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Abstract

Neurons can encode information using the rate of their action potentials,

making the relation between input rate and output rate a prominent feature

of neuronal information processing. This relation, known as I–O function,

can rapidly change in response to various factors or neuronal processes. Most

noticeably, a neuron can undergo a multiplicative operation, resulting in a

change of the slope of its I–O curve, also know as gain change.

Gain changes represent multiplicative operations, and they are wide-

spread. They have been found to play an important role in the encoding of

spatial location and coordinate transformation, to signal amplification, and

other neuronal functions. One of the factors found to introduce and control

neuronal gain is synaptic Short Term Depression (STD).

We use both integrate-and-fire and conductance based neuron models to

identify the effect of STD in excitatory and inhibitory modulatory input.

More specifically, we are interested in the effect of STD at the inhibitory

synapse from Purkinje cells to cerebellar nucleus neurons. Using a previously

published, biologically realistic model, we find that the presence of STD

results in a gain change. Most importantly we identify STD at the inhibitory

synapse to enable excitation-mediated gain control.

To isolate the mechanism that allows excitation to control gain, even

though STD is applied at a different synapse, we first show that the overall

effect is mediated by average conductance. Having done this, we find that the

effect of STD is based on the non-linearity introduced in the relation between

input rate and average conductance. We find this effect to vary, depending

17
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on the position of the I–O function on the input rate axis. Modulatory input

shifts the I–O curve along the input rate axis, consequently shifting it to a

position where STD has a different effect. The gain differences in the STD

effects between the two positions enable excitation to perform gain control.



1
Introduction

1.1 Motivation

Our perception of everyday reality, along with our thoughts and functions,

rely on the encoding, processing and transmission of information through

neuronal pathways. As the result of evolution through millions of years,

neuronal morphology, biophysics and connectivity is diverse; despite the

preservation of some characteristics since long before man stepped on the

planet (Billings et al., 2014).

Being so diverse, neuronal functions are difficult to understand as a

whole, so one should take the reductionist approach; or as Harry Grund-

fest had put it: “To understand mind we needed to look at the brain one cell

at a time” (Kandel, 2007). In this fashion, to understand gain modulation

we focus on a cerebellar nucleus neuron.

Gain modulation refers to a change of the slope of a neuron’s I–O func-

tion, that is, the output firing rate as a function of input rate. This slope

change can result from various mechanisms, and it is used by the brain in

functions of various complexities, like the improvement of information trans-

mission (Brenner et al., 2000), and the coordinate transformation from the

retina coordinate system to the body coordinate system (Zipser and An-

dersen, 1988). Here, we are interested in gain modulation arising from the

introduction of short-term synaptic depression (STD).

Synaptic depression has already be studied at the excitatory synapse

from mossy fibres to granule cells, and it is known to enable neuronal gain

control (Rothman et al., 2009). What we are interested in, is the effect of

19



20 Chapter 1. Introduction

STD when present at inhibitory synapses, and in particular at the inhibitory

synapse between Purkinje cells (PCs) and cerebellar nucleus (CN) neurons.

1.2 Aim of Thesis

The aim of this thesis is to advance our understanding of how STD can

contribute to gain modulation, and in particular to identify the effect that

STD at inhibitory synapses has. To do so we work with neuronal models of

various complexity.

We start by replicating previous findings (Rothman et al., 2009) that

look at the effect of STD at the excitatory synapse from mossy fibres to

granule cells. To do so, we use an integrate-and-fire neuron to simulate

the effect of STD at an excitatory synapse, and identify the resulting gain

changes. Since STD is applied at the excitatory synapse it is expected

to induce gain changes in the output rate as a function of excitatory input.

What is more interesting however, is how STD at the excitatory synapse can

enable inhibitory conductances to perform gain control, an effect evident in

our simulation data.

To identify the effect of STD at inhibitory synapses, we used a biologic-

ally realistic, conductance based model of a cerebellar nucleus neuron. The

input that cerebellar nucleus neurons receive comes from Purkinje cells and

exhibits STD, making them fit for the study of STD at this inhibitory syn-

apse. But CN neurons receive both inhibitory and excitatory input. This

makes them ideal for studying the effect that STD at the inhibitory synapse

will have on the operation performed by excitatory input. This is intriguing

since STD at one synapse can affect the operation performed by a different

synapse.

Our approach is to use an already published model of a cerebellar nuc-

leus neuron (Steuber et al., 2011) to identify the role of STD. Apart from

quantifying the effect of STD however, it is also important to understand

the mechanisms that underlie it. After addressing “what”; “how” is the

second question that must be answered. This is why we try to elucidate the

mechanism responsible for enabling gain control.
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1.3 Contribution to knowledge

The research presented here describes, and hopefully elucidates, the effect

that STD at the inhibitory synapse between Purkinje cells and cerebellar

nucleus neurons has on the output of a cerebellar nucleus neuron. Our re-

search was limited to simulating model neurons, but our use of previously

published biologically realistic models of cerebellar nucleus neurons capable

of replicating in vitro data, along with the use of integrate-and-fire models il-

lustrating that the effects are persistent across different modalities, increases

our confidence in our results. Our work has resulted in four distinctive find-

ings. More specifically

• We discover the effect of STD at an inhibitory synapse, showing that

STD performs a gain change, and that it enables excitation-mediated

gain modulation.

• We show that the effect of STD on the gain change is a robust phe-

nomenon and that it persists in the presence of different degrees of

input synchronicity and regularity, and for different STD levels.

• We identify the underlying transformation and explain how changes in

the synapse map to changes in the I–O function.

• We explain how gain modulation arises; using the already identified

transformation, we show how STD can lead to gain changes.

1.4 Overview of thesis

The rest of this document is divided into six chapters. These chapters, and

a summary of their content, are given below.

chapter 2 Gain modulation: Gain modulation is a prominent function

in neuronal computation. From the encoding of spatial location, and

coordinate transformation, to signal amplification and prevention of

firing saturation, along with a number of mechanism responsible for

changes in neuronal gain, gain control seems to play a key role in

neuronal processing. In this chapter we define gain modulation, and

move on to discuss various roles of gain modulations, along with some

of the mechanisms responsible for gain control.
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chapter 3 Computational neuroscience: To investigate neuronal gain,

and to understand how the mechanisms responsible for gain control

work, it is necessary to use computational models. To model gain

modulation, one must build on simple models that describe how cur-

rents flow inside a neuron, and how they flow across its membrane.

Although these models are provided by modern simulation environ-

ments such as NEURON (Carnevale T. and Hines L., 2006) and GEN-

ESIS (Bower and Beeman, 2014), they are the core of computational

neuroscience. Thus in chapter 3 we discuss some of the most import-

ant theories of computational neuroscience, like Cable Theory, and the

Hodgkin-Huxley model, along with a number of STD models.

chapter 4 Effect of STD at excitatory synapses: In this chapter we

use an integrate-and-fire neuron, receiving both excitatory and inhib-

itory input. We simulate this neuron in the presence and absence of

STD at the excitatory synapse to demonstrate how STD at the excit-

atory synapse can change the gain, and allow inhibition to control the

gain.

chapter 5 Effects of STD at an inhibitory synapse: To investigate

the effect of STD at inhibitory synapses, we use a biologically realistic

model of a cerebellar nucleus neuron. Performing simulations in the

presence and absence of STD we find the effect of STD to be similar

to the one found in the previous chapter. We discuss these effects, and

show how both the post-synaptic conductance and the I–O function

undergo the same transformation. We proceed to explain how this

transformation can lead to the above mentioned gain changes, and

most importantly how it enables STD at an inhibitory synapse to

affect the operation performed by excitatory input.

chapter 6 Determinants of gain modulation: In this chapter we re-

peat the previous experiments under different conditions. We start

by changing the STD level and calculate the gain to see if our results

are robust to changes in STD. We then continue by calculating gain

changes for different input condition, changing the synchronicity and

regularity of the input and investigating their contribution to the STD

effect.
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chapter 7 Discussion: The last chapter of our thesis provides a general

discussion of our findings, along with implications of our work and

ideas for future research.
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2
Gain modulation

2.1 Introduction

Neurons receive input from other neurons and output a sequence of action

potentials, using a multitude of methods to encode information (Bialek et al.,

1991; Softky, 1995; Oram et al., 1999; Rieke, 1999). One of these is the use of

the action potential rate to encode their output, with a well-known example

being the coding of sensory variables such as touch and pressure (Adrian

and Zotterman, 1926). This rate-coding regime, which is likely to be used

in the cortex (London et al., 2010), makes the relation between the output

rate (F) and the input rate (f), known as the I–O function, a prominent

feature in neural computation. This function, describing the response of the

neuron, can be denoted as

I–O : f → F (2.1)

and describes how a neuron maps input rate onto output rate.

Neurons however, receive input from multiple sources, and one can dis-

tinguish between sources that drive the neuron, and sources that modulate

it. Modulatory input can change the neuron’s response, and thus its I–O

function. These changes are not necessarily easy to describe, but two simple

cases do stand out, and this is when modulatory input performs an additive

or a multiplicative operation.

There are two distinct ways for these operations to be performed (Silver,

2010). To elucidate them, we must first define the I–O function as

25



26 Chapter 2. Gain modulation

F = R(fd) (2.2)

where the neuron’s output rate (F ) is given by the response of the neuron

(R) as a function of the driving input (fd). In the presence of a second,

modulatory input (fm), the resulting output rate will change. If this change

is additive, then this addition can take place either in the input rate (F =

R(fd + cfm)) or the output rate (F = R(fd) + cfm), where c is a scaling

factor. In the same fashion, multiplicative operations are performed in either

the input rate(F = R(fd × cfm)) or the output rate (F = R(fd)× cfm). A

summary of these changes in the I–O function can be found in Table 2.1.

Rm(fd, fm) Input Output

Additive R(fd + cfm) R(fd) + cfm
Multiplicative R(fd × cfm) R(fd)× cfm

Table 2.1: Linear modulations. Additive and multiplicative
modulations applied in both the input and the output of the neuron.
The equations show how the relation between the modulated re-
sponse (Rm) of a neuron in the presence of a driving input (fd)
and a modulatory one (fm), can be described as a function of the
original response (R) . In all cases, c stands for a constant that can
be defined experimentally.

These operations have different effects on a neuron’s I–O function. Input

additive and multiplicative operations result in a shift or a stretch of the x

axis, respectively (Figure 2.1,a); while output additive and multiplicative

operations shift and stretch the y axis (Figure 2.1,b).

Notice how, when an additive operation is performed, the I–O function

will undergo a translation and so maintain its shape. On the other hand

this is not the case for multiplicative operations. Regardless of whether the

operation is performed in the input or the output of the neuron, a multi-

plicative operation will change the slope of the I–O curve (see section 2.4).

This is known as gain modulation, and the modulatory input is known to

perform gain control. Gain control is important for a number of reasons,

ranging from changes of neuronal sensitivity to a specific input, to functional

roles in brain processes. Some of the roles of gain modulation, along with a

number of mechanisms underlying gain control, are discussed below.
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Figure 2.1: Example modulations. a | The I–O function of the
neuron (blue), and after an additive (green) and multiplicative (red)
operations performed in the input of the neuron. b | The same as
a, with operations performed in the output of the neuron.

2.2 Roles of gain modulation

In the brain, multiplicative operations are widespread. From simple opera-

tions like scaling of the input-output relation that can improve information

transmission (Brenner et al., 2000), to more complex ones, like the mul-

tiplicative scaling that orientation-tuning curves undergo during attention

(McAdams and Maunsell, 1999), gain modulation is utilised in a wide range

of brain functions (Salinas and Thier, 2000). It occurs in visual cortical

neurons, where the gain of neurons that are direction-selective increases

with attention (Treue and Mart́ınez Trujillo, 1999), and during translation-

invariant responses of some visual cortical cells (Tovee E. T. Azzopardi, P.,

1994). It is also an intrinsic part of orientation tuning in cortical cells, al-

lowing it to be contrast invariant (Anderson et al., 2000), while in inferior

colliculus neurons neuronal gain is controlled by GABAergic inhibition (Ing-

ham and McAlpine, 2005).

Since it is not possible to discuss all the roles of gain modulation in detail,

we will focus on the posterior parietal cortex (PPC), where gain modulation

was first discovered. There, gain modulation plays a key role in the encoding

of spatial location (Mountcastle et al., 1981; Andersen and Mountcastle,

1983; Andersen et al., 1985), and in the coordinate transformation from
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gaze to body coordinate system (Zipser and Andersen, 1988; Brotchie et al.,

1995; Salinas and Abbott, 1995; Pouget and Sejnowski, 1997).

2.2.1 Coordinate transformation

Gain modulation was first observed in the encoding of spatial location, but

was later found to play an important role in coordinate transformations.

But what do we need coordinate transformations for? Assume that, while

you stand still, you look at a glass of water. If you move your gaze to the left

or the right, the position of the glass on the retina will change. Nonetheless,

even if you do not look directly at it, you can always reach out and pick it

up. This process requires a coordinate transformation, transforming the po-

sition of the glass from the retina coordinate system, to the body coordinate

system.

The region of the brain receiving information about the position of the

eyes and the head, and transforming it to body coordinates, is the posterior

parietal cortex (PPC). To investigate the responses of the PPC neurons

in the presence of a stimulus that moves in the head-centred coordinate

system, but remains in the same position in the retina coordinate system,

Mountcastle et al. (1981) trained macaque monkeys to fixate on a moving

target light. By then displaying a visual stimulus in the same position

relative to the moving target (that is, moving both stimuli at the same

time), they were able to isolate the neuronal activity related to the position

of the eye, from the one related to the position of the stimulus on the retina.

The underlying behavioural state was defined as attentive fixation.

In another set of experiments, attentive fixation was used while providing

visual stimuli, and the responses of parietal visual neurons had increased,

compared to the responses during relaxed wakefulness, which corresponds

to the state where the visual stimulus was not accompanied by the mon-

key fixating on a point. Light-sensitive neurons were also found to respond

differently depending on the angle of the gaze, with the activity of an aver-

age neuron to tripling in response to a 20% shift in the optimal direction,

an effect that was six times more likely to happen when the animal was

receiving the stimuli while attentively fixating on a small target (Andersen

and Mountcastle, 1983). This was consistent with the view that this area

represents space in head-centred coordinates.

This view was reinforced by a following study, where Andersen et al.
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(1985) investigated PPC neurons encoding the angle of a stimulus in the

retina. The output rate of these neurons as a function of the stimulus pos-

ition is given by a Gaussian function, with each neuron having a preferred

direction at which it responds maximally (Figure 2.2); this is known as the

response profile. Andersen and colleagues discovered a link between the

response profile, and the angle of gaze. Not only did the respond profile

change with the shift of the gaze angle, but it did so in a multiplicative

manner. The activity of many neurons is thus subject to a gain factor that

was a function of the eye position and the response profile of the retinal

receptive field (Figure 2.2). This effectively means that the particular neur-

ons are tuned for encoding information about the position of a stimuli in a

head-centred coordinate frame.
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Figure 2.2: Idealised parietal neurons response. Idealised
response of four parietal neurons to visual stimuli in a range of
retinal coordinates, when the eyes are fixating in three different
directions. The response of the neuron increases or decreases with
the angle of gaze (Salinas and Thier, 2000).

To study the computational implications of gain modulation, Zipser and

Andersen (1988) programmed a back-propagation neural network to sim-

ulate the responses of the subset of posterior parietal neurons, known to

respond to both the location of the visual stimulus on the retina, and the

position of the eye. They used a network of three layers that received the tar-

get’s location on the retina, and the gaze angle as input, and, after training,

could extract the eye-position-independent location. They then examined
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the receptive fields of the middle layer, to find that they were gain modu-

lated. This indicates that neurons with gain-modulated receptive fields, like

the ones found in PPC neurons, can perform coordinate transformations.

2.3 Mechanisms of gain modulation

Gain modulation can be found in neurons in many brain areas, but not all

of them use the same mechanism to change their gain. In fact there are a

number of different processes responsible for gain control.

Shunting inhibition is one of the mechanisms responsible for multiplic-

ative operations and gain changes. In the primary visual cortex, shunting

inhibition accounts for the divisive gain modulation used in models to ac-

curately predict particular visually driven responses (Carandini and Heeger,

1994), while in the electric fish it can regulate the gain of target neurons (Nel-

son, 1994). In vivo, neurons receive input from a great number of sources,

and voltage is subject to stochastic noise. This synaptic noise lowers the in-

put resistance of the neurons (Borg-Graham et al., 1998; Destexhe and Paré,

1999; Destexhe et al., 2003) , and is also crucial for gain operations. This is

why some studies conducted with biologically realistic models that did not

take into account synaptic noise only predicted shunting inhibition to have

subtractive effects (Holt and Koch, 1997; Gabbiani et al., 1994; Capaday,

2002).

Noise due to synaptic input can enable voltage fluctuations, which en-

ables the neuron to fire even in cases where the average voltage is below

threshold. As a result, noise can affect the I–O function of a neuron (Mitchell

and Silver, 2003; Anderson et al., 2000; Chance et al., 2002; Doiron et al.,

2001; Tiesinga et al., 2000; Prescott and De Koninck, 2003; Higgs et al.,

2006; Hansel and Van Vreeswijk, 2002; Miller and Troyer, 2002) even when

input is sparse (Hô and Destexhe, 2000; Azouz, 2005; Shu et al., 2003).

Synaptic plasticity is also capable of affecting gain. In particular, gain

can be affected by the short term increase or decrease of excitatory synaptic

weights, that is short term synaptic facilitation or depression, respectively

(Rothman et al., 2009). In effect, plasticity can change the way that neurons

integrate input, which is usually linear (Cash and Yuste, 1998, 1999; Tamás

et al., 2002; Gasparini and Magee, 2006; Holt and Koch, 1997), allowing

multiplicative operations to be performed.
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But the list of mechanisms responsible for gain control is long, so our

intention is to discuss the ones related to noise and STD, and by no means

provide a comprehensive list, something that has already by done by Silver

(2010).

2.3.1 Synaptic noise

Information transmission between cells is noisy, mainly due to the intrinsic

properties of synaptic input. When input from pre-synaptic neurons arrives

at a synapse, a sequence of events leads to the increase and then decrease

of the post-synaptic conductance for various ions (Figure 3.6). These con-

ductance fluctuations, accompanied by stochastic noise in the synapses, can

lead to voltage fluctuations in the post-synaptic response, that can lead to

gain modulation.

The first gain control mechanism that we are going to discuss arises from

background synaptic input. This mechanism was investigated by Chance

et al. (2002), who explored changes in the response of a neuron as a result

of background synaptic input. Using the dynamic clamp method, they were

able to inject synaptic input into layer 5 pyramidal neurons, and to simulate

excitatory and inhibitory input arriving from afferent neuron populations.

They then injected constant current to drive the neuron, since they found

this to produce effects similar to injecting excitatory synaptic input.

They found that increasing the level of background synaptic input could

modulate neuronal gain, reducing the neuronal sensitivity to driving input.

In particular, they studied the relation between input current and output

rate (Figure 2.3). Separating the effects of the synaptic input variance, and

the change in total conductance, they discovered that increasing the total

conductance had an additive effect, shifting the I–O curve to the right (Fig-

ure 2.3,a); this result was consistent with previous studies (Holt and Koch,

1997). They also found that increasing the synaptic input variance had the

opposite effect, shifting the corresponding curve to the left; this change was

accompanied by a slope change that resulted in a tilt (Figure 2.3,b). Inter-

estingly , when both noise and shunting inhibition were taken into account,

the two additive shifts cancelled each other out, and the overall result was

a tilt of the output rate as a function of input current (Figure 2.3,c). This

cancelling of the two shifts accounts for the pure gain decrease introduced

by the increase of background synaptic input; a gain control mechanism also
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Figure 2.3: Modulation by shunting and noise. a | Idealised
response of a neuron without (blue) and with (red) shunting: shunt-
ing has an additive effect b | Idealised response without (blue) and
with (red) noise: noise has both a subtractive and divisive effect.
c | Original idealised response (blue) and modulated due to both
shunting and noise (red). Notice how the additive effect of shunting
and the subtractive effect of noise cancel each other out.

discussed by Priebe and Ferster (2002).

The effects of synaptic input on gain modulation have also been studied

in cerebellar granule cells. Using the dynamic clamp technique Mitchell and

Silver (2003) injected a tonic inhibitory conductance into granule cells while

driving them with a synaptic excitatory conductance; they then repeated

the experiment using a tonic excitatory conductance for the driving input.

They found tonic inhibition-mediated modulation to vary depending on the

nature of the driving input. When the neuron was driven by tonic excitat-

ory input, inhibition had a purely additive effect, shifting the I–O function

towards bigger values. However, for synaptic excitatory input, this shift was

accompanied by a gain change. To identify the effects of synaptic input, they

used both tonic and synaptic excitatory input to drive the neuron. Doing so,

they found that Poisson trains of synaptic inhibitory conductance performed

smaller shifts, and larger gain changes, compared to the ones performed by

tonic inhibitory input. They thus demonstrated how noise-mediated gain

modulation is not just influenced by noise in the excitatory input.

Moreover, in the neocortex, synaptic input was investigated, along with
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dendritic saturation, and was found to play an important role in gain control

by shunting inhibition. Using a biophysically realistic model of a layer V

neocortical pyramidal neuron, Prescott and De Koninck (2003) examined the

effects of synaptic shunting inhibition in the input, and found that shunting

inhibition modulated firing rate in a divisive manner. In their study, they

investigated the effects of shunting inhibition by removing the Hodgkin and

Huxley models of ion channels from the soma and the proximal dendritic

trees of the modelled neuron. In that way they were able to prevent spik-

ing, and observe how shunting inhibition could affect the somatic voltage.

They found shunting inhibition to reduce both the average somatic depolar-

ization, and the fluctuation amplitude of the somatic voltage. By inducing

voltage fluctuation to the soma with similar frequency and amplitude, thus

considering the influence of noise in isolation, they found that noise alone

could not account for the divisive effect of shunting inhibition. Without the

effects of noise and dendritic saturation, shunting inhibition had a purely

subtractive effect, and the addition of noise could only account for a modest

gain change. Moreover dendritic saturation could not produce a big gain

change either. It was thus the combination of noise and dendritic saturation

that was necessary to account for gain control of the firing rate.

2.3.2 Gain modulation from synaptic depression

The input a neuron receives from afferent neuron depends on the strength

of the synaptic connection. The notion that the strength of a synapse

can change is very old (Hebb, 1949). Although originally this change was

considered long-lasting or permanent, resulting when neurons fire together,

other non-permanent changes are possible, with short term depression being

one of them (Eccles et al., 1941). Short term depression can occur when the

neurotransmitter vesicle supply decreases, due to previous stimulations, and

the remaining pool of vesicles is not enough for the neuron to maintain the

same response (Betz, 1970; Elmqvist and Quastel, 1965; Saviane and Silver,

2006). It can also occur due to desensitization of the post-synaptic receptors

(Saviane and Silver, 2006; Trussell and Fischbach, 1989).

Short term depression has been shown to transform the arithmetic oper-

ations performed by cerebellar granule cells. Using dynamic clamp experi-

ments, and neuronal simulations, Rothman et al. (2009) found that STD can

enable a neuron to act as a multiplicative device. In particular, they showed



34 Chapter 2. Gain modulation

that, without STD when the neuron received an inhibitory input, the I–O

curve would shift, indicating an additive operation. In the presence of STD,

inhibitory input was found to have a second effect, changing the slope of

the I–O function, and thus introducing a gain change. This was interesting

because in effect, STD at the excitatory synapse was found to transform the

operation performed by inhibition. To further investigate this gain change,

they observed the mappings between input rate and average synaptic con-

ductance, and between average synaptic conductance and output rate. They

found that STD changed the relation between average conductance and in-

put rate, while the relation between output rate and average conductance

remained unaffected by STD. This was an indication that the observed gain

changes took place due to the non-linearity introduced by STD in the input

rate as a function of average conductance, a result that was not affected by

synaptic noise.

To show that their results were not neuron specific, they repeated the

simulation using a realistic, conductance based model of a layer 5 pyram-

idal neuron, receiving input from 400 excitatory and 30 inhibitory synapses.

Again in the absence of STD, introduction of inhibition resulted in an ad-

ditive shift, while in the presence of STD, this was accompanied by a gain

change.

2.4 Determining arithmetic operations

There are various ways to determine arithmetic operations, mainly depend-

ing on the nature of the operation. If the additive or multiplicative opera-

tion is simple, it can be identified through visual inspection (Andersen et al.,

1985; Brotchie et al., 1995; Abbott et al., 1997; Holt and Koch, 1997; Doiron

et al., 2001; Mitchell and Silver, 2003; Prescott and De Koninck, 2003). A

better practice is to use the reverse operation on the modulated curve, so

that it will overlay with the original one. In an input additive operation

this means shifting the curve (Steuber et al., 2011), and in an output multi-

plicative one, multiplying the output with a constant (Chance et al., 2002;

Murphy and Miller, 2003; Ingham and McAlpine, 2005).

When the operation performed is non-linear, one of the ways to identify

an operation is to perform curve fitting for the original and modulated data.

Usually for this fitting, Hill like functions are used (Murphy and Miller,
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Figure 2.4: Hill function from Equation 2.3, using Fmax = 100
f50 = 100 and n = 0.8, for various values of Fmax (left), f50
(centre), and n (right).

2003; Rothman et al., 2009). Hill like functions are described by equations

similar to (Silver, 2010)

F (f) = FMAX
fn

(f50)n + fn
(2.3)

Where F is the output firing rate, and f the rate of the driving input. This

function can take the shape of a sigmoid when n>1, and we can use it to

identify the I–O curve by fitting Fmax, f50, and n. Various Hill functions

with different Fmax, f50, and n can be seen in Figure 2.4.

Due to the intrinsic properties of this function, Fmax and f50 correspond

to the maximum output value, and the input rate that produces the half

maximal response, respectively. After fitting the Hill function, we can then

use a range of output frequencies to calculate the average gain. This range

should account for the part of the curve with significant gain changes. For

larger input rates, the I–O function saturates, and large changes in the

input rate result in minor changes in the output rate. It is thus better not

to include values near the beginning and end of the range. In previous work,

the average gain, calculated using points corresponding to 5% and 75% of

the maximum output rate was used (Rothman et al., 2009).

Since most of the I–O functions are monotonic, we can define the average

gain of the functions as
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F ′ =
F75% − F5%

f75% − f5%
(2.4)

where F75% and F5% stand for 75% and the 5% of the maximum output

value, and f75% and f5% are the input rates that correspond to these output

values, respectively. We also follow previous studies (Rothman et al., 2009)

and define the offset as the input rate corresponding to the half maximum

output firing rate. That is

offset = f50% (2.5)

Assuming that we have two I–O functions, and denoting with o the original

one and with m the modulated one, we can find the percentage difference

in gain using

∆Gain =
F ′m − F ′o
F ′o

(2.6)

similarly for the change in offset

∆offset = offsetm − offseto (2.7)

However, regardless of the way used to identify an operation, one should

always be careful since more than one operation can account for the same

curve change. A good example is given by exponential functions (Silver,

2010), where

ef+m = ef · em (2.8)

which means that an input additive operation on the left, where m is added

to input f , is equivalent to an output multiplicative operation on the right,

where em is multiplied with the overall function. This is very common since

for many modulated curves, there are two ways to go from a point on the

original curve, to the corresponding point on the modulated curve. You can

either go vertically or horizontally, thus assuming an output or an input

operation, respectively.

Having multiple ways to describe the changes, it becomes important to

justify why one operation is considered over the other. As we will see later for

example, the operation performed by STD is classified as an input operation
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since it changes neuronal input by depressing the synaptic conductance (sec-

tion 5.4); and because this can account for how STD induces gain changes

(section 5.5).
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3
Computational neuroscience

The discovery of neurons in the brain dates back more than 100 years, with

Santiago Ramón y Cajal being one of the first people able to actually see

neurons and create detailed drawings of them (for review, see for example

Sabbatini, 2003). One of these drawings, illustrating a section in the spinal

cord, can be seen in Figure 3.1. However, these drawings did not reveal

much about neuronal dynamics. A step towards understanding neuronal

function came later when one of the pioneers, Donald Hebb, suggested that

the strength of synapses could change due to activation (Hebb, 1949).

Our understanding of neuronal processes has changed dramatically since

then. This leap in knowledge also involves computational models and math-

ematical theories of neuronal processes. Some of the best known theories,

like the mathematical description of electrical membrane properties, have

found their way into core neuroscience books (Kandel et al., 2000). Mod-

els with increased complexity, along with numerical methods, are usually

discussed separately (Koch and Segev, 1998; Koch, 2004; Schutter, 2009;

Sterratt et al., 2011), while at the same time related fields like artificial

neural networks (Hertz, 1991) and spiking neural networks (Gerstner and

Kistler, 2002) have emerged.

To simulate a neuron using a biologically realistic model requires the

combination of many theories, such as linear-cable theory Rall (1962), and

the Hodgkin-Huxley model (Hodgkin and Huxley, 1952). This is because

neurons are cells, with numerous proteins playing various roles in input

processing. A detailed model found in an online database (Migliore et al.,

2003) can incorporate a number of theories and models, along with a set

39
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Figure 3.1: Example of one of Cajal’s drawings. Drawing of
a spinal cord section (Sabbatini, 2003).

of variables. From the membrane’s electrical activity and the cable equa-

tion, to compartmental modelling, and from the Hodgkin-Huxley model to

various models of ion channels, detailed neuronal models hold the accumu-

lated knowledge related to a specific neuron. Although it is not necessary

for someone to know all of these theories, since modern simulators such as

NEURON (Carnevale T. and Hines L., 2006) and GENESIS (Bower and

Beeman, 2014) implement them automatically, it is still a good idea to have

a good grasp of them.

It is not possible to discuss all methods and theories here, but we should

discuss at least three of them. Firstly, we are going to discuss the cable

theory, a mathematical description of ion movement inside a passive cell.

Then, and to move towards active neurons, we will discuss the way neurons

communicate through action potentials, and the Hodgkin-Huxley model.

Last but not least, we are going to introduce simple synaptic models, and

explain how they can be altered to incorporate short term depression.
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Figure 3.2: The equivalent circuit of the neuronal mem-
brane. The membrane consists of a capacitance, a conductance
and an electromotive force. For the derivation of the cable theory
we use values per, or times, unit length or area, for example ca-
pacitance per unit length and area. This means that the solution
applies to a continuous rather than a discrete circuit.

3.1 Cable theory

Ions moving in the internal and the external mediums of the cell create elec-

trical currents that underlie information processing in the brain. To simulate

these current flows we can describe the cell membrane as an electrical circuit

(Figure 3.2). In case of the passive cable this circuit can be described us-

ing simple electrical components such as capacitors, resistors and batteries.

The main difference to the widely known electrical circuits is that in the

cell, ions, and not electrons, are the carriers of electrical charges. In nature

cables are not passive and ion channels, ion pumps and other structures add

to the complexity, but this will not be discussed here.

Our goal is to derive an equation that describes the deviation of the in-

tracellular voltage from its resting value with respect to time t, and position

along the cylinder x. The definition of this deviation can be seen below

V = Vi − Ve − Er (3.1)

Where Er denotes the passive reversal potential that constitutes the

resting membrane voltage and Vi and Ve the potential in the intracellular

and extracellular areas, respectively. We assume that membrane properties,

like capacitance, conductance and reversal potential, remain uniform. To do

so we assume that the core conductor is cylindrical and uniform.

We know from Ohm’s law that we can find the voltage difference along
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a conductor by using

V = I ·R (3.2)

We define ri in [Ω/cm] to be the intracellular resistivity per unit length

along the cable, and ii in [A] the intracellular current, taken positive when

flowing to the right. Applying Ohm’s law to find V between two points we

have V = −iiri∆x ⇔ V/∆x = −iiri. Taking the limit of ∆x approaching

zero we find

∂V

∂x
= −iiri (3.3)

Having assumed uniform properties, ri remains constant, and differenti-

ating the above equation with respect to x will thus result in

∂2Vi
∂x2

= −ri
∂ii
∂x

(3.4)

Notice the term dii/dx that emerged through the derivation. This term is

by definition the rate of change for the intracellular current per unit length.

Since the amount of current leaving the intracellular area per dx is the

same as the one passing through the membrane per dx, these two must be

equivalent. Taking into consideration that a rise in the former will result

in a fall of the latter we can define the membrane current density per unit

length (im) as

im ≡ −
∂ii
∂x

(3.5)

Notice the difference between ii and im. The first is the intracellular cur-

rent along the cable in [A], while the second is the membrane current density

per unit length in [A/cm]. Combining Equation 3.4, and Equation 3.5 we

have

∂2Vi
∂x2

= riim (3.6)

Differentiating Equation 3.1 for constant Er, and making the further

assumption that the extracellular potential Ve also remains stable we have

∂2V/∂x2 = ∂2Vi/∂x
2. This means that in Equation 3.6 we can substitute

Vi for V . Doing so, and multiplying by rm/ri we have



3.1. Cable theory 43

rm
ri

∂2V

∂x2
= rmim (3.7)

Now it is time to move to the membrane. We will first have to define

some quantities of interest. For the capacitance we have the membrane

capacitance per unit area Cm in [F/cm2] and the membrane capacitance per

unit length cm = Cmπd in [F/cm], where d is the diameter of the cylinder.

For the conductance of the membrane we have the membrane conductance

per unit area Gm in [S/cm2] and per unit length gm = Gmπd in [S/cm].

Knowing the conductance we can also find the resistance times unit area

Rm = 1/Gm in [Ωcm2] and times unit length rm = 1/gm in [Ωcm]. Having

defined all of the above we can describe the membrane current density per

unit length as

im = cm(∂V/∂t) + (Vi − Ve − Er)/rm (3.8)

Substituting using the definition of V in Equation 3.1, and then multiplying

by rm we have

imrm = τm(∂V/∂t) + V (3.9)

where τm represents the passive membrane time constant and equals

τm = rmcm = RmCm (3.10)

Finally we can combine Equation 3.7 and Equation 3.9 and set λ =
√
rm/ri

to reach

λ2
∂2V

∂x2
= V + τm

∂V

∂t
(3.11)

The above is known as the Cable Equation and was derived using only the

dimension along the cable. To derive it we also assumed the neuron to be a

cylindrical core conductor, uniform with extracellular isopotentiality.

The cable equation can be solved analytically for various boundary con-

ditions, but is usually solved numerically as part of neuron simulations.

Although it describes voltage changes in neurons, it is limited to passive

neurons. This does not mean that when active mechanisms are taken into

account, the cable equation is rendered unusable. Rather, active mechan-

isms must be modelled in addition to cable theory. One of the best known
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examples of active mechanisms underlies the generation of the action poten-

tials, and was first inferred by Alan Hodgkin and Andrew Huxley (Hodgkin

and Huxley, 1952).

3.2 Hodgkin–Huxley model

The most common method for neurons to convey information is by means

of action potentials. In effect, action potentials are a quick rise of the mem-

brane potential (depolarization), followed by a sharp fall (repolarization),

that propagate along the neuron’s axon. The first quantitative description

of the action potential was given by Hodgkin and Huxley (1952).
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Figure 3.3: Action potential. Neurons receive excitatory input
capable of increasing their membrane potential. Action potentials
are generated when the membrane potential reaches a certain value,
here −55 V, which is known as threshold.

In their work, they described the ion current mechanism underlying

voltage fluctuations and the creation of the action potential. Here, we will

not consider the experimental nature of Hodgkin and Huxley’s work. Instead

we focus on the quantitative description of the proposed mechanisms. At the

same time, we combine most of the equations introduced in this section and

solve them numerically using the variable step solver lsode in GNU octave

to simulate an action potential. The values of interest are then plotted in

Figure 3.3 Figure 3.4 and Figure 3.5.

We consider the neuron membrane to be an electrical circuit. This circuit
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is responsible for the flow of currents from the extracellular to the intracellu-

lar space and vice versa. This circuit incorporates the ion movement in the

form of a membrane capacitor per unit area (Cm) and three ion currents:

the sodium (INa) potassium (IK) and leakage (IL) current. The total cur-

rent that passes through the membrane then changes the membrane voltage

based on Kirchhoff’s Law

Cm
dV

dt
= −INa − IK − IL (3.12)

To gain an insight into these currents Hodgkin and Huxley applied a

voltage clamp, thus setting the membrane potential to a constant value.

Having constant voltage imposes a zero net current by setting the left term

of Equation 3.12 to zero. That is

0 = −INa − IK − IL

For every ion, there is a specific membrane potential, also known as

reversal potential, for which the average current flowing through the mem-

brane is zero. The deviation of the membrane potential from this value will

lead to an ion current, and is thus known as driving force. The exact value

of the flowing current is then the product of the membrane conductance for

that ion, and the driving force. Thus, we have

INa = gNa(V − ENa) (3.13)

IK = gK(V − EK) (3.14)

IL = ḡL(V − EL) (3.15)

where gNa, gK and ḡL stand for the sodium, potassium, and leak conduct-

ance, respectively. Similarly ENa, EK and EL, denote the corresponding

reversal potentials. As we will see in the next section, the values of gNa and

gK vary with time and voltage; in contrast the bar in ḡL denotes a constant

value.

3.2.1 Potassium current and ion channels

Using a voltage clamp Hodgkin and Huxley were able to keep the mem-

brane potential at a desired value. By then changing the extracellular ion
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concentration they were able to identify which ions contribute the most. By

replacing sodium ions with an organic cation, they could record IK and cal-

culate gK using Equation 3.14. The resulting time course of the potassium

conductance during a depolarising voltage step is shown in Figure 3.4.
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Figure 3.4: Potassium conductance. Time course of the po-
tassium conductance during a depolarising voltage step. The de-
polarization results in an increase of the potassium conductance,
followed by a decrease to zero when the cell returns to the mem-
brane resting potential.

To explain these results, they introduced the concept of ion channels,

controlled by gating particles. Each of these gates can be in an open or a

closed state. This can be encapsulated in the following kinetic scheme

C
αn−−⇀↽−−
βn

O

This kinetic scheme states that the gates of the ion channels can move,

from an open state (O), to a closed state (C). The rate coefficients αn and

βn control the speed of these transitions. If n denotes the fraction of gates

in the open state, then the fraction of gates in the closed state will be 1−n.

At time t, αn(1− n) gating particles will enter the open state, while −βnn
gates will move to the closed state. Overall we can describe this process

with a differential equation

dn

dt
= αn(1− n)− βnn (3.16)
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the general solution of the above can be found as

dn

dt
+ (αn + βn)n = αn

e(αn+βn)t(
dn

dt
+ (αn + βn)n) = e(αn+βn)tαn

and then integrating for t

e(αn+βn)tn =
αn

αn + βn
e(αn+βn)t + C

n(t) =
αn

αn + βn
+ Ce−(αn+βn)t

and by setting n∞ ≡ n(∞) = αn/(αn + βn) and n0 ≡ n(0) we can extract

C = n0 − n∞. Finally we define the time constant to be τn = 1/(αn + βn)

so that

n(t) = n∞ + (n0 − n∞)e−t/τn (3.17)

Trying to find the α and β values, Hodgkin and Huxley found that both

of them are a function of voltage. This does not change the above equation

since it was derived using a voltage clamp, and the values of n0, n∞ and τn

remain constant for a particular voltage. They then moved on to collecting

measurements of the conductance and extracting the α and β values for

different voltages. In this way they found continuous equations able to fit

the experimental data. These were

αn = 0.01
V + 55

1− e(−(V+55)/10)
(3.18)

βn = 0.125e−(V+65)/80 (3.19)

Knowing the activation variable n, finding the actual conductance is just a

matter of multiplication with the maximum conductance. The maximum

conductance (ḡK) is constant. However, what is interesting is their use of n4

to describe the potassium conductance, assuming that the channel is gated

by four particles, which happens to correspond to the four subunits of the

delayed rectifier potassium channel. The resulting equation that describes
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the current is

IK = ḡKn
4(V − EK) (3.20)

Considering all of the above, one needs four equations to describe the po-

tassium dynamics: Equation 3.16, Equation 3.18, Equation 3.19, and Equa-

tion 3.20.

3.2.2 Sodium current and leak current

The other active current studied was the sodium current (INa). Sodium

behaves differently than potassium since it is inactivated, meaning that after

a period of staying open, the channel will close and stay inactive for a certain

time. During an action potential this translates in a sharp increase of the

average conductance followed by a steep decrease as we can see in Figure 3.5.

Even though the depolarization persists throughout time, gNa reaches a

maximum value and then decreases to zero.
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Figure 3.5: Sodium conductance. The sodium conductance as
a function of time during a depolarising voltage step. We can see
that the channel inactivates after a while and the conductance re-
turns to zero, even though the depolarization is maintained through-
out the plotted time.

This can be explained by the existence of two gating particles, instead

of one. Only in this case, one particle results in the activation (m) and

the other in the inactivation (h) of the channel. Using a similar analysis

as before, and fitting their data, Hodgkin and Huxley came up with the
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equations below to describe the sodium current.

INa = ḡNam
3h(V − ENa) (3.21)

dm

dt
= αm(1−m)− βmm

dh

dt
= αh(1− h)− βhh (3.22)

αm = 0.1
V + 40

1− exp(−(V + 40)/10)
αh = 0.06 exp(−(V + 65)/60) (3.23)

βm = 4 exp(−(V + 65)/18) βh =
1

exp(−(V + 35)/10) + 1
(3.24)

Finally there is the leak current that consists of all the other ions. The leak

current can be found using

IL = ḡL(V − EL) (3.25)

Having identified the sodium (Equation 3.21), potassium (Equation 3.20),

and leak (Equation 3.25) currents, we can substitute them in the membrane

equation (Equation 3.12) to find how the potential across the membrane

changes over time. Doing so we have

Cm
dV

dt
= −ḡL(V − EL)− ḡNam3h(V − ENa)− ḡKn4(V − EK) (3.26)

However, this equation alone is not sufficient to describe all changes in

a neuron. This is because neurons vary in size and shape, with dendrites

forming both simple and complex trees. This means that their modelling

can not be simplified to a simple cable. To get a realistic representation of a

neuron, one should create a model that takes into account the neuron’s mor-

phology. A method to do so was first introduced by Rall (1964), who divided

the dendritic structure into smaller parts, in a way that the morphology of

a part resembles that of a cable, but ensuring that it is small enough to be

considered isopotential. Today, this method of compartmental modelling is

the de facto method for simulating electrophysiologically complex realistic

neurons.
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3.3 Synaptic models

To distribute information, the nervous system must have an efficient way for

neurons to communicate. Evolution has provided them with a wide variety

of synaptic mechanisms, both electrical and chemical, but modelling their

behaviour can be challenging. Although there are a wide variety of models,

both phenomenological and functional, to introduce synaptic modelling we

will consider a simple model of a chemical synapse.

3.3.1 Chemical synapses: Difference of two exponentials

When an action potential (AP), travelling along the axon of the pre-synaptic

neuron, arrives at a chemical synapse, it results in the release of neurotrans-

mitter vesicles, and thus the diffusion of neurotransmitters across the syn-

aptic cleft. Neurotransmitters then bind to receptors on the post-synaptic

cell, and induce a current, know as post-synaptic current (PSC) (Kandel

et al., 2000). Depending on the synapse this current can depolarise the

neuron, and thus called excitatory post-synaptic current (EPSC), or hyper-

polarise it, and called inhibitory post-synaptic current (IPSC). The current

inducted by a single pre-synaptic AP at time ts, can be described by

Isyn(t) = gsyn(t) (V (t)− Esyn) (3.27)

Where Esyn is the synapse’s reversal potential, V (t) the voltage across the

membrane, and gsyn(t) the post-synaptic conductance with regards to time.

The post-synaptic conductance can also be distinguished as gexc and ginh

for an excitatory and an inhibitory synapse, respectively. This change of

conductance, that follows the arrival of a pre-synaptic AP constitutes the

effect of the neurotransmitters binding, and it can be phenomenologically

described by a difference of two exponentials (Figure 3.6,a). That is

gsyn(t) = ḡsyn
τ1τ2
τ1 − τ2

(
exp(− t− ts

τ1
)− exp(− t− ts

τ2
)

)
(3.28)

Where ḡsyn is the maximum conductance, ts denotes the AP’s arrival time,

and τ1 and τ2 are the decay and rise time constants, respectively. Finally,

the term τ1τ2/(τ1 − τ2) is a normalisation factor.

However, knowing the response of a post-synaptic cell to a single AP is
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Figure 3.6: Post synaptic conductance. a | Conductance
response to an AP that arrives at t = 10 ms, described by a double
exponential synapse (Equation 3.28) with ḡsyn = 10 nS, τ1 = 5 ms
and τ2 = 1 ms b | The same for a train of action potentials starting
at t = 10 ms, with APs arriving every 10 ms. This time the time
course of the conductance is given by Equation 3.29. c | A similar
train as b, with the interval between APs dropped to 1 ms. In red,
re-plot of the conductance inside the box, on the same scale as a and
b. Notice how the increase of the input rate results in a decrease in
conductance fluctuations.

not sufficient, since neurons usually receive input from trains of APs. Often,

the response of a synapse remains unaffected by preceding input, and we

can thus find the overall response by summing the responses to individual

incidents. Due to this superposition property, the conductance as a function

of time (t) as a response to APs arriving at time ts (t > ts) will be

gsyn(t) =

n∑
i=1

ḡsyn
τ1τ2
τ1 − τ2

(
exp(− t− t

i
s

τ1
)− exp(− t− t

i
s

τ2
)

)
(3.29)

The response of an excitatory post-synaptic conductance, with ḡsyn = 10 ns,

τ1 = 5 ms and τ2 = 1 ms, for one, a few, and many APs can be found in

Figure 3.6.

It is worth mentioning that an increase of input rate, results in a decrease

of conductance fluctuations. This can prove to be important since for high

input frequencies, conductance fluctuations are small, eliminating effects
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related to the shape of single PSC, resulting in a response similar to a step

function, which is equivalent to tonic input. That means that for high

frequencies effects related to large voltage fluctuations might disappear.

3.3.2 Relationship between input rate and average conduct-

ance.

The average conductance of a synapse (Gsyn) that results from a train of

APs can be calculated analytically. Assuming that the strength of the syn-

apse remains constant, and that there is no variability in the inter-spike

intervals (ISI) we can investigate how different input frequencies fc can lead

to different average conductances (Gsyn(fc)), where the subscript c stands

for constant and denotes the lack of variability; this is to avoid confusion

with the average input frequency f , that will be used later on. Although

we are not going to use the end result of the calculation directly, it is useful

since it can give us an insight into this relationship.

As we saw in the previous section, the equation that describes the con-

ductance of the synapse after the arrival of an AP is:

gsyn(t) = ḡsyn
τ1τ2
τ1 − τ2

(
exp

(
− t− ts

τ1

)
− exp

(
− t− ts

τ2

))
To find Gsyn we must first calculate the integral of gsyn(t). To do so we

integrate starting from the arrival of the AP (ts) to infinity.

ˆ ∞
ts

gsyn(t)dt = ḡsyn
τ1τ2
τ1 − τ2

(ˆ ∞
ts

exp

(
− t− ts

τ1

)
dt−

ˆ ∞
ts

exp

(
− t− ts

τ2

)
dt

)
= ḡsyn

τ1τ2
τ1 − τ2

(
−τ1 exp

(
− t− ts

τ1

)∣∣∣∣∞
ts

+ τ2 exp

(
− t− ts

τ2

)∣∣∣∣∞
ts

)
= ḡsyn

τ1τ2
τ1 − τ2

(τ1 − τ2)

= ḡsynτ1τ2 (3.30)

The result of this calculation, leads to a constant that depends on the time

constants of the synapse, and the maximum synaptic conductance ḡsyn.

Since the conductances are superimposed, to calculate the average conduct-

ance for a train of APs that arrive with a frequency fc, we have to sum the
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previous result for all APs, and divide by time.

Gsyn(t) =

(
n∑
n=1

ˆ ∞
ts

gsyn(t)dt

)
/t

where n, is the number of action potentials arrived until t, given by n = fc ·t.
Substituting, we have

Gsyn(fc) = ḡτ1τ2fc (3.31)

This linear relationship between input frequency and average conductance

will be used in later chapters.

3.4 STD and synaptic transmission

Neurons can communicate by using trains of APs. As we saw previously,

the reaction of a neuron to multiple presynaptic APs is often assumed to be

a linear summation of the independent effects. However, this is not always

the case, as the arrival of an AP might alter post-synaptic effects of sub-

sequent APs (Figure 3.7,a). This change can be a depression or a facilitation,

decreasing or enhancing following responses, respectively (Dittman et al.,

2000). Time moderates these effects, and depending on how long it takes

for the neuron to reach its initial state and again be able to respond fully,

we can distinguish between short-term and long-term depression, and short-

term and long-term facilitation. Short term depression is known, among

other mechanisms, to account for a number of temporal characteristics of

cortical neurons (Chance et al., 1998), while short-term synaptic facilita-

tion has been theorised to account for the maintenance of working memories

(Mongillo et al., 2008). Here we are interested in computational models of

depression that has short term affects. For this we will consider two models,

both of them involving the use of a depression factor applied to gsyn.

3.4.1 Dynamic variables STD model

The first model we discuss was developed in order to describe STD at excit-

atory synapses of the primary visual cortex (Varela et al., 1997). The main

idea in this model is that the conductance amplitude (A) is a product of

an initial amplitude (A0) and a number of depression (D) and facilitation
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(Fac) factors. That is

A = A0Fac ·D1D2D3 (3.32)

with different time constants and scaling factors used for every depres-

sion and facilitation factor. However one does not have to include all the

complexity in this model. Simpler variants of this model, omitting the fa-

cilitation factor and using only one depression factor; or using only the

facilitation factor, can also be used.

When the pre-synaptic AP arrives, the various depression factors (D)

are multiplied with a scaling factor δ (D → δD), while between stimuli they

recover exponentially following the rule:

τD
dD

dt
= 1−D

where τD is a time constant. Consequently in-between synaptic inputs the

depression factor is described by

τD
dD

dt
= 1−D ⇔ˆ

dD

1−D
=

ˆ
dt

τD
⇔

−log(1−D) + C =
t

τD
⇔

D = 1− (1−D0)e
−t/τD (3.33)

where D0 stands for the depression factor after the arrival of the last

synaptic input. Since D depresses the conductance amplitude, we can as-

sume that it will have the same effect on the average conductance. We can

thus combine Equation 3.31 and Equation 3.33 to find

Gsyn(fc) = ¯gτ1τ2fc · (1− (1−D0)e−t/τD) (3.34)

When the input rate is constant, D reaches an equilibrium, and the

increase during inter-spike intervals equals the decrease due to the multi-

plication with a scaling factor. The effects of this model on the average

synaptic conductance for an IaF neuron can be seen in Figure 3.7,b.
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Figure 3.7: Effects of STD on synaptic conductance. a |
Conductance trace in the absence (red) and presence (blue) of STD
for 60Hz of input rate. STD was based on the Varela et al. (1997)
model, using δ = 0.5. b | Average excitatory conductance Gexc for
a single MF as a function of input rate f in the absence (red) and
presence (blue) of STD based on the Varela et al. (1997) model.
Simulation data correspond to the IaF model used in chapter 4.
c | Same as in b for the average inhibitory conductance calculated
over all PC synapses, and the STD model corresponding to Shin
et al. (2007). This time simulation data correspond to a biologically
realistic model of a CN neuron, as found in chapter 5.
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3.4.2 Pre-synaptic release probability STD model

Another synapse that exhibits STD is the GABAergic synapse between PCs

and CN neurons. This synapse was investigated experimentally by Pedroar-

ena and Schwarz (2003), and a computational model based on their findings

was derived later (Shin et al., 2007). This model assumes that the underlying

mechanism of STD are changes in the pre-synaptic vesicle release probabil-

ity (R). The steady state level of the pre-synaptic release probability (Rss),

and the depressions time constant (τ) are given by

Rss(finst) = 0.08 + 0.6e−2.84finst + 0.32e−0.02finst (3.35)

τ(finst) = 2 + 2500e−0.274finst + 100e−0.022finst (3.36)

where finst corresponds to the instantaneous firing rate and is found by

inverting the last ISI. Both Rss and τ are updated on the arrival of then nth

AP, and we can then use the new values to calculate R.

Rn = Rn−1 + (Rss −Rn−1)
(

1− e−
ISIn
τ

)
(3.37)

with Rn−1 and ISIn denoting the release probability and the inter-spike

interval for the (n−1)th and nth action potential, respectively. We can then

calculate Gsyn(t) using

Gsyn(t) = Gpre +A
Gmax
τ1 − τ2

Rn(e−t/τ1 − e−t/τ2) (3.38)

where Gpre is the synaptic conductance as a result of previous APs, and the

term that follows is the contribution of the current AP, with A, τ1 and τ2

as constants.

To get an insight into the relationship between the input frequency and

the average conductance, we can work as previously and assume a constant

input frequency with no variability between ISIs (fc). After some time,

this will result in a constant R, and thus Rn−1 = Rn. Substituting into

Equation 3.37 we have

Rn =Rn + (Rss −Rn)
(

1− e−
ISIn
τ

)
⇔

0 =(Rss −Rn)
(

1− e−
ISIn
τ

)
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and because ISIn/τ 6= 0 we have Rn = Rss(fc) and

Rn(fc) = 0.08 + 0.6e−2.84fc + 0.32e−0.02fc (3.39)

Having calculated the depression factor, we can substitute into Equation 3.31

to find

Gsyn(fc) = Rn(fc)AGmaxτ1τ2fc (3.40)

where AGmax is the equivalent of gsyn. We can use this equation to then fit

simulation data using

Gsyn(f) = Rn(f)AGmaxτ1τ2f (3.41)

where this time we did not assume that the input rate is constant, rather

we took its average value. Notice how STD changes the relation between

input rate and average conductance from linear (Equation 3.31) to exponen-

tial (Equation 3.39, and Equation 3.41). In both cases however, the effect

of the exponential term will diminish for higher input rates, and the rela-

tion will resemble a linear one. This is also evident in Figure 3.7,b&c where

simulation data for both models are shown.

3.5 Cerebellum

Taking a closer look underneath the cerebral hemispheres one can find a

smaller structure with a volume around a tenth of the overall brain. This

structure is known as the cerebellum, which is Latin for “little brain”. Sur-

prisingly, even though the cerebellum is small, it accounts for more than half

of the neurons in the brain (Kandel et al. 2000, ch. 42). Cerebellar neur-

ons, highly regular and with repeating connectivity, receive projections from

various brain and spinal cord areas, and project to different motor systems.

The cerebellum is organized in three distinct regions (Figure 3.8). The

deepest region in called the granular layer, and contains granule cells, whose

population is estimated to 100 billion, and Golgi cells. In some regions of the

cerebellum small numbers of other cells can also be found in this layer, like

Lugaro cells, unipolar brush cells and chandelier cells. This is also where

the mossy fibres terminate, creating a synaptic complex called cerebellar



58 Chapter 3. Computational neuroscience

glomureli, that connects mossy fibres to both granule cells and Golgi cells

(Figure 3.8, index)

In the middle, packed with the cell bodies of Purkinje cells, we can find

the Purkinje cell layer. Purkinje cells constitute the output of the cerebellar

cortex, and the main input of the cerebellar nuclei.

The outermost layer, also an important information processing layer,

contains stellate cells and basket cells, along with Purkinje cell dendrites,

and the granule cells axons, that run parallel to the long axis of the folia

and thus called parallel fibres.

Functionally, the cerebellum is responsible for a large number of compu-

tational tasks, including the fine tuning of movements. As a result, patients

with lesions in the cerebellum have various disruptions of normal movements,

like moving their hand from a raised position to touch their nose with the

tip of their finger. The cerebellum is also involved in smooth-pursuit eye

movements and saccadic eye movements.
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Figure 3.8: Cerebellar cortex. The cerebellar cortex consists of
three layers. The outer one, known as molecular layer, includes the
axons of the granule cells known as parallel fibres, the dendrites of
the Purkinje cells, stellate cells and basket cells. The intermediate
layer holds the somas of Purkinje cells, and is known as Purkinje
cell layer, while the inner layer consists of granule cells and Golgi
cells. Mossy fibres excite granule cells and Golgi cells by creating a
synaptic complex called the cerebellar glomerulus (index)
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4
Effect of STD at excitatory synapses

Neurons act as computational devices, receiving both excitatory and inhibit-

ory inputs from other neurons, and processing them simultaneously. Various

factors and neuronal processes can affect the neuron’s response to these in-

puts, and thus change the I–O function of the neuron. We focus here on

the effect of short-term synaptic depression at the excitatory synapses of a

neuron that receives both excitatory and inhibitory input.

In the presence of STD the amplitude of the post-synaptic conductance

at individual synapses is scaled down by a factor, depending on the input

rate. This can change the neuronal response significantly, lowering the ef-

fect of excitation at higher frequencies, and thus changing the neuron’s I–O

function. Since excitation results in an increase of the neurons output rate,

STD can change neuronal gain by leaving the output rate unaffected for

small input rates, while decreasing it for higher ones. Counter-intuitively ,

STD at the excitatory synapses can also change the effect that inhibitory

Driving input Output

Excitatory + STD

Modulatory input

Inhibitory

IaF

Figure 4.1: Inhibition-modulated neuronal output. We ap-
plied STD in the excitatory input, responsible for driving the integ-
rate and fire neuron, while modulating the neuronal output using
inhibitory input.

61
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input has on the neuron.

Although not directly applied at the inhibitory synapses, STD at the

excitatory synapse can affect the operation performed by inhibitory input.

In particular, Rothman et al. (2009) showed that when a neuron is driven by

excitation, applying depression to the driving input can have two effects. It

changes the I–O function of the neuron, but most importantly, it can add a

multiplicative component to the otherwise additive effects of the modulatory

input.

To further investigate these effects, we first replicate the results described

in Rothman et al. (2009) by stimulating an integrate-and-fire neuron with

excitatory synaptic input, and comparing the different I–O functions in the

presence and absence of STD. We then added tonic inhibition as modulatory

input, and compared the effects of inhibition in the presence and absence of

STD.

4.1 Integrate-and-fire neuron

We used an integrate-and-fire neuron to investigate how STD at an excitat-

ory synapse could enhance inhibition-mediated gain modulation. Using the

NEURON simulator (Carnevale T. and Hines L., 2006) we created a small

soma whose length (L) and diameter (diam) equalled 9.76µm, and that had

1µF/cm2 capacitance (Cm), 100 Ω·cm cytoplasmic resistivity and 386 pS of

passive conductance (gpas). These parameters had originally been chosen

by Rothman and colleagues to represent cerebellar granule cells, which are

small and electronically compact. As in Rothman et al. (2009),we used syn-

aptic input at four excitatory synapses, each with a maximum conductance

(gampamax ) of 1 nS, and tonic inhibitory input (gGABA) of 500 nS to modu-

late the neuron. We recorded a spike when the neuron’s voltage reached

Vthres = −49 mV , and set the voltage to Vspike = 10 mV for an integration

step to simulate a spike. We then set the voltage to the resting mem-

brane potential Vrest = −75 mV, and kept it there for a refractory period of

tref = 2.5 ms. A summary of these variables can be found in Table 4.1.

The excitatory synaptic impulse response was given by

G(t) = (1− e−t/τr)n[a1e
−t/τd1 + a2e

−t/τd2 + a3e
−t/τd3 ] (4.1)

where t is time, τr the rise time constant, and τd1,τd2 and τd3 the decay
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Soma Spike Synaptic input
Diam 9.76µm Vthres −49mV n 4
L 9.76µm Vrest −75mV gampamax 1 nS
Cm 1µF/cm2 Vspike 10mV
gpas 128.6µS/cm2 tref 2.5mV Tonic input

gGABA 500.0 nS

Table 4.1: Biophysical properties of the integrate-and-fire
neuron. Passive parameters of the IaF neuron along with the para-
meter we used for spike generation, and the properties of the syn-
aptic excitatory, and tonic inhibitory input. Here excitation was
used to drive the neuron, while inhibition was considered as the
modulatory input. The membrane time constant is not needed for
this simulation, but using Equation 3.10 we find τm = 7.7 ms

n 11 α1 2.23 nS τd1 0.45ms
τr 0.10 ms α2 0.29 nS τd2 2.88ms
δ 1 or 0.5 α3 0.08nS τd3 21.63ms

Table 4.2: Synaptic properties of the integrate-and-fire
neuron. Synaptic parameters used in Equation 4.1 to simulate
the post-synaptic response to excitatory synaptic input.

time constants. Depression was modelled as described in subsection 3.4.1,

using the simpler Equation 3.33 with the depression factor (δ) equal to 1 in

the absence, and 0.5 in the presence of STD, respectively. For the impulse

response we used the same values as the ones calculated by Rothman et al.

(2009), since they result from the fitting of the conductance equation to

traces of AMPA receptor EPSCs. These values can be found in Table 4.2

We simulated the neuron using the backward Euler method for 10 s with

a time step of 0.02 ms, and by calculating the average output rate for various

excitatory input rates, we were able to determine the neuron’s I–O function

(the relation between input and output rate; Figure 4.2,blue). We then did

the same in the presence of inhibitory input (Figure 4.2,red). To compare

the two, we shifted the modulated I–O function by −10 Hz along the driving

synaptic input axis, and noticed how the shifted curve (Figure 4.2,green)

overlaid with the original one (Figure 4.2,blue). This means that the inhib-

itory input performs an additive operation. This has already been proposed

by theoretical studies (Holt and Koch, 1997), and it has also been confirmed

using a multi-compartmental model of a cerebellar nucleus neuron (Steuber
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et al., 2011).
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Figure 4.2: IaF I–O function. I–O function of an IaF neuron
driven by excitatory input (blue). The biophysical properties of the
neuron can be found in Table 4.1 and Table 4.2 . The original I–O
function (blue) changed in the presence of modulatory input (red).
To identify this change, we shifted the modulated function (red)
by −10 Hz along the input axis. The resulting curve (green) almost
perfectly overlays the original one, indicating that modulatory input
shifts the I–O function along the input rate axis, and thus performs
an input additive operation .

Thus, by driving a neuron with excitatory synaptic input, we were able

to use computational models of depression, and investigate its effects on the

resulting I–O function, along with the changes in the arithmetic operation

performed by the same input, in the presence and absence of depression.

4.2 Effect of short term depression

To replicate the effect of STD that had been studied by Rothman et al.

(2009), we used the same depression model (Varela et al., 1997) where the

actual response amplitude is given by the product of the maximum amp-

litude and a scaling factor (D). The scaling factors initial value is 1, multi-

plied by δ every time an input arrives; where 0 < δ < 1. Between stimuli,

D recovered exponentially following the equation

τD
dD

dt
= 1−D (4.2)
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where the time constant τD was set to 300ms.
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Figure 4.3: IaF neuron simulation data with and without
STD. a | Average conductance for a single synapse as a function
of the driving input rate, in the absence (red) and presence (blue)
of STD. Dots correspond to simulation data, lines are fits to Equa-
tion 4.3 (red) and Equation 4.4 (blue). b | Output rate as a function
of a synapse’s average conductance in the absence (red) and pres-
ence (blue) of of STD; both for the presence (right curves) and
absence (left curves) of modulatory inhibitory input. All lines are
fits to Equation 4.5 Notice how this relationship remains largely
unaffected by STD. c | I–O function in the presence (blue) and
absence (red) of STD; and in the presence (*) and absence (.) of
inhibitory modulatory input, along with the fits to Equation 4.6.

We ran the same simulation for 50ms before adding any stimuli, and

then stimulated the model for 10 s, using synaptic excitatory input to drive

the neuron , and tonic inhibitory input to modulate it. We did so using δ = 1

and δ = 0.5 to simulate the neuron in the absence and presence of depression,

respectively. Apart from the I–O relationship we were also interested in the
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relation between input rate and average conductance, and the relationship

between average conductance and output rate. The simulation data for all

three relationships are shown in Figure 4.3.

We used the fact that the I–O relationship is mediated by the average

conductance, by calculating the average conductance from the input rate,

and then using the calculated conductance value to find the output rate.

Doing so we show how changes in the I–O function (Figure 4.3,c) are not

generated by changes in the relation between average conductance and out-

put rate, since both in the absence and in the presence of STD this relation

remains the same (Figure 4.3,b). Rather they are a result of the non-linearity

introduced by STD in the relationship between driving input and average

conductance (Figure 4.3,a)

Since the I–O function is not linear, and consequently the gain is not

the same for all values of the input rate, we relied on the average gain

calculated over a specific output range,to identify multiplicative operations;

while using the input rate corresponding to the half maximum output rate

to denote additive ones. To do so though, and identify operations as in

section 2.4, we had to use analytical equations that can adequately describe

the underlying relations. We start with the relations between input rate and

average conductance. In the absence of STD, this relationship is linear, and

can be described by

Glinexc(f) = c1f (4.3)

STD introduces a non-linearity, decreasing the response of the neuron to

input rate for high input rates. For regular input, this relationship could be

described using Equation 3.34, or Equation 3.40 if we used the STD model

described in subsection 3.4.2. However, these equations would add to the

complexity, so we used a simpler exponential function to fit our data instead.

This function was

Gexpexc(f) = c2(1− e−f/c3) (4.4)

Using GNU octave (Eaton et al., 2009) and the Levenberg-Marquardt non-

linear regression we fitted Equation 4.3 and Equation 4.4 to the simulation

data (Figure 4.3,a and b) to describe both relations. We then need to use

a sigmoid function to describe the relationship between conductance and
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output rate. For that we worked as in Rothman et al. (2009), using the Hill

function

F (Gexc) =
Fmax

1 + |G50
exc/Gexc|n

+ F0 (4.5)

Where Fmax, G50
exc, n and F0 are constants that are found during the fitting

process. Due to the intrinsic properties of this function, after fitting, Fmax

corresponds to the maximum difference from the minimum F0 value, and

G50
exc to the conductance value where the output rate is in the middle of

its range. These fits can be found in Figure 4.3,b. There we can see that,

although STD changes the range of the function, resulting in a decrease of

the maximum conductance value from 0.8 nS to approximately 0.13 nS, it

does not change the shape of the curve substantially. As a result, curves in

the presence and absence of STD overlay to a large extent.

To fit the I–O function, and take into consideration the non-linearity in

the conductance as a function of input, we fitted Equation 4.5, substituting

Gexc with equations Equation 4.3 and Equation 4.4, for simulation data in

the absence and presence of STD, respectively (Figure 4.3,c). That is

I −O : F (G(f)) (4.6)

After this fitting we were able to find the driving input that corresponded

to a particular percentage of the output value. We denoted F5%, F50% and

F75% the values of the 5%, 50% and 75% maximum output value, and f5%,

f50% and f75% the input values that corresponded to these output values.

Doing so we were able to define the average gain as

F ′ =
F75% − F5%

f75% − f5%
(4.7)

and then calculate the gain difference using

∆Gain =
F ′m − F ′o
F ′o

(4.8)

where F ′o and F ′m stand for the original and the modulated gain, respectively.

In the same fashion, we define the offset as the input value that corresponds

to the half maximum output value. That is
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offset = f50% (4.9)

The offset difference is then given by

∆offset = offsetm − offseto (4.10)

Both ∆Gain and ∆offest can be found in Figure 4.4. We can see that

STD results in a gain decrease (Figure 4.4,b green bar), but only a minor

decrease in offset (Figure 4.4,c green bar).

Most importantly, STD at the excitatory synapse can also affect the

operation performed by inhibitory input. In the absence of STD, inhibition

performs an additive operation, shifting the original I–O curve to the right

(Figure 4.4,c red bar), without changing the gain (Figure 4.4,b red bar). On

the other hand, in the presence of STD, inhibitory input does not only shift

the I–O function (Figure 4.4,c blue bar) but also results in a gain change

(Figure 4.4,b blue bar).
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Figure 4.4: Gain and offset changes due to STD at an excit-
atory synapse. a | Fits of the I–O function using Equation 4.6, in
the absence (blue) and presence (red) of STD, with (*) and without
(.) inhibition. Stars and dots correspond to 5 %, 50 % and 75 % per-
cent of the maximum output value, as found by the fitting. Same
data as in Figure 4.3,c. b | Gain changes due to STD in the absence
of inhibition (left); and due to the introduction of an inhibitory in-
put both in the absence (middle) and presence (right) of STD. c |
Offset changes for the same cases as in b.
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4.3 Limitations

Fitting analytical functions to the data is crucial for identifying arithmetical

operations, especially when the operations are not linear, and thus can not

be described by a simple addition or multiplication in the data. Fitted

equations help us to calculate the average gain or offset by allowing us to

find the maximum value of the function. The maximum output rate value,

in this case Fmax in Equation 4.5, is hard to measure experimentally since

it might correspond to a very high, and difficult to measure, input rate.

Simulations are not limited in this fashion, since one can change input rate

arbitrarily, but in extreme conditions the behaviour of the neuron may be

different, and thus the increase of input rate might reduce the predictability

of the model. This is why we rely on the fitted equation to find the maximum

value. We need this value to find the 5% and 75% maximum values, and

the corresponding input ones, and use it to disregard the beginning and the

end of the curve. Having to extrapolate this maximum value poses the first

limitation in our analysis.
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Figure 4.5: Offset limitations. a | Idealised neuronal response
to input in the absence (blue) and the presence (red) of a mod-
ulatory operation. The latter results from an input multiplicative
operation, given by Equation 4.12. Dots and stars correspond to the
5%, 50% and 75% of the maximum value. b | Difference in gain,
calculated from Equation 4.8. c | Change in offset, as calculated
from Equation 4.10. Notice that the above methodology reports an
additive operation when an input multiplicative operation is per-
formed.

The second caveat is that an offset change should not always be in-
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terpreted as being the result of a linear input, or output, transformation.

Multiplicative input operations might stretch the x axes, resulting in a dis-

location of the f50% value, without the need for an additive operation. To

demonstrate this, we work with an idealised response of a neuron using

F (x) =
1

1 + 30/f
(4.11)

which is similar to the Hill function of Equation 4.5. When a modulatory

input performs a multiplicative input operation, dividing the input rate by

two, the I–O function of the modulated neuron is

Fmod(f) = F (f/2) (4.12)

Using the same methodology as before, we calculate ∆Gain and ∆offset

in Figure 4.5. What we notice is that along with the expected change in

gain, we also find a change in the offset. This shows how gain changes can

affect the offset measure that we use. As a result, even though average gain

and offset as calculated here are good indicators of how an I–O function

changes, one should also try to identify the underlying operation performed.

Doing so for STD we find that it performs an input non-linear operation

(section 5.4) that can account for the observed offset changes without the

need for an additive operation.



5
Effects of STD at an inhibitory synapse

In the previous chapter we focused on the effect of STD in the excitatory

driving input. This was studied before in cerebellar granule cells (GrC)

(Rothman et al., 2009), receiving excitatory input from mossy fibres (MFs),

and modulatory input from inhibitory Golgi cells (GoC). However, does STD

have a similar effect when present at an inhibitory synapse? To find out, we

used a biologically realistic model of a cerebellar nucleus (CN) neuron that

already included STD at the inhibitory synapse from Purkinje cells. Since

the output of the cerebellar cortex, and consequently the input to cerebellar

nucleus neurons, comes from Purkinje cells (PCs) and is itself inhibitory, the

cerebellar nucleus (CN) neurons can be viewed as inhibition driven, while

receiving modulatory input from excitatory MFs (Steuber and Jaeger, 2013).

As before, the responses of the CN neurons to driving input are depressed

(Figure 5.1), since STD is present at the synapses from PCs to CN neurons

(Pedroarena and Schwarz, 2003; Shin et al., 2007).

We investigated the role of STD for excitation-modulated neurons, using

the CN neurons as a case study, but we also present results from an IaF

neuron that is similar to the one we presented in the previous chapter. We

were interested in both the effect that STD has on the I–O function of the

neuron, and the effect on the operation performed by modulatory excitatory

input.

71
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Purkinje cell input Output

Mossy fibre input

Inhibitory + STD

Excitatory

Cerebellar
nucleus
neuron

Figure 5.1: Excitation-modulated neuronal output. Cere-
bellar nucleus neurons receive inhibitory input from PCs, making
them inhibition driven, while being modulated by excitatory input
arriving from mossy fibres. Again STD is present in the driving
input.

5.1 Cerebellar nuclei neurons

The Cerebellum is a particularly good model system for studying the ef-

fects of STD, because STD can be found at both excitatory (Rancz et al.,

2007; Saviane and Silver, 2006) and inhibitory (Pedroarena and Schwarz,

2003; Shin et al., 2007) synapses. It is present at the excitatory synapse

from MFs to GrCs, and at the inhibitory synapse from PCs to CN neurons.

An IaF neuron with a connectivity that resembled the former was used in

chapter 4 to investigate inhibition-mediated modulation, with STD present

at the excitatory synapses. To investigate the excitation-mediated modula-

tion, we focus on the CN neurons, where excitation is provided by MFs, and

STD-exhibiting inhibitory synapses provide input from Purkinje cells (PC)

(Figure 5.2).

We use a biologically realistic, conductance-based multi-compartmental

model of the CN neuron (Steuber et al., 2011). This model divides the

neuron in three distinct regions, the soma, the proximal dendrites, and

the distal dendrites. Although some properties, like the axial resistivity

(Ra = 235.3Ω·cm), capacitance (Cm = 1.57µF/cm2) and passive membrane

conductance (28.1µS/cm2) remain constant through the neuron, others vary

depending on their location.

In total, the CN model that we used had 517 compartments. Based

on a published analysis of conductances in the CN (Steuber et al., 2011)

eight types of ion channels were used. These were: two sodium channels, a

fast and a persistent one; a fast and a slow delayed rectifier, Kv3 and Kv2

respectively; a high and a low voltage activated calcium channel; a tonic non
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Figure 5.2: Simplified cerebellar connectivity. In the Cere-
bellum, GrCs receive excitatory input from mossy fibres (MFs) at
synapses that exhibit STD, and inhibitory input from GoCs. On
the other hand, CN neurons receive excitatory input from MFs, and
STD is present in the inhibitory input arriving from PCs. Here, in-
hibitory and excitatory synapses are denoted with red and green,
respectively, and the numbers correspond to the number of input
received by our models in this and the previous chapter.

specific cation channel; a small conductance (SK) potassium channel that

is calcium dependent; and a hyper-polarization activated cyclic-nucleotide

gated (HCN) channel.

Synaptic input was provided by PC input to 450 inhibitory synapses,

with 400 of them randomly placed on the dendrites, and 50 on the soma.

Excitatory synapses received input from MFs, with 100 of them randomly

placed on the dendrites, and 50 on the soma. Inhibitory synapses exhibited

STD (Pedroarena and Schwarz, 2003; Shin et al., 2007), similar to the one

found in Luthman et al. (2011), as described in subsection 3.4.1. The ISIs

were generated as in Luthman et al. (2011) using

ISI = (1− x)y + xyz (5.1)

where y is the mean ISI, and z is random number between zero and one

that follows a third order gamma distribution. Irregularity is controlled by

x, which can take a value from zero, where input is regular, to one, where

input is irregular with the same distribution as in z. GABAergic synapses

from PCs to CN neurons were modelled as bi-exponential synapses with
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τrise = 0.25 ms and τfall = 5.1 ms, while synapses from MFs to CN neurons

were modelled using three different bi-exponential synapses. An AMPA

(τrise = 0.29 ms and τfall = 4.01 ms) a fast NMDA (τrise = 2.87 ms and

τfall = 11.6 ms) and a slow NMDA (τrise = 2.87 ms and τfall = 78.3 ms).

Figure 5.3: Morphology of the cerebellar nucleus model
neuron. Soma and dendrites can be seen in orange, and the axon
in green.

5.2 Short term depression at inhibitory synapses

enables gain modulation

We used a previously published, biologically realistic, conductance based

model (Steuber et al., 2011) to investigate the role of short-term synaptic

depression at the inhibitory synapse between Purkinje cells and cerebellar

nucleus neurons. We were interested in the effect STD had on the input

output relationship (I–O). To identify this effect, we simulated neuronal

activity for various rates of the inhibitory driving input, thus finding the

I–O relationship. We did so for two different levels of modulatory excitatory

mossy fibre input, 20 Hz and 50 Hz; and in the presence and absence of

STD.

To analyse the result, we worked as before, assuming that the I–O rela-

tionship is mediated by the average conductance. We thus first studied the

relationship between inhibitory input f and average conductance Ginh in

the absence of STD. This relationship is linear, and can be described using

Glininh = c1f (5.2)

where c1, along with c2 to c7 introduced bellow, are constants, whose
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exact value is found by fitting the corresponding equation to the simulation

data. In the presence of STD, this relationship changes to an exponential.

To identify this relationship we fitted our simulation data to the equation

Gexpinh = c2(1− e−f/c3) (5.3)

Both data and results of the fitting can be found in Figure 5.4, left.

We then identified the effect of STD in the output firing rate (F ) as

a function of the average conductance relationship. To do so we fitted a

Hill-like function in the simulation data.

F (Ginh) =

c4/
(

1 + c5
|c7−Ginh|c6

)
c7 −Ginh > 0

0 else
(5.4)

The results are shown in Figure 5.4,b. Notice that the two curves overlay,

and depression has a negligible effect on this relationship. This effectively

means that changes in the I–O function are a result of the non-linearity

introduced by STD in the relation between average conductance and input

rate.

However, the relationship we are most interested in is the relationship

between input and output rate (Figure 5.5, a), especially with regards to

gain changes due to the presence of STD. To identify these gain changes,

we fit Equation 5.4, only this time substituting Ginh with Ginh(f), using

Equation 5.2, and Equation 5.3 appropriately. That is

F (f) = F (Ginh(f) ) (5.5)

We used the equations above to calculate gain, using two points of this

function that corresponded to 5% and 75% of the maximum output rate. We

denoted these points as p5%(f5%, F5%) and p75%(f75%, F75%), with f and F

representing the input and output rate respectively. We calculated changes

in gain and offset as in chapter 4, using

F ′(f) =
F75% − F5%

f75% − f5%
(5.6)

to calculate the gain, while the offset was defined as the input rate that

corresponded to the half maximum output rate. That is
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Figure 5.4: Effect of inhibitory STD on the I–O function.
a | Average inhibitory conductance as a function of inhibitory input
rate in the absence (red) and presence (blue) of STD. Dots and lines
correspond to simulation data and fits to Equation 5.3 (blue) and
Equation 5.2 (red), respectively. b | Output rate as a function
of Ginh for excitatory input of 20 Hz and 50 Hz. Notice how the
curves overlay in the presence and absence of STD. Lines are fits to
Equation 5.4.

offset = f50% (5.7)

We then calculated the percentage change in gain as

∆Gain =
F ′m − F ′o
F ′o

(5.8)

Where F ′o and F ′m denote the gain in the original and modulated function,

respectively. The change in offset was found by subtracting the already

calculated values.

∆offset = offsetm − offseto (5.9)

We calculated the difference in gain and offset for various cases (Fig-

ure 5.5) and found two different effects. Firstly we found that for excitatory

modulatory input of 20 Hz the presence of STD resulted in a gain change,

along with a change in offset (top and bottom green bars, respectively).

We then investigated the effect that STD at the inhibitory synapse had on
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Figure 5.5: Inhibitory STD introduces gain modulation. a |
Average output rate of the CN neuron as a function of PC inhibit-
ory input rate, for 20 Hz and 50 Hz of excitatory MF input. Dots
and lines correspond to simulation data and fits to Equation 5.5,
respectively. b,c | Change in gain (b) and offset (c) in the presence
and absence of STD for 20 Hz of excitatory input (green bars); and
for a change of the excitation from 20 Hz to 50 Hz in the absence
(red bars) and presence (blue bars) of STD.

the transformation performed by excitatory input. To do so, we increased

the excitatory modulatory input from 20 Hz to 50 Hz, and compared the

transformation of the I–O functions. In the absence of STD increasing the

excitatory input resulted in an offset change, and a minor gain change (Fig-

ure 5.5,b and c red bars); while in the presence of STD excitatory input

again increased the offset, but also resulted in a substantial gain change

(Figure 5.5,b and c blue bars). Our second finding is thus that STD at the

inhibitory synapse can account for changes in the transformation performed

by input at the excitatory synapse.

Out of these two effects, it is the second one that is the most interesting.

As before, STD at one synapse affects the operation performed by the other

synapse. To explain this behaviour, one should first understand the way in

which STD transforms the I–O function; something we discuss in section 5.4.
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5.3 Integrate-and-fire neuron

To demonstrate that gain modulation in a CN neuron is not limited to the

specific biologically realistic neuron model, we repeat the simulations using

an IaF neuron model, similar to the one used in section 4.1. We changed the

reversal potential of the synaptic input from 0 mV to −75 mV to simulate

the inhibitory driving input, and the reversal potential of tonic input from

−75 mV to 0 mV to simulate the excitatory modulatory input.
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Figure 5.6: Gain modulation at an excitatory mediated IaF
neuron. a | Average conductance as a function of input rate in
the absence (red) and presence (blue) of STD. b | Output rate as a
function of average conductance in the absence (blue) and presence
(red) of STD, and for 3.4 nS and 6 nS of excitatory input. c | I–O
function 3.4 nS and 6 nS of excitatory input in the absence and
presence of STD. d,e | Change in gain (b) and offset (c) for three
distinct cases. For the presence and absence of STD for 3.5 nS of
excitatory input (green bars); for a change of the excitation from
3.5 nS to 6 nS in the absence (red bars) and presence (blue bars) of
STD.
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We used the same methodology as in the previous section, and again

noticed that STD induced a change in the average conductance as a func-

tion of input rate, while leaving the output rate as a function of average

conductance largely unaffected (Figure 5.6, a and b).

Contrary to CN neurons, which receive input from 450 inhibitory syn-

apses, this IaF neuron receives input from just four. This slightly affects the

output rate as a function of average conductance, which does not perfectly

overlay in the presence and absence of STD. Even so, the effect of STD on

gain modulation remains the same, and STD in the inhibitory input intro-

duces excitation mediated gain control (Figure 5.6, d blue bar compared to

red bar).

5.4 STD operations

To understand how gain modulation can arise from the introduction of STD,

we must first understand the transformation performed by STD. In partic-

ular, we focus on the non-linearity imposed by STD in the average conduct-

ance as a function of input rate, and how this non-linearity can translate

to changes of the I–O function. This is important, especially since the out-

put rate as a function of average conductance remains unaffected by STD,

meaning that changes in the conductance as a function of input rate can

solely account for changes in the I–O function (Figure 4.3,b;Figure 5.4,b).

Transformations in the average conductance are the same as the trans-

formation of the I–O function when both are seen as input operations. Inputs

operations were first discussed in section 2.1, and correspond to changes in

the input of a particular function. In particular, for a function f(x), an

input operation g transforms the input in the following manner

f ′(x) = f(g(x))

shifting the function horizontally, along the input rate axis. A similar non-

linear shift can describe changes in the average conductance as shown in

Figure 5.7.

Input operations in the average conductance can account for changes in

the I–O function. As we can see in Figure 5.7, STD shifts the data point

that corresponds to 10 Hz of synaptic input by 40 Hz along the input rate

axis. The same transformation is performed in the I–O function. Notice how
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Figure 5.7: STD performs an input operation. a | Average
conductance as a function of input rate. In the presence of STD,
50 Hz of input rate will result in the same average conductance as
10 Hz of input rate in the absence of STD. STD will thus shift the
point that correspond to 10 Hz by 40 Hz along the input rate axis
(as indicated by the black line). b | Output rate as a function of
input rate. The effect of STD on the I–O function is the same as it
was for the average conductance (a). For both 20 Hz and 50 Hz of
excitatory modulatory input, STD will shift the point corresponding
to 10 Hz of inhibition by 40 Hz along the input rate axis.

this transformation of the average conductance, and thus the I–O function,

in non-linear. This means that as the input rate increases, the horizontal

distance between the red (-STD) and blue (+STD) curve in Figure 5.7, left

will increase.

However, the selection of an input operation is also supported by the

biophysics of STD. As shown in section 3.4, STD depresses the input of

the synapse, changing the conductance value, and consequently the value of

the average conductance. If we disregard the conductance fluctuations due

to synaptic input and assume that synaptic input affects only the average

conductance, the decrease of average conductance due to STD is equivalent

to a decrease of input rate. This is a fair assumption to make especially for

neurons that receive input from multiple sources, since due to superposition

they are less subject to conductance fluctuations (Figure 3.6). Function-

ally, this translates to an input change on the I–O function, thus the input

operation is supported both numerically and biophysically.
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Having identified the transformation performed by STD, we can now

proceed to explain how this transformation can lead to gain changes, and

in particular how it can change the transformation performed by excitatory

input.

5.5 Origin of STD dependent gain control

Identifying the operation performed by STD we unravelled the effects of STD

on the I–O function, but this does not answer the question how STD can

allow changes in one synapse to affect the operation performed by another,

and in particular how it can induce gain control. A major contribution of

this work, is the elucidation of that mechanism.

In particular, to explain how STD at the inhibitory synapse can change

the transformation performed by excitatory input, we use an idealised I–O

function, along with modulatory input that shifts the I–O function along the

input rate axis as proposed by theory (Holt and Koch, 1997). We assume

that the neuron was driven by inhibition and modulated by excitation, and

that the I–O function is a reversed sigmoid. As before, we use inputs res-

ulting in 5%, 50% and 75% of the maximum output rate to calculate gain

and offset as in Equation 5.6 and Equation 5.7, respectively. Notice how

this time, we report gain and offset, and not ∆gain and ∆offset.

Starting from the original and modulated I–O function, and assuming

that the average conductance is linear, we apply three distinctive input trans-

formations to the average input conductance: a linear one (Figure 5.8,a),

a simple non-linear one (Figure 5.8,b), and an exponential similar to the

one performed by STD (Figure 5.8,c). We next apply the same input trans-

formations to the I–O function, since as we saw in the previous section, the

input transformation in the average conductance as a function of input rate

accounts for all changes in the I–O function.

The linear transformation of the average conductance as a function of

input rate represents STD that is independent of the input rate, or a simple

change of weights. In the top panel of Figure 5.8,a we can see the original

idealised I–O rates in red both without (solid line) and with (dashed line)

modulatory input.
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Figure 5.8: Idealised STD effects on gain. a,top | Idealised
responses of a neuron driven by inhibitory input ranging from 0 Hz
to 100 Hz, in the absence (red solid) and presence (red dashed) of
excitatory modulatory input, along with the points corresponding
to 5% and 75% of maximum output rate, in the absence (dots) an
presence (squares) of modulatory input. These points are used to
calculate gain (green bars) as the average slope. Offset (black bars)
is calculated as the input rate that corresponds to the half max-
imum output value. a,middle | Idealised transformation of the
average conductance as a function of input rate, where the original
curve (red) undergoes a linear multiplicative input change (blue).
This will result in the same transformation performed in the I–O
curve. Here we can see how this transformation affects the data
points for a input rate that corresponds to 5% and the 75% of the
maximum output rate; both in the absence (red dots to blue dots)
and presence (red squares to blue squares) of modulatory input.
a,bottom | The idealised neuronal response transformed as a res-
ult of the transformation in the average conductance, along with
the gain and offset calculated as above. Notice how the gain has
changed, but this change remains the same for both the unmodu-
lated and the modulated I–O function. b | Same as in a, but with
the introduction of a tilt in the transformation of the average con-
ductance as a function of input rate (middle) and consequently in
the transformation of the I–O functions (bottom). Notice how the
non-linearity changes the gain effect of the transformation depend-
ing on the input range where the original I–O function is situated.
If the original I–O function is situated after the tilt, the undergoing
gain change is bigger. This can result in the change of the overall
transformation performed by the modulatory input, adding a mul-
tiplicative component to the otherwise purely additive operation.
c | Same as in a and b, for a transformation similar to the one
performed by STD.

The transformation performed can be seen in the middle panel, where

the original average conductance (red) has undergone a multiplicative oper-

ation (blue). The same transformation is performed in both I–O functions.

The result can be seed in the bottom panel, for the absence (solid) and pres-

ence (dashed) of modulatory input. The transformation results in a change

in both gain and offset, but the operation performed by the modulatory op-

eration remains additive. We can notice this since, both before and after the

transformation, the gain of the unmodulated and modulated I–O function
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remains the same (green top and bottom bars).

The mechanism that allows the modulatory input to perform gain control

is apparent in the second case, where we used a simple transformation,

tilting the transformed average conductance to create a simple non-linearity

(Figure 5.8,b middle). Although artificial, this simple non-linearity is good

for demonstrative purposes. As we can see the subsequent transformation

of the I–O function has different effects depending on the input range the

original I–O function lies in. For the original I–O curve, left of the introduced

tilt, the transformation leads to a smaller gain change, compared to the gain

change introduced by the modulated function, right of the tilt.

As a result, effects introduced by this transformation are variable, leading

to bigger gain changes when the I–O function lies at higher input rates, in

such a way that the transformed values lie past the introduced tilt. Having

understood how a simple non-linear operation can lead to a gain change we

can move to more realistic transformations.

The last transformation we used was similar to the one performed by

STD (Figure 5.8,c). Here, the average conductance as a function of input

range takes a form similar to Equation 5.3. Again, the transformation has

a different effect on both the conductance and the I–O function depending

on the corresponding input rate. For higher input rates, this transformation

results in a different gain change, with higher input rates that result in

bigger gain changes. Since modulatory operations shift the I–O rate along

the input rate axis, and towards higher input rates, they also shift them

towards a range where the input transformation has a different effect. As

a result, a multiplicative component is added to the overall transformation

performed by modulatory input.

5.6 Input and output operations

Having briefly described how gain modulation can arise from STD, we pro-

ceeded to formalise the use of input operations. To do so we use the three

relations described so far. These were the average conductance as a func-

tion of input rate, the output rate as a function of average conductance, and

finally the output rate as a function of input rate.

We start by formalising the change in the relation between average con-

ductance and input rate using an input operation. We start by fitting the
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relation between average conductance and input rate in the absence of STD

using the linear Equation 5.2

Glininh(f) = c1f

only this time instead of using Equation 5.3 to fit the average conductance as

a function of input rate in the presence of STD, we use an input operation.

To do so we define

mod(f) = f − c2 ∗ (ef/c3 − 1) (5.10)

and use it to modulate input

G+STD
inh (f) = Glininh (mod(f)) (5.11)

The results, along with the calculated mod(f) function can be seen in Fig-

ure 5.9, a&b.

To see if the modulation in average conductance can account for changes

in the I–O function, we work as before to find the equations that can describe

the relation between average conductance and input rate, and the I–O func-

tion. That is, we use the Hill equation applied before (Equation 5.4) to our

data to describe the relation between output rate and average conductance

(Ginh(f)) in the absence of STD for both 20 Hz and 50 Hz of modulatory

input (Figure 5.9,d), and then use Equation 5.5 (F (f) = F (Ginh(f) )) to

calculate the I–O function for both cases .

Knowing these two relations, we modulate the input of these functions

using mod(f) in a way similar to the one used in Equation 5.11. That is

F (f) = F
(
Glininh (mod (f))

)
(5.12)

The results can be seen in (Figure 5.9,c).

As we can see, describing the changes in average conductance as an input

operation can also account for changes in the I–O function. On the other

hand our simulations were performed using asynchronous irregular input,

and for a large number of inputs. This means that there were no large

voltage fluctuations, and as a result the overall output relied mainly on

the average conductance. However, this is not always the case. Limited

amount of input, regular input, and synchronous input, can change the
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relation between average conductance and output rate. This can add a

second operation to the overall I–O function, and thus affect the performed

gain change. Although it is not possible to calculate gain changes for all

cases, we are going to consider some of them in the next chapter.
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Figure 5.9: Modulated I–O function. a | Simulation data
(dots) of the average conductance as a function of input rate in the
absence (red) and presence (blue) of STD, along with the fits to
Equation 5.3 and Equation 5.11, respectively. b | Relation between
the input rate in the presence of STD, and the input rate that cor-
responds to the same output rate in the absence of STD, given by
Equation 5.10. c | Simulation data (red dots) and fits (red lines)
of the I–O function in the absence of STD, along with simulation
data in the presence of STD (blue dots) and the corresponding I–O
functions (blue lines). The modulated I–O functions were found
by modulating the input using Equation 5.10, and then using the
modulated input as in Equation 5.11. Solid and dashed lines corres-
pond 20 Hz and 50 Hz of modulatory excitatory input, respectively.
d | Output rate as a function of average conductance for 20 Hz
(bottom) and 50 Hz (top) of modulatory input, along with fits to
Equation 5.4.
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6
Determinants of gain modulation

In the previous chapter, we investigated the effect of STD at an inhibitory

synapse, and found that it changes the gain, and that it enables excitatory

modulatory input to further modulate gain in a multiplicative manner. Here

we use control simulations to investigate the robustness of this result against

parameter variations in our model. To do so we change various aspects of

our experiment, and calculate gain changes to find that STD enabled gain

control persists. Since we simulate neuronal activity using realistic neurons,

there are a number of biological parameters that can be altered to identify

changes arising from the introduction of STD, but two of them stand out.

The first one is related to STD itself. In particular, can different levels

of STD affect the observed gain changes? To investigate this we ran the

same experiment as before for varying STD levels (section 6.1). The model

we used for the original simulations was introduced in Shin et al. (2007),

and it assumed that the depression level changes are due to changes in the

pre-synaptic release probability. To simulate varying various levels of STD

we introduced a depression coefficient and used both positive and negative

values to simulate both depression and facilitation.

The second deviation from the original model is not related to the neuron

itself, but rather to the type of input (section 6.2). Originally, we used

asynchronous irregular input to investigate the effect of STD. To investigate

how different input types can change the effect of STD, we use a combination

of synchronous, asynchronous, regular and irregular input.

89
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6.1 Varying levels of STD

Depression of inhibitory input at the inhibitory synapses of the CN neurons

was simulated using a model first described in Shin et al. (2007) (subsec-

tion 3.4.2). This model assumed that there is a steady-state value of the

release probability (Rss) that depends on the input rate (f), and that is

given by

Rss(f) = 0.08 + 0.60e−2.84f + 0.32e−0.02f

where the constants were found by fitting the equation to experimental data

from Pedroarena and Schwarz (2003). To simulate varying levels of STD,

we extended the model by adding a depression coefficient c to modulate the

extent of depression. In this new version of the model Rss was given by

Rss(f) = 0.08 + 0.60e−2.84cf + 0.32e−0.02cf (6.1)

We used positive and negative c values to simulate different STD levels,

where successive synaptic activation depresses neuronal response, and dif-

ferent short term facilitation (STF) levels, where consecutive inputs en-

hance neuronal response, respectively. For the default level of STD we used

c = 1, which corresponded to the experimental verified case, along with

c = 1/100 and c = 1/200 for intermediate STD levels. To invert the direc-

tion of plasticity and simulate facilitation, we used c = −1/200, c = −1/100

and c = −1/70. The effects of these changes on the I–O function can be

found in Figure 6.1. To identify gain changes due to various STD and STF

levels, we used a procedure similar to the one described in section 5.6.

We started by fitting a linear function to the relation between input

rate and average conductance in the absence of STD or STF (red curve in

Figure 6.1,a). As before we used

Glininh(f) = c1f (6.2)

where f is the input rate and c1 the fitted constant. We then used an input

operation to describe the operation performed by STD and STF. We did

not use Equation 5.10, since it was not capable of describing the relation for

both STD and STF. Instead, we used
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Figure 6.1: Gain modulation due to varying STD and STF
levels. a | Average conductance in the presence of STD (green),
in the absence of STD and STF (red), and in the presence of STF
(blue); intermediate levels of both STD and STF are shown in black.
Dots correspond to simulation data of the CN neuron model, and
lines are fits to Equation 6.2 and Equation 6.4 for the absence and
presence of plasticity, respectively. b | Output rate as a function
of average conductance for the same cases as in a., and for 20 Hz
and 50 Hz excitatory input. Lines are fits of a Hill function (Equa-
tion 5.4) . Notice how the blue, red, and green curves overlay.
Intermediate STD and STF levels were omitted for clarity. c | I-O
function for the same cases as b. Lines are fits to Equation 6.5 and
Equation 6.6 for the absence and presence of plasticity, respectively.
Notice how STD and STF will have a greater effect on the gain of
the top curves, which correspond to 50 Hz of excitatory input. d |
Gain changes due to the increase of modulatory input from 20 Hz to
50 Hz as measured by Equation 5.8, in the presence of STF (blue),
in the absence of plasticity (red),and in the presence of STD (green),
along with gain changes for intermediate plasticity levels (black).
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+STD No Plasticity +STF

c 1 1
100

1
200 - − 1

200 − 1
100 − 1

70
E

q
u
a
ti

o
n

6.
3 c1(·10−3) 4.18 4.18 4.18 4.18 4.18 4.18 4.18

c2 0.99 0.99 0.95 0 1.00 1.07 1.10
c3(·10−5) 2.76 2.23 519.7 1 · 105 352.40 4.45 1.31
c4(·10−3) 1.36 1.10 .002 0 −15.5 −.002 −.01

E
q
u
at

io
n

5
.4 c4 160 157 157 157 153 153 169

c5 12 12 10 10 9 9 10
c6 765 760 621 621 638 652 653
c7 12 12 10 10 10 10 10

Table 6.1: Fitting parameters for different levels of STD
and STD. Fitting coefficients for various values of c, corresponding
to STD, STF, and the absence of plasticity. Notice how Equation 5.4
was fitted for every c, resulting in seven different Hill function sets,
all with similar values.

mod(f) = f · (|c2 + c3f |)c4 (6.3)

which was capable of describing changes due to both STD and STF as

an input operation. In effect, the average conductance (G) as a function of

input rate (f), in the presence of STD and STF was given by

G+STD
inh (f) = Glininh (mod(f)) (6.4)

The fits of Equation 6.2, and Equation 6.4 to our simulation data can be

found in Figure 6.1,a.

As before, we can notice that the relation between average conductance

and input rate remains largely unaffected by STD and STF (Figure 6.1,b).

We fit this relation with a Hill function (Equation 5.4), and again we combine

the two relations to find the output rate as

F (f) = F
(
Glininh ((f))

)
(6.5)

in the absence of plasticity, and

F (f) = F
(
Glininh (mod (f))

)
(6.6)

in the presence of it.
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As we can see the input transformation, given in Equation 6.3, used

to describe changes in the average conductance as a function of input rate

(Equation 6.4 and Figure 6.1,a), can also account for changes in the I–O

function (Equation 6.6 and Figure 6.1,c). Notice how for 20 Hz of modulat-

ory input rate, all the I–O functions start from the same point, and there is

no significant deviation from the non-plasticity case, denoted in red. On the

other hand, for 50 Hz of modulatory input rate, the I–O function has the

same value for 0 Hz input, but now the deviation increases with input rate.

This clearly shows that plasticity at the inhibitory synapse can change the

transformation performed by the excitatory synapse, adding a multiplicat-

ive component that changes the gain depending on the level of depression

or facilitation. The effect of plasticity on the gain changes can also be seen

in Figure 6.1(d) where the percentage gain difference was calculated based

on Equation 5.8 for the various plasticity levels. Notice that the y axis is re-

versed, and increasing facilitation increasing gain changes, while depression

decreases them.

6.2 Input regularity and synchronicity

The pattern of input a neuron receives can influence its I–O function. For

synaptic input, synchronicity (Person and Raman, 2012; Oviedo and Reyes,

2002) and regularity (Luthman et al., 2011) have been found to affect neur-

onal response. This is why we chose to repeat our experiments using different

synchronicity and regularity levels. Although this will obviously have an ef-

fect on the neuronal response, we were interested in identifying the effect of

STD, that is, the introduction of a gain change, and most importantly, the

enabling by STD of the excitation-mediated gain control.

6.2.1 Regularity

The input used so far in our model did not have any temporal regularity.

So for every input rate in simulations done in previous chapters, the in-

stantaneous input rate did not remain the same throughout the simulation;

rather noise was introduced so that the inter-spike intervals would follow a

third order gamma probability distribution. Here, we investigated the ef-

fects of this noise, and thus irregular input, on the I–O function of the CN

neurons, especially with regards to the operations performed by STD. More
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Figure 6.2: Effect of regularity. Comparison between regular
and irregular input. Notice that some data points and fitted curves
can not be seen, as they perfectly overlay with others. a | Average
conductance as a function of input rate for irregular input in the
absence (red) and presence (blue) of STD. Dots correspond to sim-
ulation data and the red and blue lines are fits to Equation 6.2 and
Equation 6.4, respectively. The corresponding simulation data and
fits for regular input are plotted as black boxes and black dashed
curves. b | Output rate as a function of average conductance for
irregular input in the absence (red) and presence (blue) of STD, and
for 20 Hz and 50 Hz excitatory input. Dots correspond to simulation
data and all curves are fits to a Hill equation (Equation 5.4). As
in a, black boxes and curves are the corresponding data points and
fits for asynchronous input. c | I–O function in the absence (red)
and presence (blue) of STD. As in b, coloured plots and points,
and black plots and points, correspond to irregular and regular in-
put, respectively. d | Percentage gain change (∆Gain) due to the
increase of excitatory input from 20 Hz to 50 Hz for both irregu-
lar (irr) and regular (reg) input, and in the presence and absence
of STD. Notice how in both cases STD decreases the gain in the
operation performed by the excitatory input.
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specifically, we were interested in identifying if the percentage gain change,

introduced by STD to the operation performed by excitation, was affected

by changes in regularity.

We worked as before, only for two distinct cases. In the first one we

generated irregular PC input following a third order gamma probability dis-

tribution by setting x = 1 in Equation 5.1, while in the second we used x = 0

to generate regular PC input. In both cases MF input was asynchronous and

irregular (x = 1). Fitting the average conductance as a function of input

rate using a linear (Equation 6.2) , and a non-linear (Equation 6.4) equa-

tion for simulations that correspond to the absence and presence of STD,

respectively. As we can see in Figure 6.2(a), regularity does not play a role

in this relation, since the curves that correspond to irregular (blue and red)

and the regular (black) input patterns overlay.

We found a similar result for the relation between output rate and aver-

age conductance. As we can see in Figure 6.2(b) for both 20 Hz and 50 Hz

excitation, STD does not play any role since we can fit the same Hill func-

tion (Equation 5.4) in both the absence (red) and presence (blue) of STD.

This holds for both irregular (red and blue) and regular (black) input.

Not surprisingly, since both relations remain unaffected, so does the I–

O function. Although the overlay of the I–O function is not perfect in

Figure 6.2(c), the deviations are minor. Using F (G(0)) as the maximum, and

F (G(120)) as the minimum output rate values we calculated the percentage

change in average gain (∆Gain) using Equation 5.6 and Equation 5.8. Notice

that for both regular and irregular input, STD introduces a substantial gain

change in the operation performed by excitatory input (Figure 6.2,d).

This result was expected, mainly since the model we used received input

from 450 PCs. Due to superposition, the conductance trace will be a sum of

all the synaptic responses, and as a result changes in noise are not expected

to have a substantial effect. This is understandable if you consider that for

every point in time, a response that is greater due to an input arriving later,

cancels out with a response that is lower due to an input arriving sooner.

This means that regularity should only play a role if we have a very small

number of inputs, or if input applied at different synapses is synchronous.
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6.2.2 Synchronicity

To investigate the effects of synchronicity we changed the input of our model

so that the input from all PCs arrived at the same time. Doing so, we ran

simulations for inputs that were both regular, and irregular. In this way we

were able to examine the effect of synchronicity, but also to investigate the

effect of regularity during synchronous input. Most importantly, we were

interested in investigating the effect of STD during synchronicity, and find

out if STD at the inhibitory synapse still enabled excitation to perform gain

control.

Although synchronicity changes the conductance trace introducing large

voltage fluctuations, the average conductance as a function of input rate re-

mains the same, as shown in Figure 6.3(a), where data have been fitted using

(Equation 6.2) for the linear, and (Equation 6.4) for the non-linear case. On

the other hand synchronicity has a profound effect at the relation between

average conductance and output rate, and it makes the neuron respond dif-

ferently in the presence and absence of STD. This is evident in Figure 6.3(b),

where all the curves correspond to fits to a Hill function (Equation 5.4).

Here, for both 20 Hz and 50 Hz excitatory input, the curves corresponding

to the absence and presence of STD do not overlay. This means that changes

in the I–O function will not be the sole result of changes introduced in the

average conductance as a function of input rate. However, neither do the

curves that correspond to synchronous irregular and synchronous regular

input overlay, indicating that when input is synchronous, regularity has an

effect on neuronal response.

By fitting a Hill function (Equation 5.4) to describe the relation between

output rate and average conductance, and substituting for the conductance

as found for the absence (Equation 6.5) and presence (Equation 6.6) of

STD, we can again find the 5% and 75% maximum values. To do so, we

use F (G(0)) as the maximum, and F (G(200)) as the minimum output rate

values. We notice that in both cases the percentage gain change in the

absence of STD is bigger that the percentage gain change in the presence of

STD.

Even though synchronicity can affect gain, having a profound effect on

the operation performed by excitation, STD still decreases gain changes

induced by the modulatory operation (Figure 6.3,d, right bars, compared

with left bars). However, this decrease is not the same for synchronous
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irregular input (Figure 6.3,d blue bar compared to red bar),and synchronous

regular input (Figure 6.3,d right black bar compared to left black bar).

Notice how for synchronous irregular input the decrease is not big enough for

excitation to performed a gain decrease (blue bar), but this is mainly because

in contrast to previous cases, the initial effect of excitation largely increases

the gain (red bar). The interaction between the effect of synchronicity and

the effect of STD are yet to be investigated.



98 Chapter 6. Determinants of gain modulation

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

A
ve

ra
ge

 c
on

du
ct

an
ce

 (
µS

)

Input rate (Hz)

-STD
+STD

a |

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5

O
ut

pu
t r

at
e 

(H
z)

Average conductance (µS)

20 Hz

50 Hz

b |

0

50

100

150

200

0 20 40 60 80 100 120

O
ut

pu
t r

at
e 

(H
z)

Input rate (Hz)

20 Hz

50 Hz

c |

-50

0

50

100

150

200

250

300
-STD
 ±exc

+STD
 ±exc

∆G
ai

n(
%

)

irr reg irr
reg

d |

Figure 6.3: Effects of synchronicity. Effects of synchronous
irregular, and synchronous regular input. a | Average conductance
as a function of input rate for synchronous irregular input and for
the absence (red) of presence (blue) of STD, along with the corres-
ponding function for synchronous irregular data (black boxes and
dashed curves). Lines are fits to Equation 6.2 and Equation 6.4,
respectively. b | Output rate as a function of average conductance
for 20 Hz and 50 Hz of excitatory input. Red and blue lines are
fits to a Hill function (Equation 5.4) in the absence and presence of
STD and for synchronous irregular input, respectively. Black lines
are the corresponding fits for synchronous regular input. c | I–O
function for synchronous irregular input in the absence (red) and
presence (blue) of STD, along with the corresponding curves (black)
and data (boxes) for synchronous regular input. d | Percentage gain
change (∆Gain) , for both irregular (irr) and regular (reg) input,
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in the presence and absence of STD. Notice how in this case, reg-
ularity affects ∆Gain (left bars). However, for both synchronous
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will decrease the gain change performed by excitatory input (right
bars, compared to left bars).
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6.3 Synchronicity evokes time-locked spiking

In the process of identifying the STD effect on CN neurons, we realised

that synchronicity has an interesting effect on the I–O function. As seen

in Figure 6.3,c, the presence of synchronicity increases the distance of the

simulated points from the fitted hill function, and produce a saw-tooth like

effect. That is, the output rate of the neuron is not always decreasing as

inhibitory input increases, rather for some ranges an increase in inhibitory

input leads to an increase in the neuron’s output rate.

To investigate this effect, we ran simulations using the same model and

found that this effect persisted for various excitation levels and in the pres-

ence and absence of STD. We identified this effect to be a result of time-

locked spiking resulting, something that has already been experimentally

verified in CN neurons receiving synchronous input from PCs in mice (Person

and Raman, 2012). We investigated only the effect of synchronicity between

PCs, since these have indeed been found to exhibit synchronous activity in

vivo (Heck et al., 2007; de Solages et al., 2008). Since spike time-locking

was not in the scope of this thesis, we did not investigate it thoroughly, but

rather use a simple example here to give a brief explanation.

As before, we use the CN model in the presence of STD and for 40

Hz of synchronous, regular excitatory input to modulate the neuron, even

though different modulation levels did not change our results. Simulating

for 5 sec, and for synchronous, regular inhibitory increments of 1 Hz we

get the neuron’s I–O curve (Figure 6.4,left). Once again, input and output

rate are time-locked for various parts of the curve, where the output rate

is proportional to the input rate. Consequently, there are parts of the I–O

curve where increasing inhibitory input will increase the output rate.

To demonstrate how this is possible, we plot the GABAergic conductance

trace along with the voltage trace for 55, 65, 75 and 85 Hz of inhibitory

input (red, green, cyan and magenta traces Figure 6.4,right, black traces

correspond to GABAergic conductance). The corresponding points in the I–

O curve are also shown (red, green, cyan and magenta dots in Figure 6.4,left).

As we can see, for 55 Hz of inhibition the output rate is twice the input rate,

since the output rate lies on F (f) = 2f , with F and f corresponding to the

output rate and input rate, respectively.

Taking a closer look at the voltage trace (red) for 55 Hz we see the
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Figure 6.4: Synchronicity enables neurons to time-lock
their spiking. Left | I–O function for a CN neuron receiving
40 Hz of synaptic excitatory input from MFs in the presence of
STD. Differently coloured points correspond to 55 Hz (red), 65
Hz(green), 75 Hz(cyan) and 85 Hz(magenta) of inhibitory input.
Right | Voltage trace for 55 Hz (red), 65 Hz(green), 75 Hz(cyan)
and 85 Hz(magenta) of inhibitory input, along with the correspond-
ing GABAergic conductance. Notice how for 55 and 65 Hz the
neuron fires twice after every synaptic activation, while for 85 Hz,
the neuron has a single respond after every synaptic activation.

output rate is twice the input rate, and thus 110 Hz because two spikes occur

between two consecutive inhibitory activations. Increasing inhibitory input

to 65 Hz (green), the output rate is still twice the value of the input rate,

and thus 130 Hz. This is because the time window between two inhibitory

activations decreased, but still barely allows for two spikes (green trace).

Thus the output rate is time locked to the input rate, and increases with

the increase of the inhibitory input. A further decrease of the time window

between GABAergic activations (that is increasing inhibitory input rate)

results in the elimination of the second spike. For 75 Hz of inhibition, almost

half of the second spikes have been eliminated (cyan trace). This trend

continues until all second spikes are eliminated, and the CN neuron has

again time locked its spike with the PCs input, producing a single spike

after every activation of the inhibitory synapses (85 Hz, magenta trace).
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Discussion

Neurons can use a multitude of methods to process information. These

methods are not necessarily limited to the inner workings of the neuron, since

they can also relate to the way neurons receive or transmit information. In

many cases, both in the peripheral nervous system (Adrian and Zotterman,

1926) and in the cortex (London et al., 2010), the overall result of neuronal

information processing is the transformation of input rate to output rate.

Since neurons can use their spike rate to encode information (chapter 2)

the output rate as a function of input rate, also known as the I–O function,

plays a major role in neuronal processing.

Intrinsic neuronal processes or input from other neurons can affect a

neuron’s I–O function in various ways, one of them being by changing its

slope. The change or control of the slope of the I–O function is known as

gain modulation or gain control, respectively. As we saw in chapter 2, gain

modulation can play diverse roles, and it can result from a wide variety of

mechanisms. It is also noticeable that apart from the I–O rate function,

slope changes in other relations between stimulus parameters such as retinal

position, orientation or contrast and output rate (Figure 2.2, Murphy and

Miller, 2003), and between driving currents and output rate (Chance et al.,

2002) have also been studied.

Setting aside the various functional roles of gain control discussed in

chapter 2, there is another reason why gain modulation is so important: it

changes the basic computations performed by neurons. If there is no change

in slope, changes in the I–O function, or in any of the functions discussed in

the previous paragraph, are limited to shifts along the input or the output

101
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axis. Effectively, the computations capable of producing these shifts are

limited to additive and subtractive operations (Silver, 2010). On the other

hand the presence of gain modulation indicates underlying multiplicative

operations, increasing the computational potential of a single neuron. In

effect, the presence of gain modulation complements neuronal processing,

and enables the use of all four basic operations by the neuron. That is,

input addition and multiplication, and output addition and multiplication.

As it was not possible in the present thesis to investigate all possible

mechanisms responsible for gain control, our research has concentrated on

the question how short-term synaptic plasticity can enable gain modula-

tion. This has been studied before for excitatory synapses (Rothman et al.,

2009), but here we focused on inhibitory synapses, and more specifically

on the inhibitory synapse from PCs to CN neurons in the cerebellum. We

have made two contribution to knowledge: firstly, that STD at an inhibitory

synapse can enable gain modulation, but most importantly, we have identi-

fied the transformation performed by STD, and we have demonstrated how

this particular transformation can lead to gain modulation. The underlying

mechanism of STD based gain modulation, along with its known limitations

is discussed in the next section.

7.1 The mechanism of STD-dependent gain mod-

ulation and its limitations

Synaptic depression reduces neuronal responses to a particular input, and

consequently changes the neurons I–O function. With STD having an in-

creasing effect at higher input spike rates, it is not surprising that STD will

change the slope of the I–O curve. On the other hand enabling gain mod-

ulation in a different synapse, and not the synapse STD is applied to, is

remarkable. As is often the case, this counter-intuitive behaviour is a result

of a simple mechanism. STD can indeed change the I–O function introdu-

cing a gain change, but this change is not always the same. Rather, the

amount of gain modulation STD will induce depends on the part of the in-

put rate axis the I–O function lies on. When a modulatory input is applied

to the neuron, it usually results in a shift of the I–O function. Only if STD

is present, this shift will move the I–O function towards an input rate where

STD has a different effect; resulting in a change of the STD effect. This
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means that STD at one synapse can change the operation performed by a

different input, adding a multiplicative component to the otherwise additive

effect.

But the mechanism responsible for the introduction of gain modulation

has limitations. As synaptic properties can change with temperature (Person

and Raman, 2012), so with the effect of STD, and given that less STD is

observed at physiological temperatures, STD dependent gain modulation

might be less prominent in behaving animals than in brain slices. Another

limitation is intrinsic to the non-linear nature of the operation responsible for

gain modulation. Although the transformation performed is non-linear, the

degree of non-linearity changes depending on the input rate. A good example

of this can be seen in Figure 6.1,a. There, if the green curve corresponding

to the STD case is viewed from 0 Hz to 40 Hz, the non-linearity is evident.

However, when limited to values greater than 40 Hz, the relation resembles

a linear one.

7.2 Future work

Having identified the effects of inhibitory STD, and how it can enable gain

modulation raises several other scientific questions.

First and foremost, it is important to have an experimental verification of

the simulation results. Although similar results were found at an excitatory

synapse, experimental data would increase our confidence into the presented

theory and provide the ultimate proof of the effect of inhibitory STD on gain

modulation. These data could either be data for any inhibitory synapse

that exhibits STD, enhancing our overall understanding of the underlying

processes, but data for the particular synapse from PCs to CN neurons are

preferable.

However, STD is not the only mechanism capable of changing the I–O

function. As we saw in chapter 6, input conditions, like regularity and syn-

chronicity, can also affect the I–O function. In the present thesis we have

discussed some of them, and showed how in their presence gain modulation

might change, but the overall effect of STD persists. Although it is not pos-

sible for someone to investigate the effects of STD under all possible input

conditions, neuronal properties, and variety of input sources, our under-

standing of how STD can affect neuronal output can increase if experiments
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under various conditions unveil aspects of the discussed mechanism that are

yet unknown. Moreover, having identified how a non-linearity can affect

the neuronal output, it is worth trying to identify other non-linearities that

might have similar effects.

Last but not least, the question remains about the functional roles of

STD. Knowing the effect of STD on a single cell, can we find the effect it

will have on networks? Will it affect working memory, where STD has a

strong effect (Mongillo et al., 2008), and how does it contribute to the tem-

poral response characteristics of V1 neurons (Chance et al., 1998)? Finally,

apart from the link that STD has with tottering mice (Luthman et al., 2011;

Steuber and Jaeger, 2013), are there any other STD contributions to motor

control? These questions are not limited to the cerebellum, however, since

STD is present in multiple areas of the brain, finding the functional roles

of STD in other brain areas is equally interesting. In any case, one can

conjecture that STD will have regulatory effects, since when present at a

synapse it can decrease its effects, while simultaneously controlling the op-

eration performed by other inputs. It can thus control neuronal functions

depending on the input frequency, allowing neurons to act as multiplicative

devices at lower frequencies, and transforming them to additive devices at

higher frequencies.
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Neurons adapt rapidly the slope, also known as gain, of
their input-output function to time-varying conditions.
Gain modulation is a prominent mechanism in many
brain processes, such as auditory processing and atten-
tion scaling of orientation tuning curves. It is known to
amplify neuronal signals, prevent firing saturation, and
play a key role in coordinate transformation [1].
Synaptic short-term depression (STD) at the excitatory

synapse from mossy fibres (MFs) to granule cells in the
cerebellum has previously been found to introduce a gain
change, and enhance inhibition-mediated gain modulation
[2]. Similar results were discovered for STD at the inhibi-
tory synapse from Purkinje cells (PCs) to cerebellar nucleus
(CN) neurons, where STD modulates gain and enhances
excitation-mediated gain modulation [3]. In both cases –
whether STD is applied at the excitatory or inhibitory
synapse, respectively – the non-linearity introduced by
STD in the relationship between input firing rate and aver-
age conductance, was found to underlie the effects of STD.
We use a multi-compartmental model of a cerebellar

nucleus neuron [4] to understand how STD at an inhibi-
tory synapse can add a multiplicative component in the
transformation performed by excitatory input. To do so,
we use input from PCs, applied at an inhibitory synapse
with STD, and excitatory input from MFs, while changing
the level of STD by manipulating the presynaptic release
probability (R) [5]. We find that gain modulation resulting
from the introduction of STD increases with the extent of
depression. To further our understanding, we investigate
the effects of STD using synchronous input, regular input,
and their combination. We find that the multiplicative

component introduced by STD remains, but varies in
value for different input conditions. Moreover, we present
a detailed analysis of how a non-linear mapping between
input spike rate and synaptic conductance can result in
multiplicative operations.
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Information in neurons can be encoded by their action
potential rate, thus making the transformation of input to
output rate, the input-output (I-O) relationship, a core
computational function. Introduction of a second input,
often called modulatory input, can modify this I-O
relationship in ways that correspond to different

arithmetic operations [1]. Here, we examine the modula-
tion of the slope of the I-O relationship, also referred to as
gain modulation.
Gain modulation can be based on a wide variety of

biophysical mechanisms, with short-term depression
(STD) of excitatory synapses being one of them [2].
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Figure 1 Gain change due to excitatory modulatory input. Left: Average output rate of the CN neuron as a function of PC inhibitory input,
for 20 Hz and 50 Hz excitatory mossy fibre input. Dots and lines correspond to simulation data and fits of a Hill function, respectively. Right:
Change in gain and offset (calculated as in [2]) in the presence and absence of STD for 20 Hz of excitatory rate (left bars), and for a change of
the excitation from 20 Hz to 50 Hz in the absence (middle bars) and presence (right bars) of STD.
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The idea of “interoperability” of neuroscience modeling
software was instigated by the problems associated with
incomplete model specifications in published papers and
incremental model extensions through research projects
across laboratories. Cannon et al. [1] defined interoper-
ability as “all mechanisms that allow two or more simula-
tors to use the same model description or to collaborate
by evaluating different parts of a large neural model”. As
an example, the adoption of common declarative model
definition languages such as SBML, NeuroML, and
NineML, allows to simulate the same model on different
simulator environments. Run-time interoperability allows
different simulators to compute different aspects of the
same model at run-time either by direct coupling via
simulator script languages, indirect coupling via inter-
preted languages, or coupling via object oriented frame-
works (see [2] for details).
The Computational Biology Initiative (CBI) federated

software architecture is a software architecture that
transparently supports both interoperability and “exten-
sibility” for model building, simulation, and result analy-
sis. It is a modular meta-framework for software
development that integrates all the functions necessary
for a fully functioning simulator. The modular nature of
the CBI Architecture provides several advantages for
multiple independent contributions to software develop-
ment including: (1) Reduction in complexity of indivi-
dual simulator components when compared to the
complexity of a complete simulator, (2) Easy removal or
replacement of unnecessary or obsoleted components,
and (3) Clear delineation of the development scope of
new components.
The CBI Architecture is designed to support alterna-

tive paradigms of interoperability and extensibility

through the provision of logical relationships between
its modules. The definition of a common information
exchange reference model allows software modules to
automatically interpret the information exchanged
meaningfully and accurately in order to produce useful
results as defined by end users such that any appropri-
ately configured software component or application can
be incorporated into the simulator.
GENESIS 3.0 (G-3) is a major reconfiguration and

update of the GENESIS simulation system. G-3 is the
first neural simulator to comply with the modular
design of the CBI Architecture. It embodies many soft-
ware components, each of which has been developed in
full isolation. These include the Model Container that
efficiently stores a representation of a model in compu-
ter memory and has simple bindings to the NeuroML
and NineML declarative modeling languages, and Hec-
cer: A fast compartmental solver based on the GENESIS
hsolve object that can be instantiated from C, Python,
Perl or other scripting languages. The NS-SLI is the G-
3 component that provides backward compatibility for
the GENESIS-2 SLI.
In this presentation we report on our recent efforts to

reconfigure the NEURON simulator as an independent
CBI compliant software component and to integrate its
scripting interfaces with other CBI compliant software
components of the GENESIS 3.0 neural simulation fra-
mework. The integration of selected aspects of the
NEURON simulator into G-3 will allow to seamlessly
integrate HOC model components with G-2 or G-3
model components. Employed in this way, the modular
paradigm of the CBI Architecture supports interoper-
ability by facilitating the functional integration of other-
wise independent applications.
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