
LAGUERRE POLYNOMIALS OF DERIVATIONS
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Abstract. We introduce a grading switching for arbitrary non-associative
algebras of prime characteristic p, aimed at producing a new grading of
an algebra from a given one. We take inspiration from a fundamental
tool in the classification theory of modular Lie algebras known as toral
switching, which relies on a delicate adaptation of the exponential of
a derivation. Our grading switching is achieved by evaluating certain
generalized Laguerre polynomials of degree p − 1, which play the role
of generalized exponentials, on a derivation of the algebra. A crucial
part of our argument is establishing a congruence for them which is
an appropriate analogue of the functional equation ex · ey = ex+y for
the classical exponential. Besides having a wider scope, our treatment
provides a more transparent explanation of some aspects of the original
toral switching, which can be recovered as a special case.

1. Introduction

The exponential function is certainly one of the most important math-
ematical functions. The main reason, sometimes disguised in other forms,
such as its differential formulation (d/dx)ex = ex, is that it interconnects
additive and multiplicative structures, because of the fundamental identity
ex ·ey = ex+y. In particular, one of the important classical applications is the
local reconstruction of a Lie group from its Lie algebra. This Lie-theoretic
use of the exponential function can be formulated in more general terms as
a device which turns derivations of a non-associative (in the standard mean-
ing of not necessarily associative) algebra into automorphisms. The basic
algebraic fact is already visible in the special case of nilpotent derivations,
where convergence matters play no role: if D is a nilpotent derivation of a
non-associative algebra A over a field of characteristic zero, then the finite
sum exp(D) =

∑∞
i=0D

i/i! defines an automorphism of A.
This nice property breaks down over fields of positive characteristic p.

The condition Dp = 0, which seems the minimum requirement for exp(D)
to make sense in this context, does not guarantee that exp(D) is an auto-

morphism. In fact, only the stronger assumption D(p+1)/2 = 0 does, for p
odd. In the absence of the assumption Dp = 0 one can use the truncated
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exponential E(X) =
∑p−1

i=0 X
i/i! as some kind of substitute for the exponen-

tial series, of course dropping any expectation that evaluating it on D may
yield an automorphism.

In the theory of modular Lie algebras the apparent shortcoming of exp(D)
not necessarily being an automorphism when it is defined is turned into an
advantage with the technique of toral switching. This is a fundamental tool
which originated in [Win69], but has undergone substantial generalizations
in [BW82] and finally [Pre86], where maps similar to exponentials of deriva-
tions are used to produce a new torus from a given one. The very fact
that the map need not be an automorphism allows the new torus to have
rather different properties than the original one, which are more suited to
classification purposes.

A crucial function of tori in modular Lie algebras is to produce gradings,
as the corresponding eigenspace decompositions with respect to the adjoint
action (a (generalized) root space decomposition). One naturally wonders
whether some kind of exponential could be used to pass from a grading
to another without reference to the grading arising as the root space de-
composition with respect to some torus. Besides effectively extending the
applicability of the technique from the realm of Lie algebras to the wider
one of non-associative algebras, such grading switching does have applica-
tions within Lie algebra theory, where not all gradings of interest are directly
related to tori. A special instance of such grading switching was described
in [Mat05], in terms of Artin-Hasse exponentials. The strong limitation
of [Mat05] was that the derivation D had to be nilpotent, but that spe-
cial version was already sufficient for an application to certain Lie algebra
gradings in [AM05].

The main goal of the present work is to describe how grading switching,
in the spirit of [Mat05], can be done in full generality, for arbitrary deriva-
tions of non-associative algebras (with respect to compatible gradings). We
will show how this extends the classical toral switching in a natural way.
The role of the exponential series is taken by certain (generalized) Laguerre
polynomials, which suggest the title of this paper.

We only sketch the essence of our main result in this introduction and
refer the reader to Section 5 for a precise formulation. Let A =

⊕
Ak be

a non-associative algebra over a field F of prime characteristic p, graded
over the integers modulo m, and let D be a graded derivation of A, whose
degree d satisfies m | pd. Assume F algebraically closed and A finite-
dimensional for simplicity, but much weaker assumptions are sufficient and
will be specified later. Then we construct a linear map LD : A → A such
that A =

⊕
k LD(Ak) is a new grading over the integers modulo m. In

the special case where D is nilpotent the map LD coincides with Ep(D),
which denotes the Artin-Hasse exponential series evaluated on D and was
investigated in [Mat05].
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In Section 4 we prove a special case of our result, where the main argument
is stripped of the distraction of some additional technicalities of the general
case.

Both the special case and the general case depend on a congruence for
certain Laguerre polynomials, which we prove in Section 3 and which might
well be of interest outside the area of non-associative algebras. It is a poly-
nomial congruence analogue of the functional equation exp(X) exp(Y ) =
exp(X + Y ) for the classical exponential.

Section 2 contains a review of definitions and known properties of La-
guerre polynomials, and also a modular property which might be new.

In the concluding Section 6 we explain how our main result specializes to
the setting of toral switching in finite-dimensional modular Lie algebras.

Our preprint [AM] contains a result on certain modular Lie algebras whose
proof depends on a grading switching as described here.

2. Laguerre polynomials and some of their properties

The classical (generalized) Laguerre polynomial of degree n ≥ 0 is defined
as

L(α)
n (X) =

n∑
k=0

(
α+ n

n− k

)
(−X)k

k!
,

where α is a parameter, usually taken in the complex numbers. However,

we may also view L
(α)
n (X) as a polynomial with rational coefficients in the

two indeterminates α and X. It is well known and easy to check that the
Laguerre polynomials satisfy the identities

L(γ)
n (X) = L(γ+1)

n (X)− L(γ+1)
n−1 (X),(1)

nL(γ+1)
n (X) = (n−X)L

(γ+1)
n−1 (X) + (n+ γ)L

(γ)
n−1(X).(2)

The derivative of L
(γ)
n (X) with respect to X equals −L(γ+1)

n−1 (X), which ac-
cording to Equation (1) can be written as

(3)
d

dX
L(γ)
n (X) = L(γ)

n (X)− L(γ+1)
n (X),

Now fix a prime p. We are essentially interested only in the polynomial

L
(α)
p−1(X). The reason is that, viewed in characteristic p, it may be thought

of as a generalization of the truncated exponential E(X) =
∑p−1

k=0X
k/k!

which we mentioned in the introduction. In fact, we have L
(0)
p−1(X) ≡ E(X)

(mod p) because
(
p−1
k

)
≡
(−1
k

)
= (−1)k for k ≥ 0, and the full sense of this

generalization should be conveyed by the congruence

(4) L
(α)
p−1(X) ≡ (1− αp−1)

p−1∑
k=0

Xk

(α+ k)(α+ k − 1) · · · (α+ 1)
(mod p),

which holds because (α+ p− 1) · · · (α+ 1) ≡ αp−1 − 1 (mod p).



4 MARINA AVITABILE AND SANDRO MATTAREI

In this preparatory section we collect some properties of L
(α)
p−1(X) (mod p),

starting with some easy ones. Equation (2) with n = p yields

pL(γ+1)
p (X) = (p−X)L

(γ+1)
p−1 (X) + (p+ γ)L

(γ)
p−1(X).

Because

pL(γ+1)
p (X) = p

p∑
k=0

(
γ + 1 + p

p− k

)
(−X)k

k!
≡ Xp − (γp − γ) (mod p),

we deduce the congruence

(5) Xp − (γp − γ) ≡ −XL(γ+1)
p−1 (X) + γL

(γ)
p−1(X) (mod p).

Equation (5) allows one to give Equation (3) for the derivative of L
(γ)
p−1(X)

a variant in congruence form which we will use later, namely,

(6) X · d
dX

L
(γ)
p−1(X) ≡ (X − γ) · L(γ)

p−1(X) +Xp − (γp − γ) (mod p).

In the special case where γ = 0 this reads

(7) XE′(X) ≡ XE(X) +Xp (mod p)

in terms of the truncated exponential E(X). Because of this analogy with
the defining differential equation exp′(X) = exp(X) for the classical ex-
ponential, Equation (6) plays a key role in the proof of our Proposition 2,
which, in turn, is crucial for our main result. Note in passing that further dif-
ferentiation of Equation (7) leads to XE′′(X) + (1−X)E′(X)−E(X) ≡ 0
(mod p). This is a special case modulo p of the second-order differential
equation XY ′′ + (α+ 1−X)Y ′ + nY = 0, which is often used to define the

Laguerre polynomials Y = L
(α)
n (X).

Now we present a property of L
(α)
p−1(X) (mod p) which appears more hid-

den, and might well be of more general interest. To avoid constant use of
the ‘mod p’ notation, in the remainder of the paper the Laguerre polynomial

L
(α)
p−1(X) will always be viewed as having coefficients in Fp, the field with

p elements. The polynomial L
(Zp)
p−1 (Zp − Z) will play a special role in the

sequel. Equation (4) shows at once that it vanishes on F∗p, but what we will

actually need later is that it has no further roots in the algebraic closure Fp
of Fp. This is a consequence of the following result.

Lemma 1. We have L
(Zp)
p−1 (Zp − Z) =

∏p−1
i=1 (1 + Z/i)i in Fp[Z].

This can also be stated in the equivalent form

L
(Zp)
p−1 (Zp − Z) = (−1)p(p−1)/2

p−1∏
j=1

(
Z − 1

j

)
in Fp[Z]. In fact, the right-hand sides of the two equations are polynomials

with the same roots in Fp, with corresponding multiplicities, and the same
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constant term 1 because
∏p−1
j=1

(−1
j

)
=
∏p−1
j=1(−1)j = (−1)p(p−1)/2. A non-

trivial consequence of Lemma 1 is the fact that L
(Zp)
p−1 (Zp − Z) has degree

p(p− 1)/2. Another noteworthy consequence is the identity

L
(Zp)
p−1 (Zp − Z) · L(−Zp)

p−1 (−Zp + Z) = 1− Zp(p−1).

in Fp[Z], to be compared with the familiar exp(X) exp(−X) = 1, after

noting that L
(Zp)
p−1 (Zp − Z) ≡ L(0)

p−1(−Z) = E(−Z) (mod Zp).

Proof of Lemma 1. Equation (5) yields

(8) (Zp − Z) · L(Zp+1)
p−1 (Zp − Z) = Zp · L(Zp)

p−1 (Zp − Z)

in Fp[Z]. Note that L
(0)
p−1(0) = 1 and write L

(Zp)
p−1 (Zp−Z) =

∏s
i=1(1−Z/αi)

in Fp[Z]. Then Equation (8) says that

p−1∏
j=1

(Z − j) ·
s∏
i=1

(
Z − (αi − 1)

)
= Zp−1 ·

s∏
i=1

(Z − αi).

We infer that if some α ∈ Fp is a root of L
(Zp)
p−1 (Zp−Z) with multiplicity m,

where we allow m to be zero, then α+1 is a root with multiplicity m+p−1
if α = 0, m− 1 if α ∈ F∗p, and m otherwise. In particular, because 0 is not

a root, each element of Fp is a root of L
(Zp)
p−1 (Zp − Z) with the multiplicity

claimed in Lemma 1.
Because L

(Zp)
p−1 (Zp−Z) has constant term 1, in order to conclude the proof

it remains to show that it has no further roots in Fp. To prove the latter it
suffices to show that the polynomial has degree at most p(p−1)/2. Note that
direct expansion only shows us that it has degree at most p(p− 1), which is
twice as high as our goal. One way to proceed is noting that according to
Equation (8) the product

(9) Zp · L(Zp)
p−1 (Zp − Z) · L(−Zp)

p−1 (−Zp + Z)

is invariant under the substitution Z 7→ Z + 1, and hence can be expressed
as a polynomial in Zp − Z. However, because its derivative is zero, as we
prove in the next paragraph, it can also be expressed as a polynomial in Zp.
These conditions together imply that it can be expressed as a polynomial

in Zp
2 − Zp. Because we know that its degree cannot exceed 2p2 − p we

infer that it cannot exceed p2, whence L
(Zp)
p−1 (Zp − Z) has degree at most

p(p− 1)/2, as desired.
Now we prove our claim about the polynomial of Equation (9) having

zero derivative. According to Equation (3) we have

d

dZ
L

(Zp)
p−1 (Zp − Z) = −L(Zp)

p−1 (Zp − Z) + L
(Zp+1)
p−1 (Zp − Z),
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and hence the derivative of that polynomial equals the product of Zp and

d

dZ

(
L

(Zp)
p−1 (Zp − Z) · L(−Zp)

p−1 (−Zp + Z)
)

= L
(Zp+1)
p−1 (Zp − Z) · L(−Zp)

p−1 (−Zp + Z)− L(Zp)
p−1 (Zp − Z) · L(−Zp+1)

p−1 (−Zp + Z)

=

(
Zp

Zp − Z
− (−Z)p

(−Z)p − (−Z)

)
· L(Zp)

p−1 (Zp − Z) · L(−Zp)
p−1 (−Zp + Z) = 0,

where in the last step we have used Equation (8) twice, with −Z in place of
Z in the latter case. �

3. An exponential-like property of L
(α)
p−1(X)

In this section we use the differential equation modulo p for L
(α)
p−1(X)

which we stated in Equation (6) to prove a congruence similar to the func-
tional equation exp(X) exp(Y ) = exp(X + Y ) satisfied by the classical ex-
ponential.

Proposition 2. Consider the subring R = Fp
[
α, β,

(
(α + β)p−1 − 1

)−1]
of the ring Fp(α, β) of rational expressions in the indeterminates α and β,
and let X and Y be further indeterminates. There exist rational expressions
ci(α, β) ∈ R, such that

L
(α)
p−1(X)L

(β)
p−1(Y ) ≡ L(α+β)

p−1 (X + Y )
(
c0(α, β) +

p−1∑
i=1

ci(α, β)XiY p−i
)

in R[X,Y ], modulo the ideal generated by Xp− (αp−α) and Y p− (βp−β).

The crucial point for our applications of Proposition 2 is that the polyno-
mial c0(α, β)+

∑p−1
i=1 ci(α, β)XiY p−i has only terms of total degree a multiple

of p. A simplified but weaker form of Proposition 2 is that the stated con-
gruence holds in Fp(α, β)[X,Y ], modulo the ideal generated by the stated
elements. This weaker statement would suffice for the proof of Theorem 3,
but not for that of Theorem 4.

Proof. Let I denote the ideal of the polynomial ring R[X,Y ] generated by
Xp − (αp − α) and Y p − (βp − β). According to Lemma 1 we have

(10)

(
L

(α+β)
p−1 (X + Y )

)p
= L

((α+β)p)
p−1 ((X + Y )p)

≡ L((α+β)p)
p−1 ((α+ β)p − (α+ β)) (mod I)

=

p−1∏
i=1

(
1 +

α+ β

i

)i
,

a non-zero element of R. In particular, the image of L
(α+β)
p−1 (X + Y ) in the

quotient ring R[X,Y ]/I is invertible. Reading congruences as equalities in
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the corresponding quotient ring, we have

(11)
L

(α)
p−1(X)L

(β)
p−1(Y )

L
(α+β)
p−1 (X + Y )

≡
p−1∑
i,j=0

c′ij(α, β)XiY j (mod I),

for certain (uniquely determined) c′ij(α, β) ∈ R. Our goal is proving that

c′ij(α, β) vanishes when p does not divide i+ j.

Following [Mat06] we introduce a further indeterminate T and consider
the polynomial ring R[X,Y, T ] and its ideal IT generated by (TX)p−(αp−α)
and (TY )p − (βp − β). The epimorphism R[X,Y, T ] = R[X,Y ][T ] onto
R[X,Y ] given by evaluation at T = 1 maps IT onto I, and hence induces an
epimorphism of R[X,Y, T ]/IT onto R[X,Y ]/I. Substituting TX for X and
TY for Y in Equation (11) yields

L
(α)
p−1(TX)L

(β)
p−1(TY )

L
(α+β)
p−1 (TX + TY )

≡
p−1∑
i,j=0

c′ij(α, β)T i+jXiY j (mod IT ).

Because the differential operator d/dT onR[X,Y, T ], with kernelR[X,Y, T p],
maps the ideal IT into itself, it induces a derivation of the quotient ring
R[X,Y, T ]/IT . Hence proving that c′ij(α, β) vanishes when p does not di-
vide i+ j is equivalent to proving that

(12)
d

dT

L
(α)
p−1(TX)L

(β)
p−1(TY )

L
(α+β)
p−1 (TX + TY )

≡ 0 (mod IT )

in R[X,Y, T ]. After expanding via Leibniz’s rule and evaluating at T = 1
(which can be reversed by substituting TX for X and TY for Y ) we see
that Equation (12) is equivalent to

(13) XL
(α)
p−1(X)′ · L(β)

p−1(Y ) + L
(α)
p−1(X) · Y L(β)

p−1(Y )′

≡ (X + Y )
L

(α+β)
p−1 (X + Y )′

L
(α+β)
p−1 (X + Y )

· L(α)
p−1(X) · L(β)

p−1(Y ) (mod I)

where we have used the shorthand L
(γ)
n (Z)′ = (d/dZ)L

(γ)
n (Z). According to

Equation (6) we have

ZL
(γ)
p−1(Z)′ = (Z − γ)L

(γ)
p−1(Z) + Zp − (γp − γ).

Taking, in turn, Z = X, Z = Y , and Z = X + Y , shows that Equation (13)
holds. In conclusion, we have proved that

(14)
L

(α)
p−1(X)L

(β)
p−1(Y )

L
(α+β)
p−1 (X + Y )

≡ c0(α, β) +

p−1∑
i=1

ci(α, β)XiY p−i (mod I)

with c0(α, β) := c′0,0(α, β), and ci(α, β) := c′i,p−i(α, β) for 0 < i < p. �
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The specialization of Proposition 2 to α = β = 0, where L
(0)
p−1(X) equals

the truncated exponential E(X) =
∑p−1

i=0 X
i/i!, takes the more precise form

E(X) · E(Y ) ≡ E(X + Y )
(

1 +

p−1∑
i=1

(−1)iXiY p−i/i
)

in Fp[X,Y ], modulo the ideal generated byXp and Y p, see [Mat05, Lemma 2.1].
This can be viewed as a truncated version of a corresponding property of
(the reduction modulo p of) the Artin-Hasse exponential series, which is
defined as

Ep(X) := exp
( ∞∑
i=0

Xpi/pi
)

=
∞∏
i=0

exp(Xpi/pi).

In fact, as shown in the proof of [Mat05, Theorem 2.2], we have

Ep(X) · Ep(Y ) = Ep(X + Y )
(

1 +
∞∑

i,j=1

aijX
iY j
)

in Fp[[X,Y ]], for certain coefficients aij ∈ Fp which vanish unless p | i + j.
It was proved in [Mat06] that this property essentially characterizes the
reduction modulo p of the Artin-Hasse series, up to some natural variations.

4. A model special case

In order to avoid that too many technical details may obscure our main
argument, we first present an application of Proposition 2 to a special sit-
uation, and postpone consideration of a more general setting to the next
section.

Theorem 3. Let A =
⊕

k Ak be a non-associative algebra over the field F
of characteristic p > 0, graded over the integers modulo m. Suppose that

A has a graded derivation D of degree d such that Dp2 = Dp, with m | pd.
Suppose that F contains the field of pp elements, and choose γ ∈ F with
γp − γ = 1. Let A =

⊕
a∈Fp

A(a) be the decomposition of A into a direct

sum of generalized eigenspaces for D, and let LD : A→ A be the linear map

whose restriction to A(a)coincides with L
(aγ)
p−1 (D). Then A =

⊕
k LD(Ak) is

also a grading of A over the integers modulo m.

Proof. In this special case the eigenvalues of Dp are elements of the prime
field Fp, hence of the form αp − α, with α = aγ for some a ∈ Fp.

The linear map LD is bijective. In fact, (LD)p acts on the eigenspace A(a)

of Dp as multiplication by the scalar(
L

(aγ)
p−1 (a)

)p
= L

((aγ)p)
p−1

(
(aγ)p − aγ

)
,

which is non-zero according to Lemma 1. Hence we have the direct sum
decomposition A =

⊕
k LD(Ak).

In order to prove that this is a grading we need to prepare the ground
for an application of Proposition 2, in a similar way as was done in the
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proof of [Mat05, Theorem 2.2] in case of the Artin-Hasse exponential. If
m : A⊗ A→ A denotes the map given by the multiplication in A, the fact
that D is a derivation means that D(m(x⊗ y)) = m(Dx⊗ y) +m(x⊗Dy)
for any x, y ∈ A. This property can be more concisely written as D ◦m =
m ◦ (D ⊗ id + id⊗D), where id : A→ A is the identity map. In particular,

we have L
(θ)
p−1(D) ◦ m = m ◦ L(θ)

p−1(D ⊗ id + id⊗D) for any θ ∈ F. The

multiplication map m restricts to a map A(a) ⊗ A(b) → A(a+b), for any
a, b ∈ Fp, and all the components involved are invariant under D. Viewing

the commuting linear operators D⊗id and id⊗D as restricted to A(a)⊗A(b),
the congruence of Proposition 2 can be evaluated on D ⊗ id and id⊗D
for X and Y , with aγ and bγ for α and β. This is because Dp acts as
multiplication by ap = a = (aγ)p − aγ on A(a), and similarly for A(b). Also
note that the rational expressions ci(α, β) can be evaluated on aγ and bγ

because (a+ b)γ 6∈ F∗p, which is equivalent to
(
(a+ b)γ

)p−1 6= 1. The result
of this evaluation, followed by composition with the multiplication map m,

is that the restriction of m ◦
(
L

(aγ)
p−1 (D)⊗ L(bγ)

p−1(D)
)

to A(a) ⊗A(b) coincides
with the restriction of

L
(aγ+bγ)
p−1 (D) ◦m ◦

(
c0(aγ, bγ) +

p−1∑
i=1

ci(aγ, bγ)(Di ⊗Dp−i)
)
.

This means that

L
(aγ)
p−1 (D)x·L(bγ)

p−1(D)y = L
(aγ+bγ)
p−1 (D)

(
c0(aγ, bγ)xy+

p−1∑
i=1

ci(aγ, bγ)Dix·Dp−iy
)

for x ∈ A(a) and y ∈ A(b), which we can also write as

(15) LD(x) · LD(y) = LD

(
c0(aγ, bγ)xy +

p−1∑
i=1

ci(aγ, bγ)Dix ·Dp−iy
)
.

Because Dp is a graded derivation of degree zero, it maps each component
Ak of the grading into itself, and hence Ak =

⊕
a∈Fp

Ak ∩ A(a). Because

m | pd, the term Dix · Dp−iy in Equation (15), for x ∈ Ak ∩ A(a) and

y ∈ A` ∩A(b), belongs to Ak+` as well as the term xy. Hence Equation (15)

implies that LD(x) ·LD(y) ∈ LD
(
Ak+`∩A(a+b)

)
. In particular, we conclude

that LD(Ak) · LD(A`) ⊆ LD(Ak+`), and so A =
⊕

k LD(Ak) is a grading of
A over the integers modulo m. �

5. The general case

In this section we prove our main result, which extends Theorem 3 to
the general case where D is a derivation of a non-associative algebra A over
a field F of characteristic p, which we assume as large as we need in this
paragraph, under the sole assumption on D that Dpr is semisimple with
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finitely many eigenvalues, for some r. In fact, in that case D satisfies an
equation

(16) Dpn + an−1D
pn−1

+ · · ·+ arD
pr = 0,

with ar 6= 0. It is then not hard to see, as in [Str04, Section 1.5], or see our

Remark 6 below, that there is a p-polynomial g(t) =
∑n−1

i=r biT
pi such that

g(D)p − g(D) = Dpr .

Theorem 4. Let A =
⊕
Ak be a non-associative algebra over the perfect

field F of prime characteristic p, graded over the integers modulo m. Suppose
that A has a graded derivation D of degree d with m | pd, such that Dpr is
diagonalizable over F. Suppose that there exists a p-polynomial g(T ) ∈ F[T ]

such that g(D)p − g(D) = Dpr . Set h(T ) =
∑r−1

i=1 T
pi ∈ Fp[T ].

Let A =
⊕

ρ∈FA
(ρ) be the decomposition of A into a direct sum of gener-

alized eigenspaces for D (with A(ρ) corresponding to the eigenvalue ρ). Let

LD : A → A be the linear map whose restriction to A(ρ) coincides with

L
(g(ρ)−h(D))
p−1 (D). Then A =

⊕
k LD(Ak) is also a grading of A over the

integers modulo m.

Proof. We adapt the proof of Theorem 3 to the present more general setting.
Note that h(T p − T ) = h(T )p − h(T ) = T p

r − T p, and that in the special
case of Theorem 3 we had h(T ) = 0 and g(T ) = γT p, where γp − γ − 1 = 0.

The linear map LD is bijective. In fact, because g(ρ)p − g(ρ) = ρp
r

for

any eigenvalue of D, on the generalized eigenspace A(ρ) of D the linear map(
g(ρ)− h(D)

)pr
= g(ρ)p

r − h(Dpr) acts as multiplication by the scalar

g(ρ)p
r − h(ρp

r
) = g(ρ)p

r − h
(
g(ρ)p − g(ρ)

)
= g(ρ)p,

and hence (LD)p
r

acts on A(ρ) as multiplication by the scalar(
L

(g(ρ)−h(ρ))
p−1 (ρ)

)pr
= L

(g(ρ)p
r−h(ρp

r
))

p−1 (ρp
r
) = L

(g(ρ)p)
p−1

(
g(ρ)p − g(ρ)

)
,

which is non-zero according to Lemma 1. Hence we have the direct sum
decomposition A =

⊕
k LD(Ak).

As in the proof of Theorem 3 we consider the multiplication map m :
A ⊗ A → A, and note that because D is a derivation, and hence D ◦m =
m ◦ (D ⊗ id + id⊗D), we have

L
(θ(D))
p−1 (D) ◦m = m ◦ L(θ(D⊗id + id⊗D))

p−1 (D ⊗ id + id⊗D)

for any polynomial θ(t) ∈ F[t]. Fix eigenvalues ρ, σ ∈ F for D, view m as

restricted to a map A(ρ) ⊗ A(σ) → A(ρ+σ), and view the commuting linear
operators D ⊗ id and id⊗D as restricted to A(ρ) ⊗A(σ).

We intend to evaluate the congruence of Proposition 2 onD⊗id and id⊗D
for X and Y , with g(ρ)−h(D⊗ id) and g(σ)−h(id⊗D) for α and β. To see
that this makes sense we first need to check that the denominators of the
rational expressions ci(α, β) appearing in the congruence of Proposition 2

evaluate to invertible linear maps on A(ρ) ⊗ A(σ). In fact, αp
r

evaluates
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to
(
g(ρ) − h(D)

)pr ⊗ id, which, from what we saw earlier in the proof,

acts on A(ρ) ⊗ A(σ) as scalar multiplication by g(ρ)p. Together with the
analogous fact about βp

r
, this shows that both (α+β)p

r
and

(
(α+β)p−(α+

β)
)pr

=
(
(α+β)p−1−1

)pr
(α+β)p

r
evaluate to linear maps acting scalarly on

A(ρ)⊗A(σ), by the scalars g(ρ)p+g(σ)p and
(
g(ρ)+g(σ)

)p2−(g(ρ)+g(σ)
)p

=

(ρ + σ)p
r+1

, respectively. Whether ρ + σ vanishes or not, it follows that

(α + β)p−1 − 1 evaluates to an invertible linear map on A(ρ) ⊗ A(σ), in the
former case because α+ β evaluates to a nilpotent map.

All this can be stated more formally by saying that evaluating both sides
of the congruence of Proposition 2 amounts to apply a ring homomorphism

from Fp
[
α, β,

(
(α + β)p−1 − 1

)−1
, X, Y

]
to F[D], the subring of the ring

EndF(A(ρ)⊗A(σ)) of linear endomorphisms generated by F and D. To ensure
that such a homomorphism exists we have just checked that (α+ β)p−1 − 1
is mapped to an invertible element of F[D]. In conclusion, both sides of
the congruence of Proposition 2 can be evaluated as described. However, to
draw any conclusion from this evaluation we need to make sure that the ideal

of the ring Fp
[
α, β,

(
(α + β)p−1 − 1

)−1
, X, Y

]
generated by Xp − (αp − α)

and Y p − (βp − β) evaluates to zero. This is so because both generators
evaluate to zero. In fact, the former evaluates to

(D ⊗ id)p −
((
g(ρ)− h(D ⊗ id)

)p − (g(ρ)− h(D ⊗ id)
))

= (D ⊗ id)p
r −

(
g(ρ)p − g(ρ)

)
=
(
Dpr −

(
g(ρ)p − g(ρ)

))
⊗ id,

which acts as zero on A(ρ) ⊗A(σ).
The result of evaluating the congruence of Proposition 2 as described, fol-

lowed by composition with the multiplication map m, is that the restriction
of

m ◦ L(g(ρ)−h(D⊗id))
p−1 (D ⊗ id) ◦ L(g(σ)−h(id⊗D))

p−1 (id⊗D) = m ◦
(
LD ⊗ LD

)
to A(ρ) ⊗A(σ) coincides with the restriction of

L
(g(ρ)+g(σ)−h(D))
p−1 (D) ◦m ◦

(
c0(α0, β0) +

p−1∑
i=1

ci(α0, β0)(Di ⊗Dp−i)

)
,

where we have set α0 = g(ρ)− h(D ⊗ id) and β0 = g(σ)− h(id⊗D) for the
sake of readability. This means that
(17)

LD(x) · LD(y) = LD

(
c0

(
g(ρ)− h(D), g(σ)− h(D)

)
xy

+

p−1∑
i=1

ci
(
g(ρ)− h(D), g(σ)− h(D)

)
Dix ·Dp−iy

)
for x ∈ A(ρ) and y ∈ A(σ).
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Because Dp is a graded derivation of degree zero, it maps each component
Ak of the grading into itself, and hence Ak =

⊕
ρ∈FAk ∩A(ρ). Because m |

pd, the term Dix·Dp−iy in Equation (17), for x ∈ Ak∩A(ρ) and y ∈ A`∩A(σ),
belongs to Ak+` as well as the term xy. Furthermore, each of the linear
maps ci

(
g(ρ) − h(D), g(σ) − h(D)

)
on the space A(ρ+σ), for 0 ≤ i < p, can

be written as a polynomial map in Dp, and hence sends Ak+` ∩A(ρ+σ) into
itself, again because Dp is a derivation of degree zero. Hence Equation (17)

tells us that LD(x) ·LD(y) ∈ LD
(
Ak+`∩A(ρ+σ)

)
. In particular, we conclude

that LD(Ak) · LD(A`) ⊆ LD(Ak+`), and so A =
⊕

k LD(Ak) is a grading of
A over the integers modulo m. �

Remark 5. Restricted to the subalgebra ker(Dpr), where ρ = 0, the map
LD coincides with that obtained by applying a variation of the Artin-Hasse
exponential, namely, the series S(X) considered in [Mat05, Section 3], to
which we refer the reader for details.

Remark 6. Following [Str04, Section 1.5] we sketch the construction of a p-

polynomial g(T ) =
∑n−1

i=r biT
pi such that g(D)p−g(D) = Dpr . One way is to

introduce a parameter λ and impose that g(T )p−g(T )−T pr = λp
∑n

i=r aiT
pi .

Starting from bn−1 = λ, the equation recursively determines bh in terms of
λ as bph = bh+1 +λpah+1, for h = n−2, n−3, . . . , r, and also forces −1−br =

λpar. Hence bh = −1−
∑h

k=r λ
ph+1−r

ap
h−k

k , for h = r, . . . , n− 1, where λ is

chosen among the roots of the polynomial 1 + T +
∑n−1

k=r T
pn−k

ap
n−1−k

k .

6. Toral switching in restricted Lie algebras

In this final section we discuss the connection with the toral switching in
modular Lie algebras. Roughly speaking, this technique replaces a torus T
of a restricted Lie algebra L with another torus Tx which is more suitable
for further study of L. In the simplest and original setting of [Win69] this
amounts to applying to T the exponential of the inner derivation adx, for
some root vector x ∈ L with respect to T . Because (adx)2T = 0 the
exponential of adx can be taken to be 1 + adx for this purpose. This is
reminiscent of, and certainly motivated by, the classical characteristic zero
situation where exp(adx) for some root vector x is used to conjugate a
Cartan subalgebra into another. However, in more general settings (1 +
adx)T fails to be a torus, and hence the construction of Tx is slightly more
involved. This technique was originally introduced by Winter in [Win69] and
later generalized by Block and Wilson in [BW82]. The most general version
was finally produced by Premet in [Pre86]. An exposition of Premet’s version
can be found in [Str04, Section 1.5].

A crucial step in this process is to keep track of the root space decomposi-
tion with respect to the new torus, by constructing linear maps from the root
spaces with respect to T onto the root spaces with respect to Tx. Following
Strade’s exposition in [Str04, Section 1.5] we briefly sketch the construction
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of the new torus Tx and of a linear map E(x, λ) which connects the old and
new root spaces. Our goal is to show that E(x, λ) coincides with the map
LD of Theorem 4, where D = adx. This shows that the toral switching
process, if we disregard the strictly Lie-theoretic aspects, can be viewed as
a special instance of Theorem 4. We only include enough details and nota-
tion to make the specialization of our results to toral switching readable in
conjunction with [Str04, Section 1.5], and refer to that source for more.

Let L be a finite-dimensional restricted Lie algebra, over a perfect field
F of positive chacteristic p, with p-mapping [p]. Let r be the difference
between dim(L) and the maximum dimension of a torus of L (but any larger

integer would do). In particular, x[pr] is semisimple for each x ∈ L. It is
shown in [Str04, Section 1.5] how to associate to each element x of L a
certain element ξ(x, λ) of L, which also depends on a choice of a certain
admissible scalar λ ∈ F, itself depending on x. This is done in a systematic
‘polynomial’ way whose details we disregard here, except for pointing out
that when D = adx the map ad ξ(x, λ) plays the role of our g(D) in the
previous section. The crucial property of ξ(x, λ) is that

(18) ξ(x, λ)[p] − ξ(x, λ) = x[p]r .

Set q(x) =
∑r−1

t=1 x
[p]t . Strade then defines the map E(x,λ) as

E(x,λ) = −
p−1∑
i=0

( p−1∏
k=i+1

(
ad ξ(x, λ)− ad q(x) + kId

))
(adx)i.

Now let T be a torus of L of maximal dimension, and let L =
⊕

γ∈Γ Lγ be

the corresponding root space decomposition (where Γ = Γ(L, T ) in [Str04]).

Let x ∈ Lβ be a root vector (hence with β 6= 0) such that x[p]r ∈ T , whence

each Lγ is an eigenspace for adx[p]r = (adx)p
r
. It is stated in [Str04,

Theorem 1.5.1] that Tx = {t− β(t)(
∑r−1

k=0 x
[p]k) : t ∈ T} is also a torus of L,

and that L =
⊕

γ∈ΓE(x,λ)Lγ is the corresponding root space decomposition.

Note that (1 + adx)t = t − β(t)x can be taken as an interpretation of
exp(adx)t because (adx)2t = 0; however, the elements used to define Tx
above are more complicated than that, in general.

We now show that the map E(x,λ) coincides with the map LD of our
Theorem 4. Setting D = adx in the situation of [Str04, Theorem 1.5.1] we
have that Dpr is semisimple. The polynomial g of Section 5 was defined
in such a way that g(D) = ad ξ(x, λ), and obviously h(D) = ad q(x). We
know that g(D) acts scalarly on any generalized eigenspace for D (which for
ad ξ(x, λ) can be deduced from Equation (18)). Now any Lγ (a root space,
or L0) is contained in the generalized eigenspace for D with respect to the

eigenvalue ρ, where ρ ∈ F is determined by γ(x[pr]) = ρp
r
. Then the map
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E(x,λ) acts on Lγ as

E(D,λ) = −
p−1∑
i=0

( p−1∏
k=i+1

(
g(ρ)− h(D) + k id

))
Di = L

(g(ρ)−h(D))
p−1 (D),

and therefore coincides with our LD.
To conclude our comparison with toral switching we show that part of the

information given in [Str04, Theorem 1.5.1], namely, that
⊕

γ∈ΓE(x,λ)Lγ is a

grading of L (over 〈Γ〉, the additive group generated by Γ), is a consequence
of our Theorem 4. Of course, a crucial part of the toral switching technique
is that this grading is actually the root space decomposition of a new torus
Tx, but this part loses meaning in our more general setting where A is an
arbitrary non-associative algebra.

In loose terms, toral switching modifies the original grading (that is, root
space decomposition) in only one direction and does not affect it in suitably
complementary directions. Our formulation of Theorem 4 for a cyclic grad-
ing means that it focuses on the one ‘direction’ where the switching takes
place, and so we need a little work to isolate that direction before Theorem 4
becomes applicable to the toral switching setting.

Because β(t[p]) = β(t)p for t ∈ T (see [Str04, Equation (1.3.2)]), the
maximal subspace T0 := ker(β) = {t ∈ T : β(t) = 0} is a p-subalgebra of
the torus T , and hence a torus itself. The restriction γ 7→ γ|T0 to T0 gives
a surjective F-linear map T ∗ → T ∗0 , with kernel spanned by β. Let Γ0 be
the image of Γ under this restriction map. Note that the subgroup 〈Γ0〉
generated by Γ0 has rank one less than the rank of 〈Γ〉. Choose a toral

element t1 ∈ T (hence t
[p]
1 = t1) with β(t1) = 1; this can be done because T

is spanned by toral elements. We have a group isomorphism of 〈Γ〉 with the
direct product Fp×〈Γ0〉, where to γ there corresponds the pair

(
γ(t1), γ|T0

)
.

For γ0 ∈ Γ0 the sum Lγ0 :=
⊕

γ∈Γ: γ|T0=γ0
Lγ is a root space for the torus

T0. Hence L =
⊕

γ0∈Γ0
Lγ0 is the root space decomposition of L with respect

to T0. Similarly, L =
⊕

k∈Fp
Lk, where Lk :=

⊕
γ∈Γ: γ(t1)=k Lγ , is the root

space decomposition of L with respect to the torus spanned by t1. The root
space decomposition of L with respect to T can be viewed as a grading

L =
⊕

(k,γ0)∈Fp×〈Γ0〉

Lk ∩ Lγ0

over Fp × 〈Γ0〉. Now our Theorem 4 applies, with m = p, to the grading
L =

⊕
k∈Fp

Lk, and yields a grading L =
⊕

k∈Fp
LD(Lk). (Following [Str04]

one may show that this is the root space decomposition with respect to the
torus spanned by t1 − x− h(x), but we may ignore this fact here.)

Because [T0, x] = 0, the derivation D = adx commutes with ad t for
each t ∈ T0. Consequently, each Lγ0 is invariant under the linear map
LD, because the latter can be expressed as a polynomial in D on Lγ0 .
Therefore, LD(Lγ0) = Lγ0 for each γ0 ∈ Γ0, being LD bijective, and hence
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LD(Lk ∩ Lγ0) = LD(Lk) ∩ Lγ0 for (k, γ0) ∈ Fp × 〈Γ0〉. Because both of
L =

⊕
k∈Fp

LD(Lk) and L =
⊕

γ0∈Γ0
Lγ0 are gradings (according to Theo-

rem 4 in case of the former), the direct sum decomposition

L =
⊕

(k,γ0)∈Fp×〈Γ0〉

LD(Lk ∩ Lγ0) =
⊕

(k,γ0)∈Fp×〈Γ0〉

LD(Lk) ∩ Lγ0

is a grading as well. This is equivalent to saying that
⊕

γ∈Γ LD(Lγ) is a
grading of L, as we wanted to prove.
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