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The sparsity problems have attracted a great deal of attention in recent years, which aim to find the sparsest solution of a
representation or an equation. In the paper, we mainly study the sparsity of underdetermined linear system via 𝑙𝑝 minimization
for 0 < 𝑝 < 1. We show, for a given underdetermined linear system of equations 𝐴𝑚×𝑛𝑋 = 𝑏, that although it is not certain that
the problem (𝑃𝑝) (i.e., min𝑋‖𝑋‖

𝑝

𝑝
subject to 𝐴𝑋 = 𝑏, where 0 < 𝑝 < 1) generates sparser solutions as the value of 𝑝 decreases

and especially the problem (𝑃𝑝) generates sparser solutions than the problem (𝑃1) (i.e., min𝑋‖𝑋‖1 subject to 𝐴𝑋 = 𝑏), there exists
a sparse constant 𝛾(𝐴, 𝑏) > 0 such that the following conclusions hold when 𝑝 < 𝛾(𝐴, 𝑏): (1) the problem (𝑃𝑝) generates sparser
solution as the value of 𝑝 decreases; (2) the sparsest optimal solution to the problem (𝑃𝑝) is unique under the sense of absolute
value permutation; (3) let 𝑋1 and 𝑋2 be the sparsest optimal solution to the problems (𝑃𝑝1 ) and (𝑃𝑝2 ) (𝑝1 < 𝑝2), respectively, and
let𝑋1 not be the absolute value permutation of𝑋2. Then there exist 𝑡1, 𝑡2 ∈ [𝑝1, 𝑝2] such that𝑋1 is the sparsest optimal solution to
the problem (𝑃𝑡) (∀𝑡 ∈ [𝑝1, 𝑡1]) and𝑋2 is the sparsest optimal solution to the problem (𝑃𝑡) (∀𝑡 ∈ (𝑡2, 𝑝2]).

1. Introduction

Recently, considerable attention has been paid to the follow-
ing sparsity problem. Given a full-rank matrix𝐴 of size𝑚×𝑛
with 𝑚 ≪ 𝑛, 𝑚-vector 𝑏, and knowing that 𝑏 = 𝐴𝑋∗, where
𝑋
∗
∈ R𝑛 is an unknown sparse vector, we expect to recover

𝑋
∗. Although the system of equations is underdetermined

and hence it is not a properly posed problem in linear algebra,
sparsity of 𝑋∗ is a very useful priority that sometimes allows
unique solution. Accordingly, one naturally proposes to use
the following optimization model (𝑃0) to obtain the sparsest
solutions:

(𝑃0) min
𝑋
‖𝑋‖0

s.t. 𝐴𝑋 = 𝑏,
(1)

where ‖𝑋‖0 denotes the number of nonzero components of𝑋
(we call ‖⋅‖0 𝑙0 norm).This is one of critical problems in com-
pressed sensing research. This problem is motivated by data

compression, error correcting codes, 𝑛-term approximation,
and so forth (see, e.g., [1]). It is known that the problem (𝑃0)
needs nonpolynomial time to solve (cf. [2]). It is crucial to
recognize that one natural approach to tackle (𝑃0) is to solve
the following convex minimization problem:

(𝑃1) min
𝑋
‖𝑋‖1

s.t. 𝐴𝑋 = 𝑏,
(2)

where ‖𝑋‖1 = ∑
𝑛

𝑖=1
|𝑥𝑖| is the standard 𝑙1 norm. The study

of this problem (𝑃1) was pioneered by Donoho, Candès, and
their collaborators and many researchers have made a lot of
contributions related to the existence, uniqueness, and other
properties of the sparse solution as well as computational
algorithms and their convergence analysis to tackle the
problem (𝑃0) (see survey papers in [3–5]). However, the
solutions to the problem (𝑃1) are often not as sparse as those
to the problem (𝑃0). It is definitely imperative and required
formany applications to find solutions which aremore sparse
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than that to the problem (𝑃1). A natural try for this purpose
is to apply the problem (𝑃𝑝) (0 < 𝑝 < 1), that is, to solve the
following model:

(𝑃𝑝) min
𝑋
‖𝑋‖
𝑝

𝑝

s.t. 𝐴𝑋 = 𝑏,
(3)

where ‖𝑋‖𝑝𝑝 = ∑
𝑛

𝑖=1
|𝑥𝑖|
𝑝 (we call ‖⋅‖𝑝 𝑙𝑝-norm, though it is no

longer norms for 𝑝 < 1 as the triangle inequality is no longer
satisfied). Obviously, the problem (𝑃𝑝) is no longer a convex
optimization problem.This minimization is motivated by the
following fact:

lim
𝑝→0

+

‖𝑋‖
𝑝

𝑝
= ‖𝑋‖0 . (4)

This model was initiated by [6] and many researchers have
worked on this direction [1, 2, 7–16]. They demonstrate that
(1) for aGaussian randommatrix𝐴, the restricted𝑝-isometry
property of order 𝑠 holds if 𝑠 is almost proportional to 𝑚
when 𝑝 → 0+ (cf. [8]); (2) when 𝛿2𝑠 < 1 (or 𝛿2𝑠+1 <
1, 𝛿2𝑠+2 < 1), the optimal solution to the problem (𝑃𝑝) is
the same as the optimal solution to the problem (𝑃0) when
𝑝 > 0 small enough, where 𝛿2𝑠 < 1 is the restricted
isometry constants of matrix 𝐴 (similar for 𝛿2𝑠+1 < 1,
𝛿2𝑠+2 < 1) (cf. [7, 10, 13]); and (3) the 𝑙𝑝 minimization can
be applied to a wider class of random matrices 𝐴 (cf. [11]).
In addition, in [7, 15], the authors show that the problem
(𝑃𝑝) generates sparser solution than the problem (𝑃1) and
the problem (𝑃𝑝) generates sparser solution as the value of
𝑝 decreases by taking phase diagram studies with a set of
experiments. Nevertheless, are the conclusions showed by
taking phase diagram studies true in theory? In the paper,
we will answer this question by studying the sparsity of 𝑙𝑝
minimization. Firstly, using Example 2 we show, in general,
that the answer to the question above is negative. Secondly,
although the answer to the question above is negative, we
can prove that, for a given underdetermined linear system of
equations 𝐴𝑚×𝑛𝑋 = 𝑏, there exists a constant 𝛾(𝐴, 𝑏) > 0 (we
call it sparsity constant) such that the following conclusions
hold when 𝑝 < 𝛾(𝐴, 𝑏).

(1) The problem (𝑃𝑝) generates sparser solution as the
value of 𝑝 decreases (Theorem 7).

(2) Let𝑋𝑝 be the sparsest optimal solution to the problem
(𝑃𝑝). Then𝑋𝑝 is the unique sparsest optimal solution
to the problem (𝑃𝑝) under the sense of absolute value
permutation (Corollary 6).

(3) Let 𝑋1 and 𝑋2 be the sparsest optimal solution to
the problem (𝑃𝑝

1

) and problem (𝑃𝑝
2

) (𝑝1 < 𝑝2),
respectively, and let 𝑋1 not be the absolute value
permutation of 𝑋2. Then there exist 𝑡1, 𝑡2 ∈ [𝑝1, 𝑝2]
such that 𝑋1 is the sparsest optimal solution to the
problem (𝑃𝑡) (∀𝑡 ∈ [𝑝1, 𝑡1]) and 𝑋2 is the sparsest
optimal solution to the problem (𝑃𝑡) (∀𝑡 ∈ (𝑡2, 𝑝2])
(Theorem 8).

2. The Sparsity of Underdetermined Linear
System via 𝑙𝑝 Minimization

Let X be the set of all solutions to the underdetermined
linear systems 𝐴𝑋 = 𝑏. For the convenience of account,
we call 𝑋1 the absolute value permutation of 𝑋2, which
means that (|𝑥11|, |𝑥12|, . . . , |𝑥1𝑛|) is the permutation of
(|𝑥21|, |𝑥22|, . . . , |𝑥2𝑛|), where 𝑋1 = (𝑥11, 𝑥12, . . . , 𝑥1𝑛)

𝑇 and
𝑋2 = (𝑥21, 𝑥22, . . . , 𝑥2𝑛)

𝑇
∈ X.

Lemma 1 (see [17]). The problem (𝑃1) may have more than
one solution. Nevertheless, even if there are infinitely many
possible solutions to this problem, we can claim that (1) these
solutions are gathered in a set that is bounded and convex, and
(2) among these solutions, there exists at least one with at most
𝑚 nonzeros.

The following example shows that, in general, it is not
certain that the problem (𝑃𝑝) generates sparser solution than
the problem (𝑃1) and the problem (𝑃𝑝) generates sparser
solution as the value of 𝑝 decreases.

Example 2. We consider the underdetermined linear system
of equations 𝐴𝑋 = 𝑏, where

𝐴 = (𝛼1, 𝛼2, 𝛼3, 𝛼4) =
(
(
(

(

−
20

29
1
31

87
0

0 1
8

15
1

60

29
0
463

435
−1

)
)
)

)

, (5)

𝑏 = (1, 2, 3)
𝑇. By Lemma 1, the 𝑙0-norm of the optimal

solutions to the problem (𝑃1) are not more than 3, and hence
the optimal solution is one of the following feasible solutions:

(1) 𝑋1 = (0, −4/27, 29/9, 58/135)
𝑇;

(2) 𝑋2 = (0.1, 0, 3, 0.4)
𝑇;

(3) 𝑋3 = (1.45, 2, 0, 0)
𝑇;

(4) 𝑋4 = (1.45, 2, 0, 0)
𝑇.

Furthermore, we can show that the optimal solution to
the problem (𝑃𝑝) (𝑝 = 0.8, 0.95) is one of above feasible
solutions. It is easy to calculate that

𝑋1

0.8

0.8
= 3.2756,

𝑋2

0.8

0.8
= 3.0472,

𝑋3

0.8

0.8
=
𝑋4

0.8

0.8
= 3.0873,



Mathematical Problems in Engineering 3

𝑋1

0.95

0.95
= 3.6502,

𝑋2

0.95

0.95
= 3.3706,

𝑋3

0.95

0.95
=
𝑋4

0.95

0.95
= 3.3552,

𝑋1
1 = 3.7999,

‖𝑋‖1 = 3.5,

𝑋3
1 =
𝑋4
1 = 3.45.

(6)

Thus 𝑋2 is the optimal solution when 𝑝 = 0.8 and 𝑋3 is the
optimal solutionwhen𝑝 = 0.95 and𝑝 = 1. However, ‖𝑋2‖0 =
3, ‖𝑋3‖0 = 2. Therefore, the problem (𝑃𝑝) does not generate
sparser solution than the problem (𝑃1) and the problem (𝑃𝑝)
does not generate sparser solution as the value of 𝑝 decreases.

In the following, wewill prove the conclusionsmentioned
in Introduction.

We define two functions 𝑓(𝑡) = ‖𝑋‖𝑡 = (|𝑥1|
𝑡
+ ⋅ ⋅ ⋅ +

|𝑥𝑘|
𝑡
)
1/𝑡 (𝑡 > 0) and 𝑔(𝑡) = ‖𝑋‖𝑡

𝑡
= |𝑥1|

𝑡
+ ⋅ ⋅ ⋅ + |𝑥𝑘|

𝑡 (𝑡 > 0),
where𝑋 = (𝑥1, . . . , 𝑥𝑘) and 𝑥𝑖 ̸= 0. Then 𝑓(𝑡) = (𝑔(𝑡))1/𝑡.

Theorem 3. 𝑓(𝑡) is a monotone decreasing convex function
and

𝑓

(𝑡) =
𝑓 (𝑡)

𝑡
(
𝑔

(𝑡)

𝑔 (𝑡)
− ln𝑓 (𝑡)) . (7)

Proof. It is easy to show that (7) holds. Without loss of
generality, we assume that |𝑥1| ≤ |𝑥2| ≤ ⋅ ⋅ ⋅ ≤ |𝑥𝑘|. Because

𝑓

(𝑡) =
𝑓 (𝑡)

𝑡
(
𝑔

(𝑡)

𝑔 (𝑡)
− ln𝑓 (𝑡))

=
𝑓 (𝑡)

𝑡2
(
∑
𝑘

𝑖=1

𝑥𝑖

𝑡 ln 𝑥𝑖

𝑡

𝑔 (𝑡)
− ln𝑔 (𝑡))

≤
𝑓 (𝑡)

𝑡2
(ln 𝑥𝑘

𝑡
− ln𝑔 (𝑡)) ≤ 0,

(8)

𝑓(𝑡) is monotone decreasing.
Furthermore, 𝑓(𝑡) is a convex function. In fact, we have,

by the convexity of function 𝑓(𝑥) = 𝑥2,

(
∑
𝑘

𝑖=1

𝑥𝑖

𝑡 ln 𝑥𝑖


∑
𝑘

𝑖=1

𝑥𝑖

𝑡
)

2

≤
∑
𝑘

𝑖=1

𝑥𝑖

𝑡 ln2 𝑥𝑖


∑
𝑘

𝑖=1

𝑥𝑖

𝑡
. (9)

That is,

(
𝑔

(𝑡)

𝑔 (𝑡)
)

2

≤
𝑔

(𝑡)

𝑔 (𝑡)
. (10)

Thus

(
𝑔

(𝑡)

𝑔 (𝑡)
)



=
𝑔

(𝑡)

𝑔 (𝑡)
− (
𝑔

(𝑡)

𝑔 (𝑡)
)

2

≥ 0 (11)

and hence 𝑔(𝑡)/𝑔(𝑡) is monotone increasing. Since 𝑓(𝑡) is
monotone decreasing, we know that 𝑔(𝑡)/𝑔(𝑡) − ln𝑓(𝑡) is
monotone increasing. Because 𝑓(𝑡)/𝑡 is monotone decreas-
ing, 𝑔(𝑡)/𝑔(𝑡) is monotone increasing and 𝑔(𝑡)/𝑔(𝑡) −
ln𝑓(𝑡) ≤ 0,

𝑓

(𝑡) = (
𝑓 (𝑡)

𝑡
)



(
𝑔

(𝑡)

𝑔 (𝑡)
− ln𝑓 (𝑡))

+
𝑓 (𝑡)

𝑡
(
𝑔

(𝑡)

𝑔 (𝑡)
− ln𝑓 (𝑡))



≥ 0

(12)

which implies that 𝑓(𝑡) is convex function.

Theorem 4. For a given underdetermined linear system of
equations 𝐴𝑚×𝑛𝑋 = 𝑏, there exists a constant 𝛾 > 0 such
that, for any 𝑋1, 𝑋2 ∈ X, either 𝑓

1
(𝑡) = (‖𝑋1‖𝑡)


< 𝑓


2
(𝑡) =

(‖𝑋2‖𝑡)
 or 𝑓

2
(𝑡) = (‖𝑋2‖𝑡)


< 𝑓


1
(𝑡) = (‖𝑋1‖𝑡)

 when
0 < 𝑡 < 𝛾.

Proof. Let𝑋𝑘 = {𝑋 | ‖𝑋‖0 = 𝑘,𝑋 ∈ X} and𝑋𝑘𝛽 = {𝑋 ∈ 𝑋
𝑘
|;

there exists 𝛽 such that∏𝑘
𝑖=1
|𝑥𝑖| = 𝛽}. Clearly, we have 𝑋

𝑘
=

∪𝛽𝑋
𝑘

𝛽
,X = ∪𝑛

𝑘=1
𝑋
𝑘.

Firstly, for any𝑋1, 𝑋2 ∈ 𝑋
𝑘

𝛽
, there exists a constant 𝛾𝑘

𝛽
> 0

such that when 0 < 𝑡 < 𝛾𝑘
𝛽
, either 𝑓

1
(𝑡) = (‖𝑋1‖𝑡)


< 𝑓


2
(𝑡) =

(‖𝑋2‖𝑡)
 or 𝑓
2
(𝑡) = (‖𝑋2‖𝑡)


< 𝑓


1
(𝑡) = (‖𝑋1‖𝑡)

.
Obviously, for any given 𝑋1, 𝑋2 ∈ 𝑋

𝑘

𝛽
, there is a positive

number {𝛾𝑘
𝛽
}𝑗 such that when 0 < 𝑡 < {𝛾𝑘

𝛽
}𝑗, either 𝑓



1
(𝑡) =

(‖𝑋1‖𝑡)

< 𝑓


2
(𝑡) = (‖𝑋2‖𝑡)

 or 𝑓
2
(𝑡) = (‖𝑋2‖𝑡)


< 𝑓


1
(𝑡) =

(‖𝑋1‖𝑡)
. Hence, it suffices to show inf𝑗{𝛾

𝑘

𝛽
}𝑗 = 𝛾

𝑘

𝛽
̸= 0.

Otherwise, for an arbitrarily small positive number 𝜀, there
exists 𝑡 with 0 < 𝑡 < 𝜀, 𝑌1 ∈ 𝑋

𝑘

𝛽
, and 𝑌2 ∈ 𝑋

𝑘

𝛽
such that

𝑓


1
(𝑡) = (
𝑌1
𝑡)

= 𝑓


2
(𝑡) = (
𝑌2
𝑡)

. (13)

Using (7) we obtain

𝑓1 (𝑡)

𝑡
(
𝑔


1
(𝑡)

𝑔1 (𝑡)
− ln𝑓1 (𝑡))

=
𝑓2 (𝑡)

𝑡
(
𝑔


2
(𝑡)

𝑔2 (𝑡)
− ln𝑓2 (𝑡)) .

(14)

That is,
𝑔


1
(𝑡) /𝑔1 (𝑡) − ln𝑓1 (𝑡)
𝑔
2
(𝑡) /𝑔2 (𝑡) − ln𝑓2 (𝑡)

=
𝑓2 (𝑡)

𝑓1 (𝑡)
. (15)

Since 𝑌1, 𝑌2 ∈ 𝑋
𝑘

𝛽
, we have∏𝑘

𝑖=1
|𝑦1𝑖| = ∏

𝑘

𝑖=1
|𝑦2𝑖| = 𝛽.

Hence
𝑘

∑

𝑖=1

ln 𝑦1𝑖
 =

𝑘

∑

𝑖=1

ln 𝑦2𝑖
 . (16)

Therefore, there is a positive integer𝑀 such that
𝑘

∑

𝑖=1

ln𝑀 𝑦1𝑖
 ̸=

𝑘

∑

𝑖=1

ln𝑀 𝑦2𝑖
 (17)
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and, for any positive integer𝑁 with𝑁 < 𝑀,

𝑘

∑

𝑖=1

ln𝑁 𝑦1𝑖
 =

𝑘

∑

𝑖=1

ln𝑁 𝑦2𝑖
 . (18)

Since, for any positive integer 𝐾,

𝑔
(𝐾)

1
(0) = (
𝑦11

𝑡
+ ⋅ ⋅ ⋅ +
𝑦1𝑘

𝑡
)
(𝐾)
𝑡=0

=

𝑘

∑

𝑖=1

ln𝐾 𝑦1𝑖
 ,

𝑔
(𝐾)

2
(0) = (
𝑦21

𝑡
+ ⋅ ⋅ ⋅ +
𝑦2𝑘

𝑡
)
(𝐾)
𝑡=0

=

𝑘

∑

𝑖=1

ln𝐾 𝑦2𝑖
 ,

(19)

we obtain, for𝑀 and𝑁mentioned above,

𝑔
(𝑀)

1
(0) ̸= 𝑔

(𝑀)

2
(0) ,

𝑔
(𝑁)

1
(0) = 𝑔

(𝑁)

2
(0) .

(20)

We assume, without loss of generality, that 𝑔(𝑀)
1
(0) < 𝑔

(𝑀)

2
(0).

For the𝑀mentioned above, (15) becomes

[
𝑔


1
(𝑡) /𝑔1 (𝑡) − ln𝑓1 (𝑡)
𝑔
2
(𝑡) /𝑔2 (𝑡) − ln𝑓2 (𝑡)

]

1/𝑡
𝑀−1

= [
𝑓2 (𝑡)

𝑓1 (𝑡)
]

1/𝑡
𝑀−1

= [
𝑔2 (𝑡)

𝑔1 (𝑡)
]

1/𝑡
𝑀

.

(21)

For the right of (21), we obtain

lim
𝑡→0
[
𝑔2 (𝑡)

𝑔1 (𝑡)
]

1/𝑡
𝑀

= exp{ lim
𝑡→0

ln𝑔2 (𝑡) − ln𝑔1 (𝑡)
𝑡𝑀

} = exp{ lim
𝑡→0

𝑔


2
(𝑡) /𝑔2 (𝑡) − 𝑔



1
(𝑡) /𝑔1 (𝑡)

𝑀𝑡𝑀−1
}

= exp{ lim
𝑡→0

𝑔


2
(𝑡) /𝑔2 (𝑡) − 𝑔



1
(𝑡) /𝑔1 (𝑡) − 𝑔

2

2
(𝑡) /𝑔
2

2
(𝑡) + 𝑔

2

2
(𝑡) /𝑔
2

1
(𝑡)

𝑀𝑡𝑀−1
} = ⋅ ⋅ ⋅

= exp{
𝑔
(𝑀)

2
(0) − 𝑔

(𝑀)

1
(0)

𝑘
} > 1.

(22)

And for the left of (21), we obtain

lim
𝑡→0
[
𝑔


1
(𝑡) /𝑔1 (𝑡) − ln𝑓1 (𝑡)
𝑔
2
/𝑔2 (𝑡) − ln𝑓2 (𝑡)

]

1/𝑡
𝑀−1

= exp{ lim
𝑡→0

ln (ln𝑔1 (𝑡) − (𝑔


1
(𝑡) /𝑔1 (𝑡)) × 𝑡) − ln (ln𝑔2 (𝑡) − (𝑔



2
(𝑡) /𝑔2 (𝑡)) × 𝑡)

𝑡𝑀−1
} = 1.

(23)

This is a contradiction and thus when 0 < 𝑡 < 𝛾𝑘
𝛽
, either

𝑓


1
(𝑡) = (‖𝑋1‖𝑡)


< 𝑓


2
(𝑡) = (‖𝑋2‖𝑡)

 or 𝑓
2
(𝑡) = (‖𝑋2‖𝑡)


<

𝑓


1
(𝑡) = (‖𝑋1‖𝑡)

.
Secondly, for any𝑋1, 𝑋2 ∈ 𝑋

𝑘, there exists a constant 𝛾𝑘 >
0 such that when 0 < 𝑡 < 𝛾𝑘, either𝑓

1
(𝑡) = (‖𝑋1‖𝑡)


< 𝑓


2
(𝑡) =

(‖𝑋2‖𝑡)
 or 𝑓
2
(𝑡) = (‖𝑋2‖𝑡)


< 𝑓


1
(𝑡) = (‖𝑋1‖𝑡)

.
It suffices to show that inf𝛽𝛾

𝑘

𝛽
= 𝛾
𝑘
̸= 0. Otherwise, for an

arbitrarily small positive number 𝜀, there is 𝑡 with 0 < 𝑡 < 𝜀,
𝑌1 ∈ 𝑋

𝑘

𝛽
1

and 𝑌2 ∈ 𝑋
𝑘

𝛽
2

(𝛽1 ̸= 𝛽2) such that

𝑓


1
(𝑡) = (
𝑌1
𝑡)

= 𝑓


2
(𝑡) = (
𝑌2
𝑡)

. (24)

Using (7) again, we also obtain (15).

For the right of (15), we have

lim
𝑡→0

𝑓2 (𝑡)

𝑓1 (𝑡)
= exp{ lim

𝑡→0

ln𝑔2 (𝑡) − ln𝑔1 (𝑡)
𝑡

}

=
∏𝑖
𝑦1𝑖


∏𝑖
𝑦2𝑖


̸= 1.

(25)

And for the left of (15), we have

lim
𝑡→0

𝑔


1
(𝑡) /𝑔1 (𝑡) − ln𝑓1 (𝑡)
𝑔
2
(𝑡) /𝑔2 (𝑡) − ln𝑓2 (𝑡)

= lim
𝑡→0

(𝑔


1
(𝑡) /𝑔1 (𝑡)) × 𝑡 − ln𝑔1 (𝑡)
(𝑔
2
(𝑡) /𝑔2 (𝑡)) × 𝑡 − ln𝑔2 (𝑡)

= 1.

(26)

This is a contradiction and thus inf𝛽𝛾
𝑘

𝛽
= 𝛾
𝑘
̸= 0.
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Thirdly, for any 𝑋1 ∈ 𝑋
𝑘, 𝑋2 ∈ 𝑋

𝑠, 𝑘 ̸= 𝑠, there exists a
constant 𝛾𝑘,𝑠 > 0 such that when 0 < 𝑡 < 𝛾𝑘,𝑠, either 𝑓

1
(𝑡) =

(‖𝑋1‖𝑡)

< 𝑓


2
(𝑡) = (‖𝑋2‖𝑡)

 or 𝑓
2
(𝑡) = (‖𝑋2‖𝑡)


< 𝑓


1
(𝑡) =

(‖𝑋1‖𝑡)
.

We assume, without loss of generality, that ‖𝑋1‖0 = 𝑘 <
𝑠 = ‖𝑋2‖0. Then

lim
𝑡→0

𝑔


1
(𝑡) /𝑔1 (𝑡) − ln𝑓1 (𝑡)
𝑔
2
(𝑡) /𝑔2 (𝑡) − ln𝑓2 (𝑡)

= lim
𝑡→0

(𝑔


1
(𝑡) /𝑔1 (𝑡)) × 𝑡 − ln𝑔1 (𝑡)
(𝑔
2
(𝑡) /𝑔2 (𝑡)) × 𝑡 − ln𝑔2 (𝑡)

=
ln 𝑘
ln 𝑠
< 1,

lim
𝑡→0

𝑓2 (𝑡)

𝑓1 (𝑡)
= exp{ lim

𝑡→0

ln𝑔2 (𝑡) − ln𝑔1 (𝑡)
𝑡

} = ∞.

(27)

So there is a positive number 𝛾𝑘,𝑠 such that when 𝑡 < 𝛾𝑘,𝑠,

𝑔


1
(𝑡) /𝑔1 (𝑡) − ln𝑓1 (𝑡)
𝑔
2
(𝑡) /𝑔2 (𝑡) − ln𝑓2 (𝑡)

<
𝑓2 (𝑡)

𝑓1 (𝑡)
, (28)

which implies that

𝑓


2
(𝑡) = (
𝑋2
𝑡)

< 𝑓


1
(𝑡) = (
𝑋1
𝑡)

. (29)

In conclusion, we take 𝛾 = min{𝛾𝑘, 𝛾𝑘,𝑠 | 𝑘, 𝑠 = 1, 2, . . . , 𝑛}
and thus when 0 < 𝑡 < 𝛾, for any 𝑋1, 𝑋2 ∈ X, either 𝑓

1
(𝑡) =

(‖𝑋1‖𝑡)

< 𝑓


2
(𝑡) = (‖𝑋2‖𝑡)

 or 𝑓
2
(𝑡) = (‖𝑋2‖𝑡)


< 𝑓


1
(𝑡) =

(‖𝑋1‖𝑡)
.

Obviously, for a given underdetermined linear system of
equations𝐴𝑚×𝑛𝑋 = 𝑏, there are infinitelymany constants 𝛾𝑖 >
0 such that when 0 < 𝑡 < 𝛾𝑖Theorem 7 holds. The supremum
of 𝛾𝑖 is called the sparse constant of underdetermined linear
system of equations 𝐴𝑚×𝑛𝑋 = 𝑏 and denoted 𝛾(𝐴, 𝑏).

Corollary 5. Let equations 𝐴𝑚×𝑛𝑋 = 𝑏 be an underdeter-
mined linear system. Then 𝑓1(𝑡) = ‖𝑋1‖𝑡 and 𝑓2(𝑡) = ‖𝑋2‖𝑡
have atmost one intersection in (0, 𝛾(𝐴, 𝑏)), where𝑋1, 𝑋2 ∈ X
and 𝑋1 is not the absolute value permutation of𝑋2.

Proof. It is easy to prove that the conclusion holds by
Theorems 4 and 7.

Corollary 6. Let 𝑋𝑝 be the sparsest optimal solution to the
problem (𝑃𝑝) (𝑝 < 𝛾(𝐴, 𝑏)). Then 𝑋𝑝 is the unique sparsest
optimal solution to the problem (𝑃𝑝) under the sense of absolute
value permutation.

Proof. Suppose that𝑋𝑝∗ is another sparsest optimal solution
to the problem (𝑃𝑝) and 𝑋𝑝∗ is not the absolute value
permutation of 𝑋𝑝. By Theorem 7, ∀𝑡 ∈ (0, 𝑝), either 𝑓

1
(𝑡) =

(‖𝑋𝑝‖𝑡)

< 𝑓


2
(𝑡) = (‖𝑋𝑝∗‖𝑡)

 or 𝑓
1
(𝑡) = (‖𝑋𝑝‖𝑡)


> 𝑓


2
(𝑡) =

(‖𝑋𝑝∗‖𝑡)
. We suppose that 𝑓

1
(𝑡) = (‖𝑋𝑝‖𝑡)


< 𝑓


2
(𝑡) =

(‖𝑋𝑝∗‖𝑡)
 and hence ∀𝑡 ∈ (0, 𝑝) we have 𝑓1(𝑡) > 𝑓2(𝑡), which

implies that ‖𝑋𝑝‖0 > ‖𝑋𝑝∗‖0. This is a contradiction.

Theorem7. Theproblem (𝑃𝑝) generates sparser solution as the
value of 𝑝 decrease when 𝑝 < 𝛾(𝐴, 𝑏).

Proof. If the conclusion does not hold, then there exists the
optimal solutions 𝑋1 to the problems (𝑃𝑝

1

) and the optimal
solutions 𝑋2 to the problems (𝑃𝑝

2

) satisfying 𝑝1 < 𝑝2 <
𝛾(𝐴, 𝑏) and ‖𝑋1‖0 = 𝑠 > 𝑘 = ‖𝑋2‖0. We consider the
following two cases.

(1) If ‖𝑋1‖𝑝
1

= ‖𝑋2‖𝑝
1

, then ‖𝑋1‖𝑝
2

< ‖𝑋2‖𝑝
2

because of
Corollary 5 and 𝑠 > 𝑘. This contradicts with the fact
that𝑋2 is the optimal solutions to (𝑃𝑝

2

).
(2) If ‖𝑋1‖𝑝

1

< ‖𝑋2‖𝑝
1

, then ‖𝑋1‖𝑡 and ‖𝑋2‖𝑡 have at
least one intersection in (0, 𝑝1) because of 𝑠 > 𝑘.
Since ‖𝑋2‖𝑝

2

≤ ‖𝑋1‖𝑝
2

, ‖𝑋1‖𝑡, and ‖𝑋2‖𝑡 have at least
one intersection in (𝑝1, 𝑝2]. This is contradictory to
Corollary 5.

Theorem 8. Let 𝑋1 and X2 be the sparsest optimal solution
to the problem (𝑃𝑝

1

) and problem (𝑃𝑝
2

) (𝑝1 < 𝑝2 < 𝛾(𝐴, 𝑏)),
respectively, and 𝑋1 is not the absolute value permutation of
𝑋2. Then there exist 𝑡1, 𝑡2 ∈ [𝑝1, 𝑝2] such that when 𝑝1 ≤ 𝑡 ≤
𝑡1, 𝑋1 is the sparsest optimal solution to the problem (𝑃𝑡) and
when 𝑡2 < 𝑡 ≤ 𝑝2, 𝑋2 is the sparsest optimal solution to the
problem (𝑃𝑡).

Proof. Firstly,𝑋1 is not the optimal solution to 𝑃𝑝
2

and hence
‖𝑋1‖𝑝

2

> ‖𝑋2‖𝑝
2

. In fact, if ‖𝑋1‖𝑝
2

= ‖𝑋2‖𝑝
2

, then ‖𝑋1‖𝑝
1

<

‖𝑋2‖𝑝
1

by Corollary 5 and 𝑋1 is the optimal solution to the
problem (𝑃𝑝

1

). By Corollary 5 again, we have ‖𝑋1‖0 < ‖𝑋2‖0
which contradicts with the fact that𝑋2 is the sparsest optimal
solutions to (𝑃𝑝

2

).
We consider the following two cases.

(1) If ‖𝑋1‖𝑝
1

= ‖𝑋2‖𝑝
1

, then, for any 𝑝2 ≥ 𝑡 > 𝑝1, 𝑋2
is the sparsest optimal solution to the problem (𝑃𝑡).
Otherwise, there exists 𝑋3 such that ‖𝑋3‖𝑡 < ‖𝑋2‖𝑡
or ‖𝑋3‖𝑡 = ‖𝑋2‖𝑡 and ‖𝑋3‖0 < ‖𝑋2‖0. If ‖𝑋3‖𝑡 <
‖𝑋2‖𝑡, then ‖𝑋3‖0 > ‖𝑋2‖0 by Corollary 5 and
‖𝑋3‖𝑝

1

≥ ‖𝑋1‖𝑝
1

= ‖𝑋2‖𝑝
1

, which is contradictory
to Theorem 8. If ‖𝑋3‖𝑡 = ‖𝑋2‖𝑡 and ‖𝑋3‖0 < ‖𝑋2‖0,
then ‖𝑋3‖𝑝

1

< ‖𝑋2‖𝑝
1

= ‖𝑋1‖𝑝
1

by Corollary 5, which
contradicts the fact that𝑋1 is the optimal solutions to
(𝑃𝑝
1

). Therefore, we pick 𝑡1 = 𝑡2 = 𝑝1.
(2) If ‖𝑋1‖𝑝

1

< ‖𝑋2‖𝑝
1

, then, by ‖𝑋1‖𝑝
2

> ‖𝑋2‖𝑝
2

,
‖𝑋1‖𝑡 and ‖𝑋2‖𝑡 have one intersection 𝑡0 in (𝑝1, 𝑝2),
and hence ‖𝑋1‖0 < ‖𝑋2‖0. We assume, without
loss of generality, that ‖𝑋1‖0 + 2 = ‖𝑋2‖0. Let 𝑋3
be the sparsest optimal solution to the problem 𝑃𝑡

0

.
Then 𝑋3 is not the absolute value permutation of𝑋2.
Otherwise, we have ‖𝑋3‖𝑡

0

= ‖𝑋2‖𝑡
0

= ‖𝑋1‖𝑡
0

, that
is,𝑋1 is the optimal solution to the problem 𝑃𝑡

0

. Since
‖𝑋1‖𝑝

1

< ‖𝑋2‖𝑝
1

= ‖𝑋3‖𝑝
1

, we have ‖𝑋1‖0 < ‖𝑋3‖0
which contradicts the fact that 𝑋3 is the sparsest
optimal solution to the problem 𝑃𝑡

0

.

If 𝑋3 is the absolute value permutation of 𝑋1, then
‖𝑋3‖𝑡

0

= ‖𝑋1‖𝑡
0

= ‖𝑋2‖𝑡
0

and thus, by the proof of case (1),
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for any 𝑝2 ≥ 𝑡 > 𝑡0, 𝑋2 is the sparsest optimal solution to
the problem (𝑃𝑡). Obviously, for any 𝑝1 ≤ 𝑡 ≤ 𝑡0, 𝑋1 is the
sparsest optimal solution to the problem (𝑃𝑡). Therefore, we
pick 𝑡1 = 𝑡2 = 𝑡0.

If 𝑋3 is not the absolute value permutation of 𝑋1, then
‖𝑋3‖0 = ‖𝑋1‖0+1 by Corollary 6, and there exist 𝑡1 ∈ (𝑝1, 𝑡0),
𝑡2 ∈ (𝑡0, 𝑝2) such that 𝑡1 is the intersection of ‖𝑋3‖𝑡 and ‖𝑋1‖𝑡
and 𝑡2 is the intersection of ‖𝑋3‖𝑡 and ‖𝑋2‖𝑡. By the proof
above, we have that, for any 𝑡 ≤ 𝑡1,𝑋1 is the sparsest optimal
solution to the problem (𝑃𝑡) and for any 𝑡 > 𝑡2, 𝑋2 is the
sparsest optimal solution to the problem (𝑃𝑡).

3. Conclusion

In this paper, the sparsity of underdetermined linear system
via 𝑙𝑝 minimization for 0 < 𝑝 < 1 has been studied.
Our research reveals that for a given underdetermined linear
system of equations𝐴𝑚×𝑛𝑋 = 𝑏 there exists a sparse constant
𝛾(𝐴, 𝑏) > 0 such that when 𝑝 < 𝛾(𝐴, 𝑏), the problem (𝑃𝑝)
generates sparser solution as the value of 𝑝 decreases and
the sparsest optimal solution to the problem (𝑃𝑝) is unique
under the sense of absolute value permutation and if 𝑋1 is
not the absolute value permutation of 𝑋2 where 𝑋1 and 𝑋2
are the sparsest optimal solution to the problems (𝑃𝑝

1

) and
(𝑃𝑝
2

) (𝑝1 < 𝑝2), respectively, then there exist 𝑡1, 𝑡2 ∈ [𝑝1, 𝑝2]
such that 𝑋1 is the sparsest optimal solution to the problem
(𝑃𝑡) (∀𝑡 ∈ [𝑝1, 𝑡1]) and𝑋2 is the the sparsest optimal solution
to the problem (𝑃𝑡) (∀𝑡 ∈ (𝑡2, 𝑝2]).
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