
Ingredients for the Specification of Mixed-Criticality Real-Time Systems ∗

Raimund Kirner
University of Hertfordshire

United Kingdom
r.kirner@herts.ac.uk

Abstract

Models for real-time computing are available with dif-
ferent timing requirements. With the ongoing trend towards
integration of services of different degrees of timing strict-
ness on one single platform, there is a need to specify com-
puting models for such scenarios.

In this paper we study the requirements to specify mixed
criticality real-time systems (MCRTS). Mixed criticality
systems have been studied intensively over the last years.
Existing formulations of the scheduling problem for mixed
criticality systems do not consider the different timing strict-
ness requirements of the tasks. In this paper we argue that
mixed criticality properties as well as real-time properties
have to be considered together in order to provide the maxi-
mal utility of a system. Based on that argument we present a
list of ingredients required for the specification of MCRTS.
We outline conceptually, how a system can take advantage
of having MCRTS specifications available. We present some
examples to show the usefulness of specifying MCRTS prop-
erties for real-life systems.

1 Introduction

Computer systems with their timing behaviour being part
of their correctness criterion are called real-time computer
systems. In classical real-time models a deadline is called
firm, if the result is of no value after the deadline, otherwise
the deadline would be called soft. If damaging failure can
happen after a firm deadline has been missed, the deadline
is called hard [9].

To cope with the increasing complexity of cyberphysical
systems, application vendors are increasingly demanded to-

∗The research leading to these results has received funding from the
FP7 ARTEMIS-JU research project “ConstRaint and Application driven
Framework for Tailoring Embedded Real-time Systems” (CRAFTERS).
under contract no 295371 and the IST FP7 research project “Asynchronous
and Dynamic Virtualization through performance ANalysis to support
Concurrency Engineering (ADVANCE)”.

wards solutions with mixed timing requirements and criti-
cality levels of services. The research community has re-
acted by providing platforms with sufficient ways to realise
temporal isolation of tasks in order to execute the jointly,
regardless of having different timing requirements. An ex-
ample is the ACROSS MPSoC (multi-processor system-on-
chip) platform which promotes time-triggered communica-
tion on an MPSoC network as the communication back-
bone [14]. The strong separation based on the time-
triggered network supports isolation of cores, allowing
also mixed-criticality integration. Another example is the
CompSOC platform of Goossens et al., offering a virtual
execution platform for each application running on it [3].
Design flows have been developed to map hard-real-time,
soft-real-time, and non-real-time dataflow applications as
well as Kahn process networks [7] onto the CompSOC plat-
form. Composability for each resources is achieved by us-
ing preemptive time-division multiplexing (TDM) between
applications for access to processor and NoC, which avoids
interference between applications.

Chakraborty et al. have worked on mixed-criticality with
timing and stability constraints based on FlexRay time-
triggered networks [4]. They classify applications into two
categories: (i) safety-critical control applications with sta-
bility and performance constraints, and (ii) time-critical ap-
plications with only deadline constraints. A schedule is con-
structed while at the same time optimising the sampling rate
of the control applications.

Tamas-Selicean and Pop have worked on mixed critical-
ity by considering hard-real-time tasks of different SIL [2]
levels [16]. They need to solve (1) task-to-processor map-
ping, (2) task-to-partition assignment, (3) slot allocation at
each processor, and (4) static schedule tables. Baruah et
al. have also worked on different aspects of scheduling spo-
radic task sets with mixed criticality [1, 10].

Summarising the state of the art, there has been done
considerable amount of work on scheduling applications
with different (timing) criticalities. There are also some
MPSoC platforms proposed that support the engineering of
such systems. What we found to be missing yet is a system-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Hertfordshire Research Archive

https://core.ac.uk/display/42577629?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


atic concept of how to characterise system services of dif-
ferent criticality and real-time properties in a uniform way.

One of the limitations of the classical deadline-based
real-time computing model is its narrow definition of util-
ity, while a utility function provides more flexibility [6, 12].
For example, scheduling based on utility functions allows
for more flexibility to maximise system utility [11, 8].

In Section 2 of this paper we present a uniform way
of characterising systems consisting of services with dif-
ferent timing requirements and criticality properties. Us-
ing these properties, we present a generic definition of
mixed time-criticality for mixed-criticality real-time sys-
tems (MCRTS). In Section 3 we describe the attributes
a programming model should provide in order to specify
mixed time-criticality. Section 4 we outline the generic
principle of how to take advantage of MCRTS specifica-
tions. In Section 5 we show some use cases for mixed time-
criticality systems. Section 6 concludes this work.

2 Mixed Time-Criticality

In the following we clarify the concept of mixed time-
criticality. A computer system typically has to provide dif-
ferent functionalities, which are usually summarised by its
specification. We call these different functionalities ser-
vices. A system may provide multiple services with dif-
ferent time criticality.

2.1 Temporal Service Utility

Central for the concept of mixed time-criticality are the
timing requirements of real-time services. We characterise
the timing requirements by the temporal utility functions.
The temporal utility functions for latency, throughput, and
jitter are called service latency utility function (SLUF), ser-
vice throughput utility function (STUF) and service jitter
utility function (SJUF). An important property of these tem-
poral utility functions is that they acknowledge the dif-
ference of the timing metrics where a result utility could
become zero and the timing metrics chosen as technical
limit [8]. In the following we demonstrate the system spec-
ification by means of the SLUF, with the use of STUF and
SJUF being being analogous.

A simple example a SLUF is shown in Figure 1. In this
example the service utility is not only positive, but it also
becomes negative after a certain time. A positive utility
means that the system is able to provide a useful service.
A negative utility means that the corresponding latency is
outside the valid time range and as a consequence can result
in a damage of the system. In the given example a service
provided later than a certain time interval, denoted as criti-
cal latency, can provide system damage. This range of ser-
vice latency is marked as damaging failure in Figure 1. The

critical

utility

latency
normal

safe
margin
safety

impaired damaging
failure

operation

deadline
technical

latency

Figure 1. SLUF of a Real-Time Service

range of service latency marked as normal safe operation
denotes the service latency considered as optimal operation,
providing the maximum and constant service utility. There
is also a latency range denoted as impaired safety margin,
which does not yet cause any system damage, but exhibits a
declining utility. The declining utility is a reflection of the
reduced safety margin of the corresponding latency inter-
val. When designing a system we usually set the deadline
of a service to the end of the uncompromised service util-
ity range, which we marked with technical deadline in the
figure.

In the example the utility drops abruptly to full poten-
tial damage after the critical latency. However, in general
a latency transition from impaired safety margin to damag-
ing failure could also be more smooth, depending on the
application. For example, with fuel injection in a motor
there is a certain range of injection time where the motor
becomes less efficient and is going to be increasingly worn
out with later/earlier injection timing. In general, the tran-
sition from normal safe operation to damaging failure can
be quite manifold, depending on the concrete real-time ser-
vice. Research on real-time computing is most often oblivi-
ous of this diversity of transition characteristics of different
real-time services.

critical

utility

latency
fast

response
slow

response
moderate
response

deadline
technical

latency

Figure 2. SLUF of a Real-Time Service without Po-
tential Damage

Characteristic for real-time services is that their SLUF
shows a significant value reduction for some range of the
latency values. Figure 1 shows a typical example of how



the SLUF of a real-time service can look like. A negative
SLUF value, as shown in the figure, is considered to repre-
sent damaging failure.

The existence of negative SLUF values is not a precondi-
tion for a service to be classified as a real-time service. For
example, Figure 2 shows an example SLUF of a real-time
service without any potential damage interval. However,
the figure shows a significant variation among the SLUF
values, which is a sufficient criterion to classify the service
as real-time service.

On the contrary, to be classified as a non-real-time ser-
vice, its SLUF may only exhibit a rather small variation. For
example, the SLUF in Figure 3 can be considered as a non-
real-time service, due to its small variation of the SLUF.
There always will be a SLUF variation for any service, as
no service is of use with an indefinitely long response time.
For exactly that reasons one may not be able to cast a strict
separation between what is a real-time service and what is
a non-real-time service. However, the comparison of the
SLUF graph of Figure 2 and Figure 3 should make it suffi-
ciently clear of when it is adequate to speak of a real-time
service or of a non-real-time service.

response

utility

latency
fast

response
slow

response
moderate

Figure 3. SLUF of a Non-Real-Time Service

2.2 Performance Characteristics

System services are normally connected with require-
ments on performance metrics, like throughput, latency,
and jitter. The throughput describes how many input el-
ements a system is able to process per time. The latency
describes the delay between arrival of data at the system in-
put and the release of the processed results at the system
output. The jitter describes the variation of the latency.

These three performance metrics are the basic perfor-
mance characteristics. However there is a difference on how
the performance characteristics are being evaluated. For ex-
ample, for real-time services it is important to consider the
boundaries of the performance metrics. Foremost the mini-
mum throughput, the maximum latency, and the maximum
jitter are important to ensure the timeliness of a real-time
service. It is worth noting that by binding the maximum

latency and jitter, we implicitly also bind the minimum la-
tency.

For non-real-time services it is typically the mean value
of the performance characteristics that matters.

2.2.1 Primary Limits and Tolerance Ranges

Services can have besides their normal safe operation range
another operation range of impaired safety margin, as
shown by the SLUF in Figure 1. A subrange of this im-
paired safety margin might be used as a so-called tolerance
range to extend the operability of the service for operation
situations of unexpected resource shortage, etc. Figure 4
shows an example of a tolerance range of a real-time ser-
vice’s latency. The concept of tolerance ranges for real-time
requirements is a rather recent notion, which has been intro-
duced in [8].

utility

latency
normal

safe
margin
safety

impaired damaging
failure

operation

deadline
technical

service’s primary1.

primary
deadline
technical
tolerance

latency
critical

performance metrics
service’s tolerance
performance metrics

2.

tolerance range3.

Figure 4. Example: Specification of a Real-Time
Service with Tolerance Range

2.3 Deadline/Timing Strictness

Besides the specification of a service’s performance met-
rics it is also useful to specify how strict the given perfor-
mance metrics are meant to be. This information can help
the system scheduler to decide for the best overall perfor-
mance in case that not all services can be run at optimal
performance.

2.3.1 Timing of Non-Real-Time Services

In case of non-real-time services there is no strict expec-
tation about the timing of a service. Although in general
the expectation is that a faster timing is considered as being
better, for example, by providing a more responsive human
user interface. However, in case of multiple non-real-time
services there might be a performance trade-off necessary
between the different services, as it might be not possible to
schedule all services for maximal performance. This is typ-
ically the case when these services share resources, like pro-
cessing cycles, bus access, etc. For example, if one service
of higher priority takes in one round significantly longer



than expected, this different level of timing strictness can
be used to find a best compromise for scheduling the lower-
priority services.

Thus, in case of multiple non-real-time services it also
makes sense to specify their expected performance, such
that the system is able to schedule them according to their
relative performance expectations. The performance met-
rics might be specified by mean values, or by intervals of
their mean values.

2.3.2 Timing of Real-Time Services

For real-time services there are concrete expectations about
the boundaries of performance metrics. Most important is
the latency of real-time services, which might be specified
as maximum allowed latency or as a latency interval in case
it is also important to specify the shortest allowed latency.
Often the throughput of real-time services is important as
well. The throughput might be specified by the minimum
required throughput. Optionally the throughput of real-time
services might be specified as an interval, in case it is im-
portant to limit the maximum processing rate as well. The
allowed jitter is given by the allowed variability of the la-
tency.

An important question about any specified performance
boundaries of real-time services is how strict they are. In
case that any timing violation of a service would put the
system at high risk of damaging failure, the service is called
a hard real-time service.

A soft real-time service will continue to have a positive
SLUF value at least for some of the timing violations. De-
pending on the concrete application, there is a wide range
of what probability of timing violations is still acceptable.

2.4 Service Criticality

Another aspect of the service utility is the categorisa-
tion of its possible negative value, defining the criticality of
the service. A service with a possibly high negative util-
ity is of high criticality. Similarly, a service with none or
very low possible negative criticality is of low criticality. In
between, the service might be classified of medium criti-
cality. Our classification into low, medium, and high crit-
icality is meant to demonstrate the concept. In real appli-
cation domains there are industry standards that concretely
define the set of different criticality levels and how their
classification is done. For example, the DO-178B standard
of the civil avionics domain defines five Design Assurance
Levels (DAL) [13], the ISO 26262 standard of the automo-
tive domain defines four Automotive Safety Integrity Levels
(ASIL) [5], and the IEC 61508 standard of the automation
domain defines four Safety Integrity Levels (SIL) [2].

2.5 Mixed Time-Criticality Systems

Based on the concepts described in this section, we can
now define mixed time-criticality systems as follows:

Definition 2.1 (Mixed Time-Criticality) is a property of
systems comprising multiple services, of which at least one
service is a real-time service, and at least one of the the
following properties holds:

1. the services include different values of performance
metrics or tolerance ranges,

2. the services include different levels of timing strictness,

3. the services include different criticality levels.

Definition 2.1 states that a system with mixed-time crit-
ical services has services of different importance and/or
services with different timing strictness or performance re-
quirements. These three properties are linked together via
the SLUF.

All these properties will be taken into account by the
scheduler to maximise provision of required services. The
mixed time-criticality information can be used to prioritise
services in case the available resources are not sufficient to
provide all services.

3 Specification of Mixed Time-Criticality

In Section 2 we have introduced the concept of mixed
time-criticality and discussed it constituents. In the follow-
ing we outline what specifications the source code of an
MTC system could include in order to specify the mixed
time-criticality of the system’s services. We discuss this as-
pect here on a rather conceptual level, without focusing on
a specific programming language.

Since the specification of mixed time-criticality proper-
ties has to be done for each individual service, it is natural to
add the information to that software regions that represent
that service.

3.1 Specification of Performance Metrics

As described in Section 2.2, the performance of a service
might be described by its latency, throughput, and jitter. We
propose the specification of these performance metrics by
a primary specification and an optional tolerance range, as
explained in the following. As described in Section 2.2.1,
the so-called tolerance-range is meant to describe an ad-
ditional operational range of reduced but still acceptable
service utility. This tolerance range can give the system a
means to decide at runtime in case of unexpected resource
shortage.



Specification of throughput [Hz]:
mean/minimum/range, optional
tolerance-range
For non-real-time services we specify the expected
mean value of throughput. For real-time services we
specify the required minimal value of throughput, but
in case the maximum value of throughput also needs
to be bounded, we specify the throughput as a range.

Specification of latency [ms]:
mean/maximum/range, optional tolerance
range
For non-real-time services we specify the expected
mean value of latency. For real-time services we
specify the required maximal value of latency, but
in case the minimal value of latency also need to be
bounded, we specify the latency as a range.

Specification of jitter [ms]:
maximum, optional tolerance-range
To bound the jitter we specify the maximum jitter. Op-
tionally, we might want to specify an additional toler-
ance range for the jitter beyond the primary maximum
value.

The specification of all three performance metrics is not
mandatory. One might only specify those for which require-
ments exist.

3.1.1 Specification of Timing-strictness

As described in Section 2.3, it is useful to specify how strict
the given performance metrics are meant to be. In addition,
in Section 3.1 we introduced two classes of performance
metrics, the primary one and an optional one for reduced but
still acceptable service utility. To support that we propose
the following classifier of timing strictness:

Specification of Firm Deadline: FIRMRT
In case that no violation of the technical deadline is
considered viable, the timing strictness is firm real-
time. With this timing strictness a specification of a
tolerance range for performance metrics is not mean-
ingful, as the service is expected to be always within
the primary performance limits.

Specification of Soft Deadline: SOFTRT(p1), optional
SOFTRT-tolerance(p2)
If a violation of the primary performance limits within
a certain probability is considered viable, then we
speak of soft real-time systems. The parameter p1 is
the probability of violating the primary performance
limits, and p2 is the probability of violating the
performance limits of the optional tolerance range.
This violation probability is given as violations per

hour, with ultra-dependable systems like civil avionics
requiring a value smaller than 10−9 as there the overall
probability of any type of failure is limited to 10−9.
The optional property SOFTRT-tolerance(l2)
makes only sense if also any tolerance range of a
performance metrics has been specified. To make use
of the tolerance range it is required that p1 > p2.

Specification of Non-Real-Time: NONRT
In case a service is considered to be practically non-
real-time, then it does not have any timing strictness,
expressed by the attribute NONRT.

3.1.2 Specification of Service Criticality

As explained in Section 2.4, also the service criticality is
an important decision-criterion for scheduling the processor
resources in case of only insufficient resources being avail-
able to run all services at optimal performance. We propose
the specification of criticality levels in a generic way using
integer values:

CRIT(k)
with k = 0 representing the lowest criticality. A mean-

ingful specification of service criticality levels has to be
compliant with the domain-specific safety standards, as
mentioned in Section 2.4. For example, if the safety stan-
dard uses four levels, one might use four criticality levels
as a direct relation, or use even more, if the engineering ap-
proach would need a more fine-grained subdivision, e.g., to
derive scheduling priorities.

4 Optimising Service Quality of Mixed Time-
Criticality

The primary purpose of this paper is to study mixed-
criticality real-time systems (MCRTS) and list the different
requirements needed to specify them. In this section we
want to give an outline of how this information can be used
in order to provide an optimisation framework to maximise
the utility of an MCRTS. This optimisation framework will
provide more flexibility than those listed in the state-of-the-
art in Section 1, as it allows to trade timing properties to
improve the set of feasible high-criticality tasks.

The conventional scheduling problem for mixed criti-
cality systems can be seen as maximising the number of
schedulable services weighted by their criticality as shown
in Equation 1:

SUF opt,mc = max
∑

i∈SERVICES

CRIT (i)

∧ SCHEDULABLE(i) (1)



We propose to extend this goal function for MCRTS to
also consider the relevant timing properties. For example, if
we consider the latency as important, we have the additional
freedom to trade latency along its tolerance range (see Sec-
tion 2.2.1) to get a wider set of critical services scheduled:

SUF opt,mcrts = max
∑

i∈SERVICES

CRIT (i) · SLUF (i, li)

∧ SCHEDULABLE(i) (2)

In above goal function for MCRTS systems the optimi-
sation parameter li represents the latency for service i and
and SLUF (i, li) represents the SLUF of service i.

This concept can also be further extended to take into
account additional timing properties like throughput. Given
our goal function for MCRTS, such an extension is straight
forward. For example, to add throughput to goal func-
tion Equation 2 we just have to multiply the term with
STUF (i, ti) where ti would be an additional optimisa-
tion parameter representing the throughput of Service i and
STUF (i, ti) represents the STUF of service i:

SUF opt,mcrts =

max
∑

i∈SERVICES

CRIT (i) · SLUF (i, li) · STUF (i, ti)

∧ SCHEDULABLE(i) (3)

Section 5 gives some ideas of how such a framework can
be beneficial for real applications.

5 Examples of Mixed Time-Criticality

In the following we briefly describe different applica-
tions that fit to the concept of mixed time-criticality. As
a general pattern, it can be also the case that the time-
criticality of a service changes dynamically, for example,
by changing the mode the system is in.

5.1 Services of Different Timing-strictness but
Same Criticality

There are cases where a service is of high criticality, even
though the timing strictness allows for some flexibility. For
example, in an aircraft there are numerous services that are
essential for the safety of the passengers, even though their
utilisation is not bounded by a firm deadline.

For example, the cabin pressurisation in a plane is con-
trolled by an outflow valve to create a comfortable environ-
ment for aircraft passengers. Controlling the cabin pres-
surisation is of high criticality, as a failure to do so can put
the passengers’ life at risk. But the service is of relatively

moderate timing strictness, as its corresponding SLUF has a
rather smooth transition from normal safe operation to dam-
aging failure. Once the cabin pressure leaves the comfort
zone, the passengers are still being able to compensate for
a certain amount of pressure loss by hyperventilation [17].
This would give additional time to control the cabin pres-
sure in order to avoid serious damage.

5.2 Services of Same Timing Strictness but Differ-
ent Criticality

As a generic pattern, using a time-triggered (TT) com-
munication interface enforces technical deadline with high
timing strictness, imposed by the length of the so-called TT
communication round. Any two services running on a node
would both be required to adhere to the same timing strict-
ness to function flawlessly. However, these two services
might have different criticality levels. Based on these differ-
ent criticality levels the local scheduler of a node can prefer
the execution of the higher criticality service, allowing for
a higher probability to maintain its service in case of unex-
pected increases of processing latency.

5.3 Services of Different Timing Strictness and
also Different Criticality

Schrijver and Creemers from Philips Healthcare pub-
lished a use case of X-ray treatment with image process-
ing [15]. This use case has basically three services to pro-
vide: real-time image filtering (IF), real-time feature detec-
tion (FD), non-real-time post-processing (PP). The IF ser-
vice is meant to provide a frame rate of 24 frames/second.
The FD service is significantly more complex to calculate
than IF, but at the same time has a lower update rate re-
quirement than IF. The update rate of FD depends on the
available free computing resources and should ideally cope
with the moving speed of the relevant object to be high-
lighted in the video stream. The PP service is meant to run
in the background when none of the IF and FD services is
active. Without running the PP in background and instead
executing them just at the end of the day when switching
off the machine, would result in a considerable delay of the
shutdown process. The three services also have different
criticality levels, with IF having the highest criticality, and
PP the lowest criticality.

6 Summary and Conclusion

In this paper we argued that the specification of mixed-
criticality real-time systems (MCRTS) should jointly con-
sider criticality properties and timing properties in order to
maximise the utility of the system. Central for the devel-
opment of the generic concept of mixed time-criticality has



been the uniform characterisation of hard-real-time, soft-
real-time, and non-real-time services by their temporal ser-
vice utility functions for latency, throughput, and jitter.
These temporal service utility functions together with the
criticality values to the different services provides a novel
way to optimise the utility of MCRTS. Important to this
additional flexibility is the concept of tolerance ranges of
timing properties.

Currently we work on a coordination language for
MCRTS that will include the ability to specify the
properties identified in this paper. Further work will
be on scheduling techniques that take advantage of the
additional flexibility of MCRTS specifications to improve
the robustness of MCRTS systems.

References

[1] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin. Mixed-
criticality scheduling on multiprocessors. Real-Time Sys-
tems, pages 1–36, 2013.

[2] I. E. Commission. Functional safety of electrical / electronic
/ programmable electronic safety-related systems. IEC stan-
dard 61508, 1998.

[3] K. Goossens, A. Azevedo, K. Chandrasekar, M. D. Gomony,
S. Goossens, M. Koedam, Y. Li, D. Mirzoyan, A. Mol-
nos, A. B. Nejad, A. Nelson, and S. Sinha. Virtual exe-
cution platforms for mixed-time-criticality applications: the
CompSoC architecture and design flow. In editor, editor,
Proc. 5th Workshop on Compositional Theory and Technol-
ogy for Real-Time Embedded Systems, pages 23–30, San
Juan, Puerto Rico, Dec. 2012.

[4] D. Goswami, M. Lukasiewycz, R. Schneider, and
S. Chakraborty. Time-triggered implementations of mixed-
criticality automotive software. In Proc. Conference on De-
sign, Automation and Test in Europe, pages 1227–1232, Los
Alamitos, CA, USA, 2012. IEEE Computer Society.

[5] ISO/DIS. Road vehicles – functional safety. ISO/DIS stan-
dard 26262, Nov 2011. International Standard.

[6] E. D. Jensen. Asynchronous decentralized real-time com-
puter systems. In W. A. Halang and A. D. Stoyenko, editors,
Real-Time Computing, Proc. of NATA Advanced Study Insi-
titute, St, Martin, Oct. 1992. Springer Verlag.

[7] G. Kahn. The semantics of a simple language for paral-
lel programming. In J. L. Rosenfeld, editor, Proc. IFIP
Congress on Information Processing, Stockholm, Sweden,
Aug. 1974. ISBN: 0-7204-2803-3.

[8] R. Kirner. A uniform model for tolerance-based real-
time computing. In Proc. 17th IEEE Int’l Symposium on
Object/Component/Service-oriented Real-Time Distributed
Computing, Reno, Nevada, USA, June 2014.

[9] H. Kopetz. Real-Time Systems - Design Principles for Dis-
tributed Embedded Applications. Springer, 2nd edition,
2011. ISBN: 978-1-4419-8236-0.

[10] H. Li and S. Baruah. Outstanding paper award: Global
mixed-criticality scheduling on multiprocessors. In Proc.
24th Euromicro Conference on Real-Time Systems, pages

166–175, Los Alamitos, CA, USA, 2012. IEEE Computer
Society.

[11] B. Ravindran and T. Hegazy. A predictive algorithm for
adaptive resource management of periodic tasks in asyn-
chronous real-time distributed systems. In Proc. 15th Int’l
Parallel and Distributed Processing Symposium, Apr. 2001.

[12] B. Ravindran, D. E. Jensen, and P. Li. On recent advances in
time/utility function real-time scheduling and resource man-
agement. In Proc. 8th IEEE Int’l Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’05),
pages 55–60. IEEE, 2005.

[13] RTCA. Software considerations in airborne systems and
equipment certification. RTCA/DO-178B, 1992.

[14] C. E. Salloum, M. Elshuber, O. Höftberger, H. Isakovic, and
A. Wasicek. The ACROSS MPSoC - a new generation of
multi-core processors designed for safety-critical embedded
systems. In Proc. 5th Euromicro Conference on Digital Sys-
tem Design (DSD), pages 105–113, Cesme, Izmir, Turkey,
Sep. 2012. IEEE.

[15] M. Schrijver and M. Creemers. Running real-time and best-
effort applications concurrently on common off-the-shelf
hardware. In C. Grelck, K. Hammond, and S. Scholz,
editors, 2nd HiPEAC Workshop on Feedback-Directed
Compiler Optimization for Multicore Architectures (FD-
COMA’13), Berlin, Germany, Jan. 2013. HiPEAC.

[16] D. Tamas-Selicean and P. Pop. Design optimization of
mixed-criticality real-time applications on cost-constrained
partitioned architectures. In Proc. 32nd Real-Time Systems
Symposium (RTSS), pages 24–33. IEEE, 2011.

[17] Wikipedia. Cabin pressurization. web page: http://en.
wikipedia.org/wiki/Cabin_pressurization,
2013. accessed online on 13th August 2013 at 21:00.


