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ABSTRACT 

Many applications of Music Information Retrieval can benefit 
from effective isolation of the music sources. Earlier work by the 
authors led to the development of a system that is based on Azi-
muth Discrimination and Resynthesis (ADRess) and can extract 
the singing voice from reverberant stereophonic mixtures.  We 
propose an extension to our previous method that is not based on 
ADRess and exploits both channels of the stereo mix more effec-
tively. For the evaluation of the system we use a dataset that con-
tains songs convolved during mastering as well as the mixing 
process (i.e. “real-world” conditions). The metrics for objective 
evaluation are based on bss_eval. 

1. INTRODUCTION 

Humans are able to derive a semantic understanding of audio. 
This remarkable human skill has been extensively studied in 
Bregman’s seminal work [1]. Efforts to replicate this skill using 
machines have been included in the broad research field of Com-
putational Auditory Scene Analysis (CASA) [2]. 

However, machines are not yet able to derive comprehensive 
high-level information from multi-sourced (i.e. polyphonic) au-
dio streams, including the particularly challenging example of 
recorded music. In this domain, the main obstacle for machines is 
the lack of a mechanism to “focus” on individual sources of a 
polyphonic stream in the way that humans do [3]. This is sup-
ported by [4] where the authors have found a “glass ceiling” (i.e. 
limited success) when they tried to extract information such as 
timbre similarity and music genre from a music track without 
prior separation of sources. Therefore, in order to facilitate the 
aforementioned, as well as other applications of Music Informa-
tion Retrieval (MIR), source separation is needed.  Intuitively, 
the most information-rich source in music is the human 
voice/singing, as it can provide high-level information, such as 
the melody, the lyrics, and performing artist, even out of its ac-
companying context. However, in order to facilitate the auto-
mated extraction of this information, the singing voice needs to 
be isolated [5-6].  The field of research that deals with this sepa-
ration/isolation has been named Singing Voice Separation (SVS).  

Singing Voice Separation from single-channel recordings has 
been the subject of systematic study, focusing on techniques such 
as pitch detection and amplitude modulation [7] and source-
adapted models [8].  On the other hand, source separation from 
stereo has enjoyed little attention [9-10], although commercially 

distributed music recordings today are predominantly produced 
in this format.  

In a recent study [11], the authors have introduced a new me-
thod for singing voice separation from stereo recordings. The 
method (termed SEMANICS: Singing Extraction through Mod-
ified Adress and Non-vocal Independent Component Subtrac-
tion) is based on the use of Azimuth Discrimination and Resyn-
thesis (ADRess) algorithm [9]. It operates by exploiting the In-
terchannel Intensity Difference (IID) that naturally occurs in ste-
reophonic studio recordings.  However, it is well known that 
ADRess and most other methods utilizing either IID (or Inter-
channel Phase Difference: IPD) have difficulties when process-
ing reverberant mixtures [12]. 

In this paper, a modified version of SEMANICS [11] is pro-
posed, which involves removing the ADRess part. In addition to 
running unsupervised and utilizing the novel approach of Non-
vocal Independent Component (NIC) Subtraction that was intro-
duced in [11], the modified system presented here exploits both 
channels much more effectively. The new algorithm is referred to 
as Singing Extraction through Multiband Amplitude eNhanced 
Thresholding and Independent Component Subtraction 
(SEMANTICS).  

The rest of the paper is organized as follows. Section 2 de-
scribes the use of Independent Component Analysis (ICA) in the 
proposed system. This process is referred to as NIC Subtraction. 
Section 3 gives a detailed description of the approach introduced 
by the authors termed Amplitude Discrimination. Section 4 
presents the experimental investigations. Finally, Section 5 pro-
vides overall conclusions and suggestions for future work. 

2. NON-VOCAL INDEPENDENT COMPONENT (NIC) 
SUBTRACTION 

The first stage of SEMANTICS incorporates the application of 
ICA to the two channels of the original stereo mixture in order to 
acquire a time signal that contains less vocal part than either of 
the original channels. In this section, the basic model of ICA is 
briefly presented, and its use in the proposed method is dis-
cussed. 

2.1. ICA Principles 

ICA is a general purpose statistical technique that is closely re-
lated to Blind Source Separation (BSS), because only weak as-
sumptions of the original sources are made. These assumptions 
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include the non-Gaussian nature of the sources and their statistic-
al independence. The most concise definition of ICA would be 
that of a statistical “latent variables” model: we observe U ran-
dom variables xu … xU, which are modeled as linear combina-
tions of J random variables sj, i.e. 

 
U,...,1for ,... JJ2211  usssx uuuu    (1)

where αuj, u, j, are scalars. By definition sj are statistically inde-
pendent and non-Gaussian. In vector/matrix notation, the above 
can be simplified: 

 
Asx    (2)

where A is the mixing matrix. For the mixing matrix A, there is 
also a de-mixing matrix W, such as: 

 
Wxs    (3)

To estimate W, the ICA algorithm runs multiple iterations, and 
converges when the value of W gives sources that are maximally 
non-Gaussian. However, one of the basic limitations of ICA is 
that it needs as many observations x as sources s. When the 
sources are more than the observations, the case is described as 
underdetermined.  

When the ICA algorithm is applied to underdetermined mix-
tures, it separates the mixtures into subspaces (in the case of ste-
reo mixture they are two) that are as independent as possible 
[13]. Some of the source signals will be mainly in the first output 
while the other sources will find a place in the second output 
[14]. Hence, one of the outputs will contain the vocal element 
mixed together with some of the sources, while the other will 
contain only a mixture of the remaining sources, with much less 
vocal. In the case of this study, the latter is referred to as the 
Non-vocal Independent Component “NIC”.  

We can exploit the latter mixture in order to suppress compo-
nents of the accompanying instruments. For our system we used 
the Fast ICA algorithm as proposed by [13]. 

2.2. Using NIC to suppress music sources 

The NIC determination takes place after Fast ICA is applied on 
the original mixture. Because of the statistical independence of 
the components as well as the dominance of the vocal part over 
its accompaniment (an assumption we make here which has 
proven valid in testing thus far), one of the components will cor-
relate very well with the original mixture, while the other will 
have poor correlation (i.e. the one that contains less vocal and 
more music/accompaniment). Unfortunately, one of the weak-
nesses of ICA is its ambiguity regarding the order of the inde-
pendent components. In order to automatically determine which 
one of the two outputs contains less vocal part, each of the ICA 
outputs is cross-correlated with the original mixture. For this op-
eration, the absolute value of the Pearson Product Moment Cor-
relation Coefficient (PMCC) is used: 
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where ICl is the lth (1st or 2nd in this case) ICA output, V(t) are 
the samples of the summed channels of the stereo mix, and T is 
the number of samples in each of ICl and V. μICl and μV  are the 
sample means of ICl and V respectively, and σICl, σV are their re-
spective standard deviations. The benefit of using the absolute 
value of PMCC is that the correlation index has fixed boundaries, 
i.e.  ρ  {0,1}, where the upper limit indicates strong correlation 
(in our case it is not significant if it is positive or negative). The 
ICA output containing the vocal will give a higher correlation 
index, whereas the other (i.e. NIC) outputs a lower value. The 
latter is used as follows to suppress some of the musical instru-
ments from the vocal independent component. 

Initially, the right, i.e. x1(t,) and left, i.e. x2(t) channel of the 
original mixture are subjected to a high-pass filter, for reasons 
outlined below. Subsequently, x1(t), x2(t), and NIC(t),are seg-
mented and transferred to the frequency domain, using a Hann 
window of 4096-point length before being subjected to a fast 
Fourier transform (FFT) process at 512-point intervals (i.e. 
87.5% Overlap). 

Despite the magnitude of the NIC being arbitrary (due to ICA 
limitations [13]), the magnitude ratios between the sources that 
are contained in NIC will be similar to that in the original mix-
ture. Hence, we define FNIC, modulus of the Fourier transform 
of NIC, and then scale it to match the sample mean of the magni-
tude spectrum Xi(k). By subtracting the scaled FNIC from Xi(k), 
attempts are made to reduce some of the music sources, i.e. 
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for i=1,2, where μXi  and μFNIC are scalars. Subsequently, all the 
negative elements of Yi(k) are set to zero.  

The pre-processing with the high-pass filter provides a more 
successful result in scaling in (5). This is because in audio mix-
tures, the lower region of the frequency spectrum usually carries 
the most energy in the mix, due the sensitivity of the human ear 
at different frequency ranges (i.e. lower sensitivity to lower fre-
quencies [15]). Due to the way that ICA works on complex mix-
tures, it will usually cancel out most low frequency components 
in the output that correlates poorly with the original audio mix-
ture (i.e. NIC). As a consequence, FNIC will not contain as much 
of the bass frequency range. Scaling as in (5) without processing 
x1(t,) and x2(t) with a high-pass filter would bias the scaling fac-
tor towards a lesser value. In addition, this filtering is not consi-
dered to cause significant loss of the vocal component, as vocal 
parts are typically high-pass filtered during the mixing process in 
commercial recordings. During our initial investigations, the cu-
toff frequency that provided a good compromise between correct 
scaling and voice loss was around 140Hz. The high-pass filter 
that was chosen was an IIR first order maximally flat magnitude 
filter (i.e. Butterworth). The outputs of the NIC subtraction are 
further processed as described below. 

3. AMPLITUDE DISCRIMINATION 

The existence of a singer in a music track often implies that the 
singing part is the leading music source of the mix. Moreover, 
the lyrics that are sung usually need to be intelligible, even when 
the singing voice overlaps tonally with other music sources. 
Therefore, mixing engineers tend to process the vocal part, such 
that it is not masked by the accompanying instruments. The 
process often includes the enhancement of the frequency ranges 
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of the voice where significant overlap occurs [16]. Our proposed 
method, referred to as “Amplitude Discrimination” is motivated 
by this phenomenon. 

The amplitude dominance of the voice is evident in the ob-
tained magnitude spectrogram following the NIC subtraction, 
especially since many of the music sources are reduced by the 
aforementioned process.  Hence, it is assumed that the magnitude 
of each of the individual bins that contain the vocal frequencies is 
generally higher than the mean of the frequency bins within des-
ignated frequency bands.  Based on this assumption, we define M 
amplitude discrimination subbands. Optimum effectiveness is 
achieved, when the number of subbands, as well as their crossing 
points, are set manually (by means of trial and error). However, 
this runs against the aim of the proposed system, which is unsu-
pervised SVS. 

Preliminary investigations suggested that an acceptable trade-
off is the selection of crossing points such that each subband 
spans an equal number of mels. In this case, 3≤ M ≤5 is found 
empirically to lead to satisfactory results. Formally, the thre-
sholds are computed based on both spectrograms that are ob-
tained after the NIC subtraction: 
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for m=1, 2, … M, where Zm is a scalar, Q is the number of ele-
ments that are summed,  bm is the mth-subband, and i is the 
channel index. It is noteworthy that the threshold is calculated 
across both channels and not individually. In addition to the M 
number of subbands, a subband b0 is defined, such that it 
matches the frequencies that were attenuated during the high-
pass filtering, but were re-introduced due to STFT errors. 

Subsequently, the Amplitude Discrimination is applied. This 
process functions as a binary mask, allowing only the bins with 
magnitude higher than their respective subband thresholds to 
pass. The resulting spectrogram Ŝ contains the averaged bins 
from the two channels as follows: 
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Fig. 1 shows a magnitude spectrum obtained after the NIC 
subtraction, for a Hann window of 4096 samples.  

The rectangles show the discrimination between the bins that 
have a magnitude higher than the mean for each of the subbands 
and are thus included in the estimation of the target source. For 
each subband, the computed mean value operates as a threshold. 
Each bin that is not included in the rectangles is zeroed. 

Finally, we use the phase information from the original mix-
tures and perform ISTFT on Ŝ(k) to transfer it to the time domain. 
The overview of the proposed system can be seen in Fig. 2. 

4. EXPERIMENTAL INVESTIGATIONS 

For our experiments we used the bss_eval evaluation system as 
proposed in [17]. The bss_eval metrics system takes the esti-
mated source ŝj, the acapella and the instrumental as input, and 
decomposes ŝj as the estimated source (starget), the interference 
(einterf), and error term (eartef). 

In our experiments, the only allowed deformation of starget is 
a time-invariant gain. The measures (expressed in dB) that are 
subsequently used to evaluate the SVS performance are as fol-
lows. 
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Source to Interferences Ratio (SIR) 
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Source to Artefacts Ratio (SAR) 
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The SIR and SAR can be regarded as valid performance 

measures with regards to two different goals, namely the rejec-
tion of interferences and the absence of “burbling” artefacts (also 
known as “musical noise”) respectively. The SDR can be seen as 
a global performance measure [18]. It should be noted that, re-
cently, a modified version of bss_eval, called bss_eval_images 
[19] includes an additional factor, which is the source Image to 
Spatial distortion Ratio (ISR). The ISR is of little significance to 
separation, but is important for applications that use phase can-
cellation (e.g. Karaoke) [19]. Furthermore, the gain of the esti-
mated output plays a significant role on the results. Therefore, it 
has not been used in this study. 

 
Figure 2: Structure of the proposed  SEMANTICS approach to singing 
voice separation. 

Figure 1: Amplitude Discrimination on the FFT of a windowed frame for 
M=4. Sampling frequency is 44.1 kHz and sample resolution is 16 bits. 
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The testing of the system was performed on a customised dataset 
comprising 12 songs. During the mixing and mastering process, 
typical types of convoluted reverberation, as well as equalization 
and compression, were applied. Two of the songs (i.e. Roads and 
Tanto) were taken from [19] while the rest are licensed under 
Creative Commons 2.5 and can be acquired from the Internet. 
The results (in dB) for a Hann window of 4096 samples, with 
87.5% overlapping and M=3 are shown in Table 1. 

Table 1: bss_eval Results 

     SEMANTICS         SEMANICS 

Title SDR SIR SAR SDR SIR SAR
Salala 8.09 28.98 8.14 8.19 23.35 8.34
Nude 7.58 29.81 7.61 6.24 24.58 6.32

Kunlarim 1.14 4.74 4.88 -1.57 2.84 2.19
Help me 5.12 12.01 6.38 2.19 8.47 3.94

Only 1.35 7.40 3.31 0.12 6.45 2.15
Resistencia 0.35 8.95 1.52 -1.13 7.04 0.36
Americano 4.24 15.55 4.69 4.85 14.73 5.46

Monkey 4.95 13.00 5.90 1.66 11.40 2.45
Roads 2.97 18.77 3.15 2.22 15.64 2.53

Tanto (ex.1) 7.94 18.09 8.44 6.00 11.8 7.58
Tanto(ex. 2) 5.72 17.20 6.12 4.60 14.38 5.24
Don’t Know -2.83 9.10 -2.04 -6.08 2.98 -3.74

 
Based on this dataset, SEMANTICS provides generally better 
results, especially with respect to SIR. Compared to [11], where a 
less demanding dataset was used, SEMANTICS is able to target 
mixtures that resemble more appropriately the “real-world” con-
ditions. It should be stressed that SDR and SIR are much more 
important to the objective of this study, which is that of audio 
separation [20]. The original mixtures, the description of the mix-
ing processing, as well as the resulting audio files from separa-
tion are available in http://tinyurl.com/y9tte98 

5. CONCLUSION 

In this paper we have presented SEMANTICS, an extension of 
our previous method presented in [11]. Our new method does not 
rely on ADRess and makes more efficient use of both channels of 
the stereo mix. The dataset that was created simulates “real 
world” conditions, as the music sources as well as the voice are 
processed with typical methods such as reverberation, compres-
sion, and equalization both during the mixing and the mastering 
stage. The results indicate significant improvement over our pre-
vious method, especially in the area of SIR, and which already 
improved on ADRess results. Future work will address the issue 
of artefacts that are introduced during NIC subtraction and Am-
plitude Discrimination. 
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