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Abstract—In this paper we fully describe a novel clustering
method for malware, from the transformation of data into a
manipulable standardised data matrix, finding the number of
clusters until the clustering itself including visualisation of the
high-dimensional data. Our clustering method deals well with
categorical data and clusters the behavioural data of 17,000
websites, acquired with Capture-HPC, in less than 2 minutes.
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I. INTRODUCTION

Malware is a popular term used to describe software de-
signed to perform undesirable actions, such as gain unautho-
rised access to computers, exfiltrate sensitive data or simply
disrupt the normal operation of computers.

Large amounts of malware are discovered daily, already
approaching 10,000 in 2010 [18]. Such quantity of malware
coupled with the possibility of financial gain have created
a rather wide variety of attack/deployment strategies, giving
birth to names such as viruses, worms, spyware, adware, etc.

Malware has created a whole new industry focused in its
development or software tools for detection. As an example
of the latter we have Capture-HPC [9], a high-interaction
honeypot client. Honeypot clients work by monitoring the state
of an unprotected network client normally using kernel call-
back mechanisms. They look for changes in the file system,
registry, network activity and so on, filtering out common
state changes through an exclusion list. When a state change
is detected, suggesting a possible malware activity, Capture-
HPC updates a log file containing comprehensive information
regarding the state change, including a list of files and registry
keys changed as well as launched processes and attempted tcp
connections that may have happened.

The nature of Capture-HPC makes sure there are no false
negatives except when Capture-HPC itself is corrupted. In
order to increase the detection rate of Capture-HPC for our
experiments, we have given it the additional capability of
emulating the presence of ActiveX components. This way a
malware will always detect as installed any ActiveX compo-
nent it is trying to exploit.

We believe that organising malware into homogeneous
clusters may be helpful to generate a faster response to new
threats, and better understanding of malware activities. Clearly
one can generate different clusters by taking different points
of view, such as the malware binaries or its behaviour. We

have opted for the latter and Capture-HPC has proved to be
an excellent tool to gather the behaviour of malware [11, 24,
23], being able to detect a high amount of different malware
related activities.

The idea of homogeneity is directly linked to similarity and
by consequence to a distance measure. In clustering squared
Euclidean metric is the most popular distance measure, but
it is not the most appropriate when an entity, in our case
websites, can have a high amount of features, the activities.
Such scenarios define a high-dimensional space and these
can be difficult to organise due to the so called curse of
dimensionality [7].

We present here a fast method for malware clustering. Our
method generates a data matrix from the behavioural data of
malware, standardise this data matrix and find the number of
clusters in a dataset by using intelligent K-Means [20]. We
show that the number of clusters obtained by our method is
correct by ratify this number by analysing the Hartigan index
[14] and perform visual analysis of the clusters by using the
2 first principal components of the data matrix.

Methods based on the presence or absence of a particular
malware activity can be quite difficult to cluster with a fast
partitional algorithm such as K-Means. The reason for this is
that the data is most, if not all, categorical. Nevertheless, our
method clusters 17,000 websites in less than 2 minutes.

II. BACKGROUND AND RELATED WORK

Cova, Kruegel, and Vigna [11] empirically showed that most
cases Capture-HPC could not detect a malware, it was because
the malware was targeting a plugin not present in the system.
Taking this into account we have updated Capture-HPC to
emulate the presence of any requested ActiveX component by
using AxMock 1.

The organisation of malware could follow a supervised,
semisupervised or unsupervised learning approach. While su-
pervised and semisupervised require labelled data stating that
a particular behaviour should belong to a particular group,
unsupervised which is also known as clustering, is a data-
driven approach that does not require labelled data at all.
Clustering attempts to learn the patterns in a dataset using
solely the data itself and a distance measure.

1Our new version of Capture-HPC will be available at
https://projects.honeynet.org/capture-hpc by summer 2012. AxMock can
be downloaded at http://code.google.com/p/axmock/.
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Although supervised and arguably semisupervised algo-
rithms tend to have better accuracy than unsupervised, their
requirement of labelled data can be difficult to meet in
certain scenarios. Labelling a statistically significant amount
of data could require an impractical effort because of the
high quantity of malware released everyday. Another issue
is that this labelled data would have to be highly accurate,
otherwise the algorithm could learn incorrect patterns and
classify malware under the wrong groups. These facts made
us opt for unsupervised learning.

In general, clustering algorithms can be divided into hi-
erarchical and partitional. The former, in its more popular
agglomerative form, generates clusters by merging entities
or clusters and can be visualised through a dendrogram.
Partitional algorithms generate a single set of labels for the
entities and can be considerably faster than its counterpart. In
both cases the granularity of the clustering is defined by the
number of clusters in the dataset.

The use of clustering algorithms in datasets related to
malware was introduced, to the authors knowledge, by Bailey
et al. [4] using, as most of the literature, hierarchical clustering.
Because of the large amount of data and the so called zero-day
attacks, we consider that the speed of clustering is crucial and
have chosen to use partitional clustering in this research.

K-Means [5, 19] is arguably the most popular clustering
algorithm there is. K-Means partitions each entity y ∈ Y ,
in our case websites, into K clusters around centroids C =
{c1, c2, ..., cK}:

1) Assign values to K centroids c1, c2, ..., cK , normally K
random entities; S ← {}

2) Assign each entity yi in the dataset to its closest centroid
ck, generating the clustering S′ = {S′1, S′2, ..., S′K}.

3) Update all centroids to the centre of their respective
clusters.

4) If S 6= S′ then S ← S′ and go to step 2.
5) Output the clustering S = {S1, S2, ..., SK} and cen-

troids C = {c1, c2, ..., cK}
The above algorithm iteratively minimises the sum of the

squared error over K clusters, we show the K-Means criterion
in Equation (1).

W (S,C) =

K∑
k=1

∑
i∈Sk

d(yi, ck) (1)

where d(yi, ck) is a function calculating the distance between
yi and ck. K-Means is a rather successful algorithm, its
popularity is mainly due to its easy implementation, simplicity,
efficiency, and empirical success [16]. One can easily find
implementation of K-Means in popular data analysis software
packages such as R, MATLAB and SPSS.

Due to its constant use, K-Means weaknesses are well
known, among them: (i) it is a greedy algorithm. There is no
guarantee its criterion will reach a global minimum, meaning
that the final clustering may not be optimal. Although there
have been attempts to deal with this issue, most notably the
classical solution of swapping entities between clusters given

by Hartigan and Wong [15], this is a very difficult problem as
the minimisation of Equation (1) is a NP-Hard problem, we
will leave this for future research; (ii) it requires the number
of clusters to be known beforehand; (iii) the final clustering
depends highly on the initial centroids given to the algorithm,
these are normally found at random.

In a number of scenarios, including ours, the exact number
of clusters K may not be known. The literature of clustering
malware tends to use hierarchical clustering algorithms [4, 6,
26] seemingly because it is possible to run such an algorithm
without knowing K. However it can be difficult to interpret
results when no granularity is set via K, possibly generating
clusters with no significance. Another issue is that hierarchical
algorithms are known not to scale well. For instance, it may
take 3 hours to cluster 75,000 [6] while our method clusters
17,000 in less than 2 minutes (see Section IV) ). We find that
there is a considerable amount of research effort in attempting
to find K that could be used in malware datasets [10, 14, 17,
20, 21].

Regarding the weakness (iii), K-Means is a non-
deterministic algorithm. It may provide different clusterings if
run more than once, this characteristic raises the question of
which clustering to use. A common solution is to run K-Means
a number of times, generating a number of clusterings, and
pick the clustering S∗ which is the closest to the K-Means data
model. S∗ will be the clustering with the smallest W (S,C)
given by the K-Means criterion, Equation (1). This approach
does seem to work in a number of scenarios, but it can be
very lengthy when dealing with high amounts of data.

In order to deal with weaknesses (ii) and (iii) at once, we
have decided to use Intelligent K-Means (iK-Means) [20] due
to its considerable success in different scenarios [2, 3, 10].
The iK-Means algorithm provides an heuristic initialization
for K-Means based on the concept of anomalous clusters. An
anomalous cluster is a cluster of entities that are far from
the centre of gravity of the dataset. IK-Means iteratively finds
each of these clusters and uses their centroids and number
of clusters as the parameters for K-Means. The algorithm is
formalised below.

1) Assign a value to θ; set cc as the centre of gravity of
the dataset; Ct ← {}

2) Set a tentative centroid ct as the entity farthest away
from cc.

3) Apply K-Means using two centroids, ct and cc generat-
ing the clustering S = {St, Sc}.

4) If the cardinality of St ≥ θ then Ct ← ct, otherwise
discard ct. In any case, remove St from the dataset.

5) If there are still entities to be clustered go to step 2.
6) Run K-Means with the centroids in Ct.

To demonstrate the method works with malware data we
have chosen to ratify the number of clusters it finds with visual
inspection and the Hartigan index [14] mainly because of its
easy of use and popularity. This index is based on the error



W , the output of Equation (1).

H(k) = (N − k − 1)(
Wk −Wk+1

Wk+1
) (2)

This index requires K-Means to be run with different values
for K and may take time. We find intuitive that the centroids
found by iK-Means can be used here making K-Means a
deterministic algorithm. Visibly W is inversely proportional
to K, the more clusters the less variance within them, the
index is based on abnormal variances in H(k).

Unfortunately the malware datasets are very likely to be
large in terms of websites and measurements, visibly high-
dimensional datasets. The curse of dimensionality, a term
coined by Bellman [7] states that as the number of dimensions
increases so does the sparseness of data making entities to
appear dissimilar, a very problematic fact to distance-based
algorithms such as K-Means. This is further supported by
research suggesting that the concept of nearest neighbours
calculated using Euclidean distance becomes meaningless as
the dimensionality of the data increases [13, 1, 8].

In order to cluster malware we need a method that supports
high-dimensional spaces. This can be accomplished by select-
ing an appropriate distance measure for K-Means. Although
the literature tends to use the Euclidean distance this is not
the most appropriate in high-dimensional spaces. Empirical
experiments [12, 25] show that distances such as the cosine
are more appropriated than the Euclidean distance. The cosine
distance for the N-dimensional x and y is defined as:

d(x, y) = 1−
∑N

n=1 xn.yn∑N
n=1(xn)2.

∑N
n=1(yn)2

(3)

A somewhat easier way to apply the cosine distance, is to
perform an extra step in the pre-processing of data by dividing
each row vector yi representing a website by the vector’s norm√∑N

n=1 y
2
in [13, 22, 27]. We find this particularly helpful to

calculate centroids of each cluster.
As final consideration for this section, a clustering algorithm

regardless of being partitional or hierarchical, will not yield
that a given cluster is composed of malware. Clustering
algorithms simply find that 2 or more clusters are dissimilar
according to a given distance measure and cannot state what
they are actually composed of. In order to define what malware
family a cluster contains one would need the analysis of a field
expert. Clearly this expert would not need to analyse the whole
cluster but solely the malware that is the closest to the cluster
centroid.

III. METHOD

In order to apply any clustering method we need to create
and standardise a data matrix representing the whole dataset
Y . In this data matrix each instance of Y = {y1, y2, ..., yN}
represents a website and each column v = {1, 2, ...,M} a
feature. In our method yiv may be assigned 0 or 1 representing
the absence or presence of a particular malware behaviour, a
feature, in the website yi.

The first step of our method is to apply Capture-HPC on
each website, recording its activities in a log file. The amount
of time used for recording stays as a parameter, but we suggest
it should not be less than a minute as some websites may
take time to load. The full list of activities these websites
performed on an unsecured network client becomes our initial
list of features.

The second step is to filter the list of features. Although
Capture-HPC uses a exclusion list to filter out expected state
changes, it records data such as time and process ID generating
groups of features that represent in fact the same malware
activity. We disregard any part of the log file that is not
directly linked to the activities, but to management, such as
timestamps, process IDs, paths to files and IP numbers in
tcp-connections. This filtering ensures each feature is unique
in terms of what states the malware is changing, effectively
reducing the number of features.

The third step is to create the data matrix, by assigning a
value to each yiv , and standardise it. When creating the entry
yi in the data matrix we read the log file for this particular
website and search for of the M features we have listed. If
a feature v is found to be in the log file then yiv is set to
1, otherwise 0. Each value in our data matrix is categorical,
making its standardization less obvious. We have opted to
use a method presented by Mirkin [20]. In this each feature
is transformed into 2 new features (since we have only 2
possible categories). Only one of the new features is assigned
1, the new feature corresponding to the category in the original
feature, the other is assigned 0. We then standardise the data
numerically by subtracting each of the values yiv by the
new feature average ȳv , linking the final value of yiv to the
frequency of v over Y .

In the forth step we apply the Intelligent K-Means algorithm
with θ = 1. We then sort the clusters in descending order
by the number of websites found in each of them, in the
anomalous cluster part of iK-Means. We choose the number of
clusters by analysing when the cardinality of clusters stabilizes
in a relatively small value.

Optionally, one can also ratify the number of clusters by
using for instance the Hartigan index and the less reliable
visual inspection. The former analyses the differences of the
K-Means criterion shown in Equation (1) under different
values for K. Regarding visual inspection, we have chosen
to plot the whole dataset over its 2 first principal components.
Because the data is categorical in nature the clusters structure
can be rather difficult to see. One may wish to add a small
mount of uniformly random noise to help the visualization of
cluster cardinalities.

IV. EXPERIMENTS

We acquired a list with 17,000 possibly infected IP ad-
dresses2 . In the first step of our method we applied Capture-
HPC for 2.5 minutes to each of these websites, generating a

23,273 from http://www.malwaredomainlist.com/update.php plus 13,763
from http://www.malware.com.br/lists.shtml.



total of 133,327 features. By using our second step we were
able to reduce the number of features to 231, making each
feature truly representative.

We then created the data matrix of initially 17,000 websites
over 231 by checking the logs of each website against the fea-
tures we found. We finalised the data matrix by standardising
it using Mirkin’s method, effectively doubling the number of
features.

In the next step we applied intelligent K-Means with θ = 1,
finding a total of 15 cluster with more than 1 feature. We
then sorted the clusters by the number of entities found in the
anomalous part of the algorithm and found the cardinalities
8439, 7851, 381, 129, 121 and very small numbers after these,
suggesting the dataset had 5 clusters.

The popular Hartigan index helped us to ratify 5 as the
number of clusters. After the 5th cluster the error given by
Equation (1) ceased to be significant. Although less reliable,
we also found 5 clusters in this dataset by analysing visually
the 2 first components of the dataset, extracted by using
principal component analysis (PCA). The image can be seen
in figure (1), to which we had to add random noise between
0 and 0.25 to increase clarity. It seems to us that figure (1)
presents 2 clusters at the top, the one at the right being a bit
more elongated, and 3 at the bottom, totally 5 clusters.

Fig. 1. A Dataset containing the behavioural data of 17,000 possibly infected
websites over its 2 first principal components.

V. CONCLUSION

By using our method we were able to cluster a dataset
of 17,000 malwares in less than 2 minutes. This was a
particularly interesting database to work for 3 reasons: (i)
the features were solely categorical; (ii) the cardinality of
the clusters was uneven and (iii) it was a high-dimensional
data matrix. Because of these three reasons the ordinary K-
Means algorithm would constantly fail to cluster the dataset,
generating empty clusters.

We solved the above issues by standardizing the data by
transforming each feature into 2 new features allowing us to

standardise them numerically through their frequencies in the
dataset. We have also used the intelligent K-Means method
to find the number of clusters in the dataset as well as the
initial centroids for each of them. Finally, the issue of high-
dimensionality was dealt by using the cosine distance rather
than the more popular squared Euclidean distance.

This research assumes that the features obtained with
Capture-HPC are all relevant. This sounds realistic since
Capture-HPC uses an exclusion list for expected state changes,
not leaving any reason why a client should suffer a change in
state while not being used. Of course relevant features may
have different degrees of importance for clustering particularly
at different clusters. We intend to further developed a previ-
ous method used to find features weights called intelligent
Minkowski K-means [2] so we can apply it to the clustering
of malware.
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