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Abstract 

Inverse problems are ubiquitous in science. The theory and techniques of inverse problems 

play important roles in metrology owing to the close relation between inverse problems and 

indirect measurements. However, the essential connection between the concepts of inverse 

problems and measurement has not been deeply discussed before. This thesis is focused on a 

general type of inverse problem in metrology that arises naturally in indirect measurements, 

called the inverse problem of measurement (IPM). 

Based on the representational theory of measurement, a deterministic model of indirect 

measurements is developed, which shows that the IPM can be taken as an inference process 

of an indirect measurement and defined as the inference of the values of the measurand from 

the observations of some other quantity(s). The desired properties of solving the IPMs are 

listed and investigated in detail. The importance of estimating empirical relations is 

emphasised. Based on the desired properties, some structural properties of the IPMs are 

derived using category theory and order theory. Thereby, it is demonstrated that the structure 

of the IPMs can be characterised by a notion in order theory, called ‘Galois connection’.   

The deterministic model of indirect measurements is generalised to a probabilistic model by 

considering the effects of measurement uncertainty and intrinsic uncertainty. The propagation 

of uncertainty from the observed data to the values of measurands is investigated using a 

method of covariance matrices and a Bayesian method. The methods of estimating empirical 

relations with probability assigned using the solutions of IPM are discussed in two different 

approaches: the coverage interval approach and the random variable approach.  

For estimating empirical relations and determining the conformity of measurement results in 

indirect measurements, a strategy of estimating the empirical relations with high resolution is 

developed which significantly reduced the effect of measurement uncertainty; a method of 

estimating specification uncertainty is proposed for evaluating the intrinsic uncertainties of 

measurands; the impact of model resolution on the specifications of the indirectly measured 

quantities is discussed via a contradiction in the specifications of surface profiles.  
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Chapter 1  

Introduction 

1.1 Background 

Inverse problems are problems of inferring the information of the causes from the 

observations of some effects (Sabatier 2009, Turchin et al 1971). Inverse problems are 

ubiquitous in science, from geophysics (Zhdanov 2002) to imaging (Bertero and Boccacci 

2010) and many other disciplines (remote sensing, nondestructive testing, weather prediction, 

etc.). Many mathematical techniques and theories have been developed for solving inverse 

problems in different disciplines. 

Metrology is the science of measurement and its application, which includes all theoretic and 

practical aspects of measurement (JCGM 200 2008). It is a common phenomenon that inverse 

problems arise in different types of measurements. Many techniques of solving inverse 

problems have been applied in metrology, such as the contact surface measurement (Example 

3.1), white light interferometry (Malacara 2007) and tomography (Kak and Slaney 1988). 

However, it appears that the essential connection between inverse problems and measurement 

has not been deeply studied before, and the inverse problems which involved in measurement 

have not been studied and characterised from the perspective of measurement theory. 

Mroczka & Szczuczyński (2009) pointed out the importance of inverse problems formulated 

in terms of first-kind Fredholm integral equation in indirect measurements. However, they 

focused on reviewing the existing methods of solving inverse problems without 

characterising the special properties of this type of inverse problem. Rossi (Rossi 2006) 

proposed a framework of measurement that allows (indirect) measurement to be considered 

as a system of mappings. However, in this framework, the characteristic function of a 

measurement process (or measuring system) is assumed to be invertible, which in practice is 

not always true, thus inverse problems or ill-posed problems in the framework of 

measurement were not considered. 

In physics, inverse problems are often regarded as parameter estimation problems (Aster et 

al. 2005), where the parameters are some physical quantities related to a physical system (e.g. 

the location and origin time of an earthquake). In the perspective of metrology, the solutions 
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of model parameters are measurements of quantities (measurands), which are measured 

indirectly via some other quantities (proxy quantities). Thus, these inverse problems are 

associated with indirect measurements. There is an essential connect between indirect 

measurements and inverse problems.  

In this thesis, a general type of inverse problem involved in indirect measurements is defined 

and named as the inverse problem of measurement (IPM). The concept of the IPM provides a 

novel prospect for both inverse problems and indirect measurements in the sense that the 

inference process of indirect measurement is an inverse problem, and the solution of the IPM 

is or contains the value of the measurand. It also provides new objective criteria on the way 

of solving the associated inverse problem.  

The structural properties of the IPMs provide a deep understanding of the IPMs and enable 

the derivation of a typical type of the IPM that possesses the structure properties of Galois 

connections. Measurement theory (Michell 2007) and category theory (Mac Lane 1971) are 

used to investigate the structural properties of the IPMs.  

Furthermore, understanding the structure of the IPMs allows (i) the development of stable 

measurement procedures, particularly reconstruction methods in indirect measurement, such 

as those that occur in computed tomography (CT) scanner and coherence scanning 

interferometer (CSI) areal texture instruments, (ii) traceability for computational metrology, 

particularly for computationally intense metrology and the development of the test 

procedures for reference metrology algorithms and reference software datasets (Soft-gauges).  

1.2 Objectives and approaches 

The main aim of this thesis is to define a general type of inverse problem in metrology and to 

determine its basic structural properties. It can be elaborated by the following objectives:  

1. To understand the connection between metrology and inverse problem by undertaking a 

literature review of measurement theory and inverse problems. 

2. To determine the common structural properties of different types of inverse problem by 

undertaking a literature review on the structure of inverse problems. Category theory will 

be used to investigate and describe the structural properties.  

3. To develop a deterministic model of indirect measurements as a system of mappings 
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based on the representational measurement theory, thereby defining a general type of 

inverse problem involved in indirect measurements (IPM).  

4. To investigate and determine the desired properties of solving the IPMs according to the 

three essential issues (existence, uniqueness and stability) of ill-posed problems 

(Hadamard 1902) and the criteria of measured values.  

5. To investigate the structural properties of the IPM based on the derived desired 

properties, and find out the connection between the structure of IPM and the structural 

properties of the associated Galois connection. 

6. To develop a probabilistic model of indirect measurement, which is compatible with 

uncertainty, based on the deterministic model.  

7. To understand the propagation of uncertainty from the measured data to the  res, and 

determine the methods of estimating empirical relations when the measurement 

uncertainty is contained in the measured data. 

8. To find out the possible applications of the structural properties of inverse problems in 

metrology using case studies. 

The author does not intend to cover all the structural properties of the IPMs. Only the basic 

structural properties that can be used to characterise the IPMs are discussed in this thesis.  

1.3 Structure of the thesis 

This thesis is divided into two parts: the first part from Chapter 2 to Chapter 4 is the 

theoretical basis for the model of indirect measurements and the structure of the IPM, and the 

second part from Chapter 5 to Chapter 7 concerns practical applications of the developed 

theories to metrology.  

In Chapter 2, a literature review on the basic concepts of this study, including inverse 

problems, mathematical structure, measurement theory and category theory, is conducted. In 

addition, the methodologies of previous studies on the structure of inverse problems are 

reviewed. In Chapter 3, a deterministic model of indirect measurements is developed and the 

inverse problem involved in this model is characterised by its basic structural properties. In 

Chapter 4, measurement uncertainty is added to the deterministic model, and the metrology 

of estimating empirical relations in the IPMs is developed. A novel way of estimating 
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empirical relations is proposed in Chapter 5. A method of estimating the specification 

uncertainty is proposed in Chapter 6. A contradiction in the specification of surface profile is 

discussed from the perspective of the IPM in Chapter 7. Chapter 8 includes a conclusion of 

the important and novel work contained within this thesis, together with recommendations for 

future work. 

The logical structure of this thesis can be described by the following graph, in which the 

round icons are the objectives of the research, the rectangular icons are the novel 

contributions, and the icons in the other shape are the applied background knowleges. 

The Inverse 

problem of 

measurement 

(IPM)

Representational 

Theory of 

measurement

How to define the 

stability of the IPM?

Topological 

Stability of the IPM

Stability of 

inverse problem

The framework of 

indirect measurement

(deterministic model)

Mathematical 

model of 

inverse problem

The connection 

between inverse 

problem and indirect 

measurement?

The  structural 

properties of the 

IPMs?

Some structural properties of the IPM

Desired properties 

of the IPM (P1-P5)

Deterministic 

assumption

Adjoint functors 

between the 

model and data 

spaces

Category Theory

Applications of the structural 

properties of the IPM?

Probabilistic 

model of indirect 

measurement

The effects of uncertainty 

of solving the IPMs?

A Strategy of 

evaluating 

empirical relations

ERSs of 

stochastic 

measurands

Estimation of empirical 

relation with 

probability assigned

Propagation of 

uncertainty in indirect 

measurement?

An ANOVA Method 

of Evaluating 

Specification 

Uncertainty

A Desired 

Property of 

Specifications

Properties of 

ill-posed 

problems

 

Figure 1.1 The logical structure of this thesis1 
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Chapter 2  

Literature Review 

2.1 Introduction 

To investigate the structure of inverse problems in metrology, the following theories and 

concepts are essentially important. Representational measurement provides a good theoretical 

basis for investigating measurement in terms of mathematical structures. The concept of 

indirect measurement reveals the connection between measurement and inverse problem. The 

mathematical model and basic concepts of inverse problems are needed to identify and model 

inverse problems in metrology. Category theory is a useful tool for proving theorems about 

mathematical structures, which provides an abstract way of investigating and describing 

mathematical structure in terms of a system of objects and their mappings.  

This review starts with the development of measurement theory, which gives a general 

understanding of measurement theory. Based on the representational theory of measurement, 

measurement is taken as a structure-preserving mapping between the empirical relational 

system (ERS) of the measurand and the numerical relational system (NRS) of the measurand 

values. The measurability of an attribute is discussed from the mathematical and practical 

points of view. With the assumption of the measurability, a definition of measurement is 

given with the concepts of quantity and quantity values. The concept of indirect measurement 

is introduced. The definition and the mathematical model of inverse problems are introduced 

and some examples of inverse problems in metrology are given. The general concept of 

mathematical structure is reviewed, and category theory is briefly introduced. The 

metrologies and results of the previous studies on the structure of inverse problems, including 

generalised inverse and functional analysis, are reviewed, and the gaps in this research area 

are discussed in the summary. 

2.2 Measurement theory 

2.2.1 Development of measurement theory 

Measurement theory is a branch of applied mathematics on the theoretical aspects of 

measurement, which answers the following two fundamental questions. 
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1) What kinds of attributes can be measured?  

2) Are there different types of measurements? 

There is more than one theory of measurement, each of which gives a different definition of 

measurement. Generally speaking, measurement associates numbers to some attribute of a 

class of phenomena, bodies, or substances (collectively refer to as objects) in such a way to 

describe the attribute. This kind of activity started much earlier than the development of 

measurement theory, probably in terms of counting of units, such as days, numbers of 

animals, which appeared since the invention of number. The earliest figures representing 

numbers are in the forms of slashes and dots on cave walls, grooves on sticks, which 

appeared in the early Stone Age. The line of dots in the cave painting (Figure 2.1), which was 

found in a 17,300-year-old cave at Lascaux, France, is probably used for counting the number 

of the megaloceros.  

 

Figure 2.1 Megaloceros with a line of dots (Wikipedia contributors 2014)2 

The measurements of length and weight appeared from the beginning of the Bronze Age. One 

of the earliest known uniform systems of such measurements was created by the Indus Valley 

civilisation (ca. 2600 BC), which has an astoundingly high accuracy (Baber 1996).  The 

smallest unit of length was approximately 1.704mm, and of weight was approximately 28 

grams.  

With the development of natural science, many physical attributes, such as force, velocity and 

energy, are investigated and defined in terms of quantities, in the sense that their magnitudes 

can be measured by numbers. After a very long time, Fourier (Fourier 1822) is the first one to 

http://en.wikipedia.org/wiki/Megaloceros
http://en.wikipedia.org/wiki/Megaloceros
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consider the first fundamental question of measurement theory in physics.  In his famous 

work on the theory of heat, he state that in order to measure physical quantities and express 

them numerically, five different units of measurement are needed, namely, those of length, 

time, mass, temperature, and heat. This idea is developed into a subject, named dimensional 

analysis. Maxwell, in his treatise on electromagnetism, also emphasised the fundamental 

character of the three fundamental units of length, mass, and time. He then went on to derive 

the units of some other quantities in terms of products of powers of the fundamental units. In 

theory, if each physical quantity can be defined in terms of a set of fundamental quantities 

(such as length, mass and time), by assuming the fundamental quantities can be measured and 

represented by numbers, it’s clear that other physical quantities can also be measured in terms 

of numbers. While the question of why the fundamental quantities can be measured in terms 

of numbers was not discussed. 

It is commonly accepted that Helmholtz’s work is the beginning of measurement theory 

(Diez 1997). Helmholtz (Von Helmholtz 1977) pointed out the question ‘we shall have to 

investigate in which circumstances we can express magnitudes through… numbers’.  He calls 

‘magnitude’ the ‘attributes of objects which when compared with similar ones allow the 

distinction greater, alike or smaller’. To answer the question, he defines a ‘special 

relationship … between attributes of two objects’ called alikeness, which is now called 

equivalence relation. He then defines ‘a method of connecting the magnitudes’, which is a 

physical concatenation operation similar to addition. With the concatenation operation, he 

refers to an order relation between magnitudes: ‘the whole is greater than the parts of which it 

is composed’. The magnitudes discussed by Helmholtz are actually the attributes with a 

concatenation operation, called extensive attributes.  

Hölder (Hölder 1901) was the first to formally study the conditions of numerically measuring 

attributes of objects. He treats the objects manifesting a common attribute as a domain of 

objects with an ordering relation and a concatenation operation, which is now called an 

extensive structure. He then gives seven axioms as the conditions that the extensive structure 

must the same mathematical structure as the positive real numbers together with the 

numerical relation < and operation +. This result is known as Hölder’s theorem, which is 

purely mathematical. This importance of Hölder’s work is the idea of defining an empirical 

structure of the measured attribute with axiomatics and searching for conditions for a real 
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morphism (not necessarily an isomorphism, in general it will be sufficient to be a structure-

preserving mapping) from the empirical structure. 

N. R. Campbell (Campbell 1921, 1957)  characterises measurement as ‘the process of 

assigning numbers to represent qualities’, and clearly state the question that concerns us: 

‘Why can and do we measure some attributes of bodies while we do not measure others?’ He 

distinguishes measurement into two types: fundamental and derived measurement, 

corresponding to the fundamental and derived quantities respectively. Derived quantities, 

such as density, are measured in terms of other fundamental measurements. While in 

fundamental measurement, numbers are assigned to the objects directly according to the 

qualitative data.  There is always one or more fundamental measurement involve in the 

measurement of an attribute. To prove the attribute is measurable, it’s necessary to prove the 

fundamental quantities involved are measurable. This starts with qualitative statements (in 

terms of axioms) about the empirical structures (e.g. extensive structure) of the fundamental 

quantities, and then proves the existence of numerical representations. The detail of empirical 

structure and its numerical representation will be introduced further in the next section. 

Scales Admissible transformations Examples 

Absolute  x x  Counting, probability 

Ratio x ax   ( a  ) Length in meter or inch 

Interval  x ax c    ( ,a c  ) 
Temperature in Celsius or 

Fahrenheit 

Log-interval bx cx    ( ,b c  ) Density (mass/volume) 

Ordinal ( )x f x  

(f is any monotonic increasing function)  
Moh's scale of hardness 

Nominal  ( )x f x  

(f is any one-to-one function) 

Numbering of football 

players 

Table 2.1 Some common measurement scales 1 

Campbell believed that only extensive quantities (such as length, mass) are measurable. 

While, for the attributes studied in psychology and social science (such as loudness), no 

concatenation operation can be defined, thus it seems to him these attributes are not 

measurable. Stevens (Stevens 1946) replied this opinion by showing that extensive 
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measurement is not the only type of measurement, there are different kinds of scales and 

different types of measurements. He points out that the key features of measurement are not 

only the empirical structure and its numerical representation, but also the degree of 

uniqueness of the representations which is reflected in the group of admissible 

transformations between the representations. According to the degree of uniqueness, he 

classified measurement into four different scales in his paper in 1946 (Stevens 1946), namely 

ratio scale, interval scale, ordinal scale and nominal scale. Some other types of scales were 

found later by Steven and others (Narens and Luce 1986), of which the most commonly 

discussed scales of measurement are listed in Table 2.1.  

The absolute scale has the highest uniqueness, of which the only admissible transformation is 

the identity function. The representation in the ratio scale is unique up to multiplying a 

positive real number, which means if a set of numbers are the (numerical) representations of 

the quantity, by multiplying these numbers with a real number, another set of equally 

meaningful representations can be obtained. The uniqueness of the interval and the log-

interval scales is of the same degree, which is weaker than the ratio scale. For the ordinal 

scale, objects are assigned with numbers such that the order of the numbers reflects the 

empirical order defined on the attribute. So a representation in the ordinal scale can be 

transformed to another by any order-preserving function. In the nominal scale, the only rule 

of assigning number is that a same number should be assigned to two objects if the objects 

are equivalent in the attribute. So the uniqueness of the nominal scale is the weakest. Since no 

ordering representation is involved in the nominal scale, it is not generally treated as 

measurement (Luce and Suppes 2002). It is clear that no concatenation operation is need in 

an empirical structure for it to be represented in an ordinal or nominal scale. Thus a 

measurable empirical structure does not need to be extensive. 

Steven’s result is a big breakthrough in measurement theory, not only because it widen the 

range of measurable attributes, it also allows us to determine whether a (statistical) statement 

is meaningful or not. For example, the statement that today’s temperature is twice warmer 

than yesterday because the temperature of today is 30
o C  and of yesterday is 15

o C  is not 

correct. The ratio between temperature in 
o C  is meaningless, because temperature in 

o C  is 

in interval scale, the 0
o C  does not imply that the object has no temperature. In the interval 

scale, a magnitude of zero can be arbitrarily set; only the ratio of two intervals or differences 
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is fixed. So instead, the statement that the range of the temperature of today is twice of the 

range of yesterday is meaningful.  

It’s also been demonstrated by Steven that different scales have different collections of 

appropriate statistics. Only appropriate statistics can be used for each measurement scale. The 

criterion of an appropriate statistics of a scale is that the statistic should be invariant under the 

admissible transformations of the scale (Stevens 1946). For instance, it is meaningless to 

compare the means (averages) of two groups of data obtained from ordinal measurements, 

because the conclusion can change when the numerical data is transformed by a monotonic 

increasing function. In contrast, the medians are invariant under monotonic transformations. 

In general, the weaker the degree of uniqueness is, the smaller the collection of applicable 

statistics. Thus nearly all statistics are appropriate to the measurement of ratio scale, but only 

very limited statistics are applicable to nominal scale (such as mode). To be able to make sure 

the statistical inference of some data reflects something about reality, it’s necessary to be 

clear about the scale of the measurement that generates the data.  

The work of Helmholtz, Hölder and Campbell focuses on the conditions that the empirical 

structure of an attribute must satisfy in order to be represented numerically. The work of 

Steven focuses on the scale types and transformations between the possible representations 

within each scale type. These two lines of research need to be integrated in an appropriate 

way. The fundamental work in Suppes’ paper (Suppes 1951) integrates these two lines for the 

first time, which studies (1) the conditions (weaker than Hölder’s) for an empirical domain to 

have a homomorphism (a structure-preserving mapping which preserves the empirical 

structure) into the set of real numbers, and (2) the relation between all the possible 

homomorphisms. The first part of his work, which concerns the existence of a presentation, is 

referred to as the representation theorem, and the second part, which concerns the degree of 

uniqueness of the representations, is referred to as the uniqueness theorem. In that paper, only 

extensive measurements are dealt with, but his theorems can be generalised to other types of 

empirical domains.  

After the integration of the two research lines, measurement theory became a mature theory 

and started to develop rapidly, especially during the 1950s and 1960s. The method of 

analysing extensive measurement was extended to other empirical structures. Some of the 

important extensions are listed as following.  
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 An axiomatisation of the expected utility theory constructed by Von Neumann and 

Morgenstern (Von Neumann and Morgenstern 1947) and developed by Savage  

(Savage 1972) is the first evidence of something different from extensive 

measurement. 

 Conjoint measurement (Luce and Tukey 1964) is the most wildly accepted non-

extensive measurement, of which the empirical structure is an order structure, in the 

form of  ⟨ ,A P ≾⟩, with an ordering relation affected by two independent factors.  

 Difference measurement (Suppes and Winet 1955) is different from extensive 

measurement in the sense that the ordering is not of elements, but of ‘intervals’ 

between elements. 

 Non-transitive indifference relation (Scott and Suppes 1958) is an extension of the 

equivalence relation (alikeness) in the extensive structure, which can be used to define 

the relation of measurement results with uncertainties (see Chapter 4). 

 Measurement of probability (Kraft et al 1959) is close to the extensive measurement, 

but the concatenation operation is the union of disjoint events, which is a partial 

operation (not defined between every events).  

 Weighted averaging representation is an alternative of the additive representation of 

extensive structure, which was first studied by Pfanzag (Pfanzag 1959).  

By 1960s, most of the foundation for the present-day measurement theory was complete, 

which is organised systematically in a series of works. The most important is the three 

volumes book, Foundation of Measurement (Krantz et al 1971, Suppes et al 1989, Luce et al 

1990).  

2.2.2 Representational theory of measurement 

The representational theory of measurement is the current paradigm of measurement which 

defines measurement as the assignment of numbers to attributes of objects in such a way as to 

describe them (Finkelstein 1982, p 6). In fact, this particular theory is often referred as the 

‘modern measurement theory’ or simply the ‘measurement theory’. 

For a set of objects A with a common attribute to be measured, if the attribute is comparable, 

one or more empirical relations would be defined between the objects. For example, by 

comparing the length between rods, ‘rod a is not longer than rod b’ is a binary relation, 

denoted as a ≾b; ‘rod a concatenates with (put end to end in a straight line) rod b is not 
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longer or shorter than rod c’ is a tertiary relation, denoted as ( )a b c . These relations can 

be precisely described by axioms. For instance, a reflexive and transitive binary relation R is 

a preorder. That means, for all 𝑎, 𝑏, 𝑐 ∊ 𝐴, aRa (reflexive), and aRb and bRc imply aRc 

(transitive). So by defining the empirical relations with axioms, the set of the objects together 

with the empirical relations, 1 2, ,..., pR R R , can be taken as a relational structure,  

A 1 2= , , ,..., pA R R R  , called an empirical relational system (ERS) (Roberts 1979). The 

elements in set A can also be considered as the manifestations of an attribute (Finkelstein and 

Leaning 1984, p 26), thus an ERS is determined by the corresponding attribute.  

Depending on the attribute to be measured, there are many types of ERSs with different 

mathematical structures. For instance, a common structure of physical quantities is the 

extensive structure and takes the form of ⟨A, ≾, ◦⟩, where A is a set of all the objects under 

consideration, ≾ is a weak order (also called total preorder) and ◦ is a monotonic 

concatenation operation (Krantz et al 1999). Sometimes, the attribute of the objects cannot be 

combined, e.g. Mohs hardness of minerals, the ERS is simply an ordered set, denoted as  

⟨M, ≾⟩. Some attributes need to be determined by two or more quantities, e.g. loudness is 

depended on intensity and frequency, and the ERS is in the form of ⟨ ,A P ≾⟩, called a 

‘conjoint structure’. Moreover, not all ERS are totally ordered: For example, let A, B be two 

surfaces in a 3-dimension space, an ordered relation ≾ can be defined for the height of the 

surfaces such that A≾B if and only if every point in B is not lower than A. Then if A intersects 

B, we have neither A≾B or B≾A. Without connectedness (either a≾b or b≾a), a weak order 

becomes a (partial) preorder, which is reflexive and transitive.  

Some other commonly used ordering relations in measurement theory and their defining 

axioms are given in Table 2.2 and 2.3 (Roberts 1979). In Table 2.3, simple order, weak order 

and partial order are respectively the reflective closures
1
 of strict simple order, strict weak 

order and strict partial order. It can be derived from Table 2.2 & 2.3 that the three types of 

ordering relations, simple order, weak order and partial order, all belong to preorder. Hence 

preorder is a very general type of ordering relation. A further instruction of order structure is 

given in Section 2.5.3.  

To describe the measured attribute, the numbers should be assigned to the objects 

corresponding to the empirical relations. For example, the hardness of a mineral can be 

                                                      
1 A reflective closure of a relation R on set A is the union of R with an equivalence relation on A. 
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measured by comparing it with other known minerals by scratching one with another. In 

Mohs’ scale, the hardness of topaz and diamond are 8 and 10 respectively. If it is observed 

that the mineral is harder than topaz and softer than diamond, 9 can be assigned to the 

mineral as its hardness. To measure the objects in an ERS, a set of numbers and their 

relations are needed, which form a numerical relational system (NRS). 

Properties of relation R  

on set A 
Axioms 

Reflexive aRa, all a A  

Symmetric aRb⇒ bRa, all ,a b A  

Asymmetric aRb⇒ not bRa, all ,a b A  

Antisymmetric aRb & bRa ⇒ a=b, all ,a b A  

Transitive aRb & bRc ⇒ aRc, all , ,a b c A  

Negatively transitive not aRb & not bRc ⇒ not aRc, all , ,a b c A  

Complete  For all a b A  , aRb or bRa 

Table 2.2 Some examples of properties and defining axioms of binary relations2  

Properties Preorder 
Simple 

order 

Strict 

simple 

order 

Weak 

order 

Strict 

weak 

order 

Partial 

order 

Strict 

partial 

order 

Reflexive √ √ 
 

√ 
 

√ 
 

Symmetric 
   

 
   

Asymmetric 
  

√  √ 
 

√ 

Antisymmetric 
 

√ 
 

 
 

√ 
 

Transitive √ √ √ √ 
 

√ √ 

Negatively transitive 
   

 √ 
  

Complete 
 

√ √ √ 
   

Table 2.3 Some examples of ordering relations and their properties3 

The answer of whether an attribute can be measured in terms of numbers depends on whether 

the ERS corresponding to the attribute can be represented or preserved by a NRS, in the sense 

that there exists one or more homomorphism from the ERS to a NRS. Via a homomorphism, 

an ERS, 1 2, , ... pA R R R   can be represented by a NRS, 1 2, , ... pX S S S  , where iR is a relation in 
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the ERS and iS  is the corresponding relation in the NRS. For example, the extensive structure 

⟨A, ≾, ◦⟩ can be represented by a NRS, , ,   , where 


 is the set of positive real 

numbers, ≤ is a simple order, and + is addition. Mapping ψ is a homomorphism from ⟨A, ≾, ◦⟩ 

to , ,    if and only if, for any elements 𝑎, 𝑏 ∈ 𝐴, 

a≾b ( ) ( )a b   , and ( ) ( ) ( )a b a b    , 

where ( ), ( )a b   (Krantz et al 1971). The homomorphism from an ERS to an NRS has 

certainty degree of uniqueness which is determined by the uniqueness of the numerical 

representations of the ERS (see Section 2.2.1). 

The elements in a NRS are commonly taken as the numerical representations of the objects in 

ERS. However they are not necessarily numbers, other mathematical objects, such as vectors, 

functions, and intervals, can also be used to represent the empirical structure (Roberts 1979, p 

254). For a homomorphism from an ERS to a NRS, the image of each object is a measurand 

value. So the elements of a NRS are the possible measurand values of the corresponding 

measurand. 

The basic aim of representational theory is to study the existence and uniqueness of the 

homomorphism from an ERS to a specified NRS (Narens and Luce 1986). Based on the 

representational theory, we can use an ERS to model the attribute to be measured, a NRS to 

model the measured values, and a homomorphism between the ERS and the NRS to describe 

the measurement process.  

2.2.3 Other theories of measurement 

Michell (Michell 1986, 2007) distinguished two theories of measurement  from the 

representational theory, namely the operational theory and the classical theory. The 

operational theory avoids assuming an underlying reality. Attributes and variables are the 

same, so there is no such thing as the ERS. It requires a precisely specified and consistent 

measurement procedure. A measurement is defined as any precisely specified operation that 

yields a number (Dingle 1950). In the classical theory, measurement only refers to attributes 

which are ordinal and additive, called quantitative attributes. Like the representational theory, 

an objective reality is also assumed, but unlike the representational theory, numbers are 

considered as ratios of quantities, which are discovered as relations between empirical 
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entities in measurement, thus are empirical. In the classical theory, measurement is thought of 

as the discovery of the numerical relationship between quantities (Michell 1986).  

Hand (Hand 1996, p 447) says ‘the importance of operational theory hinges on its place in 

justifying analytic practices that might be regarded as dubious under the representational 

theory’. It has had practical effect in disciplines such as psychology, and it has achieved a 

high level of sophistication through statistical models such as latent variable models and 

linear structural relational models. For the unobserved latent variables, the approach of 

defining these variables with observable (manifest) variables in an axiomatic system is more 

naturally described as operational (Hand 1996). However, operationalism has some severe 

philosophical disadvantages. Because numbers are not assigned to an underlying reality, 

questions like ‘has intelligence increased, or just the test scores’ are not able to be answered. 

Niederée (Niederée 1994) says the operational approach, which removes ambiguity by 

defining a phenomenon in terms of a specified measurement procedure, is ‘suitable for 

Bureaucrats…who just want to establish plausible formal decision rules’.  Robert Klee (Klee 

1997, p 53) says ‘operationalism did not last long in the physical science…, it survives to this 

day with considerable influence in the social and behavioural sciences’.  

According to Michell, the traces of the classical theory of measurement may be found in the 

works of Aristotle and Euclid, and the basic concepts can be found in the works of Fechner  

(Fechner 1966, p 38) and Titchener (Titchener 1905, p xix). Although it is called ‘classical’, 

it is relatively new as a theory of measurement. Hand (Hand 1996, p 457) says the Rasch 

model (a psychometric model for analysing categorical data) might be regarded as fitting 

naturally into the framework of the classical theory. But he also says that the Rasch model, as 

a latent variable model, can also be interpreted with the operational theory. Moreover, Sarle 

(Sarle 1997, p 12) says ‘a Rasch model is a form of representational measurement involving 

probabilistic relationship— a natural extension of Steven’s idea of measurement’. Thus the 

distinctions among the three theories are not always clear. It’s difficult to see that some 

psychological attribute, such as hunger, has a ratio or interval scale as the classical theory 

assumed. Michell’s book (Michell 2014) is devoted to promoting the classical theory, but it 

seems that so far this theory has not been wildly accepted and applied yet.  

Due to the absence of a commonly accepted philosophical assumption, the arguments of 

measurement theory are not easy to reach a consensus. Klee (Klee 1997) points out that a 
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similar situation exists with regards to the arguments between realist and anti-realist 

philosophers of science.  

In a pragmatic point of view, it’s acceptable that there is more than one measurement theory, 

just as there is more than one interpretation of probability, such as frequentist probability and 

Bayesian probability. For defining an attribute, both the theoretical and operational 

definitions are useful. For example, the theoretical definition of weight is a measurement of 

gravitational force acting on an object, and an operational definition is a result of 

measurement of an object on a Newton spring scale. The formal is helpful for understanding 

the concept, which attempts to construct a theory about the nature of the attribute (Cline n.d.), 

and the latter is often simpler, which is useful for standardising the measurement unit of the 

attribute. Although evaluating the measurability of an attribute base on the understanding of 

its nature is a more acceptable and reliable approach, for some latent (or construct) variables, 

such as quality-of-life, quantity indices in economics, it is more natural to use the operational 

approach.  

Besides these three theories of measurement (representational theory, operational theory and 

classical theory), there are some other different schools of thoughts. Kyburg (Kyburg 1983), 

for example, suggests that ‘the value (or interval of values) assigned to an object or event by 

measurement is a magnitude (or interval of magnitudes), rather than a number’. He also drew 

attention to the central role of error in measurement. And his study on indirect measurement, 

which is discussed in Section 2.3, is enlightening for this thesis. Adams (Adams 1966) takes 

measurement as indictors, of the underlying phenomena, which can be good or bad 

indicators. To him, laws of measurement connect the phenomenon under investigation with 

the results of the measurement, but these laws need not be exactly formulated and satisfied 

for measurement to be useful. IQ, for example, is a useful measurement, but stating the rules 

of how it related to intelligence is probably impossible.  

For the research subject of this thesis, to study the structure properties of inverse problems of 

measurement, it’s necessary to consider measurement as a mapping and understand the 

empirical structure of the measurement. So the representational theory is suitable for this 

research subject.  



28 

 

2.2.4 Measurability 

In representational measurement theory, the measurement of an attribute is possible only if 

there exists a homomorphism from the ERS to a specified NRS (Narens and Luce 1986). The 

measurability of an attribute can be defined mathematically as following.  

Definition 2.1: An attribute is mathematically measurable only if the ERS can be defined 

with axioms and the structure of the ERS can be represented by the structure of a NRS. 

A basic aim of the representational theory is to study this mathematical measurability. If an 

attribute is mathematically measureable, it can be taken as a quantity, and thus a measurand 

(the quantity intended to be measured). Usually, this measurability is taken for granted for the 

quantities of interest in physics, but in other subject areas, such as in the behavioural and 

social sciences, the attributes of interest maybe not measurable (Krantz et al 1999). That’s 

why the research and application of representational theory are mainly focus in the fields of 

economics and experimental psychology. In this thesis, this mathematical measurability, as a 

precondition of conducting a measurement, is assumed for the attributes under discussion.  

By assuming this measurability, the definition of measurement gives in measurement theory 

can be simplified to with the concepts of quantity and quantity values. As defined in JCGM 

200 (2008), measurement is the process of experimentally obtaining one or more quantity 

values that can reasonably be attributed to a quantity. Here a quantity is an attribute of an 

object, where the attribute is (mathematically) measurable. Hence, measurement establishes a 

correspondence between quantity and quantity values.  

In a more practical point of view, measurability of an attribute is not only determined by the 

existence of a homomorphism from the ERS to a NRS, but also determined by whether the 

empirical relations can be observed via an empirical operation or not. If not, numbers cannot 

be assigned accordingly, and thus the measurand values cannot be obtained. For examples, 

the empirical relations of the length of rods can be observed by placing the rods parallel with 

each other. While the empirical relations of the electric charge of some objects can only be 

observed indirectly via the effects of the electrostatic force, such as the angle of torsion of the 

torsion spring in the Coulomb’s torsion balance. Thus to measure electric charge, the 

relationship between the angle of torsion and the electric charge must be known. The 

quantities, of which the empirical relations can be observed, are named as observable 

quantities. From this point of view, a quantity is measurable if either it is an observable 
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quantity, or its quantity values can be inferred via the measured data of some related 

observable quantities. For the latter situation, the quantity is measured indirectly. 

2.3 Indirect measurement 

A measurement can be classified as a direct measurement or an indirect measurement 

according to whether the measurand is measured directly via observation or indirectly via 

other quantities. A definition of indirect measurement is given by Ellis  as following. 

Definition 2.2: When one or more other quantities are involved in the measurement of a 

given quantity, the measurement is referred to as an indirect measurement. (Ellis 1968) 

The values of the indirectly measured quantity are inferred from the measured data of some 

observable quantities, thus an inference process is involved in every indirect measurement.  

The reason of measuring a quantity indirectly is commonly understood as that measurands, 

such as density, temperature, cannot be measured directly in the sense that the empirical 

relations cannot be observed. However, it is often ambiguous to claim that a certain quantity 

can or cannot be measured directly (Kyburg 1983). As claimed by Campbell (Campbell 

1921), many quantities can be measured both directly and indirectly, and it is often more 

reliable or convenient to measure it indirectly. Take the measurement of speed as an example, 

the speed of moving objects can be compared by direct observation, and thus numbers can be 

assigned to the objects to rank their speed. This is a direct measurement which assigns 

numbers to the measured objects in an ordinal scale. But, as we known, speed is usually 

measured indirectly in terms of the ratio of distance and time. This is because the second way 

is much more reliable and useful than the first. And more importantly, the second way 

generates a ratio scale which conforms to the ordinal scale of the first way, in the sense that 

there is a monotonic relation between the indirect scale and the direct scale of the measurand. 

This monotonic relation is a basic requirement of indirect measurement (Kyburg 1983).   

The inference process of indirect measurement can be straight forward or difficult depends on 

the functional relation between the measurand and the observable quantities involved. A 

common form of the functional relation can be written as  

1 2( , , , )nx g d d d ,      (2.1) 
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where x is the measurand, and 𝑑𝑖  are the observable quantities. For instance, density,

( , ) /g m v m v   , where m is mass, v is volume. This form is wildly used  for evaluating 

measurement uncertainties (JCGM 100 2008), since measurands of precision measurements 

are normally related with some influence quantity, such as temperature, pressure. More 

generally, equation (2.1) can be written as  

( )x G d ,     (2.2) 

where x and d can be scalar, vector or function respectively, and G is a mapping, such as a 

linear operator or a nonlinear system of equations. When the mapping G is known, with the 

measured values of 𝑑𝑖, the inference of the measurand is straight forward.  While, in many 

cases, the mapping G is unknown. Conversely, the known functional relation is in the form of  

( )d F x ,      (2.3) 

where F is a mapping from the space of the measurand to the space of the observable 

quantity(s). When F is known, to infer the values of x according to the measured data of d is a 

typical inverse problem, which can be difficult due to the ill-posedness of inverse problems 

(Hansen 1998). Equation (2.2) and (2.3) are the mathematical models of the two types of 

indirect measurements. 

Indirect measurement is important in our research because it has close connection with 

inverse problems. This connection is further discussed in Chapter 3.  

2.4 Inverse problems  

2.4.1 The mathematical model of inverse problems 

The concept of inverse problem is defined opposite to the forward problem. It is commonly 

considered that two problems inverse to each other if the formulation of each of them 

requires full or partial solution of the other (Keller 1976). From the mathematical point of 

view, there is no certain criterion to determine which one of the two problems is the direct or 

inverse problem (Kirsch 1996). However, for physicists, two problems are not on the same 

level, the direct problem is considered to be more fundamental than the other, thus it is 

investigated earlier and, perhaps, in more detail (Bertero and Boccacci 2010).  

Moreover, from the perspective of physics, a direct problem is the problem of finding the 

consequences of the given causes, thus it follows a cause-and-effect orientation (Turchin et al 
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1971). Conversely, an inverse problem is the problem of finding the causes of some given 

consequences. The causes can be taken as a ‘physical state’ and modelled by parameters, 

such as physical quantities (Sabatier 2009). For finding the causes, the consequences are 

taken as phenomena and described by measured (quantity) values.  

Mathematically, it is convenient to treat the parameters of the ‘physical state’ as an element 

of a space M (e.g. a metric space), named as a model; and similarly, treat the measured data 

of the ‘phenomenon’ as an element of another space D, named as a data set, so that the cause-

and-effect relation from the model to the data can be represented by a mapping F from M to 

D. M and D are named as model space and data space respectively. Mapping F is named as 

the forward mapping of the inverse problem. 

Thus, when a model m and the mapping F is known, the observations can be predicted by   

( )d F m .     (2.4) 

Equation (2.4) is called the mathematical model of the inverse problem (Aster et al 2005). 

Depends on the type of forward mapping, there are various methods to solve equation (2.4). 

For instance, if F is invertible, (2.4) can be solved by its inverse 𝐹−1; if F is an arbitrary 

matrix, the Moore-Penrose generalised inverse 
†F  can be used to find a generalised solution 

(Moore 1920, Penrose 1955); if F is an Fredholm integral equation of the first kind, the 

inverse problem can be solved by deconvolution with convolution theorem (Bracewell 2000). 

Each of these methods can be described by the following equation, 

ˆ ( )m G d ,     (2.5) 

where G is a mapping from the data d to the estimated model �̂�. As described by equation 

(2.5), inverse problems can be solved by using a proper mapping G, called a backward 

mapping. 

For inverse problems in metrology, the definition of inverse problems given by Sabatier 

(Sabatier 2009) is adopted in this thesis as the problems of inferring information from 

observations, which is not only about solving mathematical problems but also using 

mathematics to solve the problems in natural science. Combining with the cause-and-effect 

definition, inverse problems can be defined as following. 

Definition 2.3 Inverse problems are the problems of inferring the information of the causes 

of some effects from the observations of the effects.  
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As shown in the last section, the mathematical model of indirect measurements can be similar 

to the mathematical model of inverse problem (see equation (2.3) and (2.4)). For an indirect 

measurement in the form of (2.3), the inference process is an inverse problem. Moreover, if 

the model m in (2.4) is or contains the measurand x, by solving (2.4), the values of the 

measurand can be derived. 

2.4.2 Examples of inverse problems  

Example 2.1 Seismic tomography (Iyer 1993) 

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

t1 t2 t3

t4

t5

t6

t7

t8

 

Figure 2.2 The measured area and the wave paths of a simple seismic tomography example3 

In seismic tomography, the seismic structure of a location in Earth’s sub-surface is 

usually parameterised by the slowness (the reciprocal of velocity) of the seismic waves 

at that location.  The seismic structure of a specified area, such as the square in figure 

2.2, can be estimated according to the variation of the slowness in the area. Several 

sources and receivers of seismic waves are set to measure the travel-time of the seismic 

waves through the designed wave paths, which are assumed to be straight lines, in the 

area. The measured area is divided into uniform blocks (see Figure 2.2) to simplify and 

discretise the mathematical model. The slowness of the nine blocks are indexed in a 

row-by-row way. By using an 8-by-9 matrix F, of which the elements are the lengths of 

the wave paths within corresponding blocks, the functional relation of slowness 𝑠𝑖,𝑗  and 

time 𝑡𝑖 can be modelled in the form of 𝐅𝐬 = 𝐭, 
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.  (2.6) 

To estimate the vector of slowness from the above equation is a typical linear inverse 

problem, which can be solved using the Moore-Penrose generalised inverse of the 

matrix F (see Section 2.7.1). Regularisation (e.g zeroth-order Tikhonov regularisation) 

should be applied if the generalised inverse of F is ill-conditioned.  

Example 2.2 Geological prospecting (Kirsch 1996, p 1) 

The distribution of the mass density of a buried field, ( )m x at a fixed depth h can be 

estimated according to the vertical gravity anomaly, ( )g s  measured at the surface 

directly above the field (refer to Figure 2.3). The mathematical model of the inverse 

problem involved can be expressed by a Fredholm integral equation of first kind (IFK):  

3
22

( ) ( )
(( ) )

h
g s K m x dx

x s h






 
 ,     (2.7) 

where K is the gravitational constant, both ( )m x  and g(s) are continuous functions of x-

coordinate (Aster et al 2013). 

 

Figure 2.3 The vertical gravity anomaly is measured with a distance h from the buried field4 

Equation (2.7) can be written in the form of convolution:   
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( ) ( ) ( )g s f x s m x dx



  .     (2.8) 

This inverse problem can be solved by deconvolution with the convolution theorem 

(Bracewell 2000) if the function g(s) can be obtained according to the measured data. A 

discrete method of solving this is to discretise the linear continuous equation (2.8) by 

the quadrature method (Aster et al 2005, p 41) into  

Fm = g.       (2.9) 

The output and input functions are discretised to two sets of discrete points in terms of 

vectors m and g, and the forward mapping is transformed from an integral operator to 

the matrix F. Thereby, (2.9) can be solved similarly as Example 2.1.  

Example 2.3 Earthquake location problem (Aster et al 2013, p 9) 

The estimation of the (3-dimensional) location c and origin time 𝑡0 of an earthquake 

according to the data of arrival times t collected by the n stations of seismographs 

around the centre of the earthquake is a classic nonlinear inverse problem. The 

mathematical model of this inverse problem can be written as a system of n nonlinear 

equations, in the form of 

 𝐅(𝐦) = 𝐭,      (2.10) 

where m is the hypocentre of earthquake, 

0t

 
  
 

c
m .     (2.11) 

Assume that the seismic waves travel from the hypocentre to the stations in straight 

lines with a given constant velocity, v. The arrival time observed at station i can be 

described as  

2
0 ( )

i

i it t F
v


  

s c
m     (2.12) 

where 𝐬𝑖 is the location vector of station i, 𝑖 ∈ {1, … , 𝑛}.  

By using the iterative methods, such as Newton method and Gauss-Newton method 

(Thurber 1985), an approximate solution of m can be obtained from equation (2.12), 

which consists of two quantities.  
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Many other examples of inverse problems in metrology can be found in (Aster et al 2005), 

(Tarantola 2005) and (Kirsch 1996). A review of inverse problems in indirect measurements 

in terms of IFK equations is given in (Mroczka and Szczuczyński 2009). 

2.5 Mathematical structure  

Before investigating the structure of inverse problem, it is necessary to understand what 

mathematical structure is. That is a philosophical problem which has been discussed for a 

very long time. 

2.5.1 What is mathematical structure? 

A mathematical structure is essentially a list of mathematical operations and/or relations with 

their required properties, normally given as axioms, shared by a number of, possibly quite 

different, mathematical objects (Mac Lane 1996).  

Intuitively, the word ‘structure’ refers to the way of how the components of an entirety, such 

as a building, a society, link together and form the entirety. In mathematics, the ‘entirety’ can 

be considered as a mathematical object, such as an ordered set, natural numbers under 

addition. The ‘components’ are the elements of the mathematical object, such as subsets, 

numbers, or the object itself. Some specified ‘aspects’ of the object links the ‘components’ 

together to form the ‘entirety’ in a certain way. The ‘linking method’ is normally given as a 

list of axioms. And the ‘aspects’ can be mathematical operations, relations, or other 

composite features, which are named as the links. Structures are determined by the links and 

the linking method only.  

Nicholas Bourbaki classified mathematical structures into three great types (Bourbaki 2004): 

algebraic structures (e.g. group, ring, field), order structures (e.g. partial order, linear order, 

and well order), and topological structures (e.g. metric space, Alexandrov space). To take a 

more explicit look on mathematical structures, some examples of the three types are 

demonstrated in the following three sections. 

2.5.2 Algebraic structure 

Group is a typical structure of algebraic structure. A group ⟨G, *⟩ is a set G, closed under a 

binary operation *, such that the following axioms (Fraleigh 2003) are satisfied: 

1. Associative: for all a, b, c G , we have ( ) ( )a b c a b c     ; 
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2. Identity: there is an element e in G such that for all ,x G e x x e x     ; 

3. Inverse: For each a G , there is an element a’ in G such that ' 'a a a a e    . 

Here the binary operation * is the link, and the linking method is given by the three axioms 

above.  

For example, integers under addition form a group ⟨ℤ, +⟩; four complex numbers {1, i, -1, -i} 

under multiplication form a group; and the eight symmetries of a square (the operations of 

rotation or reflection) also form a group when the group operation is taken to be the 

composition (e.g. a rotation followed by a reflection). 

A binary operation * on a set G is a function mapping G x G into G. For each (a, b) G G  , 

a*b denotes the element ( , )a b  of G. So all the mappings in a group between the elements 

can be taken as a function :G G G   .  

Just like a set can be mapped into another set, a group can also be mapped into other group, 

such that the group structure is preserved by the mapping. A mapping that preserves the 

group structure is called a group homomorphism (Fraleigh 2003). A group homomorphism 

𝑓: 𝐺 → 𝐻 maps each element group G to an element 𝑓(𝑥) group H such that equation (2.13) 

holds for all ,x y G .  

( ) ( ) ( )f x y f x f y       (2.13) 

Structures Links2 Associative Identity Inverses Commutative Distributivity 

Magma ◦ No No No No N.A. 

Semigroup ◦ Yes No No No N.A. 

Monoid ◦ Yes Yes No No N.A. 

Group ◦ Yes Yes Yes No N.A. 

Abelian group ◦ Yes Yes Yes Yes N.A. 

Ring +, ∙ Yes + 3 + + Yes 

Field +, ∙ Yes + Yes Yes Yes 

Table 2.4 Some examples of algebraic structures4 

                                                      
2 All the links in the table are binary operations. 

3 It means for + only. 
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By adding or removing the axioms, some other abstract structures can be obtained as listed in 

Table 2.4. For instances, if the inverse axiom of a group does not hold, the group becomes a 

monoid. A commutative group is an Abelian group. Thus the group ⟨ℤ, +⟩ is an Abelian 

group, since + is commutative. But ⟨N, +⟩ is not a group, it is a monoid, since the inverse 

axiom does not hold. 

In Table 2.4, commutative of ◦ means for all a, b G , we have a b b a . Distributivity is 

only applicable for more than one operation, e.g. for the operations + and ∙ (addition and 

multiplication), ( ) ( ) ( )a b c a b a c       and ( ) ( ) ( )a b c a c b c       hold. 

A vector space V is also an algebraic structure, which consists of a set of vectors, two 

operators: vector addition and scalar multiplication, and an associated field F. Let u, v and w 

be arbitrary vectors in V, and a and b be arbitrary scalars in F, a vector space V can be 

defined by the following eight axioms: 

(1) ( ) ( )    u v w u v w ; 

(2)   u v v u ; 

(3) For any Vv , there exists an element V v , such that ( )  v v 0 ; 

(4) There exists an element V0 , such that  v 0 v ; 

(5) There exists an element 1 F , such that 1 v v ; 

(6) ( )a b abv v ; 

(7) ( )a b a b  v v v ; 

(8) ( )a a a  u v u v . 

Detailed instructions of vector space can be found in most of the books of linear algebra, such 

as (Meyer 2000).  

2.5.3 Order structure 

Order structures and ordering relations are essentially important for defining the ERS and 

NRS in measurement theory. As mentioned in Section 2.1, weak order, partial order and 

preorder are commonly used to define the empirical relations of measured objects. The 

properties of these ordering relations are defined by axioms. There are many other relations 

defined in order theory (Davey and Priestley 2002) and measurement theory (Roberts 1979), 

some commonly used relations and their properties are listed in Table 2.2 & 2.3. Each 

ordering relation R together with the set A it applies form an order structure ⟨A, R⟩. 
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For instances, the real numbers ordered by simple order ≤ is a simply ordered set or a chain. 

The class of subsets of a given set S (its power set P(S)) ordered by inclusion is a partially 

ordered set (poset), ⟨P(S), ⊆⟩. The set of subspaces of a vector space ordered by inclusion is 

also a poset.  

The models and data of inverse problems can be in the form of finite or infinite dimensional 

vectors (latter is usually referred to as functions). There are many ways to define the order 

structure of vectors. For instance, pointwise order is a commonly used partial order of vectors, 

which is defined as, for vectors 𝐱, 𝐲 ∈
n

, 𝐱 ⪯ 𝐲 if and only if 𝑥𝑖 ≤ 𝑦𝑖 for 𝑖 = 1, … , 𝑛, where 

xi, yi are the entities of x and y. Lexicographical order is a total order, defined in such a way 

that in 
2

, (a, b) ≤ (c, d) if and only if a < c or (a = c and b ≤ d). By comparing the 𝐿𝑝-norm 

(
p

 , p = 1, 2,…, ∞) of vectors, or comparing the sum or product of the entities of each 

vector, different totally ordered relations can also be defined. More generally, in 
n

, the 

relation of vectors can be defined as 

a ⪯ b if and only if 𝐹(𝜑1(𝑎1), … , 𝜑𝑛(𝑎𝑛)) ≤ 𝐹(𝜑1(𝑏1), … , 𝜑𝑛(𝑏𝑛)), 

where 𝐚, 𝐛 ∈
n

, and F and 𝜑𝑖  are real-valued functions. The theory of conjoint 

measurement (Krantz et al 1999) studies the conditions that the joint effects of n factors can 

be represented in terms of polynomials.  

The mapping between two posets can be structure-preserving as well, which is an order 

preserving mapping (or a monotonic mapping). If a mapping :f P Q  is order preserving, 

we have x ≤ y in P implies f(x) ≤  f(y) in Q.  

The structure of poset is closely related to the structure of lattice (Davey and Priestley 2002). 

Let P be a non-empty poset, and let a b  be the greatest lower bound of {a, b} and a b  be 

the least upper bound of {a, b}, if a b  and a b  exist for all ,a b P ,  then the poset P is a 

lattice. For a lattice P the following three conditions are equivalent: 

1. a b ,   

2. a b a  ,    

3. a b b  . 
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2.5.4 Topological structure 

A topological space ⟨X, Г⟩ is a set X together with a topology Г which specifies that certain 

subsets of X are regarded as ‘open’ (Mac Lane 1996). This specification can be considered as 

the link of the topological structure which must satisfy the following axioms: The set X and 

its empty subset   are both open; the intersection of any two subsets of X is open; the union 

of any collection of open sets is also open. 

For any set X, the discrete topology on X is the topology comprising all the subsets of X 

(Sutherland 1975); the trivial topology on X is the topology  , X .  

The specified open subsets of a topology space are closed under unions and finite 

intersections. Hence the open subsets of a set X ordered by inclusion form a lattice of sets in 

which A B A B  and A B A B  , ,A B X . 

Metric space is an important type of topological space for inverse problems. A metric space 

(M, d) is a set M and a distance function d which defines a distance for any two elements in 

M (Sutherland 1975). With the distance function, open balls B(x, r) with a point x and a 

specified distance r can be defined, which are the open sets of the topology of the metric 

space.  

Some vector spaces are endowed with additional topological structures, such as the 

topologies generated by a norm or inner product, which are called topological vector spaces. 

Banach spaces and Hilbert spaces are complete topological vector spaces, which are complete 

in the sense that a Cauchy sequence (a sequence whose elements become arbitrarily close to 

each other as the sequence progresses) of vectors always converges to a well defined limit 

that is within the space (Goffman and Pedrick 1983). Banach spaces and Hilbert spaces are 

important in functional analysis for investigating infinite-dimensional function spaces whose 

vectors are functions.  

2.5.5 Structures and mappings 

The definition of mathematical structure mentioned before may look somewhat ambiguous; 

actually it appears that there are many different definitions. Giving an explicit and useful 

definition of mathematical structure maybe as difficult as defining what is a game. Bourbaki 

gave a mathematical definition of structure using the axiomatic method and three basic 

operations of set: product ExF, power set P(E), and function set E
F
 of two sets E and F 
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(Bourbaki 1963). This definition clearly includes most structures, such as group, topological 

space and combined cases. However it did not really become a useful definition, even not in 

Bourbaki’s own treatise (Corry 2004, p318). It seems that the important thing is not the 

explicit definition of structure, but the method of characterising and describing the structure 

of a given kind.  

As shown in the above examples, all the different structures have their own structure-

preserving mappings respectively, which are called group homomorphism, monotonic 

mapping, continuous function, etc. Thus these structures can be distinguished by their 

different structure-preserving mappings. And the axiomatised links, such as binary operation, 

can also be expressed as mappings, such as f: G x G → G. It seems that we should pay more 

attention to the mappings rather than investigate mathematical object in isolation. In fact, 

mathematical object are determined by their ‘admissible transformations’ (Steve 1996). 

The axiomatic method (Potter 2004) is widely used for defining structures, because the whole 

theory of that structure can be developed in a comprehensible way by defining the linking 

method of the structure with a small numbers of well-chosen axioms. Another more general 

and effective way of specifying and describing mathematical structure, which also includes 

the axiomatic notion, was emerged after mathematicians realising the fact that mathematical 

structure is determined by a system of objects and their mappings. That is category theory: 

the abstract theory of mathematical objects and their mappings. 

2.6 Category theory 

2.6.1 Definition of a category 

Two mathematicians, Eilenberg and Mac Lane, observed that many properties of 

mathematical system can be unified and simplified by a presentation with diagrams of arrows  

(Mac Lane 1971), and then they created a very abstract and powerful theory: Category 

Theory. The arrows are just the mappings mentioned in the last section. In this thesis, 

category theory is introduced as the principle of defining and investigating mathematical 

structure, especially for the structure of inverse problems. 

Definition 2.4: A category C consists of a collection of objects A, B, C,... and mappings f, g, 

h,... such that: (1) every mapping f has a unique domain and a unique codomain, written as 

:f A B ; (2) given any :f A B  and :g B C  there is a unique composition, 
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:g f A C , and the composition is associative, i.e. ( ) ( )f g h f g h ; (3) each object 

A has an identity mapping :AI A A  which is a unit for composition, i.e. for any :f A B

, we have BI f f and Af I f . (Pierce 1991) 

The categories in which objects can be viewed as ‘sets with additional structure’ and 

mappings as ‘structure-preserving mapping’ are called concrete categories (Adámek et al 

1990). There are many concrete categories defined for various structures, such as Vect for 

vector spaces, Grp for groups and Top for topological spaces. 

A preordered set ⟨A, R⟩ is a category, in which there is at most one mapping between any two 

objects a, b, and a b  if and only if aRb , where the objects are the elements in A, and R is 

a binary relation. The transitivity of preorder implies the mapping can be composed, and the 

reflexivity of preorder implies there is an identity mapping a a  for each object. Hence the 

definition of category is satisfied.  

A monoid can be taken as a category with one object by considering all the elements in the 

monoid as the mappings of the category ( :f A A ), and taking the monoid operation * as 

the composition of mappings (Mac Lane 1971). Since there is only one object, all the 

mappings map from the object to itself. One of these mappings is the identity mapping IA, 

which is the identity element of the monoid. By definition of monoid, * is associative. 

Therefore, the properties of monoid satisfy the definition of category.  

2.6.2 How to describe structures in a category? 

Having the definition of category in mind, the following example demonstrates how structure 

can be described by ‘diagrams of arrows’.  

From the Table 2.4, if a monoid satisfies the inverse axiom, it is a group. Hence a group is a 

category with one object in which every mapping has an inverse under composition. 

In a category of monoid, written as Mon, the objects are all monoids, and the mappings 

preserve the monoid structure, a group G can be defined in the category Mon, by the diagram 

below (Steve 2006). 
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Figure 2.4 Group G in category Mon5 

Here ∆ is the diagonal function : ( , )x x x . IG is an identity function, and i is an inverse 

function, such that
1: ( , ) ( , )GI i x x x x . The function :u G G  is a constant function, 

which maps all the elements of monoid G to its identity element e. And m is the function of 

the monoid operation. When the left and right diagram commute, we have 

1 1x x e x x     ,     (2.14) 

so this diagram is exactly the same as the inverse axiom.  

The other structural properties, such as associativity, commutativity and identity given by 

axioms, can also be described by some commutative diagrams like this. This diagram makes 

no explicit mention of monoid elements, so it is applicable to other structures. That’s why 

category notion provides invariant syntax for describing structure. 

2.6.3 Mapping properties: isomorphic, monic and epic 

Each object in a category may have some elements, but category theory treats each object as 

a black box (Pierce 1991), and ignores the elements inside, since the details of elements does 

not affect the structure properties. Thus the non-structural differences of objects cannot be 

distinguished in a category, and that is what we want for describing structures, just as the 

topologists do not care to distinguish among homomorphic spaces. When two objects with 

different elements are not distinguishable by the structural-preserving mappings, the two 

objects are isomorphic (written as A B ).  

Definition 2.5: In category theory, a mapping :f A B is an isomorphism if and only if 

there is an inverse mapping :g B A  such that Ag f I  and Bf g I . (Mac Lane 1971)  



43 

 

For example, an isomorphism of sets is a bijection; an isomorphism of topological spaces is a 

continuous function which is bijective and the inverse function is also continuous (Steve 

1996). 

The other two important mapping properties are monic and epic.  

Definition 2.6: An mapping :f B C  in a category is monic if, for all mappings: 

:g A B  and :h A B , the equality f g f h  implies that g = h. (Mac Lane 1971) 

Definition 2.7: An mapping :f A B  in a category is epic if, for all mappings: :g B C  

and :h B C , the equality g f h f  implies that g = h. (Mac Lane 1971) 

In the category Set (objects are sets, mappings are functions), monic is same as injective 

(one-to-one), and epic is same as surjective (onto) (Mac Lane 1971). But a mapping may not 

be an isomorphism, even if it is monic and epic. 

2.6.4 Functors and Natural transformations 

Other than the structure-preserving mapping between objects, there are also structure-

preserving mappings map between different categories. A mapping between categories that 

preserves the structure of category is called a functor.  

Definition 2.8: Let C and D be categories. A functor 𝐹: 𝐂 → 𝐃 is a mapping that maps each 

C-objects A to a D-object F(A), and each C-mapping :f A B  to a D-mapping

( ) : ( ) ( )F f F A F B , such that  

(1) ( )A F AF I I （ ）
 for every object A in C, 

(2) ( ) ( ) ( )F f g F f F g  for all compositions of mappings in C. 

That means a functor takes a commutative diagram from a category to another category as 

shown in Figure 2.5 (Steve 2006). For example, a functor between two posets as categories is 

an monotonic mapping (Arbib and Manes 1975).  

A functor can be considered as a kind of projection from C to D. Imaging, in Figure 2.5, if 

there are two functors F, U project the diagram of C into D, there will be two similar images 

of the diagram in D. And if the two images are not coincident, them can be linked by the 

mappings in D that map each F(A) to U(A) for each object A in C. This kind of mapping 

between functors are called natural transformation, the explicit definition can be found in 



44 

 

(Steve 2006). If the diagram in C looks like a circle, then the images of that diagram in D 

projected by two functors and linked by the natural transformation looks like a cylinder.  

A

C

B

C

f

gg f

CI

FA

FC

FB

FC

Ff

FgF(g f )

FCI

in C in D

 

Figure 2.5 Domain and codomain of functor F6  

The concepts of functors and natural transformations are applied in the section of adjoint.  

2.6.5 Universal constructions 

In mathematics, it can be observed that some similar constructions appear iteratively in 

different fields. For instance, ‘product’ appears in vector spaces, groups, topological spaces, 

etc.; ‘free objects’ appears in vector spaces, groups, rings, topological spaces, etc. (Adámek 

et al 1990). Category theory, as a language for all the structures, provides the means to 

understand these special constructions by the notion of universal mapping property (UMP). 

And the UMPs are represented by some special diagrams which are called universal 

constructions. Universal constructions pick out something (objects and the accompanying 

mappings) unique in the category. Each universal construction has a co-universal 

construction, which also has a UMP. They are dual to each other, in the sense that they have 

the same form except that the mappings are reversed. 

Product is a simple and common universal construction. A product of two objects A and B is 

an object 𝐴 × 𝐵, together with two projection mappings 1 :p A B A   and 2 :p A B B  , 

such that for any object C which maps to  A and B by mappings f and g, there is a unique 

mapping ,f g  making the below diagram commute (Pierce 1991).  

 

Figure 2.6 Diagram of product (left) and co-product (right) 7 

f g
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For example, the product in the category of sets is the Cartesian product; the product in a 

poset is the greatest lower bound of two elements ( a b ), if the mappings of Poset are 

inclusions  , the product is the intersection ( A B).  

The dual of product is co-product (see Figure 2.6). There are many other pairs of universal 

contractions, such as pullback and pushout, equaliser and coequaliser, limit and colimit. 

Product, pullback and equaliser are all basic types of limit in different forms. The definitions 

of these universal constructions can be found in (Mac Lane 1971).  

2.6.6 Adjoint functors 

A very important universal construction is adjunction, which is a relationship between two 

functors. It captures an important mathematical phenomenon that is invisible without the lens 

of category theory. As Mac Lane (Mac Lane 1971) said, ‘Adjoint functors arises 

everywhere’. 

Assume there are two functors F: C→D and U: D→C between two categories C, D, and two 

natural transformations in each category, : I UF C  and : FU I  D , where IC and ID are 

the identity functor of C and D respectively, See figure 2.7. (F, U) is an adjoint pair if, for 

any objects A in C and B in D, the set of mappings from A to U(B) is isomorphic to the set of 

mappings from F(A) to B, i.e.  

hom( , ( )) hom( ( ), )A U B F A B .    (2.15) 

This construction is named as an adjunction, denoted as F ┤U. Functors F and U are called a 

pair of adjoint functors. The explicit (and thus more complicated) definition of adjuncation 

can be found in (Steve 2006). 

A Galois connection in order theory, for instance, is an adjunction between two posets 

(Davey and Priestley 2002).  

It is proved in the next chapter that under certain conditions, the forward and backward 

mappings of some inverse problems involved in measurement are adjoint to each other.  
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Figure 2.7 Diagram of an adjunction F ┤U8 

2.7 On the Structure of inverse problems 

For inverse problems, the structural properties can also be described in terms of a “diagram of 

arrows” according to its mathematical model. In Figure 2.8, the objects M and D are the 

model space and data space. F is the forward mapping, and G is a backward mapping as 

introduced in Section 2.4. mR  is called the model resolution, and dR  is called the data 

resolution, mR GF and dR FG , they are self-mappings of M and D respectively.  

M D

Rm Rd

G

F

 

Figure 2.8 The objects and mappings of an inverse problem9 

In this thesis, “The structure of inverse problems” refers to the following aspects: 

1) the system of mathematical objects and their mapping involved in the inverse 

problem, see figure 2.8, 
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3) the mapping properties of F and G, e.g. isomorphic, monotonic, compact, continuous 

and linear, 

4) the relationship of F and G, e.g. 𝐹𝐺𝐹 = 𝐹, F is left adjoint to G, 

5) the results that can be derived from these structural properties.  

The structural study of measurement basically belongs to measurement theory, especially the 

representational theory introduced in Section 2.2.2. The structural properties of inverse 

problems are studied mainly in two fields, generalised inverse and functional analysis.  

2.7.1 Generalised inverse of a linear operator 

It is well known that a matrix F has an inverse 
1F only if it is a square and non-singular 

matrix. In many of cases, the forward mapping of an inverse problem is a singular matrix F. 

To be able to solve the inverse problems in the form of 

𝐅𝐦 = 𝐝,     (2.16) 

where : M DF , a more general type of ‘inverse’ of F is needed, which should (1) exist for 

a larger class of matrices than the class of non-singular matrices, (2) have some of the 

properties of the usual inverse, and (3) reduce to the usual inverse when F is non-singular. 

Ben-Israel and Greville (Ben-Israel and Greville 2001) name this type of ‘inverse’ as a 

generalised inverse of a given matrix F, some authors also use the term ‘pseudo-inverse’.  

It can be easily verified that the three conditions of a generalized inverse can be satisfied by a 

matrix : D MG  with equation (2.17) satisfied.  

𝐅𝐆𝐅 = 𝐅      (2.17) 

If F is non-singular, equation (2.17) can be reduced to 
1G F  by multiplying 

1F  two 

times. It can be proved that for every finite matrix F, there exists a matrix G satisfies (2.17), 

which is not uniquely defined by (2.17) unless F is nonsingular (Ben-Israel and Greville 

2001, p.29).  

A unique generalised inverse for every finite matrix F was defined by Moore (Moore 1920) 

and proved by Penrose (Penrose 1955) to be the unique matrix G satisfying equation (2.17) 

and the following three equations: 

𝐆𝐅𝐆 = 𝐆 ,     (2.18) 
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(𝐅𝐆)∗ = 𝐅𝐆 ,     (2.19) 

(𝐆𝐅)∗ = 𝐆𝐅 ,     (2.20) 

where F
*
 denotes the conjugate transpose of F. The unique generalised inverse G is 

commonly known as the Moore-Penrose inverse of F, and normally denoted as 
†

F . The 

Moore-Penrose inverse can be used not only for solving the consistent equations to obtain a 

minimum norm solution, but also for obtaining the least-square solutions of the inconsistent 

equations in the form of (2.16) (Aster et al 2013).   

Although the concept of generalised inverse became thriving only after the paper of Penrose  

(Penrose 1955), it was first mentioned by Fredholm (Fredholm 1903) (called by him ‘pseudo-

inverse’) referring to integral operators, earlier than Moore (Moore 1920) referring to 

matrices. The class of all pseudo-inverses of integral operator was characterised by Hurwitz 

(Hurwitz 1912). Comparisons of these pseudo-inverses with the Moore-Penrose generalised 

inverse are given in (Rail 1976). Generalised inverses of differential operators have been 

discussed by Hilbert (Hilbert 1912) in terms of generalised Green’s functions. A review of 

generalised inverses of integral and differential operators can be found in (Reid 1968).  

For the discrete linear inverse problems, of which the forward mapping F is a matrix F, the 

Moore-Penrose inverse
†

F  can be used as a backward mapping G to obtain the minimum 

norm least-square solution, called generalised solution. Hence, by letting F  F and 
†G  F , 

the relationships between F and G can be described by the equation (2.17) ~ (2.20). The 

model resolution and data resolution are thus, 
†

mR  F F  and 
†

dR  FF , respectively. The 

singular value decomposition (SVD) method (Golub and Van Loan 2012) is commonly used 

to compute and analyse the Moore-Penrose inverse, the data resolution and the model 

resolution. In real situations, due to the noise effect, the Moore-Penrose inverse can be very 

unstable, and regularisations are often needed to reduce the noise effect.  

Surprisingly many continuous inverse problems are in the form of Fredholm integral 

equations of the first kind (IFK), such as Example 2.2; they can normally be discretised into 

discrete linear inverse problems with good approximation. Techniques of discretising integral 

operators into matrices, such as quadrature methods and Backus & Gilbert method, are 

discussed in (Engl et al 1996, Aster et al 2013).  After discretisation, the inverse problems 

can then be analysed or solved with the Moore-Penrose inverses of the discretised forward 

mappings.   
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Generalised inverse is not only an important analytical method of solving the inverse 

problem, but also a useful tool for investigating the structure of inverse problems. The model 

resolution of generalised solution shows the inevitable bias of the inverse solution, which is 

an intrinsic property of the forward mapping. The data resolution can be used as a filter to 

detect and partially remove the noise in the measured data owe to its idempotent property.  

2.7.2 Application of functional analysis 

In functional analysis, by investigating the structural properties of inverse problems, many 

useful theorems are derived. These theorems are powerful tools for analysing the solutions of 

inverse problems and the principle of solving inverse problems, especially when the models 

are infinite dimensional (i.e. functions). For instance, in the book of Lebedev et al. ( Lebedev 

et al 2000) on functional analysis, the following theorems and results on inverse problems are 

derived. 

1. By assuming the model space M and data space D in the mathematical model of 

inverse problem (2.4) are normed vector spaces, and F is a compact linear operator, it 

can be derived that if M is infinite dimensional, F cannot have a bounded inverse, i.e. 

𝐹−1 , if it exists, is not stable.    

2. Let M and D be normed vector spaces, when F is a continuous one-to-one operator 

from M to D,  a continuous inverse of F can be obtained by restricting the domain of 

F  to be a compact subspace of M (Tikhonov and Arsenin 1977). 

3. By assuming M and D are Banach spaces, and M is infinite dimensional, it can be 

proved that the solution of an arbitrary observation in D cannot be both unique and 

exist. 

4. By assuming M and D are Hilbert spaces, and F is a continuous linear operator, the 

existence of a unique generalised solution (the least square solution of minimum 

norm) can be proved.  

5. Under the same assumption, it can be proved that the generalised inverse 𝐹†, which 

associates the data to the generalised solution, is a closed operator, and 𝐹†  is 

continuous if and only if the range R(F) is closed. 
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Moreover, for inverse problems in the infinite dimensional context, the theory behind 

Tikhonov regularisation is established base on functional analysis (Groetsch 1984). A general 

regularisation theory is given in (Kirsch 1996). 

2.8 Conclusions 

In this chapter, the basic theories and concepts for investigating the structure of inverse 

problems in metrology, including measurement theory, inverse problems, mathematical 

structures and category theory, are briefly reviewed. The structure of measurement is 

introduced via the representational theory of measurement, and some structural properties of 

inverse problems are reviewed base on the theories of generalised inverse and functional 

analysis. A connection between the mathematical models of indirect measurements and 

inverse problems can be observed, which is demonstrated with some examples of inverse 

problems in metrology. This connection enables us to define and investigate a general type of 

inverse problem in metrology called IPM, which is, to the best of the author’s knowledge, not 

yet studied before in any literature from the perspective of mathematical structure. This is 

perhaps because: 

1. It is commonly believed that the objective of measurement is to obtain the values of 

the measurand (JCGM 100 2008); the fact that measurand values should represent the 

empirical relations is often ignored. 

2. Inverse problems are often treated as pure mathematical problems of estimating the 

model parameters; the fact that the model normally is or contains a quantity to be 

measured is often ignored.  

It is demonstrated in the next chapter that the connection between indirect measurements and 

inverse problems implies the necessity of embedding a relational structure into the model and 

data spaces of the inverse problems of measurement. This makes the structure of IPMs 

different from other inverse problems, and thereby a series of new results, such as the desired 

properties of solving the IPMs, can be derived.  
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Chapter 3  

Deterministic Model of Indirect Measurements 

and the Inverse Problem of Measurement  

3.1 Representational model of indirect measurements  

It is introduced in last chapter that measurement is the process of experimentally obtaining 

quantity values that can be reasonably attributed to a quantity. This process assigns numbers 

to the objects manifesting the measurand, in such a way to represent the empirical relations of 

the objects. In this chapter, to study the basic structure properties of the inverse problems of 

measurement, it is being assumed that the measurement process of a quantity can be 

modelled by a deterministic homomorphism 𝜑 of the ERS, such that for any objects 𝑎, 𝑏 ∈ 𝐴,  

(3.1) ( ) ( )a b a b   ，     (3.1) 

where ( ) and ( )a b  are the measured values. This is called the deterministic assumption of 

measurement, which implies that the measured values contain no random errors.  

The deterministic assumption enables us to establish a simple and universal model of indirect 

measurements based on the representational theory of measurement. From that model, a 

general type of inverse problem involved in indirect measurements can be identified, which is 

the inverse problem of measurement to be studied in this thesis. 

3.1.1 Direct measurements 

By the representational theory, a measurement process can be modelled as a homomorphism 

from the ERS of the quantity to a specified NRS, which maps each object in the ERS to a 

measurand value in the NRS. In direct measurements, the empirical relations can be directly 

observed via an empirical operation, and the measurand values can be assigned accordingly. 

For example, the empirical relations of the length of rods can be observed by placing the rods 

parallel with each other. No other quantities and the related measurement processes are 

involved in a direct measurement. Hence a direct measurement maps the measured objects 

directly to their measured values, which can be modelled as a homomorphism from the ERS 

to a NRS.  
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The schema of direct measurement can thus be described by the diagram in Figure 3.1. But 

practically, some random measurement error is always involved in the measured values. Thus, 

it is not always suitable to model a measurement process as a deterministic and structure-

preserving mapping depending on the noise effect. The deterministic assumption of 

measurement is used to simplify the model and reveal the basic structure of measurement. 

 

Figure 3.1 The schema of direct measurement10 

3.1.2 The framework of indirect measurement 

For an indirect measurement of a measurand, one or more other quantities are involved to 

infer the measurand values. These quantities, named as proxy quantities
4
, can be measured 

directly or in an easier and/or more reliable way comparing to the measurand. They are 

related with the measurand in the sense that the measurand can be considered as the cause (or 

part of the cause) of the observable effects manifest in terms of the proxy quantities. 

According to the relationship of the measurand and the associated proxy quantities, the proxy 

quantities can be used to infer the information of the measurand. For example, the thermal 

expansion of the mercury in a thermometer is an observable effect of temperature, which can 

be measured in length. According to the length of the mercury, the temperature can be 

inferred. So there is a cause-and-effect relationship between the measurand and the proxy 

quantities. From this point of view, inferring the values of the measurand from the measured 

values of the proxy quantity(s) (called the measured data) is an inverse problem.  

For a direct measurement, the homomorphism from the ERS of the measurand to the NRS of 

the measurand values can be implemented by a measurement process. While for an indirect 

measurement, this mapping is not implemented directly, instead it takes the following steps: 

a. Relate the measurand to some proxy quantity(s), which manifesting its observable 

effect(s), with a functional relation, such as equation (2.2) or (2.3). 

b. Measure the proxy quantity(s) to obtain some measured data.  

                                                      
4 An proxy quantity is also an influence quantity which is defined in GUM (JCGM 100 2008), since it affects 

the result of the measurement, but they are not the same concept.  

(Homomorphism)

Quantity 
values

MeasurementA quantity
(measurand)

ERS NRS
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c. Infer the measurand values using the measured data and the functional relation.  

These steps can be described by the three mappings (a, b, c) in Figure 3.2. The combination 

of these three mappings maps the objects manifesting the measurand into the measurand 

values, which is desired to be a homomorphism according to the representational theory of 

measurement. The schema in figure 3.2 reveals the framework of indirect measurement. 

Comparing this schema with the schema of direct measurement, the measurement process of 

indirect measurement is implemented via the combination of the three mappings.  

 

Figure 3.2 The schema of indirect measurement11 

3.1.3 The inverse problem in the framework of indirect measurement 

Since the inference process of indirect measurement can be considered as an inverse problem, 

there is an essential connection between inverse problem and indirect measurement. An 

inverse problem is involved in an indirect measurement if the value of the measurand can be 

obtained by solving the inverse problem. This type of inverse problem is called as the inverse 

problem of measurement.  

Definition 3.1: The inverse problem of measurement (IPM) is the problem of inferring the 

values of a measurand from the observations of some other quantity(s).  

Comparing to the definition of inverse problem, the IPM is a general type of inverse problem 

involved in measurement. For direct measurements, since the measurand values can be 

directly obtained from the measurement process, no inverse problem is involved. The IPMs 

arise from indirect measurements.  

As an inverse problem, the mathematical model of an IPM should conform to equation (2.4), 

and the framework of an IPM can be described by the diagram in Figure 2.8. The next 
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question is how to describe the IPM in the framework of indirect measurement. To see this, 

some examples of inverse problems in indirect measurements are needed.  

Example 3.1 Contact measurement of surface profile  

In surface metrology, a tactile spherical stylus is used to measure the surface profile of 

a free-form surface. As shown in Figure 3.3, during the measurement the stylus S 

moves along the surface profile, the locus of the centre point of S, which is called a 

traced profile in ISO 3274 (1998), is recorded as the measured data in an x-y coordinate 

system.  

SD
SE c

l

S

l̂

 

Figure 3.3 Contact measurement of surface profile l 12 

c is the locus of centre point, l' is the estimation of the surface profile 

:SD l c  is a dilation operator, and ˆ:SE c l
 
is an erosion operator 

Let ( )l x be the function of the height of a surface profile, and ( )c x be function of the 

recorded locus of S, ( )l x and ( )c x are defined within a specified evaluation interval I. It 

is clear that the observed locus is different from the actual surface profile, and the 

distortion is determined by the actual shape and size of the stylus S (see Figure 3.3).  

Take the stylus S as a structuring element of morphological operators, the 

transformation from ( )l x to ( )c x  can be formulated as a function processing dilation 

operator (Maragos and Schafer 1987), denoted as SD . Thus the recorded locus can be 

described as  

(3.2) ( )Sc D l .     (3.2) 

To estimate the surface profile l from the locus c is an inverse problem. The best 

estimation of the surface profile can be obtained by applying a function processing 
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erosion operator, denoted as SE , to the locus c (Gröger et al. 2005). The estimated 

profile is  

(3.3) ˆ ( ) ( )S S Sl E c E D l  ,    (3.3) 

which is named as a real mechanical profile in ISO 14406 (2010). By solving the 

inverse problem in the form of (3.2), the real surface profile can be indirectly measured 

via the locus of the stylus.  

Example 3.2 White light interferometry 

White light interferometry is a technique to measure the topography of surface. For 

each point on the surface, it is observed by one pixel, and the height is measured 

indirectly according to the variation of the light intensity at that point during an axial 

scan of the measurement process. The light intensity varies in terms of the interference 

fringes of the white light, which can be described as (Malacara 2007) 

(3.4) 0( ) [1 ( )cos( )]I z I z k z      (3.4) 

where I' (the background intensity) and k0 (the number of fringes under the envelope) 

are both constants, ( )z is the envelope function of the fringes, and z is the axial 

position (see Figure 3.4).  

 

Figure 3.4 The interference fringes and the envelope function of white light 13 

From equation (3.4), ( )z can be estimated according to the observation of I(z). A 

simple Fourier method proposed by Kino and Chim (1990) can be used to solve this 

inverse problem. First the Fourier transform of the signal I(z) is computed, which is 

transformed to a function of three lobes in the frequency domain. The right side-lobe is 
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isolated and shifted to the centre (origin) to lower the frequency of the signal. And then 

the envelope function ( )z is calculated using an inverse Fourier transform.  

The measurand is the height h of each measured point, which can be determined from 

the centre of mass of ( )z . Thus if function ( )z is symmetric, such as a Gaussian 

function, then ℎ = 𝑧0 such that 𝛾(𝑧0) = max (𝛾(𝑧)). 

It is worth to take note that, by definition, an IPM always refers to a specified measurand, 

rather than several measurands of a general type. This is because the empirical relations and 

the ERS of a measurement can be defined only when the measurand is specified. For 

example, in the measurement of surface texture, the heights of all the points on the surface 

are collected, but only when the measurand is specified to be roughness Ra, a number can 

then be assigned to the measured surface, and different surfaces can be compared according 

to their values of roughness. If the specified measurand can be obtained from the model of an 

inverse problem, then this inverse problem can be considered as an IPM.   

In some cases, the model of an IPM m and the measurand x can be a same quantity. But, for 

estimating the value of the measurand, the model does not necessarily be the same quantity as 

the measurand. The model can be any mathematical object contains the information of the 

measurand, as long as the values of the measurand can be extracted from the model via a 

given function. In the example of white light interferometry, the function from the envelop 

function ( )z to its centre of mass 0z  is used to extract the measurand h. This function is 

called an extraction function, denoted as T. In the example of contact surface measurement, 

the extract function is an identity function, since the model l(x) itself is the measurand. If the 

model and the measurand are the same, the extraction function, T is simply an identical 

function I.  

Many inverse problems can be taken as an IPM in an indirect measurement. In Example 2.1, 

the inverse problem of estimating the slowness distribution can be taken as the inference 

process of the indirect measurement of the average slowness s  of the measured area. The 

measurand value s  is simply the average of the entities of vector s (the inverse solution), 

which can be obtained using a function :T ss . Similarly, in Example 2.2, the inverse 

problem of estimating the distribution of the mass density can be taken as an IPM in the 

indirect measurement of the average density of the buried field, the measurand values can be 
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extracted from the inverse solution
5
 m. In Example 2.3, the technique of solving the inverse 

problem of estimating the earthquake hypocentre can be applied in the indirect measurement 

of the location or the origin time of the earthquake.  

In an indirect measurement, when the mapping from the measured data to the measurand 

values is not known, an IPM arises. Assume that the inverse problem can be solved with a 

backward mapping G from the data space D to the model space M, such as the inverse or a 

generalised inverse of the forward mapping F. By using the mappings G followed by an 

extraction function T, the measurand values can be estimated from the measured data. 

Therefore, based on the schema in Figure 3.2, the schema of indirect measurements with the 

IPM can be described by Figure 3.5. 

To estimate the measurand values, it’s important to know the mathematical model of the 

inverse problem involved in the indirect measurement. A proper backward mapping should 

be chosen according to the forward mapping to derive the model which contains the 

information of the measurand.  

 

Figure 3.5 The schema of indirect measurements and the IPM 14 

F is a forward mapping, G is a backward mapping, T is an extraction function. 

3.2 Desired properties of solving the inverse problems of measurement 

A well-posed problem has following three defining properties (Hadamard 1902): 

1) a solution exists (existence);  

2) the solution is unique (uniqueness);  
                                                      
5 Inverse solution refers to the ‘solution’ of the inverse problem which may not exactly fit the measured data. 
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3) the solution continuously depends on the measured data (stability).  

If at least one of the defining properties is not satisfied, the problem is called an ill-posed 

problem. Some of the inverse problems are ill-posed, which are interesting due to the 

difficulty of solving the ill-posed problems.  Not being able to satisfy the existence, the 

uniqueness, and the stability are the three essential issues of inverse problems (Aster et al. 

2013). Due to the essential issues, solving an inverse problem is no just about finding a 

solution exactly fitting the observation. More than one property of the solution is desired, 

which are normally difficult to be satisfied all together, a trade-off between these properties 

should be considered. Moreover, for the IPMs, due to the special properties of measurement, 

some more desired properties should be considered. These desired properties characterise the 

IPM, and can be used to derive the structural properties of the IPM. 

Based on the essential issues and special characters of the IPMs, the following five properties 

are desired for solving the IPMs. 

P1. The forward mapping F should be known. 

P2. The inverse solutions should adequately fit the measured data. 

P3. The backward mapping G should be topologically and numerically stable. 

P4. The estimated measurand values should reflect the empirical relation. 

P5. The inverse solution should satisfy the principle of Occam’s razor.  

These properties, indexed with P1~P5, are elaborated in this section following a logic order. 

Some properties of the mappings F and G of the IPMs can be derived from these desired 

properties, which are important for understand the structural properties of the IPMs.  

3.2.1 Forward mapping (P1) 

First, as a precondition of solving the inverse problem, when the model parameters are 

unknown, the forward mapping F should be known (P1), so that the mathematical model of 

the inverse problem can be described in the form of 

(3.5)  𝐹(𝑚) = 𝑑.      (3.5) 

The forward mapping F refers to a mapping that correctly models the functional relation 

between the model and the data. This should be verified by calibration.  
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Under the deterministic assumption, data d does not contain any random error, any data 

𝑑 ∈ 𝐷  can be written as 𝑑 = 𝐹(𝑚)  with some 𝑚 ∈ 𝑀  when F correctly models the 

relationship between the model and the data, thus F is surjective.  

3.2.2 Fitting criterion (P2) 

For an inverse solution ˆ ( )m G d  derived by the backward mapping, since the actual model 

m is unknown, the best way to verify the solution is to check whether it fits the data, in the 

sense that  

ˆ( )F m d ,          

(3.6) or    ( )FG d d .                   (3.6) 

In the simplest case, equation (3.5) can be solved using the inverse of F, and the backward 

mapping G is desired to be 
1F 
, so that (3.6) can be satisfied. But when F is not injective, the 

solution is not unique, thus the inverse of F does not exist.  

For any data d in the range (image) of F, d is equal to ( )F m  for some m M . Thus (3.6) 

can be written as 

( ) ( )FGF m F m  

(3.7) or    𝐹𝐺𝐹 = 𝐹 .     (3.7) 

Under the deterministic assumption, all the measured data is in the range of F. Hence the 

inverse solution can fits with the data if G satisfies (3.7). Mapping G in (3.7) is a generalised 

inverse of F, which derives an inverse solution belonging to the preimage of d. If F is not 

injective, the element in the preimage (solution) is not unique, and thus G is also not unique. 

A criterion of choosing the solution is needed.  

In practice, due to the noise in the data, some data is not in the range of F. Thus no solution 

can be found to fit the data exactly. Moreover, due to the stability issue, fitting the data too 

precisely may cause significant noise effect in the solution. Hence, when the noise is under 

consideration, the inverse solution is desired to be adequately fit the observations (P2). 

Uncertain degree of misfit between the solution and the data should be accepted, which is 

usually specified as 
2

ˆ( )F m d   , where ε is a small number. In linear inverse problem, 

least-square method and Moore-Penrose generalised inverse can be used to find the inverse 

solution with minimum misfit.  
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3.2.3 Stability criterion (P3) 

In different context, stability is defined in many different ways. For instance, in general 

system theory, the general concept of stability is described as follows. Let c and e represent 

the cause and effect of a phenomenon, respectively, and e = F(c). The cause-effect pair (c, e) 

is stable if small deviations from e are caused by small deviations from c (Mesarovic & 

Takahara, 1975, p.160). Similarly, in signal processing, a linear time invariant (LTI) system 

is said to be BIBO (bounded-input, bounded-output) stable if every bounded input produces a 

bounded output (Rabiner & Gold, 1975, p.14). For partial differential equations, the solution 

is stable if it depends on the auxiliary conditions in a continuous manner in such a way that a 

small change in the auxiliary conditions only produces a small change in the solution (Jeffrey 

2003). 

In this section, the stability of an IPM is investigated in two different forms: topological 

stability and numerical stability, which are determined by the properties of the backward 

mapping. The former gives the necessary condition of stability, and the latter determines the 

degree of stability. The stability discussed here should be distinguished from the concept of 

measurement stability which is closely related with measurement repeatability and 

uncertainty.  

a. Topological stability of the IPMs 

An inverse problem is considered as stable if a ‘small’ change in the data implies a ‘small’ 

change in the inverse solution (Aster et al 2013, p.19). This is analogous with the definition 

of the continuity of a function (or a mapping): ‘small’ changes in the input result in ‘small’ 

changes in the output. For the IPMs, G is the mapping from the measured data to the inverse 

solution, thus the stability can be determined by the continuity of the backward mapping G. 

This type of stability is named as topological stability.  

Depends on the types of topology of the input and output spaces, the continuity of a mapping 

can be defined in different ways, and have different meanings.  

Example 3.3 The continuity of a mapping :f X Y between two metric spaces 

1 2, , ,X d Y d     can be defined with the distances in the metric spaces: f is uniformly 

continuous, if for any ,x y X , distance, 1( , )d x y is arbitrarily small implies distance, 

2( ( ), ( ))d f x f y is also arbitrarily small (Hadamard 2003, p.34).  
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Example 3.4 Alexandrov space is a topological space, which can be uniquely 

determined by a preordered set. In Alexandrov spaces, magnitude of difference is not 

definable, thus the continuity of the mapping between Alexandrov spaces is defined in a 

more general way with neighbourhoods: a mapping : , ,X Yf X Y    is 

continuous if for any neighbourhood Q of ( )f x , there always exist a neighbourhood P 

of x such that ( )f P Q , where x is an arbitrary point in set X (Sutherland 1975).  

If the model and data spaces of inverse problems are metric spaces or normed vector spaces, 

the magnitudes of differences in model space and data space can be defined by the distances 

or the norms of the space, and then the stability of those inverse problems can be defined.  

While for the IPMs, not all measurands can be represented numerically with an additive 

operation (see Section 2.2.2). The empirical structures of some measurands (e.g. loudness) 

are conjoint structure; the representations of some measurands (e.g. hardness, preference) are 

in the ordinal scale. For these types of measurands, the magnitude of difference is not 

definable. Thus, instead of using differences in metric spaces, a more general way to define 

the stability of the IPMs is needed. Topological stability is the solution to this problem. 

There are many types of empirical structure, such as extensive structure, conjoint structure 

and order structure. An ERS always has an ordering relation (such as a weak order or a 

preorder) called empirical relation
6
, so it can be taken as a set with an ordering relation, 

namely an ordered set. To preserve and represent the empirical relational structure, the model 

space M and the data space D of an IPM are determined by the ERS. Hence M and D are also 

ordered sets.   

To investigate the topological stability of the IPM, the topologies of the model and data 

spaces should be defined. It has been shown by Naturman (1991) that every preordered set,  

A = ⟨𝐴, ≾⟩ can be converted to a unique topological space, T(A)= ⟨𝐴, ᴦ⟩, named Alexandrov 

space, by the following construction of open sets: call a subset U of A open if, whenever 

x U , we have ( )R x U , where 𝑅(𝑥) = {𝑦: 𝑥 ≾ 𝑦}. In Alexandrov space, each element x 

has a minimal neighbourhood (Arenas 1999) which is the intersection of all open sets 

containing x, and R(x) is the minimal neighbourhood of x in T(A).  

                                                      
6 Unless otherwise specified, an empirical relation means a binary empirical relation. 
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Therefore, if the ordered sets D and M  can be converted into Alexandrov spaces, denoted as 

T(D) and T(M). The continuity of G can be defined with the neighbourhoods in T(D) and 

T(M), and the topological stability of the IPMs can be defined between Alexandrov spaces.  

Definition 3.2: An IPM is topologically stable if and only if the backward mapping is a 

continuous mapping between the Alexandrov spaces associated with the ordering relations in 

the data and model spaces. 

If difference is defined in the ERS, such as concatenation structure ⟨A, ≾, ∘⟩, then D and M 

are both preordered metric spaces. In this case, the stability means G is not only continuous 

between Alexandrov spaces (topological stability) but also between metric spaces. 

Proposition 3.1: Let G: D→M be a mapping between two preordered sets, T(D) and T(M) are 

the Alexandrov spaces convert from D and M. The continuity of G: T(D)→T(M) is equivalent 

to the monotonicity of G: D→M.  

A proof of this proposition is given by P. J. Scott (2004) using open sets. It can also be 

proved using neighbourhoods as following. 

Proof: For any element d D , let U be a minimal neighbourhood of d in T(D),  

and let V be a minimal neighbourhood of G(d) in T(M).  

If G is monotonic, we have  

(3.8) d≾d' ⇒ G(d) ≾ G(d'),  for any 'd D .   (3.8) 

Since ( )U R d  {𝑐 ∊ 𝐷: 𝑑 ≾ 𝑐}, and ( ( ))V R G d  {𝑥 ∈ 𝑀: 𝐺(𝑑) ≾ 𝑥},  

(3.8) is equivalent to 

' ( ')d U G d V   ,       

which is equivalent to the following statement. 

(3.9) ( )G U V      (3.9) 

Hence G is monotonic if and only if (3.9) is true. 

By the neighbourhood definition of continuous mapping, G: T(D)→T(M) is 

continuous if and only if the following statement (S1) is true. 

S1: for any neighbourhood Q of G(d), there always exist a neighbourhood P of d 

such that G(P)⊆Q. 
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Firstly, we prove S1⇒(3.9). For any neighbourhood P of d, we have U P , which 

implies ( ) ( )G U G P . Let Q=V, if (3.9) is not true, i.e. ( )G U V , then  

( )G P V Q  , i.e. S1 is also not true. Hence we have S1⇒(3.9). 

Secondly, we prove (3.9)⇒S1. For any neighbourhood Q of G(d), we have  

V ⊆ Q. Let 𝑃 = 𝑈, we have ( ) ( ) ( )G U V G P G U V Q     , i.e. 

( ) ( )G U V G P Q   . 

So we get S1⇔ (3.9),
7
 which proves the proposition.       □ 

For an IPM, this proposition means G is continuous between the Alexandrov spaces if and 

only if it is monotonic (i.e. order-preserving). Hence we have the following equivalence 

relations: topological stability of an IPM ⟺ continuity of G ⟺ monotonicity of G.  

Assume that the topological stability of an IPM is satisfied. Then the relational structures of 

model and data spaces must be preordered so that they can be converted into Alexandrov 

spaces. Thus, the empirical structure, which determines the structures of M and D, must also 

be preordered. In other words, the topological stability of the IPM leads to the empirical 

structure being preordered. 

b. Numerical stability  

Although every linear transformation between finite dimensional spaces is a continuous 

mapping (Schechter 1997), the inverse solution may still be very sensitive to the error in the 

data such that the noise effect dominates the solution. Thus besides the topological stability, 

the degree of sensitivity of the backward mapping to the changes or errors in the input data, 

namely the numerical stability of the inverse problem, should also be considered. 

The numerical stability can be measured by the condition number (Aster et al 2013, p.67) of 

the backward mapping. For a matrix G, the condition number is the ratio of the maximum 

and the minimum non-zero singular values. When the condition number is large, the output of 

G can be very sensitive to the changes in the input. If a backward mapping G satisfying 

equation (3.7) has a large condition number, G should be adjusted to improve the stability, 

which can be done by different regularisation methods, such as truncated singular value 

decomposition (TSVD) and Tikhonov regularisations (Aster et al 2013). The regularisation 

                                                      
7 This proof also shows that the continuity of a mapping between two Alexandrov spaces can be defined with 

minimal neighbourhoods. 
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introduces a restriction on the inverse solution; meanwhile, it causes some bias in the inverse 

solution. For example, the objective function of 0
th

 order Tikhonov regularisation is  

(3.10) min (‖Fm − d‖2 + α2‖m‖2),             (3.10) 

where α is a scalar parameter to be optimised. As demonstrated in (Aster et al 2013, p 99), an 

inverse solution can be obtained from (3.10) as  

(3.11) 
2 1( )T T

   m F F I F d .    (3.11) 

Hence, after the regularisation, the backward mapping becomes 2 1( )T T  G F F I F , which 

does not satisfy the fitting criterion (3.7). As a result, the inverse solution m  will not fit the 

data exactly. The objective function of regularisation provides a trade-off between fitting the 

data and the numerical stability.  

In summary, the backward mapping G should be both topologically and numerically stable. 

This is the desired property P3. 

3.2.4 Posets of the model and data spaces 

Before the discussion of the next two desired properties, a general method of defining the 

ordering relations in the model and data spaces is needed.  

To be able to define the topological stability of the IPMs, the model and data spaces should 

be modelled as preordered sets. Sometimes, there is more than one way to define an ordering 

relation in a space. For instance, in a vector space, the order between vectors can be defined 

by comparing the norms or defined in the pointwise order. In metrology, numerical relations 

are used to represent empirical relations. Hence a meaningful way of defining the ordering 

relations in M and D should be chosen according to the empirical relation.  

a. Partial order between measurand values 

The elements in a preordered ERS can be divided into equivalence classes according to their 

measurand values. For example, rods with a same length are equivalent (but not exactly the 

same), and they can be allocated to an equivalence class. For a preordered set A, two 

elements a and b are equivalent, if a≾b and b≾a, denote as a~b. A preorder ≾ with anti-

symmetric property (if a≾b and b≾a, then a=b, for all ,a b A ) is a partial order ⪯. So, as 

shown in Figure 3.6, a preordered set can always be converted to a partially ordered set 

(poset) by merging the equivalent elements into equivalence classes.  
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It’s not necessary to distinguish the equivalent objects with numbers, thus the equivalent 

objects in the preordered ERS can be represented by a single number in the NRS. Hence a 

preordered ERS, such as ⟨A, ≾⟩, can be represented by a partially ordered NRS, such as

, XX   . Each measurand value in the NRS corresponds to an equivalence class in the ERS. 

The homomorphism, which models the measurement process, converts a preordered ERS to a 

partially ordered NRS. Hence, in the deterministic model of the IPM, the ordering relations 

between measurand values always belong to the type of partial order. 

a

b
c

d

e

[b]

Partially preordered set Poset

[a]

[d]

[e]

 

Figure 3.6 From a partially preordered set to a poset 15 

 a b stands for a≾ b. 

b. Ordering relation in model space 

In some case, such as Example 3.1, the model of an IPM and the measurand are the same, so 

the ordering relation in the model space is the same as the ordering relation between the 

measurand values. While, in many cases, such as Example 2.1, 2.2 and 2.3, the model and the 

measurand are different, an ordering relation M  should be defined in order to set the model 

space to be an ordered set, and this relation must be empirically meaningful in the sense that 

it is related with the empirical relation of the measured objects.  

In Example 3.1, surface profile l(x) is the measurand and also the model of the IPM. Since the 

empirical relation of surface profile (above or below) is determined by every point of the 

profile, the order between models should be the pointwise order of vectors. If 1 2( ) ( )l x l x  for 

all x I , then 𝑙1 ⪯ 𝑙2; if there is any intersection between the curves of  𝑙1 and 𝑙2 , they are 

incomparable (neither 𝑙1 ⪯ 𝑙2 nor 𝑙2 ⪯ 𝑙1). In the example of seismic tomography (Example 

2.1), let the measurand be the average slowness of the measured area, then the order between 

the models (vectors of slowness) should be determined by the average of the entities of 

slowness vector, i.e. 1 2s s  if and only if 1 2( ) ( )T Ts s , where 1 2,s s are the slowness vectors 
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of two measured areas and T is the function of averaging of the entities of a vector. 

Therefore, the ordering relation M of the model space M can be defined according to the 

magnitude of the measurand.  

Definition 3.3: For any two objects a, b in the ERS, their models 𝑚𝑎 ≤𝑀 𝑚𝑏 if and only if 

𝑇(𝑚𝑎) ≤𝑋 𝑇(𝑚𝑏), where ≤𝑋 is the (partial) order of measurand values and T is a extraction 

function.  

As demonstrated before, the relation ≤𝑋  of measurand values is a partial order. Thus 

Definition 3.3 implies the model space is a poset.  

c. Ordering relation in data space 

In the data space, a measured data is a collection of the measured values of one or more 

proxy quantities related to the measurand, which can be ‘decoded’ into a estimated value of 

the measurand via the inference process. Hence, for each measured object, the measured data 

can be considered as a label to be decoded. 

Similar to the model space, the ordering relation D  in the data space D should also be 

defined in an empirically meaningful way. In many cases, the proxy quantity(s) and the 

measurand are different quantities (see Example 2.1, 2.2, 2.3 and 3.2). In this situation, the 

only possible way to relate  with the empirical relation is to use the estimated values of 

the measurand from the data. The estimated values can only be obtained using a proper 

backward mapping G. Hence relation  can be defined in the following way. 

Definition 3.4: For any two objects a, b in the ERS, their data 𝑑𝑎 ≤𝐷 𝑑𝑏  if and only if 

𝑇𝐺(𝑑𝑎) ≤𝑋 𝑇𝐺(𝑑𝑏).  

Since ≤𝑋 is a partial order, the data space is also a poset.  

In some cases, there is only one type of quantity involved in the IPM. For instance, in 

Example 3.1, the measured data is the locus of centre point, and the model is the surface 

profile, i.e. the measurand. They both belong to a more generic type of quantity (functions of 

height), which can both be ordered in the point-wise order. The indirect measurement of the 

height of a building according to the length of its shadow is also a typical example. Here the 

height and the length are both belong to a generic quantity, length. In this situation, the orders 

in the model and data spaces can be naturally defined in the same way as the partial order of 

the measurand values, instead of using definition 3.4.  

D

D
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3.2.5 Estimation of empirical relations (P4) 

For the IPMs, there is one more desired property on the inverse solutions which is related 

with the special character of IPM. By definition, the information to be derived in an IPM is 

the values of a measurand, and according to the representational theory, measurand values 

should be able to represent the (relational) structure of the ERS. Hence, the relation of the 

estimated measurand values should reflect the empirical relation in the ERS (P4). That 

means, the following relation between the measurand values, 𝑥1, 𝑥2  and their estimations, 

1 2
ˆ ˆ,x x  is expected to be satisfied:  

(3.12) 1 2Xx x ⟹ 1 2
ˆ ˆ

Xx x .     (3.12) 

It is clear that (3.12) may not be satisfied due to the noise in the measured data, but the noise 

effect is not the only factor of the correctness of estimated empirical relation. With the 

deterministic assumption, a necessary condition of satisfying P4 can be deduced. 

Proposition 3.2: The monotonicity of the model resolution GF is a necessary condition of 

satisfying the desired property P4.  

Proof:  The estimated measurand values are extracted from the inverse solutions, thus  

(3.13) ˆ ˆ( )i ix T m  and ˆ ( )i im G d ,    (3.13) 

where ˆ
im and id  are respectively the estimated model and the measured data of the 

ith object. Thus (3.12) can be written as  

(3.14) 1 2Xx x ⟹ 1 2( ) ( )XTG d TG d .    (3.14) 

By the deterministic assumption, the measured data contain no noise, any data 𝑑 ∈ 𝐷 

can be written as 𝑑 = 𝐹(𝑚) , with some 𝑚 ∈ 𝑀 . For the measured data di, the 

estimated measurand value is 

(3.15) ˆ ( ) ( )i i ix TG d TGF m  .    (3.15) 

Thus the desired property (3.14) can be written as  

(3.16) 1 2Xx x ⟹ 1 2( ) ( )XTGF m TGF m .   (3.16) 

By Definition 3.3, 

𝑚1 ≤𝑀 𝑚2 ⇔ 𝑇(𝑚1) ≤𝑋 𝑇(𝑚2) ⇔ 𝑥1 ≤𝑋 𝑥2. 
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Hence (3.16) can be written as  

(3.17) 1 2Mm m ⟹ 1 2( ) ( )MGF m GF m .   (3.17) 

Therefore, to satisfy the desired property P4, the combination GF, which is the model 

resolution, must be monotonic.  □ 

If (3.17) is not satisfied, the empirical relation cannot be correctly estimated even without the 

noise effect. Different from the other four desired properties mentioned this important 

property (P4) has not been systematically studied yet. Some other derived properties of P4 

are given in Section 3.4. 

3.2.6 Selection of inverse solution (P5) 

a. Occam’s solutions of the IPMs 

When two competing explanations make exactly the same predications, the simpler one is 

better (Thorburn 1915). This is the basic idea of a philosophy principle, called Occam’s 

razor, and it can be used as the principle of choosing the inverse solution to solve the 

uniqueness issue.  

The inverse solutions can be taken as the explanations of the observations (measured data), 

since they can be used to predict the observations. When there is a set of inverse solutions 

which are able to explain the observation equally well in the sense of fitting with the 

observation, the set is called an equivalent class of solutions. For an arbitrary model 𝑚1, its 

equivalent class [𝑚1] is the set {𝑚 ∈ 𝑀: 𝐹(𝑚) = 𝐹(𝑚1)}, since all the models in [𝑚1] fit 

with the data 1 1( )d F m . The inverse solution of the measured data 1d  derived by a 

backward mapping G is 1 1( ) ( )G d GF m . If G satisfies equation (3.7), then 1 1( ) [ ]GF m m , 

since 𝐹𝐺𝐹(𝑚1) = 𝐹(𝑚1). By the principle of Occam’s razor, the ‘simplest’ solution should 

be chosen from the equivalent class, so the inverse solution 𝐺𝐹(𝑚1) is desired to be ‘simpler’ 

than any 𝑚 ∈ [𝑚1] including 𝑚1. The ‘simplest’ solution in the equivalent class is called as 

the Occam’s solution. An Occam’s solution can be obtained by minimising the ‘complexity’ 

of the solution. 

There are some different criteria for determine the ‘complexity’ of an inverse solution. The 

preference of the solution, such as smoothness, sparsity, or smaller norm, varies according to 

the prior information of the actual model. Depends on the preferred type of the model, the 
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meaning of the ‘simplest’ solution can be different. Generally speaking, the Occam’s solution 

of the inverse problem is a limit element (minimum or maximum), in terms of some property 

related to the preferred type of the model, in the equivalent class. 

Example 3.5 The estimated model in Example 2.1 (a vector of slowness) is preferred to 

be a vector with smaller L
2
-norm, since the L

2
-norm of the model is a measure of the 

feature complexity.  By using the 0
th

 order Tikhonov regularisation in the form of 

(3.10), the inverse solution, which has a minimum L
2
-norm and adequately fits the 

observation, can be obtained. 

Example 3.6 If the true model of mass density distribution in Example 2.2 is expected 

to be a smooth function, the inverse solution is preferred to be a smooth vector (i.e. the 

discretisation of a smooth function). The most smoothness inverse solution can be 

found by minimising the L
2
-norm of the first or second derivative of model m (denoted 

). The 1
st
 or 2

nd
 order Tikhonov regularisation is commonly used for this propose 

(Tikhonov and Arsenin 1977).  

Example 3.7 In compressive sensing, it is well-known that many natural signals are 

spare in the sense that they have concise representations when expressed in a proper 

basis (Candes and Wakin 2008). Let m be a unknown signal (model) which has a sparse 

basis W (e.g. the basis of a vector space), and m Wx , where W is a matrix, and x is 

the vector of coefficients. The sparsity of m is useful for solving the underdetermined 

inverse problem in the form of m Fd , when the dimension of d is much lower than 

the dimension of m. By minimising the L
1
-norm of x (denoted 

1
x ) subject to 

2
 FWx d , a sparse inverse solution can be obtained.   

Formally, an element m Q  is the maximum of a subset Q of poset 〈𝑃, ⪯〉 if 𝑞 ⪯ 𝑚 for any 

q Q . A minimum is defined dually. Maximum and minimum are also called as greatest 

element and least element for posets in some books. There are a unique maximum and 

minimum in a subset when they exist, which should be distinguished from the least upper 

bound (join) and the greatest lower bound (meet) (Davey and Priestley 2002). Join and meet 

of Q do not necessarily belong to Q. A maximum or minimum element of Q is named as a 

limit element of Q in this thesis.  

2
Lm
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For the IPMs, the models are used to estimate the measurand values, and the measurand 

values should reflect the empirical relation. Thus the solution (the estimated model) which is 

most useful for estimating the empirical relation of the measurand is preferred. The model 

space of an IPM is a poset , MM   with a (partial) order M  related to the empirical 

relation (see definition 3.3). If a solution of m is a minimum or maximum of the equivalent 

class[ ]m , it provides a least upper bound or greatest lower boundary of all the solutions 

(including the actual model) in the equivalent class, and thus it is useful for estimating the 

range of the measurand value and evaluating the empirical relation. For example, if a solution 

of m (denoted as m̂ ) is a minimum element in [ ], Mm   , then for any b M , if ˆ
Mb m , it 

can be derived that Mb m . Therefore, the solution of an IPM is desired to be a limit 

element in the equivalent class, when it exists. If the minimum and maximum elements both 

exist, the Occam’s solution should be chosen from the two elements according to the prior 

information of the actual model. 

b. Existence of Occam’s solutions 

To find a maximum or minimum in a subset Q of an ordered set P, the existence of such an 

element should be considered first. The existence of a limit element in Q can be assured when 

Q is a finite subset of a totally ordered set P. In other situations, the existence should be 

carefully examined.  

For the linear IPMs, usually the mathematical models are in the form of  

(3.18) Fm d ,      (3.18) 

or in the form of IFK:  

(3.19) ( , ) ( ) ( )
a

b
f x s m x ds d x .    (3.19) 

where x and s are variables of a same quantity. As mentioned in Example 2.2, IFK can be 

discretised into (3.18) using the quadrature method (also called simple collocation).  Hence, 

equation (3.18) can be taken as a general mathematical model of the linear IPMs. If the 

forward mapping F is an m-by-n matrix, where m n , and the measurand values are scalar, 

then the existence of limit elements can be examined using the basis vector(s) of the null 

space of F. 
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Example 3.8 Let x be a measurand value which is a scalar value,  

(3.20) ( ) Tx T m c m .    (3.20) 

where 𝒄𝑇𝒎 is a linear combination of the parameter of m. And let the dimension of the 

null space of F,    1dim N F .The mathematical model of the inverse problem is 

Fm d . For a measured data d (without noise), the collection of the vectors fit with d 

forms an equivalent class, denoted as [m]. The vectors in [m] can be expressed as  

(3.21) 
†

  m F d p ,    (3.21) 

where p is a (n-by-1) unit vector in the null space of F, 
†

F is the Moore-Penrose inverse 

of F, and R. For model m . The measurand value corresponding to m  is 

(3.22) 
†T T Tx    c m c F d c p .    (3.22) 

Since 
T

c p is normally a non-zero number, 
Tc p  can be any real number. By changing 

α, x  can be any real number. Hence, there is no maximum or minimum in the 

equivalent class [m]. In other words, the solution of the following objective function 

does not exist.  

(3.23) 
min T



c m

Fm d
     (3.23) 

Hence, for this type of IPM, without other constraints, there are normally no limit elements in 

the equivalent classes.  

However, for real situations, the model parameters are physical quantities. A lower bound 

and/or an upper bound of the physical quantities often exist naturally, or can be estimated 

reasonably. For example, if the model parameters are mass density, zero is the lower bound; 

if the parameters are concentration of contamination in water, according to the range of 

solubility limit of the contamination in water, a lower bound l 0  and an upper limit u are 

known. A lower bound or upper bound of model parameters assures the existence of a 

minimum or maximum of the equivalent class of solutions. The bounds can be used as 

constraints in the objective function (3.23). Assuming a lower bound l and an upper limit u 

are known, the problem of finding the minimum solution can be formulated as 
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(3.24) 

min 𝐜𝑇𝐦
𝐅𝐦 = 𝐝

𝐥 ⪯ 𝐦 ⪯ 𝐮

,     (3.24) 

where ⪯ is a pointwise order. The problem of finding maximum solution can be formulated 

by simply changing the objective function in (3.24) to max 𝐜𝑇𝐦 or min(−𝐜𝑇𝐦). 

Let p the rank of F, by the theorem of null space and rank of matrices (Aster et al 2013, p 

297), the dimension of the null space of F is  

(3.25)    pdim N n F .    (3.25) 

Let k n p  , then any solution in the equivalent class [m] can be written as 

(3.26) † 1 1 2 2 +...+ k kz z z m m p p p ,   (3.26) 

where †

† m F d , 1 2, ,..., kp p p  are the basis vectors of the null space N(F), and  

1 2, ,..., kz z z R.  

Let 1 2[ , ,..., ]T

kz z zz  be the vector of variables, and 1 2[   ... ]kP p p p  be the matrix consists 

of pi as the ith column, then (3.26) can be written in a more concise form as  

(3.27) † m m Pz .      (3.27) 

By substituting (3.27), (3.24) can be simplified as 

(3.28) 
min   𝐜𝑇(𝐦† + 𝐏𝐳)

𝐥 ⪯ (𝐦† + 𝐏𝐳) ⪯ 𝐮
 .    (3.28) 

For an IPM, F and c are known, and d is the measured data, thus †m  and P can be calculated 

directly. Parameters in vector z are the only variables (called design variables) to be 

determined. Since †

T
c m  is fixed, (3.28) can be written as 

(3.29) 
min   𝑓(𝐳)

𝐥 − 𝐦† ⪯ 𝐠(𝐳) ⪯ 𝐮 − 𝐦†
    (3.29) 

where 𝑓(𝐳) = 𝐜𝑇𝐏𝐳 , and 𝐠(𝐳) = 𝐏𝐳 is a vector-valued function. (3.29) is a typical 

optimisation problem which can be solved by the method of linear programming.  

Linear programming is a technique for the optimisation of a linear objective function, subject 

to linear inequality constraints. The optimal solution exists when the inequality constraints 

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Linear
http://en.wikipedia.org/wiki/Objective_function
http://en.wikipedia.org/wiki/Linear_inequality
http://en.wikipedia.org/wiki/Constraint_(mathematics)
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form a bounded and nonempty region, called feasible region, which is a convex polyhedron 

(Luenberger 1973).  

If an optimal solution z for (3.29) exists, a minimum solution m of the IPM can be found via 

(3.27), and the minimum measurand value 
Tx  c m can be obtained. The maximum solution 

can be obtained similarly by changing  𝑓(𝐳) into 𝑓(𝐳) = −𝐜𝑇𝐏𝐳. 

Example 3.9 Let a (3-by-5) matrix F be the forward mapping of an IPM, 

(3.30) 

75  70  55  26  81

26  89  14  84  24

51  96  15  25  93

 
 


 
  

F     (3.30) 

Suppose the measurand value is equal to the average of the elements in the model, and 

the upper and lower bounds of the model parameters are respectively equal to 5 and 1. 

Find the minimum model which fits with a noise-free data  

(3.31) [631.52,  516.66,  579.72]Td .   (3.31) 

 

Figure 3.7 The feasible region (The yellow polygon) of the optimisation problem 16 

The red lines and blue lines are corresponding to the upper bound and lower bounds respectively. 

This is an optimisation problem can be formulate into a objective function in the forms 

of (3.28) and (3.29), of which [0.2,0.2,0.2,0.2,0.2]Tc , l is a vector with all elements 

equal to 1, and u is a vector with all elements equal to 5. An estimation of m can be 

obtained as 
†

† m F d , and the matrix P in (3.29) can be obtained by a command ‘null’ 

in Matlab.  By substituting these vectors and matrix into (3.29), ten linear inequality 

http://en.wikipedia.org/wiki/Convex_set
http://en.wikipedia.org/wiki/Polyhedron
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constraints (five pairs) can be obtained. Each element in 𝐠(𝐳) provides two constraints 

corresponding to upper and lower bounds respectively, which are two parallel lines. 

The region between the parallel lines satisfied the two constraints. By sketching all the 

inequality constraints, a feasible area satisfies all the constraints can be obtained. As 

shown in Figure 3.7, the highlighted region is the feasible region of this example. By 

the theorem of linear programming, the optimal solution is one of the six vertexes of the 

highlighted polygon, which is the vertex corresponding to the smallest value of 𝑓(𝐳).  

For the nonlinear IPMs, the problem of finding the minimum solution can be formulated in a 

general form as  

(3.32)  

min  𝑇(𝐦)

𝐅(𝐦) = 𝐝
𝐥 ⪯ 𝐦 ⪯ 𝐮

 ,    (3.32) 

where T is a scalar (linear or nonlinear) function, and F is a nonlinear vector function (i.e. a 

system of nonlinear functions). Since there is no universal way of defining the preimage of d, 

solving (3.32) is far more complicated than solving (3.24). This problem is a nonlinear 

optimisation problem with equality and inequality constraints which belongs to the field of 

nonlinear programming. The necessary conditions of the existence of an optimal solution of 

(3.32) are given by Kuhn and Tucker (1951), known as  the Karush–Kuhn–Tucker (KKT) 

conditions. There is no universal method for solving this type of problem. Different methods 

should be used depends on the properties (convex, concave or nonconvex) of the objective 

function and the constraints. A type of algorithm in the field of artificial intelligence, named 

as the genetic algorithm is commonly used for searching the optimal solution of this type of 

problem (Guan and Aral 1999) (Michalewicz and Nazhiyath 1995). Due to the complexity of 

the problem, we shall not discuss it in detail in this thesis. 

Example 3.1 is also a typical nonlinear IPM, of which the maximum solution can be directly 

obtained by the backward mapping (erosion) due to the special properties of the closing 

operator which is a combination of a dilation followed by an erosion. As shown in Figure 3.8, 

the output of a closing operator is always above the input. Thus the inverse solution obtained 

in Example 3.1 naturally satisfies the principle of Occam’s razor.  
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Figure 3.8 Input and output of a closing filter (ISO 16610-41 2006)17 

The structuring element is a circular disk of 50 μm radius.  

c. An algorithm for finding the Occam’s solution 

When the model is a high dimensional-vector, the number of constraints can be very large, 

and an efficient algorithm is needed for finding the vertex of the feasible region 

corresponding to the optimal solution. There are two popular algorithms of finding the 

optimal solutions in linear programming, one is Dantzig’s simplex algorithm, and the other is 

Karmarkar’s interior point algorithm (Illés and Terlaky 2002). These two types of algorithms 

can be implemented by a ‘linprog’ command in the optimisation toolbox of Matlab. Using 

this command, a universal algorithm is designed for finding the minimum and maximum 

solutions of the IPMs when the model parameters are bounded, which is named as the 

algorithm of bounded parameters Occam’s solution (bpos).  Here the Occam’s solution refers 

to the solution of (3.24), which is derived with the optimal solution of (3.29). The Matlab 

code of the bpos algorithm is given in Appendix A.  

The bpos algorithm is implemented in the following steps: 

1. Input the forward mapping F, the coefficient vector c of the extraction function, and the 

upper and lower bounds u and l of the model parameters.  

2. Calculate the generalised inverse solution 
†

† m F d  using the measured data. 

3. Find the basis vectors of the null space of F with the null command, and combine these 

vectors into a matrix P. 
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4. Set vectors  𝐟 = 𝐜𝑇𝐏, †

†

 
  

 

u m
b

m l
and matrix [ , ]TA P P  so that problem (3.29) can be 

solved by the linprog function of Matlab. 

5. Solve the linear programming problem (3.29), and get the optimal solution z0. 

6. Get the minimum solution using  𝐦min = 𝐦† + 𝐏𝐳0. 

7. Set vector  𝐟 = −𝐜𝑇𝐏 to find the optimal solution z1, and get the maximum solution 

𝐦max = 𝐦† + 𝐏𝐳1. 

8. Evaluate the measurand values of the minimum solution and the maximum solution 

respectively using 
Tx  c m . 

The following example demonstrates that the bpos algorithm can be used to solve the 

objective function in the form of (3.24). 

Example 3.10 Let the forward mapping of an IPM be a 40-by-50 matrix F. Suppose 

that the true model truem  is a vector with 50 elements depicted in Figure 3.9, and the 

measurand value is equal to the average of the model parameters. According to the prior 

information of the model, the upper and lower bounds of the model parameters are 

respectively equal to 10 and 2. Test the bpos algorithm using the noise-free data 

trued Fm . 

An arbitrary 40-by-50 matrix F is used for the testing. The generalised inverse solution 

†

† m F d is calculated using the pinv command, which is shown in Figure 3.9 together 

with the true model. It can be observed that, although no noise is involved in the data,  

†m  does not fit with the true model very well, and †m  is out of the lower bound. The 

measurand value of the true model is true true

Tx  c m , where every element of c equals to 

1/50. Giving matrix F, vectors c, l, and u as the inputs, the algorithm vpos calculates the 

results minm  and maxm  as depicted in Figure 3.10 and 3.11 respectively. The minimum 

solution fits with the true model quiet well. More importantly, this algorithm provides a 

range of measurand values corresponding to the minimum and maximum solutions 

using 𝑥 = 𝐜𝑇𝐦. The measurand values of the true model, the minimum solution, and 

the maximum solution are respectively true 3.8672x  , min 3.8668x  , and max 3.8772x 
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. The interval [3.8668, 3.8772] is a range of the measurand values of the models within 

the bounds.   

 

Figure 3.9 The true model and the generalised inverse solution of the IPM 18 

 

Figure 3.10 The minimum solution of the IPM19 
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Figure 3.11 The maximum solution of the IPM20 

3.3   Generalised inverse of F 

3.3.1 Generalised inverse of a mapping 

As mentioned in Section 3.2.2, the backward mapping G is desired to be a generalised inverse 

of F. As reviewed in Section 2.7.1, the generalised inverses of linear operators have been 

extensively studied since 1955. However, the forward mapping of an inverse problem can be 

an arbitrary (linear or non-linear) mapping, so the properties of the generalised inverse of an 

arbitrary mapping are also important.  

The concept of Moore-Penrose inverse has been extended to the mappings (morphisms) in 

categories by Davis & Robinson (1972) and others. Base on the proof of the existence of 

Moore-Penrose inverse, the existence of the generalised inverses of an arbitrary mapping F is 

proved by Puystjens & Robinson (1981) with a condition that F has a (epic, monic) 

factorisation.  

The first two defining equations of Moore-Penrose inverse can be used to generalise some of 

the properties of Moore-Penrose inverse from linear operators to arbitrary mappings.  

Definition 3.5: Let :F M D be an arbitrary mapping. A mapping 
† :F D M satisfies 

equation (3.33) is called an inner inverse of F; and if 
†F  satisfies with the both (3.33) and 

(3.34), it is called a quasi-inverse of F. 
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(3.33) 
†FF F F      (3.33) 

(3.34) 
† † †F FF F      (3.34) 

Proposition 3.3: If a forward mapping F has an inner inverse
†F , the model resolution 

†F F

and data resolution 
†FF are both idempotent. 

Proof: By (3.33), we have 
† † † † †( )( ) ( )FF FF FF F F FF  .      

Hence 
†FF is idempotent.  

And 
†FF F F  implies

† † †F FF F F F , thus 
†F F is also idempotent.  □ 

Monic, epic or isomorphic are the general mapping properties of any mappings (see Section 

2.6.3), so the properties derived from these mapping properties are universal for any 

mappings. The following propositions are proved using category theory.  

Proposition 3.4: If a forward mapping :F M D is monic, and it has an inner inverse
†F , 

then the model resolution 
†F F  is an identical mapping MI .  

Proof:  

By definition, F is monic means for any pair of mappings :g A M  and :h A M , 

Fg Fh  implies g = h. 

By (3.33), we have 
† †( ) MFF F F F F F F I    . 

Replace g and h by 
†F F  and MI respectively, we get  

†

MF F I  .   □ 

Proposition 3.5: If a forward mapping F has a quasi-inverse
† :F D M , and 

†F is monic, 

then the data resolution 
†FF  is an identical mapping DI . 

Proof:  Similar to the proof of Proposition 3.4, by (3.34) 

(3.35) 
† † †( ) DF FF F I  .    (3.35) 

And since 
†F is monic, we get  

†

DFF I  .      □ 

Proposition 3.6: If the forward mapping :F M D  is epic, and it has an inner inverse
†F , 

then the data resolution 
†FF  is an identical mapping DI . 

Proof:  By (3.33), 
†FF F F  , which implies 

†( ) DFF F I F . 
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Since F is epic, by definition (Section 2.6.3), for any pair of mappings :g D C  and 

:h D C , gF hF  implies g = h. 

Replace g and h by 
†FF and DI , we get  

†

DFF I
.    

□
 

3.3.2 Range isomorphism theorem 

Theorem 3.1: For an arbitrary mapping :F M D , if it has a quasi-inverse
† :F D M , 

then the ranges (images) of F and 
†F are isomorphic, i.e.  

(3.36) 
†[ ] [ ]F M F D .     (3.36) 

Proof: Since 
†F is a quasi-inverse of F, by (3.33), for any m M ,  

(3.37) 
† ( ) ( )FF F m F m .    (3.37) 

Here F(m) is an arbitrary element in the range of F, [ ]F M . Therefore,  

(3.38) 
†( )FF p p , for any [ ]p F M .      (3.38) 

Similarly, for any d D , by (3.34), 

(3.39) 
† † †( ) ( )F FF d F d .    (3.39) 

Here 
†( )F d is an arbitrary element of

†[ ]F D . Therefore,  

(3.40) 
† ( )F F q q ,  for any 

†[ ]q F D .   (3.40)  

Two objects A, B are said to be isomorphic if there exists maps :f A B and 

:g B A , such that 1Ag f   and 1Bf g  . 

Hence, according to equations (3.38) and (3.40), we have proved that [ ]F M  is 

isomorphic to 
†[ ]F D .  □ 

The isomorphism between the ranges of F and
†F can be described by Figure 3.12. The 

symbol ~ stands for isomorphism. 
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Figure 3.12 Isomorphism between the ranges of F and 
†F 21 

Corollary 3.1: If 
†F is the quasi-inverse of F, then the range of F is isomorphic to the range 

of
†FF , and the range of 

†F is isomorphic to the range of
†F F .  That is  

(3.41) †[ ] [ ]F M FF D ,     (3.41) 

(3.42) 
† †[ ] [ ]F D F F M .     (3.42) 

Proof:  Since 
†F is the quasi-inverse of F, by (3.33) we have  

(3.43) †( [ ]) [ ]FF F M F M ,    (3.43) 

(3.44) † † †( [ ]) [ ]F F F F M F F M  .   (3.44) 

Therefore, by definition of isomorphic, 

(3.45)   
† [ ] [ ]F F M F M .    (3.45) 

Similarly, by (3.34), we can get 

(3.46) † †[ ] [ ]FF D F D .    (3.46) 

By Theorem 3.1,    

(3.47) 
†[ ] [ ]F D F M .     (3.47) 

Since isomorphism is transitive, from (3.45), (3.46) and (3.47), we can get  

† †[ ] [ ]F F M F D   and  †[ ] [ ]FF D F M .   □ 

Corollary 3.2: If both G and H are quasi-inverse of :F M D , then the ranges of G and H 

are isomorphic, i.e.  

(3.48) [ ] [ ]G D H D  .    (3.48) 

Proof:  Let  P GF , Q HF . 

Rm
Rd

M

D

[ ]F M
F

†F

†[ ]F D

F

†F
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By the definition of quasi-inverse, it can be observed that  

(3.49)  GFHFGF GFHF GF  , i.e.  PQP P ;       (3.49) 

(3.50) HFGFHF HFGF HF  , i.e.  QPQ Q .     (3.50) 

According to Theorem 3.1, from (3.49) and (3.50) we can get 

(3.51) [ ] [ ]GF M HF M .    (3.51) 

By Corollary 3.1, we have [ ] [ ]GF M G D  and [ ] [ ]HF M H D . 

Therefore, (3.51) becomes  [ ] [ ]G D H D .        □ 

Corollary 3.2 implies that the quasi-inverse of a mapping is unique up to isomorphism. 

3.4 Monotonicity of F and G 

Proposition 3.2 states that the monotonicity of GF is a necessary condition of P4. To study 

the monotonicity of GF, it’s necessary to investigate the monotonicity of F and G 

respectively. The monotonicity of a mapping h between two posets , AA   and , BB  

depends on the how the relations A and B  are defined.  

3.4.1 General monotonicity of G and F 

By using the partial orders of the model and data spaces defined in Section 3.2.4, the 

monotonicity of G and the desired monotonicity of F can be easily proved. This monotonicity 

of F and G is always satisfied as long as ≤𝑀 and ≤𝐷 are defined with Definition 3.3 and 3.4 

respectively.   

Proposition 3.7 The backward mapping G between the posets of data space and model space 

is monotonic. 

Proof:  Let ( )a am G d  and ( )b bm G d . By Definition 3.4, we get  

( ) ( ) ( ) ( )a D b a X b a X bd d TG d TG d T m T m     .   

And, by Definition 3.3, we get 

( ) ( ) ( ) ( )a X b a M b a M bT m T m m m G d G d     . Hence, 

(3.52) ( ) ( )a D b a M bd d G d G d   .   □ (3.52) 
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Proposition 3.8 When the desired property P4 is satisfied, F is monotonic between the posets 

of data space and model space, i.e. F is desired to be monotonic. 

Proof:  As shown in Section 3.2.5, P4 implies  

(3.53) 1 2 1 2( ) ( )M Mm m GF m GF m   .   (3.53) 

 And by (3.52), 1 2 1 2( ) ( ) ( ) ( )M DGF m GF m F m F m   . 

 Therefore, P4 implies  

(3.54) 1 2 1 2( ) ( )M Dm m F m F m   .      □ (3.54) 

This desired monotonicity of F is equivalent to the monotonicity of GF.  

3.4.2 Special monotonicity of G 

In Proposition 3.7, the backward mapping G is proved to be monotonic when the orders in the 

model and data spaces are defined by Definition 3.3 and 3.4. However, as mentioned in 

Section 3.2.4, in some cases, it’s not necessary to define ≤𝐷  with Definition 3.4. When 

Definition 3.4 is not applied, the general monotonicity of G and F is also not applicable.  

In many cases, F is monotonic. For instance, any non-negative matrix is monotonic between 

the vector spaces with pointwise orders, and the forward mappings of many linear inverse 

problems (e.g. Example 2.1 and 2.2) can be modelled as non-negative matrices. Moreover, 

the deterministic assumption implies that F is surjective (see Section 3.2.1). The following 

proposition shows that, under some condition, the monotonicity of G can be proved with the 

monotonicity of F.  

Proposition 3.9: Let : , ,A Bh A B     be a monotonic and surjective mapping, where 

, AA   is a totally ordered set, and , BB    is a poset, then the quasi-inverse h
†
 is strictly 

monotonic.  

Proof:   By the definition of quasi-inverse, 
† † † † and .hh h h h hh h   

By Theorem 3.1, the ranges of h and h
†
 are isomorphic,  

i.e. 
†[ ] [ ]h A h B , where 

†[ ]h B A , and [ ]h A B , since h is surjective. 

Let 𝐴∗ = ℎ†[𝐵], and let 
* *:h A B be the restriction of h to 𝐴∗. 

Then between 𝐴∗ and B, h
†
 is the inverse of 

*h . 
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Same as h, h
*
 is monotonic, thus for any 

*

1 2,a a A ,  

(3.55) 
* *

1 2 1 2( ) ( )A Ba a h a h a   .    (3.55) 

By the isomorphic property, h
*
 is injective, thus 

(3.56)  
* *

1 2 1 2( ) ( )a a h a h a   .     (3.56) 

By (3.55) and (3.56), we have 

(3.57) 
* *

1 2 1 2( ) ( )A Ba a h a h a   .    (3.57) 

For any ib B , let 
† ( )i ia h b , then † 1 *( ) ( ) ( )i i ib h a h a  . 

Assume 1 2b b , then 
* *

1 2( ) ( )h a h a . 

By (3.57) h
*
 is strictly monotonic, thus 

if 2 1Aa a , then 
* *

2 1( ) ( )Bh a h a , which contradicts with the assumption;  

if 1 2Aa a , then 
* *

1 2( ) ( )Bh a h a , which matches with the assumption. 

Since , AA    is totally ordered, 2 1Aa a  and 1 2Aa a are the only two options. 

So 1 2Bb b  implies 1 2Aa a , i.e. 
† †

1 2( ) ( )Ah b h b . 

Thus h
†
 is strictly monotonic.       □ 

This proposition is useful for the IPMs of which the empirical relation is a total order (e.g. 

weak order).  

3.5   Adjoint functors between the model and data spaces 

3.5.1 Adjoint functors between posets 

As mentioned in Section 2.6.1, a preordered set, ⟨X, ≾⟩ itself is a category X whose objects 

are the elements of X, and mappings are the ordering relations. A monotonic mapping  

F: M →D between two preordered sets can be taken as a functor between two categories 

(Steve 2006, p.191). Let G: D →M be another functor, if for all m M , d D , (3.58) is 

satisfied, the pair (F, G) is called a Galois connection (Davey and Priestley 2002), and G is 

right adjoint to F, and F is left adjoint to G. Galois connection is a particular case of adjoint 

pair of functors (see Section 2.6.6). 

(3.58) 𝐹(𝑚) ⪯ 𝑑  𝑚 ⪯ 𝐺(𝑑)    (3.58) 
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For a functor F between two categories of preordered sets, if G is right adjoint to F, by the 

properties of Galois connection, we have  

G1. both F and G are monotonic,  

G2. FGF F  and GFG G , 

G3.  𝐹𝐺(𝑑) ⪯ 𝑑  and  𝑚 ⪯ 𝐺𝐹(𝑚), for all m M , d D . 

It can be proved that when G1, G2 and G3 are satisfied, (3.58) is also satisfied, a proof can be 

found in (Davey and Priestley 2002, p.159).  

By G2, G and F are the quasi-inverse of each other. The adjoint functor of the forward 

mapping F can be used as a quasi-inverse of F for deriving the solution. In contrast, a quasi-

inverse of F is not necessarily an adjoint functor of F, since it does not always satisfy (3.58). 

For example, let :    denotes the ceiling function, which maps real numbers to 

integers such that min{ | }x n n x     , and let :I   be an identity function that 

embeds the integers into the real numbers, e.g. 3.2 4   , (4) 4I  . It can be easily verified 

that for any a , b , ( )a b a I b      is true. Hence the condition (3.58) is satisfied; the 

ceiling function is left adjoint to the identity function. 

3.5.2 From the desired properties to the Galois connection 

For an IPM, if the topological stability (P3) is satisfied, the ERS must be preordered, and thus 

the model and data spaces, M and D, are posets, which are also preordered. Under the 

deterministic assumption, if the estimated measurand values reflect the empirical relation 

(P4), F and G are proved to be monotonic (Section 3.4.1). Hence, when P3 and P4 are 

satisfied, G1 is satisfied. 

By P2, G is desired to be an inner inverse of F, i.e. FGF F (see Section 3.2.2). And by 

Proposition 3.6, if F is epic and G is an inner inverse of F, we have 

(3.59) DFG I .      (3.59) 

By multiplying each side of (3.59) with G, we get  

(3.60) GFG G .      (3.60) 
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In Section 3.2.1, it has been demonstrated that under the deterministic assumption, F is 

surjective, and thus epic. Therefore, if P2 is satisfied, G is the quasi-inverse of F, and G2 is 

satisfied.  

By (3.59), for any d D , ( )FG d d , so the 1
st
 inequality in G3 are satisfied.  

It is demonstrated in Section 3.2.6 that P5 implies that the solution of an IPM should be a 

limit element of its equivalent class when it exists. If a maximum element is chosen as the 

inverse solution, then the 2
nd

 inequality of G3 can be satisfied, thus G3 is satisfied.  

If a minimum element is chosen as the inverse solution, we have  

G3
*
. ( ) MGF m m  and ( )d FG d , for all m M , d D . 

It can be easily proved that G1, G2 and G3
* 

implies that G is left adjoint to F (Davey and 

Priestley 2002, p 159), i.e. 𝐺(𝑚) ⪯ 𝑑   𝑚 ⪯ 𝐹(𝑑). The following proposition concludes 

this section.    

Proposition 3.10: For the IPMs, if the desired properties P1 to P5 are all satisfied, under the 

deterministic assumption, F and G setup a Galois connection between the model and data 

spaces. 

Therefore, the IPM is a general type of inverse problem in metrology which is expected to 

process the structure of Galois connection. The logical relation between the desired properties 

and Galois connection is summarised in the diagram of Figure 3.13. 

P3     ERS is preordered     and  are posets

P4
 is monotonic 

 and  are monotonicD.A.

            Def. 3.3 & Def.3.4

P2
                                       

D.A. 

              

M D

GF
F G

FGF F

 


 






 


( , ) or ( , ) is a Galois connection

  D.A.   is epic
   

                           

               P5    ( )  or ( )

D

M M

F G G F

F
FG I

FGF F

GF m m m GF m












 
 

 


   



 

Figure 3.13 The logical relation between the desired properties and Galois connection22 

D.A. stands for the deterministic assumption 
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3.6 Conclusions 

This chapter is the main part of the theoretical basis of this thesis. A deterministic model of 

indirect measurements is proposed based on the representational theory of measurement. In 

this model, the inverse problem of measurement (IPM) is defined, which shows the 

connection between indirect measurements and inverse problems. Five desired properties of 

solving the IPMs with a backward mapping G are proposed and elaborated, which correspond 

to the forward mapping (P1), the fitting criterion (P2), the stability (P3), estimation of 

empirical relation (P4) and selection of inverse solution (P5). Topological stability, as one of 

the desired properties, is defined to generalise the concept of the stability of inverse problems 

for the situation of measurement, which implies that the model and data spaces are desired to 

be preordered. According to the topological stability, the model and data spaces of IPM are 

modelled as partially ordered sets. Moreover, the monotonicity of the model resolution (GF) 

is deduced from the desired property P4. The principle of Occam’s razor is applied for 

choosing inverse solutions. The existence of the maximum and minimum solutions of the 

IPMs is discussed, and an algorithm is designed for finding the solutions. The generalised 

inverse of the forward mapping F is investigated using category theory, and some structural 

properties of inverse problems are derived. Under the deterministic assumption, it is proved 

that the IPMs possess the structural properties of Galois connections when the five desired 

properties are satisfied. This characterises the structure of the IPMs.  
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Chapter 4 

Probabilistic Model of Indirect Measurements and 

the Inverse Problems of Measurement 

4.1 Introduction 

4.1.1 Uncertainty of the measurement process 

As pointed out by Gauss (1821) in his famous work on the theory of least squares: ‘however 

much care is taken with observations of the magnitude of physical quantities, they are 

necessarily subject to more or less considerable errors.’ Some errors vary randomly with each 

observation, and are independent of the measurement result; some errors are identical for all 

observations of the same nature, or depend on the measurement results. The former type of 

error is called random error, and the latter is called systematic error (JCGM 200 2008). These 

two types of errors normally arise simultaneously in a measurement. The variation of the 

error can be characterised by a parameter named the measurement uncertainty. 

In the deterministic model of indirect measurement, for investigating the structural properties 

of the IPM, the measurement process is modelled to be a deterministic mapping. However, in 

practice, due to measurement error, the measured value of an object is not always fixed, thus 

the deterministic assumption is not satisfied. To be able to involve the effect of measurement 

error, the deterministic model should be generalised to a probabilistic model.  

In the processes of indirect measurements, measurement uncertainty first appears in the 

measured data, which then affects the reliability of the estimated measurand value, and 

results an uncertainty in the measurand value. To be able to compare measurement results 

among themselves or with reference values, it is necessary to assess the reliability of the 

measurement results using uncertainty (JCGM 100 2008). Solving the associated IPM is not 

only about estimating the measurand value; the evaluation of the uncertainty of the 

measurand value is also important. To do that, it is necessary to understand the propagation 

of uncertainty via the backward mapping.  

For inverse problems, the noise in the measured data is an important issue, which includes the 

measurement error and the rounding error. It cannot be ignored in the process of solving the 
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inverse problem, since it is directly related to the existence issue and the stability issue of 

inverse problems. Due to the noise, the data can be out of the range of the forward mapping F, 

thus it is possible that no solution exactly fits the data. Furthermore, due to the noise, if the 

backward mapping is sensitive to small changes, the noise effect can dominate the inverse 

solutions. To include the noise under consideration, the mathematical model of the inverse 

problem is often written as 

(4.1) ( )d F m   ,     (4.1) 

where  is a random variable representing the noise in the data and F is assumed to be the 

exact functional relation between the model and the noise-free data.  

The noise also affects the desired properties of solving the IPM. It is known that there is 

certain amount of noise in the measured data and the magnitude of the noise can be estimated 

in terms of an interval; thus, it becomes not necessary to find a solution that fits the data 

exactly. Instead, a small misfit should be acceptable. Hence the fitting criterion (P2) can be 

weakened from FGF F  to 
2

( )F m d   , where ε is a small number. This allows a trade-

off between fitting the data and minimising the complexity of the inverse solution, and 

thereby, improves the stability of the solution. 

Under the deterministic assumption, the desired property of selecting the solution of the IPM 

(P5) is formulated in terms of the objective function (3.24). By weakening the fitting criterion, 

the objective function (3.24) can be written as 

(4.2) 

min 𝐜𝑇𝐦
‖𝐅𝐦 − 𝐝‖2 ≤ 𝜀

𝐥 ⪯ 𝐦 ⪯ 𝐮

 ,     (4.2) 

where 𝒄𝑇𝒎 is a linear combination of the parameter of the model m. The algorithm for 

solving this objective function is given by Aster et al. (2013, p 170) based on the bounded 

value least square algorithm given by Stark and Parker (1995). By using this algorithm, an 

inverse solution with the minimum (or maximum) value of the measurand can be obtained.  

Lastly, in the probabilistic model, the estimation of empirical relations is a big concern. The 

empirical relations, estimated with the measurand values, become uncertain when the 

uncertainties of the estimated measurand values are significant. Therefore, the empirical 

relations should be estimated and described in a probabilistic approach.  
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4.1.2 Measurands with intrinsic uncertainties 

The uncertainty of measurement results can be generated not only from the measurement 

process but also from the measurand itself. In the deterministic model of measurement, the 

measurand values are considered as fixed numbers or vectors. This is because, in classical 

physics, it is commonly believed that a physical quantity of an object can always be measured 

as a value. However, in quantum mechanics, it is impossible to measure a property of some 

microscopic particle without creating a significant disturbance to the state of the particle. This 

inevitable disturbance is called the observer effect, which makes the measurement of the 

exact values of some quantity at the quantum level impossible. For example, the exact 

positions of electrons at any moment are unobservable. Many physicists, followed by 

Heisenberg (1925), believe that a quantity is physically meaningful only if it can be observed 

via experiments. Thus, it is meaningless to use an exact value to describe the position of an 

electron; instead, an uncertainty should be given for the position.  

In Heisenberg’s celebrated paper (1927), he demonstrated a universal principle called the 

uncertainty principle, which states that some pairs of quantities at quantum level, such as 

position and momentum or position and velocity, cannot be measured accurately at the same 

time. The more precisely one is known, the less precisely the other can be known. This 

principle can be expressed by an inequality of the standard deviations. In the case of position 

and momentum, the inequality is 

(4.3) 

2
x p   ,      (4.3) 

where is the reduced Planck constant, and x and p  are the standard deviations of position 

and momentum, respectively. Thus, if the product of the position and momentum of a small 

particle is taken as a measurand q, there is an intrinsic minimum uncertainty of q that cannot 

be eliminated by any measurement method.  

This kind of intrinsic uncertainty exists not only in the cases of microscopic particles, but also 

in general situations. As pointed out in the GUM (guide to the expression of uncertainty in 

measurement) standard (JCGM 100 2008, p.49), a measurand cannot be completely specified 

without an infinity amount of information. A limited description of a measurand, such as the 

velocity of sound in air, is incomplete since it leaves room for interpretation. This inevitable 

incompleteness introduces a component of uncertainty into the uncertainty of the 
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measurement result, which is called definitional uncertainty in JCGM 200 (2008). Thus, at 

some level, every measurand has such an intrinsic uncertainty.  

If the intrinsic uncertainty is significant, there is no such thing as the ‘true’ value of the 

measurand. Instead, the measurand should be represented by a probability distribution. A 

measurand with an intrinsic uncertainty is called as a stochastic measurand. For a stochastic 

measurand, the measurand value of an object should be described by a random variable with 

a specified distribution. This completely affects the way of estimating empirical relations.  

In this chapter, a methodology of estimating empirical relations according to the measured 

data is developed, which includes a method of evaluating the uncertainty of measurement 

results and a method of estimating empirical relations with probabilities assigned.  

4.2 Propagation of uncertainty in indirect measurement 

4.2.1 A law of propagation of uncertainty 

A law of propagation of uncertainty from measured data to measurement results is introduced 

in GUM (JCGM 100 2008), which provides a method to treat the uncertainty components 

identically so that they can be combined to estimate the uncertainty of the measurand. In this 

method, it is assumed that the measurand x can be written in the form of 1 2( , , , )nx g d d d , 

and function g is known, where id  are the random variables representing the values of the 

proxy quantities. By means of a first-order Taylor series, an approximation of a small 

deviation of x about its expectation, x , can be obtained in terms of small deviations of di 

about their expectations, i  (JCGM 100 2008):  

(4.4) 

1

( )
n

x i i

i i

g
x d

d
 




  


 .    (4.4) 

Thus, the square of xx   can be written as 

(4.5) 

1
2 2 2

1 1 1

( ) ( ) ( ) 2 ( )( )
n n n

x i i i i j j

i i j ii i j

g g g
x d d d

d d d
   



   

  
     

  
  . (4.5) 

The variance of x is equal to the expectation, 
2[( ) ]xE x  , and the covariance of di, dj is 

equal to the expectation, [( )( )]i i j jE d d   . Thus equation (4.5) implies that 
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(4.6) 

2
1

2 2

1 1 1

( ) ( ) 2 cov( , )
n n n

i i j

i i j ii i j

g g g
u x u d d d

d d d



   

   
  

   
  ,   (4.6) 

where u(x) is the estimated standard deviation of x and cov(di, dj) is the covariance of di, dj. If 

the observable quantities are independent of each other, equation (4.6) can be simplified as 

(4.7) 

2

2 2

1

( ) ( )
n

i

i i

g
u x u d

d

 
  

 
 .     (4.7) 

The method of estimating the uncertainty of the measurand with equations (4.6) and (4.7) can 

be found in detail in GUM (JCGM 100 2008).  

4.2.2 Transformation of covariance matrices 

Equation (4.6) is applicable only when function g in equation (2.1) is known. For an IPM, g 

is a backward mapping, which is normally unknown, and the measurand can be a vector. For 

the situation that the forward mapping is a matrix, F, as mentioned in Chapter 3, the 

backward mapping is desired to be the Moore–Penrose inverse (i.e. a quasi-inverse) of F, 

namely 
†

F . If the stability of 
†

F is acceptable (depends on the condition number), 
†

F can be 

used as a backward mapping, and the distribution of the model m can be estimated by 

transferring the uncertainty in data d to m via
†

F .  

To characterise the distribution of a random vector, the distribution of each component of the 

vector and the covariance between the components should be specified. A random vector is 

said to have a multivariate normal distribution (MVN) if each linear combination of the 

components of the vector is normally distributed (Genz and Bretz 2009). If a random vector 

1 2[ , ,..., ]md d dd  has a MVN distribution, d can be completely characterised by a vector 

1 2( ) [ ( ), ( ),..., ( )]mE E d E d E dd  of the expected values and a covariance matrix C of d. The 

elements in C are 

(4.8) , cov( , )i j i jC d d .     (4.8) 

The multivariate normality can be tested via Mardia’s test (Mardia 1970), the BHEP test 

(Henze and Wagner 1997) and some other methods. A detailed survey of these testing 

methods is available in the paper by Henze (2002).  
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For an IPM, let d denotes the random vector of measured data, if d has the MVN distribution, 

the distribution can be specified as ~ ( ( ), )N Ed d C , where ( )E d  and C can be obtained 

according to the measured data.  

The vector of model m can be estimated as 

(4.9) 
†m F d .       (4.9) 

It can be proved that, for a multivariate normal random vector, 𝐱~𝑁(𝐸(𝐱), 𝐂𝐱) , after 

multiplying a matrix A, the output vector y is still multivariate normal, and the mean and the 

covariance of y are ( ) ( ( ))E Ey A x and cov( ) T xy AC A , respectively (Searle 1982). Thus, 

m has an MVN distribution, and the mean and the covariance of m can be obtained as 

(4.10) 
†( ) ( ( ))E Em F d ,          (4.10) 

(4.11)        
† †cov( ) ( )Tm F C F .                  (4.11) 

By the properties of the Moore–Penrose inverse, the estimated distribution of m obtained 

from equations (4.10) and (4.11) is the distribution of the least square solutions of the model. 

According to the definition of the multivariate normal random variable, the PDF (probability 

density function) of m is  

(4.12) 

 

11 1
( ) exp ( [ ]) cov( ) ( [ ])

2(2 ) det cov( )

T

n
f E E



 
    

 
m m m m m m

m
, (4.12) 

where n is the dimension of vector m (Chatfield and Collins 1981).  

Geometrically, the contours of equal probability density of a MVN vector m are (hyper-) 

ellipsoids centred at [ ]E m (Hansen 2005). Thus, the range of the MVN vector at a 

confidence level (such as 99%) is an ellipsoid. The directions of the principal axes of the 

ellipsoids are given by the eigenvectors of the covariance matrix, cov(m). The lengths of the 

principal axes are scaled by the square roots of the corresponding eigenvalues.  

An example of the distribution of a two-dimensional MVN vector m is depicted in Figure 

4.1. The green ellipse is the 99% confidence region of the random vector. 
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Figure 4.1 An example of a two-dimensional multivariate normal distribution  

with the contour of 99% confidence level (Wikipedia contributors 2015)23 

It is clear that the ellipsoid confidence region of m obtained by equations (4.10) and (4.11) is 

correlated with the ellipsoid confidence region of d at the same confidence level. Let Em be 

the set of points in the former region and Ed be the set of points in the latter region, which are 

open sets in vector spaces. It can be directly derived from the range isomorphism theorem in 

Chapter 3 that Em is isomorphic to the subset of Ed in the range of F, i.e. 

(4.13)  ( )m dE E R F .    (4.13) 

(4.13) implies that if F is surjective, Em is isomorphic to Ed.  

Due to the isomorphism, there is a one-to-one correspondence between the points in 

( )dE R F and the points in Em; hence Em can be considered as an open set transformed from 

( )dE R F . Since the linear mapping 
†

F  is continuous, the transformation is a deformation. 

With the singular value decomposition (SVD) method, F can be decomposed as  

(4.14) 
TF USV ,     (4.14) 

where U and V are orthogonal matrices, and S is a diagonal matrix with diagonal elements 

called singular values (Golub and Van Loan 2012). From equation (4.14), it can be easily 

deduced that  

(4.15) 
† † TF VS U .     (4.15) 
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Geometrically, V and 
T

U  can be taken as rotation matrices, and S
†
 can be taken as a scaling 

matrix. Hence, the transformation from ( )dE R F to Em is a rotation, a stretching and another 

rotation. The deformation is determined by the singular values in S. The larger the ratio of the 

maximum and minimum the singular values (conditional number), the larger the deformation 

will be. This explains how a small change in the measured data can be extremely enlarged in 

the inverse solution. An example of the transformation from a circular region of data points to 

an ellipse region of points via a 2-by-2 matrix G is demonstrated in Figure 4.2, where 

7 9

5 3

 
  

  
G . 

 

Figure 4.2 A demonstration of the transformation from a circular region of data points 

to an ellipse region of points via a 2-by-2 matrix G 24 

4.2.3 The Bayesian approach 

The method of evaluating the uncertainty of a model by transforming the covariance matrix 

of the measured data to a covariance matrix of the model with equation (4.11) has some 

limitations. Firstly, it is applicable only when the data has the MVN distribution; secondly, 

the Moore–Penrose inverse of F can be ill-conditioned, which is not suitable for estimating 

the expected values of a model due to the stability issue. To solve the stability issue, a 

regularisation is often applied to obtain a regularised backward mapping G which is more 

stable then F
†
. But, as mentioned before, a bias of the inverse solution will be introduced 

when the stability is improved by the regularisation. Due to the bias, after regularisation, the 

estimated result of the model is not statistically meaningful.  
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The Bayesian approach allows the estimation of the distribution of the model according to the 

distribution of the data and the prior information of the model in an inverse problem. It has 

been widely applied for solving ill-conditioned inverse problems since it avoids the bias of 

regularisation.  

In this approach, the model to be estimated is taken as a random variable or random vector. It 

is assumed that based on some prior information of the model, such as constraints of physical 

laws and experience-based intuition, a prior distribution of the model is known, which is 

expressed as a PDF, p(m). Let ( | )f d m denote the PDF of the measured data d of the model 

m. It can be assumed that the measurement errors corresponding to the components id  of the 

data d are independent, so ( | )f d m can be expressed as a JDF (joint probability density 

function) of the PDF of id  as follows: 

(4.16) 1 2( | ) ( | ) ( | )... ( | )nf f d f d f dd m m m m .   (4.16) 

If id  is normally distributed with a standard deviation, i , the PDF of id  is  

(4.17) 

 
2

1 1
( | ) exp

22

i i
i

ii

d
f d

 

  
    
   

Fm
m .  (4.17) 

It is well known that Bayes theorem can be expressed in the following equation: 

(4.18) 

( | ) ( )
( | )

( )

P B A P A
P A B

P B
 ,    (4.18) 

where A, B are events. This theorem can be used to update the prior probability for a 

hypothesis P(A), according to some acquired evidence P(B|A) and P(B). The updated result, 

P(A|B), is called a posterior probability.  

Bayes theorem is also applicable to updating the PDF of a random variable, from the prior 

distribution to a posterior distribution. Based on this theorem, the probability distribution of 

the model parameters can be estimated as a posterior distribution: 

(4.19) 

( | ) ( )
( | )=

( )

f p
q

g

d m m
m d

d
,    (4.19) 
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where ( )g d is the PDF of the data independent of the model. By the law of total probability 

(Zwillinger and Kokoska 1999),  we have 

(4.20) 

all models

( ) ( | ) ( )g f p d d d m m m .   (4.20) 

In equation (4.19), g(d) is simply a constant c that normalises the distribution ( | )q m d so that 

its integral in model space is equal to 1 (Aster et al. 2013, p 256). In many cases, it is not 

necessary to know the constant c, so equation (4.19) is often expressed by a proportional 

relationship: 

(4.21) ( | ) ( | ) ( )q f pm d d m m .    (4.21) 

It is often reasonable to assume that the data d has a MVN distribution, and the prior 

distribution is also MVN. For a linear inverse problem, let d0 be the mean of the measured 

data, CD be the covariance matrix of corresponding data, m0 be the mean of the prior 

distribution and CM be the covariance matrix of the prior distribution. According to the PDF 

of multivariate normal random vector, the PDF of the d, given m, is  

(4.22) 
1

0 0

1 1
( | ) exp ( ) ( )

2(2 ) det( )

T

D
n

D

f


 
    

 
d m Fm d C Fm d

C
. (4.22) 

Thus  

(4.23) 
1

0 0

1
( | ) exp ( ) ( )

2

T

Df  
    

 
d m Fm d C Fm d    (4.23) 

Similarly, for the prior distribution, we have 

(4.24) 
1

0 0

1
( ) exp ( ) ( )

2

T

Mp  
    

 
m m m C m m    (4.24) 

Thus, from equation (4.21), we get 

(4.25)  1 1

0 0 0 0

1
( | ) exp ( ) ( ) ( ) ( )

2

T T

D Mq   
       

 
m d Fm d C Fm d m m C m m . (4.25) 

It has been demonstrated by Tarantola (2005) that equation (4.25) can be simplified to 

(4.26)  1

'

1
( | ) exp ( ) ( )

2

T

MAP M MAPq  
    

 
m d m m C m m ,  (4.26) 



98 

 

where MAPm is the maximum a posteriori (MAP) model, which is the model maximising the 

value of ( | )q m d , and  

(4.27)  
1

1 1

'

T

M D M


  C F C F C .    (4.27) 

The MAP model can be obtained by maximising the exponent in equation (4.25), or 

minimising its negative, which is equivalent to the following linear least squares problem 

(Aster et al. 2013): 

(4.28) 

2
1/21/2

0

1/21/2

0 2

min DD

MM





  
   

   

C dC F
m

C mC
.    (4.28) 

The proportional relation in equation (4.26) implies that the posterior distribution is also a 

MVN distribution, of which the mean is MAPm , i.e. the solution of equation (4.28), and the 

covariance is 'MC .  

In theory, the Bayesian approach can also be applied when measurement errors are not 

normally distributed, but, in practice, the associated analytical computations can be difficult. 

For situations of not normally distributed measurement errors and nonlinear inverse 

problems, the Markov chain Monte Carlo method can be used to obtain samples from a 

posterior distribution, which is a computational method and not in the scope of this thesis. 

The details of this method can be found in the work by Hastings (1970) and Aster et al. 

(2013). 

4.3 The ERSs of stochastic measurands 

The measured value of a measurand is meaningful only if it can be used for estimating the 

empirical relation. Before discussing how to estimate empirical relations according to the 

measurement results with uncertainty, it is helpful to understand the ERSs of stochastic 

measurands and the way of representing these ERSs. 

4.3.1 Semiorder and interval order 

It is obvious that the ERS of a stochastic measurand is different from the ERSs discussed 

before. If the measurand values of a stochastic measurand are considered as intervals of the 

possible values, when two intervals of objects a, b intersect, both 𝑎 ≺ 𝑏 or 𝑏 ≺ 𝑎 are possible. 

Thus, the empirical relation is neither an equivalence relation nor a weak order. In this 
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situation a, b can be considered as ‘being same up to a small error’, which is a kind of 

relation called indifference or similarity, denoted as 𝑎 ≀ 𝑏. Indifference is a non-transitive and 

symmetric relation, which was first studied by Campbell (1928), and developed in the notion 

of a just-noticeable-difference (jnd) by Goodman (1951) and Galanter (1956). By using 

axioms, Luce (1956) defined this indifference relation in an order structure, called semiorder, 

which can be represented by a relational system of a set of real intervals with a constant size. 

A more general type of order is called interval order (Wiener 1921), which can be used to 

define the relation of intervals with different sizes. Semiorders and interval orders are 

commonly used in psychology to characterise a perceived or measured relation of objects 

(stimuli, alternatives) according to some attribute (e.g. brightness, loudness, preference) when 

“small differences” in the relevant attribute are not detectable due to a sensory or 

instrumental threshold (Fishburn 1973b).  

A binary relation ⊲ on A is a semiorder if and only if the following three axioms are satisfied.  

(i) ⊲ is irreflexive. 

(ii)  and  or a b c d a d c b , for all , , ,a b c d A . 

(iii)  and  or a b b c a d d c , for all , , ,a b c d A . 

An interval order is a binary relation that satisfies axioms (i) and (ii). It is clear that a 

semiorder is also an interval order. If neither a b  nor b a , then 𝑎 ≀ 𝑏, where ≀ is an 

indifference. The intransitive property makes ≀ different from the equivalence relation. 

It has been proved by Fishburn (1970) that if A is a countable set and ⊲ is an interval order, 

then ( , )A  can be represented by an ordered set of real intervals in the sense that,  

(4.29) a b   if and only if  sup ( ) inf ( )J a J b ,   (4.29) 

for any ,a b A and their corresponding intervals J(a) and J(b). Scott and Suppes (1958) and 

Scott (1964) proved that if ⊲ is a semiorder on a finite set A then there is a mapping J from A 

to real intervals which satisfies equations (4.29) and (4.30). 

(4.30)  sup ( ) inf ( ) 1J a J a  , for all a A     (4.30) 

4.3.2 Empirical relation with a probability assigned 
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If the measurand values of a stochastic measurand are considered as random variables, the 

possible empirical relation, for instance a weak order, between two objects may not be unique. 

Even if there is no measurement error, it is still possible to observe different empirical 

relations (a ≺ b and b ≺ a) between a pair of objects. Thus, a probability should be assigned 

to each empirical relation. A theory of representing an ERS with the relational system of 

random variables in ordinal measurement was developed by Domotor (1969). Suppose ,A 

is an ERS of a stochastic measurand, where  is a weak order, then ,A   is measurable if 

there exists a random function φ, such that, for all ,a b A ,  

(4.31) ( ) ( ( ) ( ))P a b P a b   ,    (4.31) 

where P is a probabilistic function, ( ), ( )a b   are random variables and ( )P a b is the 

probability of observing the occurrence of a b . Instead of using semiorder or interval order 

to replace the empirical relation in the deterministic model (preorder or weak order), 

Domotor’s approach assigns a probability to each empirical relation to enable the 

compatibility of uncertainties.  

The measurement of a measurand with intrinsic uncertainty can be modelled as a random 

function φ, and equation (4.31) is desired to be satisfied. If the measurement φ satisfies 

equation (4.31), the empirical relation can be correctly estimated with a probability according 

to the measurement results. 

Moreover, if the probabilistic function P satisfies equation (4.32), two binary empirical 

relations, W and S, can be naturally defined in terms of equations (4.33) and (4.34), 

respectively. 

(4.32) ( ) ( ) 1P a b P b a      (4.32) 

(4.33) aWb    if and only if   
1

( )
2

P a b     (4.33) 

(4.34) aSb   if and only if  ( ) ( )P a c P b c , for all c A   (4.34) 

Relations W and S are useful for determining the conformity or classification according to 

measurement results when the uncertainties of the results are significant. The properties of 

relations W and S (such as weak and strong stochastic transitivity) are studied in detail in the 

work by Block and Marschak (1960) and Fishburn (1973a).  
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4.4 Evaluation of empirical relations with interval orders 

Every specified measurand has some intrinsic (definitional) uncertainty, since the 

specification is always incomplete, and thus can be taken as a stochastic measurand. The ERS 

of the stochastic measurands can be represented by the relational system of real intervals or 

random variables. Hence, conversely, by treating the measurement results as intervals or 

random numbers, the empirical relation of the ERS can be estimated. 

Measurement results with uncertainty can be expressed in terms of intervals containing the 

set of true values of a measurand with a stated probability, which are named as coverage 

intervals at a coverage probability in JCGM 100 (2008). The concept of coverage interval is 

similar to a statistical concept called confidence interval. The difference is that confidence 

interval should be evaluated according to type A uncertainty only, but coverage interval can 

be evaluated according to the uncertainties of both type A and type B. For a stochastic 

measurand, it is natural to consider the estimated coverage intervals as the (mathematical) 

representations of the objects in the ERS. Let J(a), J(b) denote the coverage intervals of a 

stochastic measurand corresponding to objects ,  a b A . When J(a) and J(b) intersect with 

each other (i.e. 𝐽(𝑎) ∩ 𝐽(𝑏) ≠ ∅), neither sup ( ) inf ( )J a J b nor sup ( ) inf ( )J b J a . By 

(4.29), neither 𝑎 ⊲ 𝑏 nor 𝑏 ⊲ 𝑎, thus 𝑎 ≀ 𝑏.  

If J(a), J(b) do not intersect, then one interval is strictly smaller than the other. For example, 

if sup ( ) inf ( )J a J b , then, by equation (4.29), 𝑎 ⊲ 𝑏 . Since the coverage intervals are 

defined subject to a coverage probability, the estimated interval order also has an uncertainty 

equal to the coverage probability.  

For instance, let J(a), J(b), J(c) be the coverage intervals of three objects a, b, c respectively. 

If, under 95% coverage probability, J(a), J(b), J(c) are distributed as shown in Figure 4.3, the 

empirical relations can be written as 𝑎 ≀ 𝑏, 𝑏 ≀ 𝑐, and 𝑎 ⊲ 𝑐.  

( )J a

( )J b

( )J c

 

Figure 4.3 The distribution of coverage intervals A, B, C 25 
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Here 𝑎 ⊲ 𝑐 means, at a 95% confidence level, that the measurand of a is strictly smaller than 

the measurand of c. And 𝑎 ≀ 𝑏 means, at a 95% confidence level, that it cannot be assured 

whether 𝑎 ⊲ 𝑏 or 𝑏 ⊲ 𝑎. 

4.5 Evaluation of empirical relations with probabilities assigned 

The problem is, when the coverage intervals of the measurand values intersect, instead of 

saying that the measurands of two objects are ‘the same up to a small error’, can we give a 

more meaningful statement by estimating the probability of a certain empirical relation? For 

instance, in Figure 4.3, what is the probability that the measurand of a is strictly smaller than 

the measurand of b? To answer the question, it is necessary to treat the values of the 

measurand as random variables. 

Let α, β be the random variables which represent the stochastic measurand of objects 

,a b A ; α, β are independent of each other. The expected values and standard deviations of 

α, β can be estimated according to the measurement results of a, b. Finding the empirical 

relation between a, b with a probability assigned is equivalent to finding the relation of α, β 

and its probability. To do that, we can create a random variable, 𝛾 = 𝛼 − 𝛽 . Then  

(4.35) 𝑃(𝛼 < 𝛽) = 𝑃(𝛾 < 0),    (4.35) 

(4.36)           𝐸(𝛾) = 𝐸(𝛼) − 𝐸(𝛽),    (4.36) 

(4.37) 
2 2 2( ) ( ) ( ) 2cov( , )u u u       .    (4.37) 

The covariance, cov(α, β), is zero, since α, β are independent. Thus 

(4.38) 
2 2( ) ( ) ( )u u u    .    (4.38) 

If α and β have the same type of distribution, we have 

(4.39)  ( 0) 0P F   ,    (4.39) 

where F  is the CDF of γ. It can be obtained according to 𝐸(𝛾) and 𝑢(𝛾). For instance, if a 

and b are both normally distributed,  

(4.40) 

2
0 1 1 ( )

(0) exp
2 ( )( ) 2

E
F

uu


 

 

  
       

 .   (4.40) 
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If the distributions of α and β are of different types, the situation is more complicated. Let the 

𝑔(𝛼) be the PDF of α, and ℎ(𝛽) be the PDF of β, since two distributions are independent, the 

JDF, 𝑓(𝛼, 𝛽 ) is (Chatfield and Collins 1981) 

(4.41) 𝑓(𝛼, 𝛽 ) = ℎ(𝛼)𝑔(𝛽).    (4.41) 

The CDF F can be written in terms of an appropriate integral over the JDF (see Figure 4.4) 

as follows: 

(4.42) 

0

0

0

(0) ( , )

( ) ( )

( ) ( )

( ) ( ) .

F f d d

h g d d

h g d d

h d g d



 

 

 



   

   

   

   

 

 

 



 









 

 

 

 

   (4.42) 

α

β

0  

0  

 

Figure 4.4 Integration of a JDF of two independent random variables, α and β,  

to evaluate the probability of 𝜶 − 𝜷 < 𝟎.26 

Example 4.1 Let α be a normally distributed variable, ~ (3,0.09)N , and β be a 

uniformly distributed variable, ~ (2.8,4)U , then the PDFs of α and β are  

(4.43) 

2
1 1 3

exp
2 0.

( )
30.3 2

h 




  
     



,    (4.43) 

(4.44) 

1
    for 2.8 4           

( ) 4 2.8

0               for 2.8 or 0

g




 

 
  

  
  

.    (4.44) 

By equation (4.42), the probability of 𝛼 < 𝛽 is  
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(4.45) 

24

2.8

1 1 3 1
( ) (0) exp

2 0.3 4 2.80.3 2

0.7956

P F d d






   



    
             



 
 .     (4.45) 

By equation (4.31), the estimated empirical relation between a, b is 

(4.46) ( ) ( ) 0.7956P a b P     ,    (4.46) 

or  0.7956a b.  

If the empirical relation ≺ is complete (for all a b A  , either 𝑎 ≺ 𝑏 or 𝑏 ≺ 𝑎), equation 

(4.32) is satisfied. According to the estimated probability, ( )P a b , a complete binary 

relation W can be obtained according to equation (4.33). This provides a general method to 

define a binary relation between a pair of measured objects when the uncertainty is involved.  

4.6 Conclusions 

In this chapter, it has been demonstrated that it is necessary to generalise the deterministic 

model of indirect measurements to a probabilistic model due to the inevitable measurement 

error and the intrinsic uncertainty of the measurand. In the probabilistic model, the 

measurand values are treated as probabilistic distributions. As a result, the empirical relation 

should be estimated with probability assigned. A comparsion of the deterministic model and 

the probabilistic model of indirect measurements is given in Table 4.1. 

For indirect measurements, a part (normally the major part) of the uncertainty of the 

measurand value is transformed from the measurement uncertainty of the measured data. A 

method of deriving the uncertainty of the measurand from the uncertainty of the observations 

is introduced for the measurand that can be expressed by a known function of the proxy 

quantities. For linear inverse problems, a method of deriving the covariance matrix of the 

model according to covariance matrix of the multivariate normal random vector of the data is 

introduced, and a geometrical understanding of the transformation of the uncertainty is 

provided based on the range isomorphism theorem. The Bayesian method is introduced for 

estimating the distribution of the measurand when the function from the proxy quantities to 

the measurand is unknown. For one-dimensional measurands, the interval order is introduced 

to define the ordering relations of the estimated coverage intervals of measurand values, and 

thereby used for estimating empirical relations. For the situation that the coverage intervals 
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intersect, a new method of estimating the empirical relations with probability assigned is 

introduced.  

The intrinsic uncertainty of a measurand is closely related to the way of specifying the 

measurand, i.e. the specification of the measurand. The uncertainty of specification is defined 

in the geometrical product specifications and verification system (GPS) (ISO 17450-2 2002), 

which is discussed in detail in Chapter 6. 

 Deterministic model Probabilistic model 

Measurement 

Process 

A homomorphism φ, and

( ) ( )a b a b    

A random function φ, s.t.

( ) ( ( ) ( ))P a b P a b    

Measurand values Fixed numbers probabilistic distributions 

Measurement 

results 
Fixed numbers Random variables  

Empirical relation Preorder Preorder with probability assigned 

ERS 

A set of objects and their 

empirical relations 

corresponding to a measurand 

A set of objects and their 

probabilistic empirical relations 

corresponding to a measurand 

NRS 
A set of numbers and their 

relations 

A set of random variables (with 

specified distribution) and their 

probabilistic relations 

Mathematical 

model of the IPM 
( )d F m  ( )d F m    

Fitting criterion 

(P2) 
FGF F  

2
( )F m d    

Selection of 

inverse solution 

(P5) 

min 𝑇(𝑚)

𝐹(m) = 𝑑
𝑙 ⪯ 𝑚 ⪯ 𝑢

 

min 𝑇(𝑚)
‖𝐹(m) − 𝑑‖2 ≤ 𝜀

𝑙 ⪯ 𝑚 ⪯ 𝑢

 

Table 4.1 A comparison between the deterministic model and the probabilistic model of indirect measurements5 
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Chapter 5 

 A Strategy of Reducing the Influence of Uncertainty 

in the Evaluation of Empirical Relations 

 

5.1 Introduction 

It is well known that the objective of measurement is to obtain the values of the measurand 

(JCGM 100 2008). But the fact that measurement starts with the observation or introduction 

of a mostly transitive relation (Ellis 1968, p.54) is often been ignored. According to the 

representational theory of measurement, the values of the measurand and their numerical 

relations are used to represent the (measured) objects and their empirical relations (Krantz et 

al 1999). Hence the implicit objective of measurement is to compare the objects and obtain 

the empirical relations.  

Most researchers in metrology are focused on the former objective (i.e. to obtain the values of 

the measurand), since the latter objective (i.e. to obtain the empirical relation) can be 

achieved by comparing the measurement results. However, to get the best estimations of the 

measurand, the calculation can be quite complicated, and the measurement uncertainties can 

be very large (e.g. larger than 30% of the size of the tolerance). In this chapter, the latter 

objective is taken as the final objective of measurement, and a strategy of reducing the 

influence of uncertainty in the evaluation of empirical relations is proposed. 

An important reason of obtaining the values of the measurand is to determine the conformity 

with specifications by comparing the measurement results with the specifications. ISO 

14253-1 (2013) together with GUM (JCGM 100 2008) provides a method for determining 

conformity with specifications when uncertainty is involved. In that method, a complete 

measurement result is expressed as ˆ( )J x x U  , where x̂ is the result of a measurement, U 

is the expanded uncertainty with a stated level of confidence (e.g. 95%). Thus J(x) can be 

taken as a coverage interval containing the (true) value of the measurand x. The conformity 

with a specification is determined by the relation of the coverage interval and specification 

limits (see Figure 5.1). 
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For an arbitrary measurand, the specification limits can be taken as the measurand values of a 

special type of objects, called limit samples. A limit samples is considered as an object of 

which the measurand value is equal to a specification limit. The conformity of a measured 

object with the specification can be determined according to the empirical relations between 

the measured objects and the limit samples. For example, let p, q be the limit samples 

corresponding to the lower and upper specification limits respectively. Then an object a is 

within the specification if and only if 𝑝 ≾ 𝑎 ≾ 𝑞 , where ≾ is a weak order. Hence the 

conformity (or nonconformity) of a measurement result with a specification can be 

determined by the estimated empirical relation.   

 

Figure 5.1 A complete measurement result which is neither within nor out of the specification 27 

NG NG
NG NGok ok ok ok

Functional test

Samples arranged in empirical order

Limit sample A
Limit sample B

 

Figure 5.2 Schema of searching the limit samples according to the empirical order  

and the results of functional test 28 

Evaluation of empirical relations is also important for the design of specifications. To design 

a specification of a measurand of a workpiece for satisfying certain functional requirement, 

one usually needs to measure many samples of the workpiece, and order the samples 

according to their measured values of the measurand. And then, by doing the functional test 

for some samples according to the obtained order, the samples which marginally satisfy the 

functional requirement (called limit samples) can be found, so that the specification limits 
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(e.g. upper and lower specification limits) can be set according to their measurand values. 

The obtained order is the empirical order which helps for searching the limit samples (see 

Figure 5.2). 

The method of evaluating empirical relations in terms of interval orders is introduced in 

Section 4.5. In this method, the empirical relation of a stochastic measurand is taken as an 

interval order, which consists of a strict interval order ⊲ and an indifference ≀. The ERS 

〈𝐴, ⊲〉 can be represented by the relational system of real intervals, and the coverage intervals 

of the measurement results can be taken as the representations of the measured objects. 

Therefore, the empirical relation of the measured objects can be estimated according to the 

relation of the coverage intervals.   

It is obvious that the sizes of coverage intervals (i.e. lengths of the intervals) may affect the 

interval orders, and thus affect the estimation of the empirical relation. Consider some 

coverage intervals of an identical size, if this size is large (e.g. 30% of the maximum 

difference of the measurement results), the adjacent coverage intervals are quite likely to 

intersect with each other. When two coverage intervals intersect, the empirical relation will 

be estimated as indifference, thus no transitive relation can be obtained under the coverage 

probability. So, for estimating empirical relations, the sizes of coverage intervals are 

preferred to be smaller. 

For this reason, the average size of the coverage intervals of a set of measurement results is 

called as the resolution of comparison. A main objective of this chapter is to improve the 

resolution of comparison by reducing the influence of measurement uncertainty.  

5.2 The principle of reducing the influence of uncertainty 

5.2.1 Classification of uncertainty components by the sources 

The size of coverage intervals are determined by the expanded uncertainties. Hence the 

resolution of comparison can only be improved by reducing the measurement uncertainty. 

Measurement uncertainties can be either classified according to their evaluation methods 

(statistical or non-statistic) into Type A and Type B, or by the sources of the uncertainties. 

The latter way classifies uncertainties as the following two types. 

 Random uncertainty components: the uncertainties arise from the random effects; 
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 Systematic uncertainty components: the uncertainties arise from incomplete knowledge of 

the systematic effects. 

According to GUM (JCGM 100 2008), a random effect is the effect of stochastic or 

unpredictable variations of influence quantities (quantity that is not the measurand but effects 

the results of the measurement); and a systematic effect is a recognised effect of an influence 

quantity on a measurement result. Both effects could cause some deviation of the measured 

value from the value of the measurand. Each effect can be taken as a function η in terms of 

𝜂(𝑥, 𝑑𝑖)  =  𝑥′,      (5.1) 

where x is the measurand, di is a related influence quantity, x′ is a quantity deviated from the 

measurand due to the random/ systematic effect. For a systematic (random) effect η, the 

deviation, (𝑥′ − 𝑥) is the systematic (random) error caused by η.   

In practice, it can be difficult to distinguish the two types of effects very clearly. But, since in 

replicate measurements the systematic error arise from systematic effect remains constant or 

varies in a predictable manner (JCGM 200 2008), a systematic effect itself is a deterministic 

function. In contrast, a random effect is a random function, and the related di is always a 

random variable. 

Moreover, under the repeatability conditions given in GUM ((JCGM 100 2008) B.2.15), 

some influence quantities of systemic effects, e.g. offset error, are always fixed during the 

measurements of all the objects. These quantities are constants, although the exact values are 

unknown due to incomplete knowledge. Hence, for a fixed influence quantity di, equation 

(5.1) can be taken as a function of the measurand, denoted as 𝜂𝑑𝑖(𝑥)  =  𝑥′, or simply η(x) = 

x′, if it is clear what di is.  

In many cases, η(x) is an increasing function of the measurand. For instance, the effect of 

imperfect calibration of a gauge can be written as  𝜂𝑐(𝑥) = 𝑥 + 𝑐, where c is a constant (but 

unknown) offset error. The effect of the sensitivity of the instrument, which gives rise to the 

sensitivity error, is in the form of  𝜂𝑎(𝑥) = 𝑎𝑥, where a is unknown constant close to 1. The 

effect of resolution or digital rounding is in the form of  𝜂𝑏(𝑥) = 10−𝑏⌊10𝑏𝑥 + 0.5⌋, where b 

is a integer, ⌊ ⌋  is the floor function. The above functions of systematic effects are all 

(monotonically) increasing. This type of systematic effect is defined as the monotonic effects. 
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Definition 5.1: For an influence quantity di, if it is fixed as a constant in the measurements of 

all the objects, and its systematic effect 𝜂𝑑𝑖 is an increasing function of the measurand x, then 

𝜂𝑑𝑖 is a monotonic effect. 

That means for any monotonic effect 𝜂𝑑𝑖, we have 

1 2 1 2( ) ( ),di dix x x x         (5.2) 

where x1, x2 are two arbitrary values of the measurand. 

The relation between x1 and x2 is a representation of the empirical relation between the 

corresponding objects. Monotonic effects preserve the relation of x1 and x2, thus they also 

preserve empirical relations.  

With this definition, systematic effects are classifies into two types: monotonic effects and 

non-monotonic effects. A monotonic effect may become non-monotonic when the 

measurement method changes. For example, if the temperature of the objects is an influence 

quantity, it may be fixed or changing depends on the measurement environment. So to 

classify the effects, the actual situation of measurement should be fully understood. 

Correspondingly, the uncertainty components arise from these effects can be further 

classified according to their sources as shown in Figure 5.3. For example, monotonic 

uncertainty components are the uncertainties arise from monotonic effects. 

Uncertainty 

components

Systematic Random

Monotonic Non-monotonic

 

Figure 5.3 Classification of uncertainty components by the sources29 

5.2.2 Monotonic uncertainty components 

To estimate the value of the measurand, all the systematic effects should be corrected from 

the observed data. But for estimating the empirical relation, it’s not necessary to correct the 

monotonic effects, because, monotonic effects preserve empirical relations. As shown in 
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equation (5.2), although 1( )x and 2( )x consists the systematic error rise from the 

monotonic effect, they still reflect the relation of x1 and x2. Thus, without correcting the 

monotonic effects, a quantity, ' ( )x x , named the biased measurand, can be used to 

estimate the empirical relation.  

This is also true when the empirical relation is represented by the interval order of coverage 

intervals. For example, let  be a monotonic effect, ( )x ax b   , where a, b are positive 

real numbers, and let the relation of the coverage intervals 1( )J x , 2( )J x  and 3( )x of three 

measurement results be 3( )J x ≀ 2( )J x , 2 1 3 1( ) ( ), ( ) ( )J x J x J x J x . As shown in Figure 5.4, 

3( )J x ≀ 2( )J x , 2 1 3 1( ) ( ), ( ) ( )J x J x J x J x    .  does not change the relation of the 

coverage intervals. 

1( )J x3( )J x
2( )J x

x

ax b

 

Figure 5.4 The relations of the coverage intervals with and without monotonic effects30 

Proposition 5.1: Let 1( )J x , 2( )J x  be the coverage intervals of x1 and x2, if : 'x x   is a 

monotonic effect, then  

1 2 1 2( ) ( ) ( ) ( )J x J x J x J x   . 

Proof: Let 1 2( ) [ , ], ( ) [ , ]J x a b J x c d  , where , , ,a b c d are some real constants, by (4.2) 

1 2( ) ( )J x J x b c  .    (5.3) 

By definition,  is an increasing function, so 1( ) [ ( ), ( )]J x a b    

and 2( ) [ ( ), ( )]J x c d   , hence  

1 2( ) ( ) ( ) ( )J x J x b c     .          (5.4) 

Since   is increasing, b c implies ( ) ( )b c  , and b c implies ( ) ( )b c  ,  

and either b c  or b c , thus  

( ) ( )b c b c    .    (5.5) 
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By (5.3), (5.4) and (5.5), we obtain 

1 2 1 2( ) ( ) ( ) ( ) ( ) ( )J x J x b c b c J x J x        . 

So the proposition is proved.       □ 

That means the interval order of the coverage intervals of the biased measurand can be used 

to estimate the interval order of the coverage intervals of the measurand, and thus estimate 

the empirical relation. The coverage intervals of the biased measurand are smaller in size than 

the coverage intervals of the measurand, because the monotonic uncertainty components are 

not included in the former coverage intervals. So the resolution of comparison is improved 

using the coverage intervals of the biased measurand. 

It can be proved that 1( )J x ≀ 2( )J x does not imply 1( )J x ≀ 2( )J x , both 1 2( ) ( )J x J x  and 

2 1( ) ( )J x J x  are possible. But similar to 1( )J x ≀ 2( )J x , it means no inference on the 

empirical relation can be given under the coverage probability. 

5.3 The strategy 

To determine the conformity of measurement results with a specification, one needs to 

compare the measurement results with the specification limits. Traditionally, the 

measurement results should be corrected for all the recognised systematic effects before the 

comparison (see Figure 5.5). Conversely, without correcting the monotonic effects, one can 

specify a biased measurand x′, and estimate the coverage intervals of x′ of the limit samples 

according to the monotonic effects and their uncertainties; and then compare the coverage 

intervals of the limit samples with the coverage intervals of measurement results (see Figure 

5.6).  

USLLSL

Uncorrected 

measured 

value

Measurand

4x̂ 1̂x3x̂ 2x̂

4( )J x

1:  evaluation of the coverage intervals of the measurand

1

3( )J x 2( )J x 1( )J x

 

Figure 5.5 The traditional way of determining the conformity with a specification31 
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ˆ
ix  is a measured value without the correction of system effects, ˆ

ix  does not need to be the centre of ( )iJ x  

USLLSL
Measurand

Biased 

measurand 

4x̂ 1̂x3x̂ 2x̂

3
2

1:  evaluation of the CIs of the measurand

2:  correction for the monotonic effects

3:  estimation of the coverage intervals of the biased measurand

1

4( )J x
3( )J x 2( )J x 1( )J x

Uncorrected 

measured 

value

 

Figure 5.6 The amended way of determining the conformity with a specification32 

Figure 5.6 demonstrates the principle of improving the resolution of comparison: due to the 

order-preserving property of monotonic effects, the biased measurand can be used, instead of 

the measurand, to estimate the empirical relation, so that the sizes of the coverage intervals to 

be compared can be reduced. Following this principle, the strategy of estimating empirical 

relations is summarised as following. 

Strategy: 

1. Express the measurand in terms of a function of the influence quantities, such as  

1 2( , ,..., )nx f d d d .     (5.6) 

All the significant errors and corrections should be included in the function. 

2. According to the actual situation of the measurement, sort out the influence quantities 

which are fixed as a constant in the replicate measurements of all the objects. 

3. Move the fixed influence quantities to the LHS of the equation (5.6), and get a new 

equation. Specify a biased measurand x′ with the LHS of the new equation, which should 

consist only of the fixed influence quantities.  

4. For each measured object, evaluate the expected value and the expanded uncertainty of 

the biased measurand with the RHS of the new equation.  
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5. For the specification limits, take them as the values of the measurand, and use the LHS of 

the new equation to estimate the expected values and the expanded uncertainties of the 

biased measurand.  

6. Use interval order to describe the relation of all the coverage intervals of the biased 

measurand, and according the interval order to estimate the empirical relation and decide 

the conformity with the specification.  

This strategy together provides a new method of comparing measurement results and 

determining conformity with specifications. 

5.4 An example 

End gauge calibration is an example of uncertainty evaluation given in GUM ((JCGM 100 

2008) H.1). Here three end gauges, named a, b, c, are of the same specification: 50mm 

+0.001/−0 mm at 20˚C. They are measured to determine the conformity with the specification 

and to find out their ordered relation in length.  

The end gauges are measured by comparing them with a calibrated standard gauge of the 

same nominal length. The difference of length d is measured by a comparator. As shown in 

the example in GUM: 2008, with the effect of thermal expansion, the measurand, i.e. length 

of the end gauges at 20˚C, can be expressed as the following function:  

( , , , , , ) ( )S S S S Sl f l d l d l                 (5.7) 

where l is the measurand; lS is the length of the standard gauge given in its calibration 

certificate; d is the difference of length; α and αS are the thermal expansion coefficients of the 

end gauge and the standard gauge respectively, and S    ; θ and S  are the deviations 

in temperature from 20˚C, respectively, of the end gauge and the standard gauge, and

S    . 

The arithmetic mean of the readings of the comparator d and the actual difference d can be 

related by the following equation. 

1 2d d d d  
   

(5.8) 

where d1 and d2 are quantities describing, respectively, the random and the systematic effects 

of the comparator. From the above two equations, we obtain 



116 

 

1 2 ( )S S Sl l d d d l               (5.9) 

All the expected values, uncertainties and probability distributions of the influence quantities 

of l are known and given in Table 5.1. For comparing with the classical method, the data 

given in the example of GUM: 2008 is used. And for simplicity, the degrees of freedom of 

the Type B uncertainty components are assumed to be infinite.  

ix
 

Expected/ 

mean value ( )iu x  
Source of 

uncertainty 

Value of 

standard 

uncertainty 

Probability 

distribution 

ic

/ if x 

 

Degree 

of 

freedom 

Sl  
50.000623 

mm 
( )Su l  

Monotonic 

effect 
25 nm Normal 1 ∞ 

d  215 nm ( )u d  Random effect 5.8 nm Normal 1 9 

1d  0 nm 1( )u d  Random effect 3.9 nm Normal 1 ∞ 

2d  0 nm 2( )u d  
Monotonic 

effect 
6.7 nm Normal 1 ∞ 

S  
11.5 x10-6 

˚C-1

 

( )Su   
Monotonic 

effect 
1.2x10-6 ˚C-1 Rectangular 0 ∞ 

  -0.1˚C 
( )u   

Non-monotonic 

effect 
0.41˚C Rectangular 0 ∞ 



 
0˚C-1

 ( )u   
Non-monotonic 

effect 
5.8x10-7 ˚C-1 Triangular Sl   ∞ 

  0˚C 
( )u   

Non-monotonic 

effect 
0.029˚C Triangular S Sl   ∞ 

Table 5.1 Summary of standard uncertainty components6 

The values of lS and αS are always fixed, since there is only one standard gauge in the 

measurements. It can be assumed that the systematic error of the comparator, d2 is fixed 

during the measurements. ,  and     are related to systematic effects, but they are not 

fixed.  and    vary with time;  can be different for different end gauges.  So lS, d2 and αS 

are related to monotonic effects, where αS is in a nonlinear term, it cannot be moved to the 

LHS of (5.9) alone. By moving lS and d2, we obtain a biased measurand l′. 

2 1 ( )S S Sl l l d d d l                      (5.10) 
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Since the expected values of 1d ,  and  are 0, from (5.10), we get  

( )E l d  ,     (5.11) 

where ( )E l  is the expected value of l′. 

Based on a first-order Taylor series approximation of equation (5.10), the combined standard 

uncertainty of l′ can be evaluation by the following equation (refer to GUM: 2008 for the 

detail of the evaluation method). 

2 2 2 2 2

1

2 2

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) 299.2nm

C S S Su l u d u d l u l u

u d

       

 
   (5.12) 

Due to the nonlinear of (5.10), the following second-order terms in the Taylor series of (5.10) 

are significant, which should be added to 
2 ( )Cu l . 

2 2 2 2 2 2 2( ) ( ) ( ) ( ) 139.8nmS S Sl u u l u u    
    

(5.13) 

So we have 

2 2 2 2( ) ( ) 299.2nm 139.8nmCu l u d    .         (5.14) 

Ten replicate measurements are taken for each end gauge. The values of d  and ( )u d  of the 

measured gauges are listed as following. 

Gauge  d  ( )u d  

a 215 nm 5.8 nm 

b 91 nm 13.4 nm 

c 254 nm 9.3 nm 

Table 5.2 Means and standard deviations of the readings of the comparator of the three end gauges7 

Substitute the data of d  and ( )u d  into (5.11) and (5.14), we obtain the following results. 
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Gauge ( )E l   ( )Cu l  

a 215 nm 22 nm 

b 91 nm 25 nm 

c 254 nm 23 nm 

Table 5.3 Means and combined standard deviations of l' of the three end gauges8 

The result of combined standard uncertainty of gauge a (with the same values of all the 

influence quantity) obtained in GUM: 2008 is ( ) 34nmCu l  . Compared to this result, 

( ) 22nmCu l    is much smaller. 

The effective degree of freedom of ( )Cu l , 𝑣eff(𝑙′)  can be obtained from the following 

Welch-Satterthwaite formula (Welch 1947). 

4 4 4

eff 4 4 4

1

( ) ( ) ( )
( ) 9

( ) ( ) ( )
0 0 0

9

C C C

n
i

i
i

u y u l u l
v l

u y u d u d

v

 
   

  

   (5.15) 

The values of veff(l′) of the three end gauges are all above 100, so the coverage factor can be 

taken as k = 2, providing a coverage probability of approximately 95% (JCGM 100 2008, p 

78). The coverage intervals of the three end gauges can be stated as below. 

( ) (215 44)nm

( ) (91 50)nm

( ) (254 46)nm

a

b

c

J l

J l

J l

  

  

  

 

Moreover, the expected values and the standard uncertainties of the upper and lower 

specification limits (USL & LSL) can be evaluated as following. 

2( ) ( ) 377nmUSL SE l E l l d      

2( ) ( ) 623nmLSL SE l E l l d      

1
22 2

2( ) ( ) ( ( ) ( )) 26nmUSL LSL Su l u l u l u d         
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Take k = 2 as the coverage factor, we have 

( ) (377 52)nm

( ) ( 623 52)nm

USL

LSL

J l

J l

  

   
 

Put the coverage intervals of the three end gauges and the specification limits together. Their 

relation can be observed from Figure 5.7. 

 

Figure 5.7 The relation of the end gauges and spec. limits (not to scale) 33 

Let p be the limit sample of the LSL, and q be the limit sample of USL. The empirical 

relation of the end gauges and the limit samples can be stated with interval order as  

𝑎 ≀ 𝑐, p b a q and p b c q . 

The three end gauges are all within the specification. 

5.5 Conclusions 

In this chapter, a novel strategy of reducing the influence of uncertainty in the evaluation of 

empirical relations is proposed. Based on the method introduced in Section 4.5, empirical 

relation is evaluated in terms of interval order by comparing the coverage intervals of the 

measurement results. This strategy improves the resolution of comparison by reducing the 

sizes of the coverage intervals to be compared. The measurement uncertainty is classified into 

random components and systematic components according to GUM (2008). It is 

demonstrated that the systematic uncertainty components can be further classified into 

monotonic uncertainty components and non-monotonic components, and the monotonic 

components can be removed from the measurement uncertainty without affecting the 

evaluation of empirical relations. The mathematical principle of the strategy is explained, and 

the steps of implementing the strategy are given in detail. An example is given to demonstrate 

the application of this strategy.  

The strategy proposed in this chapter is designed for estimating the empirical relation of 

measured objects and determining the conformity with specifications when measurement 

uncertainty is significant. It provides a method of defining the relation between complete 

measurement results by taking measurement results as coverage intervals. Moreover, it 
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allows us to reduce the size of the intervals by ignoring the monotonic uncertainty 

components, which makes the estimated relation more meaningful without introducing any 

bias. 

This strategy can be quite useful for the following situations: the measurement uncertainty is 

very significant or too large such that the measurement results are not very meaningful; the 

specification is given by some standard samples instead of numbers. It is a universal method, 

and can be applied to many areas of metrology, such as to classify objects into different 

classes (e.g. A, B, C, D) according to the measurand values.   
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Chapter 6 

 An ANOVA Method of Evaluating Specification 

Uncertainty 

6.1 Introduction 

Instrinsic uncertainty is an important part of the uncertainty of a measurand. As mentioned in 

Chapter 4, definitional uncertainty is a common form of intrinsic uncertainty, which is also 

named as specification uncertainty in ISO 17450-2 (2002). To evaluate the total uncertainty 

of a measurand accurately, the effect of specification uncertainty should be considered. 

Hence, it is important to find a proper method of evaulting specification uncertainty.  

6.1.1  Specification uncertainty 

Specification uncertainty is one of the important uncertainties in the geometrical product 

specifications and verification system (GPS). It is the uncertainty inherent in a specification 

when applied to a feature (point/line/plane), which quantifies the ambiguity in the 

specification (ISO 17450-2 2002). In ISO/TS 17450-2 it is distinguished from measurement 

uncertainty and defined as the uncertainty that is derived from the incompleteness of the 

specification.  

In industry, most of specifications used in engineering drawings are incomplete. For example, 

the specification of a shaft, Ø10±0.1 is incomplete, since the association criteria (such as 

largest two-point diameter, minimum circumscribed cylinder, least square cylinder) is not 

specified. Due to this incompleteness, the measurement results can be different when the 

interpretation of the specification varies, even if the measurement uncertainty was zero.  

It is important to understand and quantify the effect of the incompleteness of a specification. 

A specification is designed to achieve some functional requirement. If the interpretation of 

the specification is largely biased from the original intention of the designer, the functional 

requirement may not be achieved by the parts controlled by the biased specification. For 

instance, the difference of the measured values of Ø10±0.1 between two possible 

interpretations, such as largest two-point diameter and smallest two-point diameter, can be 

even larger than the tolerance interval (depends on the roundness of the shaft), which means 
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the measurement results and their conformity (accept or reject) can be totally different when 

the ambiguity of the specification is too large. Moreover, it is necessary to know how large 

the ambiguity is, since it is not feasible to make each specification complete. Hence, the 

ambiguity should be quantified in terms of specification uncertainty, and it should be of the 

same nature as measurement uncertainty, so that it can be compared with the size of tolerance 

and the total variation to reveal how large it is. If the specification uncertainty is too large, the 

specification should be revised to be more complete.  

6.1.2  Difficulties of evaluating specification uncertainty  

The problem is how to evaluate the specification uncertainty. There is no standard method 

given in ISO/TS 17450-2 (2002). Only an example is given: 

If a specification for a sphere is S∅30±0.1,...The specification uncertainty is derived from the 

range of values that can be obtained when different association criteria (such as minimum 

circumscribed sphere, smallest two-point diameter, least squares sphere) are applied to data 

extracted from an actual workpiece (not perfectly spherical), because the specification does 

not prescribe which association criterion is to be used.  

This implies that specification uncertainty can be evaluated according to the measured values 

of all the possible interpretations of the (incomplete) specification. One can then, similar to 

measurement uncertainty, use standard deviation or variance of the measured values to 

quantify the specification uncertainty. This method is applied in the paper of Lu ((Lu, Jiang, 

Liu, & Xu, 2008), p.5) to evaluate the specification uncertainty of the diameter of a shaft. 

However, there is inevitably some measurement uncertainty involved in the measured data, 

which is also a source of the variance of the measured values. Moreover, the specification 

uncertainty obtained by this method is relevant to the measured workpiece only. For another 

workpiece, the evaluated uncertainties can be different. For example, the specification 

uncertainty of Ø10±0.1 for a shaft with good roundness is small, but for a shaft with poor 

roundness is much larger. In manufacturing, one normally needs to find out the specification 

uncertainty with regards to a whole lot of workpieces, thus the variation of the workpieces 

should also be considered. Therefore, specification uncertainty should be evaluated according 

to the measured values of a set of workpieces using a measuring equipment base on all the 

possible interpretations of the specification.  
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The difficulties of evaluating specification uncertainty consist in (i) listing all the possible 

interpretations, (ii) removing the effect of measurement uncertainty, and (iii) making it 

compatible to the variation of workpieces. The method of finding all the possible 

interpretations is discussed in (Qi et al 2013). The aim of this thesis is to propose an easily 

applicable evaluation method of specification uncertainty, which can solve the second and 

third difficulties. 

6.1.3  Specification of roughness measurement 

Ground

U “G”0.0025-0.8/Rz8max 3.3

X
 Indication of upper (U) or lower (L) specification limit
Filter type

Transmission band
Profile parameter

Evaluation length as the number of sampling length

Comparison rule

Limit value in micrometres
Type of manufacturing process

Surface texture lay
Manufacturing process

21 3 4 5 6 78
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Figure 6.1 Control elements in the specification of surface roughness (ISO 1302 2002)34 

Surface roughness is a good example of the complexity of a complete specification, which 

shows why specifications are normally incomplete. It is well known that a specification of 

roughness normally denotes in the form as  

 

But in ISO 1302:2002 (ISO 1302 2002), a complete specification of roughness consists of ten 

control elements, see figure 6.1. The specifications of roughness given in an engineering 

drawing are normally incomplete, and it’s usually not necessary to specify all the ten control 

elements. Some of those elements affect the conformity with specification (accept/reject), 

which are the elements (1), (6) and (7) in figure 6.1; and some of those control the machining 

process and the appearance of the surface texture, which are (8), (9) and (10), Others, i.e. (2), 

(3) (4) and (5), affect the measured values. For the measurement of workpieces, only the 

control elements (2) to (5) could affect the measured values. For the evaluation of 
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specification uncertainty, all the possible settings of elements (2) to (5) should be considered. 

This does not imply that the other elements are not important. Actually elements (7) and (8) 

are compulsory to be specified. When element (1) is not specified, by default, it should be 

understood as a upper tolerance limit (ISO 1302 2002). 16%-rule is the default setting of 

element (6) in ISO 1302. And if elements (9), (10) are not specified, it means any surface 

texture lay and machining process are acceptable.  

6.2   Principle of the method 

In industry, large amount of parts (workpieces) are manufactured in one batch according to 

the specifications. The features of these parts are similar, but certainly not the same. Each 

feature varies among different parts with a certain variation, called part variation. This 

variation can be estimated by the variance of the measured values of some amount (e.g. 32 

pieces) of randomly selected samples. But, in the measured values, there are two sources of 

variations: the variation from different parts and the variation from the measurement error of 

the measurement system. If the latter is significant, it is not reliable to estimate part variation 

directly from the variance of measured values. The measurement error of a measurement 

system can normally arise from two sources: the measuring equipment and the operators or 

inspector taking the measurement. In measurement system analysis, the variation in 

measurements caused by the random error of an equipment is named as repeatability, and the 

variation caused by  different operators is named as reproducibility, they both contribute to 

the measurement uncertainty (Burdick et al 2005). A standardised and commonly used 

method to study the repeatability and reproducibility is Gauge R&R (gauge repeatability & 

reproducibility). Gauge R&R can be used to distinguish the part variation and the variation 

from the measurement uncertainty, which is similar to the 2nd difficulty mentioned in 

Chapter 1, hence the principle of Gauge R&R should be useful for evaluating specification 

uncertainty.  

There are two different statistical approaches to conduct Gauge R&R study. One is called 

average & range method, the other is ANOVA (analysis of variance) method. The former is 

simpler in terms of calculation, but it is not suitable for the situation when some interaction 

variance (such as the interaction of operators and parts) occurs in the measured values. 

According to MSA 4th (Down et al 2010), the ANOVA-method is preferred; the average & 

range method should only be used if no PC is available for the calculations. 



125 

 

ANOVA is a statistical tool used to analyse the observed data affected by several factors. The 

observed data varies with each factor, and each factor has different factor levels. When the 

levels of each factor changes, some variance can be observed from the data. ANOVA can be 

used to partition the observed variance into components attributable to different factors and 

their interactions (covariances). The processes of conducting ANOVA can be found in the 

text books of Montgomery (Montgomery 2009). And it can be implemented by statistical 

software, such as Minitab, SPSS, and Excel.   

In Gauge R&R, the parts, the equipment, and the operators are the three factors contribute to 

the variance of the measured values. To conduct a Gauge R&R study, a set of samples 

(normally ten or twelve pieces) are randomly selected to be measured by two or three 

operators with an equipment. Each sample is measured by each operator repetitively two or 

three times to test the repeatability. So a set of measured values, say 12x3x3, can be obtained. 

The twelve samples are numbered from 1 to 12, each one corresponding to one factor level of 

the ‘part’ factor. Similarly, the three operators are the three levels of the ‘operator’ factor, and 

the three repetitive measurements (called trials) are the three levels of the ‘equipment’ factor. 

The measured values can be indexed as , ,i j kd , where i, j, k are the indices of the levels of the 

three factors, and organised in a table (see Table 6.1). With the data (measured values) 

properly input into the table, the variance of the data can be partitioned into three parts: 

repeatability, 2

e , reproducibility, 2

o , and part variation,
2

p  by means of ANOVA.  

To determine whether the R&R of the measurement system is acceptable, the ratios of R&R 

to the total variation (%R&R), and to the tolerance (%P/T) are calculated as the following 

(Burdick et al 2005).  

 2 2%R&R 100%e o TV         (6.1) 

 2 2%P/T 6 tolerance 100%e o          (6.2) 

If both ratios are lower than 10%, the measurement system is generally considered to be 

acceptable. It may be acceptable for some applications, when the ratios are between 10% to 

30%. Otherwise, it is considered to be unacceptable (Down et al 2010).  
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Table 6.1 Gauge R&R datasheet9 

For the situation of evaluating specification uncertainty, as mentioned in the introduction, the 

data to be analysed should be the measured values of a set of samples corresponding to all the 

possible interpretations of the specification. So the part variation and the random error of the 

measuring equipment are also involved in the total variation of the data. In this evaluation, it 

is not necessary to consider the effect of different operators, since the data can be collected 

by a single operator. Instead, another source of variation is contributed by the different 

interpretations of the specification. The effect of different interpretations to the measured 

values varies from part to part, which is actually similar with the effect of different operators 

in the sense that both effects are random. So the specification can also be taken as a factor (of 

the variance of data) with the different interpretations as its factor level. Hence an experiment 

can be designed similarly with the Gauge R&R study, by replacing the ‘operator’ factor in 

Gauge R&R with the ‘specification’ factor. The sample size of parts and the number of 

repetitive measurements can be the same as Gauge R&R, which are proved to be enough for 

statistical inference (Burdick et al 2005). And by means of ANOVA, the specification 

uncertainty can then be partitioned from the total variation of the data. The detail of this 

evaluation method is discussed in the next chapter.  

6.3   A case study in roughness measurement 

In this case study, we’ll evaluate the specification uncertainty of the following specification 

on the surface of an iPad metal cover. 

Ra 1.2
 

To demonstrate the evaluation method, assume that the metal cover of the iPad is 

manufactured according to this specification. The Taylor Hobson PGI (Phase Grating 



127 

 

Interferometer) is used for measuring the roughness in the way of contact stylus 

measurement. 

According to ISO1302:2002, this specification means: the surface to be machined by 

removing material (e.g. milling); unilateral upper specification limit, maximum roughness 

average (Ra) is 1.2μm. By ISO4288:1998, The default sampling length of Ra 1.2 is 0.8mm, 

the default evaluation length should be five times the sample length (i.e. 4mm), and the cut-

off long-wave length shall be chosen equal to the sampling length (ISO 4288 1998). And by 

ISO3274:1996, the corresponding transmission band shall be 0.0025-0.8mm (ISO 3274 

1998). The filter type is not specified, and in ISO 1302:2002, it states that  

‘The standardised filter is the Gaussian filter (ISO 11562). The former standardised filter was 

the 2RC-filter. In the future, other filter types may be standardised. In the transition period it 

may be convenient for some companies to indicate the filter type on drawings.’ 

Hence the Gaussian filter is recommended, but other filter types may also acceptable. 

According to those ISO standards mentioned above, one can then derive a much more 

complete specification from the original specification: 

U0.0025 0.8 / Ra5 1.2
 

To get this derived specification, the inspector needs to have the knowledge and 

understanding of the four ISO standards, which is actually hard to be guaranteed. There is 

normally a knowledge gap between the ISO standards and the inspectors. So the ambiguity of 

an incomplete specification still exists, even if the complete specification can be derived 

based on some standards. 

In this evaluation, it is assumed that the operator has the knowledge of the related standards, 

and thus the derived specification is obtained. Filter type is the unspecified control element 

which affects the measured values. There are three options of filter type in the software of 

PGI: Gaussian, 2CR-PC, and ISO-2CR, which can be taken as the three factor levels of 

specification. So the specification uncertainty to be evaluated is the variance of the measured 

values caused by the variation of filter types. 

The experiment is designed in the following steps: 
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1. Mark twelve evenly distributed areas of the size 6x3mm
2
 on the surface of the metal 

cover, and take these areas of surface as twelve samples. The part variation in this case is 

contributed from the surface inhomogeneity.  

2. Set the travelling distance of the stylus of each measurement to be 6mm, and set the 

transmission band to be 0.0025-0.8mm in the interface of the PGI. 

3. Use the PGI to measure the Ra of the twelve areas. The measurement of each area shall 

repeat three times along the same path. 

4. For each measurement, set the filter type to be Gaussian, 2CR-PC, and ISO-2CR in 

sequence to obtain three values of Ra.  

5. Record and fill the 108 (12x3x3) measured values in Table 6.2. 

6. Input the values into the datasheet of SPSS (or some other software), and obtain 

specification uncertainty from the partitioned variance components (see Table 6.3). 

Filters Gauss 2CR-PC ISO-2CR 

Sample 

# 

1st 

Trial 

2nd 

Trial 

3rd 

Trial 

1st 

Trial 

2nd 

Trial 

3rd 

Trial 

1st 

Trial 

2nd 

Trial 

3rd 

Trial 

1 0.9621 0.9635 0.9621 0.9627 0.9649 0.9642 0.9732 0.9767 0.9765 

2 0.9955 0.9985 1.0015 1.0006 1.0034 1.0058 1.0109 1.0122 1.0146 

3 1.0071 1.0092 1.0103 0.9873 0.9897 0.9907 1.0325 1.034 1.035 

4 1.0705 1.0717 1.0726 1.0449 1.0456 1.0463 1.0861 1.0873 1.0882 

5 1.0373 1.0416 1.0433 1.0404 1.0448 1.047 1.0259 1.0316 1.0358 

6 0.9799 0.982 0.9833 0.9856 0.9872 0.9873 1.0032 1.0053 1.0067 

7 1.0951 1.0984 1.0998 1.0883 1.0918 1.0934 1.1100 1.1123 1.1126 

8 1.0322 1.0336 1.0342 1.0273 1.0296 1.0309 1.0457 1.0480 1.0485 

9 1.1127 1.1207 1.1255 1.1202 1.1292 1.135 1.0987 1.1065 1.1115 

10 1.0772 1.0816 1.0828 1.0642 1.0687 1.0695 1.0736 1.0777 1.0783 

11 1.0441 1.046 1.0463 1.0419 1.0438 1.0443 1.0336 1.035 1.0358 

12 1.0611 1.0625 1.0631 1.0468 1.0478 1.0478 1.0386 1.0399 1.0411 

Table 6.2 Datasheet of roughness measurements in Ra (μm) 10 
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Component Std. Dev.  Variance % Contribution 

Equipment 0.00278 0.0000077 0.37% 

Specification 0.003806 0.0000145 0.70% 

Parts 0.043726 0.001912 92.59% 

Spec*parts 0.011438 0.0001308 6.33% 

Total 0.045443 0.002065 100.00% 

Table 6.3 ANOVA results11 

Table 6.3 shows the results of the variation components contributed from equipment, 

specification (different filters), different parts, and the interaction of specification and parts in 

terms of standard deviation, variance, and percentage of contribution in the total variance.  

The specification uncertainty is the sum of the variance of specification and covariance of 

specification and parts. From the results in Table 6.3, it is 0.0001453 in terms of variance, 2

S

, and it is 0.012055μm in terms of standard deviation, S . The specification uncertainty can 

be compared with the total variation and the tolerance by replacing the 2 2

e o   in equation 

(6.1) and (6.2) with S . The results are 26.53% to the total variation, and 6.03% to the 

tolerance. Compared with the tolerance, it is acceptable, but it is significant and may not be 

acceptable compared with the total variation. 

6.4    Conclusions 

In this chapter, an ANOVA method of evaluating specification uncertainty based on the 

principle of Gauge R&R is proposed. In this method, ANOVA is used to separate 

specification uncertainty from measurement uncertainty, and the sampling method of Gauge 

R&R is applied. A case study is given to demonstrate how to use this method to evaluate the 

specification uncertainty of measuring roughness with PGI (Phase Grating Interferometer) 

when the filter type is not specified. 

This method can be applied not only in roughness measurement but also for any other 

incomplete specifications. In the case study, the specification has three possible 

interpretations. In some cases, this number can be higher. For example, if the specification 

has five control elements, two of them are not specified, and each of the two has five options. 

Then there are 25 possible interpretations. In this case, the specification uncertainty can still 
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be calculated in the same ANOVA method, but it will be very time consuming to take so 

many (12x25x3) measurements to collect the data. Although, it takes fewer measurements to 

analyse the two control elements separately, it is not correct to combine their uncertainties 

together to estimate the specification uncertainty, unless they are completely independent.  
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Chapter 7 

A contradiction in the Specifications  

of Free-form Surface Profiles 

7.1   Introduction: the contradiction  

Free-form surfaces are the geometrical surface shapes with a gobal complex geometry and 

have no axes of rotation or other symmetries (Jiang and Whitehouse 2012). A free-form 

surface profile is the profile that results from the intersection of the real free-form surface by 

a specified plane.  

The specification of a surface profile is defined in ISO 1101 (2005) as a specification of the 

form of a surface profile and its acceptable deviation. The upper and lower specification 

limits (USL and LSL) are defined as two curves enveloping circles of diameter t, the centres 

of which are situated on the nominal surface profile (see figure 7.1). In the design 

coordination system (DCS), let lo, p, q be the functions of the heights of the nominal profile, 

the LSL and the USL respectively, then ( ) ( ) ( )op x l x q x 
 
for all x I , where I is the 

evaluation interval of the profile. The tolerance zone is the area between p and q. By taking a 

circular disk with diameter t as the morphological structural element, it can be proved that p 

and q are respectively the erosion and dilation of lo. As shown in Figure 7.1, due to the high 

waviness of the nominal profile, there are sharp valleys on q and sharp peaks on p, and p and 

q are not equidistance everywhere. 

The texture of a surface can be characterised by the form, the waviness, and the roughness of 

the surface (Anon 2003). The specification of surface profile discussed in this chapter only 

includes the information of the form and waviness of the surface. For determining the 

conformity of a surface with a specification of surface profile, only the form and the waviness 

of the surface should be measured, the texture in the scale of roughness should be removed 

from the measurement results by filtering.  
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Figure 7.1 The tolerance zone of a free-form surface profile35 

The measurement methods of the form of free-form surface can be generally classified into 

two types: contact measurement and non-contact measurement. The non-contact 

measurement is suitable for areal measurement (3D surface measurement) with higher 

measuring speed than the contact measurement. However, current optical technologies cannot 

be scaled small enough to measure deep, nmapping features. The contact measurement with 

the stylus instruments, such as CMM (coordinate measuring machine), is often used for 

measuring the surface profile due to its accuracy and traceability. Measurement data of 

surface profiles can be acquired from the surface either in a point-by-point way (a point each 

touch) with a touch trigger stylus or continuously (several hundred points per second) with a 

scanning stylus. Due to the relatively high speed of collecting data points and the ability of 

measuring complex geometry, the scanning stylus of CMM is quite suitable for measuring the 

free-form surface profile (Batistic and Stojanovski 2007). 

For the specification depicted in Figure 7.1, a default measurement method should be 

specified in the design stage to avoid the method uncertainty (ISO 17450-2 2002). In 

Example 3.1, the surface profile is measured by a CMM scanning stylus of a specified size. 

Assume that this is the specified measurement method. In this method, the surface profile l is 

measured indirectly via the locus of the centre point of the stylus, and the stylus works as a 

physical dilation filter which transforms l to the locus c, i.e. ( )Sc D l . From the measured 

locus c, the best estimation of the measured surface profile is the real mechanical profile, 

ˆ ( ) ( )S S Sl E c E D l  . The combination of a dilation operator followed by an erosion operator 

is a morphological filter called closing (ISO 16610-40 2006), denoted as CS. Hence we have 

(7.1) ˆ ( )Sl C l .     (7.1) 



133 

 

The measured locus and the estimated profile are in the measurement coordinate system 

(MCS). To compare an estimated profile with the specification depicted in Figure 7.1, it is 

essential to arrange them in a common coordinate system. This can be done by a process 

called localisation, which determines the position and orientation of the design coordinate 

system (DCS) with respect to the MCS (Li and Gu 2004).  

After localisation, a partial order ≾ can be defined between the estimated profile and the 

specification limits as follows. For any two continuous functions l1, l2 in an interval I, l1 ≾ l2, 

if and only if 1 2( ) ( )l x l x  for all x I . The conformity of a real surface profile l with the 

specification is determined by comparing the estimated profile l̂ with the specification limits. 

If l̂ is within the tolerance zone, i.e. p ≾ l̂ ≾ q, l is said to be conformed to the specification.  

Consider that if there is a real surface profile l which exactly matches with the USL, i.e. l = q, 

then l is supposed to be marginally within specification. By (7.1) and the extensive property 

of a closing filter (Serra 1988), we have  

(7.2) l ≾ ˆ( )SC l l ,       (7.2) 

thus the estimated profile is always above the real surface profile. Since l = q, (7.2) implies  

q ≾ l̂ . That means the measurement result of l can be out of specification. This contradicts 

with the fact that l is within specification.  

The root cause of this contradiction is related with the fact that the measurand (surface 

profile) is involved in an indirect measurement. Thus the properties of the IPM should be 

considered. 

7.2   The root cause 

As an IPM, the mathematical model of the inverse problem involved in the contact 

measurement is  

(7.3) ( )SD l c .      (7.3) 

Thus DS is the forward mapping. The estimated profile is obtained via an erosion operator ES, 

which is a backward mapping. By the properties of morphological filters (Serra 1988),  

(7.4) S S S SD E D D .     (7.4) 
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That means ES is an inner inverse of DS (see equation (3.33)), which satisfies the desired 

property P2. 

The combination S S SE D C  is the model resolution of the inverse problem. As a closing 

filter, CS is idempotent ( S S SC C C ) but not identical ( SC I ) (ISO 16610-40 2006). 

Therefore, the estimated profile ˆ ( )Sl C l  is normally not the same as the real surface profile 

l.  

The distortion from l to l̂  is determined by the shape and size of the structuring element of 

the morphological filter, i.e. the stylus used in the measurement (see Figure 7.2). It can be 

observed from Figure 7.2 that the distortion is larger when the size of the disk stylus is 

bigger. According to the catalogue of Renishaw plc (one of the largest global CMM probe 

suppliers), the diameter of the stylus tips of CMM are commonly in the range of 0.5mm to 

12mm, and larger diameter is always recommended for measuring the form of surface to 

avoid measuring the surface roughness. Hence, for the surface profile with high waviness, 

such as the profile in Figure 7.1, or the surface profile with sharp valleys, such as the profile 

(a) in Figure 7.2, the distortion from the real profile to the estimated profile can be significant 

when the surface profile is measured by a CMM stylus. 

The distortion is the effect of the non-identical model resolution. It is not an effect of random 

error; it is fixed once the measurement method is fixed. Due to the model resolution, the real 

profile cannot be completely recovered from the measured data. Hence, for an indirect 

measurement, the model resolution of the IPM is an important property. It determines the 

capability of recovering the actual measurand. 

It should be noticed that a model resolution is mainly determined by the forward mapping of 

the inverse problem. If the forward mapping F is not injective (monic), the inverse solution is 

not unique, and F does not have a left inverse G such that 𝐺𝐹 = 𝐼. Hence, for any generalised 

inverse of F (inner inverse or quasi-inverse), the model resolution is always not identical 

when F is not injective. Moreover, since the backward mapping is desired to satisfy P2, and 

thus be a generalised inverse of F, the model resolution can always be evaluated using a 

generalised inverse 
†F  as 

†F F .   
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Figure 7.2 Closing filters with different sizes and shapes of structuring elements36 

(a) the original profile (b) the profile after closing with a 20mm disk   

(c) the profile after closing with a 5mm disk (d) the profile after closing with a 20mm horizontal line 

For linear inverse problems, the effect of model resolution can be tested with a spike or 

impulse resolution test, which assesses the recovery of the test model by comparing the 

corresponding inverse solution (Aster et al 2013). A vector which is uniformly zero except a 

perturbed element is commonly used as a test model, called a spike model.  

For example, let matrix F be the forward mapping of an inverse problem,  

16 94 57 83 61 64 41 98 24

63 15 36 29 85 48 80 100 44

21 22 49 53 85 5 16 52 62

68 57 44 10 55 55 75 66 66

55 67 93 45 64 34 49 81 65

78 29 94 30 32 2 42 23 92

27 52 85 62 8 64 68 67 61

25 22 10 36 1 55 99 52 6

 
 
 
 
 
 
 
 
 
 
 
  

F .  
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Let m = [0, 0, 0, 0, 1, 0, 0, 0, 0] be the test (spike) model, the corresponding noise-free data 

can be predicted as d Fm . According to the data d, an inverse solution m̂  can be obtained 

via the Moore-Penrose inverse of F, 

† †ˆ  m F d F Fm .     (7.5) 

By comparing m with m̂ , the effect of the model resolution 
†

mR  FF  can be observed from 

Figure 7.3. This effect is sometimes referred as the smoothing effect of model resolution 

(Aster et al 2013).  

   (a)  

   (b)  

Figure 7.3 The effect of model resolution in a linear inverse problem 37 

(a) the spike model (b) the inverse solution for the spike model without noise 

7.3   A desired property of specifications 

For an indirect measurement, the model resolution can be predicted according to the 

mathematical model of the IPM, and the mathematical model can be determined according to 
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the measurement method. Hence, if there is an expected or default measurement method for 

the specified measurand, the effect of model resolution on the measurement results can be 

predicted. Sometimes the expected measurement method for a specification can be found in 

the related industries standards, or it can be specified in the measurement plan, or directly in 

the specification. If there are several possible measurement methods, a significant method 

uncertainty can be caused. Thus a default method should be considered in the design stage, 

and, if necessary, specified in the measurement plan. With respect to a default measurement 

method, the effect of model resolution can be predicted, which should be considered at the 

design stage of the specifications.  

It is expected that when the true value of a measurand is in the specification, its measurement 

result (without measurement error) is also within specification. As demonstrated before, this 

consistency between measurand value and measurement result can be broken by the effect of 

model resolution when an IPM is involved in the measurement. To avoid the inconsistency, it 

should be ensured that if the true value of a measurand x is marginally within specification 

(i.e. x is equal to a specification limit) the measurement result of x is also within 

specification. This can be achieved by amending the specification so that the specification 

limits are immune with the effect of the model resolution. Hence specification limits should 

be designed to be immune with the effect of the model resolution. This desired property can 

be formulated into the following statement.   

Let p be a specification limit (in terms of a number, vector or function) of a measurand x, if 

an IPM is involved in the expected measurement method of x, and the model resolution of the 

IPM is Rm, then p is desired to satisfy 

(7.5) ( )mR p p .     (7.5) 

For a specification with USL = q and LSL = p, if p and q are both satisfied with (7.5), then 

for any object a with its measurand value ax  marginally within specification, i.e. ax p  or 

ax q , we have ( )m a aR x x . Thereby, the contradiction described in Section 7.1 can be 

avoided.  

7.4   A correction on the specifications of free-form surface profiles 

The problem is how to make sure (7.5) is satisfied. For the measurement of surface profile, 

since the closing filter CS is idempotent, if the USL and LSL are in the range of CS, we have 
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( )SC a a , where 𝑎 = 𝑝 or 𝑞, then (7.5) is satisfied. Therefore, the closing filter can be used 

to correct the specification limits of surface profiles defined in ISO 1101 (2005). The 

contradiction can be solved by correcting the USL from 𝑞 to 𝐶𝑆(𝑞) (see Figure 7.4). 

For the LSL p, it can be easily proved that p is the erosion of the nominal profile by a disk of 

diameter t, denoted as ( )T oE l . By the basic properties of erosion and dilation (Serra 1988), we 

have S S S SE D E E , and t is normally bigger than the diameter of the stylus S, so 

( ) ( ) ( )T o S S T o S T oE l E D E l C E l  . That means, 𝑝 = 𝐶𝑆(𝑝). Hence the LSL is in the range of CS 

and does not need to be corrected. 

 

Figure 7.4 A proposed correction on the specification (tolerance zone) of surface profile38 

This correction can be generalised to all the specifications of measurands that expected to be 

measured indirectly. For an IPM the backward mapping G is desired to satisfy FGF F , 

which implies  

(7.6) GFGF GF .      (7.6) 

And since mR GF , (7.6) implies m m mR R R , thus Rm is idempotent. Similar to the 

correction of the specification of surface profiles, the USL q and the LSL p of the 

specifications of indirectly measured quantities can also be corrected as ( )mR p and ( )mR q  to 

avoid the effect of model resolution. 

7.5   Conclusions 

A contradiction in the specifications of free-form surface profiles is demonstrated in this 

chapter as an example to show the impact of model resolution on the specifications of the 

indirectly measured quantities. The contradiction is that if a surface profile exactly matches 
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the USL of the surface profile, the measurement result can still be out of specification. The 

contact measurement of surface profiles is treated as an IPM, and the concepts of the IPM are 

used to explain the root cause of the contradiction. For measurands that are expected to be 

measured indirectly, a desired property of the specifications is derived according to the model 

resolution of inverse problems. A correction of the USL of surface profile is proposed to 

avoid the contradiction, which is generalized for correcting the specifications of indirectly 

measured quantities. 
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Chapter 8  

Conclusions and Future Work 

8.1   Summary of contributions 

The main contribution of this research project is the discovery of a general type of inverse 

problem in metrology with the structural properties related to a Galois connection. This type 

of inverse problem, named the IPM, is defined in the framework of indirect measurements 

based on the representational theory of measurement. Some basic structural properties of the 

IPMs are derived from the desired properties of solving the IPMs, and proved to be closely 

related to a Galois connection between posets. 

The other important contributions associated with the main contribution include: 

 The desired properties of solving inverse problems in indirect measurements are listed 

and investigated in detail. 

 Topological stability of the IPMs, in terms of the continuity of a mapping, is defined to 

generalise the concept of stability in inverse problems for the situation of measurement. 

 A probabilistic model of indirect measurements is established, which allows the 

estimation of empirical relations with probability assigned. The basic methods of 

estimating empirical relations are introduced. 

 A strategy of reducing the effect of measurement uncertainty in the evaluation of 

empirical relations is developed. 

 A method of estimating the specification uncertainty is proposed, which allows the 

evaluation the intrinsic uncertainty of measurands.  

 A contradiction in the specification of free-form surface profile is pointed out, and a 

correction of the contradiction is proposed. 

8.2   Future work 

The inverse problem of measurement is a very broad subject. It is impossible to cover all the 

topics related to this subject in this thesis. The examples and case studies used in this study 
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are biased in a limited area owing to the author’s limited knowledge of inverse problems and 

mathematical structure. Some interesting topics, which could be investigated further, are 

revealed in this thesis: 

 To test and develop the theory of IPM, more non-linear inverse problems, such as the 

inverse spectral problem and the inverse scattering problem, should be investigated.  

 The condition of a stable indirect measurement is an important topic and more 

investigation is required.  

 Further investigation on the condition of satisfying the desired property P4 (monotonicity 

of the model resolution GF) with some case studies is needed.  

 For the methods and strategy of estimating empirical relations, more applications, such 

as the measurement of surface brightness, can be discussed.  

 More specifications of the indirectly measured quantities should be investigated to 

evaluate the application of the desired property of specification proposed in Chapter 7.  

The author hopes that this work can lead to the development of a complete theory of the 

inverse problem of measurement. 
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Appendix B. Selected examples of Programs in 

Matlab code 

The code used in Example 3.9 

% The following code is used for demonstrating the existence of the Occam's 

solution of a bounded value linear inverse problem by finding the feasible 

region of a linear programming problem.% 

 

clear; clc; 

% Inputs 

n=5; 

u=5; 

l=0; 

c=ones(n,1)*(1/n); 

ub=u*ones(n,1); 

lb=l*ones(n,1); 

ax=(1:n); 

% The forward mapping is a 3x5 matrix. 

F=round(rand(n-2,n)*100); 

NA=null(F); 

v=NA(:,1); 

p=NA(:,2); 

mtrue=rand(n,1)*0.6*(u-l)+ones(n,1)*l+(u-l)*0.2; 

d=F*mtrue; 

minv=pinv(F)*d; 

% plot the true model and its minimum norm solution 

figure(1) 

plot(ax,ub,'g--',ax,lb,'g--'); 

hold all;  

Lmtrue = plot(ax,mtrue,'k-'); 

Lminv = plot(ax,minv,'b--'); 

legend([Lmtrue,Lminv],'true model','estimated model'); 

axis([1 n l-0.5 u+1.3]); 

hold off; 

% draw the line corresponding to the upper limit 

for i=1:n 

    A=v(i); 

    B=p(i); 

    C=u-minv(i); 
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    if  B==0; 

        a1u=linspace(-C/A,-C/A,100); 

        b1u=linspace(-abs(A)-abs(B)-abs(C),abs(A)+abs(B)+abs(C),100); 

    else 

        a1u=(-10:0.1:10); 

        b1u=(-A.*a1u+C)./B; 

    end 

% draw the line corresponding to the lower limit 

    A=v(i); 

    B=p(i); 

    C=l-minv(i); 

    if  B==0; 

        a1l=linspace(-C/A,-C/A,100); 

        b1l=linspace(-abs(A)-abs(B)-abs(C),abs(A)+abs(B)+abs(C),100); 

    else 

        a1l=(-10:0.1:10); 

        b1l=(-A.*a1l+C)./B; 

    end 

    disp(['ploting the ',num2str(i),'th constraint']); 

    pause; 

    figure(2) 

    plot(a1u,b1u,'r-'); 

    hold all; 

    plot(a1l,b1l,'b-'); 

end 

The code used in Example 3.10 

File name: bvos.m 

% This is a algorithm for finding the bounded Occam’s solutions of a linear 

IPM. 

% The objective function is  

% min c'm, subject to Fm=d, l<=m<=u, 

% which is converted to a linear programming problem,  

% min/max f(z), subject to lb<= g(z) <=ub, 

% where z is a vector of design variables. 

% Input the size of matrix F (m by n, m<n), 

% upper bound u, and lower bound l of the measurand. 

 

function bvos(m,n,u,l) 
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% Let the measurand value be the average of the elements in vector m. 

c=ones(n,1)*(1/n); 

  

% Define the vectors of upper bound and lower bound. 

ub=u*ones(n,1); 

lb=l*ones(n,1); 

% Randomly generate a matrix F of the size m-by-n, or specify a matrix F. 

F=abs(round(rand(m,n)*100)); 

% Make sure m<n. 

if m>=n 

    disp(['Error:m must be smaller than n, since F must be 

underdetermined.']); 

    return; 

end 

% Create a true model as a smooth function 

tmax=n*1.2; 

tmin=0.01; 

t=linspace(tmin,tmax,n); 

cin=cintrue(t); 

mtrue=(u-l)*cin'+lb; 

% Calculate the generalized inverse solution using the noise-free data. 

d=F*mtrue; 

minv=pinv(F)*d; 

% Evaluate the measurand value of the true model. 

mv=c'*mtrue; 

% Plot the true model and its generalized inverse solution 

ax=(1:n); 

figure(1) 

plot(ax,ub,'g--',ax,lb,'g--'); 

hold all;  

Lmtrue = plot(ax,mtrue,'k-'); 

Lminv = plot(ax,minv,'b--'); 

axis([1 n l-1 u+1.3]); 

hold off; 

legend([Lmtrue,Lminv],'true model','estimated model'); 

% Find out the basis vectors of the null space of F. 

NA=null(F); 

% Set the matrix A and the vector b to transfer the IPM to a linear 

programming problem. 

 A=[NA;-NA]; 
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b=[ub-minv;minv-lb]; 

% Set a vector f for the objective function of linear programming 

f=c'*NA; 

% Solve the linear programming problem:  

% min f'z, subject to Az <= b 

disp(['to evaluate the min solution']); 

[z0,~,exitflag] = linprog(f,A,b,[],[]); 

% Obtain the minimum solution of the IPM. 

mmin=minv+NA*z0; 

mv0=c'*mmin; 

disp(['the code of exitflag is ',num2str(exitflag)]); 

% Solve the linear programming problem:  

% min -f'z, subject to Az <= b 

disp(['to evaluate the min solution']); 

[z1,~,exitflag] = linprog(-f,A,b,[],[]); 

% Obtain the maximum solution of the IPM. 

mmax=minv+NA*z1; 

mv1=c'*mmax; 

disp(['the code of exitflag is ',num2str(exitflag)]); 

% plot the minimum solution 

figure(2) 

plot(ax,ub,'g--',ax,lb,'g--'); 

hold all;  

Lmmin = plot(ax,mmin,'b-'); 

Lmtrue = plot(ax,mtrue,'k--'); 

axis([1 n l-1 u+1.3]); 

legend([Lmmin,Lmtrue],'minimum solution','true model'); 

hold off; 

% Plot the maximum solution  

figure(3) 

plot(ax,ub,'g--',ax,lb,'g--'); 

hold all;  

Lmmax = plot(ax,mmax,'r-'); 

Lmtrue = plot(ax,mtrue,'k--'); 

axis([1 n l-1 u+1.3]); 

legend([Lmmax,Lmtrue],'maximum solution','true model'); 

hold off; 

% Display the results of measurand values 

disp(['the true measurand value is ',num2str(mv)]); 

disp(['the minimum measurand value is ',num2str(mv0)]); 

disp(['the maximum measurand value is ',num2str(mv1)]); 
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% verify the solutions 

e1=norm(F*mmax-d); 

e2=norm(F*mmin-d); 

disp(['the error from the max solution is ',num2str(e1)]); 

disp(['the error from the min solution is ',num2str(e2)]); 

File name: cintrue.m 

% This function is used in the bvos algorithm to generate a true model 

mtrue. 

% Modified from a code given in (Aster et al 2013).% 

function cin=cintrue(t) 

nt=size(t,2); 

off=zeros(3,1); 

m=off; 

d=off; 

% the peak times 

off(1)=round(nt/3); 

off(2)=round(nt*3/4); 

% the peak heights 

m(1)=0.8; 

m(2)=0.5; 

% the peak variances 

d(1)=round(nt/14); 

d(2)=round(nt/10); 

% compute the sum of the described normal curves 

cin=zeros(1,nt); 

for i=1:2 

    cin=cin+m(i)*exp(-(t-off(i)).^2/(2*d(i)^2)); 

end 
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