
Timing Analysis of Optimised Code ∗

Raimund Kirner
Institut für Technische Informatik

Technische Universität Wien
Treitlstraße 3/182/1

A-1040 Wien, Austria
raimund@vmars.tuwien.ac.at

Peter Puschner
Institut für Technische Informatik

Technische Universität Wien
Treitlstraße 3/182/1

A-1040 Wien, Austria
peter@vmars.tuwien.ac.at

Abstract

Timing analysis is a crucial test for dependable hard
real-time systems (DHRTS). The calculation of the
worst-case execution time (WCET) is mandatory. As
modern compilers are capable to produce small and ef-
ficient code, software development for DHRTS today
is mostly done in high-level languages instead of as-
sembly code. Execution path information available at
source code (flow facts) therefore have to be trans-
formed correctly in accordance with code optimisations
by the compiler to allow safe and precise WCET analy-
sis. In this paper we present a framework based on ab-
stract interpretation to perform this mandatory trans-
formation of flow facts. Conventional WCET analysis
approaches use this information to analyse the object
code.

Keywords: Worst-Case Execution Time Analysis,
Execution Times, Real-Time Languages, Compiler Op-
timisations, Code Transformation

1 Introduction

To guarantee timeliness of hard real-time systems
the designer needs to pay special attention to the worst-
case execution time (WCET). The calculation of tight
WCET bounds relies on a precise hardware model and
precise knowledge about the possible execution paths.
The latter will be called flow facts.

As it is not possible to extract all flow facts from
the source code due to the Halting Problem, manual
code annotation is sometimes required. As code devel-
opment and WCET analysis are usually done at dif-

∗This work has been supported by the IST research project
“High-Confidence Architecture for Distributed Control Applica-
tions (NEXT TTA)” under contract IST-2001-32111.

ferent code representation levels (high-level language
coding vs. machine code analysis), it is required to
safely transform the flow facts.

Methods that try to transform flow facts simply
based on debug information are not able to cooper-
ate with more complex optimisations performed by the
compiler. Manual transformations done in [11] would
be an error-prone and time-consuming task. A more
advanced but still limited approach was proposed in
[5] by designing an optimisation description language
(ODL). ODL is restricted to simple simple flow facts
and in addition is not capable to deal with optimisa-
tions like branch elimination or loop unrolling.

To overcome these limitations, we developed an ap-
proach where the transformation of flow facts is inte-
grated into the compiler [10]. In this paper we present
the theoretic foundations of this approach. Based on
abstract interpretation we obtain the required safe and
flexible transformation of those flow facts.

2 Dependable Flow Facts Transforma-
tion

To visualise our transformation method we give a
short survey on abstract interpretation. Abstract in-
terpretation is a formalised method that supports the
systematical construction of a safe and correct inter-
pretation, based on a given concrete interpretation [3].
The basic principle of abstract interpretation is shown
in figure 1. The concrete Domain 〈D,v〉 and the ab-
stract domain 〈D̃,ve〉 are here both chain complete par-
tial ordered sets (cpo). The sound mapping between D

and D̃ is established by a pair of functions 〈α, γ〉. As-
suming a Galois connection we get the following prop-
erties:

∀d ∈ D ∧ ∀d̃ ∈ D̃ : α(γ(d̃)) v˜ d̃ ∧ d v γ(α(d)) (1)

α

D̃D̃
F̃

γγα

DD
F

Figure 1. Principle of Abstract Interpretation

2.1 The Correctness of the Transformation

Assuming that the semantic domain D itself repre-
sents the program to be optimised which is done by
the operation F . The correctness is proven by showing
observational equivalence [4]: an abstraction function
αo is used to extract the relevant properties for cor-
rectness.

An example prepared for our needs is given in fig-
ure 2 for the transformation of flow facts in parallel to
the code transformation. As already mentioned, the
calculation of flow facts cannot be complete. There-
fore, certain flow facts ffa are given manually by the
user (denoted by the operation a). Further flow in-
formation ffimpl is extracted by semantic code analysis
denoted by operation Fs. The resulting flow informa-
tion is denoted ff = ffa ∪ ffimpl . Finally, the operation
Ft = Ft1×Ft2 represents the code optimisation of the
compiler in parallel with the flow facts transformation.
The correctness condition shown in figure 2 requires
that the observational abstraction αo has an unchanged
semantics for both code annotation and transforma-
tion.
P is the program which has been annotated with

flow facts and transformed by the compiler into Pt.
S[[P × ff]] denotes the semantics of program P under
consideration of the flow facts ff . Conventional WCET
analysis tools require Pt and fft as input.

2.2 Transformation of Flow Facts

Based on the code annotation and transformation
shown in figure 2 we perform an abstract interpretation
with control-flow path abstraction to correctly trans-
form the flow facts in parallel to the code transforma-
tion Ft. The extraction of flow facts ffimpl from the
source code is not topic of our work. There exists work
like [6] tackling this problem.

The concept of our method is shown in fig-
ure 3. It is important to note that we use
a component-wise combination of the Galois con-
nection 〈P, αs, γs, P̃〉 and the Galois isomorphism
〈ff , α≡, γ≡, ff̃ 〉 which therefore again forms a Galois
connection 〈P×ff , αs×α≡, γs×γ≡, P̃×ff̃ 〉 [12]. The se-
mantic C[[P̃×ff̃]] of the abstract domain P̃×ff̃ describes
all possible control flow paths during the execution of
P. Our flow fact transformation is done by the opera-
tion F̃t = F̃t1×F̃t2 which is the abstract counterpart to
Ft = Ft1×Ft2. The construction of a sound operation
F̃t is done by fulfilling equ. 2.

∀p̃ ∈ P̃ ∧ ∀f̃ ∈ ff̃ :
Ft1(γs(p̃)) v γs(F̃t1(p̃)) ∧
Ft2(γ≡(f̃)) v γ≡(F̃t2(f̃)) (2)

The function F̃t1 performs the update of the syntac-
tic part αs(P) of the control flow path description in
direct relation to the concrete program transformation
Ft1 (the code optimisation). The operation of the func-
tion F̃t2 is directly obtained from F̃t1 since F̃t2 only up-
dates the control-flow dependent part of the flow facts.

∀p ∈ P ∧ ∀f ∈ ff :
Ft1(p)×Ft2(f) v
Ft1(p)×γ≡(F̃t2(α≡(f))) (3)

That this approach yields correct flow facts fft for
the transformed code Pt is shown in equ. 3 which
follows from the fact that the abstraction relation
αs×α≡, γs×γ≡ is a Galois connection.

3 Flow Facts for WCET Calculation

Flow facts ff are hints that describe constraints on
the possible control flow paths (CFP). Possible sources
for ff are syntax and semantics of the program code or
additional annotations (ffa).

Our WCET calculation is based on integer linear
programming (ILP) [14]. This calculation method
transforms the structure of a program into an ILP
problem and allows to incorporate arbitrary flow facts
that describe iteration counts. Other methods like tree-
based [2, 13] or path-based [7] WCET calculation are
in contrast limited to certain classes of structured flow
facts.

The power of the ILP based WCET calculation can
be fully exploited by describing ff with scopes, markers,
restrictions and loop bounds [14, 9]. A sample code that

2

γo αo γo αo γo αo γoαo

a P×ff
S[[P×ff]]

P×ffa = a[[P]]
S[[P×ffa]] S[[Pt×ff t]]

Pt×ff t

αo(P × ε) = αo(P × ffa) = αo(P × ff) = αo(Pt × ff t)

Fs Ft

S[[P × ε]]
P × ε

Figure 2. Observational Correctness of Transfor-
mation

αs γs αs γs αs γs αs γs

P×ff
S[[P×ff]]

P×ffa = a[[P]]
S[[P×ffa]]

P̃t×ff̃ t

S[[Pt×ff t]]
Pt×ff t

S[[P × ε]]
P × ε

F̃sã F̃t

C[[P̃t×ff̃ t]]C[[P̃×ff̃]]C[[P̃×ff̃a]]C[[P̃ × ε̃]]

≡ ≡≡

a FtFs

P̃ × ε̃ P̃×ff̃a P̃×ff̃

Figure 3. Transformation of Flow Facts

demonstrates the usage of these code annotations is
given in figure 4. The code is written in wcetC, a lan-
guage derived from ANSI C with grammar extensions
to express ffa inside the source code [8]. Each loop is
assigned with a lower and upper iteration bound. The
safe modelling of certain code transformations requires
both the lower and upper iteration bounds. This is true
for BCET(best-case execution time) calculation as well
as WCET calculation. Markers are used to label exe-
cution paths of the code. The restrictions are used to
set the execution counts of several markers in relation
to each other. Numeric factors in a restriction with-
out a marker represent execution counts relative to the
execution count of the surrounding scope. Restrictions
have to be valid under all considered possible execu-
tion scenarios, e.g. using specific knowledge about the
possible input data of a program.

In the sample code of figure 4 we have used the im-
plicit semantic information of the code to specify two
restrictions for the lower and upper execution bound of
the conditional branch labelled by marker m2. For tight
WCET results it is required to specify both upper and
lower bounds since we do not know which branch will
contribute more to the execution time. The analogous
argument is valid for the calculation of the BCET.

scope
{

for (i=0,i<=m,i++)
range 4...10 iterations

{
marker m1;
if (i%2 == 0)
{

marker m2;
arr[i] = d;

}
else

arr[i] = i;
}
/* min. exec. count of m2 */
restriction m1 <= 2*m2;

/* max. exec. count of m2 */
restriction 2*m2 <= m1+1;

}

Figure 4. Sample Code, annotated with Flow
Facts

3

CFPS: ℘(StatConn)×℘(LoopScope)

StatConn: P×P×FType
FType: Num ∪ {seq, bra}
LoopScope: Lid×Lid×P×P
P: . . . reference to basic block
Lid: . . . identifier for loop scope

Table 1. Data Structure of CFP (P̃)

3.1 Representation of Flow Facts

The representation of ff̃ is required to be simple
but powerful enough to support the correct ff̃ update
during code optimisation. As described in section 2.2,
the construction of the ff̃ transformation function F̃t2

is directly induced by the CFP update function F̃t1.
The data structure CFPS, suitable for the modifica-

tion by function F̃t1 is described in table 1. CFPS rep-
resents the CFP (i.e., P̃) that can be derived from the
syntactic structure of the program P. P̃ alone without
ff is simply the control flow graph (CFG) of P extended
with loop scope information. The loop scope informa-
tion is required for correct ff̃ update. The nodes in
the CFG are single basic blocks of P. The edges also
encode whether the control flow is just a sequential or
branching control flow or simply labelled by a numeric
index to support generic CFGs.

It is important to note that P̃ does not have to be
calculated explicitely since in most compiler architec-
tures it is implicitely represented by P. Only the loop
scopes may be an additional data structure that has to
be maintained.

The representation of ff̃ is given in table 2. FF con-
sists of a set of marker bindings for execution edges
(MB), a set of restrictions (Restr) and a set of addi-
tional loop information (FFLF). The set of restrictions
is the same for calculating the WCET and the BCET.
Information like the loop bounds given in FFLF could
be expressed directly by restrictions but is treated sep-
arately for flexibility reasons. When parsing the re-
strictions in the ff they are inserted into the restriction
set.

The structural changes resulting from several code
optimisations make it necessary to keep the loop
bounds as explicit values. As already mentioned, we
maintain an upper and a lower loop bound value. For
the final calculation of the WCET only the upper loop
bound and for the BCET calculation only the lower
loop bound is required. But for the safe ff update
in case of certain loop transformations (e.g., loop un-
rolling) they are required for both calculations.

The above described data structure FF for ff̃ is flex-

FF: ℘(MB)×℘(Restr)×℘(FFLF)

MB: Marker×StatConn
Restr: ℘(Term)×Rel×℘(Term)
Term: Num×Marker
Rel: {=,<,≤}
FFLF: Lid×Bound×LoopMarker
Bound: Num×Num
LoopMarker: Marker×Marker
Marker: . . . reference to a marker name

Table 2. Data Structure of Flow Facts (ff̃)

ible enough to safely update ff̃ during transformations
of the program P.

3.2 Required Transformation of Flow Facts

The update of ff̃ is induced by the CFP trans-
formations done by F̃t1. We use the data symbols
ff̃ = 〈Ξ,Γ〉, `〉 ∈ FF where Ξ is the set marker bind-
ings, Γ the set of restrictions, and ` is the set of loop
frames.

Typical compiler optimisations consist of a program
analysis phase and a resulting program transformation
phase which can also be performed interleaved. By
using the abstracted program transformation function
F̃t1 it becomes obvious that different code optimisa-
tions fall into the same class of abstract CFP transfor-
mations. This fact simplifies the design of a transfor-
mation function F̃t2 that is complete and correct.

Analysing the actions performed by F̃t1, we can
identify the following operations performed at instruc-
tion level:

• insert • move • copy
• delete • replace

Changing only the statements within a single basic
block does not require to update Ξ, Γ or `. But it
becomes more complex when F̃t1 also includes struc-
tural changes of the CFP . Facing the operations of
F̃t1 at single instruction level does not allow to induce
the required operations to be performed by F̃t2. De-
pending on the context of the operation done by F̃t1 it
could be required to

• duplicate involved b ∈ Ξ and r ∈ Γ.

• duplicate involved b ∈ Ξ and update r ∈ Γ by the
sum of original and new markers.

• duplicate involved b ∈ Ξ and create new restric-
tions using the old and new markers.

• update the multiplication factor of certain terms
in r ∈ Γ.

4

• delete involved b ∈ Ξ and maybe also r ∈ Γ.

• no update of b ∈ Ξ or r ∈ Γ required.

Without the knowledge of the overall structure up-
date of P̃ it is not possible to decide which of the above
ff̃ updates would be required to maintain semantic cor-
rectness of the flow facts. As a consequence, we have
to group these atomic operations done by F̃t1 into op-
erations of coarser granularity and use the semantic
context of the operations done by F̃t1 to induce the ff̃
update.

The challenge for designing the ff̃ update function
is that there exist numerous different code optimisa-
tions and even each compiler may handle them slightly
different. To overcome this infeasible complexity, we
systematically abstract the impact of each code opti-
misation to the changes of the CFP . As a result we get
generic CFP update patterns for which we can induce
the required ff̃ update:

• split execution paths: A branch in block bx

in the CFP which leads to a block by is changed
leading to another block bz. An example for this
transformation pattern are jump optimisations.

Transformation: After setting the branch target in
bx to bz, the execution count of by is decreased by
the branching count of bx. All restrictions using
markers of the original path of by have to be up-
dated with an additional marker that is assigned
to the branching edge of bx.

• delete execution paths: One ore more blocks
of code are deleted. Typical examples for such a
transformation pattern are dead code, unreachable
code or common subexpression elimination.

Transformation: For all markers in the blocks to
be deleted we have to update in a safe way all re-
strictions that use them. For the case that we do
not know anything about the execution count of
the blocks to be deleted, a safe approximation has
to be used. If it is for example known at com-
pile time that the code is unreachable (unreach-
able code can also be produced by prior code op-
timisations), the transformation is precise by just
removing in all restrictions globally the terms us-
ing markers that are defined inside the blocks to
be deleted.

Possible structural changes on the CFP involving
iterations are:

• split iteration space of loop: The loop body
gets to be executed outside the original loop. Ex-
amples for this would be loop unrolling, loop peel-
ing.

Transformation: The original loop and any poten-
tially new created loop have to get an updated
loop bound. Additionally, a restriction for limit-
ing the execution count of the original loop and
the copies to the original loop bound is emitted.

• changing loop scope of code: Blocks are
moved from a certain loop scope to another loop
scope. Examples for this are loop unswitching,
loop-invariant code motion.

Transformation: The restriction multiplication
factor for all markers within the blocks have to be
updated by the iteration bound of the new loop
scope.

• change of iteration count: The control code
of a loop is updated to perform a new number of
iterations. Examples for this are loop interchange,
loop coalescing or loop vectorisation.

Transformation: The loop bound of the loop has
to be updated. If the overall iteration count of
the loop body is also changed, then all restric-
tions using markers from within the loop body
have to corrected. The iteration of the body may
not be changed if this transformation pattern is
performed on nested loops.

Using these abstractions, it becomes possible to de-
fine universal ff̃ update functions. F̃t2 has to compose
simple ff̃ updates to perform the induced operations.
Using these generic pattern also simplifies the correct-
ness proof of the induced function F̃t2 over the abstract
interpretation of the code transformation.

4 Evaluation

To show the importance of supporting compiler op-
timisations for WCET calculation we have done exper-
iments with a first prototype implementation as shown
in table 3. The columns “Calc(x)” and “Meas(x)” show
the WCET, obtained by the WCET analysis tool [1]
and by measurement respectively, where x denotes the
optimisation level used with the compiler(O0 for none
and O3 for full optimisation).

The column “rel” shows the relation
Calc(O0)/Calc(O3). The potential performance
improvement by supporting compiler optimisations is
more than a factor of three. This is not a surprising
result but confirms that it is quite important to
be able to cope with compiler optimisations when
doing WCET analysis. Our approach is capable to
constructively design a correct transformation of flow
facts.

5

Algorithm Calc(O0) Meas(O0) Calc(O3) Meas(O3) rel
bubble 1 651 040 1 651 040 496 920 495 920 3.32
discrep 1 393 820 1 393 820 439 760 439 760 3.16
mat mul 5 359 920 5 359 920 1 482 320 1 482 320 3.61

Table 3. WCET Results for Sample Algorithms

5 Summary and Conclusion

In this paper we have presented a novel method to
perform precise WCET analysis at object code level us-
ing the flow facts obtained at source level. This trans-
formation method is also capable to deal with complex
code transformations in a safe manner. Therefore, this
method is well-suited for dependable hard real-time
systems where both code performance and safety are
important. Since this approach is based on the seman-
tics of the performed code transformations it can be
systematically integrated into a compiler.

References

[1] P. Atanassov, R. Kirner, and P. Puschner. Using
real hardware to create an accurate timing model for
execution-time analysis. In International Workshop on
Real-Time Embedded Systems RTES (in conjunction
with 22nd IEEE RTSS 2001), London, UK, December
2001.

[2] A. Colin and I. Puaut. Worst case execution time
analysis for a processor with branch prediction. Real-
Time Systems, 18(2):249–274, May 2000.

[3] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Confer-
ence Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming
Languages, pages 238–252, Los Angeles, California,
1977. ACM Press, New York, NY.

[4] P. Cousot and R. Cousot. Systematic design of pro-
gram transformation frameworks by abstract interpre-
tation. In Conference Record of the Twentyninth An-
nual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 178–190, Port-
land, Oregon, January 2002. ACM Press, New York.

[5] J. Engblom, A. Ermedahl, and P. Altenbernd. Facil-
itating Worst-Case Execution Time Analysis for Op-
timized Code. In Proceeding of the 10th Euromicro
Real-Time Workshop, Berlin, Germany, June 1998.

[6] J. Gustafsson. Analysing Execution-Time of Object-
Oriented Programs Using Abstract Interpretation.
PhD thesis, Uppsala University, Uppsala, Sweden,
May 2000.

[7] C. A. Healy, R. D. Arnold, F. Mueller, D. Whalley,
and M. G. Harmon. Bounding Pipeline and Instruc-

tion Cache Performance. In IEEE Transactions on
Computers, number 48 in 1, January 1999.

[8] R. Kirner. The Programming Language wcetC. Re-
search Report 2/2002, Technische Universität Wien,
Institut für Technische Informatik, Treitlstr. 1-3/182-
1, 1040 Vienna, Austria, 2002.

[9] R. Kirner and P. Puschner. Supporting Control-Flow-
Dependent Execution Times on WCET Calculation.
In Deutschsprachige WCET-Tagung, Paderborn, Ger-
many, October 2000. C-Lab.

[10] R. Kirner and P. Puschner. Transformation of Path
Information for WCET Analysis during Compilation.
In Proceedings of the 13th Euromicro Conference on
Real-Time Systems, pages 29–36, Delft, The Nether-
lands, June 2001. Technical University of Delft, IEEE.

[11] S.-S. Lim, J. H. Han, J. Kim, and S. L. Min. A worst
case timing analysis technique for multiple-issue ma-
chines. In Proceedings of the 19th Real-Time Systems
Symposium (RTSS), December 1998.

[12] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer, 1999. ISBN: 3-540-
65410-0.

[13] P. Puschner and C. Koza. Calculating the Maximum
Execution Time of Real-Time Programs. The Journal
of Real-Time Systems, 1:159–176, 1989.

[14] P. Puschner and A. V. Schedl. Computing Maximum
Task Execution Times – A Graph-Based Approach.
The Journal of Real-Time Systems, 13:67–91, 1997.

6

