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Abstract
We prove that when a class of partial differential equations, gener-

alized from the cable equation, is defined on tree graphs, and when the
inputs are restricted to a spatially discrete, well chosen set of points,
the Green’s function (GF) formalism can be rewritten to scale as O(n)
with the number n of inputs locations, contrary to the previously re-
ported O(n2) scaling. We show that the linear scaling can be combined
with an expansion of the remaining kernels as sums of exponentials, to
allow efficient simulations of equations from the aforementioned class.
We furthermore validate this simulation paradigm on models of nerve
cells and explore its relation with more traditional finite difference ap-
proaches. Situations in which a gain in computational performance is
expected, are discussed.

Keywords. partial differential equation, tree graph, Green’s function,
sparse, simulation
∗Blue Brain Project, Brain Mind Institute, EPFL, Geneva, Switzerland
†Chair of Geometry, Mathematics Institute for Geometry and Applications, EPFL,

Lausanne, Switzerland
‡Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Ok-

inawa, Japan
§Blue Brain Project, Brain Mind Institute, EPFL, Geneva, Switzerland

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/42577653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction
Neurons have extensive morphological ramifications, called dendrites, that
receive and integrate inputs from other neurons, and then transmit the re-
sult of this integration to the soma, or cell body, where an output in the form
of action potentials is generated. Dendritic integration is considered a hall-
mark of neuronal computation (London and Häusser, 2005; Häusser and Mel,
2003; Silver, 2010) and parallels the dendritic morphology (Torben-Nielsen
and Stiefel, 2010; Agmon-Snir et al., 1998; Segev, 2000). It is often studied
using the cable equation — a one dimensional reaction-diffusion equation
that governs the evolution of the membrane potential V (x, t), and is de-
fined on a tree graph representing the dendritic arborization. Inputs, such
as synaptic currents, are usually concentrated in a spatially discrete set of
points and depend on this potential through their driving force (Kuhn et al.,
2004), and possibly through other non-linear conductances such as NMDA
(Jahr and Stevens, 1990).

Traditionally, this integration is modeled using compartmental simula-
tions, where space is discretized in a number of compartments of a certain
length and a second order finite difference approximation is used to model
the longitudinal currents (Hines, 1984). As the error of this approximation
depends on the distance step, complex neural structures require many com-
partments and are computationally costly to simulate.

Often however, stretches of neural fiber behave approximately linear (Schoen
et al., 2012), and one is not interested in the explicit voltage at all locations,
but only at a specific output location. For this reason we proposed the idea
of using the Green’s function formalism to simulate neuron models that re-
ceive inputs at a limited number of locations (Wybo et al., 2013). Given a
number of n inputs, the voltage at an output location xi can be written in
this formalism as:

V (xi, t) =
n∑
j=1

∫ t

0
g(xi, xj, t− s)Ij(s)ds. (1)

Problems arise when these inputs depend on the local voltage. Since, in such
a case, all local voltages have to be known, a system of n Volterra integral
equations has to be integrated:

V (xi, t) =
n∑
j=1

∫ t

0
g(xi, xj, t− s)Ij(s, V (xj, s))ds, i = 1, . . . , n. (2)
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It can be seen that this system contains n2 convolutions. This unfavor-
able scaling, along with the fact that the convolutions themselves are costly
to compute and the restriction to point-source non-linearities, significantly
impedes the computational efficiency of the GF formalism, and restricts its
usefulness to very small numbers of input locations (Koch, 1998, page 59-60).

In this work, we are able to significantly improve computational efficiency
compared to the classic GF formalism by showing that all three perceived
disadvantages can be overcome. Using a transitivity property for the Green’s
function (Koch, 1998) (see appendix §A), we show that, when the input
locations are well chosen, a transformation of the system (2) exists so that
only O(n) kernels are required. We term this the sparse Green’s function
(SGF) formalism. As an example of how an efficient integration algorithm
can be designed for the resulting system of Volterra integral equations, we
show that the kernels can be expressed as sums of exponentials using the
vector fitting (VF) algorithm (Gustavsen and Semlyen, 1999) (see appendix
§B) and that consequently the convolutions can be computed recursively.
Finally, we show (in a simplified setting) that when the spacing between the
input locations becomes sufficiently small, the SGF formalism reduces to the
second order finite difference approximation (in the spatial component) of
the original equation. As a consequence, the SGF formalism can be seen
as a ‘generalization’ of the second order finite difference approximation to
arbitrary distance steps, as long as what lies in between the distance steps
is approximately linear.

We validate this novel SGF formalism by reproducing two canonical re-
sults in neuroscientific modeling. First, we reproduce the result of (Moore
et al., 1978) on axonal action potential velocity. Second, we compare our
SGF formalism with the de facto standard neuron simulator (Carnevale
and Hines, 2006) in the case of dendritic integration with conductance based
synapses. In a final section, we discuss in which cases the SGF formalism may
yield computational advantage over canonical second order finite difference
approaches (of which the neuron simulator is an example).
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The system of equations
Each edge of the tree graph represents a segment of the dendritic tree, for
which the cable equation has the following form:

2πacm
∂V

∂t
(x, t)+πa

2

ra

∂2V

∂x2 (x, t)−2πagmV (x, t)+
∑
c

Ic(x, t) =
n∑
i=1

Ii(t, V (xi, t))δ(x−xi),

(3)
where cm, gm and ra denote, respectively, the membrane capacitance, the
membrane conductance and the axial resistance, a denotes the radius of the
dendritic branch, Ic the current contribution of a channel type c and Ii the
input current at location xi. The ion channel current can depend non-linearly
on the voltage and a number of state-variables:

Ic(x, t) = fc(V (x, t),yc(x, t)), (4)

where the state-variables yc(x, t) evolve according to:

ẏc,j(x, t) = yc,j,inf(V (x, t))− yc,j(x, t)
τc,j(V (x, t)) , (5)

with τc,j and yc,j,inf functions that depend on the channel type. Lineariz-
ing these currents yields a quasi-active description (Koch, 1998) of the ion
channels:

Ic,lin(x, t) = ∂fc
∂V

V (x, t) +
∑
j

∂fc
∂yc,j

yc,j(x, t), (6)

with
ẏc,j(x, t) = d

dV

(
yc,j,inf

τc,j

)
V (x, t)− 1

τc,j
yc,j(x, t), (7)

where all derivatives, as well as τc,j, are evaluated at the equilibrium values
of the state variables. If there are a total of K state-variables associated
with ion channels, a system of K + 1 PDE’s of first degree in the temporal
coordinate is obtained, which can be recast into a single PDE of degree K+1.

Consequently, we are interested in the GF of PDE’s of the following form:

L̂(x)V (x, t) =
[
L̂0(x) ∂

2

∂x2 + L̂1(x) ∂
∂x

+ L̂2(x)
]
V (x, t) = L̂3(x)

n∑
i=1

Ii(t)δ(x−xi),

(8)
where L̂i(x), i = 0, . . . , 3 are operators of the form L̂i(x) = ∑K+1

k=0 Ck
∂k

∂tk
,

K ∈ N, and δ is the Dirac-delta function. We assume:
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(i) that an equation of the form (8) is defined on each edge of the tree
graph (let E denote the set of edges).

(ii) that on each leaf (let Λ denote the set of leafs) a boundary condition
of the following form holds:

L̂λ1
∂

∂x
V ελ(t) + L̂λ2V

ελ(t) = L̂λ3I
λ(t) ∀λ ∈ Λ, (9)

where L̂λi are operators defined analogously to L̂i(x) and where V ελ is
the field value on the adjacent edge ελ in the limit of xελ approaching
the leaf. Note that in this general form, equation (9) can represent
sealed end (L̂λ1 = 1, L̂λ2 = L̂λ3 = 0) or voltage clamp (L̂λ1 = 0, L̂λ2 =
L̂λ3 = 1 and I(t) constant) boundary conditions or, when there is only
one neurite leaving the soma, a lumped soma boundary condition (see
(Tuckwell, 1988), and where the operators can possibly contain higher
order derivatives if quasi-active channels are present).

(iii) that at each node that is not a leaf (let Φ denote the set of nodes that
are not leafs, and let E(φ) denote the set of edges that join at node
φ ∈ Φ):

V ε(t) = V ε′(t), ∀ε, ε′ ∈ E(φ), ∀φ ∈ Φ∑
ε∈E(φ)

L̂ε
∂

∂x
V ε(t) = L̂φ1V

ε(t) + L̂φ2I
φ(t), ∀φ ∈ Φ, (10)

where the operators L̂ε,φ are again defined as above and V ε denotes
the voltage on edge ε in the limit of xε approaching the node φ. The
first condition then expresses the continuity of the voltage at a node,
whereas the second condition can signify the conservation of current
flow (L̂ε = πa2

ε

/
rεa , L̂φ1 = L̂φ2 = 0) or a somatic boundary condition

when multiple neurites join at the soma (see again (Tuckwell, 1988)).
Algorithms to compute the GF of this system of PDE’s have been described
extensively in the neuroscientific literature: the algorithm by (Koch and
Poggio, 1985) computes the Green’s function exactly in the Fourier domain
whereas the ‘sum-over-trips’ approach pioneered by (Abbott et al., 1991)
(see (Bressloff and Coombes, 1997) for another overview) and extended by
(Coombes et al., 2007; Caudron et al., 2012) uses a path integral formalism.
We implemented the algorithm given in (Koch and Poggio, 1985) as we are
interested in the GF in the Fourier domain.
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2 Methods

A sparse reformulation of the Green’s function formal-
ism
In this section we prove formally that a sparse reformulation of equation (2)
exists. Fourier transforming this equation gives the GF formalism in the
Fourier domain (Butz and Cowan, 1974; Wybo et al., 2013), :

Ṽ1(ω)
...

Ṽn(ω)

 =


g11(ω) · · · g1n(ω)

... . . . ...
gn1(ω) · · · gnn(ω)



Ĩ1(ω)

...
Ĩn(ω)

 , (11)

where Ṽ1, . . . , Ṽn denote the field values resulting from the inputs Ĩ1, . . . , Ĩn
at locations 1, . . . , n (which may be arbitrarily distributed along the edges of
the tree graph), and gij denotes the GF evaluated between points i and j (see
(Koch and Poggio, 1985) for an example of an algorithm to evaluate these
functions). Note that for the GF, we dropped the ∼ that signifies the Fourier
transform for notational simplicity. Whenever the argument of a kernel is
not explicitly mentioned, it will be implied that it is the Fourier transform
that is under consideration. Note furthermore that the GF between points
i and j is equal to the GF between points j and i, so that the matrix in
equation (11) is symmetric (Koch, 1998, page 63). Note finally that while
the input current Ĩi may depend on the local voltage (cf. equation (3)), it
is still possible to take the Fourier transform by considering Ii(t, V (xi, t)) as
an a priori unknown function of time (≡ Ii(t)).

We can rewrite the set of equations (11) so that the field at one location
depends on the input only at that location and the field at all other locations:

Ṽi(ω) = fi(ω)Ĩi(ω) +
∑
j 6=i

hij(ω)Ṽj(ω), (12)

where (with G denoting the matrix for which Gij = gij and G−1 its matrix
inverse and omitting the argument ω for notational clarity)

fi = 1/(G−1)ii
hij = −(G−1)ij/(G−1)ii. (13)

Intuitively, the field at any location can only depend on the local input
and the fields at the neighboring locations. After introducing the necessary
definitions and notations, we will prove this intuition formally.
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Notation 1. Let A denote a matrix. A[j; i] then denotes the same matrix
with the j’th row and i’th column deleted.

This way, (−1)j+i det(A[j; i]) gives the (j, i)’th minor of A and the ele-
ments of the adjugate matrix of A can be written as:

adj(A)ij = (−1)j+i det(A[j; i]) (14)

Then, by using Cramer’s rule (see for instance (Horn and Johnson, 2012,
pages 17-24)):

A−1 = adj(A)
det(A) , (15)

equation (13) can be written by as:

fi = det(G)/ det(G[i; i])
hij = (−1)i+j+1 det(G[j; i])/ det(G[i; i]). (16)

We specify the discrete set of input locations as follows:

Notation 2. P denotes a set of n points distributed on a tree graph.

The geometry of the tree graph will induce a nearest neighbor relation
on P . We define this relation in the following way:

Definition 1. Two points i, j ∈ P are nearest neighbors if no other point
lies on the shortest path between them.

This allows for the definition of sets of nearest neighbors:

Definition 2. A set of nearest neighbors N is a subset of P in which each
pair of points is a pair of nearest neighbors, and for which no other point can
be found in P that is not in N but is still a nearest neighbor of every point
in N .

In Fig 1A we show an illustration of these sets.

Notation 3. We use m to denote the number of sets of nearest neighbors
which can be found in a given P.
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Figure 1: Schematic of the rationale behind the sparsification of the Green’s
function formalism for tree structures. A: Illustration of the sets of nearest
neighbors Nq (q = 1, 2) induced by the tree structure. For any pair of points
in Nq there is no other point on the shortest path between them. B: Illustra-
tion of how the structure of the matrices A and A[j, i] (here j < i) gives rise
to the sparseness of the SGF. These matrices can be written in ‘block upper
triangular form’ (white: zeros, black: blocks on the diagonal, grey: other
non-zero elements). The diagonal of A[j, i] (red) is shifted between the j’th
row and i’th column (blue) compared to the diagonal of A. When j and i
do not belong to the same set of nearest neighbors, there is always at least
one zero on the diagonal of the resulting matrix (here, there are two zeros —
green circles).

8



Definition 3. For any set of points P = {1, . . . , n}, G(P) is the matrix of
transfer kernels:

G(P) =


g11 g12 · · · g1n
... ... . . . ...
gn1 gn2 · · · gnn

 , 1, . . . , n ∈ P (17)

However, when P denotes a set of input locations distributed on the
tree graph, we will only make the argument of G explicit when we consider
a subset of P . Hence it is understood that G ≡ G(P), as is the case in
formulas (13) and (16).
Definition 4. An attenuation function aij is defined by:

aij = gij/gjj. (18)

Note that trivially aii = 1.
Definition 5. A(P) is the matrix of attenuation functions aij between any
two points i, j ∈ P (analogous to definition 3).

The significance of these sets N (definition 2) is due to the the following
lemma (Koch, 1998, page 63):
Lemma 1. Transitivity property. If i, j ∈ P are not nearest neighbors,
then for every point l on the direct path between them it holds that:

gij = gilglj
gll

, (19)

Proof. See appendix §A.

This leads directly to a similar transitivity property for attenuations:

aij = ailalj. (20)
Note that we may obtain the matrix A (definition 5) from G by divid-

ing, for all i = 1, . . . , n, its i’th column by gii, and that as a consequence
(∏i gii) det(A) = det(G). Hence (16) can be written as:

fi = gii det(A)/ det(A[i; i])
hij = (−1)i+j+1 det(A[j; i])/ det(A[i; i]). (21)

Given these definitions and notation, we can capture the aforementioned
intuition formally as follows:
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Theorem 1. Consider an arbitrary set of points P on a tree graph. Then

i) for a point i that is in exactly p sets N1, . . . ,Np,

fi = gii
det(A(N1)) · · · det(A(Np))
det(A(N1 ∪ . . . ∪Np)[i; i])

(22)

ii) for a pair of points i, j that are nearest neighbors, and for which there
consequently exists a set N 3 i, j, and where there are exactly p other
sets N1, . . . ,Np that contain i:

hij = (−1)i+j+1 det(A(N1)) . . . det(A(Np)) det(A(N )[j; i])
det(A(N1 ∪ . . . ∪Np ∪N )[i; i]) (23)

iii) for a pair of points i, j that are not nearest neighbors,

hij = 0 and hji = 0. (24)

Remark 1. To unclutter the notation, we use the indices i, j ∈ N to refer
to the actual points in P , their corresponding positions in the full matrices
A and in the restricted matrices A(N ). This is justified, as it does not
influence formulas (22) and (23). Permuting the numbering of a pair of points
amounts to permuting the corresponding rows and columns of the matrices,
and thus does not change the determinants. Restricting A to A(N ) amounts
to deleting the appropriate rows and corresponding columns from A, and
thus does not change the factor (−1)i+j+1.

Proof. For convenience, we introduce the following ordering scheme for the
points: we choose one point as the root of the tree and give it the lowest
index, and then reorder the other points such that within each set N , the
point closest to the root has the lowest index, and the other points in N are
numbered consecutively. We then reorder the sets N so that the set with
highest index contains the point with highest index, and so on.

Let there be a total of m sets of nearest neighbors Nq, q = 1, . . . ,m in P .
First, we show that

det(A) =
m∏
q=1

det(A(Nq)) (25)

by applying elementary row operations recursively set after set. Let’s start
with Nm, the last set of nearest neighbors, containing k elements. Our num-
bering scheme guarantees that the last k − 1 rows of A correspond to the
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k − 1 elements in Nm that are not closest to the root. Let us denote the
point in Nm that is closest to the root by l. Between every d /∈ Nm and
every e ∈ Nm the transitivity property (20) holds, and thus aed = aelald.

By applying row operations Re(A) → Re(A) − aelRl(A), that do not
change det(A) (Horn and Johnson, 2012, pages 9-10), and using (20) along
with the trivial identity ael = aelall, the last k − 1 rows of A become:

Rj(A) =(
0 . . . 0 ae,n−k+2 − aelal,n−k+2 . . . aen − aelaln

)
. (26)

Thus, the determinant reduces to

det(A) = det
(
A′ A′′

0 B

)
= det(A′) det(B), (27)

where A′ and A′′ are the parts of A unchanged by the row operations, and
B consists of the non-zero elements of the part of A affected by the row
operations. It holds that

det(B) = det(A(Nm)). (28)

Construct A(Nm) by taking the last k−1 rows and columns from A, and the
attenuations to (from) point l as the first row (column) of A(Nm). Then, by
applying the row-operations Re(A(Nm))→ Re(A(Nm))−ae1R1(A(Nm)), the
matrix B will be found as the only non-zero minor of the first row elements
— the determinant of which is multiplied by 1 to give the determinant of
A(Nm). Thus we have factorized det(A) in det(A′) det(A(Nm)).

Our numbering scheme for the points guarantees that a similar reduction
can be applied to det(A′), as long as it contains distinct sets N , which by
induction on m proves (25). Note that we could have achieved the same
reduction by applying the column operations Ce(A) → Ce(A) − aleCl(A) in
an analogous manner. Then the matrix in (27) would have its zero part in
the upper right corner.

Next we compute the determinant of A[i; i]. By removing both the i’th
row and column, it is as if i is removed from the set P completely. Conse-
quently, N1 ∪ . . . ∪Np \ {i} forms a new set of nearest neighbors, leading to
a factor det(A(N1 ∪ . . . ∪ Np \ {i})) = det(A(N1 ∪ . . . ∪ Np)[i; i]) instead of
det(A(N1)) · · · det(A(Np)) in the final product (25). This proves expression
(22).
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Now consider a pair of points i, j as in point ii) of the theorem. If either
i or j is the point closest in N to the root, we reorder the points in P as
described above, but now with the extra constraint that within the set N ,
all points are numbered consecutively. Note that it is always possible to find
such an ordering for any one set N (but not for all sets at the same time).
Assume furthermore that in the ordering of sets, N comes at the k’th place
(k ≤ m). Again, we start by factorizing out the determinant of A(Nm). If
k < m and if l, the point in Nm closest to the root, is not j, the factorization
can be carried out as explained above by using the row operations Re(A)→
Re(A) − aelRl(A) for e ∈ Nm. If l = j, the deletion of the corresponding
row prevents us from using it to execute these row operations, but the j’th
column can be used instead: Ce(A) → Ce(A) − aleCl(A). Induction on m,
until the set N is reached, then factors out the determinants of the matrices
A(Nq), q > k. If k = m, the previous induction can be skipped.

When i nor j are the point closest to the root in set N , further factor-
ization can proceed unhindered by using row operation, leading to a factoriza-
tion similar to (25), except for the replacement det(A(Nk))→ det(A(Nk)[j; i]).

When i (resp. j) is the point closest to the root, our special numbering
scheme allows the application of Rd → Rd − ddiRi (resp. Cd → Cd − aidCi)
for d ∈ N1 ∪ . . . ∪Nk−1, resulting in the matrix:

det(A(N1 ∪ . . . ∪Nk)) = det
(
B 0
A′′ A(N )[j; i]

)
= det(B) det(A(N )[j; i]),

(29)
resp.

det(A(N1 ∪ . . . ∪Nk)) = det
(
B A′′

0 A(N )[j; i]

)
= det(B) det(A(N )[j; i]).

(30)
It can be checked that in both cases det(B) = det(A(N1 ∪ . . . ∪ Nk−1)).
Further factorization can then proceed unhindered, leading again to (25)
with det(A(Nk))→ det(A(Nk)[j; i]). This proves expression (23).

Finally, consider a pair of points i > j that are not nearest neighbors. We
assure that the points are numbered in such a way that all the sets N that
contain j have points with indices smaller than i (note that since i and j are
not nearest neighbors, none of these sets contains i). The familiar reduction
scheme for A[j; i] by applying row operations can be thought of as writing
this matrix in ‘block-upper triangular’ form. Its determinant is then the
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product of all determinants of the block-matrices on the diagonal. Between
the j’th row and i’th column of this matrix, the diagonal is shifted by 1 to a
lower row compared to the diagonal of A. Since i does certainly not belong
to the same ‘block’ as j, there is at least one 0 on this diagonal (Fig 1B).
This proves that hij = 0. That hji = 0, can be proved analogously, but
now the matrix is written in ‘block-lower triangular’ form by using column
operations. As such, the statement (24) is proven.

Corollary 1. Number of kernels. When a total of m sets of nearest
neighbors N1, . . . ,Nm exists within a set of n points P, the number of non-
zero kernels M in equation (12) is:

M = n+
m∑
q=1

∣∣∣Nq∣∣∣ (∣∣∣Nq∣∣∣− 1
)
, (31)

with
∣∣∣Nq∣∣∣ the cardinality of the set Nq.

Proof. First, we prove equation (31). For n points, there are n kernels fi.
In every set Nq, there is kernels hij between for every combination of points
i, j ∈ Nq, with i 6= j. Consequently, within a set Nq, there are

∣∣∣Nq∣∣∣ (∣∣∣Nq∣∣∣− 1)
kernels. Hence, in total, there are n+∑m

q=1

∣∣∣Nq∣∣∣ (∣∣∣Nq∣∣∣− 1) kernels.

Corollary 2. Sparseness. For a given tree graph and a given positive
number n, the configurations of n points that minimize the number M of
kernels in (12) have:

M = 3n− 2. (32)

Proof. When n = 1 the statement is trivial. For an optimal configuration
with n > 1,

∣∣∣Nq∣∣∣ = 2 for all m sets Nq, and m = n − 1. Hence M =
n+ 2(n− 1) = 3n− 2.

From the viewpoint of computational efficacy, corollaries 1 and 2 indicate
that there are ‘well-chosen’ and ‘badly-chosen’ ways for the input locations to
be distributed on the tree graph. For a ‘well-chosen’ configuration |N | = 2,
or at least |N | � n, for all N , whereas in worst case scenarios there is only
a single set N .
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An efficient method to integrate the system of Volterra
integral equations
Transforming (12) to the time domain results in a system of Volterra integral
equations:

Vi(t) =
∫ t

0
fi(t− s)Ii(s, V (xi, s))ds+

∑
j 6=i

∫ t

0
hij(t− s)Vj(s)ds ∀i, (33)

where all kernels hij between points i, j that are not nearest neighbors are
zero due to theorem 1. In this form, the SGF-formalism is well-suited to
simulate neuron models.

Let O(nk) denote the number of operations required to compute a convo-
lution each time-step. If these convolutions were to be integrated naively, by
evaluating the quadrature explicitly (the Quad approach), nk would denote
the number of time-steps after which the kernel can be truncated. However,
the kernels are computed in the frequency domain, so if a partial fraction
decomposition in this domain can be found:

fi(ω) ≈
Li∑
l=1

γli
iω + αli

hij(ω) ≈
Lij∑
l=1

γlij
iω + αlij

,

(34)

where <(α) < 0, then in the time domain the kernels can be readily expressed
as sums of one sided exponentials:

fi(t) ≈
Li∑
l=1

γlie
αlit

hij(t) ≈
Lij∑
l=1

γlije
αlijt,

(35)

when t ≥ 0, and fi(t) = hij(t) = 0 otherwise. Such a decomposition can be
derived accurately by employing the vector fitting (VF) algorithm (Gustavsen
and Semlyen, 1999) (see appendix §B). Consequently, the convolutions with
the kernels become sums of convolutions with exponentials, which can be
readily expressed as simple differential equation (see for instance (Lubich
and Schädle, 2002)). We call this the Exp approach and nk is the number
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of exponentials per kernel in this case. Usually, for the Exp approach, nk is
smaller than for the Quad approach. Nevertheless, many of the exponentials
of the VF algorithm are used to approximate the small t behavior of the
kernels, and hence have a very short time-scale. The large t behaviour is
often described by one or a few exponentials. This suggest that a ‘mixed’
approach could yield optimal performance, where for small t the quadrature
is computed explicitly, and for large t the convolution is computed as an
ODE (or the sum of a few ODE’s). We now give a detailed account of the
mixed approach.

Let t = Nh, with h the integration step and N a natural number, and let
us assume that Vi(τ) is known for all i and for τ ∈ {t − kh; k = 1, . . . , N},
and that we want to know Vi(t + h), with h > 0. We split the convolutions
in equation (33) into an quadrature term (

∫ t+h
t−Kh) and a exponential term

(
∫ t−Kh

0 ):

Vi(t+ h) =
∫ t+h

t−Kh
fi(t+ h− s)Ii(s)ds+

∑
j 6=i

∫ t+h

t−Kh
hij(t+ h− s)Vj(s)ds+

∫ t−Kh

0
fi(t+ h− s)Ii(s)ds+

∑
j 6=i

∫ t−Kh

0
hij(t+ h− s)Vj(s)ds,

(36)
where K is a natural number that needs to be chosen. We assume that
between the temporal grid points t − kh and t − (k + 1)h, Vj(t) can be
approximated by a linear interpolation:

Vj(s) ≈ Vj(t−kh)+Vj(t− kh)− Vj(t− (k + 1)h)
h

(s−t+kh), t−(k+1)h ≤ s ≤ t−kh.
(37)

With this and the exponential approximation (35), the quadrature term for
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convolutions with Vj becomes:∫ t+h

t−Kh
hij(t+ h− s)Vj(s)ds ≈

Vj(t+ h)
∑
l

− γlij
αlij

+
γlij
αl 2ij h

(
eα

l
ijh − 1

)
+

K−1∑
k=0

Vj(t− kh)
∑
l

− γlij
αl 2ij h

(
eα

l
ij(k+1)h − 2eαlijkh + eα

l
ij(k−1)h

)
+Vj(t−Kh)

∑
l

− γlij
αlij

eα
l
ijKh +

γlij
αl 2ij h

(
eα

l
ijKh − eαlij(K−1)h

) ,
(38)

and similarly for the convolutions with the input Ii. For the exponential
term, we get the following:∫ t−Kh

0
hij(t+ h− s)Vj(s)ds =

∑
l

γlije
αlij(K+1)h

∫ t−hK

0
eα

l
ij(t−Kh−s)Vj(s)ds,

(39)
where ulij(t−Kh) ≡

∫ t−Kh
0 γlije

αlij(t−Kh−s)Vj(s)ds is the solution of an initial
value problem:

u̇lij(t) = αliju
l
ij(t) + γlijVj(t)

ulij(t = 0) = 0,
(40)

whose value can be computed recursively:

ulij(t−Kh) = eα
l
ijhulij(t− (K + 1)h) +

∫ t−Kh

t−(K+1)h
eα

l
ijsVj(s)ds. (41)

Using again the linear approximation (37), this becomes:

ulij(t−Kh) ≈ eα
l
ijhulij(t− (K + 1)h)

+Vj(t−Kh)
− γlij

αlij
+

γlij
αl 2ij h

(
eα

l
ijh − 1

)
+Vj(t− (K + 1)h)

 γlij
αlij

eα
l
ijh −

γlij
αl 2ij h

(
eα

l
ijh − 1

) .
(42)

Analogous considerations apply for the convolutions with the input Ii.
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Let us now define a matrix H0 by:

(H0)ij =
∑
l

− γlij
αlij

+
γlij
αl 2ij h

(
eα

l
ijh − 1

) (43)

and a tensor H1 by:

(H1)kij =
∑
l

− γlij
αl 2ij h

(
eα

l
ij(k+1)h − 2eαlijkh + eα

l
ij(k−1)h

) for k = 0, . . . , K − 1

(H1)kij =
∑
l

− γlij
αlij

eα
l
ijkh +

γlij
αl 2ij h

(
eα

l
ijkh − eαlij(K−1)h

) for k = K.

(44)
when i, j are nearest neighbors, and (H0)ij = (H1)kij = 0 otherwise. For the
input kernels fi, we define a vector F0 (with (F0)i an analogous to (43)) and
a matrix F1 (with (F1)ki analogous to (44)). Using these definitions, we may
write equation (36) as:

Vi(t+ h) =
(F0)iIi(t+ h) +

K∑
k=0

(F1)ki Ii(t− kh)


+
∑
j 6=i

(H0)ijVj(t+ h) +
K∑
k=0

(H1)kijVj(t− kh)


+
∑
l

eα
l
i(K+1)huli(t−Kh) +

∑
j 6=i

∑
l

eα
l
ij(K+1)hulij(t−Kh).

(45)

To simplify the notation, we group all terms that do not contain voltage or
input at time t+ h in a vector k(t), for which:

ki(t) =
 K∑
k=0

(F1)ki Ii(t− kh)
+

∑
j 6=i

 K∑
k=0

(H1)kijVj(t− kh)


+
∑
l

eα
l
i(K+1)huli(t−Kh) +

∑
j 6=i

∑
l

eα
l
ij(K+1)hulij(t−Kh)

(46)

Consequently, equation (45) becomes in matrix form:

(I−H0)V(t+ h) = diag(F0)I(t+ h) + k(t). (47)

Solving this matrix equation then gives V(t+ h).
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Note that when the input current Ii depends on the local voltage, equation
(47) is only semi-implicit, since the voltage at time t would be required to
compute the current at time t + h. This description may be unstable for
certain ion channels. However, the direct dependence of most currents on
the voltage is linear (in the case of ion-channels for instance, non-linearities
arise through the non-linear dependence of state variables on the voltage):

Ii(t, V (xi, t)) = ci(t) + di(t)V (xi, t). (48)

Using this, equation (47) can be modified in the following way:

(I−H0 − diag(F0 � d(t+ h))V(t+ h) = diag(F0)c(t+ h) + k(t). (49)

where � denotes the element wise multiplication. This way of integration,
while still being semi-implicit (since the equations for state variables of ion
channels (5) are still integrated explicitly) is stable and standard in neuro-
scientific applications (Hines, 1984).

Note furthermore that the matrix (I−H0) resp. I−H0−diag(F0�d(t+h)
is structurally symmetric: whenever an off-diagonal element is nonzero, its
counterpart opposite to the diagonal is nonzero as well. When |N | = 2 for all
N , and when the input locations are ordered in the right way, this matrix is
a Hines matrix (Hines, 1984). For such a matrix a linear system of equations
of the form (47) resp. (49) can be solved for V in O(n) steps instead of the
usual O(n3) steps.

Note also that we did not discuss the initialization steps of this algorithm
explicitly. We omitted this discussion since, in neuroscience, it usually is
simply assumed that the neuron model is at equilibrium at all times t < 0.
Hence, the vectors k(t = 0),k(t = h),k(t = 2h), . . . can be computed easily
by assuming that V (−kh) = 0 for all required k’s.

Finally, we remark that K, the parameter in the algorithm which deter-
mines the limit Kh below which the quadrature is evaluated explicitly, can
be chosen to minimize the number nk of operations per kernel. In principle,
K could be chosen separately for each kernel. In the present derivation we
however opted not to do so for simplicity.

Nonlinear terms and the small ∆x limit of the SGF for-
malism
While a set of ion channels that behaves approximately linear may be incor-
porated directly in the SGF formalism, the question what to do with channels
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that act truly non-linear remains. Such channels can be moved from the left
hand side of equation (3) to the right hand side, and treated as an input
current that depends on the local voltage. This current needs to be ‘compar-
timentalized’, i.e. expressed at a discrete number of input locations, with a
certain separation ∆x.

A ‘recompartimentalization’ of this type leads to the question of what
the relation between the SGF formalism and the canonical second order fi-
nite difference approximation is. In both approaches, the input is compart-
mentalized. In the finite difference approximation however, the entire cable
(i.e. the longitudinal, capacitive and leak currents) is compartmentalized as
well, whereas in the SGF formalism, the cable is treated exactly. Conse-
quently, in spatial regions with truly non-linear ion channels, the accuracy
of the SGF is equivalent to (or better than, since the linear currents are still
treated exactly) the accuracy of the canonical second order finite difference
approximation.

The observation that the SGF formalism treats the cable exactly then
leads to the question whether the second order finite difference approximation
can be derived from it, as both approaches describe the voltage at a given
location only as a function of the voltage at the neighboring locations and
the input at that location. We show in a simplified setting that, when the
distance ∆x between the input locations is sufficiently small, the formalism
reduces to the second order finite difference approximation of the original
equation.

Although we expect that the reduction of the SGF formalism to the sec-
ond order finite difference approximation is valid for all equations of the type
(8) and for arbitrary tree graphs, its derivation can become prohibitively
complex. We therefore constrain ourselves to the passive cable equation (3)
and to the case where this equation is defined on a line of length 1, with a
homogeneous boundary condition at each end. We suppose that there are
n− 1 input locations, distributed evenly with spacing ∆x = 1/n .

∂V
∂t

(x, t) + ∂2V
∂x2 (x, t)− V (x, t) = ∑n−1

i=1 Ii(t)δ(x− i∆x).
∂V
∂x

(0, t) = L̂AV (0, t)
∂V
∂x

(1, t) = L̂BV (1, t)
(50)

Note that the input currents Ii(t) can depend on the local voltage V (xi, t),
as they can be the result of a discretization of the ion channel currents.
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Second order finite difference approximation To obtain the second
order finite difference approximation of equation (50), we replace

∂2V

∂x2 (xi, t)→
Vi+1(t)− 2Vi(t) + Vi−1(t)

∆x2 (51)

and we average the inputs for each compartment:
1

∆x

∫ (i+ 1/2 )∆x

(i−1/2 )∆x
Ii(t)δ(x− i∆x)dx = Ii(t)

∆x (52)

Consequently, we find for i = 1, . . . , n− 1:
Vi+1(t)− 2Vi(t) + Vi−1(t)

∆x2 + V̇i(t)− Vi(t) = Ii(t)
∆x . (53)

The boundary condition at x = 0 becomes:
V1(t)− V0(t)

∆x = L̂
(t)
A V0(t), (54)

and an analogous expression applies for the boundary condition at x = 1

Reduction of the SGF formalism The Fourier transform of the problem
(50) reads: 

∂2Ṽ
∂x2 (x, ω)− γ(ω)2Ṽ (ω) = ∑n

i=1 Ĩi(ω)δ(x− xi)
∂Ṽ
∂x

(0, ω) = L̃A(ω)Ṽ (0, ω)
∂Ṽ
∂x

(1, ω) = L̃B(ω)Ṽ (1, ω),
(55)

where L̃A and L̃B are polynomials in ω representing the respective Fourier
transforms of L̂A and L̂B, and where γ2(ω) = iω − 1. In the following
the coordinate ω is dropped for notational clarity. We define two linearly
independent solutions to the homogeneous problem:

uA(x) = eγx + kAe
−γx

uB(x) = eγx + kBe
−γx (56)

that satisfy the boundary conditions respectively in x = 0 (uA) and x = 1
(uB). Then the Green’s function of problem (55) is given by (Stakgold, 1967,
page 66):

gij =


uA(xi)uB(xj)
−2γ(kB−kA) if xi ≤ xj
uB(xi)uA(xj)
−2γ(kB−kA) if xi ≥ xj.

(57)
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Consequently, the attenuation functions are given by:

aij =


uA(xi)
uA(xj) if xi ≤ xj
uB(xi)
uB(xj) if xi ≥ xj.

(58)

According to theorem 1, problem (55) is then fully defined by the following
kernels:

• for i = 0, . . . , n− 2

hi+1,i = ai+1,i − ai+1,i+2ai+2,i

1− ai,i+2ai+2,i
= ai+1,i

1− ai+1,i+2ai+2,i+1

1− ai,i+2ai+2,i
(59)

• for i = 2, . . . , n− 1

hi,i+1 = ai,i+1 − ai,i−1ai−1,i+1

1− ai+1,i−1ai−1,i+1
= ai,i+1

1− ai,i−1ai−1,i

1− ai+1,i−1ai−1,i+1
(60)

• h01 = a01

• hn,n−1 = an,n−1

• for i = 1, . . . , n− 1

fi = gii
(1− ai,i−1ai−1,i)(1− ai+1,iai,i+1)

1− ai+1,i−1ai−1,i+1
(61)

Using equations (58) and (56), it can be checked that:

1− aijaji =


2(kB−kA) sinh(γ(xj−xi))

uB(xi)uA(xj) if xi ≤ xj
2(kB−kA) sinh(γ(xi−xj))

uA(xi)uB(xj) if xi ≥ xj.
(62)

Consequently, it follows that:

• for i = 0, . . . , n− 2
hi+1,i = sinh(γ∆x)

sinh(2γ∆x) (63)

• for i = 2, . . . , n− 1
hi,i+1 = sinh(γ∆x)

sinh(2γ∆x) (64)
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• for i = 1, . . . , n− 1
fi = −1

γ

(sinh(γ∆x))2

sinh(2γ∆x) (65)

With these equations, equation (12) for i = 1, . . . , n− 1 becomes:

Ṽi = −1
γ

(sinh(γ∆x))2

sinh(2γ∆x) Ĩi + sinh(γ∆x)
sinh(2γ∆x)

(
Ṽi−1 + Ṽi+1

)
. (66)

Since ∆x is small, the sinh-functions can be expanded. This gives:

Ṽi = − ∆x
2 + 8

6γ
2∆x2 Ĩi +

1 + 1
6γ

2∆x2

2 + 8
6γ

2∆x2

(
Ṽi−1 + Ṽi+1

)
. (67)

Multiplying both sides by the denominator 2 + 8
6γ

2∆x2, rearranging terms
and dividing by ∆x2 then gives:

Ṽi−1 − 2Ṽi + Ṽi+1

∆x2 − 8
6γ

2Ṽi + 1
6γ

2
(
Ṽi−1 + Ṽi+1

)
= 1

∆xĨi. (68)

Averaging Ṽi−1 + Ṽi+1 ≈ 2Ṽi and transforming the resulting equation back to
the time domain then results precisely in the finite difference approximation
for i = 1, . . . , n− 1.

Let us now investigate equation (12) when i = 0. Here, it holds that:

Ṽ0 = a01Ṽ1. (69)

Substituting the explicit form of a01 = uA(0)
/
uA(∆x) in this equation and

expanding the exponentials up to first order leads to:

Ṽ0 = 1
1 + 1−kA

1+kAγ∆x
Ṽ1 (70)

Since uA satisfies the boundary condition at x = 0, it can be checked that
γ (1− kA)

/
(1 + kA) = L̃A, so that equation (70) can be rewritten as:

L̃AṼ0 = Ṽ1 − Ṽ0

∆x . (71)

Transforming this equation back to the time domain yields precisely the finite
difference approximation for V0. Analogous considerations apply for Vn.
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Implementation
In this section we summarize the steps one has to undertake to implement
the SGF formalism. Such an implementation consists of two main parts: an
initialization part and a simulation part.
The initialization part consists of the following steps:

1. For any given set of input locations and a tree graph, a routine has to
be implemented that can identify the sets of nearest neighbors. Such
a routine could for instance return a list, where each element is a list
in itself, containing the input locations that constitute a set of nearest
neighbors.

2. The GF’s gij(ω) between every pair of elements in the sets of near-
est neighbors have to be computed. We implemented the algorithm of
(Koch and Poggio, 1985) for this purpose. Note that for a set N of
cardinality |N |, only |N | (|N |+ 1)

/
2 function gij have to be computed,

since gij = gji (Koch, 1998). From these kernels, the attenuation func-
tions can be derived easily.

3. The kernels fi and hij have to be computed. This can be done either
by evaluating the formulas (22) and (23) explicitly (when all matrices
of which the determinants have to be computed are small) or by the
derived formulas:

fi = gii
1

A(N1 ∪ . . . ∪Np)−1

hij = −
A(N1 ∪ . . . ∪Np ∪N )−1

ij

A(N1 ∪ . . . ∪Np ∪N )−1
ii

.

(72)

Note that in both cases, attenuation function are needed that are not
directly computed in the previous step, since attenuation matrices of
unions of sets are considered. This is not a problem, as these attenu-
ation functions can be easily reconstructed from the transitivity prop-
erty.

4. The partial fraction decomposition of each kernel has to be computed.
The VF algorithm (Gustavsen and Semlyen, 1999) (appendix §B) is well
suited for this purpose. When the parameters of the partial fraction
decomposition are known, the vector F0, the matrices F1 and H0 and
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the tensor H1 can be computed, as described in (43) and (44). Since
H0 resp. H1 are sparse in their indices i and j, they can be stored as
index-number resp. index-array pairs.

For the simulation part, two main routines have to be called each time step:

1. A routine that computes the vectors c(t) and d(t) (48). This routine
also advances synaptic conductances and ion channel state variables
and its details are well established in the neuroscientific literature (see
(Rotter and Diesmann, 1999) and (Hines, 1984)).

2. A routine that first computes the vector k(t) (46) and then solves
equation (49).

We implemented a prototype of the above outlined initialization algorithm
in Python. Tree structures were implemented using the btmorph library
(Torben-Nielsen, 2014). The simulation algorithm was implemented both in
pure Python and in C++ with a Cython interface.

3 Validation
In myelinated axons, the approximation of grouping active currents at a
discrete set of input locations holds exactly, as the only spots where active
currents are present are the nodes of Ranvier. These nodes are separated by
stretches of myelinated fiber of up to 2 mm in length, which can be modeled
by equation (3). We reproduce the model of (Moore et al., 1978), where the
soma, axon initial segment and nodes of Ranvier are equipped with Hodgkin-
Huxley (Hodgkin and Huxley, 1952) channels, so that the input current is of
the form:

Ii(t) = −ḡNami(t)3hi(t)(V (xi, t)−ENa)+ḡKni(t)4(V (xi, t)−EK)−ḡL(V (xi, t)−EL).
(73)

Consequently, ci(t) and di(t) in equation (48) are given by:

ci(t) = ḡNami(t)3hi(t)ENa + ḡKni(t)4EK + ḡLEL

di(t) = −ḡNami(t)3hi(t)− ḡKni(t)4 − ḡL,
(74)
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Figure 2: Validation of the SGF formalism on axon (A-B) and den-
drite models (C-F). We implemented the axon model described in (Moore
et al., 1978) in the SGF formalism. A: validation of the action potential
(AP) shape by comparison with an equivalent neuron model at the axon
initial segment (AIS) and the 10’th node of Ranvier (NoR). B: reproduction
of Fig 2 in (Moore et al., 1978), where the dependence of AP velocity on
different biophysical parameters is studied. C: The dendritic morphology to-
gether with 50 synaptic input locations (the morphology was retrieved from
the NeuroMorpho.org repository (Ascoli, 2006) and originally published in
(Wang et al., 2002)). D: The number of kernels in the SGF formalism, com-
pared to the number of kernels that would have been required in the normal
GF formalism. E: The number of operation required per kernel to achieve
similar levels of accuracy for 3 approaches: Exp, where all the exponentials
from the VF algorithm are integrated, Quad, where the quadrature is com-
puted explicitly and Mix, where we compute the quadrature for the first K
(here 3) steps, and use the ODEs to compute the rest of the convolution.
F: Voltage trace at the soma upon stimulation of the synapses with 5 Hz
Poisson spike trains.
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and the variables mi(t), hi(t) and ni(t) evolve according to the following
equations:

ṁi(t) = minf(V (xi, t))−mi(t)
τm(V (xi, t))

ḣi(t) = hinf(V (xi, t))− hi(t)
τh(V (xi, t))

ṅi(t) = ninf(V (xi, t))− ni(t)
τn(V (xi, t))

,

(75)

where minf, hinf, ninf, τm, τh and τn are functions of the local voltage.
We implemented this model using the SGF formalism. In Fig 2A, we

validate the action potential (AP) shape at the axon initial segment and
at the 10’th node of Ranvier by comparison with the neuron simulator
(Carnevale and Hines, 2006) – the gold standard in neuronal modeling. In
Fig 2B we reproduce Fig 2 in (Moore et al., 1978), where the dependence of
the AP velocity on various axonal parameters is investigated.

Finally, to show that the SGF formalism can also handle complex trees, we
equipped a stellate cell morphology, comprising an active soma and passive
dendrites (Fig 2C) (modeled by equation (3)), with 50 conductance based
synapses, so that

Ii(t) = ḡ(Ai(t)−Bi(t))(V (xi, t)− Er)

Ȧi(t) =
−Ai(t) + cA

∑
j δ(t− s

(j)
i )

τA

Ḃi(t) =
−Bi(t) + cB

∑
j δ(t− s

(j)
i )

τB
,

(76)

where s(j)
i represents the j’th spike time of the input spike train arriving at

the i’th synapse. In this equation, the variables A and B are used to generate
a double exponential profile (see for instance (Rotter and Diesmann, 1999)).
In this model, it holds that:

ci(t) = −ḡ(Ai(t)−Bi(t))Er
di(t) = ḡ(Ai(t)−Bi(t)).

(77)

Excellent agreement with the neuron simulator is achieved (Fig 2F). The
amount of kernels required is far lower than in the normal GF formalism
(Fig 2D) and optimal performance (for which we found nk ≈ 7) was achieved
for K = 3 (Fig 2E).
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B

C

D

Figure 3: The execution time of the SGF formalism compared to
a neuron simuation. A: The setup, showing the morphology and the
maximal set of input locations N = 74 input location. Note that this set was
chosen so that |N | = 2 for all N . B: The somatic voltage trace for the first
second of a 10 s simulation, with a conductance based excitatory synapse at
each input location indicated in A. C: Execution times as a function of the
number of input locations. D: The average number of operations per kernel
as a function of the number of input locations.

Computational cost
It is immediately clear that the computational cost of the SGF formalism
is far lower than the computational cost of the GF formalism (Wybo et al.,
2013) from the number of required kernels alone (Fig 2D). However, the com-
parison of computational cost with the canonical finite difference approaches
requires a more careful discussion. For n input locations and nt time steps,
an explicit solver would typically require O(nkntn) steps, whereas a canon-
ical finite difference approach would require O(dtntnx) steps, with nx the
number of spatial locations at which the finite differences have to be evalu-
ated and dt the maximal degree of temporal differentiation in the operators
L̂

(t)
i (x). Thus, we expect the SGF formalism to improve performance when

cnkn < dtnx, where c is an a-priori unknown constant that may depend on
the specific implementation. When the system is stiff, an implicit solver is
typically needed to guarantee stability. Such solvers require a matrix of size
n (resp. nx in the case of finite differences) to be inverted each time step,
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normally an operation of complexity O(n3
x). However, for second order finite

difference solvers, the tree graph introduces a special structure in this matrix
(Hines, 1984), so that it can be inverted in O(nx) steps. In the SGF formal-
ism, this structure can be maintained if |N | = 2 for all N and in this case
the same performance criterion cnkn < dtnx applies as for explicit solvers.
Note that for higher order finite difference approaches the matrix inversion
still requires O(n3

x).
To test whether this constant c is not excessively large, so that it may

impede the usefulness of the SGF formalism, we compared the execution
time of the SGF formalism with the execution time of the neuron simulator
(Carnevale and Hines, 2006). In order to obtain a ‘fair’ comparison, attention
must be given to the exact type of implementation. For instance, comparing
an explicit simulation paradigm with neuron makes little sense, as neuron
implements a semi-implicit paradigm and would be severely at the disadvan-
tage. On the other hand, neuron makes use of the Hines algorithm to invert
the systems’ matrix (Hines, 1984), and distributing input location completely
at random in the SGF formalism (and using a semi-implicit paradigm as well)
would exclude the use of this algorithm, which would severely disadvantage
the SGF formalism. We therefor opted to implement a simulator in C++,
that implements the same semi-implicit method described in equations (49)
and (47), but where the inversion uses the Hines algorithm. This restricts the
input locations to configurations where |N | = 2 for all N . We distributed 2
to 74 input locations in such a configuration (Fig 3A shows this configuration
for n = 74) on the same stellate cell morphology used in Fig 2 (panels C-E).
No active channels where added to the model. In neuron, the cell model
contained 299 compartments for a total dendritic length of approximately
4000 µm (∆x ≈ 13.5 µm). We added one excitatory, conductance based
synapse at each input location and gave it a Poisson spike train of a certain
rate, so that the total presynaptic rate at all synapses together was 1000 Hz.
In Fig 3B we show the first second of a 10 s simulation where n = 74. It can
be seen that both traces agree impeccably. We then compared the execution
times of both models for an increasing number of input locations (Fig 3C)
for a simulation time of 10 s at a time step of 0.1 ms. It can be seen that
the SGF implementation outperforms the neuron model until n ≈ 55 (on a
machine equipped with an Intel Core i7-3770 CPU @ 3.4GHz and 16 GB of
RAM, running ubuntu 14.04 LTS). In Fig 3D, we plotted 〈nk〉, the average
number of operations per kernel and per time step. It can be seen that this
number correlates with the execution time. When there are few input loca-
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tions, kernels are in general longer and hence this number is higher. Then,
when more kernels are added, this number drops quite rapidly. This explains
the small slope of the execution times in the SGF formalism until n ≈ 35,
associated with the rapid decrease of 〈nk〉. After that, 〈nk〉 decreases slower,
and hence the slope of the execution times becomes steeper.

4 Summarizing remarks
We have proven that on tree graphs, the GF formalism for linear, non-
homogeneous, time-invariant PDE’s with inputs at a discrete set of n well-
chosen locations requires only O(n) rather than n2 kernels, and termed this
the SGF formalism. We discussed the meaning of ‘well-chosen’, namely that
the sizes of the sets of nearest neighbors must be small (ideally |N | = 2 for
all N ). We have shown furthermore for equation (3) that in the limit of
a small distances between the input locations, the SGF formalism can be
reduced to the second order finite difference approximation. Thus, in some
sense, the SGF formalism can be seen as a generalization of the second order
finite difference approximation to arbitrary distance steps (as long as what
lies between the input locations is approximately linear). We also employed
the VF algorithm (Gustavsen and Semlyen, 1999), that fits the kernels with
sums of exponentials, to design an efficient simulation algorithm.

We then validated our algorithm on two neuroscientific problems: the
modeling of myelinated axons and of dendritic integration. We showed that
there was excellent agreement between the SGF formalism and the de facto
standard neuron simulator. We found furthermore that, even for complex,
branched morphologies, excellent accuracy was achieved for nk . 15. We
also discussed when an increase in computational performance is expected
from the SGF formalism, and furthered our findings by comparing an efficient
C++ implementation of the SGF formalism with the same model in neuron.
Finally, we discuss in a broader sense when the SGF formalism is expected
to provide advantage over other approaches.

5 Discussion
It can be seen that the question whether one should prefer the SGF formalism
over second order finite difference approaches depends on the values of nk
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and n, which are not necessarily independent. Fig 3 illustrates this: for the
same dendritic arborization, and using the passive cable equation (dt = 1),
nk ranges from ≈ 14 for n = 2 to ≈ 4 for n = 74. This leads to nkn ≈ 28 to
296 operations per time step. The dendritic arborization on the other hand
has a total length of approximately 4000 µm. According to the Lambda rule
(Carnevale and Hines, 2006), the canonically accepted method of calculating
the distance step between compartments, ∆x ≈ 10−15 µm. Consequently, a
second order finite difference approximation would use approximately nx ≈
300. Hence this estimate would indicate that performance can be gained
when n . 75. That we found this number to be slightly lower (n . 55)
in the simulations we conducted (Fig 3) may be due to implementation and
optimization related factors. One important remark is that for efficient semi-
implicit simulations, the input locations must be chosen so that |N | = 2
for all N to be able to use the Hines algorithm. The question may now
be asked whether this is overly restrictive. We believe that this is not the
case: placing an input location at the soma for instance separates all main
dendrites. Bifurcations in the dendrites may induce further sets of nearest
neighbors of sizes slightly larger than 2. Whenever this occurs however, an
input location can be added at the bifurcation point, so that such a set is
split as well.

Thus the choice of the SGF formalism over the finite difference approx-
imation depends on the neural system at hand. In some systems, such as
bipolar neurons used in auditory coincidence detection (Agmon-Snir et al.,
1998; Wybo et al., 2013), inputs occur only at a small set of locations, and
the cells’ computation is performed by linear membrane properties. Other
systems, such as myelinated axons, have non-linear membrane currents that
are concentrated at a discrete set of locations – the nodes of Ranvier, with
stretches of myelinated fiber in between that behave approximately linear.
It is to be expected that in such systems, the SGF formalism may signifi-
cantly improve performance over the second order finite difference approach.
In other systems, such as cortical cells, inputs are distributed throughout
the dendritic arborization in an almost continuous fashion. In these cells,
the answer to the question whether the SGF formalism yields computational
advantage is negative, when one aims at retaining all biophysical detail. In-
deed, it is clear that when the number of input locations in the SGF formal-
ism approaches the number of compartments neuron requires, there is no
computational gain in using the former. Nevertheless, computational neu-
roscientists have been seeking ways of reducing the cost of simulating these
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cells to be able to use them in large scale network simulations. Most often,
they aim to achieve this by drastically reducing the number of compartments
(Traub et al., 2005). This approach however also changes the spatio-temporal
response properties of the nerve cells. With the SGF formalism, inputs that
would otherwise be grouped in a small number of compartments may now
be grouped at a small number of input locations, while the response proper-
ties induced by the neuronal morphology would remain unchanged. Finally,
in dendritic arborizations, a number of resonance phenomena have been ob-
served that can be modeled with linearized (quasi-active) ion channels (Koch,
1984; Laudanski et al., 2014). Since the transitivity property (see appendix
§B)) holds for equations of this type as well (of the general form (8)), such
systems can be modeled implicitly in the SGF formalism. Nevertheless, the
validity of this linearization depends on the size of the fluctuations around
the operating point and the ion channel under study and has to be checked.

In the SGF formalism there is a significant initialization phase before a
neuron model can be simulated (see Implementation). The computational
cost of this phase is higher than the cost of the initialization phase for finite
difference approaches, and depends on the complexity of the tree graph and
the number of input locations. We thus expect that our SGF formalism will
be advantageous in use cases where frequent re-initialization of the model
is not required. This is typically the case for network simulations, where
a limited number of prototypical nerve cells may be initialized and used
throughout the network.

Another important matter, next to computational cost, is the accuracy
of the SGF formalism. While the sparsification is exact, the transform back
to the time-domain along with the specific integration algorithm might in-
troduce errors. The use of the approximate VF algorithm however impedes
a systematic analysis of these errors. Nevertheless, we found that typically
this error was very low (Fig 4B,C). Furthermore, after application of the
integration paradigm described in this work, where the convolutions with
exponentials are integrated analytically assuming that the voltage varies lin-
early in between grid points, we found that all our numerical experiments
agreed very well with equivalent neuron simulations.
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A Proof of Lemma 1
Proof. The PDE defined on a line
Consider a line of length L (0 ≤ x ≤ L), which trivially has two leafs
(Λ = {λ1, λ2}). Fourier transforming a PDE such as (8) leads to a boundary
value problem of the form:

L̃0(x, ω) ∂
2

∂x2 Ṽ (x, ω)+L̃1(x, ω) ∂
∂x
Ṽ (x, ω)+L̃2(x, ω)Ṽ (x, ω) = Ĩ(x, ω), 0 < x < L

(78)
B̂λ1Ṽ (0, ω) := L̃λ1

1 (ω) ∂
∂x
Ṽ (L, ω) + L̃λ1

2 (ω)Ṽ (0, ω) = Ĩλ1(ω)

B̂λ2Ṽ (0, ω) := L̃λ2
1 (ω) ∂

∂x
Ṽ (L, ω) + L̃λ2

2 (ω)Ṽ (L, ω) = Ĩλ2(ω),
(79)

The Green’s functions g(x, x0, ω) is obtained from solving this problem for
Ĩ(x, ω) = δ(x−x0) and Ĩλ1(ω) = Ĩλ2(ω) = 0, and is given in (Stakgold, 1967,
page 66) :

g(x, x0) =


u1(x)u2(x0)

a0(x0)W (u1,u2;x0) , 0 ≤ x ≤ x0
u1(x0)u2(x)

a0(x0)W (u1,u2;x0) , x0 ≤ x ≤ L,
(80)

where u1(x) is a non-trivial solution of the homogeneous equation satisfying
B̂λ1u1 = 0 and u2(x) a non-trivial solution satisfying B̂λ2u2 = 0, where
W (u1, u2;x) denotes the Wronskian of both solutions evaluated at x and
where we have omitted the dependence on ω for clarity. From this equation,
it can be checked that the transitivity property holds:

g(x1, x3) = g(x1, x2)g(x2, x3)
g(x2, x2) (81)
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when x1 ≤ x2 ≤ x3 or x3 ≤ x2 ≤ x1.

The generalization to a tree graph
Consider now the generalization of problem (78) to a tree graph. On each
edge ε ∈ E, an operator of the form:

L̂ε(x) := L̃ε0(x) ∂
2

∂x2 + L̃ε1(x) ∂
∂x

+ L̃ε2(x) (82)

constrains the field V ε:
L̂ε(x)Ṽ ε(x) = Ĩε(x), (83)

where it is understood that x signifies the space coordinate on the edge under
consideration. On each leaf λ ∈ Λ a boundary condition of the form (79)
holds:

B̂λṼ λ = Ĩλ (84)
and at each node that is not a leaf φ ∈ Φ:

Ṽ ε = Ṽ ε′ , ∀ε, ε′ ∈ E(φ) (85)∑
ε∈E(φ) L̃

ε ∂
∂x
Ṽ ε = Ĩφ, (86)

Equation (85) assures continuity of the field and a condition of the form (86)
is imposed in many physical systems to assure the conservation of flow.

We wish to determine Green’s function g(x, x0) of this problem. When
x0 is located on edge ε0, we need to solve this problem for Iε(x) = δεε0δ(x−
x0), Iλ = Iφ = 0. We will first show that at each end of edge ε0 boundary
conditions of the form (79) hold, by using (84), (85) and (86).

To do so, we only need the following recursion rule: Consider a node
φ, and suppose that all but one of the edges in E(φ) satisfy a boundary
condition B̂εṼ ε = 0 of the type (79) at the opposite end of node φ. Within
each edge, we chose the spatial coordinate xε to be Lε (i.e. the edge’s length)
at that far end and 0 at the node. Let us call the edge that does not satisfy
the boundary condition ε′. Thus we have:

B̂εṼ ε = L̃ε1
∂

∂x
Ṽ ε(Lε) + L̃ε2Ṽ

ε(Lε) = 0, ∀ε ∈ E(φ) \ ε′, (87)

and from (85) and (86) if follows that:

Ṽ ε′(0) = Ṽ ε(0), ∀ε ∈ E(φ) (88)∑
ε∈E(φ)\ε′ L̃

ε ∂
∂x
Ṽ ε(0) + L̃ε

′ ∂
∂x
Ṽ ε′(0) = 0, (89)
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We will show that from conditions (88) and (89) a boundary condition of the
form (79) can be derived for Ṽ ε′(0) (i.e. the field on edge ε′ at the location of
node φ), as long as the differential equations on edges ε ∈ E(φ)\ε′ are homo-
geneous. Let uε(x) be a non-trivial solution of the homogeneous problem (83)
on edge ε that satisfies condition (87). Every solution on that edge is neces-
sarily of the form Ṽ ε(x) = Aεuε(x). As a consequence of (88), Aε = Ṽ ε

′ (0)
uε(0) ,

which leads to a constraint on the derivative ∂
∂x
Ṽ ε(0) = Ṽ ε

′ (0)
uε(0)

∂
∂x
uε(0). Thus,

equation (89) becomes: ∑
ε∈E(φ)\ε′

L̃ε
∂
∂x
uε(0)
uε(0)

 Ṽ ε′(0) + L̃ε
′ ∂

∂x
Ṽ ε′(0) = 0, (90)

precisely the boundary condition for Ṽ ε′ we were after.
Applying this operation recursively throughout the tree, starting from

the leafs until edge ε0, assures that this edge has a boundary condition of the
form (79) at both ends. Thus, on this edge, g(x, x0) is of the form (80).

To prove the transitivity property (81) for two arbitrary points x1 and x3
on the tree graph, and for a point x2 that is on the shortest path between x1
and x3, we distinguish four cases.

1. x1, x2, x3 are on the same edge. Since the segment has boundary
conditions of the type (79), the Green’s function may be constructed
as in (80), and thus (81) holds.

2. x1 and x2 on the same edge, x3 is on a different edge. Let φ be
the node adjacent to the edge ε0 on which x1 and x2 are located and on
the shortest path between x2 and x3. Necessarily, the Green’s function
at that point satisfies

g(φ, x1) = g(φ, x2)g(x2, x1)
g(x2, x2) , (91)

which then determines the solution on the adjacent edges ε ∈ E(φ) \ ε0
(where we choose the spatial coordinate xε to be 0 at φ and Lε at the
opposite end). On either of these edges, the solution is of the form
Aεuε(xε), with uε(xε) a solution satisfying the derived condition of type
(79) at the opposite end. Condition (85) then imposes Aε = g(φ,x1)

uε(0) =
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g(φ,x2)g(x2,x1)
g(x2,x2)uε(0) , and thus:

g(xε, x1) = g(φ, x1)
uε(0) uε(xε) = g(φ, x2)g(x2, x1)

g(x2, x2)uε(0) uε(xε)

=
g(φ,x2)uε(xε)

uε(0) g(x2, x1)
g(x2, x2) = g(xε, x2)g(x2, x1)

g(x2, x2) .

(92)

We may apply this consideration recursively through the tree graph,
until we arrive at the point x3, which proves relation (81) in this case.

3. x2 and x3 on the same edge, x1 is on a different edge. Let ε
denote the edge on which x2 and x3 are located, and let us denote
the node adjacent to that edge at the side of x1 by φ, and take the x-
coordinate describing the position in that edge to be zero there (xε = 0).
Then Ṽ ε(0) = g(φ, x1). On the other side of the edge, at xε = Lε, the
derived condition of the form (79) holds, and thus the field in that edge
satisfies Ṽ ε(xε) = g(φ,x1)

uε(0) u
ε(xε)(= g(xε, x1)), where uε(xε) is a solution

satisfying this boundary condition. The Green’s functions g(x2, x2) and
g(x3, x2) are still of the form (80), as in this case the derived boundary
conditions are valid on both ends of the edge. Let vε(xε) be a solution
that satisfies the homogeneous boundary condition at xε = 0. Then,
using (80), the following holds:

g(x3, x2) 1
g(x2, x2)g(x2, x1)

= vε(x2)uε(x3)
a0(x2)W (uε, vε, x2)

a0(x2)W (uε, vε, x2)
vε(x2)uε(x2)

g(φ, x1)uε(x2)
uε(0)

= g(φ, x1)uε(x3)
uε(0)

= g(x3, x1)
(93)

4. x1, x2, x3 are on different edges. This case is proved by combining
the two previous cases.
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B Vector fitting
Here we briefly explain the VF algorithm (Gustavsen and Semlyen, 1999) as
we implemented it. The version of this algorithm we needed approximates a
complex function f(s), for which

∣∣f(s)
∣∣→ 0 when |s| → ∞ and

∣∣f(s)
∣∣ > 0, as

follows:
f(s) ≈

L∑
l=1

γl
αl + s

, (94)

where the parameter L is chosen. It does so in two steps: First the poles αl
are identified and then the residues γl are fitted.

Pole identification
First, a set of chosen starting poles ᾱl is specified, and an unknown auxiliary
function σ(s) with these poles is proposed, so that:

σ(s) =
L∑
l=1

γ̄l
ᾱl + s

+ 1 (95)

[
σ(s)f(s)

]
fit =

L∑
l=1

γ̄′l
ᾱl + s

. (96)

Multiplying equation (95) with f(s), and equating this with equation (96)
gives:

L∑
l=1

1
ᾱl + s

γ̄′l −
L∑
l=1

f(s)
ᾱl + s

γ̄l = f(s). (97)

When f is evaluated at enough frequency points s (we found it sufficient
to sample f(s) on the imaginary axis s ≡ iωj, ωj ∈ R, j = 1, . . . , N on an
equidistant scale for small ω and on a logarithmic scale for large ω), this
gives an over-determined system that can be solved for γ̄l and γ̄′l by the
least squares method. The poles of f(s) are then given by the zeros of σ(s)
since, as the parametrization for σ(s) satisfies equation (97), it holds that
(see (Gustavsen and Semlyen, 1999; Hendrickx and Dhaene, 2006) for further
details):

f(s) =
[
σ(s)f(s)

]
fit

σ(s) . (98)
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Figure 4: Illustration of the VF algorithm. A: A typical kernel is accu-
rately approximated by the VF algorithm (here L = 10). B: The error E(ω)
of this fit. C: The average error of the fit as a function of L.

These zeros can be found as the eigenvalues of the matrix:

H =


ᾱ1 − γ̄1 −γ̄2 . . . −γ̄L
−γ̄1 ᾱ2 − γ̄2 . . . −γ̄L

... ... . . . ...
−γ̄1 −γ̄2 . . . ᾱL − γ̄L

 . (99)

Note that this procedure can be part of an iterative optimization, where the
newly found poles can be used as the starting poles for the next iteration.

Residue fitting
Once the poles αl are known, the residues can be determined by solving the
over-determined system:

L∑
l=1

1
αl + s

γl = f(s) (100)

for γl by the least squares method.

Accuracy
The VF algorithm does not provide the number of poles for the fit, nor does
it provide an estimate for the accuracy of the fit with a given number of
poles. We chose the number of poles as the smallest number for which the
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approximation gave a sufficient accuracy, defined as:

E(ωj) ≡

∣∣∣∣f(iωj)−
∑L
l=1

γl
αl+iωj

∣∣∣∣
maxj

∣∣∣f(iωj)
∣∣∣ < ε, j = 1, . . . , N. (101)

For our nerve models, we found that ε = 10−8 was sufficient. Usually, this
accuracy was reached with 10 . L . 20. In Fig 4A, we show a typical
example of a kernel from the SGF formalism, together with its approximation
with L = 10. In Fig 4B we show the error of this approximation as a function
of the frequency, whereas Fig 4C we show how the average error, defined as:

〈E〉 = 1
N

N∑
j=1

E(ωj), (102)

changes with L.
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