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FreMEn: Frequency Map Enhancement for Long-Term
Mobile Robot Autonomy in Changing Environments

Tomáš Krajnı́k, Jaime P. Fentanes, João M. Santos, Keerthy Kusumam, Tom Duckett

Abstract—We present a method for introducing representation
of dynamics into environment models that were originally tailored
to represent static scenes. Rather than using a fixed probability
value, the method models the uncertainty of the elementary
environment states by probabilistic functions of time. These are
composed of combinations of harmonic functions, which are
obtained by means of frequency analysis. The use of frequency
analysis allows to integrate long-term observations into memory-
efficient spatio-temporal models that reflect the mid- to long-
term environment dynamics. These frequency-enhanced spatio-
temporal models allow to predict the future environment states,
which improves the efficiency of mobile robot operation in
changing environments. In a series of experiments performed
over periods of days to years, we demonstrate that the proposed
approach improves localization, path planning and exploration.

I. INTRODUCTION

As robots gradually enter human-populated environments,
they have to deal with the fact that the environments are un-
certain because they change over time. While the probabilistic
mapping methods used in mobile robotics have proven their
ability to handle uncertain and incomplete environment knowl-
edge, their theoretical foundations assume that the uncertainty
is caused by sensor noise rather than by natural processes that
are behind the environment changes. The static world assump-
tion negatively impacts the ability of these models to properly
reflect the environment dynamics and effectively support long-
term autonomous operation of mobile robots. The authors of
articles [1], [2], [3], [4], [5] have already demonstrated that
explicit modeling of the environment changes improves mobile
robot localization.

The paper presented in [5] represents the world dynamics by
multiple maps with different timescales, which are switched
on the fly based on their consistency with the current sensory
readings. The authors of [6] present a system that evaluates
the persistence of visual features over time in order to identify
features that are more likely to be stable. Another approach [1]
demonstrates that clustering spatially-close observations into
‘experiences’ improves long-term localization. The article [3]
associates each cell of an occupancy grid with a hidden
Markov model, which improves the localization robustness as
well. Kucner’s method [7] assumes that occupancies of grid
cells are influenced by a moving objects, which allows to
infer typical motion patters in a given environment. Finally,
Sünderhauf’s method proposes to learn typical appearance
changes caused by seasonal factors and use this knowledge
for long-term predictions of environment appearance [4].

Lincoln Centre for Autonomous Systems, University of Lincoln, UK
tkrajnik@lincoln.ac.uk

The work has been supported by the EU ICT project 600623 ‘STRANDS’.
‘Change is the essential process of all existence,’ Mr. Spock, stardate 5730.2

Our approach to this problem is based on the assumption
that some of the mid- to long-term processes that cause the en-
vironment changes are (pseudo-)periodic, e.g. seasonal foliage
variations, daily illumination cycle or routine human activities.
To reflect this assumption, we represent the probability of
each local environment state not by a single value, but by
a probabilistic function of time composed of several harmonic
functions whose periodicities and amplitudes relate to the
frequencies and influences of these hidden processes.

II. METHOD DESCRIPTION

The proposed method, coined the Frequency Map Enhance-
ment (FreMEn), represents the probability of each environ-
ment state by a function of time

p(t) = p0 +

n∑
j=1

pj cos(ωj t+ ϕj), (1)

where n is the number of environment processes taken into ac-
count, ωj , ϕj and pj relate to the frequencies, time offsets and
influences of these processes, and p0 is the mean probability of
the state. To obtain the parameters ωj , ϕj and pj , we analyse
the long-term observations of each environment state by means
of a (non-uniform) Fourier transform. In short, assuming that
the state s(t) has been measured at regular intervals, we first
obtain the state’s frequency spectrum as

S(ω) = FFT (s(t)), (2)

where FFT (.) stands for the Fast Fourier Transform. The
parameters ωj , ϕj and pj in Equation (1) are equal to the
aplitudes, phases and frequencies of n most prominent spectral
components of S(ω). However, Equation (2) assumes that the
state s(t) is measured on a regular basis, which cannot be
satisfied in real-world scenarios. In realistic scenarios, one has
to employ a non-uniform Fourier Transform, such as the one
mentioned in [8] or [9].

The approach, which was originally presented at [10],
can be applied to all environment models that represent the
world as a set of independent component with binary states.
In particular, its application to occupancy grids allows to
compress long-term observations [11], its use with topo-
logical maps improves robotic search [12] and path plan-
ning [13], and frequency-enhanced feature maps have shown
to improve robustness of long-term visual localization [2].
Moreover, the time-dependent probability of the environment
states expressed by Equation (1) allows the calculation of
the spatio-temporal environment entropy, which, combined
with information-theoretic planning, results in life-long spatio-
temporal exploration of dynamic environments [9], [14], [15].
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Fig. 1. Frequency-enhanced feature map [2] for visual localization: The observations of image feature visibility (centre,red) are transferred to the spectral
domain (left). The most prominent components of the model (left,green) constitute an analytic expression (centre,bottom) that represents the probability of
the feature being visible at a given time (green). This allows to predict the feature visibility at a time when the robot performs self-localization (blue)..

III. FREMEN FOR VISUAL LOCALIZATION

To evaluate the usefulness of the approach, we apply it
to the problem of visual-based localization in changing envi-
ronments. Here, the environment representation is composed
of several local maps that consist of collections of visual
features visible at the particular locations. The visibility of
the individual image features [16] over time is represented by
FreMEn, which allows to predict their visibility for a particular
time and use the time-specific features for visual localization.
The experiments were performed both indoors and outdoors.
The indoor experiment was performed at Lincoln Centre for

Fig. 2. Seasonal environment variations captured by the outdoor dataset.

Autonomous Systems, where a SCITOS-G5 robot captured
color images of 8 designated areas every 10 minutes for one
week and used the models created to localize itself during
one day of the following week. The outdoor experiment was
performed in the Stromovka urban park in Prague, where a
P3AT robot captured color images of 5 designated places on a
monthly basis for one year and used the dynamic feature map
to determine its location during three independent runs during
the following year. While the indoor dataset was influenced
by the daily illumination cycle and human activities in the
office, (see Figure 1), the outdoor dataset captured seasonal
variations of foliage, see Figure 2.
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Fig. 3. The dependency of localization error on the number of features used.

The dependence of the localization error on the number of
features used is shown on Figure 3, which indicates that the
frequency-enhanced models that generate a set of likely-visible
features for a particular time outperform the ‘static’ approach
that relies on the most stable features. These results indicate
that modelling the appearance of dynamic environments by
our approach improves the robustness of localization.

The presented approach can be also applied to individ-
ual binary comparisons of the BRIEF [16] descriptor. The
frequency-enhanced feature descriptor would consist of binary
comparions that are relevant to the given temporal context,
which would improve its distinctiveness in long-term scenar-
ios.
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