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Abstract

Hierarchical visualization systems are desirable because a single two-
dimensional visualization plot may not be sufficient to capture all of the
interesting aspects of complex high-dimensional data sets. We extend
an existing locally linear hierarchical visualization system PhiVis [1] in
several directions: (1) we allow for non-linear projection manifolds (the
basic building block is the Generative Topographic Mapping – GTM), (2)
we introduce a general formulation of hierarchical probabilistic models
consisting of local probabilistic models organized in a hierarchical tree,
(3) we describe folding patterns of low-dimensional projection manifold
in high-dimensional data space by computing and visualizing the mani-
fold’s local directional curvatures. Quantities such as magnification fac-
tors [3] and directional curvatures are helpful for understanding the lay-
out of the nonlinear projection manifold in the data space and for further
refinement of the hierarchical visualization plot. Like PhiVis, our system
is statistically principled and is built interactively in a top-down fashion
using the EM algorithm. We demonstrate the visualization system prin-
ciple of the approach on a complex 12-dimensional data set and mention
possible applications in the pharmaceutical industry.

1 Introduction

In general, a single two-dimensional projection of high-dimensional data, even if it is non-
linear, may not be sufficient to capture all of the interesting aspects of the data. Indeed,
when investigating a data set through low-dimensional projections, it is natural take a hi-
erarchical approach: one first constructs a top-level plot and then concentrates on local
regions of interest by recursively building the corresponding sub-projections. The sub-
models are organized in a hierarchical tree.
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The basic building block of our hierarchical visualization system is the Generative Topo-
graphic Mapping (GTM) introduced by Bishop, Svensén and Williams in [2]. Basically,
GTM is a probabilistic re-formulation of the Kohonen self-organizing map (SOM), but un-
like SOM, GTM defines an explicit probability density model of the data. This enables us
to apply a consistent and statistically principled framework of [1] to formulate hierarchical
non-linear visualization trees. Also, since GTM forms a smooth two-dimensional manifold
in the data space, one can analytically compute quantities such as magnification factors and
directional curvatures that are important for both understanding the visualization plots and
constructing deeper levels of the visualization hierarchy. Magnification factors quantify
the extent to which the areas are magnified on projection to the data space. Directional
curvatures capture the local folding patterns of the projection manifold.

2 Generative Topographic Mapping

The Generative Topographic Mapping (GTM) [2] models a probability distribution in the
(observable) high-dimensional data space D = <D by means of low-dimensional latent,
or hidden variables. The data is visualized in the latent space H � <L (usually a two-
dimensional interval [�1; 1]� [�1; 1]).

We cover the latent spaceH with an array of K latent space centers x i 2 H, i = 1; 2; :::;K.
In this study K = 15 � 15 = 225. Non-linear GTM transformation f : H ! D from
the latent space to the data space is defined using a radial basis function network. To this
end, we cover the latent space with a set of M � 1 fixed non-linear basis functions (here
Gaussian functions of the same width �) �j : H ! <, j = 1; 2; :::;M � 1, (here � = 1:0,
M = 4� 4+ 1 = 17, a single constant basis function accounts for the bias term) centered
on a regular grid in the latent space. Given a point x 2 H in the latent space, its image
under the map f is

f(x) = W �(x); (1)

where W is a D �M matrix of weight parameters and �(x) = (�1(x); :::; �M (x))T .

GTM creates a generative probabilistic model in the data space by placing a radially-
symmetric Gaussian with zero mean and inverse variance � around images, under f , of
the latent space centers xi 2 H, i = 1; 2; :::;K. We refer to the Gaussian density associ-
ated with the center xi by P (tj xi;W; �).

Defining a uniform prior over xi, the density model in the data space provided by the GTM
is P (tjW; �) = 1=K

PK

i=1 P (tj xi;W; �).

For the purpose of data visualization, we use Bayes’ theorem to invert the transformation
f from the latent space H to the data space D. The posterior distribution on H, given a
data point tn 2 D, is a sum of delta functions centered at centers xi, with coefficients equal
to the posterior probability Rin that the i-th Gaussian (corresponding to the latent space
center xi) generated tn [2],

Ri;n =
P (tnj xi;W; �)

PK

j=1 P (tnj xj ;W; �)

: (2)

The latent space representation of the point tn, i.e. the projection of tn, is taken to be the
mean

PK

i�1Rin xi of the posterior distribution onH.

The f–image of the latent space H, 
 = f(H) = ff(x) 2 <Dj x 2 Hg; forms a smooth
L-dimensional manifold in the data space. We refer to the manifold 
 as the projection
manifold of the GTM.



Magnification factors of 
 were calculated as the Jacobian of the GTM map f in [3]. In
[4] we derived a closed-form formula for directional curvature of the projection manifold

 for a latent space point x 2 H and a directional vector h 2 H.

3 Hierarchical GTM

The hierarchical GTM arranges a set of GTMs and their corresponding plots in a tree
structure T . In this section we give a general formulation of hierarchical mixture models:
more detail can be found in [5].

The Root is at level 1, i.e. Level(Root) = 1. Children of a modelN with Level(N ) = `

are at level `+ 1, i.e. Level(M) = `+ 1, for all M2 Children(N ).

Each model M in the hierarchy, except for Root, has an associated parent-conditional
mixture coefficient, or prior �(MjParent(M)). The priors are non-negative and satisfy
the consistency condition:

P
M2Children(N ) �(Mj N ) = 1. Unconditional priors for the

models are recursively calculated as follows: �(Root) = 1, and for all other models

�(M) =

Level(M)Y

i=2

�(Path(M)ij Path(M)i�1); (3)

where Path(M) = (Root; :::;M) is the N -tuple (N = Level(M)) of nodes defining the
path in T from Root to M.

Distribution given by the hierarchical model is a mixture of leaf models of T ,

P (tj T ) =
X

M2Leaves(T )

�(M) P (tj M): (4)

Non-leaf models not only play their role in the process of creating the hierarchical model,
but in the context of data visualization can be useful for determining the relationship be-
tween related subplots in the hierarchy.

3.1 Training

The hierarchical GTM is trained using EM to maximize its likelihood with respect to the
data sample � = ft1; t2; :::; tNg. Training of a hierarchy of GTMs proceeds in a recursive
fashion. First, a base (Root) GTM is trained and used to visualize the data. Then the user
identifies interesting regions on the visualization plot that they would like to model in a
greater detail. In particular, the user chooses a collection of points c i 2 H by clicking on
the plot. These “regions of interest” are then transformed into the data space as Voronoi
compartments defined by the mapped points fRoot(ci) 2 D, where fRoot is the map (1) of
the Root GTM. The child GTMs are initiated by local PCA in the corresponding Voronoi
compartments. After training the child GTMs and seeing the lower level visualization plots,
the user may decide to proceed further and model in a greater detail some portions of the
lower level plots, etc. At each stage of hierarchical GTM construction, the EM algorithm
alternates between the E- and M-steps until convergence is satisfactory (typically after 10–
20 iterations). A detailed derivation of the training equations can be found in [5].

3.1.1 E-step

In the E-step, we estimate the posterior over all hidden variables, using the “old” values of
GTM parameters. Given a data point tn 2 D, compute the model responsibilities corre-



sponding to the competition among models belonging to the same parent,

P (Mj Parent(M); tn) =
�(Mj Parent(M)) P (tnj M)P

N2[M] �(Nj Parent(M)) P (tnj N )
; (5)

where [M] = Children(Parent(M)).

Imposing P (Rootj tn) = 1, the unconditional (on parent) model responsibilities are recur-
sively determined by

P (Mj tn) = P (Mj Parent(M); tn) P (Parent(M)j tn): (6)

Responsibilities of the latent space centers xi, i = 1; 2; :::;K, corresponding to the compe-
tition among the latent space centers within each modelM, are calculated using (2).

3.1.2 M-step

In the M-step, we estimate the free parameters using the posterior over hidden variables
computed in the E-step.

Parent-conditional mixture coefficients are determined by

�(MjParent(M)) =

PN

n=1 P (Mj tn)PN

n=1 P (Parent(M)j tn)
: (7)

Weight matrices W are calculated by solving (using the pseudoinverse to allow for possible
ill-conditioning)

(�
T B �) WT

= �
T R T; (8)

where � is a K �M matrix with elements (�)ij = �j(xi), T is a N �D matrix storing
the data points t1; t2; :::; tN as rows, R is a K �N matrix containing, for each latent space
center xi, and each data point tn, scaled responsibilities (R)in = P (Mj tn) Ri;n, and B is
a K�K diagonal matrix with diagonal elements corresponding to responsibilities of latent
space centers for the whole data sample, (B)ii =

PN

n=1 P (Mj tn) Ri;n.

The inverse variances are re-estimated using

1

�

=

PN

n=1 P (Mj tn)
PK

i=1 Ri;n kWnew
�(xi)� tnk2

D

PN

n=1 P (Mj tn)
; (9)

where Wnew is the “new” weight matrix computed from (8).

To make expressions for training individual modelsM consistent throughout the hierarchy,
we introduce a virtual model Parent(Root) by postulating �(RootjParent(Root)) = 1,
Children(Parent(Root)) = fRootg, and P (Parent(Root)j tn) = 1. Details concern-
ing parameter initialization and regularization can be found in [5].

4 Experiments

4.1 Hierarchical visualization of oil flow data

We illustrate our system on a 12-dimensional oil flow data set generated from a physics-
based simulation of a non-invasive monitoring system, used to determine the quantity of oil
in a multi-phase pipeline containing a mixture of oil, water and gas. The data set consists
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Figure 1: Visualization of oil flow data. Points shown as circles, pluses and squares corre-
spond to flow configurations homogeneous, annular and laminar, respectively.

of 1000 points obtained synthetically by simulating the physical process in the pipe. Points
in the data set are classified into three different multi-phase flow configurations, namely
homogeneous, annular and laminar.

The projection plot is organized in a hierarchical tree T shown in figure 1(a). If a node
(subplot) in figure 1(a) is not a leaf, we show in the corresponding node in figure 1(b) the
latent space points ci that were chosen to be the “centers” of the regions of interest for the
child GTMs (see section 3.1). The centers are shown as circles labeled by numbers. The
numbers determine the order of the corresponding child GTM subplots (left-to-right).

We make use of the probabilistic character of GTM and plot all the data points on every
plot, but modify the intensity in proportion to the responsibility which each plot (submodel
M) has for the data point tn. Points that are not well captured by M will appear with
low intensity. The user can visualize the regions captured by a particular child GTM M,
by modifying the plot of its parent (or, alternatively, the plots of all its ancestors), so that
instead of the parent responsibilities, the responsibilities of the model M are used. This



is done by simply clicking with a mouse on a chosen child GTM plot. As an example, we
show in figure 1(c) points captured by the third level-three GTMM in the hierarchy T . In
the Root plot, points visualized byM form a dense cluster, with overlapping homogeneous
and annular classes. The situation improves a bit at level two, but only at level three are
the two classes nicely separated.

The hierarchical structure of plots used for plotting the GTMs’ projections is also used to
show the local directional curvatures (figure 1(d)). For every GTMM and each latent space
center xi of M, we evaluate the local directional curvatures of the projection manifold

 (see section 2) at the mapped centers f(xi) with respect to latent space directions hj ,
j = 1; 2; :::; Nh (see [2]). The directions hj , j = 1; 2; :::; Nh, correspond to the Nh

equidistant points on the unit circle, subject to the constraint that the first direction is (1; 0).
We set Nh = 16. In the final plot we show, for each latent space center x i, the maximal
norm of the curvature across the different “probing” directions h j . The direction of the
maximal curvature is shown as a black line of length proportional to the curvature’s value.
The intensity of curvatures in the hierarchy of GTMs is scaled by the minimal and maximal
curvatures found in the whole hierarchy T . A locally scaled plot of curvatures can be
obtained by clicking on a chosen plot corresponding to a local GTM. Although not shown
here, we visualize in a similar manner local magnification factors of GTMs in the hierarchy
T .

The curvature plot of the Root GTM in figure 1(d) reveals that the two-dimensional pro-
jection manifold folded three times in order to “capture” the distribution of points in the
12-dimensional space. Interestingly, the three flow configurations seem to be roughly sep-
arated by the folds (compare the top level visualization plot in figure 1(a) with the corre-
sponding curvature plot). We confirmed this hypothesis by constructing three local second-
level visualization plots initialized in the regions between the folds. The second plot of the
second-level projections was further detailed in four third-level plots. Curvature (and mag-
nification factor – not shown here) plots of the lower level GTMs reveal that, compared with
the Root GTM, the lower level projection manifolds do not significantly stretch/contract
and are almost flat.

4.2 Investigation of pharmaceutical data through visualization

In co-operation with Pfizer Global Research and Development we performed a series of ex-
periments with a data set of molecular compounds (represented as 16 dimensional feature
vectors) labelled by their biological activity against a set of targets. The data set contained
all 16 dimensional feature vectors for a total of 49500 chemical entities. It did not con-
tain any descriptors of the chemical structure, but contained features describing biological
activity in 4 tests in addition to a number of whole molecule properties for the chemical
entities (compounds) e.g. Molecular Weight, cLogP, number of atoms.

Interpretation of the GTM visualizations showed areas of particular interest where com-
pounds, which demonstrated an effect against one or more biological targets, were spa-
tially clustered with compounds that showed little or no effect. The clusters of compounds
could be described by 3 GTM sub-models and totalled 34 specific compounds. The models
constructed by the GTM technique did not use any structural descriptors. These groups of
compounds were investigated further. The full chemical descriptors for the structure were
obtained and using a structure based clustering technique the 34 compounds were analyzed
using a proprietary clustering tool which determines homology of compounds based on the
most prominent ring system. This tool partitioned the 34 compounds into 3 groups that
had significant overlap with the clustering observed in the GTM visualizations. The key



distinction between the two techniques is that the GTM utilizes mainly biological data and
no structural information and the proprietary clustering tool uses only structural descriptors
and no biological information.

Preliminary conclusions suggests that the hierarchical visualization using GTM provide
meaningful clustering of compound related data based on biological information and a lim-
ited number of physiochemical parameters. But more importantly the analysis suggests that
there is potential for clustering compounds based on biological data which is meaningful in
the light of grouping by purely structural parameters. This implies some similarity between
how a Medicinal Chemist would view the compounds and the GTM visualizations.

Further work will be performed to determine the application of the GTM visualizations
based on biological data for identification of compounds that are falsely positive in a bio-
logical test, or are incorrectly classified by structural clustering algorithms.

5 Discussion

This study was motivated by the fact that most visualization algorithms projecting points
from a high-dimensional data space onto a two-dimensional projection space suffer from
two major drawbacks: (1) A single visualization plot is often not sufficient. Encompass-
ing all the data points in a single low-dimensional projection can make the plot confus-
ing and difficult to read. (2) The low dimensional non-linear projection manifold onto
which the data points are projected can form complicated folds and/or significant contrac-
tions/stretchings in the high-dimensional data space. When presented with the projection
plot alone, it is difficult for the user to judge the actual “layout” of the points in the data
space.

Instead of a single plot, we construct a whole hierarchy of localized non-linear visualiza-
tion plots by extending the locally linear hierarchical visualization system PhiVis [1] to
allow for non-linear projection manifolds. Like PhiVis, our system is statistically princi-
pled and is built interactively in a top-down fashion using the EM algorithm. Compared
to linear projection methods such as PCA, non-linear visualization techniques are more
capable of revealing the nature of data distribution in a high-dimensional space.

But, as mentioned above (point (2)), there is a price to pay for going from linear to non-
linear visualization methods. We equip the user with first- and second-order geometric
information in the form of local magnification factors and directional curvatures of the pro-
jection manifold. Local curvature and magnification factor patterns provide information
about dominant folds and contraction/expansion regions of the manifold. This informa-
tion is helpful for (1) determining the geometry of the projection manifold in the high-
dimensional data space, (2) changing the amount of regularization in non-linear projection
manifolds, and for (3) choosing regions of interest when constructing detailed lower-level
visualization plots.

Taking advantage of the probabilistic character of local GTMs we can, for each lower-level
plot M, modulate its ancestor plots by shading the projections of data points t accord-
ing to the responsibilities P (Mjt). Understanding where the points in a lower-level plot
come from in the higher-level plots helps the user to relate plots at lower levels with their
ancestors in the visualization hierarchy.
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