MYNYDD PARYS
 \&
 AFON GOCH

Published by Environmental Resistance Press, UK
Published by Environmental Resistance Press, UK
For further information please visti: wwwenvironmental-esistance.org
Project 02
1stedition, limited to 20 copies
In this project Environmental Resistance are.
Concepts and Photographyy Rositanare acott
Concepps and Design: Victoriaia Redman
Concepts and Design: Vivetoria Redman
Environmental Science: William Mayes
ISBN: 978-0-9929832-15
Typeset in Avenir.
Printed in the UK by:

Revive 100 supplied by:
Printed in the UK by
Linney Group Ltd

MYNYDD PARYS \&
AFON GOCH

acid rain. Not only did acidification	miners were permanenty indebted to
Of the atmosphere kill all plant life	their employers, having to pay upfit for tools and
miners frequen	candes
	sold to them at profit by the Pays Mine
Eulosis [7]. Whist	Company [9]. Throughout the first half
a romantic ruin, it is worth	working conditions at Myrydd P
that to the $118^{\prime \prime}$ centur visitor the	a continual soure of unrest
mine would h	a series of strikes and vio
scene of total devastation - literal	in Ammuch, which
If the industrial	
copper explolied the natural	Plundering of the human
	spirit me marketplace is
forms in the surrounding	of the eath by capital [11]
cosystem, then the working	is aptly demonstrated
conditions at Myyydd Pany	xample of N
equally explitataive of the labur	egarding
The miners enioyed no fixed te	a romantic relic of the industrial past,
of employment and were forced to	the site should be more
auction their labour, with bid tyically seuring the ion	understood as a place of suffering and a continuing source of polution -a
This oppressive barga	
'ensured that wages were kept to the	The residents of Am throughthe course ofmany
	grown accustomed to the presence

Aunction, would appear to be the only burden of remediating the problems of
vable solution. At less severely polluted

 to be effective for treating coalmine
polutuin 19.1 Ithught this aproach
requires a large landmass, which may
 areas. Some reycled industrial wastes
can also obe effective at fitering metals out of the water 1201
whilst treatment plants are
Whilst treatment plants are
being telopoed that
haness the powe of natural
harness the power of natural
bacterit.
dransorming the
dissolved metals
metal minerals, which could
potentially be rect recyled [21].

may well provide an enenergy efficient and
cost teftectiv sultion tote problem
of metal polution emanating trom

Alon Goch Amlwh can ee constareed
a wanting from history The residual
effects of metal mining can have fal

 into the proiefeted porfitability of mining
Ooperation prior to the commencement
of mineral extraction?
tuture generations. In the case of
$M y y n y d d P$ Pans; itis clear that the financial

BIBLIOGRAPHY

	Satand
	边
5ixima	
	\％ampemeta
	\％ex
amamamimmen	
	，
隹	17.10
and	
	16 simenmam
	\％
込	Inl enamamemen
	（1atememememe
，minnmamo	何
Mas	na homea
	$1{ }^{\text {and }}$

PREFACE

[^0]| H Hydrogen | | | | | | | | | | | | | | | | | He Helium |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Li
 Lithium | Be
 Beryllium | | | | | | | | | | | B
 Boron | C Carbon | N | 0 Oxygen | | Ne
 Neon |
| $\underbrace{}_{\substack{11 \\ \text { Na } \\ \text { Sodium }}}$ | | | | | | | | | | | | | Si
 Silicon | | | | Ar
 Argon |
| K Potassium | | Sc
 Scandium | | | | $\mathrm{Mn}_{\text {Manganes }}^{25}$ | Fe Iron | | $\mathrm{Ni}_{\text {Nickel }}^{28}$ | Cu
 Copper | ${ }^{30} \mathrm{Zn}$ | Ga
 Gallium | | | Se
 Selenium | | |
| 37
 Rb
 Rubidium | | Y
 Yttrium | Zr
 Zirconium | \square | | | | 45
 Rh
 Rhodium | Pd | | 48 Cd
 Cadmium | | | | Te
 Tellurium | $\left.\right\|_{\substack{53 \\ \text { I Iodine }}}$ | |
| Cs
 Caesium | | Lu
 Lutetium | Hf
 Hafnium | Ta
 Tantalum | | | | | | Au
 Gold | | | | \square | | 85
 At
 Astatine | |
| | | | | | | | | | | | | | | | | | |

ENVIRONMENTAL QUALITY STANDARD

PROBABLE EFFECT LEVELS

MYNYDD PARYS

\equiv -
 - as

\equiv
 -
 - as

\vdots
（a）全

$$
\begin{aligned}
& \equiv \\
& \\
& \text { © 图 } 0
\end{aligned}
$$

ENVIRONMENT AGENCY DATA

Dyffryn Adda Adit

02-03-2004 - 17-09-2013

EA mineral sample results:

- Iron (Fe)
- Copper (Cu)
- pH (units)
- Cadmium (Cd)
- Sulphate (S04)
- Arsenic (As)
- Aluminium (Al)
- Nickel (Ni)

Afon Goch Amlwch

23-04-2001 - 17-09-2013
$\approx \approx$

- $1.0 \mathrm{mg} / \mathrm{L}$
- $0.013 \mathrm{mg} / \mathrm{L}$
- $\mathrm{pH} 0-14$
- $0.002 \mathrm{mg} / \mathrm{L}$
- An indicator of metal mine pollution
- $0.120 \mathrm{mg} / \mathrm{L}$
- $0.120 \mathrm{mg} / \mathrm{L}$
- $0.02 \mathrm{mg} / \mathrm{L}$

$20043.080 .02093360 .0211659 .98 .554 .340 .028401-21-20053.350 .0193303$ $0.0280261 .2 \quad 8.32 \quad 3.84 \quad 0.026502-14-2005 \quad 2.98 \quad 0.0211337 \quad 0.0303 \quad 62.8 \quad 9.04$ $4.86 \quad 0.0306 \quad 03-15-2005 \quad 2.94 \quad 0.03154790 .0613 \quad 94.4 \quad 13.8 \quad 7.27 \quad 0.0419 \quad 04-08-2005$ $2.920 .03665520 .06110715 .59 .510 .047904-14-20052.630 .082311200 .0563217$ $32.418 .10 .09905-05-200517.8 \quad 05-12-2005 \quad 2.57 \quad 0.0941 \quad 1330 \quad 0.0483 \quad 253 \quad 38.6$ $\begin{array}{llllllllllllllllllllll}20.2 & 0.131 & 06-22-2005 & 17.9 & 06-22-2005 & 6.74 & 07-11-2005 & 2.66 & 0.0428 & 626 & 0.0234\end{array}$ $15.30 .087609-09-20050.028398 .96410 .567 .220 .039509-22-2005 \quad 2.94 \quad 0.0183$
 $20052.890 .01542600 .050449 .97 .424 .22 \quad 0.0211^{12-06-2005} 2.990 .0113$ $2130.0502669 .56 .063 .170 .014601-13-2006 \quad 2.74 \quad 0.0448 \quad 6390.0792413721 .9$ $9.920 .054403-16-20062.790 .03745560 .0728811016 .38 .950 .0469$ 10-08-1 $20093.240 .02290 .084364 .28 .715 .810 .023211-11-20093.590 .00990 .0491$ $30.14 .382 .230 .0115^{12-10-20094.3101-13-20103.040 .01670 .063650 .87 .34}$ $\begin{array}{lllllllllll}0.01-20-2010 & 3.99 & 0.00888 & 0.0357 & 26.9 & 4.17 & 2.28 & 0.0115\end{array}$

 $\begin{array}{lllllllllllllllllllllll}03-10-2010 & 3.44 & 0.0144 & 0.0297 & 41.9 & 6.122 & 3.28 & 0.0193-10-2010 & 3.34 & 0.0151\end{array}$ $\begin{array}{llllllllllllllllllll}0.0373 & 46 & 7 & 3.44 & 0.018 & 03-15-2010 & 10.2 & 03-22-2010 & 15 & 03-29-2010 & 2.77 & 0.0603\end{array}$ $20102.590 .0497 \quad 0.12 \quad 1332111.9 \quad 0.055307-21-20102.750 .06130 .13717125 .9$
 $0.073608-26-20102.980 .02650 .08589012 .26 .90 .031409-03-2010 \quad 2.870 .036$
 20105.41 11-04-2010 $3.550 .0167 \quad 0.0702 \quad 56.5 \quad 6.89 \quad 3.830 .0192^{11-10-2010}$ 5.7 11-10-2010 $3.04 \quad 0.0234 \quad 0.0885 \quad 72.28 .68 \quad 5.53 \quad 0.02644^{11-26-2010} 3.53$
 $0.0137^{01-21-20113.350 .01220 .0581 ~ 41.5 ~ 5.85 ~ 3.06 ~ 0.0154 ~ 01-21-2011 ~} 3.05$ 02-01-2011 3.28 0.0215 0.0791 66.3 9.53 5.38 0.0217 02-09-2011 3.07 0.0261
 $\begin{array}{lllllllllllllllllllll}0.0602 & 185 & 27.5 & 13.7 & 0.0734 & 04-11-2011 & 13.7 & 05-24-2011 & 0.0672 & 13.4 & 0.0703\end{array}$ 06-20-2011 2.69 0.075 06-20-2011 0.0839 16.3 0.0908 06-20-2011 13.5 07-04-

| 2011 | 2.71 | 0.0851 | 0.0552 | 230 | 34.4 | 16.8 | 0.0942 | $07-04-2011$ | 2.79 | 0.0577 | 0.0429 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| 178 | 23.7 | 11.2 | 0.0672 | $07-20-2011$ | 0.0574 | 11.6 | 0.0662 | $08-03-2011$ | 3.06 | 0.0141 |
| :--- |
| 311 | 0.0299 | 53.6 | 7.46 | 3.46 | 0.0205 | $08-15-2011$ | 9.05 | | | |

| 0.0583 | 109 | 18.4 | 8.79 | 0.0476 | $09-06-2011$ | 2.78 | 0.0615 | 1050 | 0.0941 | 189 | 28.7 |
| :--- | 14.20 .0678 0．0583 109 13－2011 0．0646 26．514．4 0．0673 09－13－2011 14．5 09－30－2011 $2.890 .069840 .106180 \quad 25.3 \quad 13.2 \quad 0.0634 \quad 09-30-2011 \quad 0.059 \quad 25.2 \quad 13.6 \quad 0.0604$ 09－30－2011 12.1 10－07－2011 7．78 0．0537 $8930.085316222 .9120 .0577^{10-}$ $07-20112.890 .01583050 .050163 .6 \quad 8.73 \quad 3.68 \quad 0.023310-13-2011 \quad 2.93 \quad 0.0332$ $\begin{array}{llllllllllllllllllll}561 & 0.0895 & 103 & 16 & 7.97 & 0.0387 & 10-27-2011 & 6.88 & 11-08-2011 & 2.91 & 0.0308 & 612\end{array}$ $0.085493 .313 .86 .820 .033711-08-20114.460 .006311110 .04236 .64 .141 .45$.0125 11－15－2011 $3.020 .01352160 .057347 .5 \quad 6.49 \quad 3.35 \quad 0.0162 \quad 11-15-2011$ ． 23 11－29－2011 2．79 0．0335 $5330.13410013 .98 .61 \quad 0.0309$ 12－15－2011 8.32 $\begin{array}{llllllllllll}12-15-2011 & 2.84 & 0.023 & 371 & 0.0936 & 74 & 9.96 & 5.72 & 0.0226 & 01-17-2012 & 4.63\end{array}$ 1－17－2012 2．81 0．0186 $3180.06559 .28 .034 .70 .019902-03-20122.290 .0332$ 0.56 04－27－2012 $2.670 .04817820 .0796142121 .511 .7 \quad 0.05205-24-2012 \quad 2.67$ $11.85-24-20122.730 .03326090 .087711316 .38 .440 .0369 \quad 06-13-2012 \quad 2.73$ 06－13－2012 $2.940 .03055130 .1029713 .67 .75 \quad 0.0326 \quad 06-19-2012 \quad 3.11 \quad 0.021$ $3700.096468 .69 .655 .20 .023906-19-20123.115 .5^{07-12-2012} 2.870 .0391$ $6310.13511516 .49 .87 \quad 0.039107-17-2012 \quad 2.47 \quad 0.0548220 .148 \quad 155 \quad 22.813 .9$ 0.0501 07－17－2012 2.46 14．2 08－06－2012 $2.72 \quad 10.7$ 08－14－2012 $2.76 \quad 0.0401$ $6860.0512618 .610 .60 .043108-14-2012 \quad 2.88 \quad 0.04927810 .10914421 .5$

 10－02－2012 3．38 0．00954 $1710.0488284 .792 .42 \quad 0.011210-17-20123.59 \quad 0.0119$ $2150.04833 .95 .743 .220 .012810-17-20123.593 .2^{10-31-20123.20 .0199}$ $2830.10351 .38 .085 .250 .016311-13-20123.250 .01462460 .070441 .9$ $6.33 .810 .013211-13-20122.870 .01993210 .093854 .611 .25 .520 .0172$ 12－05－2012 3．06 $0.0193020 .083352 .48 .325 .120 .01 / 312-18-20123.050 .0207$ $3410.084961 .6 \quad 9.515 .97 \quad 0.020301-09-2013 \quad 3.160 .02153620 .0889$

 $8.560 .037804-17-20132.720 .053860 \quad 0.080215722 .612 .4 \quad 0.0521$

$1130 \quad 0.067517827 .914 .4 \quad 0.067506-05-2013 \quad 2.55 \quad 0.08911450 \quad 0.0701213$
 $\begin{array}{lllllllllllllllllll}26-2013 & 2.81 & 0.0354 & 649 & 0.0462 & 102 & 16.5 & 7.93 & 0.0369\end{array}$
$\begin{array}{llllllllllllllllll}0.0583 & 1260 & 0.092 & 187 & 26.4 & 14.2 & 0.0627 & 07-24-2013 & 2.6 & 0.0824 & 1610 & 0.113\end{array}$

$$
\angle \varepsilon \text { "8 } \angle 8 \text { '乙 عL0乙-โて-80 }
$$

[^0]: It the case of each sample, onty
 the mineal that exceded
 envirommentals standardard of of Cos or P P P
 Whe key that follows, thich in imace.
 the
 the elet side of the on the left sise of the gatefold. the
 maximum safe linit tor agiven leme
 in the ecosystem is repesened in the ecosystem is is epresented bem ba
 circe 15 mmm in diameter Minerals that

 warring symbol.
 n the
 centre of the gatefold, the

 maximum, will have a diameter double
 the enise of the circe in the key (30 mm)
 The The circle sizes increase exponential
 with orders of magnitude thereater.

 appears on ton of the reduced opacity
 image whilsthe o.oginal pohtoraph comeletest the
 oft the acteld
 completes the
 of the eatefold
 It should be noted that any minerals
 found do e eceeding the ECS or PreL
 guidelines can be reanded
 of polutuants presentit the environment

 at levels which are harmul to that | ecosystem. $\begin{array}{l}\text { toncluding section of the } \\ \text { publication, bbidided records of the }\end{array}$ |
 | :--- |

 three years or more, are displayed in
 concetina as acontinuous strea of
 numbers. Not onty does tis EA EA Cumbers. Not only does this EA data
 verify the esesults of our own analysis, the Verify the results of of our own na nlysisit.the
 sheer amount of data in this fold out
 In minerals leaching into the lish Sea
 The le
 and

 Known as the D. Dfinn Adda adit, which is
 where the Afor Goch $A m$ much River fist
 emeres
 in Myyydd Pars. The second series
 of samples was taken from within the
 ot the point where
 enters the lish Sea.
 do be exceeding the EOS or PEL

