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Abstract
This paper presents a novel approach to
spell checking using dictionary cluster-
ing. The main goal is to reduce the num-
ber of times distances have to be calcu-
lated when finding target words for mis-
spellings. The method is unsupervised and
combines the application of anomalous
pattern initialization and partition around
medoids (PAM). To evaluate the method,
we used an English misspelling list com-
piled using real examples extracted from
the Birkbeck spelling error corpus.

1 Introduction

Spell checking is a well-known task in computa-
tional linguistics, dating back to the 1960s, most
notably to the work of Damerau (1964). Nowa-
days, spell checkers are an important component
of a number of computer software such as web
browsers, text processors and others.

In recent years, spell checking has become a
very important application to search engines (Mar-
tins and Silva, 2004). Companies like Google or
Yahoo! use log files of all users’ queries to map
the relation between misspellings and the intended
spelling reaching very high accuracy. The lan-
guage of queries, however, is typically shorter than
naturally occurring text, making this application
of spell checking very specific (Whitelaw et al.,
2009).

Spell checking methods have two main func-
tions. The first one is to identify possible mis-
spellings that a user may commit. As described
by Mitton (1996), misspellings can be related to
the writer’s (poor) writing and spelling compe-
tence, to learning disabilities such as dyslexia, and
also to simple performance errors, known as ty-
pos. The written production of non-native speak-
ers also plays an important role in spell check-
ing as they are, on average, more prone to errors

than native speakers. These phenomena generate
a wide range of different spelling possibilities that
a spell checker should be trained to recognize.

The second function of spell checkers is to sug-
gest the users’ intended spelling of a misspelled
word or at least to suggest a list of candidates in
which the target word appears. This is often done
by calculating the distance between the misspelled
word and a set of potential candidates. As will be
discussed in this paper, this is by no means triv-
ial and several methods have been proposed to ad-
dress this task.

This paper presents a novel unsupervised spell
checking method combining anomalous pattern
initialization and partition around medoids (PAM).
To the best of our knowledge this is the first at-
tempt to apply these methods for spell checking.
The approach described here aims to improve spell
checking’ speed and performance.

2 Related Work

Spell checking techniques have been substantially
studied over the years. Mitton (2010) points out
that the first attempt to solve the problem can be
traced back to the work of Blair (1960) and later
more attention was given to the work of Damerau
(1964). Most spell checking methods described in
the literature, including this one, use dictionaries
as a list of correct spellings that help algorithms to
find target words. Only a few attempts try to ad-
dress this problem without the use of dictionaries
(Morris and Cherry, 1975).

Morris and Cherry use the frequency of char-
acter trigrams to calculate an ‘index of peculiar-
ity’. This coefficient estimates the probability of
a given trigram occurring in English words. If a
trigram is rare in English, the algorithm flags the
word containing this trigram as a misspelled one.
For example, wha is a frequent trigram in English
whereas wah is not, therefore the word waht is
very likely to be assigned as a misspelling by the
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system.
In the 1970s, the main issue with dictionary-

based approaches was computing power. The
small size of computer memories was a bottleneck
for this kind of approach, as systems should ide-
ally hold all entries of the dictionary in memory.
The solution was to keep the dictionary on disk
and retrieve small portions of it, storing them in
the main memory when required. This was ex-
tremely time consuming. One technique used to
minimize this limitation was to use affix-stripping
(McIlroy, 1982). The basic idea is to store a stem
word, e.g. read, instead of all its possible deriva-
tions: reading, readable, reads, etc. and apply a
set of rules to handle affixes and adjust the stems
if necessary. The method proved to be effective
in identifying misspellings but it failed to sug-
gest suitable target words, as in this process non-
existent words were often generated such as un-
reading or readation.

In the present day, the challenge of coping with
short memory size no longer exists. It is possible
to store large-sized dictionaries in memory for im-
mediate processing without using the disk to store
data. However, dictionary-based techniques (de
Amorim, 2009), still have a performance limita-
tion due to their intrinsic architecture. State-of-
the-art spell checking techniques often apply simi-
larity metrics to calculate the distance between the
target word and possible candidates in the dictio-
nary. The bigger the dictionary, the greater the
number of calculations, making the algorithms’
performance slower. One common alternative to
this performance limitation is the use of dictionar-
ies organized as Finite State Automata (FSA) such
as in Pirinen and Linden (2010b). These tech-
niques will be better explained in section 2.1.

2.1 State-of-the-art Approaches

A known shortcoming of dictionary-based sys-
tems is handling so-called real-word errors. This
kind of error is difficult to identify using these
methods because the misspelled word exists in the
dictionary. It is only by taking context into ac-
count that these misspellings become recogniz-
able, such as in better then me or were the win-
ners. The use of confusion sets (Golding and
Roth, 1999; Carlson et al., 2001) is a solution to
this problem. Confusion sets are a small group of
words that are likely to be confused with one an-
other, e.g. (there, their, theyre) or (we’re, were)

or (than, then, them). The use of confusion sets
in spell checking approaches takes syntax and se-
mantics into account.

A number of confusion sets are provided to the
spell checker, so that the context (words in win-
dow size n) in which a given target word oc-
curs can be used to assess if the target word was
correctly written or not. Carlson et al. (2001)
uses 265 confusion sets and later Pedler and Mit-
ton (2010) increases this number to 6,000 confu-
sion sets reporting around 70% of real-word er-
rors detected. Another approach to tackle real-
word errors is the one by Verberne (2002) which
proposed a context-sensitive word trigram-based
method calculated using probability. The method
works under the assumption that the misspelling
of a word often results in an unlikely sequence of
(three) words. To calculate this probability, the
method uses the British National Corpus (BNC)
as training corpus.

Other spell checking methods developed to ad-
dress the question of real-word errors include the
one by Islam and Inkpen (2009). This method
uses the Google Web IT 3-gram dataset and aims
to improve recall rather than precision. It reports
0.89 recall for detection and 0.76 recall for cor-
rection outperforming two other methods for the
same task. More recently, Xue et al. (2011) ad-
dress this problem using syntactic and distribu-
tional information.

The vast majority of state-of-the-art spell check-
ing systems use similarity measures to compare
the distance between two strings (Damerau, 1964;
Levenshtein, 1966). Algorithms consider words
that are not found in the dictionary as misspelling
candidates. The distance between the candidates
or target words to all words in the dictionary is
then calculated and the words with the smallest
distance are presented as suggestions. Using these
techniques, spell checkers have become very ef-
fective at offering the top candidates of these sug-
gestions lists as the correct spelling, creating what
is described in the literature as the Cupertino Ef-
fect1.

Another important aspect of state-of-the-art
spell checkers is the aforementioned organization

1The Cupertino Effect was named after an anecdotal yet
representative spell checking problem of the 1990s. Mi-
crosoft Word did not have the spelling cooperation in its dic-
tionary, but the hyphenated one: co-operation. When some-
one typed cooperation, the system would offer Cupertino as
its first suggestion.
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of dictionaries as Finite State Automata (FSA).
FSA-based methods use techniques from finite
state morphology (Beesley and Karttunen, 2003)
where the finite set of states of a given automa-
ton correspond to characters of the words in the
dictionary. FSA are particularly interesting for
morphologically rich languages such as Finnish,
Hungarian and Turkish. One example of a re-
source for spell checking that organizes the dictio-
nary as FSA is Hunspell2 originally developed for
Hungarian, but adapted to several other languages
(Pirinen and Linden, 2010a).

The technique presented in this paper serves as
an alternative to the FSA-based dictionaries that
reduce the number of distances that have to be cal-
culated for each misspelling and therefore improv-
ing processing speed. Hulden (2009) observes that
the calculation of distances is time consuming and
investigates techniques to find approximate string
matches in FSA faster. He defines the problem
as ‘a single word w and a large set of words W ,
quickly deciding which of the words in W most
closely resembles w measured by some metric of
similarity, such as minimum edit distance’ and
points out that finding the closest match between
w and a large list of words, is an extremely de-
manding task.

3 Anomalous Pattern Initialization and
PAM

The partition around medoids (PAM) algorithm
(Kaufman and Rousseeuw, 1990) divides a dataset
Y into K clusters S = {S1, S2, ..., SK}. Each
cluster Sk is represented by a medoid mk. The lat-
ter is the entity yi ∈ Sk with the smallest distance
to all other entities assigned to the same cluster.
PAM creates compact clusters by iteratively min-
imising the criterion below.

W (S, M) =
K∑

k=1

∑
i∈Sk

∑
v∈V

(yiv −mkv)
2, (1)

where V represents the features of the dataset, and
M the returned set of medoids {m1, m2, ...,mK}.
This criterion represents the sum of distances be-
tween each medoid mk and each entity yi ∈ Sk.
The minimisation of (1) follows the algorithm be-
low.

1. Select K medoids at random from Y , M =
{m1, m2, ...,mK}, S ← ∅.

2http://hunspell.sf.net

2. Update S by assigning each entity yi ∈ Y
to the cluster Sk represented by the closest
medoid to yi. If this update does not generate
any changes in S, stop, output S and M .

3. Update each medoid mk to the entity yi ∈ Sk

that has the smallest sum of distances to all
other entities in the same cluster. Go back to
Step 2.

PAM is a very popular clustering algorithm and
it has been used in various scenarios. However,
it does have known weaknesses, for instance: (i)
its final clustering depends heavily on the initial
medoids used, and these are normally found at ran-
dom; (ii) it requires the user to know how many
clusters there are in the dataset; (iii) because of its
iterative nature, it may get trapped in local optima;
(iv) it does not take into account different features
that may have varying degrees of relevance.

Weakness (iv) has been the subject of our pre-
vious research in feature weighting using cluster
dependent weights and the Lp norm (de Amorim
and Fenner, 2012). We do not deal with this nor
weakness (iii) in this paper, leaving them for fu-
ture research in our particular scenario. Here we
do address the intrinsically-related weaknesses (i)
and (ii). It is impossible to define good initial
medoids for PAM without knowing how many of
these should be used.

The above has lead to a considerable amount of
research addressing the quantity and initial posi-
tion of medoids. Such effort generated a number
of algorithms addressing one or both sides of the
problem, such as Build (Kaufman and Rousseeuw,
1990), anomalous pattern initialization (Mirkin,
2005), the Hartigan index (Hartigan and Wong,
1979) and other initializations based on hierarchi-
cal clustering (Milligan and Isaac, 1980).

There have been numerous comparisons of var-
ious initializations on different scenarios (Chiang
and Mirkin, 2010; Emre Celebi et al., 2013; de
Amorim, 2012; de Amorim and Komisarczuk,
2012), leading us to conclude that it is difficult
to appoint a single initialization that would al-
ways work. However, we do see the anomalous
pattern initialization introduced by Mirkin (2005)
favourably. His initialization addresses both sides
of the problem and researchers observed previ-
ous success using it (Chiang and Mirkin, 2010;
de Amorim, 2012; de Amorim and Komisarczuk,
2012).
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This initialization was originally designed for
K-Means, taking the name intelligent K-Means.
Below we present our medoid version of the
anomalous pattern initialization, which we have
used in our experiments.

1. Set mc as the entity with the smallest sum of
distances to all other entities in the dataset Y .

2. Set mt to the entity farthest away from mc.

3. Apply PAM to Y using mc and mt as initial
medoids, mc should remain unchanged dur-
ing the clustering.

4. Add mt to M .

5. Remove mt and its cluster from Y . If there
are still entities to be clustered go to Step 2.

6. Apply PAM to the original dataset Y initial-
ized by the medoids in M and K = |M |.

Based on the above we have developed a
method used to find the target words of mis-
spellings. Our method is open to the use of vir-
tually any distance measure valid for strings. Our
main aim with this method is to reduce the number
of times distances have to be calculated. To do this
we apply the anomalous pattern initialization and
PAM, as per below.

1. Apply the anomalous pattern initialization to
the dictionary, finding the number of clusters
K and a set of initial medoids Minit

2. Using the medoids in Minit, apply PAM
to the dictionary to find K clusters. This
should output a final set of medoids M =
{m1, m2, ...,mK}.

3. Given a misspelling w, calculate its distance
to each medoid mk ∈ M . Save in M∗ the
medoids that have the distance to w equal to
the minimum found plus a constant c.

4. Calculate the distance between w and each
word in the clusters represented by the
medoids in M∗, outputting the words whose
distance is the minimum possible to w.

5. Should there be any more misspellings, go
back to Step 3.

We have added a constant c to increase the
chances of the algorithm finding the target word.

Clearly a large c will mean more distance calcu-
lations. In our experiments with the Levenshtein
distance (Levenshtein, 1966) we have used c = 1.

4 Setting of the Experiment

For our experiments we first acquired an English
dictionary containing 57,046 words, and a corpus
consisting of a list of 36,133 misspellings together
with its 6,136 target words3. This misspelling list
was previously used by Mitton (2009) and it was
extracted from the Birkbeck spelling error corpus.
The corpus includes misspellings from young chil-
dren as well as extremely poor spellers subject to
spelling tests way beyond their ability. For this
reason, some of the misspellings are very different
from their target words. As stated in the guidelines
of the corpus, the misspellings compiled were of-
ten very distant from the target words, examples
of these include the misspellings o, a, cart and
sutl for the targets accordingly, above, sure and
suitable, respectively.

As a second step, we removed from our corpus
all misspellings whose targets were not present
in the dictionary. This reduced the corpus to
34,956 misspellings, just under 97% of the orig-
inal dataset. Dictionaries tend to be large, mak-
ing their clustering time consuming. In order to
reduce this processing time we segmented the dic-
tionary in 26 sub-datasets, based on the first let-
ter of each word. We have then applied the first
and second steps of our method to each of these
26 sub-datasets. This segmentation, however, does
not mean that our method will not find the target
word when the misspelling happens in the first let-
ter. The clustering of a large dictionary can be time
consuming. However, this needs to be done only
once.

We took Peter Norvig’s (2009) spell checker4

as our baseline performance. This spell checker
is a simplified adaptation of the methods used in
Google and is being frequently used as baseline
for state-of-the-art experiments in spell checking.
For our method, Norvig’s experiments are partic-
ularly interesting because it uses the same dataset,
the Birkbeck Spelling Error Corpus. The author
reports performance of 74% for a development
dataset and 67% for a test dataset. To use as base-
line we consider Norvig’s best result, 74% suc-
cess rate, plus 3.24%, which is the percentage of

3http://www.dcs.bbk.ac.uk/ roger/corpora.html
4http://norvig.com/spell-correct.html
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the dataset that we did not consider in our exper-
iments. This results in a baseline performance of
77.24%.

The use of Norvig’s method in this paper is ex-
clusive to serve as a baseline performance and not
an attempt to compare both methods. As it will be
discussed next section, the two methods are con-
ceptually different, making it very difficult to sta-
blish a fair-ground comparison between them. We
see Norvig’s simplistic adaptation of Google’s al-
gorithm for spell checking the same way as, for
example, the majority class baseline is used in
text classification. In other words, the minimum
expectable performance that an algorithm should
achieve.

5 Results

The main aim of our method is to reduce the num-
ber of times distances are calculated. Should one
measure the distance between a misspelling and
each word in our dictionary, this distance function
would be called 57,046 times, the size of the dic-
tionary. By applying our method to each of the
34,956 misspelling in the corpus we previously de-
scribed, the distance measure was calculated on
average 3,251.4 times for each misspelling. We
find this is an important result from a computa-
tional point of view, as we are reducing consider-
ably the number of calculations.

Regarding the recovery of the target words, it
depends very much on the distance measure in
use. We have experimented with the popular Lev-
enshtein distance (Levenshtein, 1966). In 88.42%
of cases our method returned a cluster containing
the target word or a word with a smaller distance
to the misspelling than the target. We attribute
some of the latter to misspellings that are actual
words (real-word errors), an issue that we do not
address in this paper. Results are summarized in
table number 1:

Total Misspellings 34,956 words
Success Rate (%) 88.42%
Success Rate (Nominal) 30,908 words
Baseline Gain (pp) + 11.18
Total Number of Clusters 1,570 clusters
Average Cluster Length 3.78 words
Average Distance Calculations 3,251.4

Table 1: Results

The cardinality of the clusters returned by our
method is also of interest. Ideally the clusters

should be rather small, so that users can easily
identify the target word in the cluster. In our ex-
periments with the corpus, the average cluster con-
tained 3.78 words, with a median of 2. However,
in 7.98% of cases the cluster had over 10 words.

We find the results obtained quite promising as
the method outperforms the baseline in 11.18 per-
centage points5 using the same dataset (this num-
ber takes into account that we had to reduce ours
in just over 3%, as described in Section 4). As
mentioned in section 4, the corpus contains many
misspellings whose target we find impossible to
identify.

As previously mentioned, there are a few fac-
tors we should take into account when considering
Norvig’s (2009) method as baseline. His method
is based on supervised learning, requiring a rather
large sample of misspellings and their correspond-
ing targets - our method has no such requirement
and it is open to the use of various distance mea-
sures. As an example, he states that his method
achieves better performance when ‘pretending that
we have seen the correctly spelled word 1, 10,
or more times’. Another different aspect of both
methods is that his method returns a single sug-
gested target, while ours returns a cluster of sug-
gested target words.

6 Conclusion

The method we introduced in this paper reduces
the number of distances to be calculated with-
out removing a single word from the dictionary.
This makes the algorithm faster than other ap-
proaches and presents a satisfactory success rate of
88.42% in a challenging dataset. The success rate
is 11.18% higher than the baseline for this task.
The question of using a supervised method as a
baseline performance have also been discussed in
this paper.

We decided to work with a large complete dic-
tionary, in contrast to a number of studies that
discard rare words to decrease the number of in-
stances in the dictionary. This decision was based
on previous studies (Damerau and Mays, 1989).
As stated by Mitton (Mitton, 2010): ‘when peo-
ple use a rare word, it is very likely to be a cor-
rect spelling and not a real-word error’. There-
fore, a spell checker with a small dictionary would

5As discussed in section 4, Norvig’s method returns a can-
didate to the target word, while ours return a cluster. We con-
sider the success rate score of 88.42% and this does not cor-
respond to accuracy or precision.
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be very likely to raise false alarms over correctly
spelt rare words.

As previously mentioned, the corpus contained
the attempts of very poor spellers and therefore
misspelled words were often very far from their
targets. Another shortcoming of the corpus is the
fact that it is organized as a simple list of words
without context, making it difficult to refine calcu-
lations specifically for real-word errors.

6.1 Future Work

We are continuing the experiments described here
and taking them in a couple of directions. First we
aim to experiment by reducing the cardinality of
clusters and by ranking words in these clusters. In
so doing, suggestions presented by the algorithm
would be even more accurate and suitable for real-
world applications. Another aspect we would like
to explore is the use of measures that learn from a
corpus of misspellings, such as the one presented
by de Amorim (2009).

As previously mentioned, in terms of process-
ing speed, we see our method as an alternative to
FSA-based methods. We are at the moment com-
paring the performance of our algorithm to state-
of-the-art FSA-based methods, trying to stablish
fair metrics to compare our cluster-based unsuper-
vised method to supervised FSA methods. Meth-
ods are conceptually different in their architectures
and establishing a fair ground for comparison is by
no means trivial.

We would also like to investigate the possibil-
ity of reducing the number of distance calcula-
tions even further by merging our method with fi-
nite state automata, using a dictionary containing
solely stem words. Under this approach we would
have a smaller amount of medoids, however, this
could have a considerable impact on accuracy.

Finally, we aim to replicate these experiments to
a corpus in which misspellings are present in run-
ning text. This would make it possible to use con-
text to improve the calculation of distances with
features commonly used in other NLP problems
such as word sense disambiguation (Zampieri,
2012). In so doing, we believe the results obtained
by our method would be improved.
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