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Abstract In this paper we introduce a new hierarchical clustering algorithm
called Wardp. Unlike the original Ward, Wardp generates feature weights,
which can be seen as feature rescaling factors thanks to the use of the Lp

norm. The feature weights are cluster dependent, allowing a feature to have
different degrees of relevance at different clusters.

We validate our method by performing experiments on a total of 75 real-
world and synthetic datasets, with and without added features made of uni-
formly random noise. Our experiments show that: (i) the use of our feature
weighting method produces results that are superior to those produced by the
original Ward method on datasets containing noise features; (ii) it is indeed
possible to estimate a good exponent p under a totally unsupervised frame-
work. The clusterings produced by Wardp are dependent on p. This makes the
estimation of a good value for this exponent a requirement for this algorithm,
and indeed for any other also based on the Lp norm.
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1 Introduction

Cluster analysis aims to partition a dataset Y intoK clusters S = {S1, S2, ..., SK}
without the need of labelled samples. Such task has been applied to various
problems in fields of research including data mining, computer security, com-
puter vision, taxonomy and many others (Jain, 2010; Mirkin, 2005; Kaufman
and Rousseeuw, 1990).

Generally, the algorithms used in cluster analysis can be divided into par-
titional and hierarchical. The former is composed of algorithms originally pro-
ducing disjoint clusters in which an entity yi ∈ Y can be assigned to a single
cluster Sk. Fuzzy set theory (Zadeh, 1965) extends this concept by allowing
an entity to belong to all clusters with a degree of membership uik ∈ [0, 1] for
k = 1, 2, ...,K and i = 1, 2, ..., N , N representing the cardinality of Y . There
are a number of partitional algorithms, K-Means (Ball and Hall, 1967; Mac-
Queen, 1967) being the most popular (Jain, 2010) together with its variant
Fuzzy C-Means (Bezdek, 1981).

Hierarchical clustering algorithms take a different approach. They aim to
produce a set of clusters as well as the relationship between them. This tree-
like relationship can be demonstrated visually with a dendogram. In these a
given entity may belong to more than one cluster, as long as these clusters are
related and the belongness occurs at different levels. Hierarchical algorithms
can be further divided into divisive or agglomerative depending whether the
algorithm takes a top-down or bottom-up approach, in this paper we focus
on the latter. There are many agglomerative algorithms depending on the
criterion used to decide which clusters to merge, among them and perhaps the
most popular, we have the Ward method (Ward, 1963). This method merges
the two clusters that have the smallest cost to merge as per the equation below.

Ward(Si, Sj) =
NSiNSj

NSi
+NSj

d(cSi
, cSj

), (1)

where NSi
and cSi

represent the cardinality and centroid of cluster Si, re-
spectively, while NSj and cSj represent the same for cluster Sj , and d() is a
function returning the distance between the centroids of each of the two clus-
ters. Each cluster Sk is represented by a single centroid ck ∈ C, which is the
centre of gravity of cluster Sk, equivalent to its average if using the L2 norm.

Other hierarchical clustering algorithms include single-linkage and complete-
linkage. The former merges the two clusters that have the minimum dissimilar-
ity between entities of one and the other cluster, given by minx,y{d(x, y)|x ∈
Si, y ∈ Sj}. This criterion may lead to a bias towards elongated clusters and
sensitivity to noise and outliers. Complete-linkage considers the distance be-
tween two clusters to be the maximum dissimilarity between the entities of
one and the other cluster, given by maxx,y{d(x, y)|x ∈ Si, y ∈ Sj}. The latter
criterion is less susceptible to noise than the former, but tends to break large
clusters and generate clusters with a similar diameter. For a review, see the
works of Mirkin (2005); Kaufman and Rousseeuw (1990), and Xu and Wunsch
(2005).
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Hierarchical clustering, and in particular the Ward method, has been used
to address a number of different problems, including finding the number of clus-
ters in datasets (Haldar et al., 2008). The Ward method criterion in (1) allows
for the merging of the two clusters that will increase the total within-cluster
variance by the minimum possible. However, this method is not without weak-
nesses. It is an iterative method of low scalability with a greedy nature that
assumes all features have the same relevance. The latter being of particular
interest in this paper.

Taking the above into account we set the main contribution of this paper
to be a new algorithm called Wardp. Our algorithm applies subspace feature
weighting to take into consideration the different degrees of relevance of each
feature v ∈ V . This allows a given feature v to have K weights, one for
each cluster. Our solution uses the pth root of the Lp distance, analogous to
the Euclidean squared distance, frequently used in clustering algorithms. We
define the former distance for the V -dimensional entities x and y as dp(x, y) =∑V

v=1 |xv−yv|p, where xv and yv represent the value of feature v ∈ V in x and
y, respectively. This clearly introduces p as new parameter to our algorithm,
leading to our second contribution: an unsupervised method to estimate a
good value for the exponent p.

In the rest of this paper we will present our background research, as well
as a proper introduction for our algorithm. We describe the setting of the
experiments validating Wardp and show the results for 75 datasets including
real-world and synthetic datasets.

2 Background

The Ward method iteratively merges two clusters at a time, making sure the
merger will increase the total within-cluster variance by the minimum possible.
Below, we formalize the algorithm where N is the total number of entities in
the dataset Y .

1. Set K = N . Each cluster in S = {S1, S2, ..., SK} is composed of a single
different entity, making it a singleton.

2. Merge the clusters Si and Sj which are the closest as per (1), creating the
new cluster SSi∪Sj

. Remove references to the old clusters Si and Sj , as
well as their centroids cSi

and cSj
.

3. Set the centroid of SSi∪Sj to its centre of gravity.
4. Reduce K in 1, if K is still bigger than the desired number of clusters go

back to Step 2.

This is a very popular method. It has been extended numerous times before
(Murtagh and Legendre, 2013), including an extension applying powers of
the Euclidean distance (Szekely and Rizzo, 2005). In its original version, the
algorithm stops when all entities yi ∈ Y are combined into a single cluster
of size N . In our experiments K is known, allowing us to change the stop
criterion so that the cluster merges cease when the number of partitions in S
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is equal to K. The complexity of the Ward method is of O(N3), making it not
a particularly scalable algorithm. However, this is not a problem we address
in this paper.

There are indeed other hierarchical clustering algorithms that follow a sim-
ilar approach to the above. Most notably single, average and complete linkage
algorithms (Sorensen, 1948; Sokal and Michener, 1958; Florek et al., 1951).
Their basic difference to the Ward method lies in the criterion used to decide
which clusters to merge in step 2. However, none of these algorithms recognizes
that different features may have different degrees of relevance.

The use of feature weights in clustering was introduced by DeSarbo (1984)
with SYNCLUS, a partitional clustering algorithm. SYNCLUS first applies
K-Means to a given dataset and then estimates an optimal set of weights by
optimizing a weighted mean-square, stress-like cost function. These two steps
are iterated until convergence, which may be too computationally demanding
for large datasets (Green et al., 1990).

In hierarchical clustering, Soete (1986, 1988) introduced a method to solve
the feature weighting problem finding optimal feature weights for ultrametric
and additive tree fitting. This method was later extended for K-Means clus-
tering (Makarenkov and Legendre, 2001) using the Polak-Ribiere optimization
procedure, making the algorithm not particularly fast.

Other related work has been done on feature selection as a pre-processing
step for hierarchical clustering algorithms (Talavera, 1999). However, feature
selection algorithms simply select a subset of meaningful features from V , by
setting degrees of relevance to either zero or one. Under this framework it is
not possible to distinguish the degree of relevance of features that have been
selected.

More recently, Liu and Yu (2005) introduced a method to integrate feature
selection algorithms for classification and clustering. Mitra et al. (2002) take a
different approach, by introducing a novel unsupervised algorithm for feature
selection. This method is based on measuring the similarity between features
whereby redundancy is limited. However, the latter introduces a parameter
whose optimum seems difficult to be estimated.

We see no reason why feature weighting should be a preprocessing step,
and no reason why one should use a method constrained to weights of either
zero or one. Feature weighting can be done at the same time as the cluster-
ing itself. Feature weighting has received considerable attention in partitional
clustering (Amorim and Mirkin, 2012; Amorim and Fenner, 2012; Chan et
al., 2004; Huang et al., 2005, 2008; Makarenkov and Legendre, 2001), but not
so in hierarchical clustering. Surely, it is possible to apply a feature selection
algorithm to a dataset before using the Ward method. However, this is not
incorporated into Ward and it does not take into account that even among
relevant features there may be different degrees of relevance.

Our recent work on feature weighting in partitional algorithms (Amorim
and Mirkin, 2012; Amorim and Fenner, 2012) has introduced the use of weights
under the Lp norm as we show in Equation 2. We have decided to use the Lp

norm because this transforms the weights into feature rescaling factors, in
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contrast to the work of Chan et al. (2004), and Huang et al. (2005, 2008).

d(yi, ck) =
∑
v∈V

wp
kv|yiv − ckv|

p, (2)

where yi is an entity in the dataset Y . Each weight wkv being calculated by
using Equation 3.

wkv =
1∑

u∈V [Dkvp/Dkup]1/(p−1)
, (3)

where Dkvp =
∑

i∈Sk
|yiv − ckv|p. The weights wk1, wk2, ..., wkV are subject to

a sum of one for a given entity yi, as well as a crisp clustering.
In our previous publications we used a semi-supervised method to estimate

a good value for the exponent p. This method involves the clustering of the
whole dataset Y various times, each of which with a different value for p. We
then select the best p based on the proportion of correctly clustered entities
whose labels are known.

The above method recovered clusters close to the optimal in experiments on
various real-world and synthetic datasets containing noise features (Amorim
and Mirkin, 2012). However, this semi-supervised method does not apply to
scenarios in which there are no labelled entities.

3 Wardp

Taking into consideration the weaknesses identified in the Ward method, to-
gether with its popularity, we found reasonable to try to improve it. With this
in mind we have decided extend the Ward method by incorporating feature
weighting, creating the Wardp method.

Our new method uses the weighted Lp norm (2). Our choice was justified
by its success in other clustering algorithms based on K-Means (Amorim and
Mirkin, 2012; Amorim and Komisarczuk, 2012a) and partition around medoids
(Amorim and Fenner, 2012). We can see at least two advantages of Wardp over
these feature-weighted partitional clustering algorithms: (i) neither Ward or
Wardp require the number of clusters to be known beforehand; (ii) hierarchical
algorithms provide more information regarding the structure of a dataset. As a
disadvantage, one should not expect a hierarchical algorithm to run faster than
a partitional, particularly in large datasets as we have previously demonstrated
while clustering malicious software (Amorim and Komisarczuk, 2012b).

The implementation of feature weights using the Lp norm in the Ward
distance (1) is straightforward:

Wardp(Si, Sj) =
NSiNSj

NSi
+NSj

∑
v∈V

wp
kv|cSiv − cSjv|p. (4)

The above requires a change in the way weights are calculated. Equation
(2) works perfectly when there is only one cluster k involved, wkv is the weight
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of feature v in the cluster represented by the centroid ck. However, in (4) we
clearly have two clusters, Si and Sj . The fastest solution we could find was
to use the average of the weights of each cluster. We have also experimented
calculating wk for Si ∪ Sj for all possible pairs, but this proved to be time
consuming and did not produce good results, hence we do not explore this
path here.

We formalise Wardp below:

1. Set K = N and wkv = 1/V . Each cluster in S = {S1, S2, ..., SK} is com-
posed of a single different entity, a singleton.

2. Merge the clusters Si and Sj which are the closest as per (4) the weight
used is the average of wSiv and wSjv, creating the new cluster SSi∪Sj .

3. Set the centroid of the new cluster to the cluster’s centre of gravity. Remove
references to the old clusters and their centroids.

4. Update each wkv for k = {1, 2, ...,K} and v = {1, 2, ..., V } using (3).
5. Reduce K in 1, if K is still bigger than the desired number of clusters go

back to Step 2.

Similarly to the original Ward, Wardp could be run until each entity yi ∈ Y
belongs to a single cluster of size N . However, in our experiments we stop the
cluster merges when the number of clusters in S equals the desired number.
This is possible because the desired number of clusters of each of the datasets
we experiment with is known.

Clearly, the above algorithm requires the calculation of centroids. This is
straightforward when p is equal to one or two, as the centre of gravity is given
by the median and mean respectively. Should p be a different value, one can
use a steepest descent algorithm (Amorim and Mirkin, 2012). Given the reals
y1v, y2v, ..., yNv where v is a given feature and N the cardinality of Y , the Lp

norm centre can be defined as c minimising the summary rule below.

dp(c) =

N∑
i=1

|yiv − c|p. (5)

Since dp(c) in (5) is convex for p > 1, the steepest descent algorithm uses
its first derivative, ′(c) = p(

∑
i∈I+(c−yiv)p−1−

∑
i∈I−(yiv− c)p−1), where I+

represents the set of indices i at which c > yiv, and I− is the set of indices i
at which c < yiv for i = 1, 2, ..., N . The algorithm is given below.

1. Sort the values of a given feature v in ascending order so that y1v ≤ y2v ≤
... ≤ yNv.

2. Set c0 = yi∗v, the minimiser of d(c) on yiv, and a positive learning rate λ
of say, 10% of the feature range yNv − yiv.

3. Set c1 to c0−λd′p(c0) if it falls within the minimum interval (yiv′ , yiv′′) con-
taining yi∗v and such that d(yiv′) > dp(yi∗v), d(yiv′′) > dp(yi∗v). Otherwise
decrease λ by say 10%, and repeat the step.

4. If c1 is equal to c0 within a pre-specified threshold, output c1 as the optimal
value for c and stop.
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5. If d(c1) ≤ d(c0), set c0 = c1 and d(c0) = d(c1), go to Step 2. Otherwise,
decrease λ by 10% and go to Step 3 with an unchanged c0.

With the above it is possible to use the Wardp algorithm under any p ≥ 1.
The final clustering generated by Wardp is subjective to the p used, we show
how to find a good value for this parameter in Section 5.2.

Wardp applies cluster specific weights, wkv for k = 1, 2, ....,K and v ∈ V
to the clustering process. It would also be possible to apply feature weights wv

for v ∈ V instead. The former was shown to produce better K-Means based
clusterings while using the Euclidean distance (Huang et al., 2005), hence its
use in this paper.

4 Setting of the experiments

We have experimented with a total of 75 datasets, 30 real-world-based and 45
synthetic. Regarding the former, we have downloaded most of them from the
UCI machine learning repository (Frank and Asuncion, 2010), with the only
exception of the Tulugu vowels dataset, first presented by Pal and Majumder
(1977). From each of these we have generated other two datasets by adding
approximately 50% and 100% extra features containing uniformly distributed
noise, as per below:

1. Iris. This dataset contained 150 entities over four numeric features, parti-
tioned into three clusters. We have generated two other datasets by adding
two and four noise features to it.

2. Wine. This dataset contained 178 entities over 13 numerical features, parti-
tioned into three clusters. We have generated two other datasets by adding
seven and 13 noise features to it.

3. Pima. This dataset contained 768 entities over eight numerical features,
partitioned into two clusters. We have generated two other datasets by
adding four and eight noise features to it.

4. Hepatitis. This dataset contained 155 entities originally over 19 categorical
and numerical features, partitioned into two clusters. We have generated
two other datasets by adding 10 and 20 noise features to it.

5. Breast cancer This dataset contained 699 entities over nine numerical fea-
tures, partitioned into two clusters. We have generated two other datasets
by adding five and nine noise features to it.

6. Ecoli This dataset contained 336 entities over seven numerical features,
partitioned into eight clusters. We have generated two other datasets by
adding four and seven noise features to it.

7. Glass This dataset contained 214 entities over ten numerical features, par-
titioned into six clusters. We have generated two other datasets by adding
five and ten noise features to it.

8. SPECTF heart This dataset contained 267 entities over 44 numerical fea-
tures, partitioned into two clusters. We have generated two other datasets
by adding 22 and 44 noise features to it.
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9. Tulugu vowels This dataset, used for the first time by Pal and Majumder
(1977), contained 871 entities over three numerical features, partitioned
into six clusters. We have generated two other datasets by adding two and
three noise features to it.

10. V ehicle silhouette This dataset contained 846 entities over 18 numeri-
cal features, partitioned into four clusters. We have generated two other
datasets by adding 9 and 18 noise features to it.

We generated a total of 45 Gaussian models (GMs) for our experiments
with synthetic datasets. We initially generated five models from different mix-
tures for each of the following configurations: (i) 500 entities over six features,
partitioned into five clusters (here denoted 500x6-5), (ii) 500 entities over six
features, partitioned into 10 clusters (500x6-10), and (iii) 500 entities over 12
features partitioned into five clusters (500x12-5).

To each of the above configurations we added further 10 GMs, five by
adding 50% of noise features and the other five by adding 100% noise features.
For instance, from the initial five GMs under 500x6-5 we added 3 noise features
to each of the datasets (500x6-5 +3NF) and 6 noise features (500x6-5 +6NF),
a subtotal of 15 datasets per configuration.

The clusters of all datasets are spherical with diagonal covariance matrices
with the same diagonal value σ2 generated at each cluster randomly between
0.5 and 1.5. The centroid components were generated independently from a
N(0, 1) Gaussian distribution. The cardinalities of each clusters were uniformly
random with a minimum of 20 entities.

We have standardized all datasets as per the equation below.

yiv =
xiv − x̄v
range(xv)

, (6)

where xi represents an entity in the dataset Y and x̄v the average of feature
v over the whole dataset Y . We have used the range rather than the standard
deviation as scaling factor because the latter favours unimodal distributions
(Mirkin, 2005). We have also counted with considerable empirical support for
the use of the range in clustering (Milligan and Cooper, 1988; Steinley, 2004)
as well as our own previous success (Amorim and Mirkin, 2012; Amorim and
Fenner, 2012).

The standardisation of categorical features followed a method described
by Mirkin (Mirkin, 2005), in which a categorical feature v of range r is trans-
formed into r binary features representing each of the possible categories of
v. For a given entity, only one of the new features should be set to one, the
feature representing the original category, the rest should be set to zero. We
also standardize numerically these features by subtracting its grand mean, the
category proportion.

We evaluate Wardp with two different measurements. First, we demonstrate
its ability to recover clusters, particularly in datasets containing noise features,
using the adjusted Rand index (Hubert and Arabie, 1985). Second, we show
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the contribution of the noise features to the clustering, calculated as per below.

V ′Contribution =

∑
v∈V ′

1
K

∑K
k=1 wkv

|V ′|/|V |
, (7)

where V ′ is a subset of V , containing solely those features composed of uni-
formly random noise, |V ′| and |V | represents their respective cardinalities.
This is an easy to interpret measure that is comparable if applied to any of
our noise datasets, regardless of the actual number of noise features. For in-
stance, if half of the features in a given dataset are in fact noise features,
and these noise features contain half of the feature weights, then our measure
would output 1. In the same dataset, an output of 0.5 would mean that the
weights of the noise features are 25% of the total. In our tables we multiply
Equation (7) by 100 to improve readability.

5 Results

In this section we show the results of our experiments, our aim here is two-
fold. We first show in Section 5.1 that given a good exponent p, our Wardp

produces results that are generally superior to those obtained with the original
Ward method when applied to datasets with noise features. We then show in
Section 5.2 that by using the Silhouette index (Rousseeuw, 1987) to analyse
the clustering obtained with different values of p we can still select a reasonably
good p and obtain results that are generally competitive or superior to those
obtained with the Ward method.

5.1 Optimal exponent p

In order to show the behaviour of Wardp in the best possible scenario, we have
run experiments with values of p from 1 to 5 with the progress step of 0.1. We
then analysed the accuracy given by the adjusted Rand index of each one of
these clusterings and chose as optimal p that with the highest accuracy.

We have experimented with both the real-world and synthetic datasets.
Table 1 shows the results of our experiments with real-world datasets with
and without noise. The results show a clear superiority of Wardp over Ward
in datasets with noise features, as expected.

Wardp recovered better clusters than Ward in 18 of the 20 noise datasets
we experimented with. The two remaining noise datasets are the noise ver-
sions of the same, the Breast Cancer dataset, with five and nine extra noise
features. The difference of performance between Wardp and Ward on these
two datasets is of only 1.08 and 3.75, respectively. The results related to the
real-world datasets with no noise features are considerably more modest with
each algorithm obtaining the best adjusted Rand index in half of the datasets.

Regarding the contribution of the noise features to the clustering, calcu-
lated with Equation (7) we can see that Wardp has failed to reduce this in
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only a single dataset out of the 20 noise datasets, the SPECTF Heart with
44 noise features. This dataset has two clusters. The sum of the weights of
each noise feature for one of the clusters is zero, however, for the other cluster
the only feature with a weight, of one, is among the noise features. The origi-
nal cardinalities of the clusters are of 212 and 55, but Wardp partitioned the
dataset clusters of 255 and 12 entities. The small number of entities in one of
the clusters is probably the reason for the weights obtained.

The three images in Figure 1 show the results for the synthetic datasets
configurations 500x6-5, 500x6-5 +3NF and 500x6-5 +6NF, respectively. The
first bar represents the adjusted Rand index obtained with Ward over the five
datasets under each configuration, and the third with the Wardp when sup-
plied with the best p. We discuss the results of the second bar, Wardp with
an estimates p, in Section 5.2. Similarly, Figure 2 shows the results for the
synthetic datasets configurations 500x6-10, 500x6-10 +3NF, 500x6-10 +6NF,
and Figure 3 shows the results for 500x12-5, 500x12-5 +6NF, and 500x12-5
+12NF. Although Wardp was clearly affected by the increase of noise fea-
tures, the effect of this increase was considerably worse in the original Ward.
There was a particularly high difference between these two algorithms in the
maximum adjusted Rand index they obtained under each of the five Gaussian
mixtures for each configuration. Again with a clear superiority of Wardp.

5.2 Unsupervised selection of the exponent p

The results we show in Table 1 and Figures 1, 2 and 3 are rather promising,
but we acknowledge that it would not be realistic to expect the user to know
what exponent p would be the best for each dataset. In partitional cluster-
ing there have been solutions for this problem using semi-supervised learning
(Amorim and Mirkin, 2012; Amorim and Fenner, 2012; Amorim and Komisar-
czuk, 2012a), in which a good p is selected by using a small number of labelled
data.

Although valid, the use of semi-supervised learning to select p is not well
aligned with the use of unsupervised clustering algorithms. Here we show that
it is indeed possible to select a reasonably good p without the use of labels. We
have run experiments for each dataset with values of p from 1 to 5 with the
progress step of 0.1 and have chosen the optimal as the one that produced the
clustering with the highest Silhouette index (Rousseeuw, 1987). This index is
given by the equation below:

Si(yi) =
b(yi)− a(yi)

max{a(yi), b(yi)}
, (8)

where a(yi) is the average distance of a given entity yi ∈ Sk from yj ∈ Sk,
i 6= j, and b(yi) is the lowest average distance of yi from yj ∈ Sl at l 6= k. The
Silhouette index for a clustering is given by

∑
yi∈Y Si(yi).

We show the results for this truly unsupervised method for the real-world
datasets in Table 2. Out of the 20 noise datasets we experiment with, Wardp
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recovered clusterings with a higher adjusted Rand index than Ward in 16 cases.
The remaining four datasets are the two noise versions of the Breast Cancer
dataset, Pima +8NF and Vehicle +9NF. The adjusted Rand index difference
between Ward and Wardp for the last two datasets was of only 1.45 and 0.26,
respectively.

The Figures 1, 2 and 3 show the results related to the synthetic datasets we
experiment with. In all images the middle bar represents the average adjusted
Rand index obtained with Wardp using the estimated p with the Silhouette
index. As expected the difference in cluster recovery between Wardp and Ward
is smaller in this unsupervised framework than when using the optimal p in
Section 5.1.

The results with the Gaussian models show that Wardp is superior to Ward
in average, in datasets with and without noise features.

Fig. 1 The average adjusted Rand index of Ward, Wardp with an estimated p, and Wardp
with the best p over five synthetic datasets under each of the configurations: 500x6-5, 500x6-
5 +3 noise features, and 500x6-5 + 6 noise features. Wardp est. p uses the silhouette index
to select the exponent p.
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Fig. 2 The average adjusted Rand index of Ward, Wardp with an estimated p, and Wardp
with the best p over five synthetic datasets under each of the configurations: 500x6-10, 500x6-
10 +3 noise features, and 500x6-10 + 6 noise features. Wardp est. p uses the silhouette index
to select the exponent p.
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6 Conclusion and future work

In this paper we have introduced the use of feature relevance to hierarchical
clustering. We have done so by applying subspace feature weighting and the
use of the Lp norm to the original Ward method, developing Wardp. Our new
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Fig. 3 The average adjusted Rand index of Ward, Wardp with an estimated p, and Wardp
with the best p over five synthetic datasets under each of the configurations: 500x12-5,
500x12-5 +6 noise features, and 500x12-5 +12 noise features. Wardp est. p uses the silhou-
ette index to select the exponent p.
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algorithm allows for a given feature v to have K weights, one for each of the
clusters in a dataset Y .

We have empirically shown through numerous experiments with 75 real-
world and synthetic datasets, with and without features composed of uniformly
random values, that the feature weights produces by Wardp tend to be higher
in the relevant features. Our experiments also show that Wardp produces re-
sults that are competitive or superior to those produced by Ward, particularly
in datasets containing noise features.

Our experiments also demonstrated that the final clustering generated by
our Wardp method is subjective to the exponent p used. This exponent is part
of the Lp norm and in this paper we worked the convex problem given by
p ≥ 1 . We have shown that it is indeed possible to estimate a good value for
this exponent without using labelled entities, remaining then totally under an
unsupervised learning framework.

We see Wardp as being an algorithm ready to be used in a number of fields,
in particular those in which irrelevant features are common and that require
the demonstration of the relation between taxons, such as malware taxonomy
and bioinformatics. A particularly interesting application would be use Wardp

for refining phylogenetic inference techniques which are often based on weights
and optimization of the L2 norm (Makarenkov and Leclerc, 1999; Felsenstein,
1997).

Clearly there is still room for improvement in Wardp. Both Wardp and
the original Ward require the calculation of centroids, resulting in the former
being considerably slower. Obtaining ckv using the Euclidean distance is easily
accomplished by ckv = 1

|Sk|
∑

yi∈Sk
yiv. Unfortunately when applying the Lp

norm used in Wardp this is not so straight forward, requiring the algorithm
shown in Section 3 to approximate the p−center of yiv ∈ Sk. Wardp would
clearly benefit from a faster calculation of such p−center. We also see the selec-
tion of an exponent p even closer to its optimum as a particularly interesting
problem. We intend to address both issues in future research.
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Table 1 A comparison on real-world datasets between the Ward method and Wardp, the
latter using the best possible exponent p we could find between 1 and 5 with the progress
step of 0.1.

Wardp Ward
Adj Rand Index p N.F. Contribution Adj Rand Index

Iris 92.22 2.9 - 71.96
Iris +2 88.58 1.5 4.61 47.64
Iris +4 74.20 2.0 21.18 44.30
Wine 84.83 2.1 - 93.10
Wine +7 86.13 3.5 48.57 71.08
Wine +13 72.87 2.0 31.72 47.19
Pima 2.38 4.7 - 7.27
Pima +4 3.35 3.0 34.51 -0.19
Pima +8 4.75 3.8 37.26 2.46
Hepatitis 32.00 1.4 - 35.49
Hepatitis +10 32.00 1.4 0.00 19.14
Hepatitis +20 35.37 2.6 0.35 8.79
Breast Cancer 86.06 4.4 - 86.64
Breast Cancer +5 84.98 4.9 66.52 86.06
Breast Cancer +9 80.69 1.3 20.51 84.44
Ecoli 51.80 4.9 - 39.93
Ecoli +4 5.29 5.0 77.90 0.45
Ecoli +7 5.29 2.8 61.87 1.37
Glass 29.06 4.8 - 43.47
Glass +5 25.81 2.9 23.52 10.72
Glass +10 23.75 1.2 33.33 2.02
SPECTF Heart 0.43 1.0 - -10.63
SPECTF Heart +22 -0.55 3.0 45.71 -8.93
SPECTF Heart +44 1.14 1.1 100.0 -10.53
Tulugu Vowels 50.38 3.6 - 38.72
Tulugu Vowels +2 33.14 4.3 72.66 18.48
Tulugu Vowels +3 26.49 4.1 80.0 4.25
Vehicle 17.22 1.9 - 9.77
Vehicle +9 13.75 1.2 0.0 6.69
Vehicle +18 14.86 1.8 3.46 4.37
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Table 2 A comparison on real-world datasets between the Ward method and Wardp, the
latter using the silhouette index to select the exponent p.

Wardp Ward
Adj Rand Index p N.F. Contribution Adj Rand Index

Iris 86.85 4.6 - 71.96
Iris + 2 50.60 3.9 64.38 47.64
Iris + 4 52.45 3.0 82.04 44.30
Wine 80.41 2.2 - 93.10
Wine + 7 80.60 3.6 49.95 71.08
Wine + 13 72.87 2.0 31.72 47.19
Pima 0.55 3.7 - 7.27
Pima + 4 0.78 4.9 65.71 -0.19
Pima + 8 1.01 5.0 53.39 2.46
Hepatitis 21.68 1.1 - 35.49
Hepatitis + 10 21.68 1.1 0.0 19.14
Hepatitis + 20 28.12 2.7 0.60 8.79
Breast Cancer 85.51 4.6 - 86.64
Breast Cancer +5 84.98 4.9 66.52 86.06
Breast Cancer +9 77.53 1.7 38.30 84.44
Ecoli 50.51 5.0 - 39.93
Ecoli +4 3.23 4.9 78.97 0.45
Ecoli +7 3.64 2.4 75.04 1.37
Glass 29.06 4.8 - 43.47
Glass +5 20.25 3.6 71.32 10.72
Glass +10 21.05 4.2 64.38 2.02
SPECTF Heart -0.55 4.4 - -10.63
SPECTF Heart +22 -2.09 2.6 31.65 -8.93
SPECTF Heart +44 -1.08 1.7 60.24 -10.53
Tulugu Vowels 42.57 5.0 - 38.72
Tulugu Vowels +2 27.40 4.8 66.86 18.48
Tulugu Vowels +3 12.08 4.5 72.92 4.25
Vehicle 8.12 4.3 - 9.77
Vehicle +9 6.43 4.6 43.85 6.69
Vehicle +18 7.19 4.9 49.33 4.37


