
University of Dundee

DOCTOR OF PHILOSOPHY

Solver Tuning with Genetic Algorithms

Xu, Hu

Award date:
2015

Awarding institution:
University of Dundee

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Feb. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/42577334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://discovery.dundee.ac.uk/portal/en/theses/solver-tuning-with-genetic-algorithms(eee8f5d9-ede2-4b87-af77-8142b2d0209c).html

SOLVER TUNING WITH GENETIC
ALGORITHMS

Hu Xu

A thesis submitted for the degree of Doctor of
Philosophy

December 2015

To my family

ii

Acknowledgements

I would like to express my sincere thanks to my supervisor Dr Karen Petrie for providing

me with the grateful effort, advice and enthusiasm to successfully complete this thesis.

She is not only a unique supervisor in my PhD studying but also a mentor for my research

life. She provided vast creative research space and self-improvement opportunities for me.

Her support in helping me in the development of the thesis is much appreciated.

I would like to thank my wife Li Xuexin for supporting me throughout this. Thanks

for her supporting whatever difficulty I met. I would also like to thank my parents: Xu

Xiaojiang and Wang Jinfeng. Thanks for their encouragement during those years. I would

thank them for supporting me whatever difficulty I met.

I would like to thanks those people that give me different support during my PhD

studying. The list that follows is by no means exhaustive and in no particular order:

Keith Edwards, Jianguo Zhang, Iain Murray, Alison Pease, Iain Martin, Wei Xu, Janet

Hughes, Anne Millar, Ann enny, Sharon Sturrock, Chris Reed, Emanuele Trucco, Ekaterina

Komendantskaya, Derek Brankin, Mahamadou Niakat, Andy Cobley, Mark Snaith, Chris

Jefferson, Neil Moore.

iii

Declaration

Candidate’s Declaration

I, Hu Xu, hereby declare that I am the author of this thesis; that I have consulted all

references cited; that I have done all the work recorded by this thesis; and that it has not

been previously accepted for a degree.

Supervisor’s Declaration

I, Karen Petrie, hereby declare that I am the supervisor of the candidate, and that the

conditions of the relevant Ordinance and Regulations have been fulfilled.

iv

Associated Publications

Parts of the thesis have appeared in the following publications which have been subject to

peer review:

1. Hu Xu, Karen E. Petrie, Iain R. Murray. Using Self-learning and Automatic Tuning

to Improve the Performance of Sexual Genetic Algorithms for Constraint Satisfaction

Problems. ICCSW2013:page 128-135

2. Hu Xu, Karen Petrie, Self-Learning Genetic Algorithm for Constraint Satisfactions

Problem. ICCSW 2012: page 156-162

3. Hu Xu and Karen Petrie. A Sexual Genetic Algorithm Based System For Automat-

ically Tunning Constraint Satisfaction Problems. ARW 2013

4. Hu Xu, Karen Petrie and Keith Edwards, Genetic Based Automatic Configurator

for Minion. The 17th International conference on Principles and Practice of Constraint

Programming Doctoral Program 2011

Other peer reviewed publications during PhD:

Wei Xu, Jianguo Zhang, Hu Xu, Maojun Zhang, Height Estimation of Urban Buildings

Using Angle Consistency of Borderlines of Roofs, ICME 2013.

v

Abstract

Currently the parameters in a constraint solver are often selected by hand by experts

in the field; these parameters might include the level of preprocessing to be used, the

variable ordering heuristic or the suitable modelling approach. The efficient and automatic

mechanism of parameters tuning for a constraint solver is a step towards making constraint

programming a more widely accessible technology. Two types of tuning algorithms are

discussed in this thesis: single instance tuning algorithms and instance-based tuning

algorithms. A standard genetic based algorithm and a sexual genetic based algorithm are

proposed and implemented to deal with the single instance tuning. As an instance-based

tuning algorithm, the self-learning genetic algorithm, which suggests or predicts a suitable

solver configuration for test instances by learning from train instances, is proposed in this

thesis. To improve the efficiency of the instance-based tuning in further, a self-learning

sexual genetic algorithm, which combines the self-learning mechanism with the sexual

genetic algorithm, was discussed. The experiments in the thesis demonstrate how genetic

algorithms are implemented and adapted to aid in parameter selection for constraint solvers.

Genetic algorithms were implemented as the fundamental algorithm for tuning and the

parameter sensitivity of genetic algorithms is also discussed in this thesis.

vi

Contents

Acknowledgements ii

Declaration iii

Associated Publications iv

Abstract v

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Background . 1

1.2 The Existing Automatic Search Approaches 3

1.3 The Aim of the Thesis . 6

1.4 The Structure of the Thesis . 7

2 Standard Genetic Algorithm 9

2.1 Introduction . 9

2.1.1 Encoding . 11

2.1.2 Fitness Function . 12

2.1.3 Selection . 13

2.1.4 Crossover . 17

2.1.5 Mutation . 21

vii

2.1.6 The Evolutionary Mechanism of Genetic Algorithm 22

2.2 The SGA performance . 23

2.3 The Performance of Different Starting Population 24

2.4 Conclusion . 25

3 Constraint Programming 27

3.1 Constraint Satisfaction Problems . 28

3.1.1 Constraint . 29

3.1.2 The Definition of Constraint Satisfaction Problems 30

3.1.3 Constraint Solver . 31

3.2 Constraint Propagation Algorithms . 33

3.2.1 Node Consistency . 33

3.2.2 Arc Consistency . 34

3.2.3 Path Consistency . 35

3.2.4 Alldiff . 36

3.2.5 Watched Literals . 37

3.3 Search Strategy . 38

3.3.1 Backtracking Algorithm . 38

3.3.2 Backtracking Memory In Minion 39

3.3.3 Variable Ordering . 40

3.4 Four Constraint Satisfaction Problems 41

3.4.1 N-Queen Problem . 41

3.4.2 Langford’s Number Problem . 42

3.4.3 Balanced Incomplete Block Design 42

3.4.4 Golomb Rulers . 43

3.5 Conclusion . 43

4 Standard Genetic Algorithm for Tuning 45

4.1 The Significance of the Tuning with Genetic Algorithms 46

Contents

viii

4.2 The Framework of the GACM . 47

4.3 The GA Design in Automatic Configurator 48

4.3.1 Encoding . 48

4.3.2 Fitness in GACM . 50

4.3.3 Reproduction in GACM . 50

4.4 Experiments Design . 51

4.4.1 The Performance of GACM . 51

4.4.2 The Parameter Sensitivity of GACM 54

4.4.3 The Comparison with Random Selection 56

4.5 Conclusion . 60

5 Sexual Genetic Algorithm 62

5.1 Elitism Replacement Policy in Genetic Algorithm 62

5.1.1 Elitism percentage testing with easy function 63

5.1.2 De Jong’s Function Testing . 67

5.2 Sexual Selection Strategy . 71

5.3 Parallel Mechanism in Genetic Algorithms 73

5.4 Sexual Genetic Algorithm for Tuning . 75

5.4.1 Sexual Genetic Algorithm VS. Gender Genetic Algorithm in Tun-

ing Minion . 77

5.4.2 Sexual Genetic Algorithm VS. Gender Genetic Algorithm in Tun-

ing SAPS . 78

5.5 Conclusion . 81

6 Self-learning Genetic Algorithm 83

6.1 Preliminaries . 84

6.1.1 Machine Learning . 84

6.1.2 K-means Clustering . 84

6.1.3 Neural Networks . 85

Contents

ix

6.1.4 Support Vector Machines . 85

6.2 Self-learning Genetic Algorithm . 86

6.3 The Performance of the Self-learning Genetic Algorithm 90

6.3.1 The Distribution of Parameter Sets 90

6.3.2 The Performance Comparison in Tuning Minion 93

6.3.3 The Performance Comparison in Tuning SAPS 95

6.4 Conclusion . 96

7 Self-learning Sexual Genetic Algorithm 98

7.1 Introduction . 98

7.2 Self-learning Sexual Genetic Algorithm vs. Self-learning Genetic Al-

gorithm in Tuning Minion . 103

7.3 Self-learning Sexual Genetic Algorithm vs. SMAC in Tuning SAPS . . . 104

7.4 Conclusions . 106

8 Conclusion 107

8.1 Summary . 107

8.2 Contributions . 108

8.3 Future Work . 109

Bibliography 110

Contents

x

List of Figures

2.1 Roulette Wheel Selection . 14

2.2 Tournament Selection . 16

2.3 Crossover Rate Range Testing . 18

2.4 The 50th Generation Fitness against Crossover Rate 19

2.5 Mutation . 20

2.6 Plots of average fitness, versus generation, Mutation rate is [0, 1] 21

2.7 standard genetic algorithm fitness evolution 24

2.8 The evolutionary speed comparison with different starting populations. . 25

3.1 The General Framework of A Constraint Solver 30

3.2 The Simple Constraint Satisfaction Problems 34

3.3 The Simple Constraint Satisfaction Problems with arc(xi, xj) 34

3.4 The Simple Constraint Satisfaction Problems with arc(xj, xi) 34

3.5 Non-path Consistency Example . 35

3.6 Path Consistency Example . 36

3.7 Watched Literals Example . 37

3.8 Backtracking Algorithm . 38

3.9 Boolean Variables Representation in Minion 39

3.10 Four Queens Problem . 41

4.1 The Framework of Genetic Algorithms Configurator for Minion 47

4.2 The Efficiency of Solving Optimisation Problems by GACM with Standard

Crossover and New Crossover . 52

xi

4.3 The Parameter Sensitivity of Genetic Algorithm in GACM 55

5.1 Elitism Percentage Testing . 66

5.2 Elitism Percentage Testing with De Jong’s Function 69

5.3 The Flowchart of Sexual Genetic Algorithm 76

6.1 The Flowchart of Self-learning Genetic Algorithm 87

6.2 The Distribution for N-queen and BIBD 91

6.3 The Distribution for Golomb Ruler and Langford Number Problem 92

7.1 The Flowchart of Sexual Self-learning Genetic Algorithm 100

List of Figures

xii

List of Tables

2.1 GA Binary Encoding of a horse Colour 11

2.2 GA Binary Encoding of a horse . 13

2.3 Roulette Wheel Selection . 15

2.4 Crossover . 17

3.1 Boolean Variables Representation in Minion 40

3.2 Langford’s problem instance L(2,4) . 43

4.1 Encoding format in genetic configurator 49

4.2 Running cost with different crossover operator 54

4.3 The Efficiency of GACM in Solving Different Problems by Comparing the

Random Selection . 58

4.4 The Efficiency of GACM in Modelling Selection by Comparing the Ran-

dom Selection . 59

5.1 The Comparison Between Parallel Genetic Algorithm and GACM 74

5.2 Sexual Genetic Algorithm . 78

5.3 The Comparison Between Sexual Genetic Algorithm and Gender Genetic

Algorithm in Solving Instance 1006 . 79

5.4 The Comparison Between Sexual Genetic Algorithm and Gender Genetic

Algorithm in Solving Instance 10013 79

5.5 The Comparison Between Sexual Genetic Algorithm and Gender Genetic

Algorithm in Solving Instance 10017 . 79

xiii

5.6 The Comparison Between Sexual Genetic Algorithm and Gender Genetic

Algorithm in Solving Instance 10055 . 80

5.7 Test performance Comparison(mean runtime over test instances, in CPU

Milliseconds) . 81

6.1 The Performance of SLGA in Tuning Minion 94

6.2 The Efficiency of Self-Learning Genetic Algorithm in Tuning SAPS by

comparing ParamILS . 96

7.1 The Performance Comparison in Tuning Minion 103

7.2 The performance of SLSGA and SMAC in tuning SAPS on 20 runs . . . 105

List of Tables

1

Chapter 1
Introduction

1.1 Background

Problems often consist of choices. Making an optimal choice which is compatible with

all other choices is difficult. Constraint programming (CP) [75] is a branch of Artificial

Intelligence [80], in which computers help us to make these choices.

Constraint programming is a multidisciplinary technology combining computer science,

mathematics, and operations research [31] which is a discipline that deals with the applica-

tion of advanced analytical methods to help make better decisions. Constraints arise in

design, configuration, planning, scheduling, diagnosis, testing, and in many other contexts.

Constraint programming can solve problems in telecommunication, e-commerce, electron-

ics, bioinformatics, transportation, network management, supply-chain management, and

many other fields.

In constraint programming, different constraint propagations [17] or search strategies

are implemented in order to find the solution(s) of the problems. The search strategies

and propagation mechanism chosen in a given problem lead to different search time for

the solution(s). Therefore, the selection and utilisation of suitable constraint propagations

and search algorithms for a given constraint problem is an important part of constraint

programming.

2

A constraint solver is a platform that a researcher could utilise to find the results of a

constraints satisfaction problem by picking a suite of which are often available constraint

propagations and search strategies. Often there is a parameter variable available to choose

a propagation or search strategy in the constraint solver. Efficiently tuning a constraint

solver, which finds a suitable parameters setting, will shorten the search time and reduce the

running cost to find a solution. Thus tuning the solver’s parameters [66] is one significant

step of increasing the search speed for a constraint solver.

Currently, the job of tuning the parameters is done manually; a skilled user selects the

most suitable preprocessing method by using previous experience from similar classes of

problems. In most cases, the best constraint propagations and search strategies used in

similar classes of problems will provide a useful clue to aid the user’s selection. However,

this learning curve could be a barrier to novice users in learning how to efficiently use

a CP solver [69]. The user must learn about what each parameter in a constraint solver

does before trying the numerous possible parameter settings. Hutter et. al [55] showed that

manual tuning often leads to highly inferior performance. In other words manual tuning,

in practice, wastes the user’s time and needs a good understanding of the tuning objects.

This is especially a issue for the beginner in CP.

In [70] it pointed out the ultimate goal of automatic search is to build systems that were

able to autonomously solve problems, and to acquire and even discover new knowledge,

which could be reused later. Therefore a feasible automatic mechanism for a CP solver is

worthy of further study.

Genetic algorithms (GAs) are classic global optimisation methods posed by John

Holland [51], which mimic the competition of organisms in nature and the mechanisms of

evolution. GAs are usually implemented in a computer simulation in which a population of

abstract representations of candidate solutions to an optimisation problem evolves towards

better solutions. GAs are widely applied to optimisation problems such as configuration

problems. [5] has proposed a gender-based genetic algorithm for the automatic configur-

ation of algorithms; it showed that the genetic-based approach is feasible for automatic

Chapter 1. Introduction

3

configuration.

Therefore the idea of combining GAs and constraint programming seems worth ex-

ploring further and it is expected that automatic tuning will lead to improvements over

manual tuning by users. Some strategies, such as ParamILS [56], have demonstrated the

practicality and efficiency of automatic configuration for constraint solvers. However, the

general framework of combining GAs with constraint programming has not been achieved.

In light of this situation, some new genetic based approaches such as a sexual genetic

algorithm, a self-learning genetic algorithm, and a self-learning sexual genetic algorithm

were proposed to help tuning constraint solver automatically in this thesis. Meanwhile the

parameter sensitivity of genetic algorithms itself in solving those tuning problems has not

been explored, and it will be discussed in this thesis.

1.2 The Existing Automatic Search Approaches

In [48], it was mentioned that the automatic search, which finds the most suitable and

correct setting for solving a given problem, caught many researchers’ attention in Artificial

Intelligence (AI) and was investigated for many years as the selection problem [90] due to

its importance. The field of automatic search, which has experienced a renaissance in the

past decade, tries to overcome these limitations of manual tuning.

According to the type of the optimisation problems and the tuning parameters, the

existing tuning algorithms or search algorithms which can be applied in tuning could be

classified into four groups by the research focus. The first group is utilised for tuning

such parameters which have continuous domain. Based on the concept of self-adaptation

of the classic evolution strategy, [49] posed a Covariance Matrix Adaptation Evolution

Strategy which adapts arbitrary normal mutation distributions. The results show that the

Covariance Matrix Adaptation Evolution Strategy is feasible for difficult non-linear, non-

convex, black-box optimisation problems in a continuous domain. The internal parameters

of Covariance Matrix Adaptation Evolution Strategy could self-adapting efficiently.

Chapter 1. Introduction

4

In the constraint optimisation, mesh adaptive direct search algorithms [9], which are

based on the generalised pattern search [8], were posed by Audet. In mesh adaptive

direct search algorithms, a local exploration, called polling strategy, was utilised in an

asymptotically dense set of directions in the space of optimisation variables. From the

description of those approaches, it shows that those approaches have a great advantage

on dealing those parameters with the continuous domain. But the range of the tuning

parameters was limited to the continuous domain.

The classification tuning or searching, which is based on categorical parameters, is the

second trend in the tuning algorithms. Composer [43] is one of the classification searching

systems for specific distributions of problems and constraints. In the classification tuning

or searching strategies, they firstly find some set of configurations or parameter settings

by statistical or other evaluation methods. The better or best parameter settings will be

picked up from the chosen parameter settings. Composer is an example to illustrate the

classification tuning. Composer implements a hill-climbing search through a space of the

possible domain to find the right solution.

Based on the knowledge of machine learning, Birattari [18] posed an automatic con-

figuration mechanism for algorithm parameters, called F-Race algorithms. The main idea

of the F-Race is a statistical method by selecting the best configuration from F, a set of

candidate configurations, which were gained by stochastic evaluations.

CALIBRA [2] and ParamILS have also shown the efficiency of automatic configuration.

CALIBRA implements Taguchis fractional factorial experimental designs [93] coupled

with a local search procedure to find a better configuration for the optimisation problem.

The aim of CALIBRA is not to find the best configuration but the better configuration in

requested time. The mechanism of ParamILS is to implement some local search algorithms

with adaptive capping technique for automatic configuration. ParamILS implements a

special iteration technique that gathers statistics on which parameters are important. The

current best parameter set would be replaced only if a new parameter set has been evaluated

on at least as many training instances as the current best. However those mechanisms are

Chapter 1. Introduction

5

only designed for the categorical parameters as mentioned at beginning.

The third research direction in tuning algorithms is a generic configuration for general

parameters. One of the most successful attempts is what Ansótegui [5] has posed: a gender-

based genetic algorithm (GGA) for the automatic configuration of algorithms. He uses a

variable tree (AND/OR Search Trees) to divide variables into several parts which can be

optimised independently. Based on all the ideas of these tuning algorithms, this thesis will

explore the possibility which would combine the machine learning and non-model-based

configuration approach to tuning the constraints solver.

The fourth trend in developing tuning is model-based or case-based parameter tuning.

Sequential Parameter Optimization [12], which combines classical and modern statistical

techniques is a typical model-based optimisation. Sequential Parameter Optimization de-

terminates the optimal configuration under the experimental analysis of a few of the design

points. CP-Hydra [82] implements case-based reasoning to suggest the configuration for

unseen instance by exploiting the experience for the existing instance. Sequential Parameter

Optimization and CP-hydra shows that the main idea of the model-based or instance-based

parameter tuning is to suggest the parameter setting by analysing the existing instance.

[66] posed a machine learning based strategy called ensemble classification for auto-

matic tuning. The ensemble classification is an approach which combines several machine

learning algorithms such as decision trees and neural networks. According to the type of

the optimisation problems, the ensemble classification will pick up the right strategy.

Most recently, a Sequential Model-based Algorithm Configuration (SMAC) [54] was

introduced in 2010. This approach proposes to generate a model over the solver’s para-

meters to predict the likely performance. This model can be anything from a random

forest to marginal predictors. This model is used to identify aspects of the parameter

space, like what parameters are the most important. Possible configurations are then

generated according to this model and compete against the current incumbent. The best

configuration continues onto the next iteration. While this approach has been shown to

work on some problems, it ultimately depends on the accuracy of the model used to capture

Chapter 1. Introduction

6

the interrelations of the parameters.

Based on the gender genetic algorithm, [64] proposed an algorithm called the instance-

specific algorithm configuration (ISAC). ISAC is based on the integration of the configura-

tion algorithm GGA and the recently proposed stochastic off-line programming paradigm.

ISAC will firstly normalise the corresponding feature vectors of a list of training instances.

Then the g-means algorithm will be implemented to cluster the training instances based

on the normalised feature vectors. Next, for each cluster of instances ISAC computes

favourable parameters using the instance-oblivious tuning algorithm GGA. For future test

instances, its feature vectors will be normalized. ISAC will find a cluster such that the

normalised feature vector of the training instance is close enough to the cluster centre.

Then ISAC will suggest the parameters of the cluster for the training instance.

It shows that a variety of strategies were implemented to those attempts on automatic

tuning. Although there are many successful attempts at implementing genetic algorithms

for automatic tuning, there is no general framework for implementing genetic algorithms

to tuning a constraint solver, as mentioned above.

1.3 The Aim of the Thesis

From the literature review in the above section, it shows the aim of the thesis is to proposed

genetic based algorithms to tune a constraint solver in different situation. Therefore there

are three main research questions in the thesis that need to be answered. The first one: How

may a genetic-based algorithm be created for automatically tuning a constraint solver? The

second one: What kind of strategies may be implemented to improve those genetic-based

tuning algorithms? The last one: How will those new genetic-based methods be evaluated

for their performances?

Chapter 1. Introduction

7

Design A Genetic Based Automatic Tuning Mechanism For Constraint Solvers

A feasible automatic tuning mechanism is the key and the first step for tuning constraint

solvers. Therefore the investigation of the basic concepts of the genetic algorithm and

constraint programming is required. A genetic based tuning mechanism will be designed

to connect the genetic algorithms with a constraint solver for tuning. The thesis will justify

the genetic based tuning mechanism.

Explore The Possible Hybrid Tuning Approaches For Constraint Solvers

To deal with different tuning situations with a higher efficiency, some new tuning ap-

proaches, which combine genetic algorithms with other optimisation strategies, will be

explored. In this thesis those hybrid approaches were proposed for two kinds of tuning

situation: the single instance tuning which tunes a constraint solver for one instance; and

the instance-based tuning which consists training instances and testing instanced.

[40] mentioned that the quality of parameter setting of the genetic algorithm will greatly

affect the result of the search speed and convergence. Therefore the parameter sensitivity

of the genetic algorithm itself in those hybrid tuning approaches will be discussed.

Evaluate The New Genetic Based Hybrid Tuning Approaches

Evaluating those new genetic based hybrid tuning approaches is a vital part in the thesis. To

justify the efficiency of those new tuning approaches, their performance will be compared

with some recent existing algorithms as mentioned in the literature review such as GGA

ParamILS and SMAC.

1.4 The Structure of the Thesis

This thesis will use six chapters to answer the three main research questions.

Chapter 2 will investigate the operators in the standard genetic algorithm, such as the

selection, mutation, and crossover. After the experiments, it will state the basic features

Chapter 1. Introduction

8

and the performance.

Chapter 3 will introduce various definitions in constraint programming, different

constraint propagation strategies, and search algorithms. Minion [37], which is one of

the most efficient constraint solvers in the world, will be presented and discussed in this

chapter. Four classic constraint satisfaction problems will be introduced.

Chapter 4 will illustrate how the standard genetic algorithm works to help tune the

parameters in the Minion. A genetic based algorithm will be discussed and implemented

by comparing with random selection strategy.

The sexual genetic algorithm and the elitism selection will be explained in Chapter

5. The efficiency of this SGA will be tested by comparison with a standard GA for the

Travelling Salesman Problem. The performance of SGA will compare with the gender

genetic algorithm.

The self-learning genetic algorithm (SLGA) will then be introduced and applied to

select a suitable parameter set as an instance-based tuning algorithm in Chapter 6. It

will demonstrate how SLGA gains clues from the small training instances for the large

testing instances. The performance of the SLGA will also be verified by comparing with

ParamILS .

Finally, another instance-based tuning algorithm the self-learning sexual genetic al-

gorithm (SLSGA) will be analysed by comparing the sexual genetic algorithm in Chapter

7. Meanwhile the new approach will compare with SMAC. The thesis will conclude by

making some conclusions and presenting the future work.

Chapter 1. Introduction

9

Chapter 2
Standard Genetic Algorithm

This chapter will explore and consider the operators and the basic performance of the tradi-

tional standard genetic algorithm based on [40]. The principle and strategy of the standard

genetic algorithm operators i.e. selection [67, 110], mutation [79] and crossover [102]

will be investigated. In order to understand the operators and evolutionary rule of genetic

algorithm, the basic feature of standard genetic algorithm will be discussed. Therefore

we will firstly present the operators, the optimisation mechanism of the standard genetic

algorithm in section 2.1. The influence of those parameters in genetic algorithms such as

crossover and mutation will be illustrated and discussed in a benchmark function. Next,

some experiments will be implemented to monitor the performance of the standard genetic

algorithm after presenting the fundamental features of the standard genetic algorithm.

Meanwhile the influence of the starting population is also explored. Finally we will draw

some conclusions for this chapter in the last section.

2.1 Introduction

Genetic Algorithms (GAs), which mimic natural evolution, have been applied as search

based algorithms based on Darwin’s theory of evolution [22]. GAs mainly imitate the

recombination of chromosomes which are also sometimes called individuals. In fact

each chromosome in GAs presents a possible solution to the optimisation problem. The

10

chromosome in GAs is often represented as a simple binary string, an integer array or other

data structures. In GAs some chromosomes constitute a biological population. In GAs a

population is a set of possible solutions to the optimisation problem. GAs usually create a

random chromosomes group which is called the old population at beginning. To gain the

chance that acquires perfect solutions (referred as chromosomes in Genetic algorithms);

the new population is created by mating of chromosomes in an old population. Here the

new population is called the offspring and old population is referred to as the parents

in order to presents the relationship between the new population and the old population

vividly. Since the offspring is generated from parents, the offspring has many similar

features of its parents. The whole or parts of the chromosomes in parents are carried to the

offspring. Those chromosomes store the information of the parents.

The early genetic algorithm is called standard genetic algorithm (SGA), which just

includes a basic selection policy, a single point crossover and a single point mutation.

Although the selection policy, crossover and mutation were always adapted and revised to

various variants for different optimisation problems, the evolutionary mechanism of the

genetic algorithms is commonly composed of the following several parts:

Encoding

Fitness Function

Selection

Crossover

Mutation

In order to create a preferable new generation, a specific function which is called the

fitness function judges the quality of each chromosome in the population. Then according

to the fitness of each chromosome, the selection strategy will help optimal individuals

gaining more chances to be picked up into the mating pool to create ideal offspring. Such

selection mechanisms promise that the higher fitness individuals in the old population have

more opportunities than the poor fitness individuals to be selected to generate the next

generation.The mutation and crossover which are the classic operators in GAs provide

Chapter 2. Standard Genetic Algorithm

11

Colour chestnut black gray white

Binary encoding 00 01 10 11

Table 2.1: GA Binary Encoding of a horse Colour

GAs the ability of changing the chromosome in the new generation.

Each part is important and indispensable for the genetic algorithms optimisation. In

order to understand the mechanism and the principle of the genetic algorithms, each part

will be presented in more details in the following section.

2.1.1 Encoding

Definition 2.1.1 Encoding The encoding in genetic algorithms is a procedure that trans-

fers each possible solution of the optimisation problem to some kind of string as a chromo-

some.

The first step in the genetic algorithms is encoding. From the definition 2.1.1, it shows

that the aim of the encoding is to transfer the solutions to Strings. The proper string

structure is the foundation to implement the later operators in genetic algorithms. The

common encoding in genetic algorithm is a binary encoding [40]. Each chromosome

is a string which is composed of 0 and 1. To understand the encoding mechanism, the

following will illustrate how to encode a real problem. Here assume that a farmer introduce

a group of horses which have different colours, ages and strains. But what will happened if

he lets the horses breed freely? Is it possible to get a horse which has a strong ability on

breed? The GA can help the farmer realise it.

The farmer is only concerned with three characteristics of the horse: colours, ages and

strains. The breed ability of each horse is related with those three characteristics. Therefore

each horse can be encoded with a chromosome which has the information of horse’s three

characteristics. For example the colour of horse is chestnut, black, gray and white. In

binary encoding the four colours can be presented by 2 bit binary number see table 2.1.

The age of horse is a range from 1 to 8, and 3 bit binary number can presents all the 8

Chapter 2. Standard Genetic Algorithm

12

ages. The strains of horse can also be presented in a similar way. Then one of the horse in

the group can be encoded in the following format see table 2.2.

The chromosome after encoding: 1100011

The horse feature: A one years old, white, Arabian horse

And each horse in new generation also can be presented as a chromosome. So the

farmer can predict roughly the new generation of horses by observing the evolution of

chromosomes. Features of the horse can be added or deleted with the requirement of a real

problem. For example the gender or the weight of horse all can be encoded as well if they

are part of the problem. Therefore, according to the value range of a research object or the

requirement of an optimisation problem, the binary encoding length (or the chromosome

length, as it is referred to in GAs) is changed.

2.1.2 Fitness Function

Definition 2.1.2 Fitness Function

Fitness function or objective function is a particular type function which evaluates the

merit (fitness value) of each chromosome which is a possible solution for an optimization

problem.

Fitness describes the ability of a chromosome to reproduce in biology. In the genetic

algorithms, the fitness describes the quality of each individual (solutions). In the problem

optimisation, the genetic algorithms use fitness function to evaluate each individual and

provide the information to aid evolution. The fitness function gives the information to the

selection process to pick the suitable parents and push them to a mating pool.

In the last section each horse was encoded as a chromosome with a horse’s three

characteristics which are related with breeding ability. In the horse problem we want to

find the offspring which has strongest breed ability. So the breed of ability of each horse is

selected as the fitness in this optimisation problem.

The fitness function is the function which evaluates the difference between the desired

Chapter 2. Standard Genetic Algorithm

13

colour age strain

Horse features white 1 Arabian horse
Binary format 11 000 11

Table 2.2: GA Binary Encoding of a horse

result and the actual result. It means that a fitness function needs to be built to evaluate the

breeding ability of each horse. Here, assume that the breeding ability of each horse is the

decimal value of the chromosome which includes the horse’s three characteristics: colour,

age and strain. Then the fitness function in the horse problem is:

F (x) = D(Ch(x))

where x is a horse, F (x) is the fitness and the breeding ability of the horse x, Ch(x) is

the chromosome which includes the horse’s three characteristics, D(Ch(x)) is the function

to calculate the fitness of the chromosome Ch(x) with the horse’s characteristics. To easily

understand the fitness calculate function D(Ch(x)), here simply assume the fitness of

horse is the overall decimal value of each horse characteristic binary coding. There is a

white (binary coding: 11, 2 bits) one year old (binary coding: 000, 3 bits) Arabian horse

(binary coding: 11, 2 bits). The horse after encoding is 1100011 and the chromosome

length is 2+3+2=7. Then the fitness of this horse is

1 ∗ 2(7−1) + 1 ∗ 2(6−1) + 0 ∗ 2(5−1) + 0 ∗ 2(4−1) + 0 ∗ 2(3−1) + 1 ∗ 2(2−1) + 1 ∗ 2(1−1)

= 64 + 32 + 0 + 0 + 0 + 2 + 1

= 99

It is usual to set an ideal fitness as an optimal target after building a fitness function

for an optimisation problem. Fitness function can evaluate the quality difference between

each horse of the existing group and the ideal horse.

2.1.3 Selection

Definition 2.1.3 Selection

Chapter 2. Standard Genetic Algorithm

14

Parent 1

Parent 2

Parent 3

Parent 4

41%

36%

8%
15%

Figure 2.1: Roulette Wheel Selection

Selection in genetic algorithms is a mechanism that helps to select the suitable parent

chromosomes for generating the next generation.

To generate more perfect offspring in the new generation, a mechanism is desirable

to make the best individuals in parent generation have a better chance in breeding and

selection. Selection is such a necessary stage before doing the crossover and mutation in

mating pooling. The selection mechanism makes the likelihood of choosing a higher fitness

chromosome greater than that of a lower fitness one. Therefore the proportion of good

fitness in a mating pool is usually higher than the one in the parent population after the

genetic algorithm selection. There are many kinds of selection in the genetic algorithms, but

there are two common selections: roulette wheel selection [40] and tournament selection

[76].

Roulette Wheel Selection

Roulette wheel selection is a way of choosing individuals from the population of chro-

mosomes in a way that is proportional to their fitness. Roulette wheel does not guarantee

that the fittest member goes through to the next generation, merely that it has a very good

chance of doing so. Assume there is a wheel. The area size of wheel is the sum fitness of

population, and the size of each slice is the fitness of each chromosome. According to the

fitness of each chromosome in genetic population, the wheel is divided into a few slices

according to the population size. In the population the higher fitness of each individual

Chapter 2. Standard Genetic Algorithm

15

means the bigger area of each slice and proportion in wheel. The following is the selection

probability formula for each chromosome:

P (Ci) =
fi

n∑
i=1

fi

Where P (Ci) is the selection probability of each chromosome, Ci is the ith chromo-

some in population, fi is the fitness of chromosome Ci and n is the population number.

For example, assume a virtual wheel and there are 4 chromosomes in population. The

fitness of each chromosome is the decimal value of each binary encoding chromosome.

Figure 2.1 shows the selection proportion of each individual and how selection works.

From Table 2.3 it shows that parent 1 has the probability 41% to be selected and

pushed to the mating pool. However parent 4 just has the probability 8% to be selected

and pushed to the mating pool. It illustrates that the bigger fitness means the more share of

roulette wheel and the higher probability of being selected each individual has. However

weaker individuals are not without a chance. And this is good because the mechanism

helps to keep the population diversity and avoid falling the local optimal trap. Roulette

wheel selection meets the requirement of best survival, and the computation of roulette

wheel selection is not huge. Therefore roulette wheel selection is widely applied in genetic

algorithm.

Chromosome Fitness Proportion

Parent 1 111000 56 41%
Parent 2 110001 49 36%
Parent 3 001011 11 8%
Parent 4 010101 21 15%
Total 137 100%

Table 2.3: Roulette Wheel Selection

Tournament Selection

Roulette wheel selection is not the only selection in GAs, there is another selection

strategy called tournament selection. To compare with the roulette wheel selection, the

Chapter 2. Standard Genetic Algorithm

16

OldPopulation P1 P2 P3 P4 P5
. Pm

P2 P4

MatingPool

Figure 2.2: Tournament Selection

tournament selection randomly chooses M(M >= 2) chromosomes. Then the highest

fitness individual is selected and other individuals are discarded. Each time the best

fitness individual is pushed to the mating pool where the individuals will do the genetic

recombination to generate new generation until the new population size is the same as the

parent population. The tournament selection doesn’t have the probability to pick up the

smallest fitness parent. In roulette wheel selection each parent has a relative probability

to be picked up to the mating pool. This is the big difference between roulette selection

and tournament selection. Now we give an example to show the working mechanism of

tournament selection. If there are a group of chromosomes which population size is M ,

tournament selection will choose N = 2 individuals each time to decide which has the

opportunity to be selected and to push into the mating pool. Tournament selection repeat

until the amount of the new individuals in new generation is M . The following figure

shows the working mechanism of tournament selection.

Figure 2.2 shows that the old population whose population size is M selects N = 2

individuals to compete the position in the mating pool each time. Because the fitness

of P2 is larger than the P1 one, the P2 will be picked up to the mating pool on the first

competition. By the same way, the fitness of P5 is larger than P3 and P5 will be selected

to push into the mating pool. Each time the tournament selection randomly picks up two

chromosomes from the old population no matter if they have been selected already or not.

Chapter 2. Standard Genetic Algorithm

17

Before Crossover
Position 1 2 3 4 5 6 7
Parent 1 (Fitness=96) 1 1 0 0 0 0 0
Parent 2 (Fitness=79) 1 0 0 1 1 1 1

After Crossover
Child 1 (Fitness=111) 1 1 0 1 1 1 1
Child 2 (Fitness=64) 1 0 0 0 0 0 0

Table 2.4: Crossover

All the high fitness individuals which are picked up after tournament selection will do the

recombination in mating pool to generate new generation. GAs will repeat the selection

and recombination until the new generation size reaches M . The speed of approaching

optimal individual of tournament selection is faster than the roulette wheel selection, but

tournament selection easily misleads the evolution to the trap of local maximum, because

it always keeps the high fitness individuals and loses the variety of population.

2.1.4 Crossover

Definition 2.1.4 Crossover

Crossover in genetic algorithms is an operator which randomly swaps the same length

strings in each pair of selected chromosomes.

The crossover, which mates parents to produce an offspring, is another very important

operator in the genetic algorithms. The crossover attempts to generate an individual which

has a higher fitness by swapping parts in the selected chromosomes. Single point crossover

is the most classic crossover in genetic algorithm because it can be easily understood

and implemented. In single point crossover a crossover operator that randomly selects a

crossover point within a chromosome then interchanges the two parent chromosomes at

this point to produce two new offspring. Assume there are two parents whose fitness is the

decimal value of individuals and the fitness of two parents is 96 and 79. The following is

the working way of single point crossover.

According to the chromosome length, which is the length of the encoding bit in a

Chapter 2. Standard Genetic Algorithm

18

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

F
itn

es
s

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 2.3: Crossover Rate Range Testing

chromosome, a crossover position will be randomly generated between 1 and chromosome

length-1 before each crossover. Table 2.4 shows that the crossover splits each parent men-

tioned above into two at the same position (position=3) in this example and exchanges the

same length strings of each parent. The information in parent 1 exchanges the information

in parent 2 by this way. As mentioned in the GAs encoding, each chromosome in GAs

actually presents a solution to an optimisation problem. Each segment in chromosomes

or gene strings, presents partial solutions to the problem. The aim of the GAs is to find

the best combination of the superior gene string which could lead the chromosomes to a

better or the best fitness. Since the superior gene string could be in any position of any

chromosome in the whole population, crossover provides the chance to combine superior

gene strings. As table 2.4 shows,the first three bits in parent 1 and the last four bits in

parent 2 are superior gene strings. Since the fitness of an individual is the decimal value of

each individual, the fitness of the individual can be presented by the sum of the decimal

value of the first three and last four bits of an individual. In other words the fitness of the

first three bits in parent 1 is greater than parent 2, but the fitness of the last four bits in

Chapter 2. Standard Genetic Algorithm

19

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Crossover Rate

F
itn

es
s

Figure 2.4: The 50th Generation Fitness against Crossover Rate

parent 2 is larger than parent 1. After crossover the child 1 inherits all the superior gene

strings from parent 1 and parent 2. Therefore child 1 has the high fitness than its parents

after crossover.

Usually before crossover, a parameter called crossover rate Cr which is the probability

of crossover happening needs to be set in GA. Crossover rate or crossover probability Cr

indicates a ratio of how many couples of chromosomes will be picked for mating. It means

that if the crossover rate is 0.6, each two selected parents have the 60% probability to

do the crossover in mating. For more understanding on crossover rate and its influence,

we choose an example form [40]. In the example the chromosome was decoded as an

unsigned 30-bit integer. The fitness function f is the power function:

f(x) = (x/c)n

where c has been chosen to normalise x, and n has been chosen as 10. Since the

bit string is an unsigned 30-bit integer, c has been chosen as 1073741823.0 (230 − 1 =

1073741823) to normalise x. After normalisation the value of x and f(x) will range from

Chapter 2. Standard Genetic Algorithm

20

Parent: 101111 Fitness:47
Child: 111111 Fitness:63

Figure 2.5: Mutation

0 to 1. The optimisation problem seeks the best individual with f(x)=1. In the chapter the

function was chosen to investigate the influence of crossover rate in GA firstly.

Here assume there are 30 chromosomes in a population and each chromosome’s length

is 30 bits. The population will do evolution for 50 generations. Crossover rate ranges

from 0 to 1 and steps 0.1. 100 different starting populations will be created to do the same

evolution. Figure 2.3 illustrates the fitness curves for different values of crossover, plotted

against generation number. Each curve represents the average fitness of the population at

each generation. Each curve in turn is also the average of 100 different starting populations.

Figure 2.3 and Figure 2.4 demonstrate the influence of the crossover rate in the bench-

mark function. Figure 2.3 shows that the 50th generation fitness found don’t rise with the

increase of crossover rate. In order to analyse the result in Figure 2.3 clearly, the 50th

generation fitness of each curve presented in drawn graphic in Figure 2.4.

From Figure 2.4 it shows that the crossover rate around 0.9 is peak. And the 50th

generation fitness doesn’t increase with the raise of crossover rate. The 50th generation

fitness actually decreases with the raise of crossover rate when crossover rate is (0.2, 0.5)

and (0.9, 1.0). And Figure 2.3 also shows that the proper crossover rate help the SGA to

find the optimal result whose value is more than 70% of the best fitness in 50 generations

in this benchmark. Although the crossover is done randomly, the mating individuals are

selected by comparing the fitness. The child chromosome can inherit the high fitness gene

string from parents, but the creation of new gene strings will depend on mutation. The

following section will describe the working mechanism of creating new gene string of

mutation.

Chapter 2. Standard Genetic Algorithm

21

5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

F
it
n

e
s
s

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 2.6: Plots of average fitness, versus generation, Mutation rate is [0, 1]

2.1.5 Mutation

Definition 2.1.5 Mutation

Mutation alters one or more gene values in a chromosome from its initial state to any

other state at random.

Selection and crossover both can’t avoid the probability when the search falls into the

trap of local maximum value and loses the chance to find the best fitness. Mutation can

change one or some genes in a chromosome is another operator in GA. The mutated gene

position becomes the opposite value; for example 1 to 0 or 0 to 1 after mutation. Mutation

provides a chance for genetic algorithms to escape the local maximum state by creating

new gene string.

Figure 2.5 shows the simple and basic working way of mutation. According to the

mutation rate the second position of Parent 101111 was picked up to do the mutation. The

gene in second position of parent became the opposite value 1. After the mutation, the

fitness became 63.

Chapter 2. Standard Genetic Algorithm

22

As the crossover, mutation also has a mutation rate Mr to control the amount of

mutation in the recombination of each generation. The mutation rate Mr represents

how often mutation is performed in a generation. To compare with the crossover rate,

any bit in each chromosome has the chance to do mutation. To show the influence of the

mutation in each generation, here we use the example from [40] again. Assume there are 30

chromosomes in the mating pool, the mutation rateMr=0.1 and the chromosome length=30,

there are about ninety times (population size* chromosome length *Mr=30*30*0.1= 90)

mutation performed in each generation.

In the following, we will investigate the performance of the mutation. To avoid the

influence of the crossover, the crossover rate will be set to zero and mutation rate ranges

from 0 to 1 in steps of 0.1, 100 different starting populations will be created to do the same

evolution. In Figure 2.6 each curve is the average of 100 different starting populations.

From Figure 2.6 it shows that the smaller mutation rate the higher fitness found in this

optimisation problem. It means that the small mutation rate is a good choice for SGA such

as around 0.1 in this experiment. Too many mutations means the higher possibility of the

useful gene becoming lost in the existing chromosomes. In this experiment, SGA to find

the more than 80% best fitness in 50 generation in most of time when mutation rate is

between 0 and 0.1. In another hand, it shows that the inappropriate mutation rate leads to a

very poor performance.

2.1.6 The Evolutionary Mechanism of Genetic Algorithm

In Algorithm 1 the pseudo code of the genetic algorithm describes the basic working way

of genetic algorithm. Genetic algorithm repeats the search and operators until the finish

result is satisfied. Now we explore how GA realises each step in Algorithm 1.

Algorithm 1 clearly shows that the first step of the GA is a suitable and correct way to

encode the optimisation problem to the chromosomes. A population which has a number of

chromosomes will be initialised. The fitness of each chromosome in the population will be

evaluated by the fitness function. According to the fitness evaluated, some chromosomes

Chapter 2. Standard Genetic Algorithm

23

which have the higher fitness will be chosen to the mating pool. The evaluation will be

carried on by repeating the main three operators: selection, crossover and mutation until

the requirements are met.

Algorithm 1 Standard Genetic Algorithm
1: Choose a encoding way for chromosome
2: Initialize population
3: Evaluate population
4: repeat
5: Select the higher fitness chromosome to mating pool according to the fitness of

individuals
6: Crossover the genes of selected parents
7: Mutate the mated population stochastically
8: Evaluate the fitness of the new population
9: until The finish requirement meet

2.2 The SGA performance

In GAs research, Goldberg spent a considerable effort in analysing the operators of GAs

and their effect on performance. To demonstrate the performance of GAs and provide

a robust foundation for future research work, this section will reproduce the results of

the standard genetic algorithm example [40] with the same operators and parameters. To

convince the correctness of the code, the result of running code will compare with this

benchmark. In this example the fitness function is the power function same as in last

section example.

The following are the parameters used in this experiment.

Population Size =30

Chromosome Length=30

Mutation Rate=0.0333

Crossover Rate=0.6

Figure 2.7 shows the evolution behaviour of the maximum fitness and the average

Chapter 2. Standard Genetic Algorithm

24

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

GenerationNumber

f
(x
)

max
avg

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

GenerationNumber

f
(x
)

max
avg

Figure 2.7: standard genetic algorithm fitness evolution

fitness of 30 chromosomes in each generation. The X axis presents the generation number

and the y axis presents the fitness f(x). So there are two lines in each graph, one line

presents the maximum fitness of 30 chromosomes in each generation and another presents

the average one. The left side is the result of this paper and the right side is the Goldbergs

result. In comparing these results with Goldbergs, the values and the change trend of

fitness matches the Goldbergs. Since the original population is randomly created in this

experiment, the fitness value of each plot in this paper is not the exactly same as Goldbergs,

but the fitness improve trend is the same. It shows that the genetic algorithm coding

in this paper is feasible. Figure 2.7 shows the genetic algorithm can approach the best

solution quickly whatever the original population is. The evolution slows down the speed

of approaching the best solution, and the evolution approach 90% of the best value in a few

steps. It means that the genetic algorithm is suitable for finding an optimal value quickly.

2.3 The Performance of Different Starting Population

In genetic algorithms, the starting population is a considerable factor for the evolutionary

speed, as with the crossover rate and the mutation rate. To check the influence of the fitness

value in the starting population of genetic algorithms, two different starting populations

(set to high fitness and low fitness) were applied to optimise the same function f(x) = x10.

Chapter 2. Standard Genetic Algorithm

25

0

0.01

0.1

1

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0
0

0.2

0.4

0.6

0.8

1

Mutation RateCrossover Rate

F
itn

es
s

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

0.2

0.4

0.6

0.8

1

Mutation Rate
Crossover Rate

F
it
n
e
s
s

Figure 2.8: The evolutionary speed comparison with different starting populations.

The size of both starting populations were 30 chromosomes. In Figure 2.8, the X axis is

the mutation rates and the Y axis the crossover rates. The Z axis is the best fitness after

50 generations with different mutation rate and crossover rate. The fitness of the starting

population of the left-hand graph is lower than 0.1. The fitness of the starting population

in the right-hand graph is randomly generated between 0 and 1.

Figure 2.8 shows that the genetic algorithm with a starting population with high fitness

could approach better fitness than the one with a starting population with poor fitness. It

demonstrates that a suitable starting population for a genetic algorithm could lead to a

more rapid approach to best fitness.

2.4 Conclusion

This chapter illustrated the feature of standard genetic algorithm by introducing the main

operators, the selection policy, and its flow chart step by step. From the investigation and

experiments of this chapter the standard genetic algorithm has the following features:

No matter what the complexity or extra information of the problem, genetic algorithm,

which does not need other auxiliary information, select the binary encoding string or others

encoding strings as an optimisation object and do the evolutionary base on fitness. The

genetic algorithms are flexible to optimise various problems with such a mechanism and

don’t need to worry about the information which is provided by optimisation problem.

Genetic algorithm applies the parallel search strategy rather than step search as other

Chapter 2. Standard Genetic Algorithm

26

search algorithms would do. It means that genetic algorithm does not search the optimal

result step by step but selects the final target as a research object. The search in genetic

algorithm is connotative parallelism, because genetic algorithm explores hundreds or

thousands of solution in one generation.

The genetic algorithm has a good search ability. In our experiments, the standard

genetic algorithm finds optimal fitness quickly, but approach the best fitness slowly. In

section 2.1.5 the genetic algorithm can find more than 80% best fitness in a few generations

even if the mutation is turned off. Similarly the genetic algorithm can find more than 70%

best fitness in a few generations when the crossover is turned off in the experiment of

section 2.1.6. In the experiment in section 2.2 genetic algorithm approaches 95% best

fitness in just 7 generations.

According to the definition of the operators of genetic algorithm, it shows that crossover

gains the outstanding offspring by exchanging the best or better gene slice in parents. And

the mutation obtains a favourable gene slice or individual for the next generation by

changing some or one position gene in the parents. An appropriate pair of crossover and

mutation rate greatly improves the searching speed for the optimization problem. Finally, it

shows that the quality of the starting population also could directly affect the evolutionary

speed in genetic algorithm. In another word, a proper starting population leads to a more

efficient and high evolutionary speed.

Chapter 2. Standard Genetic Algorithm

27

Chapter 3
Constraint Programming

Constraint Satisfaction Problems (CSPs) [65, 99] are mathematical problems which find

one state or a solution that is the assignment of values for every variable in such a way

as to satisfy all the constraints. It has practical significance because CSPs are general

problems that arise in many areas, such as configuration, networking, resource allocation

in scheduling and other combinatorial problems [60]. Therefore the constraint satisfaction

problems are worth studying because in reality many problems can be modelled as CSPs.

Constraint Programming (CP) [34, 58, 92] is a branch of Artificial Intelligence (AI)

used to help us solve CSPs. Many reasoning strategies and search algorithms were proposed

and applied in CP for solving the CSPs. The selection of suitable constraint inference

strategies and search algorithm directly affects the speed of finding the results of the

constraints satisfaction problems.

Therefore there are three main research trends in constraint programming to help it

speed the searching. The first one is to develop some efficient inference strategies (some-

times called constraint propagation strategies) which could greatly reduce the searching

space and remove those invalid parts such as the invalid value range of variables. The

second one is to improve the efficiency of those search algorithms which were applied

in constraint programming and could find the solution quicker. The last one is to find a

suitable constraint model [35], which could accurately and efficiently describes the CSPs

28

in some programming languages.

It is obvious that the aim is not only to find the solution(s) of CSPs when the researchers

applied constraint programming to solve CSPs, but also to solve it with increasing accuracy

and efficiency [35]. To achieve this goal, a series of decisions need to be faced as all those

mentioned above. It is time consuming and a burden for the researcher to understand or

explore all the strategies and their combinations in constraint programming. A constraints

solver [15, 21, 38, 59] is a software system that includes most of popular constraint

programming strategies and allows more general and friendly programming language for

modelling. The researchers could utilise it to find the results of constraints satisfaction

problems by picking up the suitable constraint inference strategies and search algorithm.

The aim of this chapter is to understand the constraint solver and those working

principles and strategies applied behind before tuning the constraint solver in this thesis.

Therefore this chapter firstly mentions the concept of the constraint satisfaction problems

and the constraint solver. In section 3.2 some classic and some state of art constraint

propagation strategies in the constraint solver are demonstrated. A classic search algorithm

the backtracking algorithm was mentioned in section 3.3. Also a global constraint Alldiff

are introduced in detail to enrich the statement on the propagation algorithms. Watched

Literals [57] is mentioned as a strategy for implementing global constraints efficiently. The

backtracking memory management in Minion is also introduced to illustrate the efficiency

of the Minion. Next, four constraint satisfaction problems [30, 101, 47] are introduced

before the relevant experiments in this thesis.

3.1 Constraint Satisfaction Problems

To understand the constraint satisfaction problems and constraint solver clearly, the follow-

ing will introduce the meaning of the constraint satisfaction problems and the value of the

constraint solver.

Chapter 3. Constraint Programming

29

3.1.1 Constraint

Definition 3.1.1 Constraint

The constraints decide the possible assignment of values to the variables. A constraint

C(x1, ..., xk) represent the logical relation among variablesx1, ..., xkwhere k ≤ n. The

variable k which is the amount of variables involved (restricted) is called the constraint

arity of C. [106]

According to the amount of the variables involved (or the constraint arity), the common

constrains in problem are divided into three types: unary constraints, binary constraints

and higher order constraints [88, 94].

Unary constraints: A unary constraint is the domain restriction for single variable

such as x1 6= 1 .

Binary constraints: A binary constraint describes the relationship between two vari-

ables such as x1 6= x2 .

Higher order constraints: A higher order constraint introduces the relationship

among more than three variables such as x1+x2 = x4−x3. High order here means several

variables. In another word, a higher order constraints is not a single or straight relationship

in/between one or two variables but a more complicated relationship between more than

two variables.

In many real problems such as scheduling and resource allocation, it is not always

necessary to satisfy all the constraints. Following the restrictions imposed on variables, the

constraints can be separated into hard constraints and soft constraints[63].

Hard constraints: A hard constraint gives restricted rules which variables must follow

such as x > 5.

Soft constraints: A soft constraint is a preference whose satisfaction is not be certain

such as Adam prefers more vegetable than meat in his dinner.

Chapter 3. Constraint Programming

30

User Constraint Solver

reasoning and searching

Problem Solution(s)
optimisation

problem

Figure 3.1: The General Framework of A Constraint Solver

3.1.2 The Definition of Constraint Satisfaction Problems

Definition 3.1.2 Constraint Satisfaction Problems

Constraint satisfaction problems commonly consist of the following three parts:

1. A finite set of variables {x1, ..., xn}, where n is the number of variables.

2. Each variable Xi has a finite domain (value range) Di where i is the number of

variable and i ≤ n.

3. A set of constraints (variables relationship) Cm which restrict the values so that the

variables can simultaneously take, where m is the amount of the constraints. [92]

A CSP consists of a set of variables where each variable has their finite set of possible

values, and set of constraints so that restrict the values that the variables can simultaneously

take. Those possible values of each variable could be consecutive numerical values or

individual words such as D1= {1,2,3......10} or D1= {Black, Red.......Blue}. In each finite

domain of variables, not all possible assignments of values to variables are permissible.

Although the constraint type could be defined to different variety following the require-

ments of the optimisation problem, the aim of the most CSPs is [99]:

1. find one solution that is the assignment of values of every variable in such a way

that all constraints were satisfied.

2. find all solutions

3 find some optimal solutions

Chapter 3. Constraint Programming

31

To understand the definition of the CSPs, some examples are given in the following

section.

3.1.3 Constraint Solver

As mentioned, a constraint solver is a systematic software which helps a user find one

or some of the solution(s) of constraint satisfaction problem. Modern constraint solvers

provide a black-box procedure that could solve CSPs with different variables and abundant

constraints [42].

In essence, constraint solvers provide a generic combinatorial reasoning and search

platform which is automatically generated and hidden from the users as in Figure 3.1.2.

The general framework figure has demonstrated that the users only faced the appropriate

higher-level representation language to express the problem and pick up the suitable

combination of reasoning and searching.

Nowadays the success of the constraint solvers have been proved in many real-world

instances. Minion, which is an open source software, is one of the most successful

constraint solvers. Because Minion uses a neat problem description way and an expressive

input language, it is one of the fastest and most efficient constraints solver [37]. Therefore

Minion is selected as one benchmark of the constraints solvers for verifying those tuning

algorithms in this thesis.

Minion [36] is one of the general purpose constraint solvers. The pseudocode of

Minion demonstrates its working principle for constraints satisfaction problems. Those

variables in the CSPs are attached their relative constraints at the beginning of solving

CSPs. Then a validation loop will be produced to find the solution(s). In the loop those

variables are firstly assigned some values in their domain. Then their constraints will be

pushed into a queue. When the constraints are defined multiple variables (more than one),

the constraints and the relative variable will be pushed in the queue.

According to some reasoning strategies, all the invalid value of the variables and

constraints will removed from the queue. In another word, those variable which have

Chapter 3. Constraint Programming

32

assigned the values and their constraints will be removed from the queue if their values

didn’t match their constraints by reasoning. This validation will carried on until empty or

solutions are found. Then the validation loop will repeat if the queue is empty but solutions

are not found.

Algorithm 2 Minion Pseudo Code
Constraints attaches variables; . Preprocessing
repeat

Variables← Values;
Pushes constraints or variable into queue . Preprocessing level
Propagates(reasoning) until empty . Heuristics

until Until solutions found
return Solutions

There are four different variable types in Minion: Bool variables, Discrete variables,

Bounds variables and Sparse bounds variables.

Bool Variable is a boolean variable which has the domain [0, 1]. Bool variables are

widely used for logical expressions.

Discrete Variable is one type of integer variable whose domain range from the lower to

upper bounds specified. It allows any subset of the domain to be represented.

Bound Variable is also one type of integer variables which have the upper and the lower

bounds in their domains. However the domain can only be reduced by changing one of the

bounds during the search.

Sparse Bounds Variable is nearly the same as the bound variable, the only difference is

that the domain in the sparse bounds variable is composed of discrete values.

The general framework of the constraint solvers and the pseudo code were briefly

described and demonstrated in this section. The following will discuss the main solution

techniques in modern constraint solvers: reasoning and searching. It will clearly illustrate

Chapter 3. Constraint Programming

33

how those reasoning strategies and searching algorithms were applied to reduce the domain

of the variables and to find the solution(s) in a modern constraint solver like Minion.

3.2 Constraint Propagation Algorithms

Constraint propagation [17], which is also called constraint reasoning or constraint infer-

ence, is a form of inferences to reduce the searching space in the CSPs. [29] describes

the main idea of constraint propagation is to detect and remove the inconsistent vari-

ables assignments with the repeated analysis and evaluation of the variables, domains and

constrains.

Local consistency [7] is the most common constraint propagation strategy in constraint

solvers. The local consistency includes node consistency, arc consistency, path consist-

ency and so on. Meanwhile, some modern constraint solvers like Minion also generate

some global propagation algorithms such as alldiff to reduce the values domain or/and

constraints.

3.2.1 Node Consistency

Definition 3.2.1 Node Consistency

(xi, a) is node consistent if a is permitted by Cxi
(namely, a ∈ Cxi

) where a is a value

of xi. Variable xi is node consistent if all its domain values are node consistent. In another

word, node consistency requires that all the values in the variable x′is domain satisfy all

its own unary constraint. [74]

From the definition, it shows that the node consistent could help to move out the unary

constraints and reduce the variable’s domain.

Example:

Assume the domain of x is [1, ...10] and the unary constraint is x < 4.

x < 4&{x; 1 5 x 5 10} ⇒ {x; 1 5 x 5 3}

Chapter 3. Constraint Programming

34

x[1..10] y[1..10]
x+ y < 7

Figure 3.2: The Simple Constraint Satisfaction Problems

x[1...5] y[1..10]
x+ y < 7

Figure 3.3: The Simple Constraint Satisfaction Problems with arc(xi, xj)

x[1...5] y[1...5]
x+ y < 7

Figure 3.4: The Simple Constraint Satisfaction Problems with arc(xj, xi)

According the definition of node consistency, the domain of the variable x is restricted

to {1,2,3} with the constraint x < 4 and then the constraints could be discarded.

3.2.2 Arc Consistency

Definition 3.2.2 Arc Consistency

If there is a binary constraint Cij between the variable xi and xj , then the arc(xi, xj) is

arc consistent if for every value a ∈ Dx, there is a value b ∈ Dj such that the assignments

xi = a and xj = b satisfy the constraint Cij . [84, 99]

Arc consistency (AC) reduces the domain of xi by removing all the value a ∈ Di

that couldn’t find such a value b ∈ Dj to satisfy the constraint Cij . The following

three figures demonstrate the strategy of the arc consistency with the simple constraint

satisfaction problem mentioned before. Figure 3.2 is the constraints network [68, 78] of

the simple constraint satisfaction problem. Figure 3.3 clearly shows how arc consistency

could be applied to reduce the variables domains in the simple constraint satisfaction

problem. Therefore for each value in Dx could find a matched value in Dj which satisfy

Chapter 3. Constraint Programming

35

y[3..5]

x[1..3] z[5..9]

x < y − 1 y < z − 1

x < z − 1

Figure 3.5: Non-path Consistency Example

the constraints. On the other hand, we commonly reduce the Dj with the constraint Cji as

in figure 3.4.

Arc consistency is another propagation strategy widely applied in the constraint solver.

To efficiently meet the various requests of different problems, some variants of the arc

consistency algorithms such as AC-3 and AC-4 [28] have been proposed. In Minion the

flag, which provides the option of various AC algorithms, was called preprocessing. It will

be mentioned in Chapter 4.

3.2.3 Path Consistency

Path consistency, which is similar to the arc consistency but with more variables involved,

can always make further reductions from the constraints for the CSPs.

Definition 3.2.3 Path Consistency

The path (Xi, Xj, Xk) is path consistent if and only if for every pair of values α ∈ Di

and γ ∈ Dk which is satisfied the constraint Cik there is a value β ∈ Dj such that

(α, β) ∈ Cij and (β, γ) ∈ Cjk . [68]

From the definition, it shows that the aim of the path consistent is to remove pairs of

invalid values α ∈ Di and γ ∈ Dk instead of reducing the domains of variables as in node

consistency and arc consistency, because there is no such valueβ can be found in Dk which

is simultaneously consistent with α and γ.

Chapter 3. Constraint Programming

36

y[3..5]

x[1..3] z[7..9]

x < y − 1 y < z − 1

x < z − 1

Figure 3.6: Path Consistency Example

In Figure 3.5, the problem mentioned is arc consistent. Each pair of variables meets

the requirement of arc consistency. However the problem is not path consistent. When

α = 3 ∈ Di and γ = 5 ∈ Dk which is satisfied the constraint Cik = x < z − 1, there

is no value β ∈ Dk such that (α, β) ∈ Cij = x < y − 1 and (β, γ) ∈ Cjk = y < z − 1.

Therefore the pair of values α = 3 and γ = 5 should be moved out. Figure 3.6 illustrates

a proper path consistent problem.

3.2.4 Alldiff

Besides the local consistency, the constraint solves also implement some global constraints

such as Alldiff [89] in Minion to reduce the value domain of the variables.

Definition 3.2.4 Alldiff

Let x1, x2, ..., xn be variables with respective finite domains D(x1), D(x2), ..., D(xn).

Then

Alldiff (x1, x2, ..., xn) = {(d1, d2, ..., dn) |di ∈ D(xi), di 6= dj for i 6= j}.

From the name and definition it shows that Alldiff is such a constraint that any two of

the variables can’t be assigned the equal value.

Chapter 3. Constraint Programming

37

0/1 0/1 0/1 0/1 0 0/1 0/1 0/1
a b c d =⇒ a b c d

Triggers: ↑ ↑ a assigned false ↑ ↑

Figure 3.7: Watched Literals Example

3.2.5 Watched Literals

The Watched Literals (WLs) is a state-of-art and efficient mechanism to implement global

constraints. In [57] Gent implemented WLs in Minion and showed its importance and

efficiency. The WLs was originally applied in the Boolean Satisfiability (SAT) Problems

[113] which is a subset of the CSPs.

In traditional WLs two literals called watched literals were assigned in each clause

[27]. Those two watched literals could be any two non-false or unassigned literals. Once

one of the watched literals was assigned false, the WLs will automatically choose any

non-FALSE literal to replace the watch.

Assume there is a clause a ∨ b ∨ c ∨ d, all the literals a,b,c and d are unassigned as in

Figure 3.7. Therefore a and b could be appointed as the watched literals. If a was assigned

false, any non-false or unassigned literals such as c could be the watched literal instead

of a. In a word, when a watched literal is assigned FALSE, the WLs attempts to shift the

watch to any non-false, unwatched literal in the clause if one exists by searching through

all literals in the clause. Meanwhile nothing happens on the watched literal if any other

variables were assigned.

One of the advantages of WLs is no cost if a literal is not watched. It means there is no

cost when any unwatched literal was assigned. Another is that no cost on backtracking

which is a search method and will be introduced later. In another word, there is no change

on the watched literals after backtracking.

Chapter 3. Constraint Programming

38

D
E A C

B

A

B

1

B

C

4

C

6

C

D

9

D

E

12

E

14

X

16

11
...

8

3
...

A

...
...

...

A

...
...

...

2

5
7

10

13
15

Figure 3.8: Backtracking Algorithm

3.3 Search Strategy

After reducing the search space (domains) and the constraints, a suitable and efficient

search strategy is required to find the final solution for constraints satisfaction problem. The

general strategy that explores all combination of values to variables is easy to implement

but abundant in searching. Therefore some search strategies [46, 83, 97] were proposed

to reduce the searching time. In constraints satisfaction problems, a simple backtracking

algorithm [92] is the most common and classic systematic search algorithm.

3.3.1 Backtracking Algorithm

Backtracking is a common algorithm for finding the solutions in real world problems.

Backtracking Algorithms implement the search strategy. When the current variable is

assigned a value from its domain, the backtracking algorithm checks against the constraints

between the current variable and the past variables. The current variable will be abandoned

if the any of the constraints checked are not satisfied. The search will then go back to

Chapter 3. Constraint Programming

39

Assignment Bit(0/1) Value Bit(0/1)

Is Assigned? Value Assigned?

Figure 3.9: Boolean Variables Representation in Minion

the checking between the current variable which is assigned another value and the past

variables. If all values in the current variable are tried, the previous variable will be

assigned a new value from its domain.

Graph (map) colouring problem [61, 62] is a classical constraint satisfaction problem

which concerns on combinatorial optimisation. The graph colouring problem attempts to

filling a few of plots in graph with a fixed number colours so that no adjacent plots have

the same colour. The Figure 3.8 shows how to fill up with three colours: Red, Blue and

Green with the backtracking algorithm.

3.3.2 Backtracking Memory In Minion

As mentioned above, the backtracking is an important part in solving CSPs. It requires

enough memory to store the variables. However Minion implements a backtracking

memory management approach to solve the memory issue. To occupy less memory and

reduce the amount of work during the backtracking, the variables in Minion were divided

into two parts: a backtrackable part and a non-backtrackable part.

As in Figure 3.9, two bits were selected to store a boolean variable in Minion. The

first bit is an assignment bit which indicates whether the variable is assigned. The second

bit is a value bit which indicates which value is assigned. Therefore there are four statues

for a boolean variable as in Table 3.1.

If the variable is assigned, the assignment is set to 1. Meanwhile the value bit is set

to a value. When the backtracking happened, the assignment bit is reset to 0. The value

bit becomes irrelevant until the variable is reassigned. Therefore the value bit does not

Chapter 3. Constraint Programming

40

Assigned True Assigned False Unassigned True Unassigned False
11 10 01 00

Table 3.1: Boolean Variables Representation in Minion

need to restore. When the variable is unassigned, the value is of course unused. Hence,

the assignment bit requires a backtrackable block to store. The value bit is stored in

a non-backtrackable block. Such a memory assignment approach greatly improves the

efficiency of the memory usage.

3.3.3 Variable Ordering

“To succeed, try first where you are most likely to fail.” [50]

The above idea is one of the variable heuristic ways in CSPs. A search method in CPS

requires the order in which variables are to be assigned to be specified. The correct order of

variables can noticeably improve the searching efficiency of CP. In Minion there are eight

variable orderings called varoder for the search process: sdf [13, 14, 100], sdf-random,

srf, srf-random, ldf, ldf-random, random and static [32].

sdf - sdf is the aberration of the smallest domain first. It attempts to select the variable

which has the smallest domain to assign the value firstly. The sdf break ties lexicographic-

ally when the domain size of a few variables is the same as the smallest.

sdf-random - sdf also attempts to select the variable which has the smallest domain to

assigned the value firstly, but breaks ties randomly.

srf - Smallest ratio first (srf) chooses the unassigned variable with smallest percentage

of its initial values remaining. When more than one variable has the ratio, the srf breaks

ties lexicographically.

srf-random - srf-random is almost the same as the srf. The srf-random chooses the

unassigned variable with smallest percentage of its initial values remaining firstly. However

the srf-random breaks ties randomly.

Chapter 3. Constraint Programming

41

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

a b c d

Figure 3.10: Four Queens Problem

ldf - To compare with sdf, largest domain first(ldf) picks up the variable which has the

largest domain and breaks ties lexicographically.

ldf-random - ldf-random selects the variable which has the largest domain, but break

ties randomly.

random -random means that a random variable ordering is implemented.

static - static means that the variable ordering to be assigned is lexicographical.

3.4 Four Constraint Satisfaction Problems

In this thesis, four classical constraint problems were chosen from the CSPlib 1 for Minion

tuning: the N-queen problem, the langford’s Number problem, Balanced Incomplete

Block Design and Golomb Rulers. They will be implemented in Minion to verify the

efficiency of our tuning algorithms in the later chapters. The following introduces their

basic descriptions before those experiments that they are implemented.

3.4.1 N-Queen Problem

In chess, a queen can move as far as she places, horizontally, vertically, or diagonally. A

chess board has n rows and n columns. The standard n by n Queen’s problem asks how to

place n queens on an ordinary chess board so that none of them can hit any other in one

1All from www.csplib.org

Chapter 3. Constraint Programming

42

move [109]. The search space and running cost dramatically increases with the number

of queens in the problem. Figure 3.10 shows a solution of the Four Queens Problem.

N-Queens is a classic and tractable problem which has existing constructions.

3.4.2 Langford’s Number Problem

The problem generalises to the L(k, n) problem, which is to arrange k sets of numbers 1

to n, so that each appearance of the number m is m numbers on from the last [47]. The

computing complexity of finding solution in Langford’s number problem depend on the

two variables which are different from one variable in the N-Queen problem. Table 3.2 is a

solution for L(2,4)

3.4.3 Balanced Incomplete Block Design

A Balanced Incomplete Block Design (BIBD) [85] problem is defined as an arrangement

of ν distinct objects into b blocks such that each block contains exactly κ distinct objects,

each object occurs in exactly γ different blocks, and every two distinct objects occur

together in exact λ blocks. Another way of defining a BIBD is in terms of its incidence

matrix, which is a ν by b binary matrix with exactly γ ones per row, κ ones per column,

and with a scalar product of λ between any pair of distinct rows. A BIBD is therefore

specified by its parameters (ν, b, γ, κ, λ). An example of a solution for (7,7,3,3,1) is:

0 1 1 0 0 1 0

1 0 1 0 1 0 0

0 0 1 1 0 0 1

1 1 0 0 0 0 1

0 0 0 0 1 1 1

1 0 0 1 0 1 0

0 1 0 1 1 0 0

Chapter 3. Constraint Programming

43

4 1 3 1 2 4 3 2
Table 3.2: Langford’s problem instance L(2,4)

3.4.4 Golomb Rulers

A Golomb ruler [72] may be defined as a set of m integers 0 = a1 < a2 < < am such that

the m(m− 1)/2 differences aj − ai, 1 <= i < j <= m are distinct. Such a ruler is said

to contain m marks and is of length am. The objective is to find optimal (minimum length)

or near optimal rulers. Note that a symmetry can be removed by adding the constraint that

a2 − a1 < am − am−1, the first difference is less than the last.

3.5 Conclusion

In this chapter, it describes the state-of-art and important concept and strategy of constraints

programming. After the fundamental definition of CSPs, the local consistency, a global

constraint Alldiff and a global propagation WLs were discussed. It demonstrates how those

different strategies and methods in a modern constraint solver Minion were implemented

to solve the CSPs. It also illustrates how Minion implements memory management in

backtracking. At the end of the chapter, four different CSPs, which will be implemented in

the rest of the thesis, were mentioned in advance.

Whatever the constraint programming technologies chosen, the constraint programming

firstly defines the variables and their domains in the problem. Next, it applies the constraint

propagation to reduce the domains of the variables or the search complexity and to remove

or reform the constraints. Finally it applies an efficient search mechanism to find one or

all solutions. Therefore the combination of the proper reasoning approach, the suitable

modelling and the appropriate search mechanism becomes to the key of improving the

efficiency of the constraint solver.

According to understanding the feature and skill of constraint programming, it provides

a knowledge and inspiration to help improving the tuning for the constraint solvers in the

Chapter 3. Constraint Programming

44

later chapter.

Chapter 3. Constraint Programming

45

Chapter 4
Standard Genetic Algorithm for Tuning

In the last chapter, some classic definitions, searching methods and reasoning strategies of

the constraint programming were introduced to show how a modern constraint solver is

constructed. Before finding the solution(s), the parameter tuning for a constraint solver is a

complicated job for beginners in the constraint programming area and a time-consuming

workload even for the expert in constraint programming [66]. There are two tuning

approaches mentioned in the thesis. One is to focus the tuning of one instance. It means

there is no other auxiliary information and the aim is to find the optimal or best parameter

set(s) for one instance in a specific time limit. Another is to seek optimal parameter set(s)

by tuning training instances for unknown testing instances.

In this chapter, we only consider the first kind of the tunings the single instance tuning,

and a genetic based configuration mechanism for tuning the single instance called GACM is

discussed. In section 4.1, it explains the significance of parameter tuning and the reason that

chooses the genetic algorithms to help tuning. The genetic based configuration mechanism

for Minion is proposed and verified in section 4.2. Section 4.3 demonstrates how to realise

the GACM with the standard genetic algorithm. In section 4.4, the efficiency of GACM is

verified by tuning various optimisation problems and comparing the tuning performance

with the Random selection. The last section is the evaluation and the conclusions for the

genetic based configuration mechanism.

46

4.1 The Significance of the Tuning with Genetic Algorithms

In a constraint solver, various reasoning strategies and search methods could be chosen

and implemented for solving CSPs as the parameters. The efficient parameter selection

could save the running cost and reduce the search complexity. On other hand, an inap-

propriate parameter set leads to a redundancy and overlapping searching. The parameter

selection problem also happens in comparing two algorithms or modellings. It is obviously

unfair to compare one algorithm with a correct parameter setting with another with an

improper setting. Therefore the tuning is a vital factor in problem optimising or new

algorithm exploring. In constraint programming, the job of tuning the constraints solver

is currently done manually. It becomes a barrier which slows down the time of exploring

new algorithms or finding the solutions of the constraint satisfaction problems.

It shows that many automatic tuning (configuration) approaches have been proposed

and widely discussed in the survey part. In chapter 2, the standard genetic algorithm was

introduced and explored to show its robustness and efficiency as an optimisation technology.

Therefore it is considered and implemented to cope with the tuning problem in this thesis.

[5] concluded two advantages of applying genetic algorithms for automatic tuning: One is

that genetic algorithms are known to be very robust with respect to optimisation problems

that have undesirable objective landscapes [40]. This is due to the influence of tuning the

parameters in a constraint solver or for an algorithm is unknown. A robust algorithm is

expected to deal with whatever objective landscape we encounter. Another is that genetic

algorithms are inherently parallel [20]. In the solver configuration the most time consuming

step is to evaluate the running time of any parameters sets for the solver. Genetic algorithms

allow parameter sets to compare and race against each other in each generation. Meanwhile

the framework of genetic algorithms allows such evaluations to happen in the same time

that will great save time in practice. Those features of genetic algorithms will be illustrated

and improved step by step in the following chapters.

In this thesis, a few genetic algorithms about the single instance tuning are firstly

Chapter 4. Standard Genetic Algorithm for Tuning

47

User Genetic Algorithm Minion

Satisfied? Outcome

constraint
problem

parameters

fitness

resultN

Y

Figure 4.1: The Framework of Genetic Algorithms Configurator for Minion

discussed. There are two motivation on the single instance tuning. Firstly, the single

instance tuning verifies that genetic algorithms are feasible to implement in the constraint

solvers tuning. It also demonstrated how genetic algorithms successfully obtain an optimal

or best parameter set for tuning a specific problem, when the aim of tuning the specific

instance is to find not the result of the instance but the optimal or best parameter. Secondly,

the idea in the single instance tuning provides a reasonable basis for the instance based

tuning in the later chapters.

In this chapter, it will illustrate how the standard genetic algorithm is implemented

for tuning a constraint solver. A genetic based automatic configurator for Minion named

(GACM), which could suggest an optimal parameter set for a given constraint satisfaction

problem, was proposed and verified. The following will firstly present the working

mechanism of the genetic algorithms in GACM .

4.2 The Framework of the GACM

Genetic based automatic configurator for Minion is a configurator which implements

the standard genetic algorithm to help Minion find an optimal parameter set for a given

instance in a specific time limit. Figure 4.1 indicates the framework of genetic based

automatic configurator for Minion.

Chapter 4. Standard Genetic Algorithm for Tuning

48

According to the optimisation problem, some parameter (switch) sets, which present

the searching methods, reasoning strategies and/or modelling approaches to implement,

were randomly initialised as the chromosomes. The standard genetic algorithm sends

those suggested parameter sets (chromosomes) to Minion, and get the running cost of each

parameter sets back to the genetic algorithm. Then the genetic algorithm pushes those

candidates (each set of switches) which have perfect fitness (less running cost) into mating

pool. After crossover and mutation, the new suggested switches will send to Minion to

evaluate the running cost. Meanwhile the best switch setting for Minion in each generation

will be recorded. The GACM will repeat the evolution until the best setting was found or

the requirements satisfied.

4.3 The GA Design in Automatic Configurator

After understanding the framework of the GACM, the following explains how the standard

genetic algorithm is implemented and adapted to help tuning in the genetic based automatic

configurator.

4.3.1 Encoding

Encoding in genetic algorithms is to transfer solutions of optimisation problem to the

chromosomes that each chromosome presents one possible solution. The aim in GACM

attempts to automatically hunt the best or some optimal parameter sets for Minion in a

specific time limit. Each chromosome in GACM is a parameter set which indicates the

prepossessing level, search strategy, modelling method and so on.

In this chapter our automatic genetic configurator attempts to tune three classic flags

(parameters). To justify the performance, GACM is also implemented to help tune the

modelling. In the flag tuning, there are three switches considered to tune: preprocess(5

values), prop-node (5 values), varorder (8 values) [36].

Chapter 4. Standard Genetic Algorithm for Tuning

49

Flags x1 x2 x3
Position 1 2 3 4 5 6 7 8 9 10

Encoding 1 0 0 0 1 0 1 0 0 0

Table 4.1: Encoding format in genetic configurator

switches preprocess The preprocess switch allows the user to choose what level of

preprocess is applied to their model before search commences.

switches prop-node The prop-node switch allows the user to choose the level of con-

sistency to be enforced during search.

switches varorder The varorder switch enables a particular variable ordering for the

search process.

Each chromosome presents the statues of those three flags in Minion. The following

explains how the switches are encoded to the chromosomes in the automatic genetic

configurator:

x1 = {0, 1, 2, 3, 4, 5} indicates the five different flags in the preprocess switches and

one situation which turns the preprocess switches off. In binary, three bits are required to

present the six flags.

x2 = {0, 1, 2, 3, 4, 5} indicates the six different flags in the prop-node switches. It is

also required three bits.

x3 = {0, 1, 2, 3, 4, 5, 6, 7, 8} indicates the nine different flags in the varorder switches.

In binary, four bits are required to present those nine flags.

Therefore each chromosome can be constructed as in table 4.1. It means that the

chromosome length in the genetic based automatic configurator depends on the amount of

the parameters need to tune. Therefore the chromosome length is assigned to ten to present

those three switches in GACM.

However, in such a encoding way, some invalid parameter binary string, which presents

each switch, may appear when the genetic algorithm initials the starting population or

Chapter 4. Standard Genetic Algorithm for Tuning

50

generates the next generation. For example 111 is an invalid binary string to present x1 in

GACM. When it happens, the binary string will be replaced by randomly choosing a valid

value from that parameter.

4.3.2 Fitness in GACM

The fitness function gives the information to the selection process to pick up the parents in a

mating pool. In this thesis, we attempt to find an optimal or best parameter set which could

find the solution(s) with less running cost for the optimisation problem. The running cost

is an ideal scale to judge the quality of the parameter found. However genetic algorithms

are used to find the maximum value. Therefore the fitness function in here is

F (x) = 1/x

where x is the running time of finding the solution with relative parameter sets.

4.3.3 Reproduction in GACM

In GACM, the reproduction includes selection, crossover and mutation which are the same

as in the standard genetic algorithm. In our genetic configurator, the selection is the roulette

wheel selection [41].

Single point crossover is the classic and most common crossover in genetic algorithms

because it can be easily understood and realised. In our thesis the single point crossover

will be selected firstly. The two point crossover [103], which swipes the parts between

two crossover points, is also explored and compared with the single point crossover in

our experiment. In our experiment the mutation rate is the probability that any bit in each

chromosome does a mutation. The mutated gene position becomes the opposite value Etc.

1 to 0 or 0 to 1 after mutation.

To avoid the time wasting on evaluating inappropriate parameter sets, we set a cut-off

time for each fitness evaluation in each generation. The cut-off time depends on the tuning

Chapter 4. Standard Genetic Algorithm for Tuning

51

instance of each optimisation problem. More details about the cut-off time is discussed in

the later section.

4.4 Experiments Design

In this section, some experiments are designed and implemented to show the efficiency

of the standard genetic algorithm on tuning the Minion. Those experiments could be

divided to three parts. The performance of GACM is firstly checked by applying GACM

to deal with some classic CSPs. Then we attempt to check the parameter sensitivity of

the genetic algorithms in GACM. Finally GACM compares with the random selection on

tuning not only those inherent parameters in Minion but also those models generated by

other modelling assistant such as Savile Row [81].

The following experiments were run on a 64 bit Linux Intel Core i7-4790 Haswell

Quad-Core, 8 GB RAM, 256 GB solid state drive and 2 GB GTX 960 graphic card. Four

classic optimisation problems, N-queens problem, Langford’s Number Problem, Balanced

Incomplete Block Design(BIBD) and Golomb Rulers, which are mentioned in last chapter,

were chosen as the optimised problems.

From the definition description of problems, it shows that those four constraint problems

are very different to each other. The computational complexity of N-Queen problem and

Golomb Rulers depend on one variable. The complexity of Langford’s Number Problem is

up to two variables. We hope a genetic based automatic configurator could be feasible to

different constraint satisfaction problems.

4.4.1 The Performance of GACM

The aim of the performance testing is to demonstrate how the optimal parameter sets

were explored under the evolutionary strategy in genetic algorithms. In the performance

testing of GACM, the crossover rate is firstly set to 0.9 and the mutation rate is set to

0.1. In the first performance testing of GACM, we attempt to tune three switches in

Chapter 4. Standard Genetic Algorithm for Tuning

52

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

R
un

ni
ng

 C
os

t(
s)

Solving BIBD(1) with GACM (Average)

New X

GACM

1 2 3 4 5 6 7 8 9 10 11
0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

Generations

R
un

ni
ng

 C
os

t(
s)

Solving BIBD(1) with GACM (Minimum)

New X

GACM

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

R
un

ni
ng

 C
os

t(
s)

Solving Golomb Rulers(6) with GACM (Average)

GACM

New X

1 2 3 4 5 6 7 8 9 10 11
1

2

3

4

5

6

7

8

9

10
x 10

−3

Generations

R
un

ni
ng

 C
os

t(
s)

Solving Golomb Rulers(6) with GACM (Minimum)

New X

GACM

0 1 2 3 4 5 6 7 8 9 10
1.5

2

2.5

3

3.5

4

Generations

R
un

ni
ng

 C
os

t(
s)

Solving Langford’s Number Problem(3,17) with GACM (Average)

New X

GACM

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Generations

R
un

ni
ng

 C
os

t(s
)

Solving Langford’s Number Problem (3,17) with GACM (Minimum)

New X
GACM

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Generations

R
un

ni
ng

 C
os

t(
s)

Solving N−Queen Problem(26) with GACM (Average)

New X

GACM

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Generations

R
un

ni
ng

 C
os

t(s
)

Solving N−Queen Problem(26) with GACM (Minimum)

New X
GACM

Figure 4.2: The Efficiency of Solving Optimisation Problems by GACM with Standard
Crossover and New Crossover

Chapter 4. Standard Genetic Algorithm for Tuning

53

Minion. According to the searching complexity, we only consider ten generations of

the GA and the population size of the GA is set to 10. Each trial runs ten times and we

observe the average of the minimum and the average. As mentioned, the evaluation on

each parameter set is the most time consuming part in the automatic tuning. To avoid

the time wasting on evaluating the invalid or bad parameter sets, a specific cut off time

is set for each instance. The cut off time for each instance in this chapter is commonly

set by the running time, which implemented the default parameter setting, if there is no

specific mention. Meanwhile an attempt and evaluation about new crossover (two points

crossover) in GACM are implemented to tune the minion with the same instances. Two

point crossover applied the same strategy as the standard single point crossover, but it

randomly chooses two crossover points in the same time instead of one point.

Figure 4.2 illustrates the performance of GACM on solving fours constraint problems:

BIBD(1), Golomb Rulers(6), Langford’ Number problem (3,17) and N-queen problem

(26). The numbers, which are followed by the problem name and in brackets, indicates

which instance is chosen from the problems to verify the performance of GACM. Figure

4.2 demonstrates the average of the minimums and the average of ten times tuning on each

instance. In Figure 4.2, the left column illustrates the average of the minimum and the

right column is the average of the average. The two curves in the figures demonstrate the

performance of GACM with standard crossover and two point crossover. The X axis is

the number of generation of genetic algorithm in tuning fours optimised problem with

GACM, and the Y axis in the left column is the average of the running cost of finding the

solution with all parameter sets in each generation. The Y axis in right hand side figures is

the average of the running cost of finding the solution with the best parameter sets of each

generation.

The curves in Figure 4.2 indicate that GACM gained a satisfied parameter setting for

Minion in solving four optimisation problems after just few generations. In the figures of

BIBD(1) the standard crossover could gain a better parameter set, which could find the

solution(s) faster, than the two points crossover. However the average figure can’t conclude

Chapter 4. Standard Genetic Algorithm for Tuning

54

which crossover is better. In Golomb Ruler(6) the standard crossover outperforms the

performance of two point on both the average and the minimum. But in Langford’s Number

Problem (3,17), the experiment results are exactly reversed. The two point crossover shows

its efficiency over the standard crossover in GACM. The standard crossover demonstrates

its performance over the two point crossover again in the N-queen problem (n=26). From

the Figure 4.2, it can’t conclude that the standard crossover is a better choice than the two

points crossover in GACM. To make a feasible conclusion, their running time on tuning

are recorded to compare as well.

Standard Crossover Two-points X

N-Queen (26) 409275ms 427870ms
BIBD (1) 35577ms 35848ms
Langford’s Number Problem (3,17) 1379334ms 1442879ms
Golomb Rulers (6) 183086ms 240821ms

Table 4.2: Running cost with different crossover operator

Table 4.2 shows the running time difference in tuning the above four instances with the

standard crossover and the two points crossover in GACM. The comparison shows that

the two-points crossover always spends more time than the standard crossover, because it

costs more CPU time on crossover. Since Figure 4.2 showed that the standard crossover

outperforms the two points crossover in most time, it means that the standard crossover is

a better choice in GACM.

4.4.2 The Parameter Sensitivity of GACM

In [40] it said that the parameter setting of genetic algorithms itself is very hard to control.

A proper genetic algorithm parameter setting will lead to a greater searching speed and

vice versa.

In chapter 2 we explored the parameter sensitivity of genetic algorithms in solving

Dejong’s function. In this section we will explore the parameter sensitivity of GACM

for tuning Minion in solving N-queen and Langford’s Number problem. The aim of

Chapter 4. Standard Genetic Algorithm for Tuning

55

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

0.2

0.4

0.6

0.8

Mutation Rate

The Parameter Sensitivity of Solving N−Queen(26) Problem with GACM

Crossover Rate

R
u
n
n
in

g
 T

im
e
(s

)

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0.0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0.2

0.4

0.6

0.8

1

1.2

Mutation Rate

The Parameter Senstivity of Solving Langford’s Number Problem (2,10) with GACM

Crossover Rate

R
u
n
n
in

g
 T

im
e
(s

)

Figure 4.3: The Parameter Sensitivity of Genetic Algorithm in GACM

Chapter 4. Standard Genetic Algorithm for Tuning

56

the parameter sensitivity testing here is to explore the influence of the parameter itself

in GACM, and give a cue for initialising those parameters in GACM when GACM is

implemented for tuning in the rest chapters.

In the parameter sensitivity testing, N-queen problem (n=26) and Langford’s Number

problem (2,10) were selected as the optimisation problems since they are two different

types of problems. Figure 4.3 shows the exploration on the parameter sensitivity of genetic

algorithms in solving those two problems by GACM. In Figure 4.3 the X axis and Y axis

are mutation rate and crossover rate of genetic algorithm in solving the Landford’s Number

Problem and N-Queen problem with GACM. The Z axis is the best running cost of finding

the solution with GACM which applies the relative crossover rate and mutation rate in the

genetic algorithm in 10 generations.

It is obvious that there is a lot of noise in our experiment in Figure 4.3. But the 3D

graphs illustrate that the running cost of solving the optimisation problems become less

with the decrease of mutation rate when the mutation rate is between 0.1 and 1. The

performance of the crossover is not as obvious as the mutation is. The running cost of

solving the optimisation problems reduce with the increase of crossover rate when the

crossover rate is between 0 and 0.9. From Figure 4.3, it indicates that the mutation plays a

key rule rather than crossover. Figure 4.3 also shows the best mutation rate is around 0.2

and the best mutation rate is around 0.9 in those two experiments.

4.4.3 The Comparison with Random Selection

In order to give further study on the performance of the GACM, the random selection

strategy is selected to compare with the GACM in tuning Minion. To compare with

the instances chosen in section 4.4.1, each optimisation problem chooses five different

instances for tuning.

The population size, mutation rate and crossover rate in GACM are the same as in

previous subsection. From the result in the performance of GACM, it shows that the

optimisation performance of GACM is obvious and effective in the first few generations.

Chapter 4. Standard Genetic Algorithm for Tuning

57

The best parameter sets for tuning could be more easily found when more parameter sets

were evaluated. However it means the tuning has to occupy more CPU computing time.

Since we just consider three switches tuning in this paper, it is not necessary to observer

the performance of GACM in a lager generations. Therefore the generation size is assigned

to three. Each tuning trail for each instance reproduces ten times as in section 4.4.1 for

comparing later.

Since the population size is ten and the generation is three in GACM, it means the

GACM finds the optimal parameter set by evaluating thirty parameter sets for each instance

in each trial. To gain the same amount attempts as in GACM, the random selection

randomly selects thirty parameter sets to evaluate each time. The random selection

implements such a trial ten times to observe the average performance. Next, GACM

compares the average of the minimum and the average running cost with the random

selection.

Table 4.3 is the comparison between GACM and random selection over twenty in-

stances. In table 4.3 there are four main columns: instance name, cut off time for each

instance, GACM and random selection. Meanwhile there are four sub-columns under

GACM and random selection to compare their efficiency: Running cost, Minimum, av-

erage and invalid. The running cost is the average running cost for each tuning over ten

times trials. Minimum and average means the average of the minimum and average in each

tuning trial. The ”invalid” column represents the amount of the parameter sets, which can’t

find the solution in the cut off time in each tuning trial.

The result in table 4.3 clearly indicates that the GACM outperforms than the random

selection on either the minimum or the average. Meanwhile GACM could spend less

running costs than the random selection does because GACM could successfully avoid

evaluating more invalid parameter sets.

To verify the efficiency of GACM in further, it compares with the random selection

on tuning Minion and the modelling selection in the same time. To compare GACM

with random selection in new instances which includes the modelling selection, we could

Chapter 4. Standard Genetic Algorithm for Tuning

58

G
A

C
M

R
an

do
m

Se
le

ct
io

n

In
st

an
ce

C
ut

of
f

R
un

ni
ng

M
in

im
um

A
ve

ra
ge

In
va

lid
R

un
ni

ng
tim

e
M

in
im

um
A

ve
ra

ge
In

va
lid

(s
)

C
os

t(
m

s)
(m

s)
(m

s)
C

os
t(

m
s)

(m
s)

(m
s)

N
-Q

ue
en

(2
6)

1
15

85
8

25
22

2
10

22
35

8
39

27
3

20
N

-Q
ue

en
(2

7)
1

18
00

8
28

28
7

11
22

15
3

32
26

9
20

N
-Q

ue
en

(2
8)

4
52

83
1

26
64

7
9

85
06

4
48

87
6

21
N

-Q
ue

en
(2

9)
2

31
05

1
28

47
2

10
46

31
5

43
63

0
21

N
-Q

ue
en

(3
0)

1
89

51
20

28
15

28
1

9
10

42
61

5
36

11
77

0
19

B
IB

D
1

1
10

69
24

29
0

10
73

27
34

0
B

IB
D

2
1

14
67

24
42

0
13

26
26

42
0

B
IB

D
3

1
11

64
9

28
59

10
17

10
1

32
24

6
13

B
IB

D
4

1
10

68
6

27
13

4
7

16
87

5
31

31
7

12
B

IB
D

5
1

13
09

8
28

37
12

19
30

0
33

47
19

G
ol

om
b(

6)
1

58
57

1
94

3
14

78
0

2
17

9
12

G
ol

om
b(

7)
1

11
64

0
13

85
9

20
48

1
23

20
3

18
G

ol
om

b(
8)

1
20

37
2

16
44

9
9

27
80

4
25

3
40

9
27

G
ol

om
b(

9)
5

13
56

04
18

17
37

60
9

14
41

45
24

04
34

05
27

G
ol

om
b(

10
)

35
10

17
30

0
16

74
28

98
6

10
10

34
50

2
17

98
27

25
2

28
L

an
gf

or
d(

2,
10

)
1

22
63

4
17

9
48

7
10

24
28

8
25

6
47

7
19

L
an

gf
or

d(
2,

19
)

6
78

12
6

27
97

2
9

12
04

47
33

12
32

18
L

an
gf

or
d(

2,
20

)
5

63
82

2
28

66
2

10
10

36
95

30
92

4
20

L
an

gf
or

d(
3,

17
)

4
71

35
3

10
2

10
01

12
10

01
86

44
8

14
21

23
L

an
gf

or
d(

3,
19

)
4

90
46

7
95

14
19

17
11

18
30

85
4

15
57

27

Ta
bl

e
4.

3:
T

he
E

ffi
ci

en
cy

of
G

A
C

M
in

So
lv

in
g

D
iff

er
en

tP
ro

bl
em

s
by

C
om

pa
ri

ng
th

e
R

an
do

m
Se

le
ct

io
n

Chapter 4. Standard Genetic Algorithm for Tuning

59

G
A

C
M

R
an

do
m

Se
le

ct
io

n

In
st

an
ce

C
ut

of
f

R
un

ni
ng

M
in

im
um

A
ve

ra
ge

In
va

lid
R

un
ni

ng
tim

e
M

in
im

um
A

ve
ra

ge
In

va
lid

(s
)

C
os

t(
m

s)
(m

s)
(m

s)
C

os
t(

m
s)

(m
s)

(m
s)

3-
7-

7-
6

1
28

84
5

59
12

7
27

2
37

04
4

11
4

19
9

36
1

3-
8-

8-
7

1
30

63
6

11
2

24
8

26
2

39
48

2
36

0
41

9
38

2

4-
3-

4-
6

1
25

71
0

35
93

24
3

36
45

4
52

29
0

34
6

4-
4-

3-
7

1
23

99
5

32
71

23
5

36
17

5
38

19
8

34
6

4-
4-

4-
8

1
39

35
8

22
7

49
2

29
9

41
64

8
47

3
58

9
40

7

4-
4-

5-
10

1
36

59
4

n/
a

n/
a

50
0

43
06

6
n/

a
n/

a
50

0

4-
5-

4-
10

1
37

33
4

36
4

59
6

31
7

41
08

1
51

7
63

1
39

4

5-
4-

3-
8

6
23

92
59

16
05

23
85

40
0

24
67

95
19

67
25

17
40

4

Ta
bl

e
4.

4:
T

he
E

ffi
ci

en
cy

of
G

A
C

M
in

M
od

el
lin

g
Se

le
ct

io
n

by
C

om
pa

ri
ng

th
e

R
an

do
m

Se
le

ct
io

n

Chapter 4. Standard Genetic Algorithm for Tuning

60

reproduce the last experiments by only changing the encoding part. GACM only needs to

enlarge the length of the chromosomes that the parameter sets have more space to present

the modelling options. Equidistant Frequency Permutation Arrays, one of the benchmark

in Minion [52], will be selected as the tuning problem. In this benchmark, there are six

modelling options. So the length of the chromosomes extends 3 bits to present those six

modellings. However other configurations in the GACM itself such as the population size

and crossover rate are assigned the same as in the previous experiment.

Table 4.4 is the result of tuning the new instance with modelling selection by GACM

and random selection. The columns in table 4.4 are similar to the table 4.3 because the

comparison items are both the same. The result in the table 4.4 shows that GACM could

achieve a better tuning result no matter on the minimum or the average over the random

selection. It also matches the conclusion in last experiment.

4.5 Conclusion

In this chapter we proposed a genetic based automatic mechanism for Minion. The GACM

was applied to tuning different problems to check the efficiency. Four problems were

selected to test the efficiency of the GACM. Although the tuning ability of the GACM is

not as extraordinary as we expect to find the best tuning, it is feasible that the GACM could

always achieve much better parameters’ tuning. It means the idea and the mechanism of

GACM are acceptable in the experiments.

To improve the efficiency of the GACM, a new crossover strategy, which selects two

points to do the crossover instead of the traditional one point crossover, is attempted. It is

obvious from the experiment result that the two point crossover causes more time than the

single point crossover. We expect the more chances of exchanging genes between each

pair of parents could lead to a more rapid evolutionary. However the result shows the two

point crossover can’t do better than the single point crossover in most times. It means that

an excessive crossover is unlikely to help in stimulating the evolutionary.

Chapter 4. Standard Genetic Algorithm for Tuning

61

From the results of last chapter, the parameters setting in genetic algorithms itself is

a vital factor for the tuning speed. Therefore the influence of the crossover rate and the

mutation rate in genetic algorithms was explored in this chapter. In the sensitivity testing

of the mutation and the crossover, it shows that mutation has a more important role than

the crossover. It matches the feature of tuning that a few flags tuning of better setting

would lead to the best flag setting. It means that the flags difference between the best

prepossessing level and the better prepossessing level are few. The exchanging parent’s

part gene information can’t lead to a significant influence for the tuning evolutionary as the

mutation did. The result suggests that the ideal mutation rate is around 0.1 and crossover

rate is around 0.9 in GACM.

Finally, the performance of GACM compares with the random selection in tuning on

the processing level and modelling. Since each chromosome (parameter sets) races against

each other, good parameter sets have more chance to pass to next generation. Meanwhile

the mechanism, to a great extent, has avoided the invalid parameters happening. GACM

showed its superiority on time consumption and search result over the random selection.

Chapter 4. Standard Genetic Algorithm for Tuning

62

Chapter 5
Sexual Genetic Algorithm

It has been mentioned that the main idea behind the genetic algorithms is derived from

the evolutionary theory of natural selection [23, 39]. The genetic algorithms improve

the fitness of each chromosomes with crossover (recombination) and mutation [45]. The

selection is to choose more fitting individuals (chromosomes) for replacement or mating

[98]. It is also one of the most important parts in genetic algorithms. In chapter 3 two

classic selection strategies, the roulette wheel selection and the tournament selection, were

introduced and investigated. This chapter discussed two more selection strategies: the

elitism replacement policy [26] and the sexual selection [86, 96].

Thus section 5.1 considers the efficiency of the elitism replacement policy by testing

two different functions. Next, a sexual selection is introduced in section 5.2. To improve

the efficiency, a parallel mechanism in the genetic algorithms is discussed in section 5.3.

In section 5.4 a sexual genetic algorithm is proposed and verified by comparing with the

gender genetic algorithm in tuning Minion and SAPS. Finally, the last section concludes

the performance of the sexual selection strategy in further.

5.1 Elitism Replacement Policy in Genetic Algorithm

In [11], it is shown that the selection could control the level of exploration or exploitation

by balancing the genetic diversity [105] and selective pressure [112]. The selective pressure

63

in each generation of the genetic algorithms is a tendency to select the best chromosomes

(individuals) of the current generation to propagate to the next generation. This kind of

selective pressure is caused by the evaluation and the selection of the fitness function. In

biology the genetic diversity commonly refers to the vast number of genetic characteristics

or the huge diversity in a species [104]. In the genetic algorithms the genetic diversity

means a diverse solution (individual) population.

The selective pressure and genetic diversity interacts in the evolutionary. The high

selective pressure means the little genetic diversity which easily leads to a premature

convergence [111]. In other words, the high pressure may fall to the local optimal trap.

The low selective pressure means that the population could have a rich genetic diversity

which keeps vast different genetic characteristics [33]. It means that the low selective

pressure consumes more time to converge into a global optimum.

To balance the selective pressure and genetic diversity, many selection strategies were

posed and applied. The following section discusses two new selection mechanisms: the

Elitism Replacement Policy and the Sexual Selection.

5.1.1 Elitism percentage testing with easy function

The Elitism Replacement Policy is the strategy to select the percentage selection of the

best or most fit chromosomes which directly imitate from parents to the offspring. The

elitism percentage means that many good fitting chromosomes are directly kept in the

next generation. In other words, the elitism percentage prevents the loss of the best or

most fitting chromosomes in the old population, and helps them be moved from the old

population into the new population. It means that the Elitism Replacement Policy could

help improve the selective pressure towards to a greater fitness. However it was mentioned

that the genetic algorithms should avoid the premature convergence which was caused by

high selective pressure.

Section 2.1 introduced the point that there are three main operators in the genetic

algorithms: crossover, mutation and selection strategy. The efficiency of the crossover

Chapter 5. Sexual Genetic Algorithm

64

and mutation was discussed in Chapter 2. It shows that the offspring were generated by

crossover and mutation after the mating parents’ were chosen. But the elitism mechanism,

which could protect the elitism in the parents generation completely pass to the new

generation as the offspring, wasn’t discussed in the standard genetic algorithm.

The following research focuses on exploring the suitable elitism percentage for genetic

algorithm. The elitism percentage will be tested from 0% to 100%. The experiment

implements the same fitness function as in [40].

f(x) = x10

Therefore the parameter settings in the experiment are also kept the same as in [40]:

chromosome length is 30, population size is 30, mutation rate is ranged from 0.0 to 1.0,

crossover rate ranges from 0 to 1, and generation is 50. Plot average fitness values use 1000

of the same starting populations. Each plot means the average of 1000 starting populations

of each population’s average fitness at each generation. Again one is the target fitness as it

was in section 2.1; since low target fitness could make every parameter sets find the target

fitness easily in the most of the time.

In Figure 5.1 there are eleven parameter sensitivity 3D graphs with different elitism

percentages. The x axis and y axis are the mutation rate and crossover rate. The z axis is

the number of times that the best fitness found in the 50th generation is equal to the target

fitness 1 in 1000 time trials with different parameter settings.

Figure 5.1 shows the amazing difference between elitism on and elitism off and the

influence of the elitism percentage. Figure 5.1(a) shows that the genetic algorithm cannot

find the best fitness at all if there is no elitism. When the elitism policy is 10%, In Figure

5.1(b), the genetic algorithm can find more than 600 times of the best fitness in 1000 trails.

It means that the genetic algorithm has more than 60% percentage possibility to find the

best fitness. It also indicated that the best mutation rate is about 0.01 and the crossover rate

is about 0.9 which could mostly find the best result. In the following Figure 5.1(c), the

possibility of finding the best fitness slightly increased when the elitism percentage was

Chapter 5. Sexual Genetic Algorithm

65

0

0.01

0.1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

100

200

300

400

500

600

700

800

T
im

e
s
 o

f
fi
tn

e
s
s
=

1

Mutation RateCrossover Rate

(a) 0%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

100

200

300

400

500

600

700

800

Mutation RateCrossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
=

1

(b) 10%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

100

200

300

400

500

600

700

800

Mutation RateCrossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
=

1

(c) 20%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

100

200

300

400

500

600

700

800

Mutation RateCrossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
=

1

(d) 30%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

100

200

300

400

500

600

700

800

Mutation RateCrossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
=

1

(e) 40%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

100

200

300

400

500

600

700

800

Mutation RateCrossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
=

1

(f) 50%Elitism

Chapter 5. Sexual Genetic Algorithm

66

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

100

200

300

400

500

600

700

800

Mutation RateCrossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
=

1

(g) 60%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0
0

100

200

300

400

500

600

700

800

Mutation RateCrossover Rate

T
im

es
 o

f f
itn

es
s=

1

(h) 70%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

100

200

300

400

500

600

700

800

Mutation RateCrossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
=

1

(i) 80%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

100

200

300

400

500

600

700

800

Mutation RateCrossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
=

1

(j) 90%Elitism

0

0.01

0.1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

100

200

300

400

500

600

700

800

T
im

e
s
 o

f
fi
tn

e
s
s
=

1

Mutation RateCrossover Rate

(k) 100%Elitism

Figure 5.1: Elitism Percentage Testing

Chapter 5. Sexual Genetic Algorithm

67

changed to 20%. However, the total number of times of finding the best fitness began to

decrease when the elitism percentage reached to 30% in Figure 5.1(d). The total number

of times of finding the best fitness quickly dropped down to below 400 times if the elitism

percentage climbed to 40 %. According to Figure 5.1(f)(g)(h) it is demonstrated that the

general trend is for the total number of times of finding the best fitness being dramatically

reduced with the increase of the elitism percentage. The last Figure 5.1(i)(j)(k) reflects

that it is hard to find the best fitness once the elitism percentage is larger than 80%.

100% elitism percentage means that no mutation and crossover happened from generation

to generation. The original population was not changed and totally transferred to next

generation. Therefore it is not possible to find best fitness.

In conclusion, the elitism plays a very important role in optimisation with the genetic

algorithm. The result shows that a small elitism percentage helps new populations keep

outstanding individuals from the old population and the population variety for new popula-

tion. But the figures also show that the influence of elitism on finding the best fitness does

not improve linearly with the increase of the elitism percentage as it changes from 0% to

100%.

On the contrary, the optimal frequency decreases with the elitism percentage increasing

when more than 30%. Too many elitisms lose the opportunity of creating new chro-

mosomes, because the elitisms from the old population will be totally keep in the new

generation. Figure 5.1 also shows that around 20% elitism percentage is a good choice

for obtaining a quick and optimal result in SGA after comparing the optimal frequency of

different elitism percentages.

5.1.2 De Jong’s Function Testing

The function in Section 5.1 is a simple one which has one peak and smooth curve. In

order to verify the correctness of the experiment result in the previous section, this section

will choose one of De Jong’s testing functions as a fitness function. Different from the

function in the previous section, the De Jong’s testing function selected represents a multi-

Chapter 5. Sexual Genetic Algorithm

68

0

0.01

0.1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

T
im

e
s
 o

f
fi
tn

e
s
s
>

7
8

.3

Mutation RateCrossover Rate

(a) 0%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

Mutation Rate
Crossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
>

7
8
.3

(b) 10%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

Mutation Rate
Crossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
>

7
8
.3

(c) 20%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

Mutation Rate
Crossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
>

7
8
.3

(d) 30%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

Mutation Rate
Crossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
>

7
8
.3

(e) 40%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

Mutation RateCrossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
>

7
8

.3

(f) 50%Elitism

Chapter 5. Sexual Genetic Algorithm

69

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

Mutation Rate
Crossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
>

7
8
.3

(g) 60%Elitism

0

0.01

0.1

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

Mutation Rate
Crossover Rate

T
im

e
s
 o

f
fi
tn

e
s
s
>

7
8
.3

(h) 70%Elitism

0

0.01

0.1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

T
im

e
s
 o

f
fi
tn

e
s
s
>

7
8

.3

Mutation RateCrossover Rate

(i) 80%Elitism

0

0.01

0.1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

T

im
e

s
 o

f
fi
tn

e
s
s
>

7
8

.3

Mutation RateCrossover Rate

(j) 90%Elitism

0

0.01

0.1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.0

0

200

400

600

800

T
im

e
s
 o

f
fi
tn

e
s
s
>

7
8

.3

Mutation RateCrossover Rate

(k) 100%Elitism

Figure 5.2: Elitism Percentage Testing with De Jong’s Function

Chapter 5. Sexual Genetic Algorithm

70

maximums function. The experiment in this section tries to explore whether the parameter

sensitivity of GAs will change with the change of the fitness function.

f(x) =
3∑

i=1

x2i

Here x is the decimal value of the binary chromosome and −5.12 ≤ xi ≤ 5.12. It has

four maximum values in De Jongs testing function instead of one maximum value in the

easy function mentioned in the previous section. The following experiment will redo the

experiment in the previous subsection but with De Jong’s function.

In Figure 5.2 there are eleven parameter sensitivity 3D graphs with different elitism

percentage. The x axis and y axis are the mutation rate and crossover rate. The z axis

is the number of times that the best fitness found in the 50th generation is equal to the

target fitness of 78.3 in 1000 trials with different parameter settings. From Figure 5.2 it is

suggested that the best crossover rate area is ranged from 0.7 to 1 and the best mutation

rate is about 0.03.

As described above, the aim of this experiment is to explore the elitism influence for

various types of optimisation function. Figure 5.2 demonstrated the changing of evaluation

Renaults with the increasing of the elitism percentage. In Figure 5.1 the GA could find

the best fitness=1 most times. However, it is hard to find the best fitness in the reasonable

generations in Figure 5.2. It will be no change if the fitness is set too high or too low.

The fitness which is observed to compare the quality of the evaluation is set to 78.3 by

following the results in DeJong’s thesis [25].

In Figure 5.2(a), it is hard to find the fitness which is larger than 78.3 without the

elitism policy occurring in selections. As in Figure 5.1, Figure 5.2(b) shows the maximum

time to find the observation fitness dramatically increase to nearly 600 when the elitism

was involved in the selection. With the elitism percentage growing to 20%, the maximum

time to find the asseveration fitness stably climbed to 800 in Figure 5.2(c). However, the

maximum time to find the observation fitness barely changed by comparing the Figure

Chapter 5. Sexual Genetic Algorithm

71

5.2(c) with the Figure 5.2(d). Figure 5.2(e) illustrates that the possibility, which could

find the fitness more than 78.3, began to decrease when the elitism percentage rose to 40%.

It clearly describes an obvious descent on the possibility of finding the observation of

fitness when the elitism percentage has ascended to 50% in Figure 5.2(f). Figure 5.2(g)

indicated a significant drop in the possibility while the elitism percentage was 60%. When

the elitism percentage reached to 70%, the maximum time to find the observation fitness

astonishingly fell below 50 in Figure 5.2(h). Figure 5.2(i), (j) and (k) depicts that there

is no possibility in finding any fitness better than the observation fitness when the elitism

percentage was larger than 80%.

Figure 5.1 and 5.2 provide some useful data regarding the influence of the elitism

percentage in the selection. Although the optimal crossover rate area in Figure 5.2 is

narrower than the one in Figure 5.1, the results are similar. The GA can find the best fitness

a few times when there is no elitism. But the GA can find the best fitness most of the time

when the elitism is 10%. And the number of times of finding the best fitness decrease when

the elitism percentage is more than 40%. And Figure 5.2 suggests that the best elitism

percentage in this function’s optimisation is around 20% and 30%.

The experiment result shows that proper amount of elitism can keep the percentage of

good fitness individuals in each generation, but too much elitism will destroy the diversity

of individuals in each generation.

5.2 Sexual Selection Strategy

The elitism replacement policy directly affects the selective pressure but lacks the ability

to control the genetic diversity. The sexual genetic selection, also called gender-specific

selection, is a selection strategy which could balance the selective pressure and the genetic

diversity at the same time.

In nature, male individuals try to spread their gene information as widely as possible

and female individuals try to select the fittest males to mate with [108]. Inspired by the

Chapter 5. Sexual Genetic Algorithm

72

natural behaviour of male vigour and female choice, sexual selection strategy [87, 107]

applies two different selection mechanisms: male group (competitive) and female group

(co-operative). The two different selection mechanisms provide the chance to balance

the selective pressure and the genetic diversity. The winners (elitism) in the male group,

which were picked up for the next generation with competitive mechanism, could maintain

the selective pressure. The equal mating possibility in female groups with cooperative

mechanism keeps the genetic diversity.

As mentioned, the running time of the fitness evaluation is considerable for automated

tuning, because the fitness of each chromosome is the running cost to find the solution(s)

with relative parameter set. In the standard genetic algorithm, there is only one selection

strategy to choose the mating parents. It means that all the chromosomes involved the

fitness evaluation. However the sexual selection strategy implements two selection mech-

anisms. Only the chromosomes in the male group involve the competition with their fitness.

The female chromosomes don’t need the competition and have the same opportunity for

mating. It means that half of the fitness evaluation time was saved and the variety of

the population was maintained. This is the most important reason why a sexual genetic

algorithm was selected for the experiment.

Algorithm 3 Sexual Selection Strategy
1: Randomly generate the starting population Pi . i is the population size
2: for j = 1 to n do . j is the generation
3: repeat
4: Randomly select i/2 chromosomes of population as male
5: The rest i/2 chromosomes is marked as female
6: Evaluate the fitness of those male chromosomes
7: Select k elitisms from male chromosomes to mating pool
8: Each female chromosomes has the same possibility for mating
9: New generation is generated by mating k elitisms in male group and female

chromosomes
10: until The best chromosome(solution) found or the running cost is out of time limit
11: end for

The pseudocode (Algorithm 3) of the sexual selection strategy clearly illustrates its

working principle. Before the sexual selection strategy, the encoding, which transfers

Chapter 5. Sexual Genetic Algorithm

73

the solutions of the optimisation problem to the chromosomes, is the first step as in

standard genetic algorithm. After initializing the starting population, the population is

divided into to two groups: male (competitive) and female (cooperative). The gender

of each chromosome is randomly marked. The fitness of those male chromosomes was

evaluated to select k elitisms for mating. Those k elitisms do the crossover and mutation

with the randomly picked female chromosomes to generate the offspring until the new

generation size is the same as the old generation. The generation loop repeats until the best

chromosome(solution) found or the running cost reached the time limit.

5.3 Parallel Mechanism in Genetic Algorithms

From the pseudocode and the working principle of the sexual selection strategy, it indicated

that the balance mechanism for the selective pressure and genetic diversity is feasible from

the theory side. To verify the performance of the sexual selection strategy, the sexual

genetic algorithm which implements the sexual selection strategy will compare with the

standard genetic algorithm in tuning two solvers Minion and SAPS. Before the comparison,

a parallel mechanism is introduced and implemented to the sexual genetic algorithm.

As mentioned in chapter 4, the main strategy of genetic algorithms for tuning is that

each chromosome (parameter set) races against others. One of the most time consuming

part for tuning is that elevate those parameter sets. Therefore it deserves further study to

reduce those time cost. Parallel mechanism in genetic algorithms [3] is an ideal approach

to solve this task. Due to the implicit parallelism in genetic algorithms [16], many variant

parallel strategies were posed and applied. For example the population were divide into

several small populations and they will do the evolution simultaneously. However the

main idea implemented in this thesis is that the parameter sets in each generation will be

evaluated simultaneously. To justify the efficiency of parallel mechanism, a parallel genetic

algorithm (PGA), which implements such parallel mechanism to GACM, will compare

with the GACM by tuning the same twenty instances as in section 4.4.3. Commonly the

Chapter 5. Sexual Genetic Algorithm

74

PGA GACM

Instance Cutoff(s) Running time(ms) Running time(ms)

N-Queen(26) 1 3224 15858

N-Queen(27) 1 3242 18008

N-Queen(28) 4 11980 52831

N-Queen(29) 2 5922 31051

N-Queen(30) 1 160467 895120

BIBD1 1 341 1069

BIBD2 1 567 1467

BIBD3 1 3233 11649

BIBD4 1 2978 10686

BIBD5 1 2673 13098

Golomb(6) 1 2764 5857

Golomb(7) 1 2960 11640

Golomb(8) 1 3278 20372

Golomb(9) 5 15321 135604

Golomb(10) 35 105327 1017300

Langford(2,10) 1 3310 22634

Langford(2,19) 6 17517 78126

Langford(2,20) 5 14482 63822

Langford(3,17) 4 12217 71353

Langford(3,19) 4 12207 90467

Table 5.1: The Comparison Between Parallel Genetic Algorithm and GACM

Chapter 5. Sexual Genetic Algorithm

75

amount of parallel tasks are restricted by the CPU computation ability. Thus the number of

the parallel tasks that evaluate the quantity of each parameter sets is set as ten.

The difference between the parallel genetic algorithm and GACM in this section is

with or without parallel mechanism. It means that the final parameter sets found by two

approaches are the same or very close. Thus the experiment only focuses on the running

cost for the tuning. The comparison between the parallel genetic algorithm and GACM is

to compare the average tuning cost for each instance over 10 times repeat trails.

Table 5.1 shows the running cost difference between the PGA and GACM for tuning.

There are four columns in the table. The first column is the name of those twenty instances.

The second column is the cut off time for evaluating each parameter set. The third and

fourth columns are the running cost of tuning with PGA and GACM. It clearly shows that

the running cost was greatly reduced by implementing the parallel mechanism.

It shows that the running cost for tuning those twenty instances is reduced in different

ranges. Although the number of the parallel tasks is ten, there is only one running cost

for tuning reduced to nearly one tenth. To compare with the whole tuning strategy, the

evaluation time for each parameter set does not occupy most of the CPU time is the main

reason. In another word, the evaluation time does not hold very large proportion in most

instances chosen. When the evaluation time of parameter sets increase such as Golomb

(10), the improvement is obvious.

5.4 Sexual Genetic Algorithm for Tuning

In the previous sections, three strategies which could lead to the performance improvement

are mentioned: the elitism selection policy, the sexual selection strategy and the genetic

parallel mechanism. In this section, a new sexual genetic algorithm, which combines the

elitism selection policy and the parallel mechanism, is implemented for tuning. To justify

the performance of the sexual genetic algorithm, it is compared with the gender genetic

algorithm [5] which is a state-of-the-art generic tuning algorithm.

Chapter 5. Sexual Genetic Algorithm

76

Start

Initialize start-
ing populati

Randomly
mark gender

Male group Fmale group

k elitisms

Mutation &
Crossover

New generation

Meet the
requirement?

End

parallel mechanism

the top best elitisms

Yes

No

Figure 5.3: The Flowchart of Sexual Genetic Algorithm

Chapter 5. Sexual Genetic Algorithm

77

Compared with gender genetic algorithm, the elitism strategy mentioned will be

implemented in the sexual genetic algorithm. The encoding in the gender genetic algorithm

is real value coding which is easy to understand. But the argument between the real value

coding and binary coding has never stopped. However, the binary coding is similar to

the machine coding and it always shows it is superior when it was applied to deal with

categorical values [1]. This thesis implements the binary code as the encoding way.

Figure 5.4 indicates the flowchart of the sexual genetic algorithm. Compare with the

sexual selection strategy in section 5.2, the parallel mechanism is implemented in the male

competition to gain the k elitisms in a quicker way. Meanwhile, the top best individual(s)

from the k elitisms are kept in the new generation by the elitism selection policy. In

the gender genetic algorithm, the parameter sets were divided into subgroups and each

subgroup was regard as a thread in the parallel mechanism. The aim is to find the k elitisms

quickly. However in the sexual genetic algorithm, all the parameter sets were evaluated

with parallel mechanism in one group with the same amount threads as in gender genetic

algorithm. Once any parameter set finishes the evaluation in any thread, it will be replaced

by another waiting parameter set. The threads stop until the k elitisms found.

5.4.1 Sexual Genetic Algorithm VS. Gender Genetic Algorithm in

Tuning Minion

To justify the efficiency, sexual genetic algorithm and gender genetic algorithm are firstly

implemented in tuning Minion to compare the performance. Since the gender genetic

algorithm is open source, the source code of GGA is obtained from website and is directly

implemented in the comparison experiment of SGA versus GGA. The gender genetic

algorithm and the sexual genetic algorithm were implemented to reproduce the experiment

in section 5.3 instead of parallel genetic algorithm. In the experiment, the amount of the

parallel tasks is set to eight which is the same as in [5]. Following the setting in the gender

genetic algorithm’s paper, the gender genetic algorithm and the genetic algorithm attempt

Chapter 5. Sexual Genetic Algorithm

78

Instance SGA(ms) GGA(ms) Instance SGA(ms) GGA(ms)

N-Queen(26) 33 169 Golomb(6) 1 2.6
N-Queen(27) 29 34 Golomb(7) 20 289
N-Queen(28) 32 64 Golomb(8) 215 304
N-Queen(29) 32 32 Golomb(9) 1772 3169
N-Queen(30) 37 69 Golomb(10) 1737 2727
BIBD1 28 29 Langford(2,10) 199 256
BIBD2 25 29 Langford(2,19) 32 33
BIBD3 32 46 Langford(2,20) 38 39
BIBD4 32 43 Langford(3,17) 162 360
BIBD5 35 38 Langford(3,19) 215 284

Table 5.2: Sexual Genetic Algorithm

to find the top 20% of the elitisms from male group for mating. Since the sexual genetic

algorithm implements the elitism selection strategy, the sexual genetic algorithm always

keeps the best elitism from the old generation to the new generation. The performance of

the sexual genetic algorithm compares with gender genetic algorithm in tuning minion

over twenty instances. We will repeat the trials ten times and observer the average.

Table 5.2 illustrates their efficiency over twenty instances. The left side column in

the table is the relative instance name. The data in the columns is the minimum running

of the best parameter sets found by those two algorithms. It shows the superiority of the

sexual genetic algorithm over gender genetic algorithm. Even the worse performance of

the sexual genetic algorithm in N-queen(29), the minimum found by the sexual genetic

algorithm is equal to what the GGA did.

5.4.2 Sexual Genetic Algorithm VS. Gender Genetic Algorithm in

Tuning SAPS

In [5] the gender genetic algorithm demonstrated its efficiency by tuning Scaling and

Probabilistic Smoothing (SAPS), which is a high-performance boolean satisfiability prob-

lem solver (algorithm). In that paper, the gender genetic algorithm was implemented to

tune the SAPS in solving colour mapping problems. To verify the performance of the

Chapter 5. Sexual Genetic Algorithm

79

SGA GGA
Run (Instance 1006) Minimum(ms) Cost(ms) Minimum(ms) Cost(ms)
1 52 2371 52 5608
2 48 2733 64 5522
3 40 2653 52 5492
4 50 2821 54 4936
5 32 2878 67 5401
6 52 2921 46 4513
7 50 2589 46 5137
8 40 3169 50 4543
9 46 2792 43 4889
10 48 3022 46 5278

Table 5.3: The Comparison Between Sexual Genetic Algorithm and Gender Genetic
Algorithm in Solving Instance 1006

SGA GGA
Run (Instance 10013) Minimum(ms) Cost(ms) Minimum(ms) Cost(ms)
1 24 1740 36 2813
2 20 1866 16 2694
3 18 1644 23 2402
4 18 1851 21 3602
5 20 1690 30 1531
6 20 2023 33 2632
7 24 1753 29 2851
8 24 1727 18 2612
9 16 1580 29 2667
10 18 1596 29 2189

Table 5.4: The Comparison Between Sexual Genetic Algorithm and Gender Genetic
Algorithm in Solving Instance 10013

SGA GGA
Run (Instance 10017) Minimum(ms) Cost(ms) Minimum(ms) Cost(ms)
1 56 3119 41 5689
2 50 2632 53 5163
3 46 3028 56 6219
4 46 2810 52 6127
5 54 3040 46 5223
6 48 3459 34 4934
7 54 2915 61 5593
8 60 2904 56 4805
9 46 2798 47 6012
10 56 2736 41 6138

Table 5.5: The Comparison Between Sexual Genetic Algorithm and Gender Genetic
Algorithm in Solving Instance 10017

Chapter 5. Sexual Genetic Algorithm

80

SGA GGA
Run (Instance 10055) Minimum(ms) Cost(ms) Minimum(ms) Cost(ms)
1 8 948 7 1142
2 8 938 20 860
3 8 983 16 751
4 8 905 9 1945
5 6 942 12 1250
6 8 984 13 1634
7 6 806 12 1378
8 6 935 20 2037
9 6 855 10 1509
10 8 965 7 803

Table 5.6: The Comparison Between Sexual Genetic Algorithm and Gender Genetic
Algorithm in Solving Instance 10055

sexual genetic algorithm in further, twenty instances of the colour mapping problem were

randomly selected from the benchmark instance in that paper. SAPS has four parameters

for tuning: alpha, rho, ps and wp. According to the value of those four parameters, the

chromosome length was set to 12. The population is set to 20, the generation is 10, and

the mutation rate is 0.1 and crossover rate is 0.9. Other settings are the same as in last

experiment.

To illustrate the efficiency of the sexual genetic algorithm, four instances’ result were

randomly selected to list in Table 5.3, 5.4, 5.5 and 5.6. The result demonstrates the

performance of those two algorithms on four instances over ten times run. Table 5.7 is

the statistical data based on four tables. In the table 5.7, it clearly illustrates the minimum

running cost of parameter sets found and running cost of tuning by the sexual genetic

algorithm and gender genetic algorithm. Although the tuning time cost of sexual genetic

algorithm is less than the gender genetic algorithm need. From the mean of those four

instances, it shows that the sexual genetic algorithm still could find a better parameter sets

than the GGA. From the standard deviation in the table 5.7, it shows the sexual genetic

algorithm is more stable and reliable. As mentioned, twenty instances were randomly

selected from the benchmark data, and four instances to show the performance difference

between SGA and GGA. Although other sixteen instances’ result were not listed, the

conclusion is the same as those four instances listed.

Chapter 5. Sexual Genetic Algorithm

81

SGA (mean ± stddev) GGA (mean ± stddev)

Instance Minimum(ms) Cost (ms) Minimum(ms) Cost (ms) Table

1006 45.8 ± 6.16 2794.9 ± 214.73 52.0 ± 7.52 5131.9 ± 378.09 5.3

10013 20.2 ± 2.75 1747.0 ± 128.91 26.4 ± 6.23 2599.3 ± 497.77 5.4

10017 51.6 ± 4.80 2944.1 ± 222.36 48.7 ± 7.95 5590.3 ± 503.57 5.5

10055 7.2 ± 0.98 926.1 ± 53.83 12.6 ± 4.52 1330.9 ± 433.64 5.6

Table 5.7: Test performance Comparison(mean runtime over test instances, in CPU Milli-
seconds)

5.5 Conclusion

A 3D elitism graph of genetic algorithms clearly shows that the elitism is very important

and amazing for general genetic algorithm optimisation. The elitism makes the best

solution finding of genetic algorithm not only possible but also quickly in the easy function

and the De Jong’s Function Testing.

The experiment also suggests that about 20% elitism is a good percentage for genetic

algorithms. A small elitism percentage can promise that the good individuals in an old

generation will not be lost with the new generation creating. Too much elitism loses the

opportunity of creating new chromosomes because the elitisms from the old population

will occupy too many portions in the new generation. Too much elitism loses the diversity

of the population since the chromosomes in the population have a high fitness that easily

leads to a local optimal trap.

In the experiment of the parallel mechanism, it shows that the parallel mechanism great

improves the efficiency of the sexual genetic algorithm. The sexual genetic algorithm

combined with proper elitism selection may achieve a better efficiency due to a suitable

selective pressure. However, the search will slow down with an incorrect percentage elitism

selection because of a lack of genetic diversity. The results in the experiment suggest that a

sexual genetic algorithm with low percentage elitism is practicable. The tuning results for

Minion and SAPS show that the sexual genetic algorithm is an efficient and stable method

Chapter 5. Sexual Genetic Algorithm

82

for tuning.

Chapter 5. Sexual Genetic Algorithm

83

Chapter 6
Self-learning Genetic Algorithm

GACM and sexual genetic algorithm are two algorithms that were proposed in previous

two chapters to help tuning based on a single instance. The instance-based tuning [5] is

another type of tuning approach, which has a given collection of train instances. The aim

of instance-based tuning is to seek an optimal parameter set from the train instances for the

testing instances. The following two chapters attempt to explore genetic based algorithms

for instance-based tuning.

Machine learning [4, 10] is one of the most important and indispensable branches of

artificial intelligence. The aim of machine learning is to extract the useful information

or knowledge from the existing data or previous results [19, 91]. That knowledge or

experience will help to speed the searching or optimising for the similar problems [73].

In this chapter, a genetic based self-learning strategy is proposed for the instance-based

tuning. The first section introduces some relevant approaches in machine learning and

to justify the reason to choose genetic algorithms for the instance-based tuning. Next,

the self-learning genetic algorithm which implements the iteration idea in ParamILS is

introduced. To justify its efficiency, some experiments are designed in the Section 6.4. The

performance of the self-learning genetic algorithm was compared with ParamILS in tuning

Minion and SAPS. Finally the experiment’s results are concluded in the closing section of

the chapter.

84

6.1 Preliminaries

6.1.1 Machine Learning

Arthur Samuel first gave an informal definition of machine learning in his paper in 1959. It

said: ”Machine learning is a field of study that gives computers the ability to learn without

being explicitly programmed” [95]. Later, Mitchell posted a more formal and rigorous

definition for machine learning: ”A computer program is said to learn from experience E

with respect to some task T and some performance measure P, if its performance on T, as

measured by P, improves with experience E”[77]. In essence, machine learning could also

be understood as a kind of approximation for the exact model of real problems. The aim of

machine learning is to build up a modelling with the training data and to reduce the error

between the model generated and the exactly model of real problems.

The following will introduce some of the most popular machine learning strategies:

K-means clustering, neural networks and support vector machines.

6.1.2 K-means Clustering

One of the most straightforward clustering algorithms is Lloyd’s K-means [71]. In K-

means Clustering firstly selects k random points in the feature space. It then alternates

between two steps until some termination criterion is reached. The first step assigns each

instance to a cluster according to the shortest distance to one of the k points that were

chosen. The next step then updates the k points to the centres of the current clusters. While

this clustering approach is very intuitive and easy to implement, the problem with k-means

clustering is that it requires the user to specify the number of clusters k explicitly. If k is

too low, this means that some of the potential is lost to tune parameters more precisely

for different parts of the instance feature space. On the other hand, if there are too many

clusters, the robustness and generality of the parameter sets that are optimised for these

clusters is sacrificed. Furthermore, for most training sets, it is unreasonable to assume that

the value of k is known.

Chapter 6. Self-learning Genetic Algorithm

85

6.1.3 Neural Networks

In general, neural networks with one hidden layer, a non-linear activation function and a

sufficient number of hidden neurons are able to approximate any function with arbitrary

precision. However, the error function is not convex and thus the result of the training

depends on the initialisation.

There are several steps which are important if one uses a neural network: One has to

check that no other more efficient method is available and that the problem can be treated

using an artificial neural network (feasibility). One has to plan the project. This includes

resources, personnel, costs, and documentation. The next step is to setup standards for

data collection and coding. After data is collected, one has to assure the quality of the data.

Now the network can be designed. Usually one needs several training cycles to obtain an

optimal structure of the network. After the network has been trained and designed, one has

obtained precise estimates for the errors. One can use the trained network to extract rules.

Rules are important for optimisation and control of the network.

However, it would require lots of computational resources to fully implement a standard

neural network architecture. Neural networks require a large amount training sets to be

trained properly and to give output(s) that would be close enough to the desired output

but knowing what amount of training sets, is enough for a desired output would be totally

dependent on the trainer itself - but yes it’s important that a very large training set is

provided so that the neural network would have sufficient understanding of the underlying

structure.

6.1.4 Support Vector Machines

SVM is a supervised machine learning algorithm which can be used for classification or

regression problems. It uses a technique called the kernel trick to transform your data and

then based on these transformations it finds an optimal boundary between the possible

outputs. Simply put, it does some extremely complex data transformations, and then

Chapter 6. Self-learning Genetic Algorithm

86

figures out how to separate your data based on the labels or outputs you’ve defined.

One of SVM drawback is that the complex data transformations and resulting boundary

plane are very difficult to interpret. Another disadvantage of the SVM algorithm is that it

has several key parameters that need to be set correctly to achieve the best classification

results for any given problem.

The above description listed the drawbacks and advantages of the recent popular

machine learning strategies. There is more or less difficulty on implementing them. The

previous chapters have shown the efficiency and feasibility of genetic algorithms in tuning.

This chapter will focus how to adapt the genetic algorithms to learn from the training sets.

As with machine learning strategies in tuning, the aim of the training is to find an optimal

parameter set which has the best average performance for all the training sets.

6.2 Self-learning Genetic Algorithm

The self-learning genetic algorithm (referred to as SLGA) is an instance based tuning

algorithm which make the prediction by extracting experience on the sample instance.

Self-learning, which learns its own inductive bias based on previous experience, is one of

the typical algorithms in the machine learning domain. Self-learning could avoid repetition

of searching and computation in the previous experiments.

The last few chapters explored various ways to improve the search ability of a genetic

algorithm by creating different strategies such as balancing the selective pressures and

the genetic variety. In standard genetic algorithm, the starting population is randomly

generated because the search domain is unknown and the random chromosomes keep the

variety of the population to prevent early convergence in evaluation. But it is mentioned

in chapter 2 that the quality of the starting population is a considerable factor, as with the

crossover rate and the mutation rate. The searching ability of genetic algorithm can be

improved by narrowing the starting population domain [40].

Combining with the influence of the starting population in genetic algorithms and the

Chapter 6. Self-learning Genetic Algorithm

87

Start

Initialize starting
population

Mating population

Select train-
ing instance

Evaluate the
mating population

Update the award-
ing information

Select mating
individuals

Crossover
& Mutation

Meet the
requirment?

Creating mating
population
with Max

End

Yes

Figure 6.1: The Flowchart of Self-learning Genetic Algorithm

Chapter 6. Self-learning Genetic Algorithm

88

idea of self-learning, the main idea of the self-learning genetic algorithm was formed. To

learn from the training sets, a random sample instance of all available training instances is

selected in each generation. The performance of the whole population is evaluated and

the individuals race against each other. After mating, the new population is passed to the

next generation as normal. Therefore the subsequent generation inherited all the good

parameter sets for the last sample instance.

As mentioned in the introduction, ParamILS is an iterated local search or statistics

based tuning algorithm. ParamILS implements a special iteration technique to limit the

number of training instances that need to be run for each parameter set. It starts with

a random assignment of all the parameters. Meanwhile it gathers statistics on which

parameters are important. The current best parameter set would be replaced only if a new

parameter set has been evaluated on at least as many training instances as the current best.

A similar statistical approach called bonus strategy will mentioned and implemented in

our self-learning genetic algorithm.

Figure 6.2 clearly demonstrates the flowchart of self-learning genetic algorithm. Actu-

ally it is implemented in the following way:

Initialisation - A few populations were firstly initialized such as the starting population

P for the evolutionary, the mating population PM and the best population PB, which

gather the best parameter set in each generation. At begin the mating population is equal

the starting population, else it is the total of the population P and the best population PB.

Meanwhile some other variables were initialized as well. According to the value of the

tuning parameters, the chromosome length choromlength will be initialised. BestParam

is the variable to store the best parameter set in each generation.

Bonus Strategy - As in the ParamILS, the self-learning genetic algorithm implements

an iteration approach called bonus strategy to record each best parameter set in each

generation. Therefore array Bk is initialized to record the occurrence frequency of each

best parameter happened in each generation, where k is the size of arrayBk. The default

Chapter 6. Self-learning Genetic Algorithm

89

value of k is the size of the generation. However, when k is less than the generation

size, the recent best parameter set will replace the worst or the early on in Bk. When the

self-learning genetic algorithm finishes, the bonus mechanism will find out an optimal

parameter set which has highest occurrence frequency or is the best parameter in the last

generation.

Mating Rule - In self-learning genetic algorithm, a random instance T will be chosen

from the training sets for each generation. To help each parameter set has the chance for

mating, the selection strategy in here is the roulette wheel.

Algorithm 4 Self-Learning Genetic Algorithm
1: Initialize P, PB, PM,Bk

2: PM ← P
3: for i← 1 to n do
4: T ← ChooseInstance(TrainingSets)
5: BestParam← Fitness(PM)
6: if BestParam == Bk then
7: Bk ← Bk + 1
8: else
9: Bi ← best configuration

10: end if
11: Parents← Select(PM)
12: for j ← 1 to n do
13: P ← Crossover(Mutation(Parents))
14: end for
15: if Checktime()==true then
16: break
17: else
18: PM ← P ∪ PB
19: end if
20: end for
21: if Bouns()==true then
22: λ← Bbest

23: else
24: λ← BestParam
25: end if
26: return λ

Chapter 6. Self-learning Genetic Algorithm

90

Crossover and Mutation - In the self-learning genetic algorithm the single point cros-

sover is applied. The mutations which change one or more genes in an individual is another

operator used in GA. The self-learning genetic algorithm implements the most classic one

point mutation.

The pseudocode of the self-learning genetic algorithm illustrated its working principle

and the way of realizing the idea to the programming code.

6.3 The Performance of the Self-learning Genetic Algorithm

After the introduction of self-learning genetic algorithm, its performance is firstly verified

by tuning Minion in solving various CSPs. The optimisation problems involved in the

testing are the BIBD, the N-queen problem, Golomb, and the Langford’s Number problem.

In the performance testing, the self-learning genetic algorithm attempts to find an optimal

or best parameter settings for the large instance by training the small instances of the same

CSPs.

Since the bonus strategy of the self-learning genetic algorithm is a kind of statistical

approach, its performance will compare with ParamILS in tuning another solver SAPS to

justify the efficiency as in chapter 5.

6.3.1 The Distribution of Parameter Sets

Before the performance testing, the distribution of the running time with different parameter

sets on four optimisation problems will be investigated. The aim of the investigation is

to discover whether the parameter sets distribution change with different instance for the

same type problem. Therefore each optimisation problem will select three instances for

exploring the distribution. In the experiment all the parameter sets in each instance will be

evaluated and noted.

Figure 6.2 and Figure 6.3 illustrate that the running cost distribution of the possible

parameter set in solving different instance. X axis in these graphs is the running time of

Chapter 6. Self-learning Genetic Algorithm

91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (27−Queens)

0.02 0.025 0.03 0.035 0.04 0.045

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Runing time(s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (BIBD1)

0 0.5 1 1.5 2 2.5 3

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (28−Queens)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (BIBD2)

0 0.5 1 1.5 2 2.5

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (29−Queens)

0 0.2 0.4 0.6 0.8 1

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (BIBD3)

Figure 6.2: The Distribution for N-queen and BIBD

Chapter 6. Self-learning Genetic Algorithm

92

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (Golomb 6)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (Langford(210))

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (Golomb 7)

0 1 2 3 4 5 6 7

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (Langford(219))

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (Golomb 8)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.005

0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99

0.995

Running Time (s)

P
ro

b
a

b
ili

ty

Probability plot for Normal distribution (Langford (3,17))

Figure 6.3: The Distribution for Golomb Ruler and Langford Number Problem

Chapter 6. Self-learning Genetic Algorithm

93

specific parameter set. Y axis is the probability that parameter sets occupied. When the

value of Y is 1, it presents all parameter sets. From the result, it shows that the distribution

is more or less changed by the instances changing in the same problem. In another word,

the optimal parameter set changes in different instances. Those two figures also indicate

that the changing with different instance in n-queen, Golomb Ruler and Langford Number

problem is not dramatical. To compare with other problems, the changing in BIBD is more

obvious.

6.3.2 The Performance Comparison in Tuning Minion

To justify the performance in tuning Minion, the self-learning genetic algorithm was

implemented to tune Minion. In the comparison there will be three training instances and

one testing instance for each CSPs. The population size will be ten, crossover rate is 0.9

and mutation rate is 0.1. Therefore the self-learning genetic algorithm will implement

one second as the cutoff time for each training instance. The number of parallel task for

self-learning genetic algorithm is ten. The k in bonus strategy is the same as population

size. Each trial was run ten times and I observed the average of the minimums.

Table 6.1 shows that the performance of the self-learning genetic algorithm in tuning

Minion. The left two columns is the name of three training instances and one test instance.

The third column is the total training time for those three test instances. The fourth column

is the solving time for the test instance with the candidate parameter sets found by small

training instances. The ”total” column is the total time which includes the training time and

solving time. The right column is the default running time for running the large instance

with the default parameter setting. Although the performances are different, the result of

the performance in Table 6.1 is obvious in showing that the self-learning genetic algorithm

is feasible for finding a better parameter sets for large instances. The running time for find

the solutions for 100-queens is over 240 times faster than the one with default.

Chapter 6. Self-learning Genetic Algorithm

94

Train Instance Test Instance Training Time Solving Time Total Default

26-Queens
27-Queens
28-Queens 30-Queens 30s 0.07s 30.07s 87s
26-Queens
27-Queens
28-Queens 100-Queens 300s 0.2s 300.2s >20hrs
BIBD1
BIBD2 BIBD
BIBD3 (9,90,40,4,15) 300s 2911s 3211s 3674s
Golomb (6)
Golomb (7)
Golomb (8) Golomb(10) 10s 30s 40s 62s
Golomb (6)
Golomb (7)
Golomb (8) Golomb(11) 300s 4169s 4469s 9290s
Langford(2,10)
Langford(3,17)
Langford(3,19) Langford(2,19) 3s 0.29s 3.29s 6s
Langford(2,10)
Langford(3,17)
Langford(3,19) Langford(2,27) 300s 1223s 1523s >12hrs

Table 6.1: The Performance of SLGA in Tuning Minion

Chapter 6. Self-learning Genetic Algorithm

95

6.3.3 The Performance Comparison in Tuning SAPS

In [55] ParamILS shows its efficiency in tuning SAPS with its two tuning algorithms Basic

and Focus local search. As mentioned, the statistical idea in the self-learning genetic

algorithm for the optimal parameters found in each generations is derived from ParamILS.

Therefore ParamILS is closely related to the proposed SLGA.

To verify the influence made by the import of the genetic algorithm and its parallel

mechanism, the self-learning genetic algorithm will be implemented to tune SAPS with

the same instances in the ParamILS’s paper. Since ParamILS is an open source project

for the research purpose, its source code is directly obtained from the internet. ParamILS

will reproduce the experiment in the paper with its source code in the same platform as the

self-learning genetic algorithm does.

In the experiment, the benchmark set for SAPS consists of 113 SAT instances for

training and 100 different instances for testing. For SAPS, I ran self-learning genetic

algorithm for 200 generations with a population of size 60. The crossover rate will be 0.9

and mutation rate will be 0.1. The total CPU time for tuning is 1800 seconds which was

used for self-leaning genetic algorithm and ParamILS when configuring SAPS. The cutoff

time for evaluating each parameter set in each training instance for both tuning approaches

is one second. In the comparison, each tuning algorithm will run twenty runs.

Table 6.2 illustrated the final average computation time for the instances in the training

as well as the test set. Although the Basic ParamILS is more stable than Focus ParamILS,

the 20 tuning runs shows that Basic ParamILS is not good as Focus ParamILS. It is obvious

that the performance of self-learning genetic algorithm outperforms both basic ParamILS

and focus ParamILS. Self-learning genetic algorithm’s worst parameter set results in an

average performance of 27 ms per test instance, which is still better than the best Focus

ParamILS parameter set which requires 68 ms. Self-learning genetic algorithm also showed

it is superior on the performance of test instance. The standard deviation shows that the

self-learning genetic algorithm is more stable than other two algorithms as well. The

results of the comparison with ParamILS clearly shows the efficiency and the improvement

Chapter 6. Self-learning Genetic Algorithm

96

Basic ParamILS Focus ParamILS SLGA

Run Train(ms) Test(ms) Train(ms) Test(ms) Train(ms) Test(ms)

1 316 280 84 94 18 17
2 315 287 71 73 19 19
3 316 283 75 67 17 13
4 317 285 72 71 23 12
5 316 282 68 73 16 11
6 317 278 73 64 14 14
7 316 277 86 99 21 22
8 315 277 68 73 19 23
9 317 280 71 67 23 18
10 316 281 69 63 22 21
11 315 274 73 76 10 13
12 317 271 72 76 25 27
13 317 278 70 78 27 24
14 318 275 73 65 25 25
15 315 278 73 66 22 26
16 317 282 76 66 19 19
17 317 282 68 78 13 10
18 315 281 76 71 15 13
19 315 280 72 71 18 16
20 316 277 69 69 22 21
Mean 316.2 279.4 73.0 73.0 19.4 18.2
STDDEV 0.91 3.7 4.7 9.0 4.3 5.2

Table 6.2: The Efficiency of Self-Learning Genetic Algorithm in Tuning SAPS by compar-
ing ParamILS

of using SLGA over ParamILS on tuning SAPS, when the iteration local search idea in

ParamILS was combined with the genetic algorithm.

6.4 Conclusion

Actually, the aim of this chapter is to propose and justify an instanced-based tuning

approach called self-learning genetic algorithm, which could learning the experience

from other training instances in the same problem. The self-learning genetic algorithm is

proposed by combing the ideas on the starting population and iteration.

Chapter 6. Self-learning Genetic Algorithm

97

The comparative study of the evolutionary speed between different starting populations

indicated that the quality of the starting population could affect the evolutionary speed

and results. In this chapter the generation of each instance will be regarded as the starting

population for other instances. The population will be updated with the involving of the

new random training instance in each generation. Therefore the whole population do

the evolutionary towards the direction that finds an optimal parameter set for the average

performance of training instances.

Meanwhile the iteration idea in ParamILS was implemented and revised as the Bonus

Strategy in the self-learning genetic algorithm. This mechanism applied a statistical ap-

proach to recode the best parameter sets in each generation and their occurrence frequency.

This idea helped the self-learning genetic algorithm to locate the best parameter set in

further. In practice, our self-learning genetic algorithm has demonstrated it is superior over

ParamILS by comparing in the Minion tuning and SAPS tuning.

Chapter 6. Self-learning Genetic Algorithm

98

Chapter 7
Self-learning Sexual Genetic Algorithm

The main focus of the thesis is to develop automatic tuning algorithms for CSPs solver.

For the single instance tuning, GACM and a sexual genetic algorithm were proposed in

this paper. For the instance-based tuning, the standard genetic algorithm was modified

and improved as a new self-learning genetic algorithm in the previous chapters. Although

the sexual genetic algorithm and the self-learning genetic algorithm are both based on the

standard genetic algorithm, they implemented different strategies to tune different type of

tuning. The hybrid strategy is expected to be explored for instance-based tuning in this

chapter.

The self-learning sexual genetic algorithm will be introduced in this chapter. The first

section will introduce the principle and the structure of the self-learning sexual genetic

algorithm. Section 7.2 justifies the efficiency of the self-learning sexual genetic algorithm

by comparing with self-learning genetic algorithm. In section 7.3 the self-learning sexual

genetic algorithm will be compared with SMAC [53], which is a more recent tuning

algorithm to replace ParamILS. Section 7.4 is the conclusion of this chapter.

7.1 Introduction

The self-learning sexual genetic algorithm is a hybrid algorithm based on the sexual

genetic algorithm and the self-learning genetic algorithm. The self-learning sexual genetic

99

algorithm (SLSGA) pseudocode (Algorithm 5) introduces SLSGA’s working principle

and shows how self-learning combines with the sexual genetic algorithm. Compared

with the self-learning genetic algorithm, the self-learning sexual genetic algorithm spends

time on fitness evaluation and selects k elitisms from the male group, instead of from the

whole population. The aim of the self-learning sexual genetic algorithm is the same as

self-learning genetic algorithm that finds a best average performance parameter set from

the training sets. Meanwhile, a penalty strategy will be implemented in the self-learning

sexual genetic algorithm.

The flowchart of the self-learning sexual genetic algorithm clearly demonstrates how it

works from the population initialisation to optimisation completion. The following is the

way to implement it:

Initialization - As in self-learning genetic algorithm, a few populations were firstly

initialised such as the starting population P for the evolutionary and the best population

PB. At begin the mating population is initialized as the starting population P , else it

is the total of the population P and the best population PB. According to the value of

the tuning parameters, the chromosome length choromlength and the best parameter set

BestParam will be initialized.

Bonus and Penalty Strategy - As the bonus strategy in the self-learning genetic al-

gorithm, a penalty strategy is initialised to collect statistic of the worst parameter set in

each generation. Therefore array PenaltyRecorderk is initialised to record the occurrence

frequency of the worst or invalid parameter sets that happened in each generation, where k

is the size of array PenaltyRecorderk. As in the bonus strategy, the recent best parameter

set will replace the worst or the early on in PenaltyRecorderk, when k is less than the

generation size.

PenaltyRecorderk is used to record the worst or the last invalid parameter set

happened in each generation. Array B is to record the occurrence frequency of each

best parameter that happened in each generation as in self-learning genetic algorithm.

Chapter 7. Self-learning Sexual Genetic Algorithm

100

Start

Initialize start-
ing population

Mating population

P mark gender,
PB mark male

Select training instance

Evaluate the mat-
ing population

Update the awarding
and penlty information

Select k elit-
isms from male

Remove the invalid
indivduals with pently

Crossover & Mutation

Creating mating
population with Max

Meet the
requirment?

Pently?

End

No

Yes

Yes

No

Figure 7.1: The Flowchart of Sexual Self-learning Genetic Algorithm

Chapter 7. Self-learning Sexual Genetic Algorithm

101

Algorithm 5 Self-learning Sexual Genetic Algorithm
1: Initialize P, PB,B,Male, Female, PenaltyRecorder
2: for i← 1 to n do
3: T ← ChooseInstance(TrainingSets)
4: PC ← RandomMarkGender(P);
5: Female← P \ PC;
6: Male← PC ∪ PB;
7: BestParam&Invalids(orWorst)← Fitness(Male)
8: for k ← 1 to i− 1 do
9: if BestParam == Bk then

10: Bk ← Bk + 1
11: else
12: Bi ← best configuration
13: end if
14: end for
15: if Invalids(orWorst) == PenaltyRecorderk then
16: PenaltyRecorderk = PenaltyRecorderk + 1
17: else
18: PenaltyRecorderi ← Invalids(orWorst)
19: end if
20: Parent1← Select(Male)
21: Parent2← Select(Female)
22: for j ← 1 to n do
23: P ← Crossover(Mutation(Parents1),Mutation(Parents2))
24: end for
25: if Checktime()==true then
26: break
27: else if Penalty()==true then
28: replace()
29: end if
30: end for
31: if Bouns()==true then
32: λ← Bbest

33: else
34: λ← BestParam
35: end if
36: return λ

Chapter 7. Self-learning Sexual Genetic Algorithm

102

Another task of the penalty strategy is to remove the possible bad parameter value from the

parameter sets. To realise it, a trigger value PenaltyTrigger was set to decide the time to

remove the parameter. Therefore a trigger function Penalty(), which checks whether the

occurrence times of the worst parameter occurred most time is larger than the trigger value

PenaltyTrigger, was created and implemented.

Once the penalty strategy is triggered, the replace() function will firstly find the

parameter values which are not in any parameter sets in BP but in the worst parameter

set. Those parameter values will be prevented and replaced by random values with the

possibility α in the new generation. The value of the α is assigned by the occurrence

frequency of the worst parameter set. For example if the worst parameter set appears five

times in ten generations, α is 0.5 (5/10). When the self-learning genetic algorithm finished,

the bonus mechanism will find out an optimal parameter set which has highest occurrence

frequency or is the best parameter in the last generation.

Mating Rule - As in the self-learning genetic algorithm, a random instance T will be

chosen from the training sets for each generation. At the beginning of each generation, the

population P randomly marks half the population as male by RandomMarkGender()

and store the male in the population PC. The rest of parameter in P were marked as

Female population. The parameter sets in the best array B are all marked as male. The

parameter sets in the population Male will be evaluated to gain the best and worst/invalid

parameter set which will be stored for bonus and penalty strategy. m elitisms will be

selected from the male population as one mating parent. Each individual in Female

population has the same possibility to mating as another mating parent.

Crossover and Mutation - As in the self-learning genetic algorithm, the single point

crossover will be applied in this chapter. The self-learning genetic algorithm will choose

the most classic one point mutation.

Chapter 7. Self-learning Sexual Genetic Algorithm

103

Train Instance Test Instance SLGA (s) SLSGA(s)

26-Queens
27-Queens
28-Queens 100-Queens 0.2s 0.11s
BIBD1
BIBD2 BIBD
BIBD3 (9,90,40,4,15) 2911s 1381s
Golomb (6)
Golomb (7)
Golomb (8) Golomb(11) 4169s 3484s
Langford(2,10)
Langford(3,17)
Langford(3,19) Langford(2,27) 1223s 1079s

Table 7.1: The Performance Comparison in Tuning Minion

7.2 Self-learning Sexual Genetic Algorithm vs. Self-learning

Genetic Algorithm in Tuning Minion

The self-learning sexual genetic algorithm was proposed by the instance-based tuning

algorithm self-learning genetic algorithm. Compared with self-learning genetic algorithm,

it combined the idea of the sexual genetic algorithm. It means that only half of the

population was evaluated their parameter sets. Although the evaluation time is saved, the

change to evaluate more parameter sets lost. To extract more information in the evaluation

of half population and improve its efficiency, the penalty strategy was discussed in the

self-learning sexual genetic algorithm.

To justify its performance, the self-learning genetic algorithm will compare with the

self-learning genetic algorithm in tuning Minion. In the comparison there will be three

training instances and one testing instance for each CSPs as in last chapter. The population

size will be 10, crossover rate is 0.9 and mutation rate is 0.1. The amount of tuning time is

assigned 300 seconds for both algorithms. The number of parallel tasks for both is 8. The

k in the bonus strategy and the penalty strategy is the same as population size. To clearly

demonstrate the performance of the penalty strategy, PenaltyTrigger is assigned 2. Each

tuning trial was run 10 times and we observed the average of the minimums.

Chapter 7. Self-learning Sexual Genetic Algorithm

104

Table 7.1 shows the average of the solving time for the large test instance with the found

optimal parameter sets. The left columns introduces the name of the training instances and

the test instance. The data in the right columns clearly indicates the self-learning sexual

genetic algorithm outperforms its precursor in tuning four CSPs. It saves running cost on

the fitness evaluation in each generation since it just need to evaluate the fitness of the half

male population. In another word, it means it has more generations in the same amount of

tuning time.

7.3 Self-learning Sexual Genetic Algorithm vs. SMAC in

Tuning SAPS

To verify the performance of self-learning genetic algorithm, it will be compared with

the Sequential Model-based Algorithm Configuration (SMAC) which is a successor of

ParamILS. They will be implemented in tuning SAPS to compare their efficiency. The

same benchmark set as in the last chapter, which consists of 113 SAT instances for

training and 100 different instances for testing, was chosen for SAPS. The self-learning

genetic algorithm runs the tuning for 200 generations with a population of size 60 and

a PenaltyTrigger of value 2. The crossover rate will be 0.9 and mutation rate will be

0.1. The total CPU time for tuning is 1800 seconds which was used for self-leaning

genetic algorithm and SMAC when configuring SAPS. The cutoff time for evaluating each

parameter set in each training instance for both tuning approaches is one second.

Table 7.2 shows the average performance of both algorithms in tuning SAPS on 20

runs. It clearly indicates that self-learning sexual genetic algorithm outperform SMAC

in tuning SAPS. The self-learning genetic algorithm’s worst parameter set results in a

performance of 9.5 ms per training instance, which is better than the mean of SMAC

parameter set which requires 9.98 ms. Meanwhile the worst parameter set of self-learning

genetic algorithm in testing instance is 8.9 which is still little better than 8.91 that is the

average performance of SMAC. Although the performance of self-learning sexual genetic

Chapter 7. Self-learning Sexual Genetic Algorithm

105

SMAC SLSGA

Run Training(ms) Testing(ms) Training(ms) Testing(ms)

1 11.4 8 8.2 7.6

2 9.8 8.8 7.0 7.2

3 10.1 9.6 8.9 8.5

4 9.7 8.4 7.1 7.7

5 9.6 10.4 7.3 7.5

6 10.2 10.3 6.6 8.8

7 10.6 9.0 7.2 6.8

8 9.9 10.4 7.5 7.4

9 9.7 8.0 6.8 7.5

10 10.5 11.2 8.3 8.9

11 9.9 10.8 6.8 7.6

12 10.3 8.2 7.5 6.4

13 10.2 8.6 7.1 8.3

14 9.1 9.0 8.1 5.2

15 9.9 8.8 9.5 8.5

16 10.4 6.9 7.4 7.9

17 10.1 8.2 6.5 8.4

18 9.6 8.6 7.8 9.2

19 9.1 6.4 7.7 6.8

20 9.4 8.7 7.9 7.7

Mean 9.98 8.91 7.56 7.70

STDDEV 0.52 1.21 0.75 0.92

Table 7.2: The performance of SLSGA and SMAC in tuning SAPS on 20 runs

Chapter 7. Self-learning Sexual Genetic Algorithm

106

algorithm in the testing instance is not better than in the training instance, it still shows

its efficiency and superiority. The standard deviation shows that the self-learning sexual

genetic algorithm is more stable than SMAC no matter in training instance or testing

instances.

7.4 Conclusions

As the second instance-based tuning algorithm in this thesis, the self-learning sexual

genetic algorithm is proposed by combining the idea of sexual genetic algorithm and

self-learning genetic algorithm.

The main aim of self-learning sexual genetic algorithm is to extract more useful

information for finding an optimal parameter set with less running time. Because of the

idea of the sexual genetic algorithm, the self-learning sexual genetic algorithm reduces

half fitness evaluation time. The self-learning sexual genetic algorithm attempts to extract

more useful information by bonus and penalty strategy.

The experiment result shows the application of the bonus and penalty strategy suc-

cessfully helped the algorithm to find an optimal parameter set with less time on the

evaluation by combining the male and female (competitive and co-operative) strategy.

Although self-learning sexual genetic algorithm is efficient on tuning, the size choice of

PenaltyTrigger and the possibility α in penalty strategy is worth further study.

Chapter 7. Self-learning Sexual Genetic Algorithm

107

Chapter 8
Conclusion

8.1 Summary

This thesis firstly analysed the performance of the operators and their features in standard

genetic algorithm. It embodied the powerful search ability of the genetic algorithm and its

parameter sensitivity. The experiment result indicated that GAs could approach the best

fitness in a few generations. It also showed that the lower mutation rate and high crossover

is a better choice for the experiment in this thesis.

In this thesis, genetic-based algorithms were chosen to help solvers on single instance

tuning and instance-based tuning. There are two main reasons to choose GAs to implement

solver tuning:

• GAs have a powerful ability to tackle optimisation problems which lack auxiliary

information

• GAs perform parallel search rather than linear search; each chromosome (solution

to the problem) competes against others in each generation

For the single instance tuning, two algorithms GACM and a sexual genetic algorithm

were proposed in this thesis. GACM demonstrated the feasibility that could bridge the

genetic algorithms and the constraint solvers.

108

To improve the tuning efficiency in further, a sexual genetic algorithm which imple-

ments the elitism and parallel mechanism was proposed to deal with the singe instance

tuning. It has demonstrated that the elitisms strategy in the SGA is very important and that

selecting suitable elitisms percentages leads to an ideal optimisation speed. The sexual

genetic algorithm is more efficient than standard GAs in preprocessing selection; it is

not necessary for the sexual genetic algorithm to evaluate the fitness of all chromosomes,

which is a considerable consumer of CPU time.

The self-learning genetic algorithm is an instance-based tuning algorithm which ac-

quires, and discovers new knowledge form the training set. Beside the learning ability of

genetic algorithm itself, a statistical iteration strategy was implemented in the self-learning

genetic algorithm to extract the optimal parameter set from training set. This statistical

iteration strategy also called bonus strategy could help the sexual genetic algorithm keep a

record of all best parameter set in each generation. The experiments show that the sexual

genetic algorithm is efficient for tuning solver by comparing with ParamILS.

Another new instance-based algorithm called self-learning sexual genetic algorithm

was proposed in this thesis. It was created by combining the idea of sexual-genetic

algorithm and self-learning genetic algorithm. To achieve a better desired result, a penalty

was be applied in the self-learning genetic algorithm.

8.2 Contributions

According to the three main research questions, there are three key academic contributions

from the thesis.

Firstly, this thesis developed an idea of the framework that combined the genetic

algorithms with the solver Minion and SAPS. The experiment results showed that the

framework is feasible and acceptable. The framework provides a practical way which

could tune the Minion properly. It also showed the search ability of the genetic algorithm

in the autonomous search.

Chapter 8. Conclusion

109

Secondly, this thesis explored the parameter sensitivity of the genetic algorithms in

different situations. Goldberg pointed out that the parameter setting in the genetic algorithm

itself is hard to control. The experiments in this thesis illustrated the parameter sensitivity

of the genetic algorithms in various situations. Those experiment results could be used for

future work as the benchmark.

Finally, this thesis proposed a few genetic algorithms for tuning such as the self-

learning sexual genetic algorithm, which is based on the sexual genetic algorithm and

the self-learning genetic algorithm. Those genetic based algorithms give a feasible and

efficient solution(s) for solvers tuning.

8.3 Future Work

The results showed that four algorithms discussed in the thesis are successful in tuning

different types of instances and solver. However, a number of challenges remain for future

exploration. Although four genetic-based tuning algorithms showed their performance

in tuning Minion and SAPS by comparing with other existing approaches such as GGA

and SMAC, more different solvers were expected to choose to justify their robustness.

In the self-learning genetic algorithm, the size of the best array in the bonus strategy is

worthwhile to explore in further. The self-learning sexual genetic algorithm implements a

new penalty strategy to improve the performance. The effect of the PenaltyTrigger and

the replace possibility α in the penalty strategy is another possible direction to investigate.

Chapter 8. Conclusion

110

Bibliography

[1] Omar Arif Abdul-Rahman, Masaharu Munetomo, and Kiyoshi Akama. An adaptive
parameter binary-real coded genetic algorithm for constraint optimization problems:
Performance analysis and estimation of optimal control parameters. Information
Sciences, 233:54 – 86, 2013.

[2] Belarmino Adenso-Daz and Manuel Laguna. Fine-tuning of algorithms using
fractional experimental designs and local search. Operations Research, 54(1):99–
114, 2006.

[3] Enrique Alba and Marco Tomassini. Parallelism and evolutionary algorithms.
Evolutionary Computation, IEEE Transactions on, 6(5):443–462, 2002.

[4] Ethem Alpaydin. Introduction to machine learning. MIT press, 2004.

[5] C. Ansótegui, M. Sellmann, and K. Tierney. A Gender-Based Genetic Algorithm
for the Automatic Configuration of Algorithms. In Principles and Practice of
Constraint Programming-CP 2009: 15th International Conference, CP 2009 Lisbon,
Portugal, September20-24, 2009 Proceedings, page 142. Springer, 2009.

[6] David L Applegate. The traveling salesman problem: a computational study.
Princeton University Press, 2006.

[7] Krzysztof R. Apt. The essence of constraint propagation. Theoretical Computer
Science, 221:179 – 210, 1999.

[8] C. Audet and J. Dennis. Analysis of generalized pattern searches. SIAM Journal on
Optimization, 13(3):889–903, 2002.

[9] Charles Audet and John E Dennis Jr. Mesh adaptive direct search algorithms for
constrained optimization. SIAM Journal on optimization, 17(1):188–217, 2006.

[10] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[11] T. Back. Selective pressure in evolutionary algorithms: a characterization of selec-
tion mechanisms. In Evolutionary Computation, 1994. IEEE World Congress on
Computational Intelligence., Proceedings of the First IEEE Conference on, pages
57–62 vol.1, Jun 1994.

111

[12] T. Bartz-Beielstein, C.W.G. Lasarczyk, and M. Preuss. Sequential parameter optim-
ization. In Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 1,
pages 773–780 Vol.1, Sept 2005.

[13] J. Christopher Beck, Patrick Prosser, and Richard J. Wallace. Toward understand-
ing variable ordering heuristics for constraint satisfaction problems. In IN: PRO-
CEEDINGS OF THE FOURTEENTH IRISH ARTIFICIAL INTELLIGENCE AND
COGNITIVE SCIENCE CONFERENCE, pages 11–16, 2003.

[14] J. Christopher Beck, Patrick Prosser, and Richard J. Wallace. Trying again to fail-
first. In In: Recent Advances in Constraints. Papers from the 2004 ERCIM/CologNet
Workshop-CSCLP 2004. LNAI No. 3419, pages 41–55. Springer, 2005.

[15] Nicolas Beldiceanu and Evelyne Contejean. Introducing global constraints in chip.
Mathematical and computer Modelling, 20(12):97–123, 1994.

[16] Alberto Bertoni and Marco Dorigo. Implicit parallelism in genetic algorithms, 1993.

[17] Christian Bessiere. Constraint propagation. Handbook of constraint programming,
pages 29–83, 2006.

[18] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Sttzle. F-race and
iterated f-race: An overview, 2009.

[19] Avrim L Blum and Pat Langley. Selection of relevant features and examples in
machine learning. Artificial intelligence, 97(1):245–271, 1997.

[20] Erick Cant-Paz. A survey of parallel genetic algorithms. CALCULATEURS PARAL-
LELES, RESEAUX ET SYSTEMS REPARTIS, 10, 1998.

[21] Alain Colmerauer. An introduction to prolog iii. In Computational Logic, pages
37–79. Springer, 1990.

[22] Charles Darwin. On the origins of species by means of natural selection. London:
Murray, 1859.

[23] Charles Darwin and William F Bynum. The origin of species by means of natural
selection: or, the preservation of favored races in the struggle for life. AL Burt,
2009.

[24] Lawrence Davis. Applying adaptive algorithms to epistatic domains. In Proceedings
of the 9th International Joint Conference on Artificial Intelligence - Volume 1,
IJCAI’85, pages 162–164, San Francisco, CA, USA, 1985. Morgan Kaufmann
Publishers Inc.

[25] Kenneth Alan De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, Ann Arbor, MI, USA, 1975. AAI7609381.

[26] Kalyanmoy Deb et al. Multi-objective optimization using evolutionary algorithms,
volume 2012. John Wiley & Sons Chichester, 2001.

Bibliography

112

[27] Nachum Dershowitz, Ziyad Hanna, and Alexander Nadel. A clause-based heuristic
for sat solvers. In Fahiem Bacchus and Toby Walsh, editors, Theory and Applications
of Satisfiability Testing, volume 3569 of Lecture Notes in Computer Science, pages
46–60. Springer Berlin Heidelberg, 2005.

[28] M. Dib, R. Abdallah, and A. Caminada. Arc-consistency in constraint satisfaction
problems: A survey. In Computational Intelligence, Modelling and Simulation
(CIMSiM), 2010 Second International Conference on, pages 291–296, Sept 2010.

[29] Ulrich Dorndorf, Erwin Pesch, and Ton Phan-Huy. Constraint propagation tech-
niques for the disjunctive scheduling problem. Artificial Intelligence, 122(1?):189 –
240, 2000.

[30] Amer Draa, Souham Meshoul, Hichem Talbi, and Mohamed Batouche. A quantum-
inspired differential evolution algorithm for solving the n-queens problem. Interna-
tional Arab Journal of Information Technology (IAJIT), 7(1), 2010.

[31] H.A. Eiselt and C.-L. Sandblom. Introduction to operations research. In Operations
Research, pages 1–12. Springer Berlin Heidelberg, 2010.

[32] Susan L. Epstein, Eugene C. Freuder, Richard Wallace, Anton Morozov, and Bruce
Samuels. The adaptive constraint engine. In In: CP 02 Principles and Practice of
Constraint Programming, pages 525–540. Springer, 2002.

[33] Larry J. Eshelman and David J. Schaffer. Preventing premature convergence in
genetic algorithms by preventing incest. In Richard K. Belew and Lashon B. Booker,
editors, Proceedings of the Fourth International Conference on Genetic Algorithms,
pages 115–122. San Francisco, CA: Morgan Kaufmann, 1991.

[34] Eugene C Freuder and Mark Wallace. Constraint programming. In Search Method-
ologies, pages 369–401. Springer, 2014.

[35] Alan M Frisch, Christopher Jefferson, Bernadette Martı́nez Hernández, and Ian
Miguel. The rules of constraint modelling. In International Joint Conference on Ar-
tificial Intelligence, volume 19, page 109. LAWRENCE ERLBAUM ASSOCIATES
LTD, 2005.

[36] Ian P. Gent, Christopher Jefferson, and Ian Miguel. Minion: A fast scalable
constraint solver. In Proceedings of the 17th Eureopean Conference on Artificial
Intelligence (ECAI’06), pages 98–102, 2006.

[37] Ian P Gent, Ian Miguel, and Andrea Rendl. Tailoring solver-independent constraint
models: A case study with essence and minion. In Abstraction, Reformulation, and
Approximation, pages 184–199. Springer, 2007.

[38] Ian P Gent and Toby Walsh. Csplib: a benchmark library for constraints. In Prin-
ciples and Practice of Constraint Programming–CP99, pages 480–481. Springer,
1999.

Bibliography

113

[39] Kai Song Goh, Andrew Lim, and Brian Rodrigues. Sexual selection for genetic
algorithms. Artificial Intelligence Review, 19(2):123–152, 2003.

[40] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1989.

[41] David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection
schemes used in genetic algorithms. Urbana, 51:61801–2996, 1991.

[42] Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability
solvers, 2008.

[43] Jonathan M Gratch. Composer: A decision-theoretic approach to adaptive problem
solving. Technical report, Champaign, IL, USA, 1993.

[44] John Grefenstette, Rajeev Gopal, Brian Rosmaita, and Dirk Van Gucht. Genetic
algorithms for the traveling salesman problem. In Proceedings of the first Interna-
tional Conference on Genetic Algorithms and their Applications, pages 160–168.
Lawrence Erlbaum, New Jersey (160-168), 1985.

[45] John J Grefenstette. Genetic Algorithms and Their Applications: Proceedings of the
Second International Conference on Genetic Algorithms. Psychology Press, 2013.

[46] Jun Gu. Efficient local search for very large-scale satisfiability problems. ACM
SIGART Bulletin, 3(1):8–12, 1992.

[47] Zineb Habbas, Michaël Krajecki, and Daniel Singer. The langford’s problem:
A challenge for parallel resolution of csp. In Proceedings of the th International
Conference on Parallel Processing and Applied Mathematics-Revised Papers, PPAM
’01, pages 789–796, London, UK, UK, 2002. Springer-Verlag.

[48] Youssef Hamadi, Eric Monfroy, and Frdric Saubion. An introduction to autonomous
search. In Youssef Hamadi, Eric Monfroy, and Frdric Saubion, editors, Autonomous
Search, pages 1–11. Springer Berlin Heidelberg, 2012.

[49] Nikolaus Hansen. The cma evolution strategy: A comparing review. In JoseA.
Lozano, Pedro Larraaga, Iaki Inza, and Endika Bengoetxea, editors, Towards a New
Evolutionary Computation, volume 192 of Studies in Fuzziness and Soft Computing,
pages 75–102. Springer Berlin Heidelberg, 2006.

[50] Robert M. Haralick and Gordon L. Elliott. Increasing tree search efficiency for
constraint satisfaction problems. Artificial Intelligence, 14(3):263 – 313, 1980.

[51] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. 1992.

[52] Sophie Huczynska, Paul McKay, Ian Miguel, and Peter Nightingale. Modelling
equidistant frequency permutation arrays: An application of constraints to mathem-
atics. In IanP. Gent, editor, Principles and Practice of Constraint Programming - CP

Bibliography

114

2009, volume 5732 of Lecture Notes in Computer Science, pages 50–64. Springer
Berlin Heidelberg, 2009.

[53] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Parallel algorithm configuration. In
Proc. of LION-6, pages 55–70, 2012.

[54] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In Learning and Intelligent
Optimization, pages 507–523. Springer, 2011.

[55] Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. Paramils:
An automatic algorithm configuration framework. J. Artif. Int. Res., 36(1):267–306,
September 2009.

[56] Frank Hutter, Holger H. Hoos, and Thomas Stützle. Automatic algorithm config-
uration based on local search. In Proceedings of the 22nd national conference on
Artificial intelligence - Volume 2, AAAI’07, pages 1152–1157. AAAI Press, 2007.

[57] Ian Miguel Ian P. Gent, Chris Jefferson. Watched literals for constraint propagation
in minion. In Proc. CP2006, 182197, pages 182–197, 2006.

[58] Joxan Jaffar and J-L Lassez. Constraint logic programming. In Proceedings of the
14th ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pages 111–119. ACM, 1987.

[59] Joxan Jaffar, Spiro Michaylov, Peter J Stuckey, and Roland HC Yap. The clp (r)
language and system. ACM Transactions on Programming Languages and Systems
(TOPLAS), 14(3):339–395, 1992.

[60] Dietmar Jannach and Markus Zanker. Modeling and solving distributed configur-
ation problems: A csp-based approach. Knowledge and Data Engineering, IEEE
Transactions on, 25(3):603–618, 2013.

[61] Bart MP Jansen and Stefan Kratsch. Data reduction for graph coloring problems.
Information and Computation, 231:70–88, 2013.

[62] Tommy R Jensen and Bjarne Toft. Graph coloring problems, volume 39. John
Wiley & Sons, 2011.

[63] Yuejun Jiang, Henry Kautz, and Bart Selman. Solving problems with hard and soft
constraints using a stochastic algorithm for max-sat, 1995.

[64] Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. Isac-instance-
specific algorithm configuration. ECAI, 215:751–756, 2010.

[65] Leveen Kanal and Vipin Kumar. Search in artificial intelligence. Springer Publishing
Company, Incorporated, 2012.

[66] Lars Kotthoff, Ian Miguel, and Peter Nightingale. Ensemble classification for con-
straint solver configuration. In Principles and Practice of Constraint Programming–
CP 2010, pages 321–329. Springer, 2010.

Bibliography

115

[67] John R Koza. Genetic programming: on the programming of computers by means
of natural selection, volume 1. MIT press, 1992.

[68] Vipin Kumar. Algorithms for constraint-satisfaction problems: A survey. AI
magazine, 13(1):32, 1992.

[69] Tony Lambert, Carlos Castro, Eric Monfroy, Mara Riff, and Frdric Saubion. Hybrid-
ization of Genetic Algorithms and Constraint Propagation for the BACP, volume
3668 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2005.

[70] Jean-Louis Lauriére. Problem Solving and Artificial Intelligence. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1990.

[71] Stuart P Lloyd. Least squares quantization in pcm. Information Theory, IEEE
Transactions on, 28(2):129–137, 1982.

[72] Alejandro López-Ortiz, Claude-Guy Quimper, John Tromp, and Peter Van Beek. A
fast and simple algorithm for bounds consistency of the alldifferent constraint. In
IJCAI, volume 3, pages 245–250, 2003.

[73] Sushil J Louis and Judy Johnson. Solving similar problems using genetic algorithms
and case-based memory. In ICGA, pages 283–290. Citeseer, 1997.

[74] Alan K Mackworth. Consistency in networks of relations. Artificial intelligence,
8(1):99–118, 1977.

[75] Kim Marriott and Peter J Stuckey. Programming with constraints: an introduction.
MIT press, 1998.

[76] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, USA, 1996.

[77] Thomas M. Mitchell. Machine Learning. McGraw-Hill, Inc., New York, NY, USA,
1 edition, 1997.

[78] Ugo Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Information sciences, 7:95–132, 1974.

[79] Heinz Mühlenbein. How genetic algorithms really work: Mutation and hillclimbing.
In PPSN, volume 92, pages 15–25, 1992.

[80] Michael Negnevitsky. Artificial intelligence: a guide to intelligen systems. Pearson
Education, 2005.

[81] Peter Nightingale, Özgür Akgün, Ian P Gent, Christopher Jefferson, and Ian Miguel.
Automatically improving constraint models in savile row through associative-
commutative common subexpression elimination. In Principles and Practice of
Constraint Programming, pages 590–605. Springer, 2014.

[82] Eoin OMahony, Emmanuel Hebrard, Alan Holland, Conor Nugent, and Barry
OSullivan. Using case-based reasoning in an algorithm portfolio for constraint
solving. In Irish Conference on Artificial Intelligence and Cognitive Science, 2008.

Bibliography

116

[83] Marc Pomplun, Tyler W Garaas, and Marisa Carrasco. The effects of task difficulty
on visual search strategy in virtual 3d displays. Journal of vision, 13(3), 2013.

[84] David Poole and Alan K. Mackworth. Artificial intelligence - foundations of
computational agents. 2010.

[85] Steven Prestwich. A local search algorithm for balanced incomplete block designs.
In Recent Advances in Constraints, pages 132–143. Springer, 2003.

[86] MM Raghuwanshi and OG Kakde. Genetic algorithm with species and sexual
selection. In Cybernetics and Intelligent Systems, 2006 IEEE Conference on, pages
1–8. IEEE, 2006.

[87] M.M. Raghuwanshi and O.G. Kakde. Genetic algorithm with species and sexual
selection. In Cybernetics and Intelligent Systems, 2006 IEEE Conference on, pages
1–8, 2006.

[88] Jason Reed. Higher-order constraint simplification in dependent type theory. In
Proceedings of the Fourth International Workshop on Logical Frameworks and
Meta-Languages: Theory and Practice, LFMTP ’09, pages 49–56, New York, NY,
USA, 2009. ACM.

[89] Jean-Charles Régin. A filtering algorithm for constraints of difference in csps. In
Proceedings of the Twelfth National Conference on Artificial Intelligence (Vol. 1),
AAAI ’94, pages 362–367, Menlo Park, CA, USA, 1994. American Association for
Artificial Intelligence.

[90] John R Rice. The algorithm selection problem. 1975.

[91] Simon Rogers and Mark Girolami. A First Course in Machine Learning. Chapman
& Hall/CRC, 1st edition, 2011.

[92] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint pro-
gramming. Elsevier, 2006.

[93] Ranjit K Roy. A primer on the Taguchi method. Society of Manufacturing Engineers,
2010.

[94] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2 edition, 2003.

[95] A. L. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 44(1.2):206–226, Jan 2000.

[96] Jose Sanchez-Velazco and John A. Bullinaria. Sexual selection with competitive/co-
operative operators for genetic algorithms. In In IASTED International Conference
on Neural Networks and Computational Intelligence (NCI. ACTA Press, 2003.

[97] Douglas C Schmidt and Larry E Druffel. A fast backtracking algorithm to test
directed graphs for isomorphism using distance matrices. Journal of the ACM
(JACM), 23(3):433–445, 1976.

Bibliography

117

[98] Adam Słowik. Steering of balance between exploration and exploitation proper-
ties of evolutionary algorithms-mix selection. In Artifical Intelligence and Soft
Computing, pages 213–220. Springer, 2010.

[99] Barbara M. Smith. A tutorial on constraint programming. Technical report, Univer-
sity of Leeds, 1995.

[100] Barbara M. Smith and Stuart A. Grant. Trying harder to fail first. In In: Thirteenth
European Conference on Artificial Intelligence (ECAI 98, pages 249–253. John
Wiley and Sons, 1997.

[101] Barbara M. Smith and Ian P.Gent. Constraint Modelling Challenge. 2005.

[102] William M Spears and Vic Anand. A study of crossover operators in genetic
programming. Springer, 1991.

[103] William M Spears and Kenneth A De Jong. An analysis of multi-point crossover.
Technical report, DTIC Document, 1990.

[104] Timothy Swanson. Global action for biodiversity: an international framework for
implementing the convention on biological diversity. Routledge, 2013.

[105] Andrea Toffolo and Ernesto Benini. Genetic diversity as an objective in multi-
objective evolutionary algorithms. Evolutionary Computation, 11(2):151–167,
2003.

[106] Edward Tsang. Foundations of Constraint Satisfaction. 1993.

[107] M. Jalali Varnamkhasti and MasoumehVali. Sexual selection and evolution of
male and female choice in genetic algorithm. Scientific Research and Essays,
7(31):2788–2804, 2012.

[108] Stefan Wagner and Michael Affenzeller. Sexualga: Gender-specific selection for
genetic algorithms. In Proceedings of the 9th World Multi-Conference on Systemics,
Cybernetics and Informatics (WMSCI), volume 4, pages 76–81. Citeseer, 2005.

[109] Qiu Weisheng. N queens problem. Journal of Mathematics, 2:002, 1986.

[110] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing, 4(2):65–85,
1994.

[111] Darrell Whitley. An overview of evolutionary algorithms: practical issues and
common pitfalls. Information and Software Technology, 43(14):817 – 831, 2001.

[112] L Darrell Whitley et al. The genitor algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. In ICGA, volume 89, pages 116–123,
1989.

[113] Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik.
Efficient conflict driven learning in a boolean satisfiability solver. In Proceedings of
the 2001 IEEE/ACM International Conference on Computer-aided Design, ICCAD
’01, pages 279–285, Piscataway, NJ, USA, 2001. IEEE Press.

Bibliography

