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Abstract

To communicate between heterogeneous computer
systems, mechanisms for data conversion are neces-
sary. In this paper we present a portable, asymmet-
ric data conversion method that is suitable for remote
testing frameworks in embedded systems development.
The described method takes the resource limitations of
embedded systems into account by doing the data con-
version at the testing host. The method can be im-
plemented as platform-independent source code and it
avoids the need of recompiling the code of a communi-
cation partner if the code of the other communication
partner is migrated to a different platform.

1 Introduction

Embedded systems often have limited resources in
order to achieve low power consumption and compet-
itive production costs. Due to these resource limita-
tions, testing embedded systems is typically done as
remote testing, i.e., the local (host) system communi-
cates with components that run on the remote (tar-
get) system. Remote testing is often needed since an
embedded system hardly has enough free resources to
generate the test data and store the test results locally.

As there are many different microcontrollers used
in embedded systems, a testing framework for remote
testing has to be easy to adapt to new target platforms.
However, the potentially different data representation
of the host and the target system are a challenge when
designing a portable testing framework.

In general, the problem of exchanging data between
heterogeneous computing platforms is not new and sev-
eral proper solutions for converting the data formats
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between communication partner exist. The develop-
ment of these protocols was motivated by the need to
write software that runs on heterogeneous computing
platforms and by the need of communication between
software components that run on the different nodes of
such computing platforms.

Three mechanisms are required for data exchange
between heterogeneous computing platforms: a) the
(de)serialization of data structures, b) the conversion
between different data formats, and c) a low-level data
communication channel. Within this paper we discuss
a novel resource-aware realization for a) and b).

The conversion of the data format between a sender
and a receiver can be done in two ways: by asymmetric
or symmetric conversion.

In the asymmetric conversion the data conversion
is done only at one designated end of the communi-
cation channel, i.e., at the sender or at the receiver
side. The converter has to know information about the
data representation of the platform at the other end of
the communication channel. The Network Data Repre-
sentation (NDR) defined by the Distributed Comput-
ing Environment (DCE) standard [10] solves this prob-
lem by embedding the sender description to the com-
municated data. Their approach is called “receiver-
makes-right” as the conversion is always done at the
receiver side. NDR is used, for example, in Microsoft
COM/DCOM [1] or CORBA [5]. As shown in Figure 1,
the concept of “receiver-makes-right” requires a receive
converter at both communication partners. Conv and
Conv’ denote the data conversion for sending/receiv-
ing data and Ser and Ser’ denote the serialization/de-
serialization of data. Snd B and Rcv B mark the low-
level data communication channel.

A symmetric conversion method uses a canonical
intermediate data format for data exchange. The ad-
vantage of the symmetric conversion is that none of the
communication partners needs to know the data rep-
resentation of the partner located at the other end of
the communication channel. The disadvantage of sym-
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Figure 1. “Receiver-Makes-Right” Method

metric conversion is that it requires converters at both
ends of the communication channel, i.e., a conversion of
data into the intermediate data format is always done,
even if the sender and the receiver use the same data
representation. Examples for symmetric conversion are
Sun RPC, which is based on the XDR (external data
representation) [8], or Jini [9], which uses the Java For-
mat [4]. The concept of symmetric conversion is shown
in Figure 2. This concept requires two converters (one
for coding and one for decoding) at both ends of the
communication channel.
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Figure 2. “Symmetric Conversion” Method

The existing approaches to data conversion for com-
munication between heterogeneous computing plat-
forms have not been designed to fulfill the special needs
for remotely testing embedded systems. In the latter,
resources on the target system are often scarce and
the data-conversion overhead on the target should be
minimal. For example, the code memory of embedded
computers might be almost occupied by the applica-
tion code but it may be required to test all software
components at once. As shown above, existing data
exchange techniques require the allocation of memory
and computation resources for at least one converter on
the embedded system. Furthermore, the data exchange
format of the above techniques are not compact, which
could become significant when exchanging a lot of data
over a slow communication channel.

In this paper we describe a novel, portable data ex-
change method that is well-suited for the remote test-
ing of embedded systems. The data conversion is asym-
metric and always done at the host side (“host-makes-

right”). Note that this approach has a significant ben-
efit over the existing techniques of symmetric conver-
sion or “sender/receiver-makes-right”. With the “host-
makes-right” approach, the target system under test
only needs few memory and computation resources for
data exchange. It does not need a data converter. The
principle of the data conversion method and its princi-
pal integration into testing frameworks is described in
Section 2. Section 3 presents a timing analysis frame-
work that uses our data exchange method. Additional
related work of remote testing frameworks is discussed
in Section 4.

2 Portable Data Exchange with a Sys-
tem having Restricted Resources

This section describes the principle of our data ex-
change method between host and target and its inte-
gration into testing frameworks. The data exchange
method uses an asymmetric conversion that is always
done on the host side. To do so, the host uses a plat-
form description about the target. This platform de-
scription has to be calculated only once. We assume
that a communication layer is available that can trans-
mit streams of bytes. For the efficient implementation
of the method we assume a programming language that
provides pointers and static type casting (for example,
C or C++).

2.1 Data Exchange

We are interested in the bidirectional communica-
tion between a host computer without relevant resource
limitations and a target computer with strict resource
limitations. The target computer may have signifi-
cant limitations on both, computation and memory
resources. Furthermore, the bandwidth of the com-
munication medium available for testing may be also
considered as a significant bottleneck.

Beside being able to deal with the resource limi-
tations, our data exchange method should be imple-
mentable as highly portable source code. By high
portability we understand software that runs on com-
mon platforms without the need of modifications. Fu-
ture platforms may still require an adaption of the im-
plementation. Under platform we understand both,
software and hardware. The software platform basi-
cally consists of the compiler and the runtime environ-
ment.

As shown in Figure 3, our “host-makes-right” ap-
proach uses asymmetric conversion of data to keep the
resource requirements at the target side low. Hence,
the conversion will be done at the sender side for host
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Figure 3. “Host-Makes-Right” Method

to target communication, or at the receiver side for the
transmission from the target to the host.

This communication scenario is realized in two steps:

1. Determination of Target Platform: Prior to
any regular data exchange, the target computer
calculates and sends information that describes
the data representation at the target side (Inf T )
to the host computer. Inf T has all its data in an
appropriate order so that it can be directly inter-
preted by the host computer. To keep resource
usage at the target low, Inf T can be calculated
before loading the actual application program to
the target.

2. Regular Data Exchange: Having received Inf T

from the target, the host can parameterize its data
converters. It is then ready for the regular data
exchange with the target computer.

data stream
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(a) Data Flow from Host to Target

int a;

struct {

char e;

      char b;

      long c;

} d;

(b) Data types to
exchange

Figure 4. Example of Data Exchange: Send-
ing Data from Host to Target

Figure 4 provides a simple example of how our data
exchange method works. It demonstrates how to re-
solve different endianness and memory alignment be-
tween host and target. We assume that the data given
in Figure 4(b) have to be transmitted from the host to
the target. The data flow of this data exchange is given
in Figure 4(a). The left-most memory dump shows the
original placement of the data in the memory of the
host. Hatched areas mark unused memory due to the

concrete alignment of the data types. We assume that
the byte order is little endian on the host and big en-
dian on the target, for which the conversion is done by
Conv. The host serializes the basic data types into a
stream of bytes, which it then sends over the commu-
nication channel to the target. The target reads the
data and de-serializes them into its own data align-
ment. In practice, often more complicated conversions
than shown in the above example can be required. But
again, all conversion steps are done by the host. The
specific benefits of this data exchange method are:

• There is no need for a data-representation con-
verter on the target system; thus memory and
computation resources can be saved;

• A communication layer on top of the data ex-
change mechanism does not need to transmit infor-
mation about data representation of the message.

• The data exchange mechanism can be imple-
mented as highly portable source code.

Note, that the data exchange method is indepen-
dent from the communication protocol used. It only
requires that the communication protocol supports the
transmission of sequences of bytes. As the choice of
the communication protocol is application-specific, it
cannot be part of our portable data exchange method.

There are two types of application scenarios of our
data exchange method:

Testing Tool: This was the application we had in
mind when we developed this data exchange
method. In this case Inf T is also used by the host
to adapt the test case generation to the value range
of the data types of the target computer.

Distributed Application: it is also possible to use
our approach for the development of a portable
distributed application, but it leaves the problem
of dealing with the fact that data types may cover
different value ranges when used on different plat-
forms in the responsibility of the developer, e.g.,
by using run-time checks.

The following describes details and applications of
the “host-makes-right” data exchange method.

2.2 Description of Target Platform

The description of the data representation (Inf T )
at the target platform is needed by the host computer
prior to any regular communication.



Inf T is calculated automatically by running a pro-
gram dedicated for this purpose at the target com-
puter. However, the code to calculate Inf T is typi-
cally more complex than a reasonable implementation
of a data-representation converter that converts only
between the local data representation and one external
data representation. Hence, to get an improvement in
resource consumption by our data exchange method,
the code to calculate Inf T has to be executed on the
target before the regular application is loaded and ex-
ecuted (once Inf T has been computed, this code is no
longer needed and can be removed from the target).

When using embedded systems where nodes are
equipped with a boot loader, the prior execution of
the routine to calculate Inf T can be directly integrated
into the startup process of the system. Alternatively
the host may store Inf T for a target in a configura-
tion file. In that case Inf T need not be re-calculated
again and again, but may be read from this file when
it is needed. The latter approach fits better to systems
where uploading the code is not that easy as in case of
a boot loader.

Listing 1. Calculation of Platform Properties
1 unsigned int var = 1 ;
2 endian = ( ∗ ( ( char ∗)(&var ) ) ==
3 (char ) ( var ) ) ? LITTLE : BIG ;
4 l e n s c = s izeof (char ) ;
5 l e n uc = s izeof (unsigned char ) ;
6 l e n s s = s izeof ( short ) ;
7 . . .

Listing 1 should give an idea of how the target de-
scription is calculated for integral data types, as only
their size together with the byte order (endianness) is
needed to describe them. Note that for simplicity of
the presentation, the shown byte order test is quite
naive as it assumes that the platform has either little
or big endianness, while exotic platforms may also have
a different byte order (called mixed endianness). The
calculation of floating point properties is a little bit
more complex because there exists a broader variety of
different implementations. An algorithm to calculate
properties of floating point arithmetic has been pub-
lished by Cody [2]. A detailed description of how to
calculate all platform properties relevant for our data
exchange technique is omitted here, but can be found
in an article of Pemperton [7].

2.3 Serialization of Data

Before data structures can be sent over a network
they have to be serialized 1 into a flat stream of bytes.
At the receiver side the data will be deserialized into
their new local shape. Network data representations
such as NDR [10] or XDR [8] provide interface defi-
nition languages (IDL) that can express also complex
data structures. For IDL there exist tools to generate
the required stub code at the sender and the receiver
to (de)serialize the data from the specification.

For our data exchange method we do
(de)serialization in a similar way. Data struc-
tures are transmitted as a sequence of their elements
of basic data types. As in ANSI C, arrays are consid-
ered as basic data types since they resemble a flat byte
stream. The (de)serialization is done by some extra
code which we call glue code. For example, the glue
code is responsible to copy the content of elements of
basic data types. On the other hand, the glue code
does not have to consider the specific memory layout
of data structures as this is resolved by the compiler.

Although the (de)serialization process of our data
exchange method is conceptionally similar to other ap-
proaches, the new concept is that we focus on min-
imizing the overhead required at the target side and
reducing the required bandwidth over the communica-
tion channel. For example, the data to be communi-
cated after serialization are represented as a sequence
of bytes without overhead.

In the following we describe a possible implementa-
tion strategy for the glue code at the target side for
data exchange. The implementations tend to be quite
short and therefore are also suitable for manual coding.
Of course, tool support to generate them automatically
is preferred. The implementation for the data exchange
at the host side is more complex as it also has to con-
tain the converter to adapt the data representation.

One implementation strategy uses a serialization ta-
ble at the target to copy elements of basic data types
after receiving or before sending data. The serializa-
tion table holds an entry for each element of a basic
data type to be communicated. Each entry consists of
a size field that denotes the size in bytes of the data
element, and of a reference to the memory location of
that element. The serialization table has the following
type definition in ANSI C:

typedef struct
{ void ∗ r e f ; int s i z e ; } d a t a l i s t t ;

To give an example of how the serialization table
can be constructed, we assume that we want to receive

1serializing is also referred to as marshaling



data values for the variables given in Listing 2. The
resulting glue code to initialize the serialization table
is depicted in Listing 3.

Listing 2. Example: Variables to Exchange
1 typedef struct { int a [ 3 ] ; char b ; }
2 Sn t ;
3 char cv ;
4 int anv [ 1 0 0 ] ;
5 Sn t sv ;

Listing 3. Example: Serialization Table
1 d a t a l i s t t s e r tab [ ] = {
2 { &cv , s izeof ( cv ) } ,
3 { &anv , s izeof ( anv ) } ,
4 { &(sv . a ) , s izeof ( sv . a ) } ,
5 { &(sv . b ) , s izeof ( sv . b ) }
6 } ;

To illustrate how (de)serialization is done, we show
the simple glue code in ANSI C for the deserialization
of data in Listing 4. It uses a routine char get byte() to
read from the received byte stream. The data elements
are copied byte-wise via the serialization table to the
local memory locations. The code for serialization is
similar and therefore omitted.

Listing 4. Deserialization at the Target using
the Serialization Table

1 void d e s e r i a l i z e ( d a t a l i s t t d l [ ] ,
2 int cnt )
3 { int i , j ;
4 for ( i =0; i<cnt ; i++)
5 {
6 for ( j =0; j < dl [ i ] . s i z e ; j++)
7 {
8 ( ( char ∗ ) ( d l [ i ] . r e f ) ) [ j ] =
9 ge t byte ( ) ;

10 }
11 }

2.3.1 Optimizing Code Size of Serialization

The above glue code based on a serialization table
is relatively compact when communicating a certain
amount of data, especially in case of arrays. The more
data have to be exchanged, the more effective is this
solution. However, if the data to be communicated
are small, it is more efficient to use glue code working
with direct data assignments instead of using a table
together with auxiliary routines for (de)serialization.

In case the glue code is generated by a tool, this tool
may also determine from the concrete application code
which glue code implementation strategy results in a
smaller memory footprint at the target computer.

2.4 Integration in Remote Testing Framework

Even though the described data exchange method
is generally applicable, our main concern is its use for
the remote testing of embedded systems. For remote
testing the (de)serialization is the same as described
above. But the glue code may need additional variable
declarations or data assignments to interface with a
specific software routine to be tested.

For example, for each input parameter of the soft-
ware under test it is necessary to allocate a vari-
able within the glue code where the actual parameter
value can be stored. This is required independently of
whether the parameter is passed by value or by refer-
ence. The same approach is required if an input pa-
rameter forms dynamic data structures. In this case
the glue code has to allocate several data structures
that are linked together by pointer references.

Furthermore, testing may also require additional
monitoring data to be reported to the host computer.
As above, these monitoring data also have to be copied
by the glue code.

The code that emits the monitoring data for test-
ing purposes is something specific to a concrete testing
technique and not part of the glue code used to inter-
face the software routine with the communication line.

2.5 Broadcast Messages

The data exchange method described in this paper
is designed for point-to-point data exchange. There is
only a limited support for broadcast messages. The
reason is that the host as sender already prepares data
to suit the format of the receiver. But this does not
work if multiple receivers with different data represen-
tations should be addressed simultaneously. A possible
solution is to use broadcast messages carrying 4-bit in-
teger values. These 4-bit values can be symmetrically
encoded twice within a 8-bit byte so that endianness
of the receiver does not matter.

3 Application Scenario

The data conversion method described in this pa-
per was developed to increase the portability of re-
mote testing frameworks used to test embedded sys-
tems. Our application domain of interest is the de-
termination of the worst-case execution time (WCET)



of embedded systems. Concretely, we have developed
a measurement-based WCET analysis framework that
combines static and dynamic methods [3, 11]:

• Static code analysis to ensure that all feasible
paths of the program are taken into account.

• Execution-time measurements to avoid the burden
of modeling the instruction timing of the target
processor.

For the execution-time measurement we have to
send test data to the target computer (embedded sys-
tem) and receive the corresponding measurement re-
sults. This WCET analysis framework is a typical ap-
plication domain for the “host-makes-right” data ex-
change method described in this paper, because the
WCET analysis framework has to be portable to differ-
ent target platforms. A further requirement was that
the framework uses only few resources at the target
computer so that it is possible to test the complete
software running on a node.

To give an example of the memory overhead of our
data exchange method, lets assume again that we want
to exchange the data given in Listing 2. Using the se-
rialization table approach, the additional memory con-
sumed by our data exchange method on an 8-bit AVR
microcontroller as target system was 186 byte for code
and 14 byte for the table. To compare, on a Cygwin
Pentium system it needed 111 byte for code and 28
byte for the table. Thus, this data exchange method
demands quite few resources from the target system.

4 Related Work

The conversion of the data representation to com-
municate between heterogeneous platforms has been
already tackled in various ways. A discussion of exist-
ing symmetric and asymmetric conversion methods has
been already given in Section 1.

Regarding the application of data exchange tech-
niques, there exist remote testing frameworks that al-
ready address the issue of portability in a certain ex-
tend. TETware [6] from the Open Group is such an
example. The approach done in TETware is to ex-
clude the data conversion from the core framework.
Instead, it provides only an interface definition for a
communication subsystem. The users of the testing
framework have to implement their own communica-
tion subsystems that perform the data conversion in
case of heterogeneous systems. Our approach reduces
the effort needed to port a remote testing framework to
a new platform. By including the data conversion into

the framework we reduce the effort required for imple-
menting a new communication subsystem for a specific
platform.

5 Summary and Conclusion

Embedded systems typically have only limited re-
sources. The resource limitations are becoming even
more challenging when additional resources are needed
to remotely test the embedded system.

In this paper we have described a bidirectional data
exchange method for heterogeneous systems. This data
exchange method has been designed to be used within
remote testing frameworks for embedded systems.

This data exchange technique needs only few re-
sources at the embedded node because data conversion
is done in both directions at the host computer.

The efficiency of this data exchange technique is
high, because it does not need to send additional meta
information describing the data format of the sent data.

The data exchange technique is portable because it
can be realized as portable source code. We have also
discussed how the platform properties of the embedded
system that are relevant for data representation can be
calculated by software.

A measurement-based worst-case execution time
analysis framework has been described as a possible
application scenario of this data exchange method.
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