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Abstract

LCA computation for vertex pairs in trees can be achieved in constant time
after linear-time preprocessing. However, extension of these techniques to
compute LCA for vertex-pairs in DAGs has been not possible due to the
non-tree edges in a DAG. In this paper, we present an algorithm for com-
puting the LCA for vertex pairs in a DAG which treats the DAG’s spanning
tree and its non-tree edges separately. Our approach enables us to tap the
efficiency of existing LCA algorithms for trees. Furthermore, our algorithm
decomposes the DAG into a set of component trees called clusters which sig-
nificantly reduces the preprocessing necessary to incorporate non-tree edges
in the LCA computation. Our algorithm seamlessly interpolates the perfor-
mance graph between the best reported algorithms for trees and the best
reported algorithms for DAGs depending on the incidence of non-tree edges
in the DAG. Using the proposed techniques, it is possible to achieve near-
linear preprocessing and constant query time for sparse DAGs.

Keywords: Lowest Common Ancestors, Directed Acyclic Graph

1. Introduction

The set of Lowest Common Ancestors (LCA) of two vertices u and v in
a DAG is a set of vertices L = {l1, l2 · · · , ln} such that all vertices in L
are common ancestors of u and v and no other descendant of the vertices
in L is an ancestor of u and v [1]. LCA queries find widespread application
in the domain of programming languages for deciding object inheritance,
in complex systems for lattice operations, in analysis of genealogical data,
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computing maximum matching in graphs for string problems, in studying
customer-provider relationships, etc.

A tree is a special case of a DAG; there is a unique LCA for all vertex-
pairs in a tree. But vertex pairs in arbitrary DAGs may have multiple LCAs.
In such a setting, a representative LCA is typically selected from the set
of vertices satisfying the LCA properties. The initial approach to picking
a representative LCA in the literature was to use the notion of depth of
a vertex in the DAG [2, 3]. The depth was defined to be the longest hop
distance of a vertex from the source of the DAG. In such a setting, it was
possible for multiple vertices to have the same depth and ties were resolved
arbitrarily to ensure that no two vertices have the same depth. Thus, it was
possible to obtain a unique representative LCA for all vertex pairs. In later
approaches [4, 5], a simpler approach was used to assigning depth values to
vertices through topological ordering. In these works, the reachability matrix
for the DAG was sorted according to the topological numbers of vertices and
the representative LCA was defined to be the maximal witness of the boolean
matrix product of the reachability matrix and its transpose. In other words,
the representative LCA for a vertex-pair was nothing but the vertex with the
highest topological number amongst the common ancestors of the vertex-
pair. Similar to [4, 5], we define the representative LCA to be the vertex
that has the highest topological number in the set of common ancestors of
the vertex-pair in this paper.

The regular structure of trees and the unique LCA of vertex-pairs in trees
make computation of LCA in trees relatively easier as compared to other
kinds of graphs. LCA computation in trees can be computed in linear time
using the range minimum query technique [6]. On the other hand, a rooted
DAG contains an overlay of forward and cross edges on top of the edges of
a spanning tree that covers the DAG. This additional layer of complexity
inhibits the applicability of the simple and elegant RMQ technique to the
case of DAGs. As a result, all of the reported techniques in the literature
have resorted to computing the transitive closure of the entire DAG as a first
step towards computing the LCA. By computing the closure, it is possible to
easily identify the ancestors of vertices and consequently, the respresentative
LCA for any given vertex-pair.

Computing the closure of a DAG is a computationally expensive opera-
tion. The fastest known algorithm for computing the closure relies on matrix
multiplication and can be achieved in O(nω) where ω(∼ 2.3) is the expo-
nent of the fastest matrix multiplication algorithm reported in the literature
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[7, 8, 9]. The additional drawback of this approach is that for sparse DAGs,
where the structure is very similar to a tree, one is still forced to put up with
computing the closure of the entire DAG. Ideally, one would hope for a tech-
nique that exploits the decomposition of the DAG into a spanning tree and
a set of additional edges. LCA computation can then proceed by considering
reachability information over the spanning tree and over the rest of the DAG
separately. This would let us achieve a fast algorithm for computing pairwise
LCAs in a sparse DAG.

In this paper, we present a technique to systematically decompose and
pre-process a rooted DAG such that subsequent computation of representa-
tive LCA for any pair of vertices can be achieved in constant time. Reach-
ability between vertices in our algorithm is represented as reachability over
the spanning tree and/or reachability over additional non-tree edges. Con-
sequently, we show that the LCA computation can be achieved by treating
the tree and non-tree edges in isolation. We compute the transitive closure
over tree edges using the range-interval labeling scheme (which has a lin-
ear complexity) [10] and the transitive closure for the non-tree edges using
matrix multiplication. We further introduce the notion of a cluster which
is a set of adjacent vertices with a single point of entry via a cross-edge.
We demonstrate how the reachability information over non-tree edges can be
abstracted to the level of clusters which further simplifies the LCA compu-
tation. More importantly, depending on the density of non-tree edges, the
computational requirements of our algorithm interpolates seamlessly between
the best reported techniques for trees and DAGs.

Thanks to our formulation of clusters, the computational costs of our
approach are tied to the number of vertices with incoming or outgoing cross-
edges. Specifically, ifNs and Nt are the number of vertices that have outgoing
and incoming cross-edges respectively and c = max(Ns, Nt), our approach has
a time complexity of O(n+c2.575) and a space complexity of O(n+c2) where n
is the number of vertices in the DAG. In contrast, techniques reported in the
literature for DAGs currently have a time and space complexity of O(n2.575)
and O(n2) respectively. For all DAGs, c < n and for many DAGs including
sparse DAGs c � n. Therefore, our techniques can perform better than pre-
viously reported results on LCA computation. At the same time, depending
on the value of c, the reported techniques can perform as efficiently as the
best algorithm for LCA computation on trees (space and time complexity
of O(n)) or the best algorithm for LCA computation on dense DAGs (time
complexity of O(n2.575) and space complexity of O(n2)).
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Theorem 1.1. The representative least common ancestor of a vertex-pair
in a DAG can be answered in constant time after O(n+ c2.575) preprocessing
requiring O(n+ c2) space.

The rest of the paper is organized as follows. We discuss related work in
section 2. In section 3, we discuss that any vertex u could reach another v
either through the spanning tree or through a combination of spanning tree
edges and cross edges. In the former case, we call u a tree ancestor (T) of
v and in the latter case, we call u a cross ancestor (C) of v. Thereby, we
categorize potential LCAs into one of the four categories - TT-PLCA, CT-
PLCA, TC-PLCA and CC-PLCA - corresponding to the type of ancestral
relationship between the potential LCA and the query vertices. The vertex
with the highest topological number amongst these four PLCAs is the LCA of
the query pair. In section 3, we discuss that the TT-PLCA can be computed
by using the RMQ query on the spanning tree and show that the CT-PLCA
need not be computed for a DAG. In section 4, we discuss techniques to
identify the TC-PLCA for a vertex pair. In section 5, we discuss techniques
to identify the CC-PLCA and conclude this paper in section 6.

2. Related Work

In this section, we give an overview of related work done in computing
LCAs for vertex-pairs in trees and DAGs.

2.1. LCA computation in trees

While investigating multidimensional discrete range searching problems,
the authors of [6] observed the equivalence between unidimensional range
minimum searching and the LCA computation on Cartesian trees. The uni-
dimensional range minimum query is defined as follows.

Definition Given an n-element array A[1..n], the range minimum index
query RMQidx(i, j) returns the index of the smallest element between A[i]
and A[j]. For the sake of simplicity, we assume for our algorithm that the
range minimum query (RMQ) takes i and j as argument and returns the
element corresponding to the minimum index rather than the index.

Since the Cartesian tree is a binary tree, efficient schemes needed to
be developed for the computation of LCA on nodes belonging to a generic
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tree. To achieve this a labeling scheme for nodes was proposed in [11]. This
scheme was able to answer LCA queries in constant time after a linear time
preprocessing. However, the preprocessing for the algorithm presented in [11]
remained complicated until some of the preprocessing steps were removed in
[12]. A parallel approach to computing the LCA of two nodes using the
simplified algorithms was also presented in [12].

A completely different approach to preprocessing trees for computing
LCAs of two nodes was presented in [13]. The approach relied on the Euler
tour of the tree [14] to generate a sequence of integers as an input to the
preprocessing phase.

It was shown in [13] that the LCA of nodes u and v is always encoun-
tered between first visits to u and v during the Euler Tour of the tree. Let
E store nodes in Euler Tour sequence and D store the depths of those
nodes in the same sequence. For any two nodes u and v, let uidx and
vidx denoted the indices of the first occurrence of these nodes in E. Then,
RMQidx(uidx, vidx) on the array D returns the index of the LCA of the two
nodes and E[RMQidx(uidx, vidx)] returns the LCA itself. However, it was
observed in [13] that the RMQidx queries on the depth array is actually
a restricted domain problem where consecutive entries differ by ±1. This
restricted domain property was exploited to develop efficient schemes for an-
swering the ±1RMQidx and subsequently, the LCA query in constant time
after linear time preprocessing [15] [2].

2.2. LCA computation in DAGs

Interest in LCA computation for vertex-pairs in DAG is recent. The LCA
problem was initially studied in [3]. The authors reduced the all-pairs LCA
problem to all pairs shortest distance query and proposed a solution that
had a preprocessing time of O(n2.688) and constant query time. Techniques
from rectangular matrix multiplication discussed in [7] and [8] were used in
[5] and [16] to further reduce the computational complexity of preprocessing
to O(n2.575).

Apart from the main results pertaining to LCA computation in DAGs,
there have also been techniques developed to address special classes of DAGs.
A path cover based approach to computing LCAs in DAGs having low width
was discussed in [1]. The algorithm had a preprocessing time of Õ(n2w(G))1

1Õ(f(n)) = O(f(n) polylog(n))
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where w(G) is the width of the DAG. This approach was also validated for
DAGs having small depth and it was shown to possess the same worst case
complexity as reported in [5].

For sparse DAGs, techniques to compute all-pair representative LCAs
with a time complexity of O(nm) were discussed in [5] and [16] where m
is the number of edges in the graph. It was further shown in [17] that
all-pair representative LCAs can be computed in O(nmred) where mred is
the number of edges in the transitive reduction of the DAG. Based on the
results regarding the number of strongly independent vertices in random
DAGs [18], the authors of [17] note that the expected complexity is reduced
to O(n2 log n). However, the worst case complexity for this algorithm stands
unchanged at O(nm) because computation of transitive reduction itself takes
O(nm) time.

Similar to the techniques based on reachability matrices reported in [5]
and [16], we also use matrix multiplication as the basic ingredient in our
approach. Therefore, in this paper, we demonstrate the advantages of our
algorithm by comparing it with the best reported algorithms based on matrix
multiplication. As discussed earlier in this section, these algorithms have time
and space costs of O(n2.575) and O(n2) respectively [5, 16].

3. Identifying potential LCAs for a vertex pair

In this section, we give an overview of our approach to computing the
LCA of a vertex pair in constant time after polynominal preprocessing. For
the subsequent discussions, we assume that the DAG under consideration is
rooted and static. If there are multiple parentless vertices in the DAG, we
can always introduce a single parent for the parentless vertices to make the
DAG rooted.

We perform a depth first walk of the DAG and classify the edges as
tree, forward and cross edges [14]. This can be achieved by preordering and
postordering the vertices in a DAG and has the same computational costs as
a depth first traversal of the rooted DAG. For computing the LCA, the set
of forward edges can be safely ignored. These edges introduce a redundant
order between two vertices that are already connected.

3.1. Overview of our approach to computing representative LCAs

With forward edges eliminated from the DAG, we are now left to deal
with tree edges and cross edges. Subsequently, whenever we refer to a DAG,
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we assume that the DAG only contains tree and cross edges. For any vertex,
we now have two kinds of ancestors. One kind, which we call tree ancestors
reach the vertex through the spanning tree. The other kind, which we call
cross ancestors, are all ancestors that are not tree ancestors.

We now give a brief overview of our approach to computing the respre-
sentative LCA for two vertices x and y. Equations 1 and 2 show how the set
of ancestors Ax and Ay for vertices x and y respectively are composed of tree
ancestors ( denoted by At

x and At
y) and cross ancestors (denoted by Ac

x and
Ac

y) for the vertices.

Ax = At
x ∪ Ac

x (1)

Ay = At
y ∪ Ac

y (2)

LCA(x, y) = maxtopo[Ax ∩ Ay] (3)

= maxtopo[ {maxtopo(A
t
x ∩ At

y), maxtopo(A
t
x ∩ Ac

y),

maxtopo(A
c
x ∩ At

y), maxtopo(A
c
x ∩ Ac

y) } ]
= maxtopo{TT-PLCA, TC-PLCA, CT-PLCA, CC-PLCA} (4)

Similar to other reported techniques for LCA computation in DAGs , we
assume the LCA for vertices x and y to be the vertex with the maximum
topological number amongst the ancestors common to x and y [3] [5] [16].
This is used in equation 3. Equation 4 expands on equation 3 and shows
how we can identify the representative LCA by shortlisting 4 potential LCAs
( TT-PLCA, TC-PLCA, CT-PLCA, CC-PLCA) and then picking the one
with the highest topological number.

We now show that if we rearrange the arguments of the LCA query such
that the postorder number of the first argument is always greater than the
postorder number of the second argument then we don’t need to calculate
the TC-PLCA in order to compute the LCA.

Definition For a vertex v in a DAG, pre(v) and post(v) denote the pre-
order and post-order numbers for v in the spanning tree that covers the
DAG.

Definition A query of the form LCA(x,y) is considered argument-arranged
if post(x) > post(y).

Lemma 3.1. If pre(x) > pre(y) and post(x) > post(y) and x reaches
y then x is a cross ancestor of y.
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Figure 1: A directed acyclic graph with all vertices annotated with the corresponding
clusterhead

Proof Straightforward. The proof follows directly from the manner in which
preorder and postorder numbers are allocated during a depth first walk. �

Lemma 3.2. It is not necessary to compute the CT-PLCA for an LCA query
if the query is argument-arranged.

Proof For an argument-arranged query LCA(x, y), there can be two cases.

• pre(x) < pre(y): Since post(x)> post(y) by the virtue of argument-
arrangement, it immediately follows that there is a path in the spanning
tree from x to y. In this case, the LCA of x and y is x. Thus, the LCA
of x and y can be easily computed during the computation of TT-PLCA
and we do not need to consider the CT-PLCA for this case.

• pre(x) > pre(y): Let p be an arbitrary cross ancestor of x. Then,
pre(p) > pre(x) > pre(y) and post(p) > post(x) > post(y). From
lemma 3.1, it follows that if p reaches y then p is a cross-ancestor of
y as well. It follows that (Ac

x ∩ At
y) = φ. Hence, we do not need to

compute the CT-PLCA in this case as well.

Therefore, a simple arrangement of the arguments to the LCA query
eliminates the need for computing the CT-PLCA. For the identifying TT-
PLCA, the application of the RMQ technique to the spanning tree suffices.
However, computing the TC-PLCA and the CC-PLCA is more involved and
techniques to compute these are described in sections 4 and 5 respectively.
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3.2. Decomposing a DAG into clusters

There are two kinds of vertices in the DAG; one kind has an incoming
spanning tree edge and the other kind has incoming cross-edges in addition
to the tree edge. We denote the set of vertices of the former kind as ↓ and the
set of vertices of the latter kind as ↓+c. For the vertices in ↓+c, if we ignore
the incoming edges to these vertices, the DAG can be seen as a composition
of trees. The only way to reach a vertex in these trees from a vertex external
to it is by passing through its root - a vertex that belongs to ↓+c. We call
these component trees of the DAG as clusters and the root of the cluster as
the clusterhead.

Definition Clusters are component trees of a DAG obtained by discarding
all incoming edges to vertices that have both incoming spanning tree edges
and cross edges.

Fig. 1 shows the vertices of an example DAG annotated with cluster-
heads for the cluster to which they belong. After edge classification, cluster
identification can be performed by a simple traversal of the spanning tree in
O(n) time where n is the number of vertices in the DAG.

If we are testing reachability from vertex x to vertex y and they belong to
the same cluster, we only need to consider the edges of the spanning tree that
covers the DAG. Otherwise, we have to additionally check for reachability
from x to the clusterhead for y through a combination of tree and cross
edges. In this context, the advantage that clusters offer is that we do not
need to compute the transitive closure at the level of vertices but at the level
of clusters; an approach that is significantly faster for sparse graphs [10].

Since the first step in computing the LCA is identifying common ances-
tors for the query vertices, reachability analysis has a direct bearing on the
computation of the LCA. Due to the formulation of clusters, the computation
of TC-PLCA and the CC-PLCA can be based on a combination of vertex
labelling and small matrix lookups using the annotated labels in a manner
similar to [10]. These small matrices are derived from a single matrix that
captures the transitive reachability from cross edge sources to clusterheads.
In the rest of this paper, for an argument-arranged LCA query, the annota-
tion at the first argument is used to index the rows of these small matrices
and the annotation at the second argument is used to index the columns of
the small matrices.
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4. Identifying the TC-PLCA

To compute TC-PLCA(x, y) one does not need to consider all ancestors
of x in the spanning tree. Instead, it is sufficient to pick just 2 cross-edge
sources (denoted as s< and s>) which we call proximals.

Definition For the query TC-PLCA(x, y), the proximals are defined as the
cross-edge sources that immediately precede and succeed x in the pre-order
sequence of vertices and reach the clusterhead for y (hence, reach y itself).
Evaluation of reachability between proximals and clusterheads considers both
tree and cross edges in the DAG.

4.1. Picking appropriate proximals for a vertex

Let the TC-PLCA of two vertices x and y be denoted as l. l is y’s cross
ancestor and reaches y through a combination of tree and cross edges. Until
we reach a cross-edge source in the path from l to y, the path is composed of
tree-edges entirely. Therefore, if we compute the TT-PLCA of x with every
cross-edge source that reaches y and pick the vertex with the maximum
depth in the spanning tree amongst the computed TT-PLCAs, we obtain l.
However, with the aid of lemma 4.1, we will show that it is not necessary to
consider all cross-edge sources that reach y. Instead, it is sufficient to pick
the proximals only.

Lemma 4.1. Let [0,r] be the range of preorder numbers of vertices in a DAG.
For a given vertex x, the depth of TT-PLCA(x,y) in the spanning tree mono-
tonically increases in the interval [0, pre(x)] and monotonically decreases
thereafter.

Proof Sketch. The TC-PLCA(x, y) in our case needs to be the lowest ver-
tex in the spanning tree that reaches both x and a cross-edge source that
reaches y. The TC-PLCA reaches every cross-edge source in the sub-tree
rooted at the TC-PLCA. Therefore, it is easy to see that for the TC-PLCA
to reach a cross-edge source outside the sub-tree, it is imperative for the
TC-PLCA to be higher up in the tree. �

Let S< be the set of cross-edge sources having a pre-order number less
than x and reaching the clusterhead for y. The first proximal, which we de-
note as s<, is the vertex with the highest pre-order number in S<. Similarly,
let S> be the set of cross-edge sources having a pre-order number greater
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(a) Reachability between cross-edge sources and targets

a e i c k

s< = φ, s> = c s< = c, s> = φ

(b) Proximals for all vertices for clusterhead b
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(c) Proximals for all vertices for clusterhead g

a e i c k

s< = φ, s> = i s< = i, s> = c s< = c, s> = φ

(d) Proximals for all vertices for clusterhead h

Figure 2: Identifying proximals for all vertices for all clusterheads. Vertices are annotated
with their pre-order numbers.

than x and reaching the clusterhead for y. The second proximal, which we
denote as s>, is the one with the lowest pre-order number in S>.

Identification of proximals simplifies the reachability information that
needs to be captured for the TC-PLCA computation. Instead of considering
reachability from one vertex to another, it is now sufficient to capture the
transitive reachability information between cross-edge sources and cluster-
heads for the computing the TC-PLCA. This reduces the size of the reachabil-
ity matrix that we need from a naive O(n2) to O(c2) where c = max(Ns, Nt),
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Ns and Nt being the number of cross-edge sources and cross-edge targets
(clusterheads) respectively.

4.2. Variations in proximals

Answering arbitrary TC-PLCA queries requires us to annotate each ver-
tex with proximals for each of the clusterheads. This is expensive and our
next objective is to reduce the annotation overhead.

For a given vertex y, let all possible values of x in TC-PLCA(x,y) be
written out in pre-order sequence. For all x’s in the pre-order sequence,
the proximals change only when a cross edge source is encountered in the
sequence. This is due to the fact that the proximals themselves are nothing
but cross-edge sources.

This point is further illustrated in Fig. 2 which shows the variations
in proximals for all vertices for all clusterheads. The solid dots in Fig. 2
represent intermediate vertices in the pre-order sequence. Subfig. 2(a) shows
the reachability between cross-edge sources and cross-edge targets for our
example graph and aids the understanding of Subfig. 2(b), 2(c) and 2(d). In
Subfig. 2(b), 2(c) and 2(d) vertices are written out in pre-order sequence and
cross-edge sources reaching clusterheads are marked with concentric circles.
For each of the clusterheads, we also show how the values for proximals
change as we run through the vertices written out in pre-order sequence.

Let us consider the cross-edge sources reaching clusterhead h in Subfig.
2(d). i and c are the two cross-edge sources reaching the clusterhead h. For
the pre-order range [0, pre(i)], the first proximal s< is undefined (denoted
in the subfigure as φ). However, the second proximal s> is defined as i. In
the next sub-range (pre(i), pre(c)] s< is i and s> is c. Finally, in the
range (pre(c), pre(k)] s< is c and s> is undefined.

The proximals for vertices in pre-order sequence vary only when a cross-
edge source is encountered. This subtle observation enables us to deploy a
labeling and indexing scheme for identifying the proximals for any vertex.
Therefore, we can annotate each vertex x with an index that points to a
cross-edge source which has the lowest pre-order number amongst cross-edge
sources having pre-order numbers higher than x. Let the identified cross-
edge source be denoted as u. Since there are no other cross-edge sources in
the interval (pre(x)+1, pre(u)), the proximals are same for both x and u.
Subsequently, we can get the proximals for x by looking up the proximals for
u.
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4.3. Building and indexing the TC-matrix

In order to be able to deploy a labeling and indexing scheme for iden-
tification of proximals, we first build a matrix called the TC-matrix which
holds the proximal information for cross-edge sources. The rows of the TC-
matrix are indexed by clusterheads and its columns are indexed by cross-edge
sources. The TC-matrix for our example graph is shown in table 1. In this
subsection, we first discuss techniques for constructing the TC-matrix. Sub-
sequently, we also discuss techniques to annotate vertices with labels to index
the TC-matrix.

The first step in computing the TC-matrix is to compute the transitive
closure for the rechability information between cross edge sources and clus-
terheads. We multiply an adjacency matrix based on the cross-edges with
a second matrix that captures reachability from clusterheads to cross-edge
sources (through the spanning tree) to obtain an intermediate matrix γ. The
result of the closure over γ shows reachability from one cross-edge source
to another through a combination of cross and tree edges. We may need
to further amend γ because some cross-edge sources may be reachable from
another solely through the spanning tree. It is well known the transitive
closure of an adjacency matrix has the same computational complexity as
a matrix multiplication. Hence, obtaining the transitive closure of γ has
the same computational complexity as a matrix multiplication. Creating a
reachability matrix between cross-edge sources and clusterheads from γ is
straightforward and can be obtained by observing the cross-edges. Let this
reachability matrix be denoted as M.

Definition M is a sub-matrix of the transitive closure matrix for the DAG
that captures the reachability information between cross-edge sources and
clusterheads.

The overall complexity of this reachability computation step can be limited to
O(cω) where ω is the exponent of the fastest matrix multiplication algorithm
[8, 9].

Upon obtaining M, we use algorithm 1 to obtain the TC-matrix. We
scan through the list of all cross-edge sources reaching each clusterhead (cf.
4-5) and push the cross-edge source onto a stack after updating the value for
s< for it (cf. 6-7). The value of s< for a cross-edge source is set to be the
same as the s< for the cross-edge source encountered immediately before it
(denoted by prev s<). Upon encountering a cross-edge source s that reaches
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Algorithm 1 TC-matrix computation

1: procedure ComputeTCPLCA(M)
2: prev s< ← φ
3: Stack ← φ
4: for each clusterhead t do
5: for each cross edge source s do
6: s.s< ← prev s<
7: Stack.push(s)
8: if s � t then
9: while Stack is not empty do
10: v ← Stack.pop()
11: v.s> ← s
12: end while
13: prev s< ← s
14: end if
15: end for
16: while Stack is not empty do
17: v ← Stack.pop()
18: v.s> ← φ
19: end while
20: end for
21: end procedure

e i c

b {φ,c} {φ,c} {φ,c}
g {φ,e} {e,c} {e,c}
h {φ,i} {φ,i} {i,c}

Table 1: TC-matrix

the clusterhead, we pop all cross-edge sources on the stack to update the
s> values for them (cf. 8-14). Additionally, we also update the value for
prev s< to s. This process continues until we reach the cross-edge source
with the highest pre-order number. At this stage, if there are any additional
cross-edge sources on the stack, we set the s> value for these sources to be φ
(cf. 16-19). Table 1 shows the TC-matrix for the DAG in Fig. 1 using this
algorithm.
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Algorithm 2 Labeling all vertices for indexing TC-matrix

1: Stack ← φ
2: procedure LabelVerticesForTCPLCA(G)
3: LabelVertex(root(G), φ, φ)
4: while Stack is not empty do
5: v ← Stack.pop()
6: v.colIdx ← φ
7: end while
8: end procedure
9: procedure LabelVertex(n, rowIdx, colIdx)
10: Stack.push(n)
11: if n is a cross-edge source then
12: if colIdx is φ then
13: colIdx ← 0
14: else
15: colIdx ← colIdx+ 1
16: end if
17: while Stack is not empty do
18: v ← Stack.pop()
19: v.colIdx ← colIdx
20: end while
21: end if
22: if n is a clusterhead then
23: if rowIdx is φ then
24: rowIdx ← 0
25: else
26: rowIdx ← rowIdx+ 1
27: end if
28: end if
29: n.rowIdx ← rowIdx
30: for each child of n in the spanning tree do
31: LabelVertex(child, rowIdx, colIdx)
32: end for
33: end procedure

In order to index the rows of the TC-matrix, we annotate vertices with
a label for their clusterhead. In order to index the columns, we annotate
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each vertex with a second label that is based on proximal information for the
vertex. The vertices can be labeled in O(n+m) using algorithm 2 where m
is the number of edges in the DAG. We trigger this algorithm using the root
of the spanning tree that covers the DAG (cf ll 3). The function LabelVertex
is responsible for annotating the row and column indices at every vertex for
accessing the TC-matrix. We annotate the row label (cf ll 10-21) and column
label (cf ll 22-29) with the aid of the variables rowIdx and colIdx. Similar
to algorithm 1, while annotating column labels, we keep pushing vertices
onto the stack until a cross-edge source is encountered. Upon encountering
a cross-edge source, we pop all vertices on the stack and label the vertices
with a column index that corresponds to the encountered cross-edge source.
Our example DAG with annotated with the column and row indices (in that
order) is shown in Fig. 3.

a

b

d

g

l

h

m

e

i

n

j

c

f

k

{0,φ}

{2,φ}

{φ,φ}

{φ,φ}

{0,0}

{0,0} {0,0}

{2,0}{1,0}

{2,0}

{0,1}

{0,1}

{0,2}

{0,2}

Figure 3: DAG vertices annotated with TC-matrix indices

5. Identifying the CC-PLCA

The CC-PLCA of a vertex pair has the highest topological number amongst
the common cross ancestors that reach the pair. Computation of the CC-
PLCA is done in three steps which are described below.

• Step 1 - We try to find out if any of cross-edge sources reach the both
vertices in the query pair. If this is true, then the cross-edge source itself
could be the CC-PLCA. For each query pair, we identify all cross-edge
sources reaching both vertices and then choose one that has the highest
topological number. We denote this vertex as τ . It may be the case
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that τ does not exist as there no cross-edge source that reaches both
vertices. Therefore, we also need to consider LCAs of the cross-edge
sources reaching the vertices as detailed in the step 2.

• Step 2 - For a vertex pair {x,y} let the distinct cross edge sources
cx and cy reach x and y respectively. The LCA of cx and cy could
potentially be a CC-PLCA for the vertex pair. Let the candidate CC-
PLCA identified in this manner be denoted as τ . If Sx and Sy denote
the set of all cross edge sources reaching x and y respectively, τ can
be identified in two stages. In the first stage, we create a shortlist of
vertices by taking one vertex each from Sx and Sy and computing their
LCA. Let this shortlisted set of vertices be denoted as Sτ . In the second
stage, we choose the vertex with the highest topological amongst the
vertices in Sτ .

• Step 3 - We choose the vertex that has the higher topological number
between τ and τ which gives us the CC-PLCA for the query pair.

5.1. A simplified approach to computing τ

Instead of computing the pairwise LCAs as detailed in step 2 above, we
can obtain τ by computing the pairwise TT-PLCA.

Lemma 5.1. For an LCA query LCA(x,y), let Sx and Sy be the set of cross-
edge sources reaching the clusterheads of x and y. Let, St

τ denote the set of
vertices obtained by computing TT-PLCA of all pairs of vertices cx and cy
such that cx∈ Sx and cy∈ Sy and cx 	= cy. τ can be obtained by the picking
the vertex with the highest topological number in St

τ .

Proof Vertices in Sx and Sy form a partial order due to the fact that the
set of vertices in Sx and Sy is transitively closed. Let us consider two cross
edge sources cx and cy from the sets Sx and Sy respectively. During the LCA
computation of cx and cy, we do not need to consider any cross ancestors of
cx and cy towards identification of τ ; they will be considered anyway when
we consider other vertices in Sx and Sy and obtain their LCA. Therefore, it
suffices to just compute the TT-PLCA of cx and cy. This discussion can be
inductively extended to all pair-wise combinations of a vertex each from Sx

and Sy. Therefore, if St
τ denote the set of vertices obtained by computing

TT-PLCA of all pairs of vertices cx and cy such that cx∈ Sx and cy∈ Sy

and cx 	= cy. τ can be obtained by the picking the vertex with the highest
topological number in St

τ . �
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For the remainders of this discussion, we refer to vertices that are TT-
PLCAs of cross edge sources as extras.

5.2. CC-PLCA computation for all pairs of clusterheads

So far, we have discussed the CC-PLCA computation for a given vertex
pair. It is important to reiterate two aspects of the CC-PLCA problem at
this stage. Firstly, we are interested in the CC-PLCA computation of all
vertex-pairs instead of any given pair. Secondly, since any cross ancestor
reaches a vertex through its clusterhead, it would be sufficient to compute
the CC-PLCA of all pairs of clusterheads. In order to compute τ for all pairs
of clusterheads, we need reachability information from cross-edge sources to
clusterheads. Let us denote this matrix by M. In order to compute τ ,
we need reachability information between extras and clusterheads. Let this
information be encoded in another reachability matrix which we denote as
Mx.

Definition Mx is a sub-matrix of the transitive closure matrix for the DAG
that captures the reachability information between extras and clusterheads.

The process of computing τ and τ for all pairs of clusterheads from M
and Mx respectively is straightforward. The details of computing the LCA
from a reachability matrix can be found in [5]. The process is known as
identification of the maximal witness in a boolean matrix product and has a
best know runtime complexity of O(c2.575) [5].

We have already computed M in section 4. We now discuss how Mx can
be computed using M as an input. The initial step in the computation of
Mx is to identify all extras. Simultaneously, we also need to keep track of
which clusterheads are reached by which extras. One can naively enumerate
the extras by obtaining pairwise TT-PLCA of all clusterheads. Since there
are c cross-edge sources, the naive approach would entail O(c2) operations
just to compute all TT-PLCAs. In addition for each of the TT-PLCA com-
putation we have to keep track of clusterheads that the extras reach through
reachability-set union operation. This would increase the worst-case com-
plexity to O(c3). However, we will shortly show with the aid of a few lemmas
that the algorithm can be simplified from a worst case complexity of O(c3)
to O(c2 log c). We first show through lemma 5.2 that it is not necessary to
obtain pairwise TT-PLCA of all clusterheads.
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Lemma 5.2. Let T be a tree and the sequence S = v1 . . . vp be any p vertices
from the tree written in post-order. Let l be the LCA of the nodes v1 and
v2 and vk be a vertex in S with the highest post-order number less than or
equal to post(l). Then, LCA(v1, vi) = l if 2 ≤ i ≤ k and LCA(v1, vi) =
LCA(l, vi) if k < i ≤ p.

Proof Recall from the theory of post-order numbering for vertices in a tree
that a vertex is numbered after numbering all its descendants. Therefore, if a
vertex x is the ancestor of another vertex y then x is the ancestor of all other
vertices that have post-order numbers in the range [post(y), post(x)].

Case 1. 2 ≤ i ≤ k : Let li = LCA(v1, vi). In a tree, there is only
one path from the root to every vertex which passes through all ancestors
of vertex and there exists a total order amongst the ancestors of the vertex.
We know that both li and l are ancestors of v1. So, there exists an order
between li and l. There are two cases possible, either li is an ancestor of l
or li is a descendant of l. We show by contradiction that neither is possible.

Since post(v1) < post(vi) ≤ post(vk) ≤ post(l) and l is an ancestor
of v1, l is an ancestor of vi as well. If l is a descendant of li, then LCA(v1,
vi) = l. This is a contradiction since we know that LCA(v1, vi) = li. Also,
since post(v1) < post(v2) < post(vi) and li is the ancestor of v1, li is an
ancestor of v2 as well. If li is a descendant of l, then LCA(v1, v2) = li. A
contradiction again since we know that LCA(v1, v2) = l. Therefore, li=l.

Case 2. k < i ≤ p : Once again, let li = LCA(v1, vi). For this case, we
have post(li) > post(vi) > post(l) ≥ post(vk) > post(v1). Also, we
know that both li and l are ancestors of v1. There is a total order between
li and l. Since post(li) > post(l), li must be an ancestor of l in the
tree and all paths from li to v1 pass through l. Thus, LCA(v1, vi) can be
rewritten as LCA(l, vi) for this case. �

Lemma 5.2 shows that if we have a sequence of vertices S = v1 . . . vp in
post-order sequence, the list of unique TT-PLCAs for all vertex pairs can
be obtained by a recursive operator. This operator computes the TT-PLCA
of the first two vertices in the sequence, adds the TT-PLCA back into the
sequence (according to its post-order number) and drops the first vertex
from the sequence. Assuming that the operator terminates, it continues to
run until it exhausts S. Based on this observation, we formulate a recursive
operator Λ to identify the set of extras and clusterheads reachable from
these extras. We first give a formal presentation of Λ and then discuss its
correctness and termination properties.
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Definition Λ is an operation on the set of cross-edge sources S sorted in
ascending order of their post-order numbers such that:

1. It calculates the TT-PLCA l of first two vertices in S
2. It updates the clusterheads reachable from l with those reachable from

the first two vertices in S
3. It inserts l back into S while maintaining the vertex ordering in S
4. It drops the first vertex in S
5. If S has at least 2 elements, Λ calls itself with S as an argument

otherwise Λ terminates

Lemma 5.3. Λ correctly identifies all extras and all clusterheads reachable
from these extras.

Proof The TT-PLCA of v1 and vi where 2 < i ≤ k is l. If l is not in S
yet, we insert it in S. We update the clusterheads reached by l with the
clusterheads reached by v1 and v2. As Λ operates on S, the pairwise TT-
PLCA of l with vertices vk+1 . . . vp will gives us the other extras that may
arise due to v1. Therefore, we do not need v1 anymore and it can be dropped.
Thus, Λ preserves the information about extras. If we assume termination of
Λ (which will be proved later), at some stage l will become the first vertex
in the sequence. If we find that l is not a cross-egde source, we add it to the
set of extras.

Apart from reaching clusterheads directly, extras can also reach cluster-
heads transitively through other cross-edge sources reachable from them in
the spanning tree. We need to show that when extras are dropped from
S, the identified set of clusterheads reachable from it is complete. Let li
TT-PLCA of two vertices vi and vi+1 such that post(v1) < post(vi) <
post(vi+1) < post(l). According to lemma 5.2, l also reaches vi and vi+1.
Therefore, li could be either l or one of its descendants in the spanning tree.
If li is l, reachable clusters from l are updated with those reachable from vi.
Otherwise, clusterheads reachable from li are updated and li is inserted in
S in a position between vi+1 and l. li continues to remain in the sequence
until it comes to the beginning of the sequence. Then, the information about
clusterheads reachable from it is added to one its ancestors (which could be
l or one of its descendants) and so on.

The discussion reveals a powerful property of Λ - no vertex is dropped
without handing over clusterhead reachability information to a tree ancestor
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of the vertex that is already in S. More importantly, it is not possible for l
to come to the head of the sequence until all the vertices that have post-order
numbers in the range [post(v1), post(l)] have been dealt with. As a result,
we will ultimately reach a stage in Λ where all reachable clusterheads from
l have been correctly identified. �

Lemma 5.4. Λ terminates in O(c) iterations.

Proof Sketch. The proof follows straightforwardly from the observation
that for a set of nodes in a tree, the number of unique LCAs generated
through pairwise LCA operations on nodes in the set is no larger than the
cardinality of the set. �

5.3. Algorithmic details

Having discussed the technical details of the process for computing the
CC-PLCA, we are now ready to discuss the algorithmic details. In this
subsection we present the algorithm that computes Mx from M. The rest of
the process for computing the CC-PLCA relies on computation of maximal
witnesses in a boolean matrix product and can be found in the literature
[5]. The algorithm discussed in the sub-section closely follows the theoretical
discussions on CC-PLCA computation.

Algorithm 3 uses the reachability matrix M and the set of cross-edge
sources Cs as input. It uses a priority queue as the basic data structure.
The priority queue uses the post-order number as the ranking criteria. In
the algorithm, we first initialize the priority queue with the set of cross-edge
sources (cf ll 1-3). We dequeue a vertex v1 and check whether it is one of
extras. If it is, we add it to Mx (cf ll 6-9). Then we compute the TT-PLCA
of v1 and the head of the sequence S. The TT-PLCA is denoted as l. We
update the clusters reachable from the l as well (cf ll 12-13). Finally, we put
back l in the sequence S (cf ll 14-18).

We know from lemma 5.4 that the outer loop in algorithm 3 runs O(c)
times. For each of the iterations, we insert a vertex in the sequence which
takes O(log c) time because S is already sorted and we update the reachable
clusterheads which takes another O(c) time. So, the worst case time com-
plexity for obtaining Mx from M is O(c2). At the same time, it is clearly
evident that we do not need more space than O(c2). After obtaining M
and Mx, we just need to do 2 maximal witness of boolean matrix product
operations and a comparison of two c× c matrices. Given that the maximal
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Algorithm 3 Finding clusters reachable through CC-PLCAs that are not
cross edge sources

1: for v ∈ Cs do � Cs is the set of cross-edge sources
2: S.Enqueue(v) � S is a priority queue
3: end for
4: Mx ← φ
5: while !S.empty() do
6: v1 ← Q.dequeue()
7: if !v1.isCrossSource() then
8: Mx ← Mx ∪ v1
9: end if
10: if !S.empty() then
11: v2 = S.head()
12: l = TT PLCA(v1, v2)
13: l.clusters ← l.clusters ∪ getReachable(M, v1)
14: if v2! = l then
15: S.enqueue(l)
16: end if
17: end if
18: end while

witness operation has a time and space complexity of O(c2.575) and O(c2)
respectively, we can conclude that the CC-PLCA computation has a time
and space complexity of O(c2.575) and O(c2) respectively.

Table 2 shows the CC-PLCAs obtained for all pairs of clusterheads for
our example graph. Indexing this matrix requires no further labelling since
we have already annotated each vertex its corresponding clusterhead during
the TC-PLCA computation. These clusterhead labels can be used to index
table 2 as well.

The final step in computing the LCA of any two arbitary vertices is to

b g h

b b

g c g

h c e h

Table 2: CC-PLCAs
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return the vertex that has the highest topological number amongst the TT-
PLCA, TC-PLCA, CC-PLCA. This operation can be achieved in constant
time.

Theorem 5.5. The representative least common ancestor of a vertex-pair
in a DAG can be answered in constant time after O(n+ c2.575) preprocessing
requiring O(n+ c2) space.

Discussion. In order to answer TC-PLCA and CC-PLCA queries, we use a
combination of vertex labeling and small-matrix look-ups. Labeling of ver-
tices for indexing TC-matrix and the CC-PLCAs matrix relies on a depth-first
traversal of the DAG and can easily be integrated with the initial traversal
of the DAG for edge classification. Similar to the depth-first traversal of a
DAG, labeling has a time and space cost of O(n+m) and O(n) respectively.

The pre-processing phase of our algorithm computes the TC-matrix and
the CC-PLCA matrix for answering TC-PLCA and CC-PLCA queries effi-
ciently. The TC-matrix is computed from M with a time and space cost
of O(c2). Computing M from the cross-edge information derived from the
initial traversal of the DAG can be done using a sequence of matrix multi-
plications. This has a time and space cost of O(cω) and O(c2) respectively.
Thus, the TC-matrix can be computed with an overall time and space cost
of O(cω) and O(c2) respectively.

For the computation of the CC-PLCA matrix we need to perform an
element-wise comparison of matrices that hold τ and τ for all combinations of
clusterheads. This operation can be done with a time and space cost of O(c2).
The matrices that hold τ and τ can be respectively obtained from M and
Mx through the maximal witness of the boolean matrix product operation.
This has a time and space cost of O(c2.575) and O(c2) respectively. It has
been further shown that Mx itself can be obtained from M in O(c2 log c)
time and O(c2) space. Thus, the overall time and space cost of obtaining the
CC-PLCA matrix is O(c2.575) and O(c2) respectively.

Finally, answering TT-PLCA queries in constant time requires us to pre-
process the spanning tree that covers the DAG. This is achieved in O(n) time
and space using existing techniques for LCA computation in trees.

6. Conclusion

In this paper, we have proposed a fast and scalable technique to identify
representative LCAs in a DAG. The computational requirement of our techn-
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qiues scales itself based on the number of vertices in the DAG with incoming
or outgoing cross edges. We achieved this by taking the spanning tree of
the DAG as the base structure for our analysis and computing the transi-
tive closure of the additional reachability information in the graph. Then,
we identified potential LCAs depending on all possible types of paths that
may exist between the potential LCA and the query vertex. The vertex with
the maximum topological number amongst the PLCAs was identified as the
representative LCA. The reported techniques provide best of both worlds in
terms of computational requirements: LCA computation using our algorithm
proceeds on trees and dense DAGs in the most efficient techniques reported
currently for these structures in the literature. The computational require-
ments of our algorithm interpolate seamlessly for anything in-between these
two categories. Also, unlike exisiting algorithms that compute the transitive
closure of the entire DAG, we compute the closure for only cross-edge source
and targets which renders our algorithms more efficient that those reported
in the literature.
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