
University of Hertfordshire

Data-Driven Self-Tuning in a
Coordination Programming

Language

by

Maksim Kuznetcov

A thesis submitted to the University of Hertfordshire
in partial fulfilment of the requirements of the degree of

MSc by Research

January 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/42578082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.herts.ac.uk

Abstract

Coordination programming is a paradigm for managing composition, communication, and
synchronisation of concurrent components. AstraKahn is a new dataflow coordination lan-
guage based on Gilles Kahn’s model of process network with some significant refinements.

AstraKahn provides a mechanism of implicit data parallelism that is expected to rely
on self-tuning, i.e. adaptive optimisation of execution parameters in order to improve
the performance of the program. This is achieved by providing a programmer with a
number of special network primitives that allow an AstraKahn runtime system to extract
optimisation parameters and adjust them while monitoring the performance of execution.

In this thesis, we present the architecture of an AstraKahn prototype including a
compiler and a runtime system. On the runtime system level the built-in compound
network primitives are constructed from simple ones. This approach allows us to make
the implementation clear and easily extensible.

As a minor contribution we present a number of potential self-tuning heuristics for a
simple network pattern. Also, for illustrative purposes, a practical application of the mor-
phism pattern is presented. The particle-in-cell problem, whose parallelisation requires
load-balancing, is formulated this way.

i

Contents

Abstract i

1 Introduction 1
1.1 Coordination Programming . 1
1.2 Data Parallelism . 1
1.3 AstraKahn . 2
1.4 Contributions . 3

2 AstraKahn 4
2.1 Overview . 4
2.2 Core . 5

2.2.1 Messages and Channels . 5
2.2.2 Boxes . 5
2.2.3 Synchroniser . 7
2.2.4 Wiring . 12

2.3 Network Description Language . 13
2.4 Extensions . 15

2.4.1 Pure Nets . 15
2.4.2 Parallel Boxes . 15
2.4.3 Synch-Table . 17
2.4.4 Morphisms . 18
2.4.5 Serial Replication . 20

3 Implementation 22
3.1 Runtime System . 22

3.1.1 Overview . 22
3.1.2 Runtime Components . 24
3.1.3 Scheduling . 26
3.1.4 Network Execution . 26

3.2 Runtime Components . 26
3.2.1 Boxes . 27
3.2.2 Synchronisers . 29
3.2.3 Mergers and Copiers . 31
3.2.4 Extensions . 32

3.3 Compiler . 34
3.3.1 Network Construction . 34
3.3.2 Wiring . 34

ii

4 Self-Tuning Heuristics 36
4.1 Overview . 36
4.2 Framework . 36
4.3 Fragmentation . 37
4.4 Proliferation . 38

5 A Case for Morphisms: Particle-in-Cell 40
5.1 Overview . 40
5.2 The Problem . 40
5.3 Particle-in-Cell . 41
5.4 Parallelisation . 43

5.4.1 Overview . 43
5.4.2 Decomposition . 43
5.4.3 Communication . 44
5.4.4 Load-Balancing . 45

5.5 Implementation in AstraKahn . 45
5.5.1 Sequential PIC . 45
5.5.2 Parallel PIC . 46

6 Conclusion and Future Work 49
6.1 Summary . 49
6.2 Future Work . 49

A Execution Interface of Synchronisers 50

Chapter 1

Introduction

1.1 Coordination Programming
Coordination programming is a paradigm for managing composition, communication,

and synchronisation of concurrent programs, generally called components. A coordination
language is a programming language for such coordination [1].

While there are several approaches to coordination programming, in this work we focus
on dataflow coordination, in which the execution flow is defined in terms of availability
and/or mutation of data.

The approach was implemented first in the coordination language Linda [2] which
allows several sequential components to communicate via shared associative, concurrently
accessed memory storage, called the tuple space. The components can read, write, and
remove tuples of objects from the tuple space; they can also wait for a particular tuple
and resume execution as soon as it appears in the tuple store. The ideas of Linda found
a new life in a recent project at Intel, called Concurrent Collections (CnC) [3, 4]. Like
Linda, CnC uses content-addressable storage called a tag collection and supports dataflow
synchronisation.

Another possible aggregation mechanism (or glue between the components) is stream-
ing networks. One of the recent representatives of the approach is S-Net [5]. Here the
concept of coordination is fully developed in that the application is represented as two
separate programs: a collection of boxes with well-defined interfaces and a coordination
program written in a specially constructed language that connects and coordinates those
interfaces. The boxes are single-input single-output pure functions of streams written in
a conventional language and oblivious to concurrency concerns. They are connected into
a streaming network which (i) has a static topology where the connections are irregular,
and (ii) can dynamically evolve, but only according to regular patterns where the depen-
dencies between boxes remain statically analysable. Each box waits for an input message,
performs some processing, and outputs zero or more messages into its output stream. The
boxes are executed concurrently by the S-Net runtime system.

1.2 Data Parallelism
S-Net boxes process messages sequentially, one after another. However, in some

cases it is possible to apply a box to several messages in parallel. In S-Net it can be
implemented with an index split combinator : a stream splitter that specifies an integer tag
and creates parallel instances of the box for every message with the unique tag (Figure 1.1).

This approach requires a programmer to write additional code for extending certain

1

1.3. AstraKahn 2

= 1<tag>

...
A!<tag>

A

A

A

= 2<tag>

n=<tag>

Figure 1.1: S-Net: index split combinator and the resulting network.

messages, which are eligible for parallel processing, with the tag. The number of the
unique tags defines the number of parallel instances thus explicitly regulating the level
of parallelism. Furthermore, the combinator does not guarantee the order of output
messages. If the order is essential, the sorting must be performed explicitly.

Another approach called concurrent box invocation was introduced in the new S-Net
runtime system Front [6]. The runtime system executes each box in a number of parallel
contexts activated upon receiving input messages. The processed messages from these
contexts are sent to the collector, where they may be sorted, and then to the output
stream (Figure 1.2). For each box the maximum number of parallel contexts and the
need for message sorting are configured manually.

A

context 1

context 2

context 3

context 4

collector
sorting and merging

Figure 1.2: Front: a box is executed in four parallel contexts

The latter approach is less explicit, but it still requires the programmer to configure
the level of concurrency for each box. The optimal settings may strongly depend on
the hardware, input data, and/or dynamic properties of algorithm implemented by the
network.

The number of concurrently processed messages (or data granularity) is also configured
manually. However, it is generally unclear how many messages are sufficient to utilise the
available resources fully. Too many messages may cause an overhead, while having too
few of them may prevent potential pipeline parallelism.

1.3 AstraKahn

AstraKahn is a new coordination language [7] that inherits some concepts of S-Net
with a number of refinements. Those include stream structuring, classes of boxes, limited
capacity channels, and a well-defined protocol of box execution that prevents a box from
holding its state when it is blocked. A detailed description of the language is given in
Chapter 2.

AstraKahn provides an implicit kind of box parallelism called proliferation. It is
conceptually similar to the one in Front. Unlike Front, however, the concurrency
levels of boxes are expected to be set automatically based on the information collected by

1.4. Contributions 3

monitoring the network and analysing resource utilisation.
We refer to this form of runtime adaptivity as self-tuning. The mechanism can also

govern the granularity of data parallel problems. Using a build-in pattern calledmorphism
a programmer can define problem decomposition with granularity adjusted at runtime
based on the observed network performance.

The morphism pattern may also be useful for problems where a straightforward data
decomposition results in imbalances of the workload assigned to different processors. Nor-
mally, specific load-balancing techniques are developed for these problems in order to
benefit from data parallelism. When such techniques suffer from the compromise be-
tween the negative effect of computation imbalance and the overhead of the balancing,
one can delegate the decision to the runtime system by implementing the problem using
morphisms.

1.4 Contributions
The challenge of self-tuning can only be addressed with new heuristics and well-chosen

assumptions about program behaviour. The first step, however, should be to implement
the AstraKahn prototype as a test bed on which to run an example application while
attempting several adaptation strategies. Since the language itself is not yet stable, the
prototype has to be easily extensible. It is such a prototype that the present work is
attempting to develop.

The main contributions of the thesis are the following

• An up-to-date definition of AstraKahn is presented (Chapter 2). While the language
was first defined by Shafarenko in his preliminary report [7], during the course of
research a number of amendments and clarifications were made. They include net-
work and synchroniser description languages, practical representation of morphisms,
and definition of the fixed point series;

• An implementation of AstraKahn compiler and runtime system prototype is de-
scribed (Chapter 3). We discuss and motivate a number of design decisions. Al-
though the implementation itself is still under development, the core language and
runtime system components, as well as a number of extensions, are completed [8].

In addition, as a minor contribution, a number of potential self-tuning heuristics for
a simple network pattern have been proposed (Chapter 4). We intend to test them as
soon as the AstraKahn prototype has been implemented. Also, for illustrative purposes,
a practical application of morphism pattern is presented. The particle-in-cell problem,
whose parallelisation requires load-balancing, was formulated in AstraKahn using the
morphism pattern (Chapter 5).

Chapter 2

AstraKahn

This chapter describes AstraKahn, a coordination language, which forms the basis of our
further discussion. The language, being a successor of S-Net, was designed with a special
focus on progress control and adaptive data parallelism.

This description below is based on a preliminary report [7] written by Shafarenko. Note
that both the report and this chapter reflect the current state of the AstraKahn project,
and that neither is guaranteed to reflect the final version that is still forthcoming.

2.1 Overview
AstraKahn is a coordination language: it treats a program as a network of computa-

tional components (or vertices), and defines a controlling agent called coordinator that is
responsible for execution, communication, and synchronisation of the components. The
vertices are communicating via channels carrying segmented message sequences. There
are two types of vertices in AstraKahn: boxes and synchronisers:

• Boxes perform computations on messages. A box has a stateless function. While
executing, the box reads input messages, applies its function to them, and sends
the result to the output channels. Boxes can have one (in some cases – two) input
channel and any number of output ones.

• Synchronisers can have any number of input and output channels. They also main-
tain an internal state: a synchroniser is organised as a finite state machine in which
transitions are triggered on receiving messages. It may also have a storage for input
messages. Although synchronisers do not perform any substantial computations
on messages, they are used for various “housekeeping” operations such as message
combining, routing, channel merging, etc.

The AstraKahn network is constructed from an algebraic wiring expression, where
operands are vertices, with four operators corresponding to wiring patterns that are suffi-
cient to construct arbitrary connection topology. Hierarchical network construction is also
supported: one can declare a network as a single compound vertex and use it repeatedly
in other wiring expressions. AstraKahn provides a number of built-in extensions con-
structed this way that, in particular, provide a programmer with transparent parallelism
and self-tuning mechanisms.

In the following description AstraKahn is divided into two parts: the core, which in-
cludes boxes and synchroniser along with static connection operators, and the extensions,
which are defined over the elementary vertices.

4

2.2. Core 5

2.2 Core

2.2.1 Messages and Channels

A unit of data in AstraKahn is message. In the original concept the messages have
types based on a term algebra defined by the Message Definition Language [7, 9]. However,
in this work this characteristic of messages is not used. Hence, for simplicity, we will
assume that all messages have a record type, i.e. can be represented as a collection of
label-value pairs. We also do not restrict the type of data that can be associated with
labels.

Vertices in an AstraKahn network communicate by sending messages via unidirectional
FIFO channels. Each channel is shared between exactly two vertices. The channel is input
from a standpoint of the vertex connected to its read end, and output for the one connected
to the write end. Channels are assigned names that are used to set up connections between
vertices (see Section 2.2.4).

The channels are segmented : they carry homogeneous sequences consisting of messages
or other sequences with the nesting depth being the same for each message. Denote the
depth by d and mark the sequences by brackets, for example:

((m1 m2 m3)(m4 m5))((m6 m7)), d = 2 (2.1)

Since d is constant for a given channel, the number of initial and final brackets is d,
whereas all other brackets occur in the following combinations:

) . . .)︸ ︷︷ ︸
k

(. . . (︸ ︷︷ ︸
k

k ≤ d

We call such combinations segmentation marks and denote by σk, k > 0. The end of the
top-level sequence is marked by a special symbol σ0. For example, sequence (2.1) becomes

m1 m2 m3 σ1 m4 m5 σ2 m6 m7 σ0, d = 2

where d is a channel property and σk are messages of a special type that are distinct from
data messages.

Normally AstraKahn channels are bounded : only a limited number of messages can be
carried by it at any time1. The capacity of each channel is assigned individually by the
coordinator. If an output channel is full, it becomes blocked and cannot accept further
messages. The coordinator prevents situations when a vertex has to send messages to
blocked channels.

2.2.2 Boxes

A box is a vertex equipped with a pure function: it does not depend on any external
information or stored values that can be changed between different invocations, nor can it
cause any side effect. In other words, boxes in AstraKahn are self-contained and stateless.
Normally a box applies its function to input messages and sends out the result. The purity
of the box function implies that the output messages do not depend on any previously
processed messages. The statelessness of the box also makes it, in a sense, “ephemeral”:
it is neither required to have a persistent location nor to be active constantly. Since the

1There is one exception: a wrap-around channel, see Section 2.2.4

2.2. Core 6

output of a box is fully determined by its function and incoming messages, it can be
instantiated when and where needed for a given input message.

AstraKahn does not define how a box function is programmed, it can potentially be
written in any programming language. There are three categories of boxes in AstraKahn
identified by their behaviour with respect to input messages.

Transductor

A transductor has one input channel and one or more output channels. It produces at
most one message on each output channel in response to an input message. Segmentation
marks are forwarded unchanged to all output channels, i.e. the depth of the input and
each of the output channels of the transductor are the same. Having a message in its
input channel, a transductor runs only if all output channels are unblocked.

Inductor

An inductor also has one input channel and one or more output channels. It responds
to a single message with a sequences of messages on all output channels. The inductor
replaces each σk, k > 0 with σk+1, and puts σ1 between output sequences produced
from consecutive input messages. Hence, it encloses each produced sequence in a pair of
brackets thus increasing the depth of the output sequence by one, for example:

m1 m2 (d = 1) → I → m′
11 m′

12 m′
13 σ1 m′

21 m′
22 m′

23 σ0 (d = 2)

(m1 m2) → I → ((m′
11 m′

12 m′
13)(m

′
21 m′

22 m′
23))

The inductor runs only if each output channel is ready to accept a message. It reads
an input message and sends the first message of the result, at most one message per
output channel. Then the inductor checks if it is able to continue execution. If so, the
production continues. Otherwise, if some output channels happens to be blocked and the
inductor has not finished its work, it generates a continuation message, i.e. a message
which, if fed to it at a later time when the channels are unblocked, would cause the work
to continue as if no interruption had taken place. The continuation replaces the current
input message and the inductor stalls until it is able to run again.

Note that it is the box programmer’s obligation to ensure the generation of a valid
continuation after each production that suspends execution.

Reductor

Reductors, as opposed to inductors, turn a sequence of messages into a single message.
Normally a reductor performs the following computation:

r = a⊕ b1 ⊕ b2 · · · ⊕ bn (2.2)

where the message a is an initial term of reduction, b1, . . . , bn is the sequence of
messages to be reduced, and ⊕ is a binary operator defined by a reductor function
⊕ : τa → τb → τa where τ• is a type of the corresponding term. The expression is
evaluated from left to right, hence it is essential for ⊕ to be left-associative.

If τa ̸= τb, the reductor is dyadic and has two input channels, separately for a and
b1, . . . , bn. Otherwise, reductors with τa = τb are called monadic and have a single input
channel for all terms. Both types of reductor can have one or more output channels: the
first one is used for reduction results, whereas the rest are auxiliary and could be used for
messages associated with partial results of the reduction, e.g. errors, flags, etc.

2.2. Core 7

2r1r

)m
2. . . b1

2b)(n
1. . . b1

1b(

)2a1a(

)). . .1
2c)(. . .1

1c((

(a) Dyadic reductor.

2r1r
)n

2. . . b1
2b2a)(n

1. . . b1
1b1a(

). . .1
2c)(. . .1

1c(

(b) Monadic reductor.

Figure 2.2: Reductors.

A reductor runs only if all its output channels are unblocked and both a and at least
one of bi are available in the input channel(s). The reductor reads a and bi, computes
an intermediate result a′, optionally sends messages to auxiliary channels, and attempts
to continue reduction. If either bi+1 is unavailable or an output channel is blocked, the
reductor replaces a with the partial result a′ and stalls until it is able to start the reduction
again. Note that the scheme is similar to the inductor where a′ plays the role of the
continuation message.

The reductor treats the segmentation marks as follows: if σk is read in place of the
initial term a, the segmentation mark of incremented depth is forwarded to all auxiliary
channels:

σk
a−→

{
σk+1, k > 0

σ0, k = 0

On the other hand, if σk appears in place of bi, it is treated as the end of the term sequence.
In this case the last a′ is sent to the first output channel followed by the segmentation
marks with decremented depth:

σk
b−→ a′

σk−1, k > 1

ε, k = 1

σ0, k = 0

If the operator ⊕ is commutative and associative, i.e.

r = a⊕ b1 ⊕ b2 · · · ⊕ bn = a⊕ bπ(1) ⊕ bπ(2) · · · ⊕ bπ(n)

for any permutation π, the reductor called unordered, otherwise it is ordered.
In the case of monadic reductor the operator can also be associative but not com-

mutative, i.e. such that the result of expression does not depend on the placement of
parenthesis. These reductors called monadic segmented.

For unordered and segmented reductors the reduction can be performed in parallel,
see Section 2.4.2 for details.

2.2.3 Synchroniser

Unlike boxes, synchronisers are stateful, and do not perform any substantial compu-
tations on messages. Instead, they can store and forward messages, combine them with
one another, and augment them with some simple auxiliary data.

2.2. Core 8

...

1out→Msend
∅set

2out→)1M,m(send
2m→Mset

1m 2m km

State 1

State 2

State 3
)1, p1(in

)2, p3(in)3, p1(in

1out→Msend
∅set

1in

2in

3in

1out

2out

1i 2i ...
ni

Variables

(state)

(store)

Figure 2.3: Structure of synchroniser in AstraKahn

The output of a synchroniser may depend on a potentially unlimited history of pre-
viously read input messages. This makes the synchroniser a powerful tool for various
operations on message sequences coming from several channels, for message routing and
construction of compound network structures.

Overview

The synchroniser is organised as a finite state machine, its high-level structure outlined
in Figure 2.3. A programmer declares a number of states and transitions between them;
at any moment the synchroniser is in one of the states. He can also specify a number of
named registers for integer values (called state variables) and input messages (called store
variables).

Each transition is associated with some input channel and is triggered upon receiving
a message from the channel. A transition can also have a message pattern and a predicate
defined on the content of message and state variables. Once the pattern is matched and
the predicate is true, the synchroniser switches its state and executes the programmer-
defined statements associated with the transition. It can

• set new values for store and/or state variables;

• send messages to one or more output channels. The synchroniser can send the
currently read message, stored ones, or a combination of those, possibly augmented
with integer values computed from state variables;

Synchroniser Declaration

⟨synch decl⟩ ::= ‘synch’ ⟨synch name⟩ ‘(’ ⟨ports decl⟩ ‘)’
‘{’ ⟨variable decl⟩* ⟨state decl⟩+ ‘}’

⟨synch name⟩ ::= ⟨identifier⟩

In what follows, by identifier we mean a string satisfying the regular expression
[A-Za-z][A-Za-z0-9]*.

Ports

The synchroniser can have any number of input and output ports. Their names are
declared in a header of the synch declaration:

⟨ports decl⟩ ::= ⟨input port⟩ [‘,’ ⟨input port⟩]* ‘|’ ⟨output port⟩ [‘,’ ⟨output port⟩]*

2.2. Core 9

⟨input port⟩ ::= ⟨port name⟩ [‘:’ ⟨depth input⟩]
⟨output port⟩ ::= ⟨port name⟩ [‘:’ ⟨depth output⟩]
⟨depth input⟩ ::= ⟨integer⟩ | ⟨identifier⟩
⟨depth output⟩ ::= ⟨integer⟩

| ⟨identifier⟩ [(‘+’ | ‘-’) ⟨integer⟩]
⟨port name⟩ ::= ⟨identifier⟩

These port names are used both externally (for wiring) and internally (in transition
declarations). Each port can optionally be associated with the channel bracketing depth.
If specified as an integer, a fixed constraint on the channel depth is created and used in
components’ reconciliation. If specified by an identifier, it becomes a global depth constant
with the value of the actual bracketing depth. Furthermore, for output channels the depth
can be constrained by an input’s depth differing by a constant shift.

For example, a synchroniser with an output channel whose depth depends on the depth
of an input’s one has the following header:

synch SomeSync (foo:0, bar:d | zoo:d-1) { ... }

Variables

Store and state variables are declared in the beginning of the synch’s body

⟨variable decl⟩ ::= ‘store’ ⟨identifier list⟩ ‘;’
| ‘state’ ⟨type⟩ ⟨init decl⟩ [‘,’ ⟨init decl⟩]* ‘;’

⟨type⟩ ::= ‘int’ ‘(’ ⟨width⟩ ‘)’
| ‘enum’ ‘(’ ⟨enumerator⟩ [, ⟨enumerator⟩]* ‘)’

⟨init decl⟩ ::= ⟨identifier⟩ [‘=’ ⟨int exp⟩]
⟨width⟩ ::= ⟨integer⟩
⟨enumerator⟩ ::= ⟨identifier⟩ [‘=’ ⟨integer⟩]
⟨identifier list⟩ ::= ⟨identifier⟩ [‘,’ ⟨identifier⟩]*

A state variable can be either an unsigned integer with a fixed bit-width or a C-style
enumeration where the enumerators stand for integer constants. These variables can be
initialised with a constant integer expression, default initial value is 0.

store operand;

state enum(NOP, LD, ST, ADD, MUL) opcode;

state int(32) pc = 1;

Store and state variables have global scope (i.e. they can be accessed from any tran-
sition) and retain their values over state transitions.

States and Transitions

⟨state decl⟩ ::= ⟨state name⟩ ‘{’ ‘on:’ ⟨transition⟩+ [‘elseon:’ ⟨transition⟩+]* ‘}’

⟨state name⟩ ::= ⟨identifier⟩

Transitions from a state are declared inside the state body. Each synchroniser must
have an initial state named start.

2.2. Core 10

⟨transition⟩ ::= ⟨port name⟩ [‘.’ ⟨msg pattern⟩] [‘&’ ⟨predicate⟩]
‘{’ ⟨statements⟩ ‘}’

⟨msg pattern⟩ ::= ⟨bracket pattern⟩
| ⟨variant pattern⟩
| [⟨variant pattern⟩] ⟨record pattern⟩
| ‘else’

⟨bracket pattern⟩ ::= ‘@’ ⟨identifier⟩
⟨variant pattern⟩ ::= ‘?’ ⟨identifier⟩
⟨record pattern⟩ ::= ‘(’ ⟨identifier list⟩ [‘||’ ⟨tail⟩]‘)’
⟨tail⟩ ::= ⟨identifier⟩
⟨predicate⟩ ::= ⟨int exp⟩

Each transition is associated with some input channel and, optionally, a message
pattern and a predicate. There are two kinds of pattern: segmentation mark and record 2.
An identifier in a segmentation mark pattern matches the bracketing depth, while the
record pattern specifies the expected labels of an input message.

Once an input message matched some pattern, identifiers from the pattern become
local variables (i.e. visible only within the current transition) initialised with matched
values. For example

a.@d {...} # Once received))((, a local d=2 is created

a.(z, y || x) {...} # Once received {z: 1, y: 2, w: 3, v: 4}, locals

z=1, y=2, and x={w: 3, v: 4} are created

The predicate is an integer expression possibly containing local, state, and global in-
teger variables. The value of the expression is interpreted as Boolean. Once the predicate
is evaluated to True, the transition fires.

If there are more than one transition matching an input message and satisfying the
predicates, one of them is chosen non-deterministically, based on a fairness policy. How-
ever, a label elseon: can be inserted to divide transitions into groups of descending
priority. The groups are tested top-down. Once a ready transition is found in some
group, it is executed and the search stops.

start {
on:

a.<p1> {...} # if the message matches <p1> or both <p1> and <p2>

elseon:

a.<p2> {...} # if the message matches <p2> only.

}

Transition Statements

The body of transition contains statements that are executed when the transition is
triggered. Each of these statements is optional, but their order is fixed.

⟨statements⟩ ::= [⟨set stmt⟩] [⟨send stmt⟩] [⟨goto stmt⟩]
2A variant pattern specifies a variant type in MDL, which is not used in this thesis. See [9] for details.

2.2. Core 11

The first statement allows one to set new values to store and/or state variables:

⟨set stmt⟩ ::= ‘set’ ⟨assign⟩ [‘,’ ⟨assign⟩]* ‘;’

⟨assign⟩ ::= ⟨identifier⟩ ‘=’ (⟨int exp⟩ | ⟨data exp⟩)

The right-hand side expressions may include state, store, and local variables, as well
as depth constants. The int exp defines arithmetic and binary operations on integer
constants and variables, and data exp constructs a message of record type. The concrete
syntax of the expressions will be presented later in the section.

The next statement defines sending messages to output ports. The message may be
specified as a segmentation mark with an arbitrary depth or a data message of record
type.

⟨send stmt⟩ ::= ‘send’ ⟨dispatch⟩ [‘,’ ⟨dispatch⟩]* ‘;’

⟨dispatch⟩ ::= ⟨msg exp⟩ ‘=>’ ⟨port name⟩
⟨msg exp⟩ ::= ‘@’ ⟨int exp⟩

| [‘?’ ⟨identifier⟩] ⟨data exp⟩

Finally, the last statement defines a destination state(s) to which the synchroniser
moves when the transition is taken.

⟨goto stmt⟩ ::= ‘goto’ ⟨state name⟩ [‘,’ ⟨state name⟩]* ‘;’

The statement can be omitted, in this case the synchroniser is remains in the current
state. The goto statement can specify more than one potential destination states. In this
case the synchroniser makes a single choice non-deterministically, prioritising the states
where the synchroniser is more likely to trigger the next transition immediately.

Expressions

An integer expression may include standard arithmetic, binary, and comparison oper-
ators:

⟨int exp⟩ ::= ⟨iexpr⟩
⟨iexpr⟩ ::= ⟨integer⟩

| ⟨identifier⟩
| ‘(’ ⟨iexpr⟩ ‘)’
| ⟨iexpr⟩ ‘+’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘-’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘*’ ⟨iexpr⟩
| ⟨iexpr⟩ ‘/’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘%’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘<<’ ⟨iexpr⟩
| ⟨iexpr⟩ ‘>>’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘|’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘&’ ⟨iexpr⟩
| ⟨iexpr⟩ ‘^’ ⟨iexpr⟩ | ‘-’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘<’ ⟨iexpr⟩
| ⟨iexpr⟩ ‘>’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘==’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘!=’ ⟨iexpr⟩
| ⟨iexpr⟩ ‘<=’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘>=’ ⟨iexpr⟩ | ‘!’ ⟨iexpr⟩
| ⟨iexpr⟩ ‘&&’ ⟨iexpr⟩ | ⟨iexpr⟩ ‘||’ ⟨iexpr⟩

A data expression constructs a message of record type:

⟨data exp⟩ ::= ⟨atom list⟩ | ‘(’ ⟨atom list⟩ ‘)’
⟨atom list⟩ ::= ⟨atom⟩ [‘||’ ⟨atom⟩]*
⟨atom⟩ ::= ‘this’ | [‘’’] ⟨identifier⟩ | ⟨identifier⟩ ‘:’ ⟨rhs⟩

2.2. Core 12

⟨rhs⟩ ::= ⟨int exp⟩ | ⟨identifier⟩

The message is constructed from a sequence of the following atoms:

• A store variable;

• A key-value pair;

• The keyword this referring to the currently received message;

• An expansion: a store or state variable preceded by a single quote. The atom is
expanded into a key-value pair where the key is named as the variable.

Putting it all together:

Let the currently received message be {foo: 42}
store k = {bar: -1}
state m = 10, n = 100

(this || k || ’m | a: n) # -> {foo: 42, bar: -1, m: 10, a: 100}

Parametrised Synchroniser

A programmer may want to parametrise some integer constants or identifiers in the
synchroniser and initialise them with different values for its different instances.

In order to do this, one needs to replace actual identifiers or constants with the desired
parameter’s name, and put the following line before the synch declaration:

@<parameter’s name> [= <default value>]

synch (...) {...}

When using the synchroniser in a network, a programmer will have to provide the
values for its parameters (see Section 2.3).

2.2.4 Wiring

The process of connecting vertices with channels is called wiring. A bare vertex has
a set of named placeholders for input and output channels called ports. When a vertex
becomes a part of a network, ports are connected with correspondingly named channels.
It follows that for any input and output ports to be connected by a channel, they have to
be named identically.

Wiring in AstraKahn is defined by an expression with vertices as operands and wiring
patterns as operators. The network is constructed from the expression by its evaluation
according to the rules of associativity and priority of operators.

Note that a channel can connect only two ports with the same name. If at any point
of the network construction there appears a network with n > 1 identically named...

• ...input ports, they are plugged up with a 1-to-n copier that broadcast copies of
input messages to each of the n output channels.

• ...output ports, they are plugged up with an n-to-1 merger that transfers all incom-
ing messages to the single output channel non-deterministically.

AstraKahn provides three static wiring operators:

2.3. Network Description Language 13

• Serial connection is denoted by the binary operator .. and sets up the channels
from free output ports of the left operand to identically named free input ports of
the right operand;

• Parallel connection is denoted by the binary operator || and just places the
operands “side by side” into a new subnetwork. The operator does not set up any
new channels;

• Wrap-around connection is denoted by postfix operator \ and sets up the chan-
nels from free output ports of the operand to identically named free input ports of
the operand. The operator creates cyclic connections. The channels of wrap-around
connections are always unblocked, i.e. their capacity is limited only by the amount
of available memory. This exception is made in order to avoid potential deadlocks:
if such channels were of limited capacity, the network would stop execution once the
channel is full and blocked.

a
b

a

b

c
c

A
B

(a) Serial

c

b

Ac

a

(b) Wrap-around

a
b

a

b

c
c

A

B

(c) Parallel

Figure 2.4: Wiring patterns in AstraKahn

2.3 Network Description Language
An AstraKahn program starts with a definition of the outermost net

⟨net⟩ ::= [‘pure’] ‘net’ ⟨identifier⟩ ‘(’ ⟨input ports⟩ ‘|’ ⟨output ports⟩ ‘)’
⟨declaration⟩*
‘connect’ ⟨wiring⟩ ‘end’

⟨input ports⟩ ::= ⟨identifier list⟩
⟨output ports⟩ ::= ⟨identifier list⟩

The net header defines its name and input and output ports. The pure keyword
can be put before the declaration in order to specify that the net can act as a box (see
Section 2.4.1).

2.3. Network Description Language 14

While boxes are declared externally and have global scope, synchronisers and any
nested networks (both built-in3 and programmer-defined) are declared next to the header.
The scope of these declarations is limited to the current net.

⟨declaration⟩ ::= ⟨net⟩ | ⟨synchroniser⟩ | ⟨synchtable⟩ | ⟨morphism⟩

The synchroniser declaration consists of its name and, optionally, the values of its
external parameters:

⟨synchroniser⟩ ::= ‘synch’ ⟨identifier⟩ [‘[’ ⟨argument⟩ [‘,’ ⟨argument⟩]* ‘]’]

⟨argument⟩ ::= ⟨identifier⟩ ‘=’ (⟨string⟩ | ⟨integer⟩)

The wiring expression is written using the operators defined in Section 2.2.4:

⟨wiring⟩ ::= ⟨vertex ⟩
| ‘(’ ⟨wiring⟩ ‘)’
| ⟨wiring⟩ ‘..’ ⟨wiring⟩
| ⟨wiring⟩ ‘||’ ⟨wiring⟩
| ⟨wiring⟩ ‘\’
| ⟨wiring⟩ ‘*’

The operators have properties listed below in the order of decreasing priority:
• * and \ are postfix unary operators grouping from left to right, i.e.

a*\ = (a*)\

• .. is a binary associative operator

• || is a binary associative and commutative operator
In complex expressions without brackets operators .. are evaluated from left to right:

a..b..c = ((a..b)..c)

The vertices are referred to by their names. Since boxes are declared as functions, the
programmer needs to specify their category explicitly:

⟨vertex ⟩ ::= ⟨vertex name⟩ | ⟨renaming brackets⟩ | ⟨merger⟩
⟨vertex name⟩ ::= [⟨category⟩ ‘:’] ⟨identifier⟩
⟨category⟩ ::= ‘t’ | ‘i’ | ‘do’ | ‘du’ | ‘mo’ | ‘ms’ | ‘mu’

Port names are specified in declarations only for nets and synchronisers, whereas the
boxes’ ports by default are named 1, 2, etc., separately for input and output ports.
One can change the default names by renaming brackets :

⟨renaming brackets⟩ ::= ‘<’ [⟨renaming⟩] ‘|’ ⟨vertex name⟩ ‘|’ [⟨renaming⟩] ‘>’
⟨renaming⟩ ::= ⟨identifier list⟩ | ⟨kwarg list⟩
⟨kwarg list⟩ ::= ⟨kwarg⟩ [‘,’ ⟨kwarg⟩]*
⟨kwarg⟩ ::= ⟨identifier⟩ ‘=’ ⟨identifier⟩

For example:

3Syntax for synch-tables and morphisms is presented in Section 2.4.

2.4. Extensions 15

<init,terms | SomeReductor | result,errors>

<_1=init,_2=terms | SomeReductor | _1=result>

Finally, a non-deterministic channel merger can be inserted as a wiring operand with
the following syntax:

⟨merger⟩ ::= ‘<’ ⟨identifier list⟩ ‘| ~ |’ ⟨identifier list⟩ ‘>’

In the following example the merger receives messages from channels a, b, and c, and
then copies them to d and e. As the merger is non-deterministic, no particular order of
messages is guaranteed.

<a,b,c | ~ | d,e>

2.4 Extensions
AstraKahn allows one to combine boxes and synchronisers into named subnetworks,

which in turn can be used repeatedly in larger networks. These subnetworks are called
nets and also have a number of named input and output ports connected to constituent
vertices.

Nets can be used not only by a programmer, but also by the coordinator in order
to construct and manage built-in networked structures with a complex behaviour which
comprise elementary vertices. The following sections describes such structures available
in AstraKahn.

2.4.1 Pure Nets

Apart from the ordinary role of the net as a structural unit of AstraKahn networks, it
can also, under some conditions, act exactly as an ordinary box in which input messages
are processed by a network of vertices.

The network acting as a box is called pure. For the network to be pure the following
conditions have to be satisfied:

• the number of input and output channels of the pure net must correspond to the
ones in the box;

• the depth of all internal channels must be zero, i.e. σk, k > 0 are not allowed inside
the pure net. The segmentation marks are handled by the coordinator: it forwards
them to the output channel according to box’s semantics and send σ0 into the net
to mark the end of the message sequence for inductors and reductors.

In order to ensure the statelessness of the pure net, the coordinator “resets” the net
once it yields the result:

• for the transductor: after sending a message on all output channels;

• for the inductor: after the box has yielded a σ0;

• for the reductor: after the box has encountered a σ0.
The “reset” means that all internal vertices abort the execution, synchronisers are

returned to their start state, and the content of all channels is flushed.

2.4.2 Parallel Boxes

Boxes process messages sequentially, one after another. However, in some cases it is
possible to apply the box code to several messages in parallel. This allows one to increase

2.4. Extensions 16

the processing rate of the box. In the following sections parallel transductor and reductor
are discussed.

Transductor

A transductor simply applies its function to input messages one after another. Since
the function is pure, there is no dependency between the computations. This allows one
to replace a single transductor by a number of its copies and distribute input messages
among them asynchronously, combining the results into the original output channels:

...

)k...m2m1m(

1T

2T

nT

))k(π
′...m(2)π

′m(1)π
′m(

Figure 2.5: Parallel transductor.

Since transductor instances are asynchronous, the order in which messages are pro-
cessed is not guaranteed. In order to preserve the semantics of a single transductor,
additional components must be added after the parallel instances for retaining the origi-
nal order of messages. This may reduce or cancel out the benefit of the data parallelism
due to global synchronisation. However, it can be avoided if the order of messages af-
ter the transductor does not affect the computations. For example, if the transductor
sends messages to an unordered reductor, the order of messages won’t affect the result of
reduction.

Since the topology of the network and components’ properties are known statically,
the compiler can mark the channels as ‘ordered’ or ‘unordered’. This may be used for
optimising out the sorting network after a parallel transductor.

That said, for the parallel transductor not to change the structure of message se-
quences, the messages must not be shuffled outside their brackets, i.e. a segmentation
mark is always a barrier of such permutations.

Reductor

A reductor performs left-associative evaluation of expression (2.2). In the general
case such evaluation is inherently sequential. However, for monadic reductors that are
segmented or unordered it is possible to break the evaluation into independent computa-
tions:

r = b0⊕ b1⊕ b2 · · ·⊕ bn = (b0⊕· · ·⊕ bp(1))⊕ (bp(1)+1⊕· · ·⊕ bp(2))⊕ (bp(m−1)+1⊕· · ·⊕ bp(k))

where the monotonically increasing function p(i) defines a partition of the original term
sequence into k parts. The subexpressions can be evaluated in parallel, the result then
can be partitioned and evaluated again until the final result is yielded. For example, for
n = 10 and k = 5:

2.4. Extensions 17

2-1m

4-1m

10-5m

4-3m

6-5m

8-7m

10-9m

10-1m

)2m1m(

)4m3m(

)6m5m(

)8m7m(

)10m9m(

1I

2I

3I

4I

5I

1I

3I

1I

step 1 step 2 step 3

)10. . .m2m1m(

Figure 2.6: Sample message flow in a parallel reductor.

Since normally the reductor does not know the length of an incoming sequence of
messages, the choice of the parameter k in general case can only be empirical. However, if
the reductor is a part of a special construction (see Section 2.4.4), the coordinator knows
the exact length of the sequence and can effectively allocate the resources to reduce it in
parallel.

Proliferation

The parallel boxes can not be used directly by a programmer. Instead, it is the
coordinator that creates parallel instances of boxes at runtime. This process is called
proliferation. A number of parallel copies replacing a given box is called its proliferation
factor.

Proliferation is a part of AstraKahn self-tuning strategy described in Chapter 4.

2.4.3 Synch-Table

Consider a single channel that carries interleaved homogeneous messages of several
“logical” subsequences. The subsequences are distinguished by a combination of indices :
integer values under certain labels within each message.

The synch-table is an extension of the synchroniser that turns it into a dynamic array of
parallel instances associated with a declared set of indices contained in incoming messages.
Syntactically, synch-tables are declared as follows:

⟨synchtable⟩ ::= ‘tab’ ‘[’ ⟨index ⟩ [‘,’ ⟨index ⟩]* ‘]’ ⟨synchroniser⟩
⟨index ⟩ ::= ⟨identifier⟩ ‘[’ ⟨integer⟩ ‘,’ ⟨integer⟩ ‘]’

For example:

tab [foo[a,b], bar[c,d] ...] synch-declaration

where foo[a,b] means that the label named foo with an integer value within the limits
[a,b] is expected to be found in an incoming message.

When the synch-table receives a message m containing all the declared indices, it
dynamically instantiates the synchroniser passing the values of the indices as parameters:

S(foo=m[foo], bar=m[bar])

and routes the message to the instance. When the message has been processed, the
instance persists and can accept further messages with the corresponding values of indices
(Figure 3.10).

2.4. Extensions 18

...

= 1), j= 1i(S

= 1), j= 5i(S

7), j= 1i(S

}: 7, j: 1i{

Figure 2.7: Synch-table.

Thus, each subsequence of messages is routed to an instance of the synchroniser with
the indices representing corresponding the subsequence.

The output channels from all instances are merged into joint output channels cor-
responding to the synchroniser. Segmentation marks are broadcast unchanged to all
synchronisers within the synch-table.

2.4.4 Morphisms

Since the proliferation mechanism regulates the throughput of individual vertices, it
is efficient only if a sufficiently large number of messages are processed in parallel.

If the network implements a data parallel algorithm, it is possible to generate more
messages by breaking down the initial problem into smaller ones by an inductor. After
the messages are processed they can be assembled by a reductor to obtain the desired
result.

While this pattern can easily be implemented manually, it is not generally clear how
many messages are sufficient for to utilise parallel resources fully. Too many subproblems
may cause a significant overhead that would cancel out benefits from the parallelism,
while having too few of them may prevent potential pipeline parallelism.

However, if the program take sufficiently long time to run or is run repeatedly, the
number of messages can potentially be changed automatically based on the informa-
tion collected by monitoring the network and analysing resource utilisation. In order to
self-tune the number of messages, AstraKahn makes it accessible to runtime system by
supporting a built-in pattern for data parallel problems.

Definition (eager transductor). A transductor is called eager if it responds to any input
message with exactly one message on each of its output channels.

Consider a 1I inductor P , an eager nT transductor T , and 1RMα, α ∈ {O,U, S}
reductors Qi for i ∈ [1, n]. Express the boxes as mappings on messages:

P (k) : m → (m1,m2, ...,mk)

T : m → r1∥...∥rn

Qi(k) : (r
i
1, ..., r

i
k) → r, i ∈ [1, n]

where ∥ separates messages on different channels. The inductor and reductors are parametrised
with the number of messages they generate or reduce.

Let Qi(k) has the inverse mapping Q−1
i (k). In terms of boxes the inverse mapping can

be defined by a 1I inductor:

Q−1
i (k) : r → (ri1, r

i
2, ..., r

i
k)

2.4. Extensions 19

Definition (loxomorphism). The triplet (P (k), T,Q(k)) is called loxomorphism if

T ◦ P =
(
∥ni=1Q

−1
i (k)

)
◦ T

or, equivalently, the following diagram is commutative:

(m1 . . .mk)
(m1

1 . . .m
1
k)∥ . . .

. . . ∥(mn
1 . . .m

n
k)

m r1∥ . . . ∥rn

P

T

T

{Qi} {Q−1
i }

The diagram can be interpreted as follows. Let an input message m to be processed
by the transductor yield the result r1∥...∥rn. Instead of this the loxomorphism allows one
to split the input message into a sequence (m1,m2, ...,mk) which can be processed by the
transductor in parallel. The resulting sequence is the image of the intended result under
Q−1

i (k) and can be reduced to it by Qi(k).
A loxomorphism in AstraKahn results in the following network:

I1 MαR1T1

Figure 2.8: Morphism network

The coordinator can increase the level of concurrency at runtime by enabling the
inductor and reductor for the given parameter k defining the number of messages that
will be processed in parallel by the transductor. This process is called fragmentation.

The morphism is declared as follows:

⟨morphism⟩ ::= ‘morph’ ‘(’ ⟨identifier⟩ ‘)’ ‘{’ ⟨morph list⟩ ‘}’
⟨morph list⟩ ::= ⟨morph⟩ [‘,’ ⟨morph⟩]*
⟨morph⟩ ::= ⟨inductor⟩ ‘/’ ⟨transductor⟩ ‘/’ ⟨reductor⟩ ‘;’
⟨inductor⟩ ::= ⟨vertex name⟩
⟨transductor⟩ ::= ⟨vertex name⟩
⟨reductor⟩ ::= ⟨vertex name⟩

The declaration assigns inductor-reductor pairs to a single transductor. Once the
transductor is used in the wiring expression, the corresponding morphism will be con-
structed by the compiler.

An important special case of loxomorphisms is the pipeline of transductors. If two
consecutive stages of the pipeline are fragmented, the messages go through the adjacent
reductor and inductor which causes global synchronisation after the first stage. In the
general case this step is essential since the fragments of the original problem may need
to be combined with others to obtain the intended result. However, for some problems
this process can be performed with some degree of locality: each message may need to be

2.4. Extensions 20

combined with only a few others. For these cases the morphism provides special input
and output ports that act as a “shortcut” for messages. Given two serially connected
morphisms, the programmer can place some vertex (expectedly – a synch table) called
override, which combines messages in the way that they may go through without the
explicit join-split (Figure 2.9).

MαR1T1 I1 T1

...
Sync

Syncsync table

Figure 2.9: Pipeline of morphisms

2.4.5 Serial Replication

An algorithmic loop can be implemented in an AstraKahn network as a serially con-
nected sequence:

A..A.. · · · ..A︸ ︷︷ ︸
n

where A is a net representing one iteration of the loop, and n is a desired number of
iterations. In what follows we will refer to an individual A as a stage.

Such a construction does not support loops iterating a variable number of times during
the execution. Furthermore, the static sequence of networks takes computational resources
even if there are no messages to process.

The serial replication wiring pattern in AstraKahn solves both problems. The pattern
creates a “lazy”, potentially infinite pipeline: the next stage is created only at the moment
that the message is emitted by the last stage. Messages leave the pipeline once they satisfy
the exit-condition programmed in each stage.

Let A be a net with the same number of input and output channels, and there is a
bijection between their names. Assume also that the stage includes one or more synchro-
nisers. We will refer to the aggregate state of these synchronisers as the stage state.

Definition (forward fixed point). The stage A is said to have a forward fixed point (FFP)
if it is possible to prove at runtime that an input message from some input channel will
pass through the stage unchanged to the identically named output channel.

Since the definition is very broad, let us provide some particular cases of the forward
fixed point. First, an FFP cannot pass through any boxes since they are treated as black
boxes, i.e. their behaviour cannot be analysed. Hence, for an FFP it is only possible to
pass through synchronisers, whose behaviour can be analysed, and mergers. For example,
the FFP can be detected by some predicate that is tested by stage’s synchronisers such
that the message passed unchanged if the predicate is true. Alternatively, a stage can
have an input channel that is directly connected to the identically named output channel:
in this case once a message is know to be an FFP once it goes to this input channel.

Definition (reversed fixed point). The stage A is said to have a reversed fixed point
(RFP) if it has a subset of reachable states (called the RFP states) such that in each
of these states the stage passes all messages unchanged to the identically named output
channels, remaining within the subset of states.

2.4. Extensions 21

An application of these stage properties to the serial replication pattern is the follow-
ing. If the described stage A has both FFP and RFP and happened to occur in a wiring
expression as A*, the “lazy” pipeline of identical replicas of A is created: a new stage is
initialised once a message is processed by the current last stage.

If a message is an FFP, it leaves the pipeline through one of the separate output
channels connected to the rest network (otherwise the message would infinitely create
new stages bypassing through them unchanged. In a sense, the FFP “warps through” the
infinite chain of the stage replicas).

On the other hand, RFP serves for reducing the length of the pipeline: once a message
triggers one of the RFP states at some stage, the stage is removed by the coordinator
since now it is simply passed the input messages unchanged.

Therefore, with the FFP and RFP specified appropriately, serial replication allows
to create dynamic pipeline structure corresponding to loops with variable number of
iterations.

Chapter 3

Implementation

As a proof-of-concept and a framework for further research and experiments, a prototype
AstraKahn compiler and runtime system have been implemented. This chapter provides
some details on design of the implementation.

The architecture of the prototype is given in Figure 3.1. The compiler compiles an As-
traKahn program down to a network of runtime components. Each component is an object
(in terms of object oriented programming) that corresponds to some AstraKahn vertex
by implementing unified communication and execution interfaces as appropriate. Then
the runtime system runs the network, managing communication and parallel execution of
the components.

Runtime SystemNetwork description
Boxes and synchronisers

Runtime
componentsCompiler

Figure 3.1: Architecture of the AstraKahn implementation.

3.1 Runtime System

3.1.1 Overview

A network of concurrent communicating vertices can be implemented in various ways.
A straightforward one is to represent the vertices as kernel-level threads or processes
communicating via shared memory or other inter-process communication primitives. This
approach was employed in the original S-Net runtime system [10]. The drawbacks of the
strategy are the lack of scheduling flexibility (since threads are governed by the OS) and
the high overhead caused by expensive context switching and network reconfiguration.

The drawbacks can be avoided by using lightweight user-level threads. The LPEL, a
runtime layer for S-Net [11], uses this strategy as follows. Vertices of an S-Net network
are represented as tasks distributed among a fixed number of workers, which are persistent
kernel-level threads. The tasks can communicate within and across workers. Once a task
is ready, it is executed in the context of its worker (Figure 3.2a).

22

3.1. Runtime System 23

CPU

T

T

T

T

T

T

T

T

CPU

T
TT T

T T

T

T

Tasks Tasks

Workers

(a) The LPEL architecture

Conductor

Pool of workers

mmmmm task queue

)f,m(

)m(f

()f

(b) LPEL with a dedicated conductor

Figure 3.2: Runtime systems based in lightweight user-level threads.

However, in order to run efficiently, the LPEL has to maintain the load-balance of
the workers by task migration. A strategy of dynamic task migration for the LPEL is
discussed in [12]. That said, the problem is rather challenging, and it seems to be an
overkill to incorporate it into a research prototype. Another approach suggested in [13]
is to assign one worker called conductor to maintain a central task queue (CTQ) and
dispatch ready tasks to the pool of workers for execution (Figure 3.2b).

)f,m(

)m(f

mmmmm task queue

remoteimmediate

executionrun task

()f

Figure 3.3: The runtime system of AstraKahn.

An immediate drawback of this approach is the communication load between the
conductor and the workers on each execution of a vertex. However, we assume the task size
to be small: messages usually contain lightweight data such as integers and references to
heavier data objects rather than the objects themselves. Hence, to the first approximation
we can neglect the inefficiencies associated with communication between the conductor
and the workers. Another potential drawback is bad cache behaviour: closely connected
vertices can be assigned to different workers (and, possibly, to different hardware cores)
while taking turns to process the same message. We also neglect the drawback in the
current implementation; however, the runtime system may account for it by employing a
prioritised policy of scheduling vertices among workers.

We refer to the aforementioned method of execution as remote. The method is used
for boxes: their functions and input messages are combined into tasks and asynchronously
sent to the workers.

3.1. Runtime System 24

However, in some cases the remote execution is redundant and may cause a significant
overhead:

• A segmentation mark being received by a box bypasses its functions and is forwarded
to its output channels, possibly with amended depth;

• A synchroniser changes its state on receiving a message, which also requires a con-
stant time. Furthermore, while choosing a state transition, the synchroniser needs
to know the status of its input and output channels, which may change while the
synchroniser is executing in the pool.

In these cases the conductor executes the components immediately, within the context
of the conductor’s process (Figure 3.3).

3.1.2 Runtime Components

Runtime components are objects that correspond to vertices and nets. The objects are
structured in a tree that reflects the hierarchy of an AstraKahn program: its internal nodes
are nets, and leaves are vertices (Figure 3.4). The tree is constructed by the AstraKahn
compiler (see Section 3.3).

net n0

net n1

(A || C) .. B

net n2

D .. E

(n1 || S) .. n2

(a) Network description (simplified).

E

n0
n1

n2

A B

C

S

D

(b) Tree of runtime components

Figure 3.4: Correspondence between AstraKahn program and runtime components

The components have common interfaces for communication and execution.

Communication

Each component has a number of named input and output ports that denote con-
nection endpoints (see Section 2.2.4). However, the implementation does not consider a
channel as a separate entity. Instead, a bounded buffer is embedded into each input port.
From the standpoint of an output port a connection is represented as a reference pointing
to the buffer of some input port.

Figure 3.5: Implementation of AstraKahn channels.

The buffer is implemented as a double-ended queue, i.e. such that allows one to add or
remove elements from either the head or tail. The resulting capability of components to
insert messages into their input channel is used by reductors and inductors for continuation
messages (see Section 3.2.1).

3.1. Runtime System 25

In AstraKahn a net is a shorthand for some subnetwork, it neither receives messages
nor computes anything on its own. That said, runtime components representing nets
contain explicit placeholders for inputs and output ports. Normally, these ports are simply
references to (or, in fact, “proxies” for) corresponding “real” ports of net’s constituent
components. (Figure 3.6).

Box

Net

Box

Figure 3.6: Ports of a net that is not involved in execution. Dashed grey
lines denote references to ports, solid ones – references to input buffers.

However, the implementation allows some special built-in types of nets to receive and
process messages on their own. Components of this type have a predefined handler that
is called by the conductor once a messages is received by one of the net’s “real” input
ports. The handler has access to the net’s internals, for example, it can add, remove or
rewire any vertices inside the net. It also can forward the received messages to any input
ports of constituent vertices (Figure 3.7).

Note that these non-standard nets are preprogrammed and can only be used for inter-
nal purposes. For example, such a net is used for serial replication wiring (Section 3.3.2).

Box

Handler initialise

send

Net

Box

Figure 3.7: Ports of a net involved in execution.

Each node also has a private interface containing methods for fetching and sending
messages, and checking the statuses of input and output channels. These methods are
used by the execution interface.

Execution

An execution interface of runtime components consists of the following methods:

• is ready() – returns a tuple of two Boolean values (Ri, Ro) where Ri indicates
availability of input message(s) required to run, and Ro indicates whether the output
channels are unblocked. The values (True, True) are returned when the component
is ready for execution.

• fetch() – fetches and returns input message(s) required for execution.

3.2. Runtime Components 26

• run() – performs execution of the component. The method returns either a task
for remote execution or True if immediate execution is performed.

• commit() – accepts a result computed in the pool and sends it to the specified
output port(s).

The interface is abstract and implemented by each vertex individually. Concrete in-
terface implementations for all types of vertices are given in Section 3.2.

3.1.3 Scheduling

In order to run a network of components, the runtime system performs dynamic
scheduling, i.e. computes a set of ready components at runtime. More specifically, the run-
time system implements data-driven scheduling, where a component is considered ready
if it has input message(s) to process. This approach is easy to implement, suitable for
exploiting parallelism of asynchronous components and, provided that all channels are
bounded, results in fair network execution [14]. The same approach was also used in the
LPEL [11].

Therefore, the problem of scheduling boils down to effective computation of the set of
ready components at runtime. Before executing a network, the conductor computes an
initial set its ready components, and then updates it as follows. After each component’s
execution the conductor gets a set of components from which the messages were processed,
and components to which output messages were sent. These components are candidates
to become ready due to unblocked output channels or newly available input messages
respectively. As soon as the set of ready components becomes empty, new candidates
that happen to be ready are placed in it.

3.1.4 Network Execution

After computing an initial set of ready components, the conductor starts a loop that
performs the following high-level steps:

1. pop ready component and run it immediately, or dispatch it to pool;

2. update set of ready components;

3. read results of remote execution from pool and commit them;

4. update set of ready components; if no component is ready, wait for further results
from pool and repeat step 3; otherwise go to step 1.

Note that the pool is communicating concurrently with the conductor: dispatching a
task to the pool is always non-blocking, and an operation that reads results from the pool
is blocked only if there is no ready component.

While message communication and immediate execution are performed non-concurrently
in the above loop, the overhead is assumed to be small compared to the running time
of boxes executing in the pool. Nevertheless, when implemented in the runtime system,
these operations are top candidates for profiling and optimisation.

3.2 Runtime Components
This section describes how AstraKahn vertices are implemented in terms of the run-

time components. Elementary vertices are represented by single components with an
execution interface declared appropriately, whereas built-in extensions are represented by
nets composed of boxes and synchroniser defining the desired behaviour.

3.2. Runtime Components 27

3.2.1 Boxes

Transductor

A transductor has the simplest execution interface (Algorithm 1):

Method is ready()
/* Test if there is an input message and if all output channels are unblocked. */

Properties: input /* input port */

outputs /* array of output ports */

Ri = bool(is input not empty)
Ro = bool(does outputs have no blocked channels)
return (Ri, Ro)

Method commit(result)
/* Return a task combined of the box function and the input message. If the input message is

a segmentation mark, it is immediately sent to all output channels instead. */

foreach (msg, port) in result do
send msg to port

end

Method run(msg)
/* Send output messages received from the pool to corresponding channels. */

if msg is σk then
send σk to each port in outputs
return None /* Immediate execution */

else
return (self .function, msg) /* Remote execution */

end

Algorithm 1: Execution interface of transductor.

Inductor

In the execution interface of an inductor (Algorithm 2) is ready() checks for two
message slots available on each output channel since run() sends an additional σ1 be-
tween output sequences if there is no other segmentation mark between them. Incoming
segmentation marks are forwarded with the depth increased by one. When a data message
is received, new elements of the output sequence (no more than one message per output)
are computed in the pool and, if the elements are not final, a continuation message is
inserted in the result. When accepted by commit(), the continuation, if any, is put back
to the input channel, and the computed messages are sent to the output channels.

3.2. Runtime Components 28

Method is ready()
Properties: input /* input port */

outputs /* array of output ports */

Ri = bool(is input not empty)
Ro = bool(can each port in outputs accept two messages)
return (Ri, Ro)

Method commit(result)
Properties: segflag /* flag indicating the end of previous sequence generation */

if result contains a continuation then
push result.continuation back to input

else
segflag = True

end
foreach (msg, port) in result do

send msg to port
end

Method run(msg)
Properties: inputs /* array of input ports */ ,

segflag /* flag indicating the end of previous sequence generation */

outputs /* array of output ports */ , function /* box function */

if msg is σk then

σs =

{
σk+1, k > 0

σ0, k = 0

send σs to each port in outputs
segflag = False
return None

else
if self .segflag then

send σ1 to each port in outputs
segflag = False

end
return (function, msg)

end

Algorithm 2: Execution interface of inductor.

Dyadic Reductor

Consider an execution interface for a dyadic reductor (Algorithm 3). As stated in
Section 2.2.2, we refer to all but the first output channels of the reductor as auxiliary.

• is ready() requires unblocked output channels with the first one being able to
accept two messages: when the reductor yields the result, it sends it to the first
channel followed by a segmentation mark. Messages in both input channels are also
required for the box to start;

3.2. Runtime Components 29

• fetch() gets messages from both input channels, for reduction terms a and bi in
(2.2) respectively;

• run() tests the messages for being segmentation marks first. A σk in place of
ma results in reduction of the empty sequence and, adjusted appropriately, the
segmentation mark is sent to the auxiliary channels. On the other hand, a σk in
place of mb indicates the end of the reduction sequence and results in sending the
ma (i.e. the final result of the reduction) to the first output channel followed by the
appropriately adjusted segmentation mark;

• commit() implements the continuation mechanism: a partial result (or accumulator)
of reduction plays the role of a continuation message. The method pushes it back
to the first input channel and sends out auxiliary messages, if any.

The execution interface of a monadic reductors is defined in a similar way.

3.2.2 Synchronisers

Overview

First, the runtime component for a synchroniser maintains a number of state objects,
one of which is marked as current. Each state object in turn consists of transition objects,
each of which imposes a condition on input messages. The condition consists of three
parts:

• the input channel from which a message has to be received;

• the pattern of labels that has to match the message. Keyword .else can be set
instead of the pattern to indicate a transition that is taken if no other transitions’
pattern matched in the current transition scope;

• a predicate: a Boolean expression that can include labels from the pattern and
state variables.

Each transition can also have the following augmented actions:
• to set internal state of store variables with some integer values or messages;

• to send messages (or their combinations) to output channels;

• to goto the new state(s).
Within each state the transitions are also grouped in blocks, each having a priority

denoted by P = 1..NB: the smaller the number, the higher priority of the transitions.
The execution interface of the synchroniser is presented in the sequel. Pseudo-code

listings for the discussed methods can be found in Appendix A.

is ready()

A synchroniser is ready to run when the following requirements are satisfied:
• there is at least one input message on a channel for which there is at least one
transition in the current state;

• destination channels in send statements associated with the potential transitions
are unblocked. In other words, a transition being taken must not cause message
dispatch to a blocked channel.

The method is ready() tests these requirements. First, it computes a set of input
channels that can trigger a transition from the current state. If these channels do not
have messages, the negative decision is returned. Otherwise for each of the channels the

3.2. Runtime Components 30

Method is ready()
Properties: inputs /* array of input ports */

outputs /* array of output ports */

Ri = bool(does inputs have non-empty ports)
Ro = bool(is each port in outputs [1..no] unblocked)

&& bool(can outputs [0] accept two messages)
return (Ri, Ro)

Method fetch()
Properties: inputs /* array of input ports */

ma = inputs[0].get()
mb = inputs[1].get()
return (ma,mb)

Method commit(result)
Properties: inputs /* array of input ports */

outputs /* array of output ports */

push result.accumulator back to inputs[0]
foreach (msg, outputs[k], k > 0) in result do

send msg to outputs[k]
end

Method run(ma, mb)
Properties: inputs /* array of input ports */

outputs /* array of output ports */

function /* box function */

if ma is σk then

σs =

{
σk+1, k > 0

σ0, k = 0

send σs to outputs[1..no]
return None

if mb is σk then
send ma to outputs[0]
if k > 1 then

σs =

{
σk−1, k > 1

σ0, k = 0

send σs to outputs[0]

end
return None

end
return (function, ma,mb)

Algorithm 3: Execution interface of reductor.

3.2. Runtime Components 31

method collects potential transitions that have send statements. If at least one send is
targeted at a blocked channel, the input channel is removed from the set. At the end, if the
set of ready input channels is not empty, it is stored for further use and the synchroniser
is marked as ready.

fetch()

The method operates on the set of ready input channels computed previously. When
there are more then one channel in this set, the choice has to be made non-deterministically
by some fairness policy. In the implementation the method counts how many times each
input channel was taken, and the choice is made in favour of the least frequently taken
one. Then, message is fetched from the chosen channel.

run()

Once a message is fetched from some input channel, there may be more then one
transition declared for it. In this case the transition is chosen by the following procedure:

• The transitions are tested by blocks starting from the one of highest priority;

• For each transition in the block the pattern and predicate are applied to the message.
If the message passes the test, the transition is added to a valid set with a .else

transition marked separately, if any.

• Finally, if there are no valid transitions except for the .else one, then it is taken.
If there are more than one such transitions, the least frequently taken one is chosen.
If there are no valid transitions at all, the next block is tested.

• If no transition has been chosen after testing all the blocks, the synchroniser drops
the message and terminates.

Once a transition is taken, its associated actions are performed. There can be a
situation when several new states are specified in the goto statement. The preferable
ones are those in which the synchroniser is immediately ready to start. In any case, if
there are several states to choose, the least frequently taken one is chosen.

3.2.3 Mergers and Copiers

As stated in Section 2.2.4, connections between a single output port and several input
ones (and vice versa) are supported by vertices of special types: copiers and mergers.

A merger is a vertex that reads messages from several input channels and then sends
them to a single output channel in no particular order, i.e. non-deterministically. This
behaviour is implemented by a synchroniser, which operates non-deterministically when
more than one transition is available:

synch merger (in1, in2, ... | out) {
start {

on:

in1 { send this => out; }
in2 { send this => out; }
...

}
}

The code can easily be extended and generated by the runtime system for any given

3.2. Runtime Components 32

number of input channels.
A copier, by contrast, reads messages from a single channel and copies them to each

output ports. The vertex is implemented as follows:

synch copier (in | out1, out2, ...) {
start {

on:

in {
send this => out1,

this => out2, ...;

}
}

}

3.2.4 Extensions

Built-in AstraKahn extensions are constructed from a number of boxes, synchroniser,
and, possibly, preprogrammed executable nets (Section 3.1.2, Figure 3.7). In this section
some examples of such constructions are presented.

Pure Nets

Recall that pure nets are subnetworks that behave exactly as AstraKahn boxes. In
a sense, this concept generalises a box function by permitting it to be any subnetwork
that meets certain requirements (Section 2.4.1). In terms of runtime components this
generalisation can easily be implemented by extending a net component with the execution
interface of the box category it supposed to emulate. An example of such a construction
is given in Figure 3.9. The only difference between the approach and the conventional
execution interface is that run() sends a message to the pure net instead of the pool, and
commit() is a net handler that is called when the message is processed by the pure net.

Pure
Net

.commit()

.run()

.is_ready() “f ”

Figure 3.8: A generalised box with a pure network.

Parallel Boxes

Once proliferation is applied to a transductor, it is replaced by a net in Figure 3.9. It
is a non-standard net since it has two control methods (denoted by +/− in the figure)
that allow the runtime system to change the proliferation factor. Apart from n parallel
copies of the transductor, the net contains three synchronisers:

• Splitter distributes the incoming messages uniformly among the parallel transduc-
tors;

3.2. Runtime Components 33

• Switch bypasses messages from the net’s input to the Splitter until a segmentation
mark is received. Then it stops receiving messages and sends the segmentation mark
and a length of message sequence preceding it to the Merger.

• Merger forwards the messages from parallel transductors to the net’s output until
their number reaches the sequence length received from the Switch. Then the Merger
sends a “releases” message to the Switch for it to continue receiving messages.

This protocol serves to keep the messages within their sequences: the net blocks on
receiving a segmentation mark until the preceded sequence is fully processed.

1T

2T
...

Merger

Splitter

), Lkσ(

nT

Switch

Figure 3.9: Parallel transductor.

Synch-Tables

A synch-table is constructed from an executable net with a single handler and a
synchroniser generated by the compiler (Figure 3.10). The synchroniser receives an input
message, combines values from it according to the declared pattern, and sends these
combinations together with the input message to the handler. The handler, in turn,
dynamically creates synchronisers corresponding to the received combinations, and sends
the message to them. Once created, synchronisers stay in the net for further possible
messages.

Sync Handler initialise

c, b|a, c

},m7),(1,1),(5{

m Sync

1),(5

7),(1

m

}= 9d

,= 1c

,= 7b

,= 5a{=m

Sync

Figure 3.10: Synch-table.

3.3. Compiler 34

3.3 Compiler
In this section we consider a transformation of textual network description into a

network of runtime components.

3.3.1 Network Construction

An AstraKahn program consist of a network description, and declaration of synchro-
nisers and boxes. The languages in which a network and synchronisers are written are
presented in Section 2.3. The compiler takes the program and constructs a network of run-
time components organised in a tree reflecting the hierarchy of the network (Figure 3.4b).
Consider this process in details.

First, the compiler transforms the network description into an abstract syntax tree
(AST):

net Foo (in | out)

net Bar (in | out)

synch S

connect

S || B .. D

end

connect

(B .. C)\ || A .. Bar*

end

(a) Network description.

net Foo

wiring

||

\

..

B C

..

A *

Bar

decls

net Bar

wiring

||

S ..

B D

decls

synch S

(b) AST.

Figure 3.11: An AstraKahn program transformed into an abstract syntax tree.

Then the following recursive procedure is performed:
• Visit root net. Construct scope of vertices that includes synchronisers and nested
nets from declaration node, and all boxes;

• Perform post-order traversal of wiring expression:

– for operand-nodes: construct corresponding runtime component (Section 3.2);

– for operator-nodes: apply intended wiring pattern to operands (Section 3.3.2);

Once a nested net is occurred, recursively apply procedure to it and, when its
runtime component is build, proceed traversal.

• Create net component, include constructed runtime components in it.
With regard to the net hierarchy, the procedure visits the nets pre-orderly and in a

‘lazy’ manner, since nested nets are constructed only if they are used in wiring expressions.

3.3.2 Wiring

Once the compiler visits an operator-node of a wiring expression AST, it applies the
wiring pattern to the operand(s). Since the connection between runtime components is
expressed inside the components themselves (Section 3.1.2), from the compiler standpoint

3.3. Compiler 35

an operand of the wiring operator is a set of runtime components from the corresponding
sub-tree. For example, in the wiring expression of the net Bar (Figure 3.11b) operands of
|| are sets {S} and {B,D}.

First, for each operand the compiler extracts input and output ports that are not
connected to any components; we refer to the ports as external. Then, if there are
identically named external input or output ports, they are plugged up with corresponding
copiers or mergers respectively in order to insure one-to-one connections between ports.

Finally, the intended connection is applied. For serial, parallel, or wrap-around con-
nections the ports are wired straightforwardly as described in Section 2.2.4. The case of
the serial replication connection is more interesting since the connection is dynamic: it
creates a “lazy” pipeline in which stages are constructed and wired on demand. In what
follows a model implementation of the connection based on executable nets is discussed.

Consider a serial replication connection applied to a stage A with a single input and
output channels. Assume that, regardless of actual implementation of forward and re-
versed fixed points, it is possible for the compiler to generate a net A′ that wraps A and
has the following properties:

• it has a single input port directly connected to A, and two output ports: “out”, on
which the net forwards messages that are FFP, and “next”, on which the rest of the
messages are sent;

• a runtime component of A′ has a method is rfp() that tests if the stage is in an
RFP state.

In order to organise a dynamic pipeline of A′, the compiler constructs an executable
network (Figure 3.12) where the “out” ports of all stages are connected to the global
output through a merger, and the “next” port of the last stage is connected to the net’s
handler. Once the handler receives a message, it creates a new stage of the pipeline, sends
the message to it, and appends the new stage to the head of the pipeline. Furthermore, on
each execution the handler removes RFP stages from the pipeline are rewire the remaining
vertices.

Handler
initialise

′A ′A ′A
send

Merger

Figure 3.12: Serial replication connection.

Chapter 4

Self-Tuning Heuristics

4.1 Overview
In Section 2.4 we defined two regulating actions in AstraKahn that are managed by

the coordinator:
• Proliferation replaces a primitive box by its parallel counterpart consisting of several
copies of the original box. The number parallel copies is called the proliferation
factor.

• Fragmentation breaks a single input message into a number of smaller ones by a
morphism assigned to some transductor.

The coordinator applies these actions to an AstraKahn network at runtime in an at-
tempt to improve its performance characteristics. The actions are coupled: fragmentation
generates a large supply of messages, which can be processed in parallel by applying pro-
liferation to boxes. This allows one to increases the throughput of individual boxes in the
network and, possibly, decrease the overall processing time.

There are also two complementary actions: deproliferation, which decrease the prolif-
eration factor for some boxes in favour of the ones with a higher computational demand,
and refragmentation, which joins the generated messages into one and splits again with a
different number of fragments.

However, under limited computational resources the positive effect of these actions has
a certain upper bound. Hence, the coordinator must have sufficient intelligence to regulate
the network in accordance with its intended behaviour and the computational demand. In
order to do this the AstraKahn coordinator continually performs the optimisation loop:

• monitor runtime characteristics of each vertex;

• use built-in regulation strategies together with currently and previously observed
properties to produce a new set of regulating actions;

• save regulating parameters for further use.
We refer to this form of runtime adaptivity as self-tuning. In the following sections

we outline a number of possible regulating strategies.

4.2 Framework
Let an AstraKahn network implement some algorithm that admits divide-and-conquer

strategy. The network receives a message, performs computations, and yields the result
as a single message. Our objective is to minimise the overall running time, or, in other
words, to minimise the latency of this network.

36

4.3. Fragmentation 37

We focus on the networks that are primarily serially connected and consist mainly of
transductors. This particular choice was made since a series of independent computational
steps is a common pattern in algorithm design, and since AstraKahn transductors are
designed to express primary computations in a program. Hereinafter we refer to the
network as a pipeline, and to its transductors as stages.

At the beginning the coordinator is unaware of the network’s runtime properties. In
order to collect a substantial amount of profile information on the network, assume that
either

• a program consists of a single pipeline and can be run several times;

• or the pipeline is serially replicated.
In either case the network’s runtime profile is accumulated and specified in order to

obtain more precise behavioural and performance model.
The proposed scheme is contingent on the availability of a large number of messages

floating between pipeline stages. This could be a feature of the application defined in its
natural form or the messages can be the result of applying a morphism, i.e. fragmentation.

For the fragmentation to be applied over the whole length of the pipeline, as opposed to
a single transductor, each transductor is augmented with a morphism. Assume also that
appropriate overrides are specified for each adjacent pair of morphisms. This requirement
is essential in order to avoid global synchronisation caused by an explicit join-split in the
middle of the pipeline.

Initially fragmentation is applied to the first stage of the pipeline, and an input message
is split into a sequence of fragments that continue travelling along the pipeline. For a given
point in time there is a number of “active” stages, i.e. the ones in which messages are
being processed. We refer to this number as effective pipeline depth.

If there is no data dependency between the messages, the depth can potentially be
equal to the whole length of the pipeline. However, it is often the case that a message
depends on several other messages, since they are combined in overrides. Accordingly,
the effective depth of the pipeline can be limited as well.

The main open issue with proliferation and fragmentation is one of predictive con-
trol. In a situation when distributed resources are limited, the decision to proliferate is
based on an expectation of parallel speedup, future availability of computing cores, and
communication constraints. Any predictive rule will necessarily have to take into account
the resource footprint of each box including its dependencies on the content of messages
circulating in the system. Additionally, since messages can be fragmented, a proliferation
rule is dependent on the behaviour of the fragmentation mechanisms. It has to determine
that proliferation is profitable despite the fragmentation overheads, as well as ascertaining
the degree of the fragmentation.

4.3 Fragmentation
First, consider the initial message fragmentation. The number of fragments m has

to be sufficient to use the available parallel resources. On the other hand, if m becomes
too large, the processing time of an individual message becomes very short, while the
communication overhead goes up as well. The communication overhead could eventually
predominate over the parallel speedup. Additionally, the multitude of messages has the
potential to overwhelm the buffering capacity of channels if the boxes receiving data from
them prove too slow.

For a reasonable initial guess of m we can assume that the maximum effective depth is

4.4. Proliferation 38

equal to the full length of the pipeline, and that the processing rate of all the stages is the
same; as a result, all the stages will be active the whole time. Under such circumstances,
the fragmentation will produce m =

∑n
i=1 ci/2 messages with the intention to load at

least half of the channel’s capacity at each stage. Later on, when the pipeline depth and
other monitoring parameters are collected, m will be adjusted accordingly.

During the execution, if the communication overhead starts to be significant, or if
the effective depth starts to gradually decrease due to a blocked channel, the number of
messages will be reduced; and vice versa, if the parallel resources are not fully used during
the execution, the initial fragmentation factor will be increased.

Here we assume that refragmentation is performed only between consecutive replicas
of a serial replication, or not at all. It is simpler for the implementation since to apply
refragmentation at an arbitrary point of the pipeline the runtime system has to make sure
that the “front” of the message sequence is behind the vertex where the refragmentation
is going to be made.

4.4 Proliferation
Proliferation replaces a single transductor by a number of copies. Such a replacement

can potentially increase the performance provided that the copies operate in parallel.
Parallel operation is not guaranteed: boxes are not assigned to the hardware cores, there-
fore if the number of boxes is greater than that of the available cores, the effect on the
throughput depends on the quality of the scheduling.

However, assume that the effect from the parallel transductor is close to linear. This
can be achieved for a relatively small network and sufficient number of cores. The resource
limit is in terms of the maximum number of transductor copies that can be spawned.
Assume also that each stage of the pipeline process messages with some throughput.
Note that the running time of the pipeline is equal to its throughput multiplied by the
number of messages. Hence, the throughput of the pipeline is equal to the minimum
throughput of individual stages. Now the self-tuning of the pipeline boils down to the
maximisation of the minimum throughput in the pipeline subject to the limited number of
parallel boxes, which can be written formally as a max-min linear optimisation problem.
The problem can easily be solved provided that the throughput of each stage is know [15].
However, the throughputs of the stages can only be determined at runtime, by observing
the stages. In [16] a similar problem is solved for a pipeline in a steady state by monitoring
the execution time of its stages and recalculating the proliferation factors after each new
run.

The AstraKahn pipeline in question can not be assumed to be in a steady state since
in the case of a small effective pipeline depth the stages work non- uniformly: only a
small number of them are active at any given time. However, by choosing an appropriate
time-scale the active stages can be considered to be in a steady state.

Let a pipeline of length L process all messages from a fragmented input sequence for
time T . Assume the at the time t there are d(t) ≪ L stages are active for a period of time
Ts ≤ T . Within the period we can consider the sub-pipeline consisting of d(t) stages to
be in a steady state for Ts. Let Tp denote the time that it takes to process the observed
properties of stages and reassign the proliferation factors. If Tp ≪ Ts (which can be tested
at runtime as well), the runtime system can effectively solve the optimisation problem for
the active pipeline stages achieving optimal parallel resource mapping from that time on.

The above approach is based on monitoring the properties of the stages and generating
a short-term prediction that expectedly meets the constraints of the network. There is

4.4. Proliferation 39

another strategy in which the decision about proliferation is made individually by each
of the stages based on local observations. The approach can be called greedy since each
stage tries to optimise its local problem, in the hope that their collective choice will be
optimal for the whole network.

For example, as before, assume that there is a global “pool” with M parallel transduc-
tors. Let a stage of the pipeline create a new parallel transductor on receiving a message
provided that the pool is not empty. In other words, the stage always tries to process
incoming messages in parallel subject to the available resources. In order to prevent mo-
nopolising parallel resources, the stage also “returns” parallel transductors back to the
pool when the computational demand of the stage has decreased. For example, it can
reduce its proliferation factor as soon as it is idle for an average inter-arrival time at the
moment that the parallel transductor is taken from the pool.

Chapter 5

A Case for Morphisms:
Particle-in-Cell

5.1 Overview
In order to demonstrate the adaptive facilities of AstraKahn, it is convenient to use a

computational problem which, after straightforward domain decomposition, exhibits im-
balances of the workload assigned to different processors. Such problems require problem-
specific parallelisation patterns and load balancing techniques to achieve sufficient hard-
ware utilisation.

The Particle-in-Cell (PIC) method [17], which is often used in plasma physics for
modelling the motion of charged particles in electromagnetic fields, has the described
property. The main challenge is that balancing computations on particles leads to a large
communication overhead due to poor data locality, which may cancel out the benefits
of load balancing. Consequently, modern parallelisation techniques for PIC inevitably
suffer from a parametric trade-off between the computation imbalance and communication
overhead. The choice of parameters that ensure optimal performance is usually the matter
of heuristics or manual tuning.

5.2 The Problem
Consider a 1-dimensional plasma consisting of Np electrons and Np ions with no ex-

ternal fields applied. Since ions are much more massive than electrons, we can assume
mi/me → ∞, neglect the motion of ions, and treat them as a uniform neutralising back-
ground. Our aim is to study the motion of the electrons in the electrostatic field.

The particles follow the Newton-Lorentz equations of motion:

me
dvi
dt

=
qeE(xi)

me

dxi

dt
= vi

(5.1)

where xi and vi are the coordinate and velocity of the ith particle respectively. From
Maxwell’s equations it follows that

E(x) = −∂φ(x)

∂x
(5.2)

∂E(x)

∂x
=

ρ(x)

ε0
(5.3)

40

5.3. Particle-in-Cell 41

Combination of (5.2) and (5.3) results in Poisson’s equation:

∂2φ(x)

∂x2
= −ρ(x)

ε0
(5.4)

where ρ is the charge density. Hence, given a spatial charge distribution, one can
compute electric field by solving (5.4) and (5.2), and then solve the equations of motion
(5.1).

5.3 Particle-in-Cell

Particle-in-Cell (PIC) is a method for numerical solution of the equations from the
previous section. Consider a 1D plasma within the domain 0 ≤ x ≤ L represented by a
grid {xj, j ∈ [0, Ng)} of equidistant points:

xj = j∆x, ∆x = L/Ng

Np particles are described as a set of coordinate-velocity pairs {(ri, vi), i ∈ [0, Np)}.
Normally that Ng ≪ Np. The evolution of the system is computed in discrete time with
a specified time-step ∆t. In what follows we assume the charge and mass of electron,
reference charge density, and electric constant to be equal to 1. This can be done by
choosing an appropriate normalisation.

The following four stages are performed sequentially for each time-step:

• Scatter. Charge densities on grid points are computed from the particle positions
by the following weighting:

ρj =
Np

∆x

Np∑
i=1

W (ri − xj) (5.5)

We assume W (x) to be a linear function1

W (x) =

{
(1− |x|)/∆x, |x| /∆x < 1

0, |x| /∆x ≥ 1
(5.6)

Therefore, a particle with the coordinate ri : xj ≤ ri ≤ xj+1 contributes to the
charge density as follows:

ρj = ρj +
1

∆x

(
xj+1 − ri
xj+1 − xj

)
ρj+1 = ρj+1 +

1

∆x

(
ri − xj

xj+1 − xj

) (5.7)

• Field Solve. The Poisson equation (5.4) can be written in finite-difference form:

φj−1 − 2φj + φj+1

∆x
= −ρj

1The choice of W (x) correspond to the model called cloud-in-cell in which particles contribute to the
charge density only at the nearest grid points. The contribution to the density value is proportional to
the distance from the particle to the nearest grid point. This can be thought of as the density of finite
uniformly charged cloud.

5.3. Particle-in-Cell 42

In order to solve it we use iterative Gauss-Seidel method:

φn
j =

1

2

[
φn
j−1 + φn−1

j+1 + ρj(∆x)2
]

(5.8)

Then E is immediately obtained from (5.2):

Ej =
φi−1 − φi+1

∆x
(5.9)

• Gather. In order to compute electric field acting on particles from the values on
grid points the same weighting as in Scatter is used:

Ei =

Ng∑
j=1

EjW (xj − ri)

Using the weighting function W from (5.6) we obtain that only two neighbouring
grid points (i.e. xj and xj+1 such that xj ≤ ri ≤ xj+1) contribute to the electric
field acting on a particle. The resulting field is computed as follows:

Ei =

(
xj+1 − ri
xj+1 − xj

)
Ej +

(
ri − xj

xj+1 − xj

)
Ej+1 (5.10)

• Push. Motion equations (5.1) can be numerically integrated with so-called leap-frog
method:

rt+∆t
i = rti + v

t+∆t/2
i ∆t

v
t+3∆t/2
i = v

t+∆t/2
i + E∆t

(5.11)

In order to compute the values at t = 0, v−∆t must be computed first from electric
field computed at the initial point in time.

The stages of a PIC iteration and dependencies between the grip and particles are
outlined in Figure 5.1.

),[}),({ 1+∈= ii

jj

i xxrrfρ

ix

[] iExE →∂−∂=−=∇ /2 ϕρϕ

),()(1+= iij EEfrE

ix

[]),()(iiiiii vrvrrEv →=−= &&

Scatter

Solve

Gather

Push

Figure 5.1: An iteration of the PIC method.

5.4. Parallelisation 43

5.4 Parallelisation

5.4.1 Overview

The PIC uses two main data structures: a numerical grid and an array of particles’
quantities. Since both of them are used on each time-step either severally or jointly,
it is difficult to obtain a decomposition of the problem that allows balanced parallel
computations with minimal overhead. An overview of existing parallel strategies for PIC
is presented in [18]. In this section the main problems and trade-offs of PIC parallelisation
are outlined.

First, in the Scatter and Gather the quantities from particles are used to compute
values on corresponding grid points, and vice versa. In order to minimise communication
between processors at each time-step, grid points should be placed locally with corre-
sponding particles:

1P 2P 3P

Figure 5.2: Grid-particle locality.

That said, communication is still required since boundary particles contribute to the
adjacent grid points from different processors. Furthermore, since those particles are
moving, some effort is required to preserve the grid-particle locality. For example, given
a static grid partition, particles that are pushed beyond a grid boundaries must be im-
mediately moved to adjacent processors.

Apart from the communication overhead, there is a load-balancing issue. Although
Push is the most expensive stage of an iteration, the decomposition based purely on parti-
cles would violate the desirable grid-particle locality. On the other hand, an irregular grid
partition with the grid-particle locality preserved and a nearly even particle distribution
will unlikely result in balanced computations because of the motion of particles. In this
case an effort has to be made either toward prediction of the plasma evolution or dynamic
reconfiguration of the partition.

As a case study we chose the parallelisation strategy developed in [19], which is based
on a static grid partition with the grid-particle locality preserved and runtime load-
balancing. The following sections describe this strategy and discuss its implementation in
AstraKahn with regard to the runtime adaptive mechanisms provided by the language.

5.4.2 Decomposition

Consider the 1D PIC problem defined in . Split the problem into k subproblems as
follows:

• the grid is divided into k non-overlapping regions with nearly equal numbers of
consecutive grid points;

• each region is augmented with the corresponding particles: for a region G =
(xs, ..., xe) the particles P = {(ri, vi) | xs ≤ ri < xe + δx} are selected, i.e. particles
located between two adjacent regions go to the left one:

5.4. Parallelisation 44

iP +1iP

Figure 5.3: Particles partition.

5.4.3 Communication

Although the subproblems can be processed in parallel at each of the PIC stages, they
are not fully independent. This requires the following communication steps to be carried
out:

• Scatter and Gather: The subproblems possess the grid-particle locality, i.e. they
only need to communicate the boundary grid points and particles:

scatter

send density

ghost point

Figure 5.4: Communication after Scatter.

• Push: Communication is needed to preserve the grid-particle locality: the particles
pushed outside a region are sent into its adjacent regions:

push

send particles to adjacent regions

Figure 5.5: Communication after Push.

• Field Solve: The three point stencil used in the Gauss-Seidel method (see (5.8))
requires the regions to maintain ghost-points and send their values to the corre-
sponding adjacent regions:

5.5. Implementation in AstraKahn 45

iteration of Poisson solver

ϕ

ϕ

update ghost points

Figure 5.6: Communication after Field Solve.

5.4.4 Load-Balancing

Since the grid partition is regular, the computation at the Field Solve stage is always
balanced. By contrast, the computational balance of the other three stages depends on
the distribution of particles among the grid regions. The distribution is governed by
particle motion and can not be guaranteed to be even.

In order to balance the computations there is a mechanism for particle migration: par-
ticles from “overpopulated” processors can by dynamically delegated to “underpopulated”
ones via windows. A window is a contiguous block of grid points that is assigned to the
other processor (Figure 5.7). The windows do not affect the Field Solve that is performed
on the original regions, whereas Gather, Push, and Scatter stages are performed on the
windows by the assigned processor.

1P 2P 3P

Figure 5.7: Particle windows assigned to other processors.

Given an appropriate delegation strategy, the mechanism effectively balances the par-
ticles among processors. However, it introduces a new trade-off between the migration
overhead and particle imbalance. The mechanism provides a user-defined parameter rep-
resenting a threshold of particle imbalance that triggers the balancing procedure.

5.5 Implementation in AstraKahn

5.5.1 Sequential PIC

A sequential PIC problem can naturally be represented in AstraKahn as a serial repli-
cation of the four described stages connected in a pipeline:

(scatter .. poisson* .. ef_solve .. gather .. push)*

where the Field Solve stage is split into two separate vertices standing for the Poisson
and electric field solvers.

Provided that an input message contains a grid G, particle array P , and necessary
scalar quantities, each vertex in the pipeline can be implemented as a transductor that
performs computations on the grid or particles and which sends the resulting message.

Assume that the reverse and forward fixed points in the serial replications are such that
the poisson vertex is replicated until the error becomes sufficiently small, and the whole

5.5. Implementation in AstraKahn 46

pipeline is replicated a specified number of times corresponding to the desired simulation
time.

5.5.2 Parallel PIC

Fragmentation

In order to enable parallelism in the network we need to augment the vertices with
corresponding morphisms that split the initial message into a number of smaller ones and
which join them back to obtain the result. Furthermore, the transductors representing
PIC stages must be programmed to be able to process “fragments” of an initial problem.

The morphism’s inductor is the same for all stages and follows the decomposition
strategy described in Section 5.4.2. In addition, since Gather, Scatter, and Field Solve
use the adjacent grid points from the neighbouring regions, two ghost points are attached
to each message2 (Algorithm 4).

function split(M,k)
Gi|i=1...k = M.G.split()
Pi|i=1...k = {(x, v) ∈ M.P |minxGi ≤ x < (maxx Gi +M.δx)}
GhostLi

∣∣
i=1...k

= Gi−1 (mod k)[−1]

GhostRi
∣∣
i=1...k

= Gi+1 (mod k)[0]

Ri|i=1...k = M .copy()

Ri|i=1...k = Ri.update(Gi, Pi, GhostLi , GhostRi)
return([R1 . . . Rk])

Algorithm 4: Morphism inductor.

By contrast, the morphism’s reductor is stage-specific because it has to perform com-
munication between subproblems. However, instead of writing five separate reductors, we
compose each of them out of three boxes two of which are common for all stages:

• The first box is a reductor that simply combines the regions, corresponding particle
arrays, and ghost points without performing any operations on them (Algorithm 5).

• The next box is the transductor that performs stage specific communications as
described in Section 5.4.3. For example, for the Scatter stage it adds the partial
density from the right ghost cells to their “actual” counterparts in the neighbouring
regions. (Algorithm 6).

• Finally, the last box is also a transductor that joins the subproblems into a single
grid and particle array (Algorithm 7).

Putting it all together, the five morphisms are constructed as follows:

2Hereinafter we omit the message data that is not involved in the algorithm in question (e.g. ∆x,
∆h, the number of grid points, etc.). We assume the data to be inherited from the input messages as
appropriate.

5.5. Implementation in AstraKahn 47

scatter_xchg
poisson_xchg
ef_solve_xchg
gather_xchg
push_xchg

scatter
poisson
ef_solve
gather
push

assemble

Inductor Transductor Reductor

split combine
her

Figure 5.8: Parallel PIC morphisms.

function combine(Mi, i = 1 . . . k)
R = msg(

(
M.Gi, M.Pi, GhostLi , GhostRi

)∣∣
i=1...k

)

return(R)

Algorithm 5: Morphism reductor, part 1: combiner

function scatter xchg(M)

M.Gi+1 (mod k)[0]
∣∣
i=1...k

+= M.GhostRi
return(M)

Algorithm 6: Morphism reductor, part 2: communication

function assemble(M)

G = join(M.Gi|i=1...k)

P = join(M.Pi|i=1...k)

return(msg(G,P))

Algorithm 7: Morphism reductor, part 3: assembler

Overrides

In order to avoid global synchronisation after each stage, appropriate overrides have to
be specified for each connected pair of stages. Since each subproblem communicates only
with its immediate neighbours, the data can be efficiently transferred by synch-tables.
As an example, consider an override between scatter and poisson, a similar approach
applies also to the rest of the morphism pairs.

As follows from Algorithm 4, the right ghost point of a region has to be sent to its
right neighbour. This can be done by extending the scatter’s transductor with a separate
output channel, on which the right ghost point is sent. Then the messages go to the
synch-table that routes them in such a way that the ghost point and the corresponding
neighbouring region are sent to the same synchroniser. The synchroniser in turn combines
the messages and sends the result to the next stage (Figure 5.9).

However, for the communication to be completed the density value from the attached
ghost point has to be added to the leftmost point of the grid. This can be done by adding
an auxiliary transductor before the one in the poisson morphism.

5.5. Implementation in AstraKahn 48

T2
i
∗M

iM

Sync

...

sync-table

)k+1 (modi
∗M

combine
}i

RGhost:d{

}i
RGhost:d{

Figure 5.9: Override between scatter and poisson stages.

Load balancing

Consider the PIC load balancing method discussed in Section 5.4.4. In AstraKahn
terms the window assignment corresponds to copying grid- and particle-data within the
selected window from one message to another. Since the decision about window creation
is made at runtime and collectively for all subproblems, it is convenient to embed load
balancing into the fragmentation mechanism.

Let each morphism’s inductor compute the particle distribution among the subprob-
lems. If the particle imbalance exceeds a (sufficiently low) predefined threshold, a global
set of windows is computed, and each generating message is augmented with sets of “in-
coming” (assigned from other messages) and “outcoming” (assigned to other messages)
windows:

W in
i = {(Gi

j, P
i
j) | j ∈ Sin ⊆ {1..k}\i}

W out
i = {(Gj

i , P
j
i) | j ∈ Sout ⊆ {1..k}\i}

where (Gj
i , P

j
i) is a window of the jth message assigned to the ith one.

Transductors for gather, push, and scatter have to be programmed to work within
the grid region

(
Gi\{Gj

i | j ∈ Sout}
)
∪{Gi

j | j ∈ Sin}. This creates additional communica-
tion points: as a normal region, a window contains particles that depend on the leftmost
point of the adjacent region (see Figure 5.4). Furthermore, since the electric field is com-
puted regardless of the windows, the scatter–poisson and ef solve–gather overrides
have exchange the charge density and electric field between messages and their “outcom-
ing” windows.

Now the runtime system can perform the load balancing procedure by “refragmenting”
the messages. It does so once an imbalance is detected in the execution times of parallel
boxes at Gather, Push, or Scatter stages. The threshold of the imbalance is controlled by
self-tuning mechanism.

Chapter 6

Conclusion and Future Work

6.1 Summary
This thesis presented the up-to-date definition of AstraKahn and the architecture of

its prototype, which includes the language compiler and runtime system. On the runtime
system level the core vertices are described as objects that implement unified interfaces,
while the built-in extensions are composed of the core vertices hierarchically. This allows
one to adjust vertex behaviour and implement new extensions without going deeply into
the code; this is particularly useful at the current stage since the language is not stable
yet.

The described prototype is being implemented in Python with a multicore environment
in mind; at the moment the core and most extensions of AstraKahn are completed [8].

6.2 Future Work
Once the prototype is implemented, our primary goal is to conduct various case studies

and to examine self-tuning heuristics in order to find a good adaptation strategy suitable
for whole classes of AstraKahn applications.

Furthermore, we are interested in practical applications involving pipeline and data
parallelism, as well as irregular computations, since the optimal level of concurrency in
such cases is particularly difficult to ascertain. The PIC method in the present thesis is
an example of such application.

Further work will include supporting the Message Definition Language and compo-
nents’ reconciliation [9], as well as studying the synchroniser model and developing its
static analysis; a preliminary work on this topic is done in [20].

49

Appendix A

Execution Interface of Synchronisers

method is ready()

inputs ready = ready inputs that cause transitions from the current state
if inputs ready is empty then

return (False, False)
end

/* Remove channels that cause potential send to blocked channels */

foreach channel in inputs ready do
transitions = transitions from the current state caused by channel
outputs to = outputs used in send statements of transitions

if outputs to has blocked channels then
remove channel from inputs ready

end

end

if inputs ready is empty then
return (True, False)

else
store inputs ready
return (True, True)

end

Algorithm 8: Synchroniser: readiness test.

method fetch(inputs ready)
channel = take(least frequently taken channel from inputs ready)
message = get(channel)

return channel, message

Algorithm 9: Synchroniser: message fetch.

50

51

method run(channel, message)
choose transition()

if no transition has been taken then
/* Drop the message. */

return True

end

/* Perform operations augmented to the taken transition. */

assign()

send()

new states = goto()

return choose state(new states)

Algorithm 10: Synchroniser: execution.

procedure choose transition()

foreach priority of transitions in the current state do
/* Iterate over transition priorities in the current state from highest to lowest. */

allTransitions = transitions caused by channel | priority

valid transitions = allTransitions | ordinary ones, with satisfied conditions
elseTransition = allTransitions | .else, with satisfied conditions

if (valid transitions is empty) and (elseTransition is None) then
continue

else if (valid transitions is empty) and (elseTransition is not None) then
take(elseTransition)

else if valid transitions is not empty then
take(least frequently taken transition from valid transitions)

end

Algorithm 11: Synchroniser: choose transition according to priorities and conditions.

52

procedure choose state(new states)
immediate states = new states
foreach state in immediate states do

inputs ready = ready inputs that cause transitions from state
outputs to = outputs used in send stmts in state

if (inputs from is empty) or (outputs to has blocked channels) then
remove state from immediate states

end

end

if immediate states is not empty then
return least frequently taken state from immediate states

else
return least frequently taken state from new states

end

Algorithm 12: Synchroniser: choose preferable state to move.

Bibliography

[1] Farhad Arbab. What do you mean, coordination. Bulletin of the Dutch Association
for Theoretical Computer Science, NVTI, 1122:1–18, 1998.

[2] Sudhir Ahuja, Nicholas Carriero, and David Gelernter. Linda and friends. Computer,
19(8):26–34, 1986.

[3] Michael G. Burke, Kathleen Knobe, Ryan Newton, and Vivek Sarkar. The concurrent
collections programming model. Technical Report TR 10-12, Rice University, 2010.

[4] Zoran Budimlic, Aparna Chandramowlishwaran, Kathleen Knobe, Geoff Lowney,
Vivek Sarkar, and Leo Treggiari. Multi-core implementations of the concurrent col-
lections programming model. In The 14th Workshop on Compilers for Parallel Com-
puting, 2009.

[5] F. Penczek, C. Grelck, H. Cai, J. Julku, P. Hölzenspies, S.B. Scholz, and A. Sha-
farenko. S-Net Language Report 2.0. Number 499 in Technical Report. University
of Hertfordshire, School of Computer Science, Hatfield, England, United Kingdom,
2010.

[6] B. Gijsbers and C. Grelck. An efficient scalable runtime system for macro data flow
processing using S-Net. International Journal of Parallel Programming, 42(6):988–
1011, 2014.

[7] Alex Shafarenko. AstraKahn: A coordination language for streaming networks. 2014.

[8] Max Kuznetsov. AstraKahn compiler and runtime system.
https://bitbucket.org/mkuznets/astrakahn-runtime, June 2015. (accessed
June 3, 2015).

[9] Pavel Zaichenkov, Olga Tveretina, and Alex Shafarenko. Interface reconciliation in
Kahn process networks using CSP and SAT. CoRR, abs/1503.00622, 2015.

[10] C. Grelck and F. Penczek. Implementation architecture and multithreaded runtime
system of S-Net. In S.B. Scholz and O. Chitil, editors, Implementation and Ap-
plication of Functional Languages, 20th International Symposium, IFL’08, Hatfield,
United Kingdom, Revised Selected Papers, volume 5836 of Lecture Notes in Computer
Science, pages 60–79. Springer-Verlag, 2011.

[11] D. Prokesch. A light-weight parallel execution layer for shared-memory stream pro-
cessing. Master’s thesis, Technical University of Vienna, Vienna, Austria, 2011.

[12] Merijn Verstraaten, Stefan Kok, Raphael Poss, and Clemens Grelck. Task migration
for S-Net/LPEL. In C. Grelck, K. Hammond, and S.B. Scholz, editors, 2nd HiPEAC

53

https://bitbucket.org/mkuznets/astrakahn-runtime

Bibliography 54

Workshop on Feedback-Directed Compiler Optimization for Multicore Architectures
(FD-COMA’13), Berlin, Germany. HiPEAC, 2013.

[13] Vu Thien Nga Nguyen and Raimund Kirner. Demand-based scheduling priorities for
performance optimisation of stream programs on parallel platforms. In ICA3PP (1),
pages 357–369, 2013.

[14] Thomas M Parks. Bounded Scheduling of Process Networks. PhD thesis, University
of California. Berkeley, California, 1995.

[15] Seymour Kaplan. Application of programs with maximin objective functions to prob-
lems of optimal resource allocation. Operations Research, 22(4):pp. 802–807, 1974.

[16] Jaroslav Sykora and Sven-Bodo Scholz. Towards self-adaptive concurrent software
guided by on-line performance modelling. In C. Grelck, K. Hammond, and S.B.
Scholz, editors, 2nd HiPEAC Workshop on Feedback-Directed Compiler Optimization
for Multicore Architectures (FD-COMA’13), Berlin, Germany. HiPEAC, 2013.

[17] C. K. Birdsall and Langdon. Plasma Physics via Computer Simulation (Series on
Plasma Physics). Taylor and Francis, 1991.

[18] Edward A. Carmona and Leon J. Chandler. On parallel PIC versatility and the struc-
ture of parallel PIC approaches. Concurrency: Practice and Experience, 9(12):1377–
1405, 1997.

[19] Steven J. Plimpton, David B. Seidel, Michael F. Pasik, Rebecca S. Coats, and Gary R.
Montry. A load-balancing algorithm for a parallel electromagnetic particle-in-cell
code. Computer Physics Communications, 152(3):227 – 241, 2003.

[20] Anna Tikhonova. A synchronisation facility for a stream processing coordination
language. Master’s thesis, University of Hertfordshire. Hatfield, UK, 2015.

	Abstract
	1 Introduction
	1.1 Coordination Programming
	1.2 Data Parallelism
	1.3 AstraKahn
	1.4 Contributions

	2 AstraKahn
	2.1 Overview
	2.2 Core
	2.2.1 Messages and Channels
	2.2.2 Boxes
	2.2.3 Synchroniser
	2.2.4 Wiring

	2.3 Network Description Language
	2.4 Extensions
	2.4.1 Pure Nets
	2.4.2 Parallel Boxes
	2.4.3 Synch-Table
	2.4.4 Morphisms
	2.4.5 Serial Replication

	3 Implementation
	3.1 Runtime System
	3.1.1 Overview
	3.1.2 Runtime Components
	3.1.3 Scheduling
	3.1.4 Network Execution

	3.2 Runtime Components
	3.2.1 Boxes
	3.2.2 Synchronisers
	3.2.3 Mergers and Copiers
	3.2.4 Extensions

	3.3 Compiler
	3.3.1 Network Construction
	3.3.2 Wiring

	4 Self-Tuning Heuristics
	4.1 Overview
	4.2 Framework
	4.3 Fragmentation
	4.4 Proliferation

	5 A Case for Morphisms: Particle-in-Cell
	5.1 Overview
	5.2 The Problem
	5.3 Particle-in-Cell
	5.4 Parallelisation
	5.4.1 Overview
	5.4.2 Decomposition
	5.4.3 Communication
	5.4.4 Load-Balancing

	5.5 Implementation in AstraKahn
	5.5.1 Sequential PIC
	5.5.2 Parallel PIC

	6 Conclusion and Future Work
	6.1 Summary
	6.2 Future Work

	A Execution Interface of Synchronisers

