets, participants were 199 

required to press the response button and were asked to do so as soon as they identified the 200 

target. The same NO-GO target was used for both intensity conditions, to ensure the 201 

experience of the ‘low’ and ‘normal’ intensity conditions were the same for the individual. 202 

The target number was counterbalanced between participants to make sure any differences 203 

between conditions were due to the intensity level and not the sound of a specific target 204 

number. No feedback was given if an error was made. Participants undertook the second 205 

condition after a short break of which the duration was defined by the participant. 206 

Participants were debriefed at the end of the study. 207 

 208 

3 Results 209 

It was predicted that more errors would be made in the low intensity level compared to the 210 

normal intensity (60dB) condition. In support of this a repeated measures ANOVA comparing 211 

intensity (normal and low) and error type (commission and omission) showed significant 212 

main effects. All significance is assumed at the 0.05 level, two-tailed. Significantly more 213 

errors were made in the low intensity condition (17.87±13.24) compared to the normal 214 

speech condition (6.43±4.38) (F(1,29) = 14.95, p = 0.001 η2 = 0.34, 95% CI [2.69,8.74]).   215 
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To determine whether the errors were a consequence of either a failure to withhold 216 

response to a NO-GO target (i.e. commission error/false alarm) or as a failure to press on a 217 

GO target (i.e. omission error/miss), the proportion of commission and omission errors 218 

observed were compared across both intensity conditions. Significantly more commission 219 

errors were made across both tasks (15.57±11.63) compared to omission errors (8.73±10.66) 220 

(F(1,29) = 12.71, p = 0.001, η2 =  0.31, 95% CI [1.46, 5.38]). This is the case even though 221 

there is proportionately less opportunity to make commission errors (11%) compared to 222 

omission errors (79%). This shows that proportionately more commission errors were also 223 

made to NO-GO targets (29.94%±22.37) compared to omission errors to GO targets 224 

(1.67%±2.04). 225 

As expected, participants made significantly more commission errors in the low intensity 226 

condition (9.83±8.69) compared to the normal speech condition (5.73±4.25) (t (29) = -3.12, p 227 

= 0.004 η2 =  0.25, 95% CI [1.41, 6.79]; Figure 1A), indicating a more impulsive reaction at 228 

low intensity when their response should have been withheld. In addition, significantly more 229 

omission errors were made in the low intensity condition (8.03±10.32) compared to the 230 

normal intensity condition (0.70±1.12) (t (29) = -3.98, p < 0.001 η2 =  0.35, 95% CI [3.57, 231 

11.10]; Figure 1B).   232 
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Figure 1A. Mean commission errors made during the SART at normal intensity (60dB) 233 

and lowest detection threshold  234 

Figure 1B: Mean omission errors made during the SART at normal intensity (60dB) and 235 

lowest detection threshold 236 

 237 

One obvious potential explanation for the higher errors (incorrect button responses to the 238 

NO-GO targets) in the low intensity condition might be that participants simply could not 239 

correctly discriminate the target, despite the initial standardisation of accuracy. To confirm 240 

that this was not the case, reaction times were averaged from the four responses before, and 241 

the four after commission errors. This method is used in the visual task variants, and typically 242 

show that SART reaction times typically slow down after an error has been made (Fellows & 243 

Farah, 2005; Manly, et al., 1999). It is suggested that the post error slowing indicates 244 

awareness of errors made (Manly et al. 2000). Average reaction time was calculated based on 245 

the correct responses to GO trials (excluding those around the error). A (3x2) repeated 246 

measures ANOVA compared reaction time to correct responses (before, after, average) 247 

around an error in the normal and low volume conditions. 248 

 Analysis showed that mean reaction times were slower over the whole task in the low 249 

intensity condition (712ms±73) compared to the normal intensity condition (611ms±76) 250 
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(F(1,26) = 77.85, p = 0.001 η2 =0.75, 95% CI [78.81, 123.46]; Figure 2). This shows that it 251 

takes longer to process and respond to the same sounds when presented at a low, but 252 

detectable intensity than at normal intensity. 253 

The repeated measures ANOVA also showed a significant difference across the three 254 

levels: response times before, after and the average reaction time excluding those around a 255 

commission error (F(2,52) = 18.39, p < 0.001 η2 =0.41; Figure 2).  As predicted, post hoc 256 

with Bonferroni correction shows that reaction times were significantly faster before an error 257 

of commission/false alarm (634ms±90), compared to reaction times after an error 258 

(688ms±104, p < 0.001, 95% CI [26.32, 81.07]; Figure 2). Reaction times were also 259 

significantly faster before an error (634ms±90) compared to the average reaction time of the 260 

task (663ms±84, p = 0.001, 95% CI [10.27, 46.79]). Compared to the average reaction time 261 

(663ms±84), reaction time was also significantly slower after an error (688ms±104), (663m 262 

±84, p = 0.17, 95% CI [3.73, 46.59]). There was no significant interaction between the two 263 

volume conditions and time around the error (F(2,52) = 1.05, p = 0.357, η2 =0.04).  264 

Figure 2: Reaction times to GO trials before and after an error of commission at normal and 265 

lowest detection threshold. 266 

 267 
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Pearsons correlations were used to further interpret the relationship between speed of 268 

response and errors made. Faster reaction times in the normal volume condition were 269 

correlated with a greater number of commission errors, (r = -48, N = 30, p =0.007, two-270 

tailed), but not omission errors (r = -.08, N = 30, p =0.67, two-tailed). In the low volume 271 

condition however, there was no correlation between reaction time and commission errors (r 272 

= -.30, N = 30, p =0.10, two-tailed), or omission errors (r = -.03, N = 30, p =0.89, two-tailed), 273 

suggesting that the increased errors at low volume may be better explained by task demand 274 

rather than response strategy related to the speed of response. 275 

 A 2 (task: low and normal intensity) by 3 (periods of watch) ANOVA was used to 276 

analyse percentage errors over the course of the task. There was no effect of commission 277 

errors over time on the task (F(2,58) = 2.33, p = 0.11 η2 = 0.07), but time on the task did have 278 

an affect on performance in relation to omission errors (F(2,58) = 4.65, p = 0.01, η2 = 0.13, 279 

Figure 3). More omission errors were made in the final period of watch on the task (1.19±) 280 

compared to the second (0.77 p= 0.02). The interaction effect shows the decline in 281 

performance was greatest at low volume (F(2,58) = 2.58, p = 0.03,  η2 = 0.12, Figure 3). 282 

 283 

Fig 3 284 

Mean percentage omission errors in the normal and low volume conditions made over time 285 
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on the task based on three periods of watch (4.35 min). 286 

 287 

4 Discussion 288 

This experiment was designed to investigate the role of sustained attention in the 289 

control of impulsivity when processing low intensity but discriminable auditory stimuli, and 290 

to identify whether impulsive errors in such tasks can be better explained by effortful 291 

processing (Grier, et al., 2003; Hitchcock, et al., 1999, Head and Helton, 2014) or under-292 

arousal (Nachreiner & Hanecke, 1992). By increasing the task demand, by making the 293 

audibility of the stimulus more difficult, the role of effortful processing when making 294 

impulsive errors could be explored. Our findings showed that when a participant completed 295 

the auditory SART task at a low but detectable intensity they made more impulsive errors on 296 

the task compared to when stimuli were presented at a normal speaking level (60dB). This 297 

suggests that at low intensity, attention is needed for successful performance and that this is 298 

not sustained over the 13 minutes of the task. When the task demand was greater in the low 299 

intensity condition more errors were made. When performance was assessed as a function of 300 

time on the task the low intensity condition showed more pronounced changes in omission 301 

errors than the normal intensity condition. These results suggest that effortful processing may 302 

not only affect the erroneous impulsive responses but also the omission errors. The decrement 303 

over time observed in this measure, supports the assumption that omission errors may be the 304 

better indicator of inattention in this task, whilst the commission errors are a better measure 305 

of impulsivity (Carter, Russell, Helton, 2013). The results are supportive of the view that 306 

errors in continuous performance tasks are a consequence of high rather than low cognitive 307 

demand (Grier, et al., 2003; Hitchcock, et al., 1999; Head and Helton, 2014).  308 

An obvious explanation for the higher errors in the low intensity condition might be 309 

that participants were unable to physically hear the target accurately and so incorrectly 310 
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pressed the response button to the NO-GO target. However, this was not the case. 311 

Detectability was established for each participant prior to testing, and confirmed by verbal 312 

recall identifying each of the stimuli. In addition, reaction time analyses from the testing 313 

session suggests that participants were aware of when they had made a mistake, i.e. they 314 

heard the target but responded incorrectly. Specifically, their reaction times were significantly 315 

slower in both the low and normal intensity conditions after an error of commission/false 316 

alarm than before the error. Following the standard interpretation, this slowing in reaction 317 

time following an error indicates an awareness of a mistake (Fellows & Farah, 2005; Manly, 318 

et al., 1999). In comparison to the overall average, reaction times before the error was faster 319 

than the average, and after an error reaction time became even slower than the average. This 320 

may be suggestive that a more conservative response style is being adopted compared to that 321 

typically used in the task.  322 

Therefore, even though more errors were made in the low intensity condition, these 323 

results cannot simply be accounted for by a failure of perception. Instead, the results appear 324 

to suggest that the impulsive responses arise from a mismatch in the time at which a habitual 325 

response is initiated and the time needed to fully process auditory stimuli. This occurs more 326 

frequently at low intensity. In line with previous research the impulsive errors observed are 327 

understood in terms of a failure to inhibit pre-potent responses (Chamberlain & Sahakian, 328 

2007; Logan & Cowan, 1984; Logan, et al., 1997; Molenberghs, et al., 2009). In the SART, it 329 

appears that errors are made when processing is slower than the time allocated to initiate a 330 

response. It is not that targets have not been identified, but rather that the time required is 331 

longer than that needed to interrupt the pre-potent motor plan. The current results can be 332 

understood as participants discriminating the auditory target but failing to do so in sufficient 333 

time to inhibit a response, i.e. the target is processed too slowly. After an error is made, 334 

participants often exclaim ‘oops’ realising they have fallen into the trap of the regular 335 
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response pattern.  These findings indicate that this happens more frequently in the low 336 

intensity condition. In the low intensity condition it appears that the time needed for 337 

perceptual processing of the auditory target is lengthened.  This interpretation would be 338 

consistent with the fact that the mean reaction time is slower over the whole task in the low 339 

intensity condition compared to the normal intensity condition. It appears to take longer to 340 

process and respond to the same sounds when presented at a low, but detectable intensity than 341 

at normal intensity. This may lead to the interrupt signal being sent after the habitual response 342 

has already being initiated (Logan & Cowan, 1984; Logan, et al., 1997; Molenberghs, et al., 343 

2009). An alternative interpretation for the increased errors at low volume may be related to 344 

the speed accuracy trade off criterion adopted in such tasks (Peebles & Bothell, 2004). 345 

However, in the low volume condition there was no correlation with faster responses and 346 

error rate, suggesting that the increased errors at low volume may be better explained by task 347 

demand rather than response strategy related to the speed of response. 348 

Errors made at low intensity were not made because of some inherently slower 349 

processing relative to the initiation of the interrupt signal. Participants were able to accurately 350 

identify the targets when the intensity level is initially set and they are able to respond 351 

correctly on the task most of the time. The changing variable here could be the availability of 352 

attention during the task. In one view, effortful tasks lead to a decline in attentional resources 353 

leaving less capacity for subsequent information processing demands (Grier, et al., 2003). 354 

Something similar may be happening in the low intensity condition of the current task.  More 355 

attention is exerted because stimuli require more processing to fully identify them at a low 356 

intensity. As the task proceeds the availability of processing resources declines leading to 357 

identification becoming slower and the inhibition of response being compromised. 358 

There is also evidence of a reduced hit rate in this task with higher omissions at low intensity 359 

than at normal intensity, although it should be noted that this difference corresponded to less 360 
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than 2% of trials in the low volume condition. Again, while superficial factors such as the 361 

intensity being too low might explain failures in response, it seems unlikely, given that 362 

performance was still high. Previous studies where the stimuli presented are well above 363 

perceptual threshold also show omission errors (Manly, et al., 1999; Robertson, et al., 1997; 364 

Seli, et al., 2012), which is suggestive that they are more likely to be failures of attention 365 

rather than perception. Indeed, the omission errors in this case appear to be the metric most 366 

similar to the errors of omission in vigilance paradigms (Cheyne, Solman, Carriere, & 367 

Smilek, 2009). Carter, Russell, Helton, (2013) also found that omission errors increased 368 

alongside impulsive commission errors over time in a SART. This finding is not unexpected 369 

and has also been observed in other studies using the paradigm e.g., (Johnson et al., 2007). 370 

Early research on attention deficit and impulsivity in those with hearing loss tended to 371 

consider these problems to be the result of developmental deficits (Altshuler, Deming, 372 

Vollenweider, Rainer, & Tendler, 1976). These included speculation about auditory 373 

deprivation, impairments in the development of spoken language, family attitudes and 374 

parenting styles that are negative towards deafness, as well as greater isolation in the 375 

environment. It was concluded that the high impulsivity in deaf children was likely to 376 

represent functional reorganization in attention (Parasnis, Samar, & Berent, 2003). The 377 

current findings suggest there may be a simpler explanation of impulsivity when processing 378 

low intensity auditory information. Specifically, the problems with attention are not 379 

necessarily dependent on a long term deficit, but can occur when attending to low level 380 

stimuli for a relatively short period, and to stimuli that could still be accurately identified. 381 

In summary, when performing a task that required sustained attention to enable 382 

successful auditory discrimination, impulsive erroneous responses increase compared to 383 

when listening to stimuli at a normal speaking intensity. This suggests that the optimal level 384 

of attention observed when participants could identify targets correctly before the start of the 385 
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task was not present throughout the 13 minutes of the task. Given the general slower reaction 386 

times at low intensity, it is suggested that the mechanism by which lack of attention has its 387 

effect may be in the speed of processing (Logan & Cowan, 1984; Logan, et al., 1997; 388 

Molenberghs, et al., 2009). In the case of low intensity stimuli when attention is reduced, the 389 

time needed to identify the sound may exceed the time needed to interrupt the execution of 390 

the habitual motor plan; leading to the more frequent false alarms or errors of commission 391 

observed. These findings support the suggestion that errors made on monotonous continuous 392 

performance tasks are a consequence of effort rather than under-arousal (Grier, et al., 2003; 393 

Hitchcock, et al., 1999, Head & Helton, 2014) as more errors occur when the demand of the 394 

task is increased further. This finding in a population with normal hearing when completing a 395 

task at a low but still detectable level suggests an explanation of the impulsive responding 396 

that has been reported among those with hearing difficulties (Shinn-Cunningham & Best, 397 

2008). 398 

 399 
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