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Abstract. Recent clustering algorithms have been designed to take into
account the degree of relevance of each feature, by automatically calculat-
ing their weights. However, as the tendency is to evaluate each feature at
a time, these algorithms may have difficulties dealing with features con-
taining similar information. Should this information be relevant, these
algorithms would set high weights to all such features instead of removing
some due to their redundant nature.
In this paper we introduce an unsupervised feature selection method
that targets redundant features. Our method clusters similar features
together and selects a subset of representative features for each cluster.
This selection is based on the maximum information compression index
between each feature and its respective cluster centroid.
We empirically validate out method by comparing with it with a popular
unsupervised feature selection on three EEG data sets. We find that ours
selects features that produce better cluster recovery, without the need
for an extra user-defined parameter.

Keywords: Unsupervised feature selection, feature weighting, redun-
dant features, clustering, mental task separation.

1 Introduction

Given a data set Y of n entities over m features V = {v1, v2, ..., vm},
feature selection aims to reduce the cardinality of V by removing those
features that are redundant or have no relevance to the task at hand.
There are a number of reasons to motivate such reduction in V . For
instance, (i) the amount of time a classification or clustering algorithm
takes to process Y tends to be inversely proportional to the data set size
and dimension; (ii) it reduces the chances of issues related to overfitting;
(iii) it is possible that there will be a general improvement in the accuracy
of predictions [23, 13].
Feature weighting is a generalization of feature selection. While the latter
either selects or removes a feature from V , the former assigns a weight
w in the interval [0, 1] to each feature in V . This weight, wv, aims to
be directly proportional to the degree of relevance of feature v. Feature
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weighting algorithms not only select features, by setting wv > 0, but also
take into account the intuitive idea that even among relevant features,
there may be different degrees of relevance.
The concept of feature weighting has been applied to clustering algo-
rithms. In this paper we are particularly interested in improving the clus-
ter recovery of Weighted K-Means (WK-Means) [3], and its generaliza-
tion, the intelligent Minkowski Weighted K-Means (iMWK-Means) [8],
detailed in Section 2. Both algorithms optimize their results by assigning
cluster dependent weights to each feature. This allows a given feature v to
have different degrees of relevance at different clusters k = {1, 2, ...,K},
where K is the total number of clusters. WK-Means and iMWK-Means
set each weight wkv by following the intuitive assumption that features
with a low relative dispersion in a particular cluster should have a high
weight.
These two algorithms have proven themselves in several publications [3,
14, 15, 8, 7]. However, they do introduce a new drawback. Both WK-
Means and iMWK-Means set wkv by evaluating one feature at a time.
Therefore, should a subset of features in V contain the same relevant
information, none will be excluded by receiving a weight of zero. In fact,
since they will all have similar small dispersions, each of their weights
will be equally high.
In this paper we address the above problem by introducing a novel,
clustering-based, unsupervised feature selection algorithm used to re-
move redundant features from V , we call it the intelligent K-Means for
Feature Selection (iKFS). Our method creates clusters of similar features
in V and selects representative features from each cluster. The iKFS al-
gorithm is based on the use of a clustering algorithm called intelligent
K-Means [22] and the maximum compression index [23]. We find iKFS
to be an excellent pre-processing step for feature weighting clustering
algorithms such as WK-Means and iMWK-Means.
We evaluate our method by clustering three data sets of Electroen-
cephalography (EEG) signals with WK-Means and iMWK-Means, using
the features selected by iKFS. These data sets contain 5,680 features
each, with patterns that are difficult to discern. For comparison we run
similar experiments using the features selected using the popular feature
selection using feature similarity (FSFS) [23]. We find that iKFS tends
to select a smaller amount of features that are in fact more relevant
than those selected by FSFS, with the added benefit that iKFS does not
require an extra user-defined parameter.

2 Background

One of the objectives of our proposed method, iKFS, is to find clusters of
similar features in a dataset. Clustering is the non-trivial task of creating
K groups of entities so that those within the same group are similar and
those between groups are dissimilar. Clustering algorithms have been
used to solve problems in various fields of research, such as data mining,
computer vision, bioinformatics, text mining, etc [16, 22, 25, 29].
K-Means [1, 17] is among the most popular clustering algorithms. It per-
forms partitional clustering, dividing a data set Y into K disjoint clusters
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S = {S1, S2, ..., SK}. K-Means represents a given cluster Sk by its cen-
tre of gravity, the centroid ck, equivalent to the average of each entity
yi ∈ Sk, assuming Euclidean distance. K-Means iteratively minimizes the
the sum of the distances between each entity yi ∈ Y and its respective
centroid.

W (S,C) =

K∑
k=1

∑
yi∈Sk

∑
v∈V

(yiv − ckv)2, (1)

where C = {c1, c2, ..., cK}. The popularity of K-Means has various sources.
It is a relatively fast, easy to implement algorithm, which is also intu-
itively easy to understand. In fact, the minimization of the K-Means
criterion (1) has only three steps: 1. assign the values of K random en-
tities from Y to the initial centroids c1, c2, ..., cK ; 2. assign each entity
yi ∈ Y to the cluster represented by its closest centroid; 3. update each
centroid to the centre of gravity of its cluster, and go back to Step 2.
Iterations cease when the algorithm converges.
The complexity of K-Means is of O(nKt), where t is the number of it-
erations K-Means takes to converge, and n the number of entities in Y .
Although it is difficult to determine the value of t beforehand, we have
shown that this tends to be small, particularly when K-Means is initial-
ized with relevant, rather than random, centroids [6]. Other clustering
algorithms can be much slower, for instance hierarchical algorithms have
a complexity of at least O(n2). Implementations of K-Means can be fre-
quently found in software packages, such as MATLAB, R, SPSS, etc.
Although popular, K-Means does have drawbacks. Some of which have
been target of research effort for a long time. For instance, K-Means
requires K (the number of clusters in Y ) to be known beforehand, and
the clustering produced by K-Means can be heavily affected by the initial
centroids used in its first step [28, 4, 24, 26, 18, 2].
Among the many algorithms addressing these two interrelated issues,
intelligent K-Means (iK-Means) seems quite successful [22, 6, 4]. This al-
gorithm finds the clusters in a data set by extracting one anomalous
pattern at a time, as per below.
1. Set cc, the centre of the data set Y .
2. Set a tentative centroid ct, the entity yi ∈ Y that is the farthest

from cc.
3. Run K-Means on Y , using cc and ct as initial centroids. Do not allow

cc to move during the clustering.
4. If the |Sct | ≥ θ, add ct to Cinit, otherwise discard ct. In any case,

remove the entities in Sct from Y .
5. If there are entities in Y , go to Step 2.
6. Run K-Means, initialized with the centroids in Cinit and K = |Cinit|.

More recently research has also focused on the inability of K-Means to
take into account that each feature v ∈ V may have a different degree
of relevance [11, 19]. Weighted K-Means (WK-Means) and the intelligent
Minkowski Weighted K-Means (iMWK-Means), are of particular interest
to us, because of their high ability to recover clusters [3, 8, 14, 15, 7].
The main difference between WK-Means and iMWK-Means is the dis-
tance measure in use. While the former applies the squared Euclidean
distance, the latter makes a generalization of this by using the pth root
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of the Minkowski (Lp) distance. Both algorithms add a cluster depen-
dent weight, wkv to the distance in use. To avoid linearity, this weight
is put to the power of an user-defined exponent. The distance measure
between an entity yi ∈ Y and a centroid ck ∈ C in WK-Means is then
d(yi, ck) =

∑
v∈V w

β
kv|yiv − ckv|

2. In iMWK-Means, the distance expo-
nent is the same as the weight exponent, making it possible to interpret
wkv as a feature re-scaling factor, for any exponent. The distance used
by iMWK-Means follows.

dp(yi, ck) =
∑
v∈V

wpkv|yiv − ckv|
p. (2)

Substituting the distance in the K-Means criterion (1) by the adjusted
weighted distance (2) we obtain the iMWK-Means criterion.

Wp(S,C,w) =

K∑
k=1

∑
yi∈SK

∑
v∈V

wpkv|yiv − ckv|
p. (3)

While p is a user-defined parameter, the weights are not. We calculate
the weights so that if a feature v ∈ V has a smaller relative dispersion
in cluster Sk than a different feature u ∈ V , then v should have a higher
weight in Sk than u.

wkv =
1∑

u∈V [Dkvp/Dkup]1/(p−1)
, (4)

where the dispersion of v at cluster Sk and specific p is given by Dkvp =∑
yi∈Sk

|yiv − ckv|p. For a given cluster Sk, the weights are subject to∑
v∈V wkv = 1, and a crisp clustering, in which an entity yi ∈ Y can

only be assigned to a single cluster Sk. The equations for WK-Means are
similar to all the above, but with a distance exponent always equal to
two. We formalise the iMWK-Means algorithm below.

1. Obtain the initial centroids C = {c1, c2, ..., cK} by applying the iK-
Means algorithm, using the distance in Equation 2. Set each cluster
Sk ← ∅.

2. Assign each entity yi ∈ Y to the cluster Sk represented by the closest
ck, using (2). Should there be no change in S, stop.

3. Update each centroid in C to the Minkowski centre of their respective
clusters.

4. Update each weight wkv, using Equation (4). Go to step 2.

The Minkowski centre of a given feature v for a cluster Sk can be found
over each yi ∈ Sk by using a steepest descent algorithm [8]. The WK-
Means algorithm applies the squared Euclidean distance. In this we still
have a user-defined exponent to set, but this is solely a weight exponent,
the distance exponent is always two. The iMWK-Means is initialized
with a version of the intelligent K-Means algorithm [22], also using the
weighted Minkowski distance (2).
The feature weighting procedure used by both WK-Means and iMWK-
Means would not deal properly with a subset of V in which features
contain relevant, but redundant information. Such features would have
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similarly low dispersions. Since a single weight wkv is calculated at a time
these features would have their weights set to a similarly high value. We
believe that this issue makes the removal of redundant features prior to
the use of either WK-Means or iMWK-Means, beneficial.

Feature selection using feature similarity (FSFS) [23] is one of the most
popular unsupervised algorithms that fits to our needs. In this the au-
thors identify features containing similar information by using the maxi-
mum information compression index (MIC). This index is defined below,
for the variables x and y.

2λ2(x, y) = var(x)+var(y)−
√

(var(x) + var(y))2 − 4var(x)var(y)(1− p(x, y)2),
(5)

where p(x, y) is the correlation coefficient given by cov(x,y)√
var(x)var(y)

. MIC

has various interesting properties, such as being invariant to the rotation
of the variables and to the translation of the data set [23]. FSFS applies
MIC as applied as follows.

1. Choose an initial value for k, following the constrain k ≤ |V | − 1.
Set R← V , standardise the features rather than entities.

2. For each feature Fi ∈ R, calculate rki , the dissimilarity between Fi
and its kth nearest neighbour feature in R, using Equation: 5.

3. Find the feature Fi′ for which rki is minimum. Retain Fi′ and discard
its k nearest features. Set ε = rki′ .

4. Adjust k in relation to the number of features. If k < |R| − 1, then
k = |R| − 1.

5. If k = 1 stop and output R.

6. Adjust k in relation to the similarity. While rki > ε

(a) k = k − 1
(b) rki = infFi∈Rr

k
i

(c) if k = 1 go to Step 5.

7. Go to Step 2.

The above is a popular and useful algorithm. However, we see two issues
that deserve to be addressed: (i) FSFS does not take into account the
structure of the data set while selecting features; (ii) FSFS requires the
user to define a parameter, k, beforehand. This parameter may increase
the algorithm’s flexibility, but unfortunately we see no clear method to es-
timate it. These issues, added to the inability of WK-Means and iMWK-
Means to deal with redundant features made us analyse the possibility
of a clustering-based solution for feature selection that could be used as
a pre-processing step. We present our method in the next section.

3 Algorithm

In this section we present our feature selection method, intelligent K-
Means for feature selection (iKFS). Our aim is to cluster the features in
V that are similar, rather than the entities. By assigning similar features
to the same cluster we can identify and remove those that are redundant.
Clearly there are issues to address under this framework, for instance:
(i) how many clusters of feature there would be in a given data set Y ;
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(ii) given a cluster Sk of features, how many features should be selected
from it.
Regarding issue (ii), it can be very tempting to keep a single feature from
a cluster Sk of features, say the closest to the centroid ck. However, we
do not feel that each cluster should be treated the same, irrespective of
its cardinality. With this in mind, we have decided to keep a subset of
features of Sk, this subset cardinality is given by Fk.

Fk =

⌈
|Sk|
|Y | ∗K

⌉
, (6)

where |Sk| and |Y | represent the cardinality of a given cluster of features
Sk and the cardinality of the data set Y , respectively. One should note
that since we are clustering features, the original data set has to be
transposed, so the cardinality of Y is in fact the original number of
features (Section 4 described experiments with 5,680 features). Equation
(6) requires the number of clusters K to be known, taking us back to issue
(i), its estimation. In our method we find K by using iK-Means, which
can also be used to find good initial centroids for K-Means. The choice
of iK-Means was based on its previous success as a clustering algorithm
in different scenarios [22, 4, 7]. We introduce our method in full below.

1. Transpose the data set Y so that the original features become entities
and then standardise the data set.

2. Apply the iK-Means algorithm setting θ = 0.
3. For each cluster Sk, find Fk (Equation 6) features that have the

highest maximum information compression (Equation 5) in relation
to ck. Put such features in R.

4. Output the features in R.

We are very interested in selecting features that are dissimilar to all oth-
ers, such features will most likely become singletons during the clustering
process. In order to avoid disregarding such features we set θ = 0.

4 Experiments

Electroencephalography (EEG) signals are high-dimensional noise-prone
signals that can be captured from a brain via a non-invasive procedure.
There is considerable research supporting the belief that these signals
contain information about the current state or intention of a subject’s
mind [12, 10, 5, 20, 9].
We have recorded data from three healthy subjects (A, B and C ) for our
experiments, using five bipolar electrodes (five channels), and a sampling
frequency of 250Hz. These five electrodes were placed on the subjects
head following the standard positions in the extended 10-20 system, using
fc3 to pc3, fc1 to pc1, cz to pz, fc2 to pc2, and fc4 to pc4.
Our aim is to perform mental task separation, in other words, given a set
of possible tasks we would like to know what particular task a subject
is thinking about. We have three possible tasks: (i) movement of the
left hand; (ii) movement of the right hand; (iii) movement of the feet.
After visually suggesting what task the subject should be thinking about,
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we recorded the EEG data for eight seconds, constituting a trial. Here
we intend to cluster trials into the right tasks. Hence, the number of
clusters is known to be three. We have gathered data from 240, 120 and
350 trials for each subject, respectively. The difference in the number of
trials relates solely to the availability of subjects and staff.

We have pre-processed our data sets in two steps. First, we transformed
the data into its power spectrum density (PSD). EEG patterns are nor-
mally found in the frequency space rather than amplitude, and PSD
helps us to identify periodicities in the data. This transformation has
been successfully applied in previous research [9, 10, 12, 5, 20].

Second, having a trial represented by 71 time-related samples each with
80 PSD-features, we generated a data matrix for each subject containing
the respective number of trials (240, 120 and 350) over 5,680 features
(71 x 80). We then standardised the data numerically.

yiv =
xiv − x̄v

0.5 ∗ (max(xv)−min(xv))
, (7)

where xiv represents the PSD value of trial i in feature v, and x̄v the
average of feature v over all trials in the data set. The standard deviation
is surely more popular in the standardization of data sets than the range.
However, we have opted for the latter as the former favours unimodal
distributions [21, 27].

The FSFS algorithm requires an user-defined parameter k. We have per-
formed experiments with such parameter from 4,800 to 5,600 in steps of
100 for WK-Means and iMWK-Means independently. With this interval
it is possible for FSFS to select a quantity of features close to that se-
lected by iKFS. Note that the optimal k for WK-Means may not be the
same as for iMWK-Means. Our method, iKFS, does not require any extra
parameter, so the features used in WK-Means and iMWK-Means when
the data is pre-processed with iKFS are exactly the same. Regarding the
parameters required by the clustering algorithms themselves, WK-Means
and iMWK-Means, we have run experiments from 1.0 to 5.0 in steps of
0.1. In this paper we do not deal with their estimation.

Since we have the labels for each trial in the data sets, we present the
best possible results for each of these two algorithms in terms of their
cluster recovery. This is calculated by using a confusion matrix.

We show the results of our experiments in Table 1. We are happy to see
that in both algorithms, WK-Means and iMWK-Means, iKFS presents
features that are more representative. This is visible thanks to the differ-
ences in cluster recovery when using FSFS and iKFS in both WK-Means
and iMWK-Means. Table 1 also shows us that a much higher number of
features does not necessarily means features that are more representa-
tive, nor better final accuracy.

Table 1 does not present average or standard deviation values for iMWK-
Means because this is a deterministic algorithm, unlike WK-Means. This
happens because iMWK-Means applies a version of iK-Means in its ini-
tialization, making it output the same clustering for a given data set
irrespective of how many times it is run.
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Table 1: Cluster recovery of WK-Means and iMWK-Means using the features selected
by iKFS and FSFS. The number of features is in the parenthesis.

Feature selection Exponent Accuracy
method Distance Weight Mean Std Max

Subject A
WK-Means FSFS (25) 2.0 3.9 48.2 2.5 52.1
WK-Means iKFS (20) 2.0 1.5 54.1 1.4 56.2
iMWK-Means FSFS (28) 3.2 3.2 - - 51.2
iMWK-Means iKFS (20) 4.5 4.5 - - 59.2
Subject B
WK-Means FSFS (472) 2.0 4.7 59.2 4.6 73.3
WK-Means iKFS (9) 2.0 3.6 68.5 4.7 76.7
iMWK-Means FSFS (393) 2.0 2.0 - - 65.0
iMWK-Means iKFS (9) 2.5 2.5 - - 66.7
Subject C
WK-Means FSFS (33) 2.0 4.7 39.6 1.8 42.3
WK-Means iKFS (11) 2.0 4.5 56.5 0.3 56.9
iMWK-Means FSFS (33) 4.6 4.6 - - 42.3
iMWK-Means iKFS (11) 1.8 1.8 - - 58.6

5 Conclusion

Aiming to reduce the number of redundant features in a data set, this
paper presents an algorithm called intelligent K-Means for feature se-
lection (iKFS). Our method begins by clustering the features of a data
set, rather than its entities, using iK-Means. The latter is particularly
useful as it finds the number of clusters in a data set, as well as good ini-
tial centroids. We then select a representative amount of features from
each cluster, based on the cluster relative cardinality and the features
maximum information compression to the cluster centroid. Our method
assumes that features clustered together will have a higher than usual
degree of information redundancy among them.

We validate iKFS by performing experiments with data sets contain-
ing Electroencephalography (EEG) signals of three healthy subjects. We
have chosen to use this type of data because of its high-dimensionality
(5,680 features), and its widely acknowledge high-level of noise. The fea-
tures selected by iKFS were used by two clustering algorithms that apply
feature weighting, WK-Means [3] and iMWK-Means [8]. For comparison
we have run similar experiments selecting features with feature selection
using feature similarity (FSFS) [23].

Clustering algorithms that perform feature weighting, such as WK-Means
and iMWK-Means, have difficulty dealing with redundant features. Given
a set of relevant and redundant features these algorithms set similar
weights to all, instead of removing some. We have found that pre-processing
a data set by reducing the number of redundant features can be very ben-
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eficial for such algorithms, particularly when this feature selection takes
into account the data set structure - as its the case with iKFS.

Future research will aim to optimise even further the features selected
by iKFS and apply this algorithm as a pre-processing step for a fea-
ture weighting clustering algorithm such as iMWK-Means in different
scenarios.
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