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Abstract 

For an optimization problem with an 1L  norm objective function subject to an 2L  
norm inequality constraint, this paper shows that there is an approximately linear relationship 
between the 1L  norm objective functional values and the 2L  norm specifications. This 
relationship is verified through the use of random and real world industrial data. The obtained 
results can be employed for 1) estimating the 1L  norm objective functional value without 
solving the optimization problem numerically; 2) providing an insight for defining the 2L  
norm specification in which a simple method is proposed in this paper; and 3) testing whether 
the obtained solutions are the globally optimal solutions or not. These advantages are 
demonstrated via the use of random data. 
 
Keywords: Sparse optimization, 0L  norm optimization, 1L  norm optimization, approximate 

linear relationship. 
 
1. Introduction 

Denote ba×ℜ  and dℜ  as the ba×  real valued matrix space and the d  dimensional 
real valued column vector space, respectively. Let [ ] nm

nAAA ×ℜ∈= 1  be an 
overcomplete dictionary with m

i RA ∈  for ni ,,1=  denotes the atoms. Let mRy∈  be a 
signal with nm < . Let nx ℜ∈  be a coefficient vector. Denote 0|||| x  as the 0L  norm of x  
and it refers to the total number of the nonzero elements in x . The problem of finding a 
sparse representation of y  using A  is to find x  such that Axy =  and 0|||| x  is 
minimized. Denote ∗

0x  as the optimal solution of the 0L  norm optimization problem. That 
is: 

Axytsxx
x

==∗ ..||||minarg 00 . (1) 

Since only few coefficients are required for the representations of the signals, hardware 
implementations of these representations are very efficient. Actually, the optimal 
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representations of the signals of many industrial databases can be formulated as sparse 
optimization problems [1]-[3]. Hence, the signal representations via the sparse optimizations 
has drawn a great attention in recent decade [11]-[13]. 

Denote ( )Arank  as the total number of independent rows or the total number of 
independent columns of A . It is worth noting that ∗

0x  may not be unique for any arbitrary 
mRy∈  and ( ) mArank = . Let Â  be a matrix containing only m̂  columns of A  in which 

mm <ˆ  and denote ( )Acol ˆ  as the column space of Â . For ( ) mAcoly ℜ⊂∈ ˆ , finding ∗
0x  

requires combinational searches. On the other hand, as the 1L  norm operator is the convex 
relaxation of the 0L  norm operator, it is a common practice to replace the 0L  norm operator 
in (1) by the 1L  norm operator [4]-[7]. Denote 1|||| x  as the 1L  norm of x . Let ∗

1x  be the 
optimal solution of the 1L  norm optimization problem. That is: 

 Axytsxx
x

==∗ ..||||minarg 11 . (2) 

Here, This 1L  norm problem can be solved via linear programming approaches. For using 
the 1L  norm operator, several conditions that guarantee ∗∗ = 10 xx  have been derived [5]-[7]. 
However, these conditions are derived based on deterministic approaches, so they are only 
sufficient conditions which are too tight to be applied to practical industrial problems. With 
the probabilistic framework, some relaxed conditions are derived [4]. Denote nR∈0α  as the 
solution of (1) and ρ  as a constant between 0 and 1. It is shown in [4] that if 
“there exists y  such that 0αAy =  and 0α  has fewer than mρ  nonzero components, 
then ∗

0x  is unique and ∗∗ == 100 xx α .” (3) 
Under ideal circumstances, the constraint in (2) can be satisfied exactly. However, if y  

contains a significant amount of noise which is a typical condition in industrial environments, 
then satisfying the constraint in (2) exactly is not meaningful. For this case, the equality 
constraint is relaxed to an inequality constraint. Denote 2|||| x  as the 2L  norm of x . Denote 
ε  as the acceptable user defined bound on the 2L  norm of the difference between the 
original signal and the reconstructed signal. Let ∗

εx  be the optimal solution of the 1L  norm 
inequality constrained optimization problem. That is: 

εε ≤−=∗
21 ||||..||||minarg yAxtsxx

x
. (4) 

Since 1|||| ∗
εx  characterizes the scarcity of the signal representation and ε  determines the 

2L  norm of the difference between the original signal and the reconstructed signal, both 

1|||| ∗
εx  and ε  should be as small as possible. Although selecting a small value of ε  can 

guarantee a small bound on 2|||| yAx −∗
ε , it will result to a large value of 1|||| ∗

εx . Therefore, a 
tradeoff exists between 1|||| ∗

εx  and ε . To address this tradeoff issue, the optimization 
problems minimizing both 2|||| yAx −∗

ε  and 1|||| ∗
εx  [8] or the optimization problems 

minimizing 2|||| yAx −∗
ε  subject to the specifications on 1|||| ∗

εx  [9] are solved instead by the 
least angle regression (LARS) algorithms or the least absolute shrinkage and selection 
operator (LASSO) algorithms. However, these optimization problems are different from the 
original optimization problems (the optimization problems with the 1L  norm objective 
functions subject to the 2L  norm specifications). Hence, the obtained solutions of these 
optimization problems are different. Denote 0z  as a standard white noise. Define 
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20

202.0
z

Ax
=σ . Here, 0x  is the original sparse signal and 00 zAxy σ+= . In this case, ε  is 

selected as ( )mm 2222 +=σε  [14]. In this case, the probability that 2
0zσ  exceeds 2ε  is 

equal to the probability that a chi square with m  degrees of freedom exceeds its mean by at 
least two standard deviations. This quantity is about 2.5% when m  is not too small. 
However, this approach is based on a statistical model and the noise characteristics are known. 
Nevertheless, the system model may not be probabilistic. Even though the system model is 
probabilistic, the noise characteristics are unknown in practical situations. Hence, it is 
important to derive a methodology to determine the value of ε  when the system model is 
not probabilistic or the noise characteristics are unknown. This paper is to address this issue. 

Since it is of significantly important to adaptively choose ε  to obtain the best 
representation, it is required to investigate the relationship between 1|||| ∗

εx  and ε . Although 
the empirical relationship between the 2L  norm objective functional values and the ∞L  
norm specifications has been recently investigated [10], the relationship between the 1L  
norm objective functional values and the 2L  norm specifications has not been studied yet. 

Unlike the optimization problems with the 2L  norm objective functions subject to the 

1L  norm specifications where their feasible sets are the convex hulls of a set of vertices and 
bounded by linear hyperplanes, the feasible sets of the optimization problems with the 1L  
norm objective functional values subject to the 2L  norm specifications are not characterized 
by the convex hulls of a set of vertices and not bounded by linear hyperplanes. Hence, this 
kind of optimization problems cannot be solved via conventional LARS algorithms or 
LASSO algorithms. In fact, these optimization problems are highly non-traceable. It is very 
difficult to find their analytical solutions and to characterize the relationship between 1|||| ∗

εx  
and ε  analytically. This paper is to address this very important issue. 

The outline of this paper is as follows. The approximate linear relationship between the 
1L  norm objective functional values and the 2L  norm specifications is presented in Section 

2. A design of the 2L  norm specification is proposed in Section 3. Finally, conclusions are 
drawn in Section 4. 
 
2. Approximate linear relationship between 1L  norm objective functional values and 

2L  norm specifications 
The explanation of having the approximate data independent linear relationship between 

the 1L  norm objective functional values and the 2L  norm specifications is as follow. Since 
the optimization problem is convex and the globally optimal solution of the corresponding 
unconstrained optimization problem is not in the feasible set of the original optimization 
problem, the globally optimal solution of the original optimization problem is on the 
boundary of its feasible set. This implies that the globally optimal solution of the original 
optimization problem can be governed by an equality constraint defined by the specification 
bound multiplied by the unit vector. By representing the globally optimal solution into two 
subvectors •

1x  and •
2x , the above equality constraint can be used to eliminate one subvector 

•
1x  in terms of another subvector •

2x  and the unit vector. Also, the 1L  norm objective 
function can be expressed in terms of one subvector •

2x  and the unit vector. On the other 
hand, since the globally optimal solution is sparse, the globally optimal solution can also 
expressed as two subvectors 1z  and 2z  in which one subvector 1z  is not sparse and the 
other subvector 2z  is very small. Here, we have two sets of subvectors { •

1x , •
2x } and { 1z , 2z } 
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in which they are related by a simple row operation. As one subvector 2z  is very small, we 
can assume that this subvector 2z  is the zero vector. This implies that we have another 
equality constraint governing the relationship between the unit vector and the original 
subvector •

2x  via the row operation. As a result, we have a relationship between another 
subvector 1z  and the unit vector. Hence, the original optimization problem can be 
approximated by an optimization problem with the 1L  norm objective function of the unit 
vector subject to this unit vector constraint. This optimization problem can be represented by 
an optimization problem with a linear objective function subject to the unit vector constraint. 
By using the Lagrange approach, the form of the unit vector is obtained. Hence, the form of 
the approximated globally optimal solution of the original optimization problem can be 
obtained accordingly. In fact, the obtained solution is a linear combination of the specification 
bound multiplied by a constant vector and y . Hence, if this constant vector and y  have the 
same direction, then the 1L  norm objective functional values and the 2L  norm 
specifications have a near affine linear relationship. The detail explanations are in Appendix 
A. 

Here, we have assumed that ε>
2

y  as well as both 1A  and 2
1

134 AARR −−  are full 
rank matrices. Since there are many inverse operators in Appendix A, it requires to study the 
invertibility of these matrices. The analysis is shown in Appendix B. These assumptions are 
usually valid in practical situations. From the above, we can see that the accuracy of the 
approximation depends on how small 2z  is, whether ι , 1R , 2R , 3R  and 4R  are 
remained unchanged or not, as well as 

( )( ) ( ) ( )( )( )
( )( )( ) ( ) ( )( )( )

( ) ( ) ( )( )( )
( )( )( ) ( ) ( )( )( ) 
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1  are in the same direction, as well as only 

considering ε  within a small neighborhood, then the approximation should be accurate 
enough for most practical situations. 

To verify the approximate linear relationship between 1|||| ∗
εx  and ε , many test pairs of 

A  and y  are generated. After performing these tests, it is found that the approximate linear 
relationship between 1|||| ∗

εx  and ε  is valid for all these pairs of A  and y . Only three 
types of experiments are presented below to support the proposed assertions because of the 
page limit. 
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Experiment 1: Signals satisfying the condition in (3) 
Here, the relationship between 1|||| ∗

εx  and ε  when the condition in (3) is satisfied is 
investigated. In this experiment, 40=m  and 100=n . All the elements of A  are 
independently drawn from a zero mean Gaussian distribution. Then, iA  for 100,,1=i  is 
further normalized to a unit energy vector. There are 5 nonzero elements in 0α  and the 
locations of these elements are selected randomly with their polarities also being chosen 
randomly. The amplitude of the smallest nonzero element of 0α  is set to 0.2 and the 
amplitudes of other elements are set to 1. Using this 0α , y  is obtained. Obviously, 00 α=∗x . 

∗
0x  is shown in Fig. 1(a). When 10

||||
20

|||| 22 ,,0 yy=ε  and 20
||||3 2y , the corresponding ∗

εx  are shown 
in Figs. 1(b)-(e), respectively. It is shown in [4] that ∗∗ = 10 xx  when 5

1≤ρ . This can also be 
verified from Figs. 1(a)-(b). Although a large value of ε  allows a large bound on 

2|||| yAx −∗
ε , it results to a small value of 1|||| ∗

εx . In other words, we have a high scarcity of 
∗
εx . It can be seen in Fig. 1(e) that the total number of the nonzero elements in ∗

εx  is 4 when 

20
||||3 2y=ε . This further demonstrates the reason for the relaxation on the 2L  norm 

specification. 
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(a)
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Fig. 1. (a) ∗

0x . (b)-(e): ∗
εx  for 10

||||
20

|||| 22 ,,0 yy=ε  and 20
||||3 2y , respectively. 

To further investigate the relationship between 1|||| ∗
εx  and ε , 100 test pairs of A  and 

y  are generated as described in the above. For each test pair of A  and y , various values 
of ε , denoted as iε , are obtained via uniformly sampling in the range [ ]2||||,0 y . Denote 
the corresponding solution of (4) as *

i
xε  for Ni ,,2,1 = . It is found that an approximate 

linear relationship exists between 1|||| ∗
i

xε  and iε  for all these 100 test pairs of A  and y . 

For an illustration purpose, )||||,( 1
*

i
xi εε  of one of the test pairs of A  and y  are shown in 

Fig. 2. A straight line linear regression fit of )||||,( 1
*

i
xi εε  denoted as **)( bkf ii += εε  is 

also shown in Fig. 2. The relative 2L  norm error is defined as 
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2

1
1

*

2

1
1

*

)||(||

|||||)(|

∑

∑

=

=

−

N

i

N

i
i

i

i

x

xf

ε

εε
. (5) 

It is found that the 2L  norm error is around 2.3%. On the other hand, it is also found that an 
approximate linear relationship exists between 

2

*
0

* xx
i
−ε  (

2

*
0

* xx
i
−ε  is the root mean 

squares error between *
i

xε  and *
0x ) and iε  for all these 100 test pairs of A  and y . For 

an illustration purpose, ),(
2

*
0

* xx
ii −εε  of one of the test pairs of A  and y  are shown in 

Fig. 3. A linear regression fit of ),(
2

*
0

* xx
ii −εε  denoted as **)( bkg ii += εε  is also shown 

in Fig. 3. The relative 2L  norm error is defined as 

2

1
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2

1
1
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)||(||

|||||)(|

∑

∑

=

=

−

N

i

N

i
i

i

i

x

xg

ε

εε
. (6) 

It is found that the relative 2L  norm error is around 1.8%. All these 100 test pairs of A  and 
y  show similar results. 
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Fig. 2. )|||||,( 1

∗
i

xi εε  and the linear regression fit. 
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Fig. 3. ),(

20
∗∗ − xxi εε  and the linear regression fit. 

Experiment 2: Trials using randomly generated data 
Since condition in (3) is difficult to satisfy in many practical situations, ∗∗ = 10 xx  only 

happens in ideal scenarios. It is therefore necessary to investigate the relationship between 
1|||| ∗

εx  and ε  when ∗∗ ≠ 10 xx . Here, 40=m  and 400=n  as well as A  is randomly 
generated as above and the elements in y  are also independently and randomly generated 
from a zero mean Gaussian distribution. For 2||||0 yi ≤≤ ε , )||||,( 1

*
i

xi εε  are shown in Fig. 4. 
Similarly, 100 test pairs of matrices A  and y  have been generated. It is found that the 
relationship between 1

* ||||
i

xε  and iε  is again approximately linear for all these 100 test pairs 

of A  and y . A straight line linear regression fit of )||||,( 1
*
ii xε  denoted as 

**)( bkf ii += εε  is also shown in Fig. 4. The relative 2L  norm error is found to be around 
2.6%. On the other hand, it is also found that an approximate linear relationship exists 
between 

2

*
0

* xx
i
−ε  and iε  for all these 100 test pairs of A  and y . For an illustration 

purpose, ),(
2

*
0

* xx
ii −εε  of one of the test pairs of A  and y  are shown in Fig. 5. A linear 

regression fit of ),(
2

*
0

* xx
ii −εε  denoted as **)( bkg ii += εε  is also shown in Fig. 5. The 

relative 2L  norm error is found to be 0.000046%. Again, all these 100 test pairs of A  and 
y  show similar results. 
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Fig. 4. )||||,( 1

*
ii xε  and the linear regression fit. 
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Fig. 5. ),(

20
∗∗ − xxi εε  and the linear regression fit. 

Experiment 3: Trials using data from experimental measurements 
To more readily demonstrate the application potential of the proposed relationships, 

vibration data from an industrial gas turbine taken over a 1 month period is illustrated as 
shown in Fig. 6. y  is taken directly from the first 100 samples of data and then normalized 
to unit energy. On the other hand, 1A  is taken from the second 100 samples of the data and 
then normalized to unit energy. Similarly, successive columns of A  is taken from successive 
100 samples of the data and then normalized to unit energy. For 2||||05.0 yi ≤≤ ε , )||||,( 1

*
i

xi εε  

are shown in Fig. 7. A linear regression fit of )||||,( 1
*

i
xi εε  is also shown in Fig. 7. It can be 

seen that the relationship between 
1

*
i

xε  and iε  is again approximately linear with the 

relative 2L  norm error about 0.2%. Similarly, all these 100 test pairs of A  and y  show 
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similar results. 
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Fig. 6. Vibration measurements from an industrial gas turbine taken over a 1 month period. 
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Fig. 7. )||||,( 1

*
ii xε  and the linear regression fit. 

By exploring the approximately linear relationship between ε  and 1|||| ∗
εx , 1|||| ∗

εx  can 
be estimated without solving (4) numerically. Given any ε , where 2||||0 y≤≤ ε , an estimate 
of 1|||| ∗

εx  is given by: 
**

1|||| bkx +=∗ εε . (7) 
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From Appendix A, we can see that theoretically 
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yARAARRAAIb . Practically, we can compute two points in the straight 

line to find the values of *k  and *b . Thereby, our result provides substantial reductions in 
computational overhead compared to traditional methods that rely on numerical approaches. 
Since the estimation error has been shown to be very small, the estimation of 1|||| ∗

εx  by (7) 
will be very close to the true value. 
 
3. Design of 2L  norm specification 

The obtained linear relationship between 1|||| ∗
εx  and ε  provides an insight for 

defining the 2L  norm specification. First, we have the following property: 
Property 1 Assume that iA  for ni ,,1=  have unit energy. For a given y  and 

2||||0 y≤≤ ε , we have: 
*

2
*

1 |||||||| byAxkx +−≈ ∗∗
εε , (8) 

where *k  and *b  are constants and they are dependent on A  and y . 
Proof: Assume that εεε <=−∗

12|||| yAx . Let ∗∗ −= εε λ xx )1(~ , where 10 ≤< λ . Then, we 
have: 
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εεεεεε

εεε

εε

εε

λε

λ

λ

λλ

λλλ

λλ

λλ

λ

, (9) 

Since A , ∗
εx  and y  are known, let 

}1,
|))(|||(||2

min{ 2
2

2
1

2

yAxAx T∗∗ +
−

=
εε

εελ . 

From (9), we have εε ≤−∗
2||~|| yxA . This implies that ∗

εx~  satisfies the constraint 
εε ≤−∗

2||~|| yxA . Since ∗∗ −= εε λ xx )1(~  and 10 ≤< λ , then 111 ||||||)1(||||~|| ∗∗∗ <−= εεε λ xxx . This 
contradicts the fact that ∗

εx  is an optimal solution of (4). Hence, we have εε =−∗
2|||| yAx . 

According to the obtained approximately linear relationship between ε  and 1|||| ∗
εx , we have 

*
2

*
1 |||||||| byAxkx +−≈ ∗∗

εε , where *k  and *b  are constants and they are dependant on A  
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and y . This completes the proof. ▄ 
Since there is a tradeoff between 1|||| ∗

εx  and ε , it is of significantly important to 
determine ε  to obtain a better signal representation. In general, the choice of ε  is 
application dependent. However, for most applications, ε  should not be chosen as the 
extreme values such as 0=ε  and 2|||| y=ε . On the other hand, ε  should be chosen in the 
"middle" between 0  and 2|||| y  in order to achieve a better tradeoff. By knowing the linear 
relationship between ε  and 1|||| ∗

εx , the "middle" between 0  and 2|||| y  can be defined as 
the point such that 

21 |||||||| yAxx −× ∗∗
εε  (10) 

is maximized. That is, the area under the line *
2

*
1 |||||||| byAxkx +−≈ ∗∗

εε  is maximized. 
Obviously, this criterion can avoid to obtain a point at the extrema. Denote the optimal 
operating point as )||||,( 1

*
∗

∗
ε

ε x . For a non-optimal point operating at )0,()||||,( 11
*

1 1
εε ε =x , we 

have .|||| 2*

*

y
k
b

=− Hence, we have: 

2
||||

2
2

*

*
* y

k
b

=−=ε . (11) 

Now, (11) can be used to choose ε . Beside, since the problems in (4) are not traceable, it is 
difficult to guarantee that the obtained solutions are the globally optimal solutions. By using 
the obtained results in Property 1, it is easier to test whether the obtained solutions are the 
globally optimal solutions or not. 

To illustrate the appropriateness of the proposed method for designing ε , a random 
nmRA ×∈  with 40=m  and 100=n  as well as a random mRy∈  is generated as discussed 

in Experiment 2. 1|||| ∗
εx  corresponding to 0=ε  and 2

|||| 2y=ε  are shown in Fig. 8(a) and 
Fig. 8(b), respectively. It can be seen from Fig. 8(a) that the total numbers of elements in 

],,[ ,,1 εεε nxxx =∗  that satisfy 

n
x

ix 1||||
, ||

∗

≥ ε
ε  (12) 

is 16 for 2
|||| 2y=ε  and 29 for 0=ε . That means, the scarcity of 1|||| ∗

εx  when 2
|||| 2y=ε  is 

much higher than that when 0=ε . On the other hand, it can be seen in Fig. 9 that ∗
εAx  

retains the main underlying characteristics of y  when 2
|||| 2y=ε . Hence, the proposed method 

for designing ε  results in a good tradeoff between the scarcity of the signal representation 
and the reconstruction error. For image coding, the compression ratio is dependent on the 
scarcity of the coefficients and the reconstruction error is dependent on the peak signal to 
noise ratio. In order to achieve a high coding gain, a good tradeoff between the scarcity of the 
coefficients and the reconstruction error is required. This problem can be approximated by the 
optimization problem with an 1L  norm objective function subject to the 2L  constraint. 
Hence, our proposed method could provide a good solution for this application. 
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Fig. 8. (a)-(b): ∗

εx  for 0=ε  and 2
|||| 2y , respectively. 
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Fig. 9. y  (solid line) and ∗

εAx  (dot line) for 2
|||| 2y=ε . 

 
4. Conclusions 

The main contributions of this paper are to study the relationship between the 1L  norm 
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objective functional values and the 2L  norm specifications of sparse optimization problems. 
By making some assumptions and approximations, the proof of this property is given. To 
verify the validity of the assumptions and the approximations, three types of experiments are 
conducted. The first type of experiments is based on the signals satisfying the condition in (3). 
The second type of experiments is based on the randomly signals in which the condition in (3) 
is not satisfied. Finally, the third type of experiments is based on signals from experimental 
measurements. It is found that the relative 2L  norm errors for the first type of experiments, 
the second type of experiments and the third type of experiments are around 2.3%, 2.6% and 
0.2%, respectively. This demonstrates that the relationship between the 1L  norm objective 
functional values and the 2L  norm specifications of sparse optimization problems is 
approximately linear. The obtained results can be employed for 1) estimating the 1L  norm of 
the optimal solution without recourse to numerical algorithms; 2) providing an insight for 
defining the 2L  norm specification; and 3) testing whether the obtained solutions are the 
globally optimal solutions or not. 
 
Appendix A 

The detail explanations of the near affine linear relationship between the 1L  norm 
objective functional values and the 2L  norm specifications is as follows. 

Let mx ℜ∈•1  and mnx −• ℜ∈2  be the subvectors of *
εx  such that [ ]TTT xxx ••= 21

*
ε . Let 

mmA ×ℜ∈1  and ( )mnmA −×ℜ∈2  be the submatrices of A  such that [ ]21 AAA = . Here, we 
assume that ε>

2
y . Since the globally optimal solution of the corresponding unconstrained 

optimization problem is the zero vector in which it is not in the feasible set of the above 
optimization problem because of ε>

2
y , its globally optimal solution should be on the 

boundary of its feasible set because of the convexity nature of the optimization problem. 
Hence, we can define *u  as a unit energy vector such that ** uyAx εε =− . Suppose that 1A  
is a full rank matrix. Then, *

2211
* uyxAxAyAx εε =−+=− ••  implies that 

( )•−• −+= 22
*1

11 xAyuAx ε . Since 

( ) [ ] [ ]
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1
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, 

the original optimization problem is equivalent to the following optimization problem: 

( )•2* ,
min

xu
 

1

1
1

2

*
2

1
1

1
1

00 







+















 − −

•

−− yA
x
u

I
AAA ε , subject to 1

2

2

* =u . 

Since 
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 − −

•

−−

00

1
1

2

*
2

1
1

1
1 yA

x
u

I
AAA ε  is sparse, we can group the small elements in 
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 − −

•

−−

00

1
1

2

*
2

1
1

1
1 yA

x
u

I
AAA ε  together. In fact, this is a row operation. Hence, there exists a 
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matrix 







=
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R  such that 
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00 z
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RR
RR ε , where 

1z  is not sparse but 2z  is small. That is, 02 ≈z . Therefore, we have the following 
approximated optimization problem: 

( )•2* ,
min

xu
 

11z , subject to 02 =z  and 1
2

2

* =u . 

It is worth noting that 
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x
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. 

Assume that 2
1

134 AARR −−  is a full rank matrix. Then, 
( ) 01

1322
1

134
*1

132 =+−+= −•−− yARxAARRuARz ε  implies that 

( ) ( )yARuARAARRx 1
13

*1
13

1
2

1
1342

−−−−• +−−= ε  
and 

( )
( )( ) ( )

( )( )( ) ( )( )( ) yARAARRAARRRuARAARRAARRR

yARyARuARAARRAARRuAR

yARxAARRuARz

1
13

1
2

1
1342

1
1121

*1
13

1
2

1
1342

1
1121

1
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1
13

*1
13

1
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1
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1
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+−+=

ε

εε

ε

. 

Define ( )1zsign=ι . Now, the above optimization problem is equivalent to the following 
optimization problem: 

*
min

u
 ( )( )( ) ( )( )( )( )yARAARRAARRRuARAARRAARRRT 1

13
1

2
1

1342
1

1121
*1

13
1

2
1

1342
1

1121
−−−−−−−− −−−+−−− ει , 

subject to 1
2

2

* =u . 

It is worth noting that in general ι , 1R , 2R , 3R  and 4R  are functions of *u . However, as 

1z  is not sparse, ι  remains unchanged within a small neighborhood of ε . Hence, we can 
treat ι  as a constant vector within this small neighborhood of ε . Similarly, we can also 
assume that the locations of the sparse elements in [ ]TTT zz 21  remain unchanged within this 
small neighborhood of ε  too. As a result, we have the same row operations. That is, 1R , 

2R , 3R  and 4R  remain unchanged and they can be treated as constant matrices within the 
small neighborhood of ε . Let λ  be the Lagrange multiplier. Define the corresponding 
Lagrange function as 

( ) ( )( )( ) ( )( )( )( ) ( )
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*1

13
1

2
1

1342
1

1121

**1
13

1
2

1
1342

1
1121

*1
13

1
2

1
1342

1
1121

*

−+−−−+−−−=

−+−−−+−−−=
−−−−−−−−

−−−−−−−−

uuyARAARRAARRRuARAARRAARRR

uuyARAARRAARRRuARAARRAARRRuL
TTT

TT

λιει

λειλ . 
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1
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1
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*
* 2, uRAARRAARRRAuL

u
TT
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∂
∂ −−−−  and 
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∂
∂ uuuL T

λ
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. This implies that 
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In other words, we have 
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Therefore, we have the analytical form of the approximate solution as 
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As a result, 
1

*
εx  and ε  has an approximately affine linear relationship. This completes the 

proof.  ▄ 
 
Appendix B 

In Appendix A, it only requires to find the inverses of 1A  and 2
1

134 AARR −− . For the 
invertibility of 2

1
134 AARR −− , let 1z  be a p  dimensional vector. That is, 1

1
×ℜ∈ pz . Then, 

( ) 1
2

×−ℜ∈ pnz , mpR ×ℜ∈1 , ( )mnpR −×ℜ∈2 , ( ) mpnR ×−ℜ∈3  and ( ) ( )mnpnR −×−ℜ∈4 . In this case, 
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( ) ( )mnpnAARR −×−− ℜ∈− 2
1

134 . Since nmA ×ℜ∈ , *
2211

* uyxAxAyAx εε =−+=− ••  and ε  is 
usually very small, the total sparsity of •

1x  and •
2x  is at least mn − . This implies that the 

total number of nonzero coefficients in this vector 







+















 − −

•

−−

00

1
1

2

*
2

1
1

1
1 yA

x
u

I
AAA ε  is not 

more than m . In other words, mp ≤ . In general, 
( ) 01

1322
1

134
*1

132 =+−+= −•−− yARxAARRuARz ε  refers to a system of pn −  linear equations 
with m  variables in *u  and mn −  variables in •

2x . From here, we can see that the most 
common situation is the case when mp =  and 2

1
134 AARR −−  being invertible. There are 

only two different cases when 2
1

134 AARR −−  is not invertible. Consider the first case when 
mp < . In this case, the total number of linear equations 

( ( ) 01
1322

1
134

*1
132 =+−+= −•−− yARxAARRuARz ε ) is more than the total number of variables in 

•
2x . Here, pm −  variables in *u  are chosen as the dependent variables in order to make the 

linear equations to be feasible. In other words, we can still write the form qux +=• *
2 T  with 

pm −  dependent variables in *u  and the rest of the proof is still valid. Finally, consider the 
last case when mp = . In this case, the total number of linear equations is the same as the 
total number of variables in •

2x , but some equations are linear dependent. Suppose that there 
are s  linear dependent equations. Here, s  variables in *u  are chosen as the dependent 
variables in order to make the linear equations to be feasible. In other words, we can still 
write the form qux ~~ *

2 +=• T  with s  dependent variables in *u  and the rest of the proof is 
still valid. 

For the invertibility of 1A , since nmA ×ℜ∈ , mmA ×ℜ∈1 , ( )mnmA −×ℜ∈2 , 1
1

×• ℜ∈ mx  and 
( ) 1

2
×−• ℜ∈ mnx , 02211

* =−+=− •• yxAxAyAxε  refers to a system of m  linear equations with 
m  variables in •

1x  and mn −  variables in •
2x . 1A  being not invertible implies that there 

are less than m  linear independent equations. As we do not have any degree of freedoms on 
choosing the variables in y , in general these equations are not feasible. 
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