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ABSTRACT 

 

Medical ultrasound systems are undergoing continuous development. Five areas of 

particular recent interest are shear wave elastography, interventional ultrasound, 

microultrasound, and therapeutic ultrasound. These new developments motivate 

demand for new tissue models. The work discussed in this thesis presents different 

tissue models for these areas of contemporary ultrasound systems development. 

Acoustic test objects, known as phantoms, are the most widely used basis for 

testing medical ultrasound systems, but they have many limitations. Hence, the recent 

advancement in medical simulation, soft-embalmed Thiel human cadaver models being 

considered for their suitability as a model for testing shear wave elastography and 

interventional ultrasound systems. The results indicate significant similarities between 

the Thiel-embalmed cadavers, and human's in-vivo tissues in relation to their tissue 

stiffness measured with SWE. The use of these cadaveric models has also shown to bring 

benefits for interventional ultrasound systems testing and research. This is 

demonstrated with two specific case studies on ultrasound guided regional anaesthesia. 

Another aspect considered in this work is the suitability of Thiel-embalmed human 

breast tissues for testing therapeutic ultrasound systems. The results indicate that these 

models are unsuitable for therapeutic ultrasound systems testing because of their 

inability to produce lesions during sonication which can be seen visually or under 

histopathological examination. For testing microultrasound systems, mice preserved 

with the Thiel method have been assessed and shown to be a suitable model because 

of its small size, reusability and easier accessibility. This thesis has assessed the use of 

preserved human and animal tissue models for testing contemporary ultrasound 

systems. 
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1.1 MODELS FOR TESTING CONTEMPORARY US SYSTEMS 

Medical ultrasound systems are developing continuously. With the contemporary 

developments in the ultrasound (US) field such as the use of US for interventional 

(Buscarini 2011) and therapeutic (Crum 2010) purposes and the development of newer 

imaging techniques such as shear wave elastography (SWE) (Bercoff 2004) and 

microultrasound (µUS) systems, there is an increasing demand for new tissue models 

and testing methods. This thesis aims at looking into new tissue models for testing four 

areas of US developments: SWE, interventional US, high frequency µUS imaging and 

therapeutic US systems.  

SWE is a recent development in the elastography field which can produce quantitative 

stiffness maps of tissue (Bercoff 2004, Bercoff 2010). Because of the changes in the 

elasticity of cancerous tissue compared to the healthier tissue, SWE is currently widely 

used for the diagnosis of breast cancer (Evans 2010). Current methods of testing these 

systems use acoustic test objects made of tissue mimicking materials (TMMs) with 

varying stiffnesses. 

Another development in the application of US is its use for interventional purposes. 

Interventional ultrasound, i.e., US-guided interventions, refers to diagnostic or 

therapeutic minimally invasive procedures guided by real-time US imaging (Holm and 

Skjoldbye 1996). An example is the use of US in guiding needles during regional 

anaesthesia. Ultrasound guided regional anaesthesia (UGRA) has been used clinically for 

over two decades and is still being developed in various ways (Andrew 2006), 

particularly in clinical procedures. Currently the testing of these interventional 

procedures makes use of basic TMMs. 

High frequency µUS imaging has become an important imaging tool for many clinical 

and pre-clinical applications that requires high resolution imaging. This technique offers 

imaging resolution in the order of several tens of micrometers. Imaging systems for µUS 

have been developed extensively in recent years (Qiu 2013). Basic TMMs and wire 

phantoms are currently being used for testing these systems. 

Along with its use as an imaging technique, therapeutic uses of US has also seen 

development in the recent years, owing to its capability of focusing the US energy to 
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very small diameters (in the order of a few millimetres) using High Intensity Focused 

Ultrasound (HIFU) transducers. This has led to demand for this technology in the field of 

Focused Ultrasound Surgery (FUS). FUS has seen several clinical applications in the past 

20 years, especially in treating prostate cancer, breast cancer, pancreatic cancer and for 

liver and kidney tumours and for uterine fibroids (Kennedy 2003). The standard testing 

approach for these therapeutic US systems uses heat sensitive TMMs and acoustic test 

objects with inclusions (Takegami 2004). 

1.2 MOTIVATION 

Most of the new US technologies uses acoustic test objects that contains TMM with 

embedded targets or inclusions during system development. Even though the TMM-

based acoustic test objects are readily available, they have several limitations when used 

for US research and testing. One of the major limitations is the anatomical differences 

they have when compared to that of the human body. 

This leads to an unmet need for a qualitative, anatomical model during testing and 

development of US systems. One of the options is to use human cadavers as test objects 

for medical research as a substitute for in-vivo human tissue. Human cadavers are 

available in various forms such as fresh frozen cadavers (FFC) (Kang 2009), formalin 

embalmed cadavers (FEC) (Balta 2014) and soft-embalmed cadavers. Unlike with FFC 

and FEC, it may be possible to obtain US images of soft-embalmed human cadaveric 

tissues considering the way it is preserved. 

Because of their US compatibility and anatomical similarity, these soft-embalmed 

cadavers might be a suitable model during testing and development of US systems. This 

thesis primarily focuses on characterising cadavers embalmed using a particular soft-

embalming technique called Thiel embalming (Thiel 1992a, Thiel 1992b, Thiel 2002) to 

assess their suitability in using them as a test phantom for contemporary US 

technologies. The suitability of these phantoms for various aspects such as US 

diagnostic, therapeutic and intervention are separately assessed. 
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1.3 CONTRIBUTIONS TO KNOWLEDGE 

This thesis discusses and analyses different models and techniques for research and 

testing of US systems. As such, the work on which it is based has contributed to 

knowledge in a number of distinct areas within the same overall domain. 

As discussed in the previous section, the most commonly used TMMs have several 

limitations. To understand further and to create a baseline, it was necessary to evaluate 

these tissue mimics and the work discussed in this thesis started by preparing and 

characterising the most commonly used TMMs. A wide range of TMMs were prepared 

and tested in the laboratory, together with their acoustical and mechanical properties. 

The dissertation also collects the detailed recipes of the various TMMs together in 

Appendix I. 

Irrespective of the wide use of acoustic test objects with artificial TMMs, the need for 

an anatomically significant, qualitative tissue model for US systems testing still remains. 

A feasible solution would be to use Thiel-embalmed human cadavers (TEC). The work 

discussed in this thesis has assessed the suitability of TEC for their use as a model for 

testing various different areas of US development. 

The suitability of the TEC models for testing SWE system is evaluated by conducting a 

quantitative analysis of TEC tissue stiffness and comparing the results with the in-vivo 

human volunteer data. TEC models embalmed in tank and bags were selected for the 

study. It was shown that the TEC models embalmed in bags appeared stiffer and hence 

varied significantly with the in-vivo human tissue stiffnesses. However, the results 

indicate good similarity between the tissue stiffness values of the TEC embalmed in 

tanks and human volunteers (Joy 2015). 

The suitability of the TEC model for US interventional research was assessed using two 

case studies. The first case study assessed TEC for a specific nerve stiffness study and 

the results supported the use of SWE system for nerve blocks in UGRA because of 

significant differences between the neural and extraneural tissue (Johnson 2009, 

Munirama 2012, Munirama 2013). The second case study used the TEC model to study 

the visibility of different types of needles, when used for UGRA nerve blocks. Technical, 

discrete studies like needle insertion cannot be conducted on human volunteers for 
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ethical reasons. A good tissue model like TEC with similar anatomical detail and needle 

feedback is extremely important. The results from the case studies indicate that TEC 

model is extremely beneficial for interventional US research (Munirama 2015). 

The suitability of TEC breast tissue for pre-clinical breast cancer therapeutic US research 

was also assessed. The results indicated that the TEC model may not be suitable for 

breast cancer research as it failed to produce any lesions on sonicating. This was later 

explained to be because of differences in the US attenuation coefficient values between 

the two. The study recommended using fresh human ex-vivo or in-vivo animal models 

for breast HIFU pre-clinical trials (Joy 2015b). 

In order to meet the demand for a small, anatomical model for testing high frequency, 

µUS systems, readily accessible, qualitative, reusable Thiel mice models were 

considered. Different embalming protocols were tested to find the optimum embalming 

procedure. It was observed that the Thiel protocol used in embalming human cadavers 

was suitable for embalming small animals like mice, preserving its anatomical 

characteristics. Among the various protocols tried, mice embalmed with the original 

Thiel protocol showed the greatest similarity to fresh dead mice in terms of organ and 

tissue preservation and mechanical properties (Song 2015). 

1.4 OUTLINE OF THE THESIS 

This thesis is about US models for testing contemporary US systems. Because of the 

multidisciplinary nature of the work presented and to make the thesis as useful as 

possible for readers from different backgrounds, it is divided into two main sections. 

Section I discusses the general theory and specific literature for each further part of the 

work detailed in the next two sections. The section consists of two Chapters: Chapters 

Two and Three. The broad introduction of medical US given in Chapter Two includes a 

review of medical US imaging, interventional US and therapeutic US. This Chapter 

discusses literature to provide basic understanding for introducing the reader to the 

terminologies used in the rest of the thesis. The focus of Chapter Three is on artificial 

ultrasound test objects and TMMs. This Chapter discusses different TMMs and their US 

characteristics.  
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Section II presents all the work done in assessing the suitability of qualitative TEC models 

for supporting US research and development. There are four Chapters in Section II: 

Chapters Four to Seven. 

Chapter Four reports the use of SWE with the TEC models and begins with a background 

section on human cadaver models. This is followed by a specific case study to assess 

quantitatively the tissue stiffnesses of TECs using SWE. Chapter Five demonstrates the 

use of TEC as a model for interventional US research using two case studies. The Chapter 

begins with a brief background, followed by two main sections each devoted to an 

individual case study. 

Chapter Six assesses the use of TEC breast tissue for therapeutic US breast cancer 

research. The Chapter begins with a background section on breast cancer and MRI 

guided focused ultrasound surgery (MRgFUS) and is followed by the experiments to 

compare TEC breast tissue with fresh human breast tissue. Chapter Seven is dedicated 

to demonstrating the possibilities of using a Thiel-embalmed mouse model as an easily 

accessible ultrasound TMM for high frequency systems testing. This Chapter begins by 

describing embalming protocols and two case studies demonstrating the use of Thiel 

mice during the development of high frequency, µUS systems is described further. 

Having covered several topics in areas related to US models in contemporary research, 

Chapter Eight seeks to draw conclusions about these aspects and discusses the future 

outlook in each specialist area. 
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SECTION I 

Background 

This is the first section of the thesis and the Chapters in this section aim to provide all 

the necessary background to understand the work presented in the next two sections. 

This section consists of two Chapters. 

Chapter Two introduces general background and theory as common foundations of all 

the techniques and procedures used for the work. Specific literature required to 

understand different Chapters is provided elsewhere, in the corresponding Chapter 

background sub-sections. 

Chapter Three introduces different artificial ultrasound phantoms and their acoustic and 

mechanical characteristics. This Chapter also provides results of acoustical and 

mechanical characterisation of several TMMs prepared during the present work. 



26 

 

  

 

 

 

 

Literature Review 

 

 

 

 

 

 

  



27 

 

2.1 HISTORY OF ULTRASOUND 

Ultrasound is the term applied to mechanical pressure waves with frequencies above 

20,000 Hz, i.e. beyond the audible range (Lutz 2011). The development of US can be 

dated back to the 1720’s when Lazzaro Spallanzani, an Italian priest and physiologist, 

provided experimental evidence about the non-audible sound existing around us 

(Joseph 1995). He demonstrated that blindfolded bats navigated around obstacles in the 

dark using sound waves rather than light. However, the real breakthrough in US 

technology was in 1880 with the discovery of the piezoelectric effect by Pierre and 

Jacques Curie from France. This led to the development of ultrasonic transducers which 

are a key component in any US system. 

During the Second World War, of under-water sound navigation and ranging (SONAR) 

devices named hydrophones were invented for submarine detection. The development 

of medical US can be traced back to the 1940s, when thermal energy generated from US 

was used in ultrasonic therapy (hyperthermia). US was then used to treat conditions 

such as arthritic pain, ulcers, asthma and urinary incontinence. 

Prior to the use of US in diagnostics, US was applied as a therapeutic tool in physical 

therapy. HIFU is now a growing field which has been employed clinically from the 1950s. 

In 1952, it was reported that HIFU could be used to treat glaucoma. The use of HIFU as 

a therapeutic tool has shown fast development in the past ten years. The capability of 

HIFU transducers to focus the US energy to very small diameters, in ranges down to a 

few microns, has made this technology of interest in the field of FUS. 

US was first used as medical diagnostic tool in 1942 by Karl Dussik, a neurologist from 

the University of Vienna, to locate brain tumours and cerebral ventricles (Joseph 1995). 

Since then, developments in the medical US field have been so remarkable that US 

imaging is now a well-established technology in medical field, confirmed by the fact that 

it accounts for around one in four of all imaging procedures worldwide (Wells 2006). 

Figure 1 shows the growth in the number of US, Computed Tomography (CT) and 

Magnetic Resonance Imaging (MRI) imaging tests in England over last two decades, 

clearly indicating the numerical increase of US over CT and MRI. 
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Figure 1: Growth in the number of US, CT and MRI imaging exams in England from 1995-96 to 2012-13 

indicating the significant increase of US imaging compared to CT and MRI (National-Statistics 2013). 

Figure 2 shows the hierarchical tree showing the various technologies and 

developments based on US. The three main areas that use US are non-destructive 

testing (NDT), SONAR and medical US. The highlighted boxes in the Figure are the main 

areas of interest for this thesis and will be described in detail in this Chapter. The four 

main areas where the testing methods have been assessed are B-mode imaging, 

therapeutic US, interventional US, SWE and high frequency µUS imaging. 

 

Figure 2: Developments in the field of US. 
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2.2 GENERATION AND PROPAGATION OF US 

Piezoelectric materials are able to convert mechanical vibrations into electrical energy 

in a process termed the piezoelectric effect. Conversely, when a voltage is applied to the 

piezoelectric material, mechanical vibrations are produced, resulting in the transmission 

of US waves to the surrounding medium in a process termed the inverse piezoelectric 

effect. Typical simple US transducers are made of thin discs of an artificial ceramic 

material such as lead zirconate titanate whose thickness determines the resonant 

frequency (Mikla and Mikla 2014). 

US causes molecules in the medium to vibrate as it propagates. US can travel in four 

modes in solids, based on the direction of displacement of particles, i.e. longitudinal (or 

compressional) waves, transverse (or shear) waves, surface waves, and, in thin 

materials, plate waves. The most commonly used modes of propagation in US imaging 

are longitudinal and shear waves. Within the waves, regular pressure variations occur, 

resulting in compression i.e. regions of high pressure and high amplitude, and 

rarefaction i.e. low pressure zones (ter-Haar and Duck 2000) (Figure 3). The orange to 

blue colour change indicates the movement of the wave and the direction of its 

propagation.  

 

Figure 3: US wave propagation 

For longitudinal waves, the distance between two adjacent compressions (or 

rarefactions) determines the wavelength, λ. Whereas for shear waves, λ is the distance 
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between two adjacent peaks and the frequency, f in both cases can be calculated by 

knowing the propagation velocity, c, using Equation 1. 

  � = � ��  (1) 

The value of c depends on the mechanical properties of the medium. The average speed 

of ultrasound longitudinal waves in tissue is taken to be 1540 m.s-1. Shear waves have a 

slower velocity (1 to 10 m.s-1) and shorter wavelength than longitudinal waves of the 

same frequency.  

2.2.1 Acoustic Power and Intensity 

The total acoustic power emitted by US is of great importance for the safe use of US 

imaging. Acoustic power is the rate of energy emitted by a transducer every second. It 

is measured in joules/second i.e. watts (W). In the case of diagnostic beams, acoustic 

power varies from as little as 1 mW to few hundred mW (Martin and Ramanarine 2010). 

Like acoustic power, the knowledge of the distribution of power throughout the scan 

plane of an US beam is also highly important, as there could be regions of high intensity 

in the non-uniform US beam which would heat some regions more strongly than the 

surrounding tissues. These differences in power can be calculated by averaging the 

acoustic power over an area and this is described as acoustic intensity, with the unit of 

W.cm-2 (ter-Haar and Duck 2000). 

2.2.2 Acoustic Impedance 

Acoustic impedance, Z, is a material characteristic and is a measure of how sound 

propagates through a material. It is a physical representation of how the wave energy is 

shared between elastic and inertial components as it propagates through the material. 

Z depends on the physical characteristics of the material, bulk modulus and density. It is 

related to the material density, ⍴, and acoustic velocity, c as shown in Equation 2: 

  � = �. � (2) 

Changes in acoustic impedance control transmission and reflection at material 

interfaces. The greater the acoustic mismatch, the greater the percentage of US 

reflected and the less transmitted. Soft tissue/bone and soft tissue/air interfaces are 

examples. Z for soft tissue (average) is 1.63 MRayl and for bone is 7.38 MRayl and the 

percentage amplitude reflection is approximately 41%. Z for air is about 0.0004 and 
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hence the percentage amplitude reflection at soft tissue/air interface is approximately 

99.9% (Nimrod 2005) Further description of reflection coefficient is given in section 3.4. 

2.2.3 Attenuation 

Attenuation is the reduction in the intensity of an US signal as it traverses a medium. It 

occurs because of the absorption of US energy by conversion to heat, reflections, 

refractions, scattering and diffraction, all well-known optical phenomena. US is heavily 

attenuated and this attenuation increases markedly with frequency reducing the 

penetration depth. The total attenuation in a medium is generally defined in the clinical 

domain in terms of the distance within the medium at which the strength/intensity of 

ultrasound is reduced to half its initial value, termed the 'half-value thicknesses' (Lutz 

2011).  

Attenuation in soft tissues is approximately 0.5 decibels (dB) per centimetre (cm) of 

tissue per megahertz (MHz) (Browne 2003). Likewise the dependency of acoustic 

mismatch on amount of beam reflection, the acoustic speed differences between media 

cause the transmitted beam to undergo refraction or bending. The reduction in acoustic 

intensity because of beam spreading with increasing depth relates to diffraction. As air 

and gas reflect almost all the US energy, an acoustic shadow is formed behind gas 

bubbles and hence US is not suitable for imaging tissues containing air, such as the lungs. 

2.3 US IMAGING 

The echo principle is the basis of most ultrasound imaging techniques. After emitting 

US, the transducer listens for echoes and the received signals are analysed to calculate 

the distance travelled and the intensity. This gives information about the reflector 

location and properties. The echoes collected from an area are combined to form an 

echo pattern and this forms the basis of US images (Martin 2010). 

The main components of a typical US transducer consists of; piezoelectric element, 

matching layer, backing layer, acoustic lens and connection and housing assembly (Gibbs 

2011). According to the differences in the geometric structure of the piezoelectric 

material, transducers are divided into two types: single element transducers and array 

transducers. Single element transducers are simple transducers with a single 

piezoelectric element, mostly used for NDT, SONAR and basic US testing applications. In 
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contrast, array transducers contain an array of piezoelectric elements and can be further 

divided into linear, curvilinear or sector, and phased array transducers. 

Linear array transducers are typically made of 128 - 256 piezoelectric elements in a row 

and produce parallel scan lines to give a rectangular field of view with the width of the 

image approximately equal to the length of the transducer head. They operate at 

frequencies higher than 4 MHz and are mainly used for imaging superficial structures 

such as thyroid, vascular and musculo-skeletal applications (Gibbs 2011). 

Curvilinear array transducers are similar to linear array transducers, but with a curved 

(convex) transducer face to provide a wider field of view. The operating frequencies are 

lower, typically around 3.5 MHz or less, and they are mainly used for imaging deep-lying 

structures such as the kidney, liver, gall bladder and uterus. 

Phased array transducers are similar to linear array transducers, with flat transducer 

faces with piezoelectric elements placed in a row alongside one another. However, the 

US beam can be electronically steered to any angle, thus producing an image with a 

wider field of view like curvilinear transducers. Because of the small transducer surface 

and wider field of view, they are typically used for cardiac imaging where it is hard to 

image the heart because of the presence of the ribs. 

2.3.1 Anatomical Imaging 

2.3.1.1 A-mode 

A-mode (amplitude mode) imaging is the oldest US imaging technique where a single 

element transducer produces an US signal, and the echoes from the subject are 

displayed in an x-y graph with the x-axis representing the time to receive the echoes and 

the y-axis the amplitude (intensity) of the signal. This imaging technique is rarely used 

clinically today because of the limited amount of information it provides (Lutz 2011). 

2.3.1.2 B-mode 

B-mode (brightness mode) is a similar imaging technique to A-mode. It acquires signals 

from different lines, like in A-mode and converts the echoes into a grey scale based on 

the amplitude of the signals. The amplitude data acquired from different scan lines are 

combined to obtain a two dimensional (2D) grey scale image of the object scanned. 
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Areas of high reflectivity appears as white; low reflectivity as grey and no reflectivity as 

black in the grey scale image. When the echoes are produced by broad, well-defined 

boundaries of organs or large vessels, they can be easily identified. However, 

interference effect from scatterers smaller than the wavelength of the beam results in 

a granular appearance in the image called ‘speckle’. 

2.3.1.3 M-mode 

M-mode (motion mode) is used to image moving structures such as heart valves. 

A B-mode image is initially acquired and the area of interest is marked with a line in the 

image. Movement of structures intersecting that line is recorded over time and the M-

mode will represent how the structures moved towards or away from the scanning 

probe.  

2.4 US ELASTOGRAPHY 

US elastography is an US imaging technique, used for analysing the elasticity of soft 

tissues. Malignant tissues tend to be 'harder' (stiffer) than benign and healthy tissues 

(Mischi 2014). Several studies has been conducted to assess the reason for this change 

and a working hypothesis is that the elastic properties of the tissue is associated with 

collagen density and degree of cross-linking (Paul 2015). Because of this correlation 

between elasticity values and tissue condition, elastography has become an important 

tool for cancer diagnosis. The elasticity is generally defined in terms of Young’s modulus, 

E. E is the ability of a material to withstand changes in length when a tensile or 

compressive force is applied i.e. it is the ratio of stress to strain. Further description of E 

can be found in Chapter Three. A pressure is applied to the examined medium and the 

induced strain distribution is estimated by tracking the tissue motion to produce a strain 

image, termed the elastogram (Bercoff 2010). Hard tissues will have smaller 

deformation or strain compared to softer ones. Based on the differences in the methods 

used for producing the compression, elastography can be divided into two main 

categories; strain elastography and SWE. 

2.4.1 Strain Elastography 

Strain elastography, (aka static elastography), measures the strain, σ, produced in the 

tissue induced by a stress, ϵ, with a mechanical source, usually the US transducer (Figure 
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4). The operator exerts a uniform compression (force) on the area of examination using 

the transducer face and the relative deformation of the tissue is calculated using cross-

correlation between the radio frequency (RF) signals before and after applying the force, 

for each scan line. This produces a colour coded elastogram, displaying the spatial 

distribution of strain, imposed on top of the US B-mode image (Ophir 1991). 

 

Figure 4: Strain induced because of stress applied by the US transducer (Gennisson 2013). 

Strain elastography is the most commonly used elastography technique and has found applications in 

breast, liver, prostate, thyroid, pancreas, gynaecological malignancies, testicular masses, musculo-skeletal 

tumours and lymph node imaging (Barr 2014).  

Figure 5 shows a static elastography image obtained during an US endoscopy 

examination of pancreas. 
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Figure 5: US static elastography image obtained during an US endoscopy examination of pancreas 

(Hitachi 2015). 

While promising results have been demonstrated, many drawbacks have also been 

reported, including poor reproducibility, inter-operator variability and lack of 

quantitative information. The resulting elastogram can be analysed qualitatively by 

comparing the region of interest (ROI) with a reference tissue, usually the adjacent 

tissue, under the assumption that it is normal or healthy.   

2.4.2 Shear Wave Elastography 

SWE (aka transient elastography) uses US shear waves to quantitatively assess tissue 

elasticity, E. The beating heart is a natural source of shear waves, but the vibrations are 

confined only to the near vicinity. Alternatively, by focusing an US wave to a given 

location, an acoustic radiation force (ARF) can be produced in the medium because of 

the momentum transfer from the acoustic beam to the medium (Torr 1984). This was 

first proved in 1998 (Sarvazyan 1998) and the study used ARF, induced by a focused US 

transducer to trigger the shear wave generation in the tissue. ARF methods were further 

investigated in several studies for calculation of tissue elasticity maps through post-

processing the shear wave speed data (Nightingale 2001, Nightingale 2002, Fahey 2008, 

Wells and Liang 2011). The shear wave propagating in a lateral direction, induced by 

ARF, is tracked to calculate the shear wave speed, vs, as shown in Figure 6. 
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Figure 6: Principle of shear wave generation and detection using US transducer (Mischi 2014). 

On knowing vs, young's modulus, E can be derived using Equation 3. 

  � = 3.�.��� (3) 

where, 

⍴ is the density of tissue and is approximately 1000 Kg.m-3 (Szabo 2014). 

As the mechanical excitation for the shear wave production is applied remotely by the 

ARF, SWE is operator independent. However, shear waves are very weak and travel at 

much smaller speeds (1 to 10 m.s-1) compared to the longitudinal waves. They are 

heavily attenuated and hence they die out within a few millimetres (mm) of 

propagation. A solution would be to generate higher US powers at the focus, thus 

generating a stronger shear wave. However, this could lead to overheating of the 

transducer and there are many concerns over usage of higher acoustic powers (Bercoff 

2008). 
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2.4.2.1 Supersonic SWE 

(a) Supersonic Shear Wave Generation 

A new technique called supersonic SWE was reported in 2004, providing quantitative E 

mapping of the tissue in less than 30 milliseconds (ms) (Bercoff 2004). A novel 

technology was introduced, termed as 'SonicTouchTM', to produce shear wave sources 

moving at supersonic speed within the tissue (Bercoff 2008, Bercoff 2010, Fink and 

Tanter 2010, Bercoff 2011). The technique allows focusing of successive US beams at 

different depths, thus creating a shear wave source moving faster than the shear wave 

it produces (Figure 7b). This results in constructive interference of the shear waves into 

a 'Mach cone' shape (Figure 7c), thereby increasing the shear wave generation efficiency 

by a factor of 4 - 8 compared to a non-supersonic source (Figure 7a). 

 

Figure 7: (a) ARF induced by SonicTouchTM where the source is moved along the beam axis, creating two-

plane and strong shear waves (Fink and Tanter 2010), resulting in the (b) ‘Mach’ cone shape of intense 

shear waves in two planes (Bercoff 2008). 

Another term used to define this shear wave propagation is the Mach number, the ratio 

of the speed of the shear wave to the speed of the moving source. Because of the large 

difference between the speed of ultrasonic waves creating the ARF, around 1500 m.s-1, 

and the speed of generated shear waves, of the order of 1 m.s-1, extremely high Mach 

numbers can be produced in the medium, up to 1500. Studies show that these shear 

wave sources can be generated anywhere in the medium, at any time by focusing 
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appropriate US beams (Bercoff 2004). Supersonic SWE uses ultrafast imaging methods 

to image the shear waves while they are travelling through the medium. 

(b) Ultrafast Imaging 

Shear waves propagate through a 3 - 6 cm wide imaging plane in about 10 - 20 ms. A 

frame rate of at least 1 KHz are required to ensure the capture of shear waves with 

adequate detail. As conventional US imaging systems have frame rates of 50 - 60 Hz, 

they are unsuitable for the purpose. The first US system which is capable of imaging at 

such fast frame rates was developed by Supersonic Imagine (Aix-en-Provence, France). 

The image acquisition is performed in three steps as shown in Figure 8. 

 

Figure 8: Emission sequence for a supersonic SWE system (Szabo 2014). 

Reference imaging: An US image of the whole imaging plane is captured, and will be 

used as a reference image at later stage to analyse the displacement caused because of 

the shear wave propagation. 

Source activation (aka pushing mode): The supersonic source is then triggered by 

continuously focusing the US beam at different depths. Each push in the 'pushing' beam 

is approximately 100 µs long (Figure 8). US images are captured at high frame rates in 

between the successive pushes (Figure 9) to monitor the supersonic source activation. 
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Figure 9: Schematic representation of the supersonic Mach cone with (a) successive pushes and (b) 

ultrafast imaging (Gennisson 2013). 

The time-of-flight of the US wave from the imaging transducer to and from the ROI 

determines the maximum achievable frame rate. For example, a maximum frame rate 

of 20,000 Hz is achievable for a typical 4 cm deep breast image. A Supersonic Imagine 

SWE scanner is capable of switching between the source activation and imaging modes, 

thus, allowing real-time triggering of the supersonic source and capture of the resulting 

shear waves (Bercoff 2004). 

Propagation Imaging: Ultrafast imaging (Figure 9a) is continued after the propagation 

of shear waves through the medium for a small period. The total sequence, from the 

reference image acquisition to the propagation imaging lasts only up to few tens of ms. 

(c) Real-time Display of Elasticity 

The tissue displacements induced by the propagation of shear waves are recorded and 

quantified using Doppler imaging methods to produce video of the particle velocities. 

Representation of shear wave propagation is thus obtained and vs is estimated at each 

pixel using cross-correlation algorithms. Figure 10a shows images of four frames from 

an ultrasound video, representing displacements in a TMM phantom with a 10 mm 

diameter stiff inclusion. The grey scale shows displacements from -10 to + 10 µm. The 

conventional US B-mode image in Figure 10b, obtained by sampling the video in Figure 

10a, barely shows the inclusion. 

 Figure 10c is the quantitative, colour coded map of E produced by supersonic SWE. A 

strain elastography image of the same inclusion acquired using a commercial US scanner 
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is shown in Figure 10d.As seen from Figure 10a, E is displayed in kilopascal (kPa) using a 

colour coded image superimposed on a B-mode image with stiffer tissues in red and 

softer tissues in blue. Figure 11 shows the US and elastography images of breast tissue 

indicating the presence of ductal carcinoma obtained using a supersonic SWE scanner. 

 

Figure 10: (a) US image frames showing the tissue displacement induced because of the shear wave push. 

The Supersonic SWE quantitative elastogram (c) is compared with (b) US B-mode and (d) strain 

elastography images (Szabo 2014). 

 

Figure 11: US and elastography images of breast invasive ductal cancer at 1 mm spatial resolution 

showing increased peritumoural stiffness (arrow). Adapted from (Evans 2010). 
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2.4.2.2 Applications of Supersonic SWE 

The clinical potential of shear wave imaging, has been investigated for many potential 

applications such as breast cancer diagnosis (Evans 2010, Wendie 2012), liver fibrosis 

staging (Bavu 2009, Muller 2009, Bavu 2011), cardiovascular applications (Couade 2010, 

Lee 2012), prostate applications (Richard 2012, Ahmad 2013), abdominal imaging (Arda 

2011), musculo-skeletal imaging (Gennisson 2012, Itoigawa 2015) and thyroid and neck 

imaging applications (Bhatia 2012, Magri 2012). The supersonic SWE technique has also 

been used for evaluating in-vivo and ex-vivo animal models to assess their suitability for 

specific applications (Ramnarine 2014, Jiang 2015). Supersonic SWE has also been used 

to characterise the tissue stiffnesses in TEC, as discussed in Chapter Four (Joy 2015). 

2.5 THERAPEUTIC US 

Some of the most common therapeutic applications of US are in extracorporeal 

lithotripsy (Pengfei 2011), ophthalmology (Packer 2005), dentistry (Ustun 2008, Ang 

2010) and in HIFU. High intensity US waves can be focused to specific volumes in tissues. 

In the focus, the temperatures increases rapidly up to 60 °C or higher in a few seconds, 

thereby destroying the cells without harming the tissues nearby. This non-invasive 

method of destroying tissues in the US focus is variously known as HIFU therapy, FUS, 

US ablation (Habash 2006) and pyrotherapy (Kennedy 2003). 

 A diagram demonstrating the principle of HIFU is shown in Figure 12a and Figure 12b 

shows a 2 cm lesion produced in chicken breast tissue using a 1.09 MHz transducer 

sonicating at 40 W power for a duration of three minutes (min). The experiment was 

conducted in the laboratory and the tissue was at room temperature before sonications. 

The output power was measured from the calibrated power amplifier output panel.  

The main difference in using US as a therapeutic modality as opposed to an imaging 

modality is that the former tends to use larger acoustic intensities than the latter 

(Coussios and Roy 2008), as well as lower frequencies. The increase in intensity is 

accomplished through combining greater peak intensities and longer pulse durations or 

using continuous waves. Using focused transducers, usually between 0.25-5 MHz, a 

sharp and accurate focus at varying distances up to many cm from the transducer can 

be created within the human body. 
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Figure 12: (a) Diagram showing the principle of HIFU and (b) 2 cm lesion produced in chicken breast tissue 

using a 1.09 MHz focused US transducer (Power – 40 W, Sonication time – 3 min). 

The intensity of the ultrasound increases towards the focus, reaching its maximum at 

the focus. The focal intensity can be represented as 

  	 = 	�.
2.�. �
�

�.�

� (4) 

where, 

 I0 represents the average intensity at the transducer surface. 

 r is the flat radius of the transducer. 

 Dn is the focal distance. 

 λ is the wavelength (Duck 1998). 

The versatility of US for a wide range of usage in medical therapies lies in the variety of 

its interactions with cells and tissues (Mitragotri 2005). When US at intensities above 

diagnostic ranges insonates tissue, it can trigger various thermal and mechanical effects 

(Wood and Loomis 1927). The immediate effect of US is the elevation in the temperature 

because of the conversion of energy into heat, causing coagulative necrosis in most 

tissues. As seen in Figure 12, focusing results in high intensities only in the focal region 

thereby reducing the potential for thermal damage to regions outside the focal zone 

where the intensity is much lower. In addition to the thermal effects of HIFU, the 

mechanical effects occurring at high intensities are cavitation and microstreaming (Zhou 
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2011). Both thermal and mechanical effects contribute towards cell necrosis (Nyborg 

and Wu 2006). 

The first use of HIFU for therapeutic applications can be traced back to 1942 when Lynn 

et al demonstrated the production of US lesions in bovine liver without damaging the 

surrounding tissues. Then, in 1944, they illustrated the use of HIFU to treat neurological 

disorders by carrying out in-vivo studies on 37 animals (Lynn 1942, Lynn and Putnam 

1944). However, most early research in HIFU was carried out by the Fry brothers at the 

University of Illinois, USA, in the 1950s. They illustrated that the lesions produced by 

focusing an US beam are well confined, thus preventing destruction of the neighbouring 

tissues (Fry 1954, Fry 1955, Fry 1958). 

HIFU surgery has shown fast development in the past 20 years, especially in cancer 

treatments, including: prostate cancer (Rewcastle 2006), breast cancer (Huber 2001), 

pancreatic cancer (Feng 2005), liver and kidney tumours (Illing 2005) and in bone 

metastases (Liberman 2006). HIFU has also been used to treat uterine fibroids (Zowall 

2008). The capability of HIFU transducers to focus the US energy to very small diameters, 

in the ranges of a few mms, has made this technology in demand in the field of FUS. 

Nowadays, several imaging modalities such as MRI, US and CT are used with HIFU 

procedures for visualising the targeted tissue to monitor the treatment, the most 

common being MRI and US. 

2.5.1 Magnetic Resonance Guided Focused Ultrasound Surgery 

2.5.1.1 MRI 

MRI uses magnetic fields and RF pulses rather than the ionising radiations used in x-ray 

and CT. The human body contains approximately 70% water, which is composed of 

hydrogen and oxygen atoms. MRI relies on the magnetic property of hydrogen atoms to 

produce images. The hydrogen nucleus is composed of a single proton with no neutrons 

and the constant spinning motion of the protons in the nuclei produces a magnetic field, 

termed the magnetic moment. Normally these protons are oriented randomly and there 

is no net magnetic field. The components of an MRI machine include the primary 

magnets, gradient magnets, RF coils and the computer system. 
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Under the influence of an external magnetic field, B0 , produced by the primary magnets, 

the protons rotate around the axis of the applied magnetic field with a frequency ω0, 

usually termed the precessional or Larmor frequency. 

The magnetic field of an MRI system is measured in Tesla (T). The value of ω0 is a 

constant dependent on the magnitude of B0 and is defined by the Larmor Equation 

(Equation 5 )(Epstein 2008). 

  �� = 	�.�� (5) 

where, 

 γ is the gyromagnetic ratio and B0 is the strength of the magnetic field. 

The gradient coils generate secondary magnetic fields over the primary field and they 

are arranged in opposition to each other to produce positive and negative pulses. The 

arrangement of these gradient coils gives MRI the capability to image directionally along 

the x, y and z axes. There are three gradient coils named according to the axis along 

which they act and they are used to alter the local strength of the primary magnetic 

field, thereby changing the precession frequencies between slices. This can then be used 

for slice selection and localisation in the x, y and z axis, called spatial encoding of MR 

images. The z gradients runs along the long axis to produce axial images, y along the 

vertical axis to produce coronal images and x along the horizontal axis to produce 

sagittal images (Hornak 2008). 

RF coils are used to emit RF pulses or secondary magnetic pulses at the precessional 

frequency and this results in some of the hydrogen protons being 'knocked' 180° out of 

alignment with the static magnetic field and being forced into phase with other 

hydrogen protons. Cessation of the RF pulses causes the hydrogen protons to return to 

their relaxed state or initial alignment, releasing energy as emitted pulses. RF coils 

receive the emitted pulses and, depending upon the constituents of different tissues, 

the released energy differs and this forms the basis of tissue differentiation in the MRI. 

The actual process of receiving the MR signal can be broken down into T1 relaxation and 

T2 decay; this is out of scope for this thesis and is not explained further. 

MRgFUS is considered to be an effective combination of non-invasive surgery and 

precise real-time treatment monitoring. MRgFUS uses MRI to localise target tissue prior 
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to applying FUS, to monitor temperature in real-time through MR thermometry during 

the surgery, and to verify the results of the surgery after the treatment. MRI is used to 

visualise and quantify the thermal energy that is deposited in treated and surrounding 

tissues. Some of the important advantages of using MRI instead of US as an imaging 

modality during FUS relate to its ability to perform real-time thermometry and high 

resolution imaging (Nyborg and Wu 2006). 

MRI is also superior to US in planning and monitoring the treatment and locating the 

focal point as US imaging lacks accuracy in detecting the margins of tumours and 

increases the uncertainties in detecting important structures such as nerves and bones 

in the treatment area. The Exablate 2000 (Insightec Ltd, Haifa, Israel) was the first 

commercial MRgFUS therapy delivery system and the first to be approved by the Food 

and Drug Administration (FDA) (Jolesz 2009). Figure 13 shows the Exablate MRgFUS 

system used in a configuration to treat uterine fibroids. 

 

Figure 13: Exablate MRgFUS system configured to treat uterine fibroids (Bromilow 2012). 

2.5.1.2 MRI Thermometry 

As discussed previously, for image guidance during HIFU surgery, the capability of real-

time thermometry makes MRI stand out from other imaging modalities. MR parameters 

such as the T1 (spin-lattice) relaxation time and the water proton resonance frequency 

(PRF) are temperature sensitive. Overviews of different MR thermometry methods 

monitoring changes in these parameters can be found in the literature (Wlodarczyk 
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1999, Bruno 2000). Out of these MR thermometry methods, PRF thermometry is 

preferred because of the linearity of frequency shift and higher sensitivity (Rieke and 

Butts Pauly 2008) and will be discussed further in Chapter Six. 

2.6 INTERVENTIONAL US 

Interventional ultrasound, i.e., US-guided interventions, refers to diagnostic or 

therapeutic minimally invasive procedures guided by real-time US imaging (Holm and 

Skjoldbye 1996, Buscarini 2011). One of the major applications of interventional US is 

for guiding needles during regional anaesthesia, thereby minimising nerve damage and 

further complications.. 

2.6.1 Ultrasound Guided Regional Anaesthesia 

By allowing real-time imaging of nerves with direct needle guidance, UGRA offers a novel 

approach to locating and identifying nerves. A nerve block is considered to be successful 

when the tip of the needle is positioned as close as possible to the nerve without 

touching it and the local anaesthetic fluid will be observed real-time in the US image 

spreading around the nerve. US guidance offers the opportunity to enhance success, 

reduce complications, and improve training experience of regional anaesthesia (Carty 

and Nicholls 2007). 

In UGRA, the term 'axis' is used to describe the nerve position relative to the US beam. 

A long axis or longitudinal view (Figure 14a) is an image of the nerve along its length and 

a short axis or transverse view (Figure 14c) is the image across the diameter of the nerve. 

Similar to the term 'axis', in describing the nerve position, the term 'plane' denotes the 

needle position relative to the US beam. The in-plane (IP) approach (Figure 14b) allows 

visualising the entire needle (shaft and the tip) whereas, in the out-of-plane (OP) 

approach (Figure 14d), only the needle tip can be visualised and will be seen as an 

echogenic dot in the image (Andrew 2006). 
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Figure 14: (a) Long axis and (b) short axis images of the median nerve. (c) IP and (d) OP approaches to 

inserting the needle and the corresponding US images of the needles: adapted from (Dartmouth-

Hitchcock 2015). 

IP and OP approaches have advantages and disadvantages. The IP approach provides 

the most direct visualisation of the needle tip but a disadvantage is the long needle path, 

which results in more tissue for the needle to cross. The OP approach is most similar to 

traditional approaches to regional block guided by nerve stimulation or palpation and 

uses a shorter needle path compared to the IP approaches. A disadvantage of the OP 

approach is the extent of the blind needle path i.e. the potential for anatomical 

structures that may lie beyond the scan plane. The IP approach is the most commonly 

used for UGRA because of the greater confidence and safety it offers (Grant and Auyong 

2012). 

2.6.2 Needle Visibility in UGRA 

The safety, efficacy and level of confidence in using UGRA is directly influenced by the 

good visibility of needles during the procedure. Several issues related to poor visibility 

of needles during regional anaesthesia have already been documented (Schafhalter-

Zoppoth 2004, Chin 2008). Factors such as the needle insertion angle and needle type 

directly affect the needle visibility. A steeper insertion angle results in greater reflection 

of the US waves incident on the needle away from the imaging array resulting in a poorer 

image and reduced needle visibility (Hocking and Mitchell 2012). Echogenic needles 
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(Figure 15) have been identified to be much more visible compared to non-echogenic 

ones because of their enhanced scattering compared to the former. 

 

Figure 15: Schematic showing an echogenic needle tip, highlighting reflectors 2 cm from the needle tip to 

increase US reflection at steeper angles of needle insertion: adapted from (Raju and Grant 2013). 

When compared to standard anaesthetic block needles, echogenic needles have 

increased shaft and tip visibility, irrespective of the anaesthesiologist’s experience level, 

and can also improve suboptimal scanning technique, allow steeper insertion angles, 

reduce technical complications and thereby increase the confidence of 

anaesthesiologists (Guo 2012, Hocking and Mitchell 2012, Nakagawa 2015). A case study 

analysing the effect of needle insertion angles on the needle visibility, conducted in TEC 

is discussed in Chapter Five. 

2.7 SUMMARY 

This Chapter provided necessary background for the work presented in this thesis. The 

broad introduction to medical US included reviews of widely used medical US imaging, 

therapeutic US and interventional US systems. As a general introduction to US, the 

history, generation and propagation of US were discussed. B-mode US imaging and 

other specific US elastography imaging were presented, with a detailed review of SWE. 

The basic principles for using US for therapy included a review of HIFU principles 

followed by a general introduction to MRI, as the best means of guidance for HIFU. The 

review concluded by introducing UGRA as an interventional use of US imaging. This 

Chapter discussed literature to provide basic understanding to introduce the reader to 

the terminologies used in the rest of the thesis. Detailed descriptions of any techniques 

necessary for understanding specific work are included in the background sections in 

corresponding further Chapters. 
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3.1 INTRODUCTION 

US phantoms include a wide range of objects such as test objects with inclusions/targets 

to mimic human organs/vessels, in-vivo/ex-vivo animal models, FFC and embalmed 

human cadavers. While the main use of such phantoms is for QA tests, in-vivo and ex-

vivo models are more often used for research and in developing new treatment 

approaches and systems. The focus of this Chapter is TMMs and also presented are 

means of acoustic and mechanical characterisation of TMMs prepared in the laboratory. 

3.2 ULTRASOUND TEST OBJECTS AND TISSUE MIMICKING MATERIALS 

US test objects, or phantoms, are designed to allow measurements of parameters 

relating to the imaging performance of the system - transducer combination. They are 

composed of TMM, with most having simple homogenous structures. Phantoms that 

mimic heterogeneous organs have targets embedded within them and are generally 

termed anthropomorphic phantoms. These are available commercially and price can 

range from hundreds to thousands of pounds. They are preferred for training and QA 

testing of ultrasound systems and in clinical research and training. A range of ultrasound 

test objects is commercially available with several major manufacturers such as blue 

phantom (BluePhantomTM 2015), CIRS Inc (CIRS-Inc), ATS Laboratories (ATS 1978), 

Gammex RMI (Gammex-RMI 1987) and Diagnostic Sonar Ltd (Diagnostic-Sonar-Ltd 

2015). 

3.2.1 Tissue Mimicking Materials 

Commercial US phantoms are expensive and cannot be modified in size or acoustic and 

mechanical properties to suit specific applications. Custom made TMM can be made in 

any shape or size with desired material properties. To understand further and to create 

a baseline, it is necessary to evaluate these tissue mimics and the work discussed in this 

Chapter discusses the preparation and characterisation the most commonly used 

TMMs. To match with the variation in acoustic and mechanical properties of different 

human tissues (Table 2), a range of TMM with different properties are also used. 
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Table 1: Acoustic properties of human tissues (Zell 2007, Culjat 2010). 

 

The most significant part of any US phantom is the TMM and for any TMM to approach 

the equivalence with human tissue, it should have similar acoustic properties to the 

tissue it mimics across a range of diagnostic frequencies. The comparison is usually made 

in terms of acoustic velocity, attenuation coefficient, and acoustic impedance. The 

International Electro-technical Commission (IEC) (IEC 1996) and American Institute of 

Ultrasound in Medicine (AIUM) (AIUM 1990) have developed standards for TMM 

acoustic properties. These recommend an acoustic velocity of 1540 ms-1, and 

attenuation coefficients of 0.5 – 0.7 dB cm-1 MHz-1 for a frequency range of 2 - 15 MHz 

with a linear attenuation to frequency response (Browne 2003). 

TMM can be broadly classified in two different groups, soft and hard. Soft TMMs are 

models used to represent soft tissues such as muscles, tendons, ligaments, nerves and 

blood vessels and the majority of these use isotropic, homogenous materials. Hard 

TMMs are used for hard tissues such as enamel, the rib cage and other bones and are 

mostly made of polymer composites. Acoustic properties and characteristics of hard 

TMM are outwith the scope of this thesis and not discussed further. Soft TMM has many 

sub-groups according to the base material used for its preparation, including agarose-
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based, polyacrylamide gel-based (Zell 2007), evaporated milk-based, and many others 

as shown in Table 2. 

Table 2: Different types of soft TMM and their acoustic properties (adapted from Culjat (2010)) (*-

Commercially available). 

 

A range of different soft TMM samples were prepared in the laboratory, primarily for 

ultrasound B-mode imaging, and tested for acoustical and mechanical properties. Table 

3 shows the list of TMMs prepared and tested. The recipes used for preparing these 

materials are a compilation of existing protocols and the detailed steps and references 

are given in the Appendix I. 

 

3.3 ACOUSTIC CHARACTERISATION 

Acoustic characterisation of TMM is essential to ensure that the properties are within 

the defined standard range. Testing involved measuring the acoustic velocity, 

attenuation coefficient, acoustic impedance and density. Acoustic properties of the 

sample can be calculated in two different ways, the pulse-echo method and the through-

transmission method. 
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Table 3: TMMs made in the laboratory and sources for their recipes. 

 

3.3.1 Pulse-echo Technique 

The pulse-echo technique analyses the reflected sound waves from the sample to 

measure its acoustic properties. The technique is similar to echolocation used in 
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submarines and by bats, whales and dolphins for navigation. It is also widely used in 

SONAR by surface vessels and for NDT. The testing can be done either by the contact or 

immersion method. Samples are usually placed on strong reflectors such as a steel or 

glass plate to enhance the echoes from the base of the sample. 

Usually a single transducer is used as the transmitter (Tx) and receiver (Rx) and the 

received signal is analysed to measure the acoustic properties of the sample. Good 

coupling between the transducer and the sample is essential to prevent signal loss. For 

the immersion method of pulse-echo testing, the sample is immersed in degassed water 

(Figure 16a) and for the contact method, an acoustic coupling layer (e.g. gel) is placed 

between the transducer and the sample (Figure 16b). Figure 16c shows the 

characterisation of EPP grey phantom using the pulse-echo contact method. 

 

Figure 16: Acoustic characterisation using (a) immersion and (b, c) contact pulse-echo testing. 

3.3.2 Through-transmission Testing 

Through-transmission testing uses one transducer as the Tx and a second one as a Rx. 

Like pulse-echo testing, through-transmission testing can also be done either through 

the contact or immersion method. Figure 17a shows the schematic of transmission 

through immersion testing and Figure 17b shows the under-water image of evaporated 

milk solid TMM during the test. 



55 

 

 

Figure 17: Acoustic characterisation using through-transmission testing, (a) schematic and (b) experiment. 

3.3.3 Materials and Methods 

3.3.3.1 Speed of Sound 

Speed of sound, cs of any material is typically determined by time-of-flight 

measurements through a sample of known thickness. The measurements are calculated 

relative to the speed of sound in water at room temperature (1480m.s-1) (Duck 1990). 

Speed of Sound Calculations Using Pulse-echo Method 

During the pulse-echo method of testing samples, the echoes from the top of the steel 

reflector are recorded in the degassed water medium without the sample. An example 

schematic of the echoes is shown in Figure 18. The distance from the top of the steel 

reflector to the transducer is calculated by 

  �� =
2
∆�� (6) 

where 

cw is the speed of sound in water (1480 m/s) at room temperature. 

D is the distance from the top of the steel reflector to the transducer. 

∆T1 is the round trip time of the pulse (time between the first and second echo 

signals). 
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Figure 18: Representation of echo patterns during pulse-echo testing. 

The sample to be tested is then placed on top of the steel reflector and the 

measurements are repeated. The speed of sound in the TMM, cs can then be calculated 

from 

  
∆�� = 	2��� +

2( − �)
��  (7) 

where   

∆T2 is the round trip time of the pulse (time between the first and second echo 

signals) with the TMM placed on the reflector. 

 d is the thickness of the TMM sample. 

Speed of Sound Calculations Using Through-transmission Method 

In the through-transmission testing method, the TMM speed of sound calculations have 

almost the same steps as pulse-echo testing except that, instead of measuring the 

reflected signals from the samples, this method calculates cs from the transmitted signal 

using a second Rx transducer as shown in the sample schematic in Figure 19. 

The Tx and Rx are placed in degassed water with a distance larger than the near field 

distance (Section 3.4.3.3). The transmitted signal through water without the sample is 

measured from the Rx output. The sample is then placed in the sample holder and the 

measurements are repeated. The unknown sound velocity of the sample is calculated 
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from the temporal shift (∆T) between the pulse transmit times with and without samples 

as: 

  �� = � 1�� − 	∆�� �
��	 (8) 

 

Figure 19: Temporal shift in the signal with and without samples; adapted from (Zell 2007). 

3.3.3.2 Acoustic Impedance 

Acoustic Impedance, Z of a material describes how mechanical energy propagates. The 

amount of energy reflected at the interface between two materials depends on the 

difference in their acoustic impedances. Z is proportional to both the speed of sound (cs) 

and density (⍴) of the material and calculate by Equation 9. 

  � = ⍴. �� (9) 

3.3.3.3 Attenuation Coefficient of TMM 

Attenuation is the decrease in the amplitude of the sound waves when they pass 

through a medium. Attenuation generally increases with increasing frequency. 

Attenuation is usually expressed in terms of an attenuation coefficient and is a material 

constant. The unit of attenuation coefficient is dB.cm-1.MHz-1 and the attenuation 

coefficient of water is 2.5x10-4.f2 (dB.cm-1) (Zell 2007) as attenuation coefficient of water 

increases as frequency squared. The attenuation coefficient of TMM can be calculated 
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either by the pulse-echo immersion technique or through-transmission method and is 

relative to the attenuation coefficient of water. 

Attenuation Coefficient Calculation Using Pulse-echo Testing 

The set-up is again as shown in Figure 16 and the speed of sound in the sample is 

calculated using Equation (5). Samples of two different thicknesses are placed on the 

steel reflector and the amplitude measurements of the echo signal are made. The 

attenuation coefficient, αs can be derived using Equation 10. 

    �� = �� − 	 1

2��1 − �2�	�ln��� − �����
�  

 

(10) 

where, 

As1 and d1 are the amplitude of the received pulse and the thickness of the first 

sample and As1 and d2 those of the second sample. 

αs and αw are the attenuation coefficients of the samples and water respectively. 

 

Attenuation Coefficient Calculation Using Through-transmission Technique 

This technique is also a relative measurement method and uses water as the reference 

material. The set-up is exactly the same as Figure 17 and the attenuation coefficient, αs 

can be derived from Equation 11. 

  �� = �� − 	 1
∆�	�ln�� − ���� − 2ln	(1 − �)� (11) 

where 

Ai is the amplitude of the received ultrasound pulse with subscripts w and s to 

denote water and sample respectively. 

∆d is the thickness of the sample. 

R is the acoustical reflection coefficient at the water sample interface, calculated 

by Equation 12: 
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  � = ��2 − �1
�2 + �1�

�

 (12) 

where, 

Z1 and Z2 are the acoustic impedances of water and the samples respectively. 

The US beam propagates as a longitudinal wave from the surface of the transducer into 

the propagation medium and the beam exhibits two slightly varying beam patterns; 

slightly converging beam up to a distance, N (near field or Fresnel zone) and a diverging 

beam beyond that point (the far field or Fraunhofer zone) (Figure 20b). 

 

 

Figure 20: (a) Transducers used for acoustical testing and (b) schematic representing the near field and far 

field in a non-focused transducer (Olympus 2015) . 

N is dependent on the diameter and wavelength of the transducer and can be defined 

by Equation 13. 

   =
��
4� (13) 

where, 

 d is the transducer diameter 

� is the wavelength. 

Because of the pressure amplitude variations in the near field, the sample is placed 

beyond the near field during experiments. Near field distances for transducers were 
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determined to be approximately 6, 14 and 28 cm for the 2.25, 5 and 10 MHz transducers 

respectively. After positioning samples of varying thicknesses, the distance between the 

transducer and sample was adjusted to keep the water path the same thus eliminating 

changes of attenuation in water as an experimental factor. Five measurements were 

made for each sample-frequency combination, at room temperature (22°C). 

 The three pairs of unfocused, disc transducers, used for testing were from Sonatest Ltd, 

(Milton Keynes, UK), all of 0.5” diameter and with resonant frequencies of 2.25, 5.0 and 

10.0 MHz (Figure 20a) The transducers were of medium damping and the part numbers 

were SLIH2-10, SLIH5-10 and SLIH10-10 for the 2.25, 5.0 and 10.0 MHz transducers 

respectively. The transducers were connected to the pulser-receiver (DPR300, JSR 

Ultrasonics) and the corresponding modes were selected (echo or through). Transducers 

were pulse driven and a pulse length of 15 was used for testing.  

Six TMMs (Table 3) were tested to analyse their properties. Two samples were made of 

each TMM with different thicknesses. The through-transmission method was used for 

testing samples at 2.25 and 5 MHz. For 10 MHz transducer measurements, the pulse-

echo method was used for testing the samples. This was to account for the larger near 

field length (28 cm) of the transducer and the restrictions this brings to the size of the 

testing tank.  

3.3.4 Results 

The acoustic characteristics of different TMMs are shown in Table 4. The longevity of 

the TMMs, given in Table 4 was calculated by regular checking for micro bacterial growth 

after their preparation date. These values were calculated by averaging the results from 

the five repeat measurements. The acoustical properties of these materials match well 

to the values in the literature. Small variations in the values are assumed to be because 

of variability in the ingredients used, during preparation, because of the limited 

availability of some materials in the original recipe (Appendix I). However, the materials 

meet the required standards in terms of acoustic velocity, impedance and attenuation 

coefficient, except for agar. The attenuation coefficient for agar was found to be 0.07 

dB.cm-1MHz-1 (0.08 dB.cm-1MHz-1 in literature). The ease of preparation and similarities 
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in acoustic velocity, impedance and density to human tissue makes this still a material 

of choice for many applications. 

Table 4: Acoustic properties of TMM prepared. 

 

The approximately linear changes in the attenuation coefficient with increasing 

frequency are shown in Figure 21. 

 

Figure 21: Changes in the attenuation coefficient with increasing frequency. 
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3.4 MECHANICAL CHARACTERISATION 

The elastic properties of TMM are very significant when selecting phantoms for specific 

applications such as elastography imaging. Unlike acoustic properties, standards have 

not been defined for elastic modulus ranges for ultrasound TMM (Timothy J 1997). The 

work reported here calculates elastic modulus for laboratory-made TMM and compares 

the values with those obtained from an in-vitro chicken breast sample. 

Young’s modulus, E, briefly introduced in Chapter Two, is the ability of a material to 

withstand changes in length when a tensile or compressive force is applied i.e. the stress 

to strain ratio. It is also known as elastic modulus or tensile modulus. It is a measure of 

stiffness under isotropic conditions. Young’s modulus, E can be calculated using 

Equation 14. 

  � =
!"�#$$
!"�%&� =

'
(	 =

) ��
∆* *�

 (14) 

where, 

', stress, is the force (F) applied per unit area (A) that results from an applied 

load and unit, with units of N.m-2 or Pascal (Pa). 

(, strain, is the physical deformation response of a material to the stress and is 

usually defined as the ratio of change in length (∆L) to original length (L). As strain 

is dimensionless, the units of E are same as of stress (Julian 2012). 

A typical stress-strain curve for a machined material (e.g.: metals) can be seen in Figure 

22. When the stress is increased initially, strain developed in the material is linear and 

this portion of the curve, where the Hooke’s law is obeyed, is called the elastic region. 

After reaching the elastic limit, the application of more stress will make the material 

reach the plastic region, where deformation in the material is permanent, and further 

stress on the material will cause the material to reach its breaking point and break. 

Materials can be defined as ductile, brittle, elastic or plastic, based on the differences in 

the shape and limits of the stress-strain diagram. 
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Figure 22: Typical stress-strain graph of an elastic material – adapted from (Serway and Vuille 2011). 

When a material is compressed or elongated, the cross-sectional area changes by an 

amount depending on its Poisson’s ratio. Machined materials experience only small 

deformations and hence the change in the cross-sectional area is negligible and may be 

taken as a constant. The stress in this case is called engineering stress or nominal 

stress, σ. However, for viscoelastic or plastic materials, there will be a significant change 

in the cross-sectional area on applying load and the calculation of stress should be based 

on the final cross-sectional area instead of the initial area. The stress calculated after 

accounting for the change in the cross-sectional area is true stress, σT. Likewise, the 

strain produced in the material can be nominal, (, or true, (�, depending on the 

characteristics of the material. True stress and true strain can be calculated using 

Equations 15 and 16 respectively. 

  '�	 = '(1 + () (15) 

  (� = ln	(1 + ε) (16) 

where, 

σ is the engineering/nominal stress 

( is the engineering/nominal strain 

E can be measured from the slope of a stress-strain curve obtained during tensile tests 

and has been found to range between approximately 1 KPa and 1 MPa in soft tissue 

(Sarvazyan 1995). 
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3.4.1 Materials and methods 

A cubical mould of dimension, 4 cm3 was used to make samples of uniform size and 

shape. Three samples each of all the TMM's were prepared for testing. As mentioned 

earlier, to provide a comparison, store bought chicken breast samples were also tested. 

Three pieces of chicken breast were tested 3 times each at room temperature. The 

tissue samples were cut and shaped into approximate squares and the dimensions were 

noted in order to calculate areas at later stages of calculation.  Unlike TMM samples, 

chicken breast samples are not isotropic and hence measurements were made in two 

directions on the samples, across the fibres and parallel to fibres.  

The TMM samples, three each for each material were produced from the same batch 

and compression tests were carried out using a benchtop materials testing machine 

(Model-H5KS, Tinius Olsen Ltd, UK) with frame capacity up to 5 KN and speed range of 

0.001 to 1000 mm.min-1. Load cells ranging from 50 N (the lowest available load) to 5 

KN were used to test the samples and the 50 N load cell was selected as all the other 

higher loads resulted in breaking the samples. The sample was placed between the 

metal plates as seen in Figure 23 and the compression tests were carried out on the with 

the selected load cell of 50 N and at speeds of 5 mm.min-1 for a depth of 5 mm (Figure 

23). These steps were repeated five times for all the three samples of each TMM making 

a total of 15 measurements.    

 

 

Figure 23: Compression tests on agar TMM 
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The results from the tests gave details of the force applied and the resulted extensions. 

The area of the sample was calculated from the dimension (16 cm2) and the stress was 

calculated by dividing the force by area. The resulting strain was calculated by dividing 

the extension and the original depth (4 cm) of the sample. These calculated values of 

stress and strain were used to calculate the nominal stress and strain using the Equation 

14.  

True stress and strain values were calculated from these nominal stress and strain values 

using Equations 15 and 16. After plotting these values in the graph, the linear region of 

the curve was selected and the slope of the curve was assessed to find the young's 

modulus values. A detailed description of assessing tissue elasticity values is given in the 

literature (Madsen 2005, Pavan 2010, Nayar 2012).  

3.4.2 Results 

The true stress-strain curves of different TMM samples are shown in Figure 24. During 

the calculation of young's modulus, only the linear region of the curve was selected. It 

has to be noted that these curves look different to Figure 22 (i.e. they curve up rather 

than down) and this is because of the fact that it shows true stress & strain instead of 

nominal stress and strain in the former.  

 

Figure 24: Stress-strain curves of different TMM samples. 
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While EPP grey TMM was showed to exhibit the most similar mechanical characteristics 

to a chicken breast sample across the fibres, the polyacrylamide gel-based TMM (PAA 

and HIFU TMM) exhibited higher amounts of strain for lower stress values. Chicken 

breast was selected for comparison because of its composition (pure muscle tissue). 

However, like mentioned before, because of its isotropic structure, measurements were 

made in two directions, across and along the fibres.  

As seen from Figure 24, there is significant difference between these measurements 

made in two directions. When stiffness values of chicken breast sample, tested across 

the fibres showed resemblance to the EPP grey TMM stiffness, the stiffness values of 

chicken breast sample, tested along the fibres showed similarity to the stiffness values 

of PAA and HIFU TMM.  Linear regions of the true stress- strain curves (Figure 24) were 

analysed and the young’s modulus values were determined by calculating the slope of 

the elastic region of the curve. Three samples of each TMM was assessed and the 

average stiffness values are shown in Table 5. The tests were repeated five times for 

each sample to reduce the uncertainties in the measurements.  The uncertainties shown 

in Table 5 shows the standard deviation in the young's modulus values between 

different measurements.  

Table 5: Young's modulus values of TMM 

 

3.5 CONCLUSIONS 

This Chapter discussed the needs of different US test objects and a range of TMMs 

suitable for testing the widely used, B-mode US systems testing were prepared in the 

lab. The acoustic properties of these TMM were measured and compared with the 

values in the literature. All materials tested, except agar met the standards in terms of 
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acoustic velocity, acoustic impedance and attenuation coefficient. Elasticity 

measurements of these TMMs, defined by Young’s modulus, were determined using 

compression testing.  

These values of E were obtained using static loading. An interesting future work will be 

to determine the young's modulus values of these TMMs using other dynamic 

techniques such as using SWE. Since stiffness of the tissue is a material property, it is 

unlikely to show significant changes between static and dynamic measurements of E and 

for the purpose of the work presented in this thesis, this was out with the scope. Hence, 

the measurements made using static loading of different TMMs were compared with 

fresh chicken breast tissue, tested across and along the fibres, EPP grey, PAA and HIFU 

TMM showed the most similarities in terms of Young's modulus.
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SECTION II 

Soft-embalmed Cadavers 

Although artificial phantoms for US testing have become increasingly sophisticated, they 

are still a poor substitute for human anatomy. The use of volunteers for in-vivo testing 

is possible, but inconvenient, because of the paper work involved. In addition, in-vivo 

tests does not allow repeated tests on identical anatomy and is inappropriate for 

invasive techniques such as intraoperative ultrasound and FUS. The use of fresh human 

cadavers is possible but carries expense and risk of infection and does not allow 

repeated tests over more than the very short term. 

This section of the thesis explores the potential of cadavers, soft-embalmed using the 

Thiel technique, for medical ultrasound research and testing of new US systems. The 

section consists of four Chapters. Chapter Four begins with a literature review of TEC 

and reports the quantitative imaging of TEC using US SWE. The suitability of these 

cadaver models for interventional US research is explored further in Chapter Five. 

Chapter Six assesses the suitability of TEC breast tissue for therapeutic US research and 

Chapter Seven analyses Thiel-embalmed mice models for high frequency µUS imaging. 
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Quantitative Analysis of Thiel-embalmed Human Cadavers Using 

Shear Wave Elastography System 
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4.1 INTRODUCTION 

TEC are increasingly being used as simulators for medical training and research. These 

models can be considered as realistic, qualitative models for testing systems and for 

device development. This Chapter begins with a background section on human cadaver 

models. This is followed by a specific case study to assess the tissue stiffnesses of TEC 

using SWE. 

4.2 BACKGROUND 

Human bodies are used in most parts of the world as an educational tool for medical 

students. Anatomy is taught through body dissection and by demonstrating dissected 

specimens. The bodies used for these purposes are generously offered by the donors 

for the improvement of medical science and education. These bodies are usually 

referred to as 'silent teachers' (Eisma and Wilkinson 2014) as they help the students to 

learn what they cannot from books and other artificial models. 

In addition to being an educational tool, the cadavers are also used as models for testing 

instruments and procedures at the pre-clinical stage of the development. As it is 

impractical and unethical to try any new approaches on patients, the benefits these 

cadaver provide towards medical research is exceptional. While other models such as 

phantoms or live animals are available, the human body remains the most appropriate 

model from an anatomical point of view. 

4.2.1 Body Preservation Methods 

Several techniques have been used for a long time for preserving the dead ranging from 

natural methods, such as mummification or freezing, to artificial methods, such as 

immersion or arterial injection (Brenner 2014). 

4.2.1.1 Natural Methods 

Freezing the body and desiccation by dry cold or dry heat is the only natural method of 

preserving the tissues known so far. FFC can be kept for an indefinite period in freezers 

with temperatures between -17 and -20°C. The bodies need to be moved to 

temperatures ranging from 3°C to 5°C for up to 2 weeks before they are defrosted and 

ready to use. This method retains the colours and flexibility of tissues as in the living 
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body making it an efficient model for laparoscopic skills training (Kang 2009, Sharma and 

Horgan 2012), airway management (Reid 2013), endoscopic surgery training (Krishnan 

2004), percutaneous liver biopsy training (Bruining and Arora 2007) and other 

procedures. Despite being realistic and flexible, some of the main disadvantages of FFC 

include high risk of infections, need for full personal protective equipment, short period 

available before deterioration and possibility of inadequate thawing. 

4.2.1.2 Artificial Methods 

The main prerequisites for using human bodies for medical research is their efficient 

preservation and this is achieved by treating bodies with specific 

chemicals i.e.; embalming. The embalming fluid contains chemicals that include 

preservatives, germicides, buffers, wetting agents, anticoagulants, colorants and 

scenting agents. These chemicals are combined in different proportions to produce the 

fluid (Brenner 2014). 

Formalin embalming is the most common artificial embalming method and was first 

reported in 1899 (Brenner 2014). This method uses high concentrations of 

formaldehyde for tissue preservation. The main advantages of this method are 

longevity, minimal infection risk and easier handling of solid organs. The bodies can be 

stored at room temperature and are typically used for dissection based anatomy 

education and research (Eisma and Wilkinson 2014). Although formaldehyde is a good 

tissue preservative, it is commonly associated with tissue hardening and rigidity. Besides 

these disadvantages, formaldehyde also has others such as rapid coagulation of blood, 

discolouration, constriction of capillaries, deterioration over time and an unpleasant 

smell (Mayer 2012). 

Formalin also tends to cause moulding when the bodies are exposed to air for an 

extended periods of times (Bradbury and Hoshino 1978). Formaldehyde exposure has 

been shown to have several adverse and toxic effects on the embalmers and other users 

(Mori 2013, Abhijeet and Mukul 2014). It has also been classified as carcinogenic to 

humans (Hauptmann 2009, Lunn 2010). Thus, the exposure limits of formalin have 

recently been reduced which, in turn, increased the demand for an embalming method 

using less or no formalin (Eisma 2013). There is also a warning that formaldehyde may 
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be prohibited for embalming purposes by the Biocidal Products Directive 98/8/EC 

(European Parliament and Council, 1998). 

Soft-embalming techniques are preservation methods making use of low levels of 

formaldehyde compared to formalin embalming. A range of soft-embalming methods is 

currently being used around the world. Brenner (2014) gives a comprehensive 

comparison of different embalming techniques used for human body preservation, 

including old and new techniques. The work reported in this thesis used cadavers 

embalmed using the Thiel protocol (Thiel 1992a). The specific details of other soft-

embalming techniques are out of scope for this thesis and are not discussed further. 

4.2.2 Thiel Embalming 

Thiel embalming (aka Graz Embalming Protocol) is a soft-embalming method invented 

by Professor Walter Thiel in Austria over several years, leading to his first publication in 

1992. (Thiel 1992a, Thiel 1992b, Thiel 2002). The Thiel method is still relatively 

unfamiliar and, therefore, little used. A survey conducted in 2011 (Benkhadra 2011) to 

assess its use worldwide could find its potential usage only in 5 countries (UK, Germany, 

Czech R, Switzerland and Austria). Unlike Thiel embalming, all other soft-embalming 

methods have a shorter life span (a few months) and require refrigeration for storage. 

Thiel embalming has recently been attracting more attention as it requires no cooling 

and has long lasting preservation (years). TEC have a life-like appearance, preserved skin 

colour and excellent tissue flexibility (Figure 25). The Centre of Anatomy and Human 

Identification (CAHiD) at the University of Dundee was the first place in the UK to use 

Thiel soft-embalming and about 75 bodies are embalmed here every year (Eisma 13th 

February 2015). 

 

 Figure 25: Raising the subplatysmal flap in Formalin embalmed vs Thiel cadavers (Eisma 2011). 
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The embalming formula used is slightly different than the most recent documented 

version (Thiel 2002) in terms of the amount of water and formaldehyde solution, 

because of the lower concentration of formaldehyde used compared to the standard 

one (8.9% vs. 37.5% respectively). The embalming process has two main stages: 

perfusion and immersion. Perfusion is carried out shortly after arrival of bodies by 

injecting arterial and venous fluids simultaneously. Arterial fluid is normally injected 

through the femoral or brachial artery and venous fluid through the sagittal sinus or 

brachial vein (Figure 26). The constituents of all the embalming fluids used are noted in 

Table 6. 

The bodies are then immersed in the tank fluid for 4-6 months before they are 

completely preserved. After this stage of preservation, the bodies can stay submerged 

or be stored in plastic bags, without the need for refrigeration. Thiel embalming has 

shown to be superior compared to other soft-embalming methods in terms of joint 

flexibility and fungicidal properties (Jaung 2011). Eisma and Wilkinson (2014) have 

compared TEC with FFC, FEC and other soft-embalming techniques as shown in Table 7. 

 

Figure 26-Perfusion stage in the Thiel embalming process(Eisma and Wilkinson 2014). 
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Table 6: Constituents of the Thiel embalming fluids used at CAHiD (Eisma 2013) 

 

The reason for the increased flexibility of TEC over FFC and FEC were investigated for 

the first time in 2011 (Benkhadra 2011). The group compared muscular fibre structures 

in FFC, FEC and TEC under optical microscopy at different magnifications to evaluate the 

changes in their ultrastructure. 

Major modification of the integrity and alignment of the muscle fibres (suspected to be 

because of the corrosive effect of boric acid in the Thiel solution) were noticed in TEC 

when compared to the others. This is explained as the reason for exceptional suppleness 

of these cadavers. Figure 27 shows the microscopic images of human muscle tissue 

under 10x magnification (Benkhadra 2011). Muscle fibres in Thiel tissue shows a minced 

appearance, but remained aligned as seen in Figure 27a. 
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Table 7: Common embalming methods and their main characteristics(Eisma and Wilkinson 2014). 

 

 

 

Figure 27: Masson's trichrome staining of human muscle tissue observed at 10x magnification. (a) 

Thiel, (b) formalin and (c) unfixed (Benkhadra 2011) 
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4.2.3 Applications of Thiel Embalming 

Although Thiel embalming was first invented in the 1990’s, the technique remained 

relatively unknown until recent years. A comprehensive analysis of its use over the last 

two decades is presented here. There have been approximately 70 publications till the 

present date (1992-2014) and the detailed chart in Figure 28 suggests their increased 

use over the last few years. The search to obtain this data looked for Medical Subject 

Heading (MESH) terms such as 'embalming' and 'embalming methods' in either the 

abstracts or the full text of the journal publications. The papers were further analysed 

to confirm the use of TEC to filter out publications just mentioning their availability in 

the background. 

 

Figure 28: Thiel Publication numbers after 1992. 

The applications of TEC are substantial and can be classified further under two main 

areas: teaching and training, research and development. The applications in the field of 

medical research and development is discussed further. 

4.2.3.1 Research and Development 

TEC has proved to be widely useful in medical research as excellent human models aiding 

the development and testing of techniques and systems. Various studies on knee joint 

prostheses and their effects used TEC as models and have reported its benefits over FFC 

and cadavers embalmed using other techniques (Kainz 2012, Wurm 2013). Antireflux 

surgery and suspected nerve damage were investigated using Thiel models in 2001 by a 
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urology group in Germany (Leissner 2001). The suitability of TEC for research and 

education in oral-maxillo-facial surgery was investigated and TEC were reported as an 

optimal basis for research and training (Peuker 2001). 

One of the other major areas that are utilising TEC are plastic surgery research (Hassan 

2014, Odobescu 2014). TEC have also been identified as good tissue models for optical 

nerve measurements (Steinborn 2011), orthopaedic research (Betz 2013), hearing 

research (Stieger 2012, Guignard 2013), rhinology research (Havel 2014) and MRgFUS 

research (Eljamel 2014, Gueorguieva 2014, Karakitsios 2014). 

The increased flexibility and tactile needle feedback makes TEC suitable for UGRA 

research (Guo 2012, Munirama 2014). TEC have also been used at CAHiD to analyse the 

effect of contrast agent injections on an US image. Figure 29 shows the visibility of 

needles just before injecting the contrast agents. The series of images extracted from 

the contrast agent injection videos in Figure 30(a-f) shows the spreading of contrast 

agents imposing acoustic shadows in the images of biceps muscles. 

 

 

 

Figure 29: Visibility of needles in TEC 
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Figure 30(a-f): Image series showing contrast agent injections in TEC biceps muscle and the resulted acoustic shadowing in the images indicated with arrow markings. 
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4.2.4 Pros and Cons of Thiel-embalming Method 

TEC is an efficient simulation of life model with well-preserved organs and tissues 

pertaining to colour, consistency, flexibility and plasticity (Pattanshetti and Pattanshetti 

2010). The wide range of applications for TEC in medical research and training have been 

elaborated earlier in this Chapter. 

Some of the main advantages of TEC are 

• Lungs can be ventilated. 

• Articular joints remain flexible. 

• Low toxicity. 

• Almost no coagulation of blood in large vessels. 

• Effective bacterial disinfection preventing the development of moulds. 

• Unlike FEC and FFC, TEC can be imaged using US systems making them a new 

resource for US research. 

Even though Thiel embalming improves upon several other preservation techniques 

because of its unique abilities, limitations have also been reported. Thiel embalming 

provides relatively poor preservation of the brain and sometimes very soft texture of 

organs such as the uterus. Extremities that do not perfuse very well (hand and feet in 

some cadavers, occasionally more extensive distal parts of limbs) sometimes initially 

turn somewhat dark and wrinkly, but this gradually recovers and has not posed any 

problems (Eisma 2013). 

A number of studies have demonstrated biomechanical changes to the musculo-skeletal 

structures (Unger 2010, Benkhadra 2011, Fessel 2011, Wilke 2011) making them less 

suitable for biomechanical research. Thiel embalming requires specific facilities and has 

higher costs than the conventional methods. The limited availability of specific 

chemicals worldwide and low number of trained personnel also make Thiel embalming 

relatively less utilised. 
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4.3 MATERIALS AND METHODOLOGY 

Only limited research has been conducted so far to assess the tissue characteristics of 

TEC to enhance their use for diverse applications. Most studies assessing TEC are 

qualitative, comparing distinct cadaver models and do not specifically contrast these 

with live patients (Benkhadra 2009, Eisma 2011, Hassan 2014). Hence, there is a need 

to quantitatively validate the tissue properties of this model against living subjects. The 

principal objective of this study is to measure the tissue elasticity of TEC and validate the 

results with a known human cohort. 

Using quantitative shear SWE superimposed on B-mode US, two independent raters 

undertook 10 repeated measurements of Young’s modulus within the thyroid, parotid 

and submandibular glands, and gastrocnemius and masseter muscles and supraspinatus 

tendon of eight TEC. The elastic property (Young’s modulus) values of these tissues were 

compared with values reported for living individuals (Arda 2011). The work presented in 

this Chapter has been accepted for external publication (Joy 2015). Correlation between 

the tissue elasticity values and various factors such as age of the cadaver at death, DoE 

and gender were statistically analysed using IBM SPSS (version 20.0, SPSS) software. 

4.3.1 Study Sample 

After obtaining permission from the TEC ethics group, eight TEC were selected randomly 

for this study (4 males, 4 females; mean age: 81.75 ± 11.20 years, range: 63-97 years). 

These cadavers varied slightly in terms of their final preservation stage: six of the bodies 

were immersed in a tank of embalming fluid for the last stage of preservation and two 

of them were preserved in a plastic bag of embalming fluid due to lack of space in the 

tank at the time of their embalming. 

Six tissues specifically selected for scanning were the thyroid, parotid and 

submandibular glands, gastrocnemius and masseter muscles and supraspinatus tendon. 

These tissues were particularly selected because their stiffnesses in human beings had 

been reported in the literature. The anatomy of these tissues (VirtualMedicalCentre 

2014) and the region scanned in the study (Ultrasoundpaedia 2014) are shown in Table 

8. 
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Table 8: Anatomy and scanning regions for the tissues under study (Ultrasoundpaedia 2014, 

VirtualMedicalCentre 2014) 
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The data collected included ten measurements each of all the six tissues from the eight 

cadavers, giving a total of 60 measurements for each subject, apart from two, as one of 

the subjects lacked a thyroid gland and another had dessicated gastrocnemius muscle, 

making the total number of measurements 460 ([6 tissues * 8 subjects * 10 

measurements] – [2 subjects *10 measurements]). Table 9 shows the details about the 

study sample for all the eight subjects. They are classified according to their gender, age, 

days of embalming (DoE) and preservation type. Tissues with successful elasticity 

measurements recorded are marked with a tick (‘�’) symbol and those that could not 

be measured with a cross (‘�’) symbol. 

Table 9: Study sample details 

 

4.3.2 Scanning 

Scanning was undertaken in CAHiD, University of Dundee, under the supervision of the 

Anatomy Officer acting under the auspices of the Anatomy Act (Scotland) 2006. The US 

imaging and the stiffness analysis were performed using SWE superimposed on B-mode 

US (Supersonic Imagine, Aix-en-Provence, France). Two independent raters undertook 

10 repeated measurements (5 each) of Young’s modulus of six sites - thyroid, parotid 

and submandibular glands, gastrocnemius and masseter muscles, and supraspinatus 

tendon. 

All tissues were scanned with the cadavers in supine position (Figure 31) except for 

gastrocnemius muscle scanning where the cadavers were positioned in prone position. 

The scanning was carried out using a linear array transducer (R3.2 Supersonic Imagine) 

of bandwidth, 4 to 15 MHz. Higher frequencies were selected for imaging superficial 

structures and the deeper tissues were imaged using lower frequencies. To ensure 
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sterility, the probe was covered with a long sterile sheath. Images were stored in the 

JPEG format on a secure computer. 

 
 

Figure 31: Illustration of operator scanning cadaver in supine position using SWE system. 

4.3.3 Statistical Analysis 

The study used linear mixed models (LMMs) to analyse the correlation of factors such 

as age, gender, DoE, tissue type and embalming type with the tissue elasticity values. 

These particular statistical regression models were selected because of their ability to 

incorporate both fixed and random effects into the analysis and also account for 

repeated measurements. Because of their advantage in dealing with missing values, 

which, in the present case, are sets of measurements for two tissues in two different 

subjects, mixed effects models were preferred over more traditional approaches such 

as repeated measures ANOVA. A LMM is a statistical regression model including 

both fixed and random effects. Fixed effects are factors in the model that represent 

observed quantities in terms of explanatory variables and random effects are treated as 

if they arise from random causes. 

 The general LMM in matrix form can be represented as 

  � = �� + �� + � (17) 
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In Equation 17, 

y is the known vector of observations (elasticity). 

� is the fixed effects design matrix in the model (Age, Gender, DoE, Tissue type). 

� is the random effects design matrix in the model (Cadaver, Embalming type). 

� is the unknown vector of fixed effects. 

� is the unknown vector of random effects. 

� is the unknown vector of random errors. 

The term mixed model (Equation 17) refers to the use of both fixed, random and 

repeated effects in the same analysis. Fixed effects have levels that are of primary 

interest and would be used again if the experiment was repeated. Random effects have 

levels that are not of primary interest, but rather are thought of as a random selection 

from a much larger set of levels. The fixed effect assumes that individual specific 

parameters are correlated with the dependent variables, i.e. elasticity in this case. The 

random parameters that are uncorrelated with the independent variables are treated 

as random effects (Dodge 2006). The age, gender, tissue type and DoE are fixed effects 

whereas embalming type and cadavers are random effects on the elasticity. 

Analysis of the data was performed with IBM SPSS (version 20.0, SPSS) software. 

Descriptive statistics were used to summarise the characteristics of the study group, 

including means and standard deviations of all continuous variables. Statistical 

significance was defined as probability, p < 0.05. 

4.4 RESULTS AND DISCUSSION 

SWE images of tissues under study showed good qualitative similarity to and tissue 

comparison with the humans. Figure 32 shows US B-mode images of the gastrocnemius 

muscle, supraspinatus tendon and parotid gland obtained from the TEC and the 

corresponding B-mode images from humans in-vivo (Ultrasoundpaedia 2014) . Since the 

main aim of the work presented in this Chapter was to assess the properties of TEC and 

since the in-vivo volunteer B-mode images were readily available in the literature, 

volunteer scans were not conducted in-house. One of the other main reason for not 

conducting in-house volunteer imaging was the relatively time consuming ethical 

approval process when considering its need for the present work.  
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Figure 32: Comparison of TEC tissue US B-mode images (left) to the library reference images from subjects 

in-vivo (right) of (a) gastrocnemius muscle (b), supraspinatus tendon (c) and parotid gland. 

The US B-mode and the corresponding SWE images of the different tissues under study 

are shown in Figure 33(a-f). The SWE system permits the user to select a ROI in the image 

and this displays the elastography colour map ranging from blue to red, blue being the 

softest tissue and red the stiffest in the ROI. The stiffness measurements could be made 

anywhere in the ROI and stored. The stiffness data of the selected ROI contains the 

minimum, maximum and mean values of tissue elasticity indicated in units of kPa. 
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Figure 33:( a-f) - The B-mode and the corresponding SWE images of gastrocnemius muscle (a), submandibular gland (b), masseter muscle (c), parotid gland (d), supraspinatus 

tendon (e) and thyroid gland (f).
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4.4.1 Factors Affecting Tissue Elasticity 

4.4.1.1 Embalming Type (Tank vs. Bag) 

The elasticity values were found to be significantly different between cadavers 

embalmed in tanks (sample size: 6) with those in bags (sample size: 2). From 

observation, while the bodies in tanks remained flexible and soft, those in the bags were 

significantly more rigid, dried out and stiffer. This is assumed to be because of the lesser 

amounts of immersing fluid for the subjects in the bags (Eisma 12th October 2012). The 

data sets from different tissue sites acquired from cadavers embalmed in tank and bag 

were statistically assessed and the differences were found to be statistically significant 

in all the tissue sites (p=0.00). The tissue stiffness values for bag-embalmed cadavers 

were found to be higher compared to those in tanks, as shown in Figure 34. 

 

Figure 34:Tissue elasticity measurements for subjects in Tank vs. Bag (Filled squares and circles represent 

the mean measurements, unfilled squares and circles denotes the maximum and minimum recorded 

values and the small colour coded ‘hyphens’ showing the standard deviation). 

This finding is very useful as it suggests one way to achieve proper selection of a cadaver 

for a specific application. While a subjects embalmed in a bag is less useful for research 
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related to tissue properties, it will find many uses for studies needing slightly stiffer 

subjects such as biomechanical studies and surgical training. 

4.4.1.2 Gender 

The stiffness values from the eight cadavers (4 males; 4 females) is shown in Figure 35. 

The figure suggests generally some changes in the tissue stiffness according to gender. 

However, mixed model analysis found this difference to be statistically insignificant (p > 

0.05). 

 

Figure 35: Tissue elasticity values of male vs. female TEC. 

The data within the rectangular box represents the 25 and 75 percentiles. The end of 

the whiskers (the extended black and red solid lines from the box to the ‘hyphen’) are 

the upper inner and lower inner fence values, calculated as below 

Upper Inner Fence = 75th Percentile + (1.5 * Interquartile Range)  

Lower Inner Fence = 25th Percentile - (1.5 * Interquartile Range) 

The unfilled small square box inside the rectangle is the mean and the solid line across 

and inside the box is the median of the elasticity values. This particular plot showing the 
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interquartile range was specifically selected for this figure to give the readers an idea of 

the spread of the data sets.  

4.4.2 Elasticity Measurements 

Least Squares Means of Young’s modulus data calculated for mean tank immersion time 

(88.7 days) and mean age (81.3 years) are shown in Table 10. Data is presented as mean 

(95%CI). The calculation excluded the data sets from the two subjects embalmed in bags 

for efficient comparison of results with healthy volunteers. The results are shown for 

different tissues, gender and all ten repeats.  

Table 10: Least Squares Means of Young’s modulus data for mean tank immersion time (88.7 days) and 

mean age (81.3 years). 

 

 



90 

 

Because of the significant differences in tissue stiffness of the two TEC embalmed in 

bags, those data sets were excluded from comparison with human in-vivo. Thus stiffness 

data from the six cadavers were compared with the data from the human volunteers 

(Figure 36).  The figure shows the differences in tissue stiffness values for the 

gastrocnemius muscle tissue between TEC and human volunteers in-vivo.  

 

Figure 36: Tissue stiffness values of TEC compared with data from human in-vivo (Arda 2011)(a) male and 

(b) female. Filled squares and triangles represent the mean measurements, unfilled squares and triangles 

denotes the maximum and minimum recorded values and the small colour coded 'hyphens' showing the 

standard deviation. 
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4.4.3 Statistical Analysis 

Apart from finding the differences in the tissue elasticity in TEC, the secondary objectives 

of this study included regression analysis of Young’s modulus against covariates such as 

gender, age at death and number of DoE. An individual comparison hypothesis test of 

Young’s modulus for mean tank immersion time (88.7 days) and mean age (81.3 years) 

showed differences, p < 0.01, between gastrocnemius and all other tissues, and 

differences, p < 0.01, between Supraspinatus and Masseter, Parotid, Sub-mandible and 

thyroid tissue. DoE is found to affect the elasticity of the tissues in TEC with significance 

level p ≃0.00 (<0.05). Inter-observer errors were found to be non-significant with p = 

1.0. The analysis did not find a significant correlation between age and gender to the 

tissue elasticity values (p=0.436 and 0.46 respectively); this result coincides with the 

findings in the literature (Arda 2011).  

4.5 DISCUSSION 

The increased stiffness for the gastrocnemius tissue in both the male and the female 

cadavers (Figure 36) might be explained by the difference in the scanning position for 

the cadavers and the volunteers. In the reference volunteer study, the gastrocnemius 

muscle stiffness was recorded with the volunteers in a prone position with their foot 

hanging over the edge of the examination bed in a relaxed position (Arda 2011). 

Because of the difficultly in positioning the cadaver in a way to hang their legs over the 

scanning table, the scanning of gastrocnemius muscle was performed after positioning 

the cadaver in just the prone position. The statistical analyses also show various 

interesting findings about the relationship between the various other parameters 

previously noted and the stiffness of the TEC. The mixed model analysis did not identify 

a significant correlation between the age of the cadaver at death and the tissue stiffness. 

 

In the volunteer study, statistical analysis found no significant correlation between the 

tissue elasticity and age of volunteers, in agreement with the present study. The 

statistical analysis showed a positive correlation between DoE and the tissue elasticity, 

indicating that the tissue tends to become stiffer as the number of days after embalming 

increases. TEC tend to appear stiffer and drier when they are left outside the embalming 

tank fluid for many days. The cadavers embalmed earlier have found more previous use 
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for training and other work than most recently embalmed bodies causing them to be 

away from immersion tank for longer periods, making it drier and stiffer (Eisma 12th 

October 2012). The 20-25L fluid pumped into the cadaver at the start of embalming 

procedure gradually leaks out and this loss of fluid is faster when the body is out of the 

tank. 

4.6 CONCLUSION 

This Chapter indicates that SWE is a useful tool to assess Thiel cadaver tissue/organ 

stiffness. In other words, TEC model, because of the extend of similarity of tissue 

stiffness to in-vivo humans, can be used as a qualitative human model in testing SWE 

system. Quantitative assessment of six different tissues from eight cadavers was 

performed and it was determined that TEC are good models for US studies, with changes 

in the tissue stiffness documented with reference to the measurements from the six 

different tissues. This is relevant as it allows to assess the degree to which cadavers are 

similar to patients and hence assists in judging if cadavers are suitable for particular 

procedures and in selecting the most appropriate one. TEC are physically very similar to 

living people, but there are changes over time. 

Significant correlation (p=0.01) was found between cadaver values and the in-vivo 

elasticity values for same tissues in the literature, demonstrating the life-like 

characteristics of TEC. SWE was found to provide valuable information on the properties 

of the cadavers in general, and to be a promising tool to assess an individual cadaver's 

suitability for certain procedures. The study also looked at the relationship with gender, 

age of the cadaver at death, and the number of DoE. The results indicate that DoE has 

strong positive correlation with the elasticity values of the tissues. No significant 

correlation was found between the age of the cadavers at death and the gender to the 

tissue elasticity. To conclude, the soft tissue elasticity of TEC has been successfully 

validated against human tissue in-vivo. The results indicate great similarity of TEC 

models with human in-vivo, suggesting their suitability as a tissue model for testing new 

systems in the US field.   
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5.1 INTRODUCTION 

TEC, introduced in Chapter Four are assessed in this Chapter for use as tissue simulators in 

UGRA, interventional US research. Two case studies are reported in this Chapter. The first 

study intended to explore the possibilities of using a SWE US system in imaging nerves 

during regional anaesthesia and the second aimed to assess the needle visibility during 

UGRA, both using TEC models. Both these studies were designed with the help of 

Anaesthetic department at NHS Tayside, Dundee. Joyce Joy conducted the studies under 

the supervision of Dr. Shilpa Munirama and Dr. Graeme McLeod. Dr. Roos Eisma, the 

anatomy officer at CAHiD, University of Dundee supplied the TEC model for these studies. 

These studies are used to illustrate the range of uses and benefits the TEC model offers for 

interventional US research and has also been subjected to external publications (Munirama 

2013, Munirama 2015). The Chapter starts with a brief background, followed by two main 

sections each devoted to an individual case study. 

5.2 BACKGROUND 

The importance of needle visibility during UGRA was discussed in Chapter Two. What is 

equally important is the clear differentiation of nerve from the surrounding tissue so as to 

avoid accidental punctures of the nerve. As seen in Chapter Four, SWE is a useful tool in 

determining the tissue stiffness and has been widely used for diagnosis and research 

applications. The first case study assessed the intraneural and extraneural stiffnesses of 

interscalene, median and sciatic nerve in the TEC model to explore the possibilities of using 

SWE as the image guidance tool for regional anaesthesia. 

An anatomical model similar to human was needed and it was important for 

anaesthesiologists to receive a similar tactile feedback. The TEC model fulfils these 

requirements as it is readily available in Dundee, if not elsewhere, and ethical approval for 

such use was easy to obtain. The SWE system used in the study is the same as described in 

Chapter Four. It gives quantitative measurements of tissue stiffness in terms of Young’s 

modulus in KPa. 
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In addition to the ability to identify the nerve from the extraneural tissue using SWE, good 

visibility of the needle tip and shaft is also critical during UGRA in order to prevent nerve 

damage (Hocking and Mitchell 2012). Anaesthesiologists prefer IP insertion in most cases 

as it allows visualisation of most of the needle length though the OP approach is sometimes 

used for particular cases such as the insertion of perineural catheters (Fredrickson and 

Danesh-Clough 2013). Ideally, regional block needles should be visible when introduced 

both IP and OP to the US probe, regardless of angle, depth and needle size (Maecken 2007). 

So far only a few studies have used TEC models for UGRA research (McLeod 2010, Guo 

2012). 

The primary objective of the second case study is thus to assess the appearance of 

anaesthetic needles in the TEC models, in particular assessing the visibility of echogenic 

Tuohy needles compared to standard non-echogenic Tuohy and echogenic single injection 

needles. Tuohy needles belong to the group of needles used for epidural anaesthetic blocks 

for labour pain relief. Chapter Two introduced the issues of needle visibility and IP and OP 

techniques of needle insertion. Even though epidural blocks have a high success rate, 

complications have also been reported (Pan 2004). Of many reasons why epidural blocks 

fail, reduced needle visibility resulting in a dural puncture is reported as a primary cause 

(Katherine and Scott 2008). 

It has been observed that standard non-echogenic needles have increased visibility when 

inserted at shallow angles IP (Guo 2012); another important parameter influencing the 

visibility is needle size. Visibility increases in direct proportion to needle size (Schafhalter-

Zoppoth 2004). Echogenic needles (Hebard and Hocking 2011), characterised by multiple 

reflectors on their surface (Figure 37), are associated with better needle visibility. 

 The study hypothesised that the interaction of needle insertion angle and plane will have 

an effect on needle visibility of echogenic needles similar to the standard non-echogenic 

needles, thus affecting the block performance. The secondary objective of this needle study 

was therefore to compare the properties of an echogenic Tuohy needle, an echogenic single 

shot needle and a non-echogenic Tuohy needle when inserted at 30°, 45°, 60° and 75° 

angles, both IP and OP to the US beam in the TEC model. Lateral and bevel views of the 
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needles are shown in Figure 37. The relation between the needle insertion angle and the 

needle tip and shaft visibilities were also assessed. 

 

Figure 37: Three needles (Pajunk, Newcastle, UK) assessed during the trial (a) echogenic single injection block 

needle, (b) echogenic Tuohy needle and (c) standard non-echogenic Tuohy needle; adapted from (Munirama 

2015). 

5.3 NERVE STIFFNESS ANALYSIS USING ON TEC MODEL 

5.3.1 Scanning 

TEC scanning was undertaken at CAHiD, University of Dundee, under the supervision of the 

Anatomy Officer acting under the auspices of the Anatomy Act (Scotland) 2006. An ethical 

approval from the University of Dundee TEC committee was obtained prior to the study. 

Young’s modulus values of the interscalene, median and sciatic nerves were assessed using 

the Supersonic Aixploxer SWE US system (Supersonic Imagine, Aixploxer, France). To 

protect the probe, a long sterile sheath was used. A linear array, 4 - 15 MHz transducer was 

used to scan the interscalene and median nerves and a curvilinear array, 1 - 6 MHz (3 MHz) 

transducer for imaging the sciatic nerve. For the interscalene and median nerve scanning, 

the cadaver was positioned in the supine position, whereas for the sciatic nerve scanning, 

a prone position was used. Each nerve scan was repeated 10 times and the average stiffness 
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values in kPa were calculated. Intraneural and extraneural stiffness of the nerves were 

measured. 

. 

5.3.2 Results of Nerve Stiffness 

The B-mode and corresponding SWE images of the interscalene, median and sciatic nerve 

in the TEC model are shown in Figure 47, 48 and 49 respectively. 

A ROI was selected in the B-mode image corresponding to the nerve and surrounding 

tissues. The SWE US system displayed stiffness values of the ROI as mean, min, max and 

standard deviation on the right side on the US image. The ROI selected for this study had 3 

mm diameter. 

 

Figure 38: US B-mode and corresponding SWE image of the interscalene nerve. 
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Figure 39: US B-mode and corresponding SWE image of the median nerve. 

 

Figure 40: US B-mode and corresponding SWE image of the sciatic nerve. 
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Figure 41: Intraneural and extraneural Young's modulus values of interscalene, median and sciatic nerve. 

The results were analysed statistically using the two-sample t-test. The two-sample t-test is 

applied to compare whether the average difference between the intraneural and 

extraneural tissue stiffness values are really significant or if it is due instead to random 

chance. The significance was defined as p< 0.05. The results demonstrated that a significant 

difference exists between the intraneural and extraneural stiffness values in all the three 

nerves imaged (Figure 41) with p = 0.00. The error bars in the figure indicates the standard 

deviation o the mean stiffness values for all nerves. This finding forms the platform to 

enable anaesthetists confidently to use SWE system for UGRA. This would not only increase 

the success rates of the nerve blocks, but also reduce nerve damage and further 

complications. 

5.4 VISIBILITY OF ECHOGENIC TUOHY NEEDLES IN THE US IMAGE 

The primary objective of the second case study was to assess the suitability of TEC models 

in examining needle visibilities. The secondary objective was to analyse the influence of 

insertion IP and OP to the ultrasound beam and at 30o, 45o, 60o and 75o angles of insertion. 

The needles under study (Figure 37) were inserted into the deltoid muscle, approximately 

3 cm over the biceps. The needle angle was calculated with respect to the US beam.  

After obtaining ethical approval from the University of Dundee TEC committee, the study 

was undertaken at CAHiD, University of Dundee, under the supervision of the Anatomy 
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Officer acting under the auspices of the Anatomy Act (Scotland) 2006, with a single 

TEC. US imaging was performed using an 8.5 MHz linear array US probe (Zonare, Mountain 

View, CA). Covering the US transducer with a long sterile sheath throughout scanning 

ensured protection of the probe. Video files of needle insertions were initially saved to the 

scanner hard disk and subsequently transferred to another computer. 

Two independent raters used a 5-point Likert score for needle shaft visibility (1 = very poor 

to 5 = very good). The tip visibility was assessed using a binary outcome (0 = not visible, 1 = 

visible) as clinical decisions about needle guidance in UGRA are made according to the 

presence or absence of the needle tip in the image. An engineered, angled, plastic block 

(Figure 42) was used to guide the needles at particular angles to the TEC. Insertions were 

made in such a way that all needle bevels directly face the ultrasound beam. No fluid was 

injected at any time during the trial and the needles were air-filled during insertions. All 

needles were of 80 mm length. Needle insertion at each angle was repeated 6 times per 

needle for both IP and OP making a total of 144 insertions (3 needles x 4 angles x 2 planes 

x 6 repeats). 

 

Figure 42: Angled plastic, engineered block used to guide needles at four different angles. 

5.4.1 Results 

The visibility scores of different needles were recorded and the scores from observers were 

averaged. US images of TEC models captured during needle insertion, IP at angles 30°, 45° 

and 60° are shown in Figure 43a, Figure 43b and Figure 43c respectively. The echogenic 

needles showed higher visibility compared to the non-echogenic needles and the difference 
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in their shaft and tip visibility scores were demonstrated to be statistically significant. In 

order to increase the visibility of needles when inserted at deeper angles, a curvilinear 

probe was used for imaging.  Figure 43c shows a curvilinear image, and so the needle angle 

with respect to the US beam will change at different depths. For the purpose of this study, 

it was assumed that the differences this would bring to the needle visibility over different 

depths is negligible and was assumed to have no significant effect on the overall results.  

 

Figure 43: US image captured during the insertion of echogenic Tuohy needle IP at (a) 30o, (b) 45o and (c) 60o 

to the US beam 

The relationships between needle insertion angle and insertion plane with the overall 

needle visibility were found with respect to the proportions of visible tips and needle shaft 

visibility scores as shown in Figure 44 and Figure 45 respectively. Figure 44a shows the 

proportion of visible needle tips (y-axis) against the insertion angle (x-axis) and Figure 44b 

shows the interaction between the proportion of visible needle tips (y-axis) and insertion 

planes (x-axis). 

Similarly, the interaction of proportion of visible needle shafts to the insertion angle and 

insertion plane are shown in Figure 45a and Figure 45b respectively. In general, an 
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improvement in needle tip and shaft visibility were noticed with insertions at smaller angles 

IP and with larger angles OP. Both echogenic needles showed improved visibility than the 

standard Tuohy needle when inserted IP and OP to the US transducer. However, in one in 

four cases, the tips of the echogenic needles were not visible (Munirama 2015). 

  

Figure 44: (a) Needle tip: Angle-plane and (b) needle-plane interactions (Munirama 2015). 

 

 

Figure 45: Visibility of needle shafts; angle-plane and needle-plane interactions (Munirama 2015). 

Contributions: Joyce J – Conducted the study and assessed the data sets, Munirama S & McLeod- Supervised & 

helped conducting the study, Roos E – Provided the TEC model for the study, Malachy C – Supervised the 

statistical analysis. 
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5.5 DISCUSSION 

The SWE nerve imaging study assessed the relative stiffness of the nerve and the 

extraneural tissue to see if the new SWE technique could be an easier tool to identify 

nerves. The absolute stiffness values of the nerves and the surrounding structures did not 

have much importance and so a volunteer study was not necessary to drive necessary 

conclusions. This study assumed that the intraneural and extraneural tissues were 

embalmed to the same level and that the any change in stiffness over time would also be 

uniform in and out of the nerve tissues. However, in the future it will be interesting to 

conduct a volunteer study to scan the nerve stiffness for a more efficient comparison. 

The needle study proved that the echogenic needles have enhanced visibility and this can 

be explained by their unique design as shown in Figure 37. The circumferentially positioned 

reflectors on the surfaces of the echogenic needles reflect the US beam back to the 

transducer unlike the standard non-echogenic needles which reflect the beam widely as 

seen in Figure 56. Echogenic needles also have a 10 mm gap between the reflector regions 

(Figure 37), which acts as a scale when seen in the US image. This helps anaesthesiologists 

to keep track of the needle depth, thus preventing accidental injections. 

These two studies demonstrated the use of TEC models for UGRA research. Other tissue 

models such as small animals and US TMMs are significantly different from humans and 

could mislead the hypothesis. The US B-mode image in Figure 56 shows a standard non-

echogenic needle inserted at 30°, IP to an EPP grey TMM. The image shows clearly the 

needle shaft and tip in the TMM and the visibility observed with the same needle in TEC 

model is very different that that seen in Figure 43a. Thus studies in non-anatomical or 

anatomically different models could produce a false sense of confidence. 
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Figure 46: Standard non-echogenic needle inserted IP to EPP grey TMM. 

5.6 CONCLUSIONS 

This Chapter aimed to explore the uses of TEC models for interventional US, UGRA research. 

Two case studies explored in this Chapter are good examples to demonstrate the benefits 

of TEC as tissue simulators for UGRA research. The TEC has proved to be an excellent model 

for these studies because of their anatomical similarity and tissue feedback compared to 

live human volunteers. 

The reported case studies tried to address needle and nerve visibility concerns in UGRA 

using TEC models. The nerve imaging study using the SWE US system has demonstrated 

significant differences between the intraneural and extraneural stiffness in the TEC model. 

The study thus suggests the use of SWE imaging for needle guidance, thereby increasing the 

confidence of the anaesthesiologist and reducing complications caused because of nerve 

damage, hence improving the procedure standards. 

The newly introduced echogenic needles were compared against non-echogenic needles in 

the second study and the interaction between needle shaft and tip visibilities with the 

insertion angle and plane were statistically assessed. The study demonstrated that the 

echogenic Tuohy and single injection needles have better shaft and needle visibilities than 

the standard Tuohy needle in the TEC model. The study concluded that, echogenic needles, 

irrespective of size, enhanced needle shaft and tip visibilities compared to standard non-

echogenic Tuohy needles in the TEC model. However, in one in four cases, the tips of the 
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textured needles were still not visible. Similar to standard non-echogenic needles, the 

interaction between needle insertion plane and angle had an effect on the visibility of the 

echogenic needles. 

The work reported denotes the successful use of TEC models for interventional US research. 

Technical, discrete studies like needle insertion cannot be conducted on human volunteers 

for ethical reasons. The TEC model was found to be extremely beneficial for these studies. 

In contrast to homogeneous US phantoms, TEC provided a characteristic US image, 

anatomically similar to living humans.  
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6.1 INTRODUCTION 

This Chapter considers the suitability of TEC breast tissue as a model for therapeutic US 

breast cancer research. Chapter Two introduced HIFU and MRgFUS as specific methods for 

non-invasive surgery. The technique has widely been used for treating uterine fibroids and 

prostate cancer (Wu 2007). However, because of the proximity of lesions to the ribs or 

overlying skin in the case breast cancer, HIFU can cause painful overheating or skin burns, 

respectively. An additional technical problem in the application of FUS to breast lesions is 

the frequent presence of large amounts of fat surrounding the tissue to be treated, which 

can hinder MRI monitoring of the local tissue temperature and thus interfere with 

assessment of the adequacy of the procedure. 

Recent developments in FUS have introduced novel US transducers specially designed for 

use with breast lesions (Payne 2012, Payne 2013). These systems surround the breast and 

allow application of FUS radially, thus improving the range of breast lesions that can be 

safely treated with reduced risk of side effects. However, to support the evaluation of such 

transducers applied to patients in clinical trials, there is a need to establish the efficacy and 

the accuracy of temperature monitoring of FUS with MRI, particularly in the fatty breast. 

This requires an appropriate anatomical model that imposes similar physical constraints to 

the normal or cancerous breast and responds to FUS in the same way. The work described 

in this Chapter explored the use of TEC breast tissue for this purpose. The main objectives 

of the study are as follows: 

a. To design and develop an MRI compatible HIFU chamber for conducting US sonications 

under MR guidance. 

b. To determine the differences between TEC breast tissue and fresh ex-vivo human breast 

tissue sonications in terms of focal temperatures. 

 c. To assess differences in temperature measurements between the use of a temperature 

probe and the MRI proton resonance frequency shift (PRFS) method. 
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6.2 BACKGROUND 

6.2.1 Breast Cancer & Breast Cancer Therapy 

Breast cancer is the commonest cancer in women in the UK, accounting for 30% of all new 

cancers in women, with an estimated 49,900 new cases in 2011, i.e. more than 130 every 

day (Cancer-Research-UK 2011). The lifetime risk of developing breast cancer is 1 in 8 for 

women in the UK. The Independent Breast Screening Review in the UK mentions growing 

public and scientific concern about over-diagnosis and over-treatment of certain screen-

detected cancers (IBSR 2012). Nearly 20% of all cancers diagnosed through the screening 

programme will not cause harm during the woman’s lifetime. However, it is currently 

impossible to prospectively identify cancers requiring no treatment and hence there is an 

urgent unmet clinical need to develop minimally invasive breast- specific treatment for 

small low risk tumours. 

The breast mainly consists of milk-producing glands surrounded by layers of connective 

tissue and fat. The glands consist of lobules that branch out and are connected to the nipple 

by small epithelial-lined channels called lactiferous ducts. The lobules are supported by the 

surrounding fatty tissue, which is composed of fat or adipose tissue, connective tissue, and 

ligaments. The lobules and ducts are together referred to as fibroglandular tissue. Breast 

cancer originates in the fibroglandular tissue and, depending on where it develops, there 

are two main types: ductal carcinoma and lobular carcinoma. 

Several therapy options are available for breast cancer treatment and are specifically 

selected depending on the stage of the disease. The treatments include breast-conserving 

surgery, mastectomy, radiation therapy, chemotherapy and endocrine therapy. During the 

later stages of breast cancer, surgical treatments like breast-conserving surgery and 

mastectomy may be preceded by chemotherapy (so-called neoadjuvant chemotherapy) to 

increase the likelihood of breast-conserving surgery. The local recurrence rate is also 

reduced by post radiation therapy and endocrine treatment post-surgery. However, 

complications and side effects of these treatment methods have been reported (Angelique 

and Newman 2007). 
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As described in Chapter Two, over the last two decades MRgFUS has become a widely 

accepted non-invasive tumour ablation therapy. MRI has proved to be an efficient option 

for planning and monitoring the treatment during tissue ablation because of its ability to 

permit thermal mapping, unlike other imaging modalities (Karakitsios 2014). The most 

significant benefit is its ability to produce real-time temperature maps during interventions. 

MRgFUS is used worldwide to treat liver, brain, bone, uterine fibroids and prostate cancers 

and it is currently used in a few countries for treating breast cancer including China, Japan, 

Germany and the USA (Wu 2007, Li and Wu 2013). Figure 47 shows an MRgFUS system used 

for treating breast cancer. 

 

Figure 47: MRgFUS system used for breast cancer (Namba 2014). 

6.2.2 PRF Thermometry and Errors with Fatty Tissue 

MR thermometry based on the PRFS was introduced in 1966 (Hindman 1966) and relates to 

the temperature sensitivity of the PRF. When a molecule is exposed to a magnetic field, the 

resonance frequency of its nucleus, ω is related to the magnetic field as shown in Equation 

18. 

  � = �� ∗ �(1 − �) (18) 

where 

Bo is the magnetic field strength. 
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γ is the gyromagnetic ratio. 

s is the shielding constant and depends on the chemical environment (Ishihara 1995). 

On heating up water molecules, a shift in ω results due to the rupture, stretching or bending 

of the hydrogen bonds. PRF based thermometry calculates the temperature distribution by 

measuring this PRFS (Karakitsios 2014) using Equation 19. 

  
�� = � − ���� =

ϕ���− ϕ(����)

αγ��B�

 (19) 

where 

ϕ��� is the measured phase. 

 ϕ������	is the phase from the reference image. 

 α is the PRF change coefficient. 

 γ is the gyromagnetic ratio. 

 TE is the echo time. 

 Bo is the magnetic field strength. 

 

Molecules such as lipids or N-acetyl-aspartate in the brain have constant, temperature- 

independent PRFS which are used as reference peaks to measure the PRF shift of water 

molecules with increasing temperature (Rieke and Butts Pauly 2008). PRF thermometry has 

proved to be a reliable and accurate tool for real-time temperature mapping (Poorter 1995, 

Bruno 2000). PRF thermometry, combined with MRgFUS procedures, has been reported to 

be accurate in predicting thermal coagulation in both ex-vivo and in-vivo animal 

experiments and in human studies (Graham 1999, Quesson 2010). 

While the PRFS method is an effective temperature measurement technique in tissues such 

as muscle which are mostly water, there can be significant errors in regions containing even 

small amounts of adipose tissue or fat (Hindman 1966). This is because of the reduced 
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hydrogen bonds in fat, making its phase variation with temperature negligible. Many 

biological tissues are composed of both water and fat (Poorter 1995), so there will be some 

phase change due to temperature. 

Because of this, it is still possible to calculate a phase sensitivity value using the phase 

changes observed, but with errors in the measurements. In addition to the temperature 

measurement errors in fat, notwithstanding recent developments of ring transducers, many 

transducers used in ablating tissue in the MRgFUS systems are not specifically designed for 

treating tumours in superficial organs like the breast, resulting in complications such as skin 

burns and overheating of rib cage (Furusawa 2007), as noted previously. 

6.3 MATERIALS AND METHODS 

Novel FUS systems are now being developed specifically for treating breast tumours. Payne 

et al (2013) report development of such a breast specific MRgFUS system, with the study 

using a goat udder model for testing, though the group has reported this as not ideal as a 

model for human breast. Because of the similarities of TEC to healthy tissue, as seen with 

tissue stiffness analysis in Chapter Four and from the needle guidance study in Chapter Five, 

TEC human breast tissue was analysed for its feasibility to be a more suitable model than 

in-vivo animal breast tissue for human breast FUS research and transducer testing. 

Anatomical similarity and the presence of surrounding fat matches healthy human breast 

tissue. This part of the thesis describes the sonication of TEC human breast samples under 

MRI guidance and monitoring of the temperature during this process using two methods: 

an external MRI compatible temperature probe and MRI PRF based thermometry. The 

sonications are compared with the results from sonicating fresh human breast samples 

obtained from prophylactic mastectomy. The study consisted of three main sessions and 

the materials and methods used in each stage are reported in the following sub-sections. 
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6.3.1 Laboratory Based Sonications in a MRI Compatible HIFU Chamber of Fresh 

Animal and Embalmed TEC Breast Tissue. 

An MRI compatible HIFU chamber was designed with Solidworks computer-aided design 

software (Figure 48a) and fabricated (Figure 48b) in the lab using a 3D printer. The material 

used to make the chamber was acryonitrile butadine styrene [ABS] plastic. All parts used in 

the chamber were plastic and glass to ensure the MRI compatibility. The step by step 

procedure in developing the chamber are given in Appendix II. A tissue holder was also 

designed and built as shown in Figure 48c.  

The sides of the tissue holder were made with US transparent Mylar film of 0.075 mm 

thickness (PSG Group Ltd, London, UK). After building the chamber and the tissue holder, 

they were taken to the MRI room, near the magnet to ensure their MR compatibility. It was 

found that they were safe to be used in the MRI. An MRI compatible HIFU bowl transducer 

(1.09 MHz, 69 mm focal length), developed during another doctoral project (Qiu 2014) was 

used in the chamber for delivering US energy. The efficiency of the transducer was tested 

using an impedance analyser (Model number: 4396B, Agilent) and was found to be 72%.  

 

Figure 48: MRI compatible HIFU chamber (a) designed and (b) developed. (c) Tissue holder 
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The field mapping of the US transducer (1.09 MHz) in the chamber was done using a needle 

hydrophone with active area, 1 mm (1.0 mm probe, Precision Acoustics Ltd, UK). The 

experimental set-up and acoustic pressure map are shown in Figure 60a and b respectively.  

 

Figure 49: (a) Measuring the pressure in the focal region of the FUS chamber with a needle hydrophone, (b) 

Pressure map in and around the US focus. 

The chamber was tested first using fresh chicken breast ex-vivo and the experimental set-

up is shown in Figure 61.  The power amplifier used for the experiment was an ENI 3100LA 

radio frequency power amplifier and it provides up to 100 W of linear power with low 

harmonic and intermodulation distortion. The device has an operational frequency range 

of 250 KHz to 150 MHz and a nominal gain of 55 dB ± 1.5 dB.  

The temperature probe was inserted to the sample and was positioned at the focal zone 

using distance calculations. The tissue holder was designed in such a way that the focus of 

the chamber is 2 cm deep from the midpoint of the tissue holder surface. Markings were 

made in the temperature probe to match these distances and the probe was carefully 

inserted into the sample. Extra care was taken during the insertion to prevent any bending 

of the sensor as this might result in a slanting position of the tip of the sensor resulting in 

erroneous measurements. Once the temperature probe is inserted to the focal zone, a fast 

US scan was conducted to ensure its location.  
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Figure 50: Lab-based HIFU experimental set-up (a) schematic and (b) image. 

6.3.2 MRI Guided Sonications of Ex-vivo Tissue Using the Chamber 

After successful testing of the chamber in the lab, the experiments were conducted using 

animal and human ex-vivo samples under MRI guidance. MRI was used to image the 

chamber and the sample to ensure correct placement of the temperature probe tip. The 

TEC breast sample used for the experiments were provided by CAHiD at University of 

Dundee. US and a mammography unit were used to image the whole embalmed cadaveric 

breast after dissection from the cadaver before samples were excised from it for 

experimentations. Figure 51a and Figure 51b show the images obtained from the US and 

mammography imaging respectively. Afterwards, a rectangular block of breast tissue, 

measuring 4 cm ˣ 6 cm was carefully dissected from the high Body Mass Index (BMI) and 

predominantly fatty whole breast sample without damaging the skin. 
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Figure 51: a) US image of the whole soft-embalmed human breast. b) X-Ray image of the predominantly fatty 

whole soft-embalmed human breast. 

To explore the effects of embalming on the production of visible lesions during FUS, other 

ex-vivo tissues, including fresh chicken breast and porcine belly, were also embalmed, with 

the embalming process shown in Figure 52, in this case with chicken breast samples. 

Chicken breast was chosen to represent muscle and porcine belly as a better proxy for 

breast as it has both muscle and fat layers. 

 

Figure 52: Chicken breast tissue embalming process. (a) Tissue before embalming, (b) Injecting embalming 

fluids, (c) Tissue after injection, (d) Tissue immersed in TEC tank fluid after injection of embalming fluids. 

(Weights of sample before and after embalming were 68 g and 82 g respectively). 

The chamber was placed in a 1.5 T MRI (GE Medical systems, USA) as shown in Figure 53. 

The coil used for imaging is an 8-channel interventional coil consisting of two 24 cm square 

paddles (DuoFLEX Coil Suite, GE Medical Systems, USA). Reference temperature data were 

collected using an MRI compatible temperature probe (Model : FOTEMP1, Optocon Optical 
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Sensors and Systems, Germany). Before experiments were conducted, temperature probe 

was calibrated using the 'one point calibration' method noted in the FOTEMP1 user manual 

(Optocon 2010) to ensure that the temperatures displayed were the real temperatures.  

 

Figure 53: Set-up showing the chamber in the MRI scanner before sonication 

6.3.3 MRI Guided Sonication Using Exablate 

The MRI guided sonication results using the 1.09 MHz transducer (Qiu 2014) built into the 

chamber and the temperature probe-measured temperature data were compared with 

sonications performed with the commercial Insightec Exablate system and the temperature 

readings with those acquired using MRI thermometry. The set-up schematic and images are 

shown in Figure 54. The tissue holder containing the sample and degassed water was 

carefully placed on top of a gel pad (Insightec Ltd, Israel) ensuring no air bubbles were 

trapped between the layers. The gel pad was placed in a cylindrical container with a Mylar 

layer as the bottom surface, making it US transparent (Figure 54a). The container with the 

tissue holder and sample was then placed on the Exablate Mylar platform (Figure 54b) and 

degassed water was used for coupling between the Mylar layers. 
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Figure 54: (a) Schematic representing the set-up during Exablate sonications and (b) Picture of the set – up 

with closer view of the US array and positioning system mounted in the MRI scanner table of the first 

commercial MRgFUS system (Exablate 2000, Insightec, Haifa, Israel). 

6.3.4 Histology 

Apart from checking for visible lesions after sonicating the samples, the samples were also 

analysed for any histological changes post-sonication, with the tissues fixed and embedded 

in wax using the paraffin technique (Histology-guide 2015). Fixing the tissues used 4% 

formaldehyde solution. This process hardens the tissue, making the slicing of the sample 

easier. It also kills any bacteria, inactivates enzymes and enhances staining. Fixed samples 

undergo dehydration and clearing processes where the water content in the sample is 

replaced by xylene. The fixed samples are then sliced into thin sections, as seen in Figure 

55, and embedded in paraffin wax.  
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Figure 55: Formalin fixed section of previously fresh sonicated chicken breast samples. 

Thin sections of the paraffin-embedded sample were obtained using a microtome, then 

stained using haematoxylin & eosin (H & E) (Histology-guide 2015) for microscopic 

examination, as shown in Figure 56. H & E staining is the most commonly used staining and 

is used to give contrast to the whole cells. The specific purpose of this staining is hence to 

make cells visible for human eye by adding contrast.  

 

Figure 56: H&E stained slices of sonicated fresh chicken breast samples. 

6.4 RESULTS 

This results section is divided into three main parts. The first sub-section presents the 

results from the lab-based testing of the MRI compatible chamber. The results from TEC 
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breast sonications in the chamber under MRI guidance are given in the second sub-section. 

The third sub-section presents the results from sonications using the commercial Exablate 

MRgFUS therapy delivery system (Figure 54). 

6.4.1 Testing the Chamber 

The initial testing of the chamber was conducted by sonicating fresh chicken breast and 

porcine belly samples. Fresh ex-vivo samples were brought to room temperature and 

sonications were carried out at output acoustic power of 40 W, 50 W and 60 W for durations 

of 60 s. The output power values were Power values were specifically selected to ensure 

sufficient temperature rises to produce clearly visible lesions. Temperature readings 

acquired using the temperature probe were logged every second and saved to the 

computer, providing the graph shown in  

Figure 57a. Each sonication was repeated three times to analyse repeatability.  

Figure 57b shows temperature readings from repeated sonications at 50 W. 

 

Figure 57: (a) Sonication temperatures at 40 W, 50 W and 60 W power in fresh ex-vivo chicken breast sample 

and (b) temperatures for repeated sonications at 50 W power in chicken breast samples for 60 s (Sonication 

start time – 0 s and stopping time – 60 s). 

Sonications produced visible lesions in both the chicken breast and porcine belly ex-vivo 

samples and the size of the lesions increased with power, as expected. Figure 58 shows 

lesions formed in fresh chicken breast samples during sonications. 
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Figure 58: Ex-vivo fresh chicken breast lesions as a result of sonications at (a) 40 W, (b) 50 W and (c) 60 W for 

60 s. 

6.4.2 MRI Guided Sonications of Ex-vivo Samples in the Chamber 

After successful testing of the chamber, experiments were conducted using TEC breast 

tissue and fresh ex-vivo human breast tissue under the guidance of MRI (Figure 54). MRI 

guidance was used to ensure the correct position of the temperature probe tip before 

starting the sonications. MRI axial and coronal images of the chamber with samples in the 

tissue holder are shown in Figure 59. The figures show the position of the temperature 

probe tip in both the axial and coronal planes. 

 

Figure 59: (a) Axial and (b) coronal images of the chamber with the sample in the tissue holder. Crosses mark 

the position of the temperature probe. 
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TEC breast samples were sonicated under 40 W, 50 W and 60 W powers for a duration of 

60 s. The TEC breast sample before and after sonication is shown in Figure 60. No visible 

lesion was seen in the sonicated TEC breast sample upon dissection. The sonicated breast 

tissue, which was largely fatty, as shown by mammography and US of the specimen in Figure 

51, was examined histopathologically, confirming the absence of any discrete lesion. 

However, a layer of melted fat was formed on top of the water after sonication (Figure 60c). 

The temperature rise during sonications are shown in Figure 61. 

 

Figure 60: TEC breast sample (a) before and (b) dissected sample after sonication. (c) The layer of melted fat 

floating in the water post-sonication. 

 

Figure 61: Thiel human breast sonication temperature graphs at different power. (Sonication start time – 0 s 

and sonication stop time – 60 s).
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Fluctuations in the temperature readings were observed during the higher power 

sonication process and, unlike the fresh chicken samples in Figure 68, the temperature 

started to decrease before sonication was stopped at higher power. Further rises at later 

stages of recording after stopping the sonications (as seen at 250 s for the 60 W sonication 

in Figure 61) were also noticed at higher powers. This may be explained by the fact that the 

TEC breast tissue samples utilised were primarily made of adipose tissue and heating the 

tissue resulted in the fat melting in the focal region of the FUS field, causing the temperature 

probe tip to change its position. This effect was significant at higher powers because of the 

increased melting of fat. The melted fat was visible and floated on top of the tissue after 

sonications. However, similar to the fresh chicken breast tissue, the temperatures increased 

with power. 

After receiving ethical approval from Tayside Tissue Bank, fresh human breast ex-vivo 

samples were collected from prophylactic mastectomy (Figure 62a). The tissue was imaged 

using mammography prior to doing experiments to ensure that the dissected sample was 

not pathologically significant. Any pathologically significant samples had to be returned to 

the tissue bank without using them for research purposes. The sonications were carried out 

under MRI guidance at a power of 50 W for a duration of 60 s to compare the results with 

the TEC breast sonications. Because of the restrictions in obtaining multiple samples from 

surgery and the rarity of prophylactic mastectomy surgeries, it was not possible to conduct 

repeated sonications with fresh human ex-vivo samples. 

The temperature map during sonication is shown in Figure 62b. Similar to the observations 

in the TEC breast sample sonications, the temperature graph during fresh ex-vivo breast 

sample sonications also showed fluctuations. Even though the duration of sonication was 

set to be 60 s to match the Thiel breast sample experiments, a temperature rise up to 132°C 

was recorded within 10 s of starting the sonication. Hence, the sonication was stopped after 

10 s and the temperatures started to drop soon after, until 40 s after the stop time, when a 

further rise was noticed from 88 to 96 °C. Again, this may be because of temperature probe 

tip displacement due to the melting of adipose tissue. 
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Figure 62: (a) Fresh human breast ex-vivo specimen collected after mastectomy and (b) temperature map 

during sonications (Power - 50 W). 

The sonicated sample was immediately transferred to 4% formaldehyde solution before 

sending it for histology analysis. As it was important to keep the sample whole for the 

histology analysis, the sonicated sample was not dissected to inspect for the presence of 

any lesion visually. However, slices of the sample made during the histology analysis showed 

visible differences between sonicated and non-sonicated regions as shown in Figure 63. 

 

Figure 63: Slices of formalin fixed (previously fresh) human breast ex-vivo samples and clearly visible sonicated 

regions in the slices. Sonicated regions are marked in red circles. 

It was observed that the temperature rise in the TEC tissue was lower and slow when 

compared to fresh ex-vivo human breast tissue sonicated at the same power, as shown by 
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comparison of Figure 61 and Figure 62. This was further investigated by calculating the US 

attenuation coefficient of TEC breast sample using Equation 10 and the set-up shown in 

Figure 16c in Chapter Three. The US attenuation coefficient of TEC breast sample was 

measured to be 0.0063 ± 0.0001 dB.cm-1.MHz-1. This is at the low end of the range of US 

attenuation coefficients of in-vivo human breast tissue in the literature, 

0.075 ± 0.0001 dB.cm-1.MHz-1 (Culjat 2010), also given in  

 

Table 1. 

The significant decrease in the US attenuation between the TEC breast tissue and in-vivo 

human breast tissue may be because of the higher water content in the former. 

Theoretically, this should decrease the US absorption in the TEC sample, thus preventing 

higher temperature rises as measured in the fresh ex-vivo human breast tissue. The lack of 

visible lesions may be explained by the fact that, the thermal ablation of tissue with HIFU 

causes denaturation of proteins, one of the many effects of soft-embalming is also the same 

(Holzle 2012). To investigate further, the experiments were repeated with soft-embalmed 

chicken breast tissue to test the hypothesis that no visible HIFU lesions form because 

proteins are already denatured in soft-embalmed tissue. 

6.4.3 Sonicating Soft-Embalmed Chicken Breast Tissue 

Soft-embalming of fresh ex-vivo chicken breast followed the same procedure as for the 

embalming, shown in Figure 63. The embalmed chicken breast tissue before and after 

sonications and the temperature graphs for sonication at different power levels in the Thiel-

embalmed chicken breast sample are shown in Figure 64. 

As with the TEC breast tissue sonications, these experiments did not result in any visible 

lesions in the sonicated region. However, the temperature rise was substantially higher at 

higher power levels than that of TEC breast tissue. This may be because of the decreased or 

no fat content in the ex-vivo chicken breast samples when compared to the TEC breast 

tissue. 



125 

 

 

 
Figure 64: Soft-embalmed chicken breast tissue (a) before and (b) after sonications.  

(c) Graph showing the temperatures during sonications at different powers. (Sonication start time – 0 s and 

sonication stop time – 60 s). Sonicated region marked in red circles shows no visible lesions. 

6.4.4 Sonications Using MRI Guided FUS Exablate System 

The initial sonication in the chamber under MRI guidance for positioning the temperature 

probe acquired temperature measurements in the sonicated region for both embalmed and 

fresh ex-vivo samples, as shown in previous sections. However, one of the aims of this work 

was to determine possible errors in MRI thermometry while sonicating adipose tissue. 

Having collected temperature measurements using an external temperature probe, it was 

important to conduct the same experiments in a clinical setting and measure the 

temperature reading using MRI PRFS thermometry. A control experiment was initially 

conducted by using degassed water in the tissue holder and comparing the temperature 

data measured using the thermocouple and the MR PRF thermometry. The control 
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experiments indicated errors less than 0.45 ± 0.13% between the two readings when 

repeated 3 times.  

The schematic of the experimental set-up is shown in Figure 54. The resultant of MR image 

of the TEC human breast sample is shown in Figure 65. The sample is in the tissue holder 

used for the chamber experiments and is placed over a gel bed and coupled to the Exablate 

transducer using a cylindrical container with an US transparent Mylar base. The tissue 

holder containing the sample was filled with degassed water. 

 

Figure 65: Sample arranged in the tissue holder in the Exablate system. 

A screen shot of the Exablate treatment planning window is shown in Figure 66, with the 

area of sonication pre-selected to be in the centre of the tissue. The sonications were 

conducted at 40, 50 and 60 W for durations of 60 s to match the experiments with the TEC 

breast tissue in the bespoke chamber. Temperature graphs of the sonications can be seen 

at the bottom-right corner of Figure 82: the green line represents the average temperature 

over the nine pixels surrounding and including the selected pixel, and the red line is the 

temperature at the selected pixel.Sonication at each power was repeated twice using 

different samples dissected from the same TEC breast. Tissue was brought to room 

temperature (25°C) before sonication to ensure uniform heating for different samples and, 

after each sonication, the degassed water used for acoustic coupling was replaced and a 

different tissue sample was placed in the tissue holder. Table 11 shows the average 

temperatures recorded using both the MRI PRFS method and the temperature probe. Each 

measurement shown is an average of two repeated measurements. 
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Figure 66: Exablate treatment planning window with measured temperatures shown bottom-right. 

Table 11: Temperature readings measured using temperature probe and MRI PRFS method. 

 

Table 11 shows differences which increased significantly with increased power. This might 

be because of the errors in PRFS thermometry with the adipose tissue. This was further 

investigated by sonicating fresh ex-vivo chicken breast and porcine pure fat samples using 

Exablate and using both the MRI PRFS method and temperature probe to measure the 

temperature differences at a power of 50 W for a duration of 60 s. The results showed 

differences between the temperature data measured using the both methods in porcine fat 

samples (Percentage error – 19.5%) and the data acquired using the both methods in fresh 

chicken breast samples agreed with each other (Percentage error – 1.8%)(Figure 67). This 
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confirms that the errors in thermometry in measuring temperatures in fat is the primary 

reason for the differences observed in Table 11. 

The higher differences in temperature data in Table 11 can also be considered due to the 

thermocouple tip changing location due to more fat liquefactions at higher powers. 

However, it is most likely a measure of MR PRF thermometry errors due to heterogeneous 

heating of adipose tissue. Even if the thermocouple moves due to fat liquefaction, if it is 

showing high temperatures which the MR cannot detect, then it is clearly shows the errors 

in PRF thermometry whilst measuring temperatures in fatty tissue. Heterogeneous heating 

(marked in red circle) can also observed that during the sonication of porcine fat samples, 

as shown by the screen shot of Exablate treatment map in Figure 68. Figure 68 concludes 

the key results from this chapter.  

 

Figure 67: Temperatures measured using MR PRFS method thermometry during sonication of fresh ex-vivo (a) 

chicken breast (pure muscle) and (b) porcine pure fat samples.  
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Figure 68: Exablate screen shot obtained after the sonication of porcine fat samples. 
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Figure 69: Differences in temperature rise between fresh and embalmed ex-vivo samples of (a) human breast tissue and (b) chicken breast tissue. The red circles 

denotes some breakage of bonds in the region of sonication. 
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Figure 69 shows the corresponding temperature differences, measured using temperature 

probes and histological images of human breast ex-vivo and chicken breast ex-vivo samples 

in both fresh and embalmed tissues. It has to be noted that chicken 'breast' tissue does not 

bear any resemblance to human breast tissue as is composed of pure muscle tissue (protein) 

with very little fat. 

Figure 69 is not intended to compare chicken breast sonications with TEC human breast 

sonications, but the effects of sonications in TEC is compared with that of fresh human fatty 

breast tissue. Sonication effects on muscles is given by showing the fresh and embalmed 

chicken breast samples. The histological images clearly show the sonicated regions in fresh 

human and chicken breast sonications. The red circled region shows the breakage of bonds 

within the sonicated region.  However, there no significant changes were seen between the 

sonicated and non-sonicated regions in soft-embalmed human and chicken breast samples. 

TEC breast tissue behaved differently from fresh ex-vivo human breast tissue in terms of its 

lower attenuation coefficient resulting in lower peak temperatures and the sample also 

failed to produce any visible lesion.  

6.5 DISCUSSIONS AND CONCLUSIONS 

This Chapter aimed to assess the suitability of TEC breast tissue as a model for therapeutic 

breast HIFU pre-clinical research. As previously stated in the introduction of this Chapter, 

the main objectives of the study were to design and develop and MRI compatible HIFU 

chamber and to determine the differences between TEC breast tissue and fresh ex-vivo 

human breast tissue. The study also aimed to assess the differences in temperature 

measurements between the use of a temperature probe and MRI PRFS method. An MRI 

compatible chamber was designed and developed for the HIFU studies. 

Unlike with fresh ex-vivo animal breast samples, the sonications of TEC breast tissue failed 

to produce any visible lesions. Denaturation of the tissues is one among the many effects 

of the Thiel embalming salt solution and this is the most likely reason that no visible lesions 

were produced during heating, as heating also denatures the tissue. Even though the Thiel 

salt solution denatures the tissue, this effect is caused due to the presence of chemicals in 
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the embalming solution and is different from the denaturation caused by the heating during 

FUS. The absence of lesion while sonicating embalmed samples were later confirmed by 

sonicating embalmed chicken breast samples. The sonicated sample was 

histopathologically analysed to confirm this finding, as shown in Figure 69. 

While comparing the TEC breast sonications with sonication of fresh ex-vivo human breast 

tissue, it was observed that, at the same power, the heating of TEC tissue was much lower. 

This was further investigated by measuring the attenuation coefficient of TEC breast tissue, 

which, at 0.0063 dB.cm-1.MHz-1, is lower than the attenuation coefficient of in-vivo human 

breast tissue, 0.075 dB.cm-1.MHz-1. To understand further, the attenuation coefficient of 

fresh ex-vivo human breast tissue has to be calculated as the work presented here compares 

TEC breast tissue with ex-vivo human breast mastectomy specimens. 

As explained earlier, this has not been possible due to the rarity of prophylactic 

mastectomies. It has thus been assumed that there is no significant changes in the US 

attenuation coefficient in fresh ex-vivo human breast tissue as the experiments were 

conducted within two hours of surgery. The low figure for TEC breast tissue may be caused 

by the presence of large amounts of water-based embalming fluid, making the values of 

attenuation coefficient close to that of water (0.002 dB.cm-1.MHz-1). Since, Thiel tissue is 

denatured, the consequent reduction in microstructure may relate to the lower levels of 

attenuation. 

As mentioned in the background section of this Chapter, MRI PRFS methods of measuring 

temperatures shows errors in fatty tissue. In order to use this method in pre-clinical trials, 

it was important to consider the differences in the readings between the MRI PRFS method 

and real-time temperature probe measurements. 

Experiments were repeated with the Exablate commercial system using the same power 

and sonication duration. It was observed that there are differences between the peak 

temperatures at the same power and the percentage difference increased at higher powers. 

Because of the reduced hydrogen bonds in fat, the phase variation with temperature is 

negligible and at higher powers, melting of more fat makes these phase changes almost 
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absent, resulting in higher percentage errors. Temperature comparison experiments were 

repeated using fresh ex-vivo chicken breast samples and the measured temperature using 

both methods showed good agreement. 

To summarise, 

1. Sonicating TEC fatty breast specimen did not produce a visible lesion and is unlikely to be 

a good model for in-vivo human breast tissue for pre-clinical trials. 

2. The pre-existing denaturation in the embalmed tissues, made it not possible to see 

lesions even during the histology examinations. 

3. Issues with the MR thermometry in measuring fatty tissues was investigated using a 

predominantly fatty TEC breast tissue, deliberately selected to model the most difficult 

situation during breast HIFU clinical trials. 

The MRI PRFS temperature measurement method showed differences from the 

temperature probe readings and this suggests the need for more accurate (probably 

invasive) means of temperature measurements such as using temperature probes during 

pre-clinical trials for breast cancer research. Though clinically MRgFUS is likely in sonicating 

breast cancer, the problems might arise in measuring temperatures in the margin of 

tumour, especially in fatty tissue as seen by the errors in the temperature measurement of 

ex-vivo fatty embalmed human breast and fresh ex-vivo porcine fat samples. Search for an 

ideal model for in-vivo human breast tissue is continuing. 
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7.1 INTRODUCTION & MOTIVATION 

This Chapter is dedicated to demonstrating the possibilities of using Thiel-embalmed mice 

as an easily accessible US model for high frequency systems testing. As seen in the earlier 

Chapters, the TEC model derives benefits from being anatomically the same as humans and 

the case studies presented in Chapters Five and Six have demonstrated some of the ways 

in which the TEC model may be considered for US research. However, one of the main 

drawbacks of a TEC model compared to artificial US phantoms is its reduced accessibility. 

Only a few places globally have Thiel embalming facilities and that limits its use. Even at 

research institutes that have TEC models, sometimes it is useful to have an anatomical 

model that is cost effective, easier to handle and readily accessible. 

Live small animal models are the most commonly used in-vivo models for clinical research. 

However, for development of imaging applications such as in µUS, where an anatomical 

model is highly preferable for testing, a live model is not a necessity. Literature shows the 

use of fresh dead or frozen mice during the initial stages of research (Fu 2013). However, 

fresh or frozen dead mice carry an infection risk and are not reusable as their tissue 

properties change over time. Thiel mice, introduced in this Chapter suit applications where 

a small, ex-vivo anatomical model is needed. In addition to being readily available, reusable 

and easier to handle due to their small size, they are cheaper to access and no ethical 

approval is needed for their use. They may also contribute towards reducing the number of 

live mice used for medical research, assisting the goal of the three R’s, replacement, 

reduction and refinement, in animal testing. One of the primary advantages of having a 

Thiel mice model is its reusability. The same mice can be re-used and this will allow 

comparing the development of systems over time. 

This Chapter presents the embalming techniques for preserving mice. The embalmed mice 

organs are imaged using high frequency US imaging systems and compared with live mice 

images. Later in the Chapter, two case studies demonstrate the use of Thiel mice as tissue 

models in high resolution imaging systems development. 
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7.2 THIEL EMBALMING OF MICE 

Thiel embalming of human cadavers is an established method in the literature (Thiel 1992a, 

Thiel 1992b, Thiel 2002). The work discussed in this Chapter optimises the Thiel embalming 

technique for embalming small animal models such as mice. Embalmed mice are also tested 

using high frequency US, MRI and OCE imaging systems, thus assessing their use for testing 

µUS systems. 

7.2.1 Embalming Protocols 

Thiel embalming of mice has not been done before and there is no information available on 

any changes in concentrations of chemicals used for enabling the correct preservation for 

imaging purposes. Because of their smaller size, concentrations of fluids needed for 

successful embalming may differ from use in humans and hence, with the help of the CAHiD 

Anatomy Officer, six different protocols (Table 12) were developed and used on one mouse 

each, with a total of six mice embalmed. Embalming Fluid 1, the arterial fluid, is normally 

infused into the femoral artery and embalming fluid 2, the venous fluid, is normally injected 

into the superior sagittal sinus with the intent that it reaches the internal organs faster. 

The expectation is that muscle compartments receive mostly arterial fluid while internal 

organs receive a mix of both. Literature suggests that venous fluid can be added to the 

arterial fluid up to a ratio of 1:1 (beyond which the muscles become too stiff in 

humans)(Thiel 1992a). After injecting arterial and venal fluids, the mice were immersed in 

the Thiel tank fluid. The constituents of the arterial, venous and tank fluids used for the 

Thiel embalming are given in Chapter Four, Table 6. 

The proportion of arterial and venous fluids for different protocols are shown in Table 12. 

The immersion fluid used in all the six embalming protocols are the same, the Thiel tank 

fluid. Generally, a 60 kg body needs about 15 - 20 L of arterial and venous fluid combined. 

For immersion, the amount of tank fluid is calculated as approximately four times the body 

weight. The actual process of mouse embalming was kept the same as for the human but 

with lesser amounts of fluids and a shorter embalming period. 
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Table 12: Thiel mice embalming protocols 

Number 

Embalming fluid 1 (A) - Arterial Fluid 

Embalming Fluid 2 (V) - Venous Fluid 

Immersion 

fluid 

SET 1 

Arterial fluid – Torso compartments 

Arterial fluid – Muscles  

Thiel tank fluid 

SET 2 

Arterial + Venous fluid (2:1) – Torso 

compartments 

Arterial fluid– Muscles  

Thiel tank fluid 

SET 3 

Arterial +Venous fluid (1:1) – Torso 

compartments 

Arterial fluid–muscles compartments 

Thiel tank fluid 

SET 4* 

Arterial +Venous fluid (1:2) - Torso 

compartments 

Arterial fluid – Muscles 

Thiel tank fluid 

SET 5 

Venous fluid - Torso compartments 

Arterial fluid - Muscles  

Thiel tank fluid 

SET 6 

Arterial fluid - Torso compartments 

Venous fluid - Muscles  

Thiel Tank fluid 

* This is the same protocol used for embalming human cadavers using the Thiel method 

7.2.2 Sample Preparation 

Six wild type mice (3 males, 3 females; Age – 189 ± 67 days; Weight: 22g ± 6 g) were 

embalmed within 30 minutes after death using the protocols defined in Table 12. The mice 

before and after embalming are shown in Figure 70a and Figure 70b respectively. As the 
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skin of mice is delicate compared to human skin, the hair on the mice was kept intact while 

embalming as there were chances that the skin would break if it came in direct contact with 

the fluid. 

  

Figure 70: (a) Six wild type mice before injection the embalming fluids, (b) Male (Set V) and female (Set I) mice 

immersed in the tank fluid after injecting the embalming fluids. 

The time period suggested in the literature for human cadaver preservation is four months 

(Thiel 1992a, Thiel 1992b, Thiel 2002, Wolff 2008). Because of the significant weight 

difference between human and mice, only few weeks of immersion was considered 

necessary for the mouse model. However, to ensure proper embalming, the embalmed 

mice (Figure 71) were first scanned four months after the embalming date. About three 

weeks after the immersion date, the hair fell off the mice leaving nude skin 

afterwards. A mouse embalmed using the Set IV protocol, four months after its embalming 

date, is shown in Figure 71. After four months, all six mice appeared the same. However, 

some changes to the appearance of the skin were noticed after 2.5 years of the embalming 

date (Figure 78). 

 

Figure 71: Embalmed mouse after 4 months of immersion (Set IV) 
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7.3 IMAGING SOFT-EMBALMED THIEL MICE 

7.3.1 Imaging the mice with the Visual Sonics VEVO 770 

US imaging of all six mice was carried out using the facilities of Edinburgh Pre-clinical 

Imaging, College of Medicine and Veterinary Medicine, University of Edinburgh, after 4 

months of embalming. No differences in anatomical detail or definition of organs were 

observed between US images obtained from different mice, suggesting similar embalming 

in all the six different protocols. 

The visual appearance of the six mice did not show any changes between each other after 

four months of embalming. The B-mode images shown in Figure 72 are from a mouse 

embalmed using the Set IV protocol, as this is the same protocol used in Thiel human 

embalming. The US images of heart, kidney and liver obtained from Thiel mice (Set IV) 

acquired using the 35 MHz linear transducer (Vevo 800, Visualsonics, Toronto) are shown 

in Figure 72. Images acquired from live mice are also shown for comparison. Differences in 

the contrast between the two sets of images can be noticed. The higher contrast in the Thiel 

mice images is assumed to be because of the injected Thiel embalming fluids.  

After 4 months of embalming, the Thiel mice, embalmed using different protocols, did not 

show any differences in organ preservation in the µUS images, as shown in Figure 72. The 

mice were kept immersed in the Thiel tank fluid for another 8 months and skin elasticity 

measurements were made using a shear wave optical coherence elastography (SW-OCE) 

system, developed in the US lab, University of Dundee. This case study, discussed further 

below, not only estimates the shear modulus of the Thiel mouse skin but also demonstrates 

the use of small anatomical tissue models for testing high resolution imaging systems. 

7.3.2 Shear Modulus of Thiel Mice Skin Using SW-OCE System. 

The shear modulus, G, of Thiel mouse skin was measured using the SW-OCE system. SW-

OCE is a novel transient elastography method which produces high resolution quantitative 

elasticity maps as shown from a series of phantom studies (Song 2013a; Song 2013b; 

Nguyen 2014).
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Figure 72: High frequency US B-mode images acquired from Thiel mice embalmed using Set IV protocol (top) and corresponding in-vivo B-mode images 

(bottom) of (a) heart, (b) kidney and (c) liver (Live mice images: Courtesy - Carmel Moran).
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SW-OCE uses a piezoelectric actuator to produce mechanical vibrations in the tissue and 

the propagated shear waves are tracked in space and time using a phase sensitive Optical 

Coherence Tomography (OCT) (PhS-OCT) system at an equivalent frame rate of 47 kHz. The 

lateral pixel size is approximately 25 μm, allowing reconstruction of the local shear modulus 

(tissue stiffness) with high spatial resolution. The shear wave velocity is calculated from 

recorded wave data and the shear modulus is estimated using Equation 3.The detailed set-

up and description of the system are given in the literature (Song 2013a; Song 2013b; 

Nguyen 2014) and are not explained further. 

7.3.2.1 Experimental Set-up 

The SW-OCE system used for calculating the shear modulus of the Thiel mice (imaged after 

12 months of embalming) and fresh mouse skin was developed in the US lab at University 

of Dundee. Skin towards the lower end of the spine, was selected for study. This particular 

area was selected due to the ease of positioning the mice for experiments and the area was 

easy to mark in different mice. A black ink was applied to the surface to increase the 

absorption coefficient of light. The experiments were repeated with ex-vivo fresh wild type 

dead mice (one male and one female both aged six months at death), imaged within 30 

minutes of death. The deceased mice were carried to the facility soon after death, with 

transportation time 20 minutes. Hair removal cream was applied for 10 minutes and the 

hair was wiped off using cotton (Figure 73). Thus, the SW-OCE studies were conducted 30 

minutes after death as shown in Figure 73 

 

Figure 73: (a) Deceased fresh wild type mice after removing the hair near the end of the spine and (b) SW-OCE 

imaging set-up. 
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A comparison of the tissue stiffnesses in terms of their shear moduli is presented further. 

7.3.2.2 Results 

Figure 74 shows the structures of the skin of Thiel mice and fresh dead mice superimposed 

with colour map demonstrating the shear modulus obtained using the SW-OCE system. 

 

Figure 74: Shear modulus maps in of the skin of fresh dead and Thiel mice in KPa. 

The SW-OCE images show distinguishable difference in skin structure: the dermis layer 

thickness in female mice is significantly lower than male mice in both the fresh (Song 2015) 

and Thiel. The mean value of the shear modulus of a central region of the elastogram 

(0.16 mm deep * 1.5 mm long) is calculated and displayed in  Figure 75, together with the 

standard deviation. Elasticity values in Thiel mice are compared with the values from fresh 

dead mouse skin for both males and females. 

Significant differences were noticed between the skin stiffness for male and female mice 

both fresh and Thiel. However, there were no significant differences in skin stiffnesses 

between mice of the same sex embalmed using different protocols. In fresh mice, both 

sexes show averaged shear modulus values < 12 KPa, about three times lower than the Thiel 

mice. The trend of lower shear modulus in female than male skin remains the same in both 

the fresh and Thiel mice, as depicted in Figure 75.  
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 Figure 75: Shear moduli of Thiel mice compared with fresh dead mice for both sexes. 

The results indicate that the different embalming protocols did not have a significant effect 

on the skin stiffness in the Thiel-embalmed mice. The same Thiel tank fluid was used in 

immersing mice in all protocols and this may be the reason for the similarity in skin stiffness 

values. Similar to the SWE study of TEC in Chapter 4, Thiel cadaveric tissue is stiffer than the 

fresh ex-vivo tissue and there are differences in the skin stiffness values between both 

sexes. 

7.3.3 Microultrasound Scanning 

Since mice are an important target for µUS imaging, the development of µUS systems may 

benefit from an anatomically accurate, easily accessible Thiel mouse model. A µUS step 

scanner, developed in the US lab, Ninewells Hospital, Dundee was used to image Thiel mice 

with a 45 MHz transducer of 4.75 mm focal length in a study that aimed to look at the 

differences in the high frequency images of the six mice 2.5 years after first embalming. It 

also showed the possibility of using Thiel mice as an anatomical model during the testing 

and developing of the high frequency imaging system. 

7.3.3.1 Experimental Set-up 

The µUS scanning set-up is shown in Figure 76. 2 ml of degassed, 10% phosphate buffer 

solution (PBS) was introduced to the stomach and colon orally in order to remove air 
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pockets. The mouse cadaver was adhered to an acoustic absorber sheet using pins and was 

immersed in the degassed 10% PBS solution as seen in Figure 76. 

 

Figure 76: µUS scanning set-up 

The scanning plane was selected to be at a distance of 15 mm towards the head from the 

urethral opening, across the colon and the pelvic symphysis as shown in Figure 77. This 

plane was specifically selected as it was easy to locate in different mice irrespective of their 

size. 

 

Figure 77: Mouse anatomy schematic and the scanning line (Unisciel 2013). 

Visual images of the mice are shown in Figure 78. It can be seen that there are noticeable 

changes in the appearance of the skin in all the different mice. Mice embalmed using sets 

IV, V and VI protocols appeared to be preserved better way than those with sets I, II and III. 
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Figure 78: All mice from I to VI imaged 2.5 years after embalming date. 

7.3.3.2 Results 

The µUS images of the six different mice are shown in Figure 79 along the scanning plane 

marked in Figure 77.The µUS images of the colon and pelvic symphysis shows differences 

in the US propagation in mice embalmed using different protocols. Sets II and IV images 

show clearer images at increasing depth. Sets V and VI images appear grainy due to the 

presence of hair follicles in the PBS immersion solution. During the imaging, repeated 

changing of the PBS solution was used to decrease the presence of these follicles but this 

could not reduce the grainy appearance to any large extent. 

The embalming from Set IV to Set VI has to be viewed as forming a scale of decreased 

embalming effects, where Set IV appears very well embalmed (visibly and in the US image) 

and Set VI appears not completely embalmed with some hair follicles still intact on the skin. 

Similarly, Set III to Set I can be seen as on a scale of increased embalming effects, where Set 

III is over-embalmed, with tissue nearing deterioration, and Set I well embalmed, with some 

tissues in the abdominal region more embalmed than needed. So far, from the visible 

appearance and the µUS images, the Set IV mouse, embalmed using the same protocol as 

for humans, appears to be the best preserved. However, the preservation of the internal 

organs need to be assessed before reaching any conclusions.
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Figure 79: Mid-abdomen µUS images of six mice embalmed using different protocols.
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7.3.4 MRI Imaging of Thiel Mice 

In order to image the organs in Thiel mice embalmed using different protocols, they were 

imaged using 1.5 T MRI. The MRI images were acquired using a Signa HDx (GE Healthcare, 

USA) 1.5 T MRI scanner using a Fast Spoiled Gradient Echo (FSGE) MRI sequence with echo 

time (TE) 14.1 ms and repetition time (TR) 315 ms. This particular sequence is selected for 

imaging due to its ability in generating high quality images for smaller structures such as 

mice kidneys (Tang 2014). In clinical scenarios, FSGE is used for imaging small lesions, micro 

bleeds etc.  Slices showing the kidneys of different mice were selected and compared to 

observe the changes in organ preservation. A fresh dead mouse was also imaged within 30 

minutes of death for comparison. 

 Figure 80 shows a close view of kidneys in mouse embalmed with Set IV. The MRI coronal 

images of the kidneys in Figure 81 shows that they are preserved differently in mice 

embalmed using different protocols; the mouse embalmed using the Set IV protocol shows 

a higher degree of preservation with Set III being the least preserved, as the kidneys are no 

longer intact and appear damaged. It is also worth noting that the images in Figure 

81 acquired from the fresh dead mouse show the presence of air in the lungs. 

 

Figure 80: MRI Images of kidneys in Set IV mouse, a closer look. 
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Figure 81: MRI coronal images of Thiel mice obtained IP to see the kidneys (Marked in red circles), compared with an MRI images of a fresh dead mouse. 
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7.4 DISCUSSION AND CONCLUSIONS 

This Chapter considered different protocols for embalming small animals such as mice. 

The mice embalmed using six different protocols were imaged using SW-OCE, high 

frequency US and MRI. Two case studies are also discussed demonstrating the use of 

these readily accessible, qualitative anatomical models during the development and 

testing of high resolution imaging systems. Six embalming protocols, named as sets I to 

VI (3 male, 3 female) were used for embalming, with Set IV similar to the TEC protocol 

used for humans in the literature. 

The mice were imaged using a commercial µUS imaging system after four months of 

embalming and the images were compared with those acquired from live mice models. 

There were no significant differences between different mice in the external appearance 

or in the US images at this stage. 12 months after the embalming date, the elasticity of 

the mouse skin was assessed using the SW-OCE system developed in the lab and was 

compared with the stiffness values acquired from fresh dead mice. 

Significant differences were noted between the skin stiffness values for males and 

females for both the fresh and embalmed mice. However, there was no significant 

differences in skin stiffnesses between mice embalmed using different protocols within 

the same gender. This may be because the immersion fluid was the same in all protocols. 

In fresh mice, both sexes showed averaged shear modulus values < 12 kPa, about three 

times lower than the embalmed mouse skin. The lower shear modulus in female skin 

than male skin remained the same in both the embalmed and the fresh mice. 

2.5 years after the embalming date, corresponding approximately to the maximum 

permitted use of human TECs, embalmed mice were imaged using a µUS step scanner 

developed in the US lab, University of Dundee. The images of the colon and pelvic 

symphysis in Figure 79 showed differences in mice embalmed using different protocols. 

Set II and IV mice images appeared clearer at increasing depth, as shown in Figure 78. 

From the images acquired from the µUS scanner and from the visible appearance of the 

mice, embalming Set IV, the same protocol as human TECs, appeared to be the most 

suitable for embalming small animals. This was confirmed by imaging the mice using 

MRI, which showed the best tissue preservation in the Set IV mice. 
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In summary, this Chapter has optimised the small animal embalming protocol and it was 

shown that the TEC embalming protocols described in the literature for humans can also 

be used to embalm small animals, like mice. The case studies that have been presented, 

imaging the mice with SW-OCE and with the µUS step scanner demonstrate possible 

uses of the novel model. To bring the SW-OCE system and the µUS scanner a step closer 

to in-vivo clinical applications, ex-vivo studies were carried out using fresh and 

embalmed mouse models. This not only shows the usefulness of small, readily accesible, 

anatomical tissue models for system testing, but also demonstrates the suitability of 

Thiel-embalmed mice for such purposes. 

The advantages of using embalmed mice over fresh dead mice or frozen dead mice, or 

in-vivo small animal models when a live model is not a necessity, are that they carry no 

infection risk, are low cost, reusable, easier to handle and are readily accessible. The 

possibility to re-use the same mice repeatedly, provides experimental advantages in 

imaging system development. Because of their size, the embalming process is relatively 

easy, with no need for quantities of chemicals, and they are easily stored. Thiel mice 

could potentially be a successful replacement for live mice in the in-vivo studies where 

physiological feedback is not necessary. Moreover, because of their reusability they 

could potentially reduce the number of mice required for a study. To summarise, this 

Chapter has introduced Thiel mice for testing µUS systems during their development 

stage. 

  



151 

 

 

 

 

  

 

 

 

 

Conclusions and Future Work 

 

 

 

 

 

 

 

 

 

 

 

 

  



152 

 

8.1 INTRODUCTION 

This is the concluding Chapter of this thesis and includes a summary of key results 

achieved in the three main sections discussed. This thesis has discussed and analysed 

different models and techniques for research and testing of contemporary US systems. 

The key conclusions of this thesis is summarised in Table 13. The amplified summary is 

discussed further under each sub-section. 

Table 13: Key conclusions of the thesis. 

 

8.2 ACOUSTIC TEST OBJECTS 

Acoustic test objects with artificial TMMs are used nowadays for frequently performed 

US QA tests. A detailed review of these materials is presented in the literature (Culjat 

2010). In addition to being used for QA, TMMs are also used as basic tissue models 

during research and development of US systems. In order to create a base line, a range 

of TMMs were prepared in the lab and their acoustic and mechanical properties were 
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measured and compared with the values in the literature. All materials tested, except 

agar, met the necessary standards (AIUM 1990, IEC 1996) in terms of the acoustic 

velocity, acoustic impedance and attenuation coefficient. Appendix I of this thesis 

includes recipes and detailed steps for the preparation of these most commonly used 

TMMs. 

Even though TMMs have several limitations, they are the most commonly used 

materials for US systems testing. Hence as future work, a detailed study analysing the 

changes in the mechanical and acoustical properties of widely used TMMs over time 

would help towards appropriate selection of TMM for specific needs. 

Irrespective of the wide use of acoustic test objects with TMMs, there is a need for an 

anatomically significant, qualitative tissue model for US systems testing. A feasible 

solution would be to use TEC. These specific soft-embalmed models have been shown 

to be increasingly used over the last decade for medical research, partly because they 

are US compatible, unlike the cadavers embalmed using other methods (Eisma 2013). 

The work discussed in this thesis has assessed the suitability of TEC for their use as a 

model for testing various different areas of US development. 

8.3 SHEAR WAVE ELASTOGRAPHY SYSTEM 

The suitability of the TEC models for testing SWE system (Bercoff 2004, Bercoff 2010) 

has been evaluated by conducting a quantitative analysis of TEC tissue stiffness and 

comparing the results with the in-vivo human volunteer data (Arda 2011). TEC models 

embalmed in tank and bags were included for the study. The tissue stiffness values for 

bag-embalmed TECs were found to be higher compared to those in tanks. This finding is 

useful as it suggests one way to achieve proper selection of a cadaver for a specific 

application. While a subjects embalmed in a bag is less useful for research related to 

tissue properties, it would find many uses for studies needing slightly stiffer subjects 

such as biomechanical studies and surgical training. 

Close correlation was found between tank embalmed TEC tissue stiffness values and the 

in-vivo elasticity values, demonstrating the life-like characteristics of TEC. This is relevant 

as it indicates the possibility of using TECs during the development and testing of SWE 

systems (Joy 2015). One of the limitations of the study is the small number (n=8) of 
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cadavers assessed. A potential expansion of the study would be to include more subjects 

and conduct measurements of elasticity at different time points during embalming. This 

would help assess the changes in tissue stiffness values in the TEC models over time, 

thus providing more information on a time window where the properties of TECs remain 

almost the same. This would help users to specify a period during which these models 

can be used for repeated tests for research and development of systems. 

8.4 INTERVENTIONAL ULTRASOUND 

The use of TECs for interventional US, in UGRA research has also been assessed using 

two case studies. The first case study assessed TEC for a specific nerve stiffness study 

and the results supported the use of SWE system for nerve blocks in UGRA because of 

significant differences between the neural and extraneural tissue (Johnson 2009, 

Munirama 2012, Munirama 2013). The second case study used the TEC model to study 

the visibility of different types of needles, when used for UGRA nerve blocks. Because of 

ethical reasons, studies like needle insertion cannot be conducted on human volunteers. 

TECs have proved to be very useful models for these studies because of their anatomical 

similarity and, in the case of UGRA, the sensing of tissue feedback compared to live 

human volunteers (McLeod 2010). Irrespective of the specific results from case studies, 

both studies demonstrate the suitability of TECs being used as tissue models during 

interventional US research (Munirama 2015). 

8.5 THERAPEUTIC ULTRASOUND 

The suitability of TEC breast tissue for pre-clinical breast cancer therapeutic US research 

has also been assessed. The results indicated that the TEC model may not be suitable 

for breast cancer research as it failed to produce any lesions on sonicating. One of the 

effects of Thiel embalming is that the salt solution denatures the tissues (Holzle 2012) 

and this might be a reason for the failure to produce lesions during sonication as heating 

also denatures the tissue. This was later explained to be because of differences in the 

US attenuation coefficient values between the two. There is also the point that if Thiel 

tissue is denatured, the consequent reduction in microstructure may relate to the lower 

levels of attenuation. The pre-existing denaturation made it not possible to locate the 

lesion even during the histopathology analysis. 
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The differences in the temperature readings between the MRI PRFS thermometry and 

temperature probe measurements during fatty tissue sonications has also been 

assessed. It was observed that there were differences between the peak temperatures 

at same power and the percentage difference increased significantly at higher powers. 

MRI PRF thermometry is based on the phase variations with changes in temperatures 

(Pan 2010). Because of the reduced hydrogen bonds in fat, the phase variation with 

temperature is negligible and at higher powers, melting of more fat makes these phase 

changes almost absent, resulting in higher percentage errors. Temperature comparison 

experiments were repeated using fresh ex-vivo chicken breast samples and the 

measured temperature using both methods showed good agreement. 

Though clinically, the use of MRI PRFS based thermometry during sonication of in-vivo 

human breast tumours would work, problems might arise in measuring temperatures in 

the margins especially when the tumour is surrounded by fat.  The study has indicated 

that TEC breast tissue may not be suitable for breast HIFU pre-clinical trials and thus the 

search for an ideal human breast model still continues (Joy 2015b). 

8.6 MICROULTRASOUND 

In order to meet the demand for a small, anatomical model for testing high frequency, 

µUS systems, readily accessible, qualitative, reusable Thiel mice models has been 

considered. Different embalming protocols were tested to find the optimum the 

embalming procedure. It was observed that the Thiel protocol used in embalming 

human cadavers was suitable for embalming small animals like mice, preserving its 

anatomical characteristics. Among the various protocols tried, mice embalmed with the 

original Thiel protocol showed the greatest similarity to fresh dead mice in terms of 

organ and tissue preservation and mechanical properties (Song 2015). 

The case studies presented in imaging the mice with the SW-OCE system (Song 2013a, 

Song 2013b) and the µUS step scanner not only demonstrated the usefulness of small, 

readily accesible, anatomical tissue models for system testing, but also demonstrated 

the suitability of Thiel-embalmed mice for such purposes (Song 2015). 

The advantages of using Thiel mice over fresh dead mice or frozen dead mice, or in-vivo 

small animal models is that they carry no infection risk, are low cost, reusable, easier to 
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handle and are readily accessible. A comprehensive study by embalming more mice 

using the Set IV (Thiel) embalming technique (Thiel 1992a, Thiel 1992b) and assessing 

the changes over time would be helpful. 

This would find a time period during which the properties of the mice are more or less 

remain the same (less deterioration), increasing the possibility to re-use the same mice 

repeatedly, provides experimental advantages in imaging system development. Thiel 

mice could potentially be a successful replacement for live mice in the in-vivo studies 

where physiological feedback is not necessary. Moreover, because of their reusability 

they could reduce the number of mice required for a study, thus allowing us to 

adherence to the three Rs in animal testing. 
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APPENDIX I - TMM Recipes 

This Appendix contains all the recipes for the TMMs prepared and tested in Chapter Three. 

1. Evaporated Milk Liquid TMM 

The recipe for the preparation of evaporated milk liquid TMM is adapted from existing 

protocol (Madsen 1998).The liquid low scatter TMM is a mixture of evaporated milk, 

distilled water, propan-2-ol and bio-cleanse. Some of these ingredients are slightly different 

from the original recipe due to the limited availability of exact chemicals. Thimersol, used 

to increase the anti-fungal properties of the TMM was replaced with bio-cleanse (Coalite 

Chemicals, Chesterfield, UK). In addition, propan-2-ol (Scientific & Chemical Supplies Ltd, 

Aberdeen, UK) was used instead of n-propanol. The quantity of materials needed for 

producing 1L of liquid evaporated milk TMM are shown in Table 14. 

Table 14: Ingredients to prepare 1 L of evaporated milk liquid TMM. 

Ingredient Quantity 

Distilled water 370ml 

Propan-2-ol 30ml 

Bio-cleanse 1.33g 

Evaporated milk 800ml 

 

The detailed step by step procedure to make the liquid TMM is as follows. 

1) Combine the bio-cleanse and evaporated milk in a glass beaker. 

2) Heat the mixture to 68oC in a hot water bath/hot plate to reduce the viscosity of the 

mixture. Stir continuously for uniform heat distribution and to prevent any parts of the 

mixture reaching temperatures near 72oC as this will start coagulating the milk solids. 

3) Carefully filter the hot mixture using filter paper and cool the filtrate to 40oC. 
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4) Combine distilled water and propan-2-ol in a 1L glass beaker and add the mixture to the 

filtered solution from step 3. 

5) Degas the mixture in a vacuum chamber or by warming to 40oC. 

6) Cool the liquid TMM to 30oC before storing in a phantom container. 

 

Figure 82: (a) Preparing Liquid TMM, (b) Removing air bubbles in the vacuum chamber and (c) Prepared 

degassed TMM.
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2. Evaporated Milk Solid TMM 

The recipe for the preparation of evaporated milk solid TMM is adapted from existing 

protocol (Madsen 1998). The solid form of evaporated milk TMM is made from the same 

ingredients as for the liquid evaporated milk TMM except that there is an agarose 

component (Millipore Ltd, Feltham, UK) added to produce a solid TMM. It is important to 

use high purity agarose as impurities in agar can result in a relatively high echoic final 

product (Madsen 1998).The list of ingredients and quantities needed for making a 1L TMM 

are shown in Table 15. 

Table 15: Ingredients to prepare 1 L of evaporated milk solid TMM. 

Ingredient Quantity 

Distilled water 644ml 

Propan-2-ol 56ml 

Bio-cleanse 1.33g 

Agar 28g 

Evaporated milk 700ml 

 

The detailed step by step procedure to make the solid evaporated TMM is as follows. 

1) Combine distilled water and propan-2-ol at room temperature in a 1L beaker and 

rapidly mix the high purity agarose. 

2) Cover the beaker with a plastic food wrap (pierced to control the pressure 

differences in and out the beaker) and warm up the solution in heated water bath 

until the mixture is transparent (around 90oC). 

3) Cool the molten agarose solution to 55°C by immersing the lower part of the beaker 

in a large container of cold water and stirring continually. 

4) Repeat steps 1, 2 and 3 in the liquid TMM manufacturing procedure to produce a 

500ml of filtrate evaporated milk solution. 
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5) Warm the 500 ml of filtered evaporated milk to 55°C. 

6) Combine the 500 mL of 55°C evaporated milk with 500 mL of 55°C molten agarose 

and mix well. 

7) After cooling to about 45°C, the liquid can be poured into any container and 

allowed to cool. 

 

The solution solidifies at 36 ± 1oC and the evaporated solid TMM has a melting point of 

80oC. 

 

Figure 83: (a) Condensed milk TMM preparation, (b) Filtering and (c) Final preparation.
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3. EPP Grey TMM 

The recipe for the preparation of EPP grey TMM is adapted from existing protocols 

(Ramanarine 2001, Inglis 2006). EPP grey agarose base TMM is robust TMM with a life span 

of few years. This is highly uniform and robust and the ingredients required for its 

preparation are shown in Table 16. 

Table 16: Ingredients to prepare 1 L of EPP Grey TMM 

Ingredient Quantity 

Distilled water 832.94ml 

99% Glycerol 119.86 

10% Benzalkonium Chloride 48.9ml 

Agar 31.8g 

400 grain SiC 5.6g 

3µm Al2O3 powder 10g 

0.3µm Al2O3 powder 9.3g 

 

Main steps of preparation as follows: 

1. Weight 0.3 µm and 3 µm Al2O3 powder and SiC particles in to a mixing beaker. Mix 

this well with a dry spoon and set this aside. 

2. Weigh agar separately and keep aside. 

3. Measure degassed water, pour majority of it to a cooking beaker, and leave the rest 

in another beaker. 

4. Add glycerol and 10% Benzalkonium chloride to the cooking beaker containing the 

water and place the cooking beaker to a water bath with stirrer attached. 

5. Set-up the stirrer speed to 135 rev/min and leave running. 

6. Add the left behind water, pour to the dry ingredients, and make it a fine paste. 



179 

 

7. Carefully add this paste to the cooking beaker stirring continuously. 

8. Slowly add the agar without stopping the stirring. 

9. Set the water bath temperature to 95°C and stirrer speed to 120 rev/min. 

10. When the temperature inside the cooking beaker reaches 95°C, start the clock and 

set the stirrer speed to 110 rev/min. 

11. The cooking time is 60-70 min. On completion of cooking time, set the heater 

temperature to 39 °C and stirrer speed to 100 rev/min. 

12. When the TMM temperature reaches 40.3 °C, remove the cooking beaker from the 

water bath, pour the TMM to the container, and leave it overnight to set. 

 

 

Figure 84: (a) EPP TMM preparation and (b) prepared TMM (Courtesy- Royal Infirmary, Edinburgh)
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4. Agar TMM 

Agar TMM (Figure 85) has a very simple manufacturing procedure (Zell 2007). A 2% agar 

TMM requires 2% weight high purity agarose powder and 98% degassed water. The 

ingredients has to be combined and heated up to 160 degrees or until the agar component 

melts completely and a clear solution is obtained. Continuous stirring of the solution is 

needed throughout the heating process to avoid formations of lumps. Bubbles formed at 

the top of the mixture is removed and the mixture is poured to the container to set over 

night. The TMM has a low life span of only few weeks, but the simple manufacturing 

procedure increases its use. 

 

Figure 85: Agar TMM
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6. PAA Gel-based TMM 

PAA based gel TMM is a clear TMM with fairly easy manufacturing process. However, 

precautions needs to be taken during preparation because of the neurotoxic and 

carcinogenic nature of monomer acrylamide. This TMM is specifically used for applications 

were a transparent material is required for testing such as photo-acoustic applications. The 

recipe for PAA was adapted from literature (Zell 2007). The ingredients needed to make 1 L 

PAA TMM is shown in Table 17. 

Table 17: Ingredients for making 1 L of PAA TMM 

Ingredient Quantity 

Degassed water 745 ml 

40% w/v acryl amide + 2% w/v N,N-Methylene-bis Acrylamide* 162 ml 

10% w/v ammonium peroxodisulfate(APS) 5 ml 

TEMED 2 ml 

*The recipe used 40% w/v acryl amide+ 2% w/v N, N-Methylene-bis-Acrylamide instead of 

40% w/v acrylamide in the original recipe. 

Main steps of preparation as follows: 

1) Add acrylamide to degassed water and stir to combine. Any bubbles formed are carefully 

removed. 

2) Add APS and TEMED to the mixture solution to catalyse the polymerization of acrylamide. 

3) Pour mixture solution into the mould to set for approximately 30-45 minutes. 

It is important that the mixture is poured to in to the container soon after addition of APS 

and TEMED as the solidification process can start momentarily and any delay in step 3 could 

introduce bubbles in the sample and can produce a non-uniform TMM. PAA should be 

stored in the fridge after wrapping it in plastic wrap or cling film to prevent evaporation of 

fluids. The TMM has a life span for few months.
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5. PAA Gel-based HIFU TMM 

PAA gel-based HIFU TMM is a relatively clear TMM almost the same manufacturing process 

as the PAA clear gel TMM. Like the name suggests, HIFU TMM is specifically used for focused 

ultrasound applications were a visible lesion need to be produced for testing. The recipe for 

PAA-HIFU TMM was adapted from literature (Teirlinck 1998, Prokop 2003, Gabriela 2007). 

The ingredients needed to make 1 L PAA TMM is shown in Table 17. 

Table 18: Ingredients to make 1 L of PAA gel-based HIFU TMM. 

Ingredient Quantity 

Degassed water 445ml 

Fresh egg white 300ml 

40% w/v acryl amide+ 2% w/v 

N,N-Methylene-bis-Acrylamide * 

248 ml 

10% w/v APS 5 ml 

TEMED 2 ml 

 * The recipe used 40% w/v acryl amide+ 2% w/v N, N-Methylene-bis-Acrylamide instead of 

40% w/v acrylamide in the original recipe. 

Main steps of preparation as follows: 

1) Separate the egg whites from the eggs at room temperature and add degassed water. 

2) Stir the mixture at very low speeds to get rid of any clumps until a mixture of uniform 

consistency and colour is achieved. It is important to stir at low speeds to prevent air 

bubbles getting in to the solution. 

3) If any air bubbles or foam is produced during stirring, remove them using a pipette. 

4) Add acrylamide to the mixture while continuously stirred. Any bubbles formed are 

carefully removed. 
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5) Add APS and TEMED to the mixture solution to catalyse the polymerization of acrylamide. 

6) Pour mixture solution into the mould to set for approximately 20-30 minutes. It is 

important that the mixture is poured to in to the container soon after addition of APS and 

TEMED as the solidification process can start momentarily and any delay in step 6 could 

introduce bubbles in the sample and can produce a non-uniform TMM. 

This TMM should be stored in the fridge after wrapping it in plastic wrap or cling film to 

prevent evaporation of fluids. The TMM has a life span for few months. 
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APPENDIX II – MRI Compatible FUS chamber: Design and development 

This Appendix describes the main steps during the designing and development of the MRI 

compatible FUS chamber used for TEC breast HIFU experiments in Chapter Six. 

Table 19: Design and development of MRI compatible HIFU chamber. 

Step 1: Chamber designing 

 

Step 2: Laser cutting the Perspex sheets 

 

Step 3: Building the glass chamber 

 

 

STEP 4: Applying 3 coats of adhesion 

promoter 

 

Step 5: Applying 3 coats of matt lacquer 

 

STEP 6: Gluing the glass chamber and 

support rods

 



185 

 

STEP 7: Gluing the Perspex and applying the 

putty 

 

STEP 8: Gluing the glass chamber to the 

base 

 

STEP 9: Attaching the base with the screws 

 

STEP 10 :Applying the hard glue to the base 

 

 

 


