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ABSTRACT 

During gastrulation of chicken embryo the three major germ layers, ectoderm, 

mesoderm and endoderm, are formed and organised into the correct topological order. A 

key event of the gastrulation is formation of the primitive streak that is characterised by 

large scale vortical flows that involve an order of >200,000 cells. During this self-

organised process individual epithelial cells are migrating in a highly coordinated 

manner. The cell behaviours driving the flows and migration are unknown due to the 

lack of high resolution time lapse sequences showing each individual cell and its 

behaviour in detail. Several hypotheses including cell-cell intercalation, chemotaxis and 

oriented cell divisions, have been put forward to explain how individual cells induce the 

highly coordinated formation of the primitive streak. Furthermore, another open 

question is which of the observed motions of cells are active and which occur passively 

as a result from the active motions. 

To answer these questions we use light sheet microscopy to acquire large volumetric 

time-lapse image sequences covering more than half of the chick embryo. We 

developed an algorithm to automatically extract the apical cell surface from the acquired 

volumetric image sequences. Manual tracking and segmentation of all the individual 

cells from the embryo wide image sequences is unfeasible. To solve this problem, we 

developed algorithms to segment cell membranes and to automatically track each 

individual cell during primitive streak formation. This provided highly detailed data of 

position, size, cross sectional area and neighbours of each cell throughout the time 

sequence. The quality of tracking achieved by the automatic tracking algorithm used 

was validated by comparing the automatically obtained tracks with tracks from the 

semi-automatically annotated domains. Large scale high resolution imaging and 
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automatic tracking has not been performed previously in chicken epiblast and this 

provided a good basis for quantitative analysis of tissue and cell behaviours. 

Analysis of the cell tracking data reveals a set of mesendoderm cells performing cell 

intercalation, which drives elongation of the primitive streak. The intercalation process 

also pulls cells from the lateral positions to the midline of the embryo and causes tissue 

to buckle in the anterior end of the forming primitive streak. Thus intercalation appears 

to drive the observed vortical tissue flows. Simultaneously with the intercalation, a set 

of mesendoderm cells undergoes apical contraction culminating in ingression in the site 

of primitive streak. This weaker tissue deformation process partially counteracts the 

elongation of the primitive streak but facilitates pulling of cells towards the midline. 

Additionally, we found that at the site of the primitive streak both apical cell shapes and 

orientation of cell divisions are polarised perpendicular to the streak. This implies that 

that oriented cell divisions are unlikely to drive the primitive streak formation. 
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1 INTRODUCTION 

1.1 Gastrulation in chicken embryo  

Gastrulation is a fundamentally important event in the development of higher organisms 

like amniotes. During this process the three major germ layers, the ectoderm, mesoderm 

and endoderm are formed and organised into the correct topological order1. During this 

process individual epithelial and mesenchymal cells migrate in a coordinated manner2. 

These coordinated cell motion patterns give rise to the primitive streak, an axial 

structure in the midline of the embryo1. Epithelial cells at the site of the primitive streak 

undergo an epithelial to mesenchymal transition (EMT)3. These ingressing cells then 

move further from the site of the primitive streak underneath the epiblast to ultimately 

giving a rise to organs and tissues1. 

Development starts with the fertilisation of the egg cell, which leads to the formation of 

a single cell zygote1. The zygote then undergoes multiple rapid cell division cycles until 

the egg is laid 24 hours after the fertilisation1. At the time the egg is laid the embryo 

consist of around 50,000 cell indicating that around 15 rounds cell divisions took place4. 

This rate of divisions indicates a cell cycle length of around 1.6 hours. During these 

early stages the blastoderm forms into an almost flat radially symmetric disk1. The disk 

consists of a single layer of epithelial cells, the epiblast. The cells of the epiblast are 

highly polarised along their apical basal direction and the cells are connected to each 

other with apical tight and adherens junctions4,5. The outer boundary of the epiblast disc 

is attached to the vitelline membrane. The cells in the outer boundary move outward on 

the vitelline membrane keeping embryo under tension and enabling the development6, 7. 

The inner region of the epithelial disk is called area pellucida, the surrounding region is 

called area opaca. The area opaca gives rise to the extra embryonic tissues (Figure 1.1)1. 

At later stages of development the cells in the area opaca become less columnar than 
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cells in the area pellucida in the central area of the embryo1. Simultaneously, a transient 

structure, the hypoblast starts to develop underneath the epithelial sheet (epiblast). The 

hypoblast is formed from small groups of individual epiblast cells that have undergone 

an EMT and have ingressed Figure 1.1)3, 8. The hypoblast has been shown to play a role 

in correct localisation of the primitive streak via inhibition of Wnt and Nodal 

signalling9. 
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Figure 1.1 Structure and stages of chicken embryo during gastrulation. A) Cross-
sectional view of the blastoderm of chicken embryo. B-C) Embryo viewed from ventral 
side and from dorsal side, respectively. Following structures are represented: vitelline 
membrane (grey), epiblast (yellow), hypoblast (dark green), area opaca endoderm (light 
brown), endoblast (dark brown), primitive streak mesendoderm (red) and Koller’s sickle 
(purple). 

The boundary zone between the area opaca and area pellucida is known as the marginal 

zone. In the posterior end of the marginal zone a shallow Vg1 gradient is present1. 

Under the epiblast in the posterior marginal zone lies a sickle shaped population of cells 

known as Koller’s sickle (Figure 1.1)2. This cell population is tightly attached to the 

epiblast and marks the site from where the primitive streak starts to form1. 

A B C
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After formation of these structures the first movements start to occur in the epiblast and 

hypoblast of the embryo10. Cells start to move along the midline of the embryo from the 

posterior marginal zone towards the anterior area pellucida (Figure 1.2)10. 

Simultaneously, cells from the lateral to the posterior marginal zone start to move 

towards the midline. Furthermore, cells in the anterior end of the area pellucida are 

moving outward from the midline of the embryo. Together all these movements form 

two counter-rotating vortical flows (Figure 1.3)2, 10-13. The cellular processes driving 

these flows are unknown and the hypothetical mechanisms reported in literature are 

reviewed in detail in the next section2. The two vortical flows transport cells from 

lateral positions to the midline of the embryo in the posterior area pellucida. At this site 

the cells start to form a thicker cell layer and finally cells start to undergo EMT and 

ingress to form mesoderm and endoderm1. The forming primitive streak now starts to be 

macroscopically visible. This is followed by extension of the primitive streak into the 

anterior direction. Soon after this the primitive streak starts to extend also in the 

posterior direction, whilst the lateral flows of cells continue to bring more cells to the 

midline of the embryo4.  

After the primitive streak has extended in anterior direction over 70% of the epiblast, 

cells in the anterior end of the primitive streak, the tip of the streak, start to reorganise 

into a distinct structure known as Hensen’s node1. After its formation Hensen’s node 

starts to move towards the posterior end of the embryo in a process that is known as 

regression4. The regression of the Hensen’s node initiates the formation of the floor 

plate and notochord1. 
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Figure 1.2 Tracking of labelled cells in epiblast during primitive streak formation. 
A-C) Bright-field image, fluorescence image and cell tracks of the same embryo 7 hours 
after the start of the development. Yellow lines are 4 h long tracks and the green lines 
indicate the tracks over the last 1 hour. Scale bar is 0.5 mm. D-F) Same embryo after 15 
hours of development. G-I) The embryo after 18 hours of development. Posterior-
anterior axis is pointing up in the images. White arrow is pointing the primitive streak in 
panel G. This figure has been adapted from following source10. 
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Figure 1.3 Tissue velocity fields in epiblast of chicken embryo during primitive 
streak formation. White arrows show direction of tissue flow. The white scale bar is 
300 μm in length 4 μm/min in tissue velocity. 

 

Chicken embryos are a convenient model for studying gastrulation as the development 

of the embryo occurs outside the mother organism. Additionally the embryos can be 

cultured ex-ovo in a sample dish, which facilitates the imaging of the embryos14. 

Finally, the flat shape of the embryos facilitates imaging of the embryos. 

An interesting question is which cellular mechanisms drive the observed cell flows in 

the epiblast of chicken embryo during the primitive streak formation? Furthermore, 

another open question is which of the observed motions of cells are active and which 

occur passively as a result from the active motions elsewhere? Several hypothetical 
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mechanisms have been proposed to drive the observed cell flows. An overview of these 

proposed mechanisms is given in the following section. 

1.2 Mechanisms driving the primitive streak formation 

As described in the previous section primitive streak formation in the chick embryo is 

characterised by cell flows around two centres (Figure 1.3). These flows transport 

mesendoderm precursor cells to the midline of the embryo to a site where the primitive 

streak will start to form and extend along the midline of the embryo10, 11, 13, 15. The 

mesendoderm tissue is generated in a sickle shaped region between posterior area 

pellucida and posterior marginal zone. The mesendoderm cells are showing different 

cell behaviours and the inhibition of the mesendoderm differentiation blocks the 

observed cell flows moving cell the midline of the embryo13, 16. Mechanisms proposed 

to drive the cell flows include oriented cell divisions, cell-cell intercalation, chemotaxis, 

movement of extra cellular matrix, localised ingression and cell shape changes2, 4. 

1.2.1 Oriented cell divisions 

Oriented cell divisions have been shown to a play role in animal-vegetal body axis 

elongation in dorsal tissues during zebrafish gastrulation17. To drive tissue elongation in 

the certain direction cells are assumed to divide in a polarised manner (Figure 1.4 AB). 

It has been proposed that similar mechanisms could drive primitive streak elongation in 

chicken embryos18. The authors showed that divided daughter cells were aligned along 

the formed primitive streak. Is not clear whether this actively drives the primitive streak 

formation or is a consequence of other mechanisms. Experimental work has shown that 

inhibition of cell divisions does not completely block formation of the primitive 

streak13. Furthermore, computer simulations have shown that cell divisions cannot be 

the sole mechanism driving the primitive streak formation19. Although, both of these 
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studies suggest that the oriented cell divisions could facilitate the formation and 

maintain the observed cell flows. 

1.2.2 Cell-cell intercalation 

A second mechanism proposed to drive the observed cell flows in the chicken epiblast 

during the gastrulation is cell-cell intercalation (Figure 1.3)20. This mechanism operates 

by interdigitating cells in a polarised manner. This mechanism can extend tissue in one 

direction while contracting in a perpendicular direction (Figure 1.4 CD). Some direct 

evidence obtained utilising multiphoton microscopy to image small groups of cells 

supports the hypothesis that cell-cell intercalation could be a process involved in 

primitive streak formation15. Cell-cell intercalation plays a role in the morphogenesis of 

frog and zebrafish mesoderm21, 22. In both cases the intercalation is thought to depend 

on the planar cell polarity (PCP) pathway. This pathway is responsible of controlling 

cell polarity (mediolateral cross section and apical-basal length) in plane of the 

epithelial layer which then in turn enables cells to move relative to each other in process 

called intercalation. Additionally, knockdown of several PCP pathway components 

simultaneously interfered with formation of the primitive streak15. 

1.2.3 Cell shape change and localised ingression 

Epithelial cells changing their length in apical-basal direction would result in a 

reduction of the surface area of these cells23. Such changes in the cross sections of the 

epithelial sheet have been found to contribute and to drive morphological processes in 

Drosophila melanogaster 23. Furthermore, epithelial cells may undergo anisotropic 

changes of their cross sections inducing change in shape of the whole tissue24. Such a 

process can actively drive tissue deformation and influence to the surrounding 

connected tissues (Figure 1.4 G)24. Similar cell cross section altering processes have 

been identified during zebrafish development25. Anisotropic or isotropic changes in the 
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cross sectional area of cells could contribute to the initiation and further elongation of 

the primitive streak in chicken embryos4. 

The hypoblast forms by ingression of randomly localised epithelial cells26. It is possible 

that ingression of the these cells would facilitate or drive primitive streak formation4. 

This mechanism would need to act in a differential manner occurring only in the area of 

contraction but not in the other regions4. If this mechanism would act in the posterior 

area pellucida at the site of the primitive streak formation this would induce contraction 

of tissue and thus contribute to the cell flows towards the site of primitive streak (Figure 

1.4 EF)4. In a recent study it was suggested that a Nodal dependent effect promotes cell 

ingression in the site of the primitive streak formation and consecutively drives the 

observed cell flows27. 

1.2.4 Chemotaxis of subpopulation of cells 

Yet another mechanism to explain primitive streak formation in the epiblast of the 

chicken embryo is chemotaxis10, 28. In this mechanism chemotactic agents in the epiblast 

are responsible for directing the movement of cells. The agents may either be 

chemotactic attractants or chemotactic repellents, which together may induce movement 

of surrounding cells (Figure 1.4 H). Theoretical calculations and simulations have 

provided evidence for feasibility of such a hypothesis, although these simulations 

required that cells in the streak had to adhere more strongly to each other than to other 

cells29. The computation framework used in this study was Cellular Potts Model 

(CPM)30. In another theoretical work computer simulations were used to construct two 

adjacent chemotactic regions into the site of forming primitive streak. Chemo attractant 

was produced in the posterior side while a chemo repellent was produced in the anterior 

cells (Figure 1.4 H)31. Together these two chemotactic agents were able to replicate the 

observed vortical cell flows in the epiblast of chicken embryo during the primitive 
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streak formation. It remains unclear whether signalling molecules like FGF growth 

factors or VEGF growth factors could be the in-vivo attractant and repellent chemicals 

and further experimental work would be required to confirm this4. 

1.2.5 Movement of the extracellular matrix 

The extracellular matrix is a structure located at the basal side of the of epiblast cells32. 

This basement membrane like structure is known to contain both collagen and 

fibronectin (and it is likely to contain other proteins)32. Surprisingly the extracellular 

matrix was found to move at speeds similar to those of the cells of the adjacent 

epiblast32. Due to this fact it seems unlikely that epiblast cells can get traction from the 

extracellular matrix during the cell flows resulting in the formation of the streak4. A 

further implication of this is that epiblast cells should get traction from each other in 

order to execute the cell flows or alternatively that the extracellular matrix is 

responsible of the motion of the epiblast, although it is difficult to imagine how this 

would work33. In case the extracellular matrix is a passive component of the embryo it 

is evident that the rearrangement of the epiblast cells is responsible of the observed cell 

movement that gives a rise to the primitive streak. 

An open question is which of the hypothetical tissue deformation mechanisms described 

in this section or any combination of these mechanisms is causing the observed vortical 

cell flows in the epiblast of the chick embryo. In addition, some cell behaviours 

presumable occur actively and others passively as a result of the actively driven 

behaviours. In this case it is an interesting question which of behaviours are active and 

which are passive? To observe what occurs in the tissue at the level of individual cells 

an imaging method is needed that is capable of imaging large tissue sections in the 

embryo. In addition, the resolution of the imaging must be detailed enough to capture 

individual cell behaviours. Imaging of cell outlines would enable accurate determination 
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of which cells are neighbours. Light sheet microscopy is a highly suitable technique to 

achieve excellent imaging of large tissue sections at cellular resolution. An overview of 

this technique is given in the next section. 
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Figure 1.4 Hypothetical mechanisms of primitive streak formation. A) Oriented cell 
divisions could elongate tissue in direction of division axis. B) A cell division in 
chicken embryo. C) Cell-cell intercalation could drive expansion of tissue in a certain 
direction and contract tissue perpendicular to that. D) Example of several intercalations 
in chicken epiblast. Red line segments illustrate individual contracting junctions. E) 
Local ingression of cells could contract tissue. F) An example of ingression event in 
chicken epiblast. G) Cell shape changes may deform tissue. H) Chemotactic attractant 
cells (green) pull cells from the lateral positions to the midline of the embryo whilst 
chemotactic repellent cells (yellow) push cells away from the midline. This causes 
surrounding cells (blue) to move as two vortical flows (right panel) (adapted from34). 
The white scale bar is 25 μm. 
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1.3 Light sheet microscopy enables investigation of large tissue samples with fine 

resolution 

In epifluorescence microscopes and in conventional wide-field microscopy the sample 

is illuminated and imaged using a same objective35. Light sheet fluorescence 

microscopes have two main optical paths, one for illumination and another for 

collecting the light from the object to form an image35 (Figure 1.5). Light from the 

excitation path illuminates the sample from the side. The detection path has an 

objective, a spectral filter, a tube lens and a camera. The spectral filter rejects the 

excitation light36. Only a thin volume of the sample, the section that is going to be 

imaged, is illuminated by the light from the excitation path resulting in minimal photo 

toxicity and photobleaching of the sample35. This is one of the major advantages of light 

sheet microscopy37. Three dimensional imaging is achieved with light sheet microscope 

by moving the sample through the light sheet (or vice versa) to collect multiple images. 

Such three dimensional imaging exposes the sample to considerable less energy during 

the whole imaging process than conventional microscopy or confocal microscopy38. It 

also results in faster imaging since imaging of a section is generally performed by a 

camera and not by a point detector39. 

Two methods exist for generating the light sheet. In the first method a single plane is 

illuminated using cylindrical lens for the light sheet generation39. This method is called 

Selective Plane Illumination Microscopy (SPIM). It generates a light sheet that can be 

directly imaged by the camera. The other method is Digital Scanned laser Light sheet 

fluorescence Microscopy (DSLM)39. In this method a light sheet is generated by rapidly 

scanning a focused light beam to generate a light sheet. Advantages of the DSLM are 

that it generates less artefacts than SPIM and that structured illumination can be 

achieved40. A disadvantage of DSLM is that imaging is potentially slower as the light 

sheet is generated by scanning35. In addition to these basic methods, further 
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developments of the light sheet microscopy include different beam shaping methods 

(Bessel beams and Airy beams) and application of two photon excitation41, 42. With 

advanced beam shaping methods the uniformity of the light sheet, along the axial 

direction can be increased which provides an extended focus42. A disadvantage for 

using the Bessel and Airy beams is that a deconvolution of images has to be performed, 

to remove the effects of the illumination sidelobes, which can be time consuming42. 

Elimination of the effect of non-focus light (side lobes) produces sharper images 

although the image may suffer from artefacts like ringing and striping. Multiphoton 

beams enable suppression of the side lobes as well as potentially deeper tissue 

penetration, however multiphoton microscopy requires a higher light radiation 

exposure41.  

An advantage of the light sheet microscopy is that high spatiotemporal resolution can be 

reached which enables imaging of whole organisms in 3D43, 44. Light sheet microscopy 

has been successfully used for imaging whole zebrafish and Drosophila embryos in 3D 

during the development43, 45-47. Imaging whole organism with high spatiotemporal 

resolution implies increased amount of image data per experiment48. The data set size 

increases due to ability to image large three dimensional samples with high resolution 

along all three spatial axes as well as due to very good temporal resolution48. A typical 

data set often exceeds several terabytes and this creates considerable challenges to the 

image analysis, feature extraction and data storage48. 

Light sheet microscopy has not previously been applied to imaging of chick embryos. 

An open question is how to take advantage of this imaging technique in order achieve 

sufficient spatiotemporal resolution when imaging primitive streak formation in the 

chick embryo? More specifically, how to image the outlines of all the individual 

epiblast cells in order to draw conclusions of cell behaviours driving streak formation? 
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To further analyse cell behaviours from the obtained image data, automatic methods are 

required. An overview of such methods is given in the following section. 

 

Figure 1.5 Principle of light sheet microscopy. Sample is places onto chamber and 
illuminated with the light sheet. Imaging axis is perpendicular to the illumination axis. 
Sample is moved (in direction of x-axis) to collect a three dimensional image volume. 

1.4 Cell tracking and segmentation 

Advances in microscopy, notably in the light sheet microscopy, have enabled 

acquisition of high resolution time lapse image sequences with three spatial dimensions 

covering potentially the whole organism49. With these new several terabytes sized data 

sets, image analysis has become a bottleneck and efforts are required to develop 

automatic analysis methods49, 50. Extracting the detailed position, shape, size and 

neighbourhood information of individual cells from these embryo wide image data is 

crucial for answering key questions in developmental biology48, 51. These questions 

involve understanding the mechanisms of cell differentiation, cell proliferation, cell-cell 

intercalation, migration of cells and ingression of cells49. The ability to track and to 

segment cells also enables comparison between normal and perturbed conditions of 

development52. Typically embryo wide experiments contain 10,000-100,000 cells49. 

Manual tracking and segmentation of such vast data sets is unfeasible and thus robust, 

efficient and reliable automatic image analyses methods are required gain further insight 

to developmental processes49. 

x y
-z
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Challenges of automatic cell tracking and segmentation are variable image quality, 

varying density of cells and occasionally obscured boundaries between cells49. The cell 

density may be varying due to cell divisions, cell ingressions or due to difficulty of 

imaging the same z-plane accurately over time49. Several automated tools have been 

developed to assist with the tracking and segmentation problems but these tools are 

often not generic enough to be easily applied to a new context53. 

Image data used for cell tracking typically includes a nuclear marker, a cell membrane 

marker or a combination of these two54. Tracking using only a membrane marker is 

considered more challenging than use of the nuclear marker54. The cell tracking task 

may be split into two processes, cell segmentation and tracking. The cell segmentation 

covers the spatial aspect, in which the image gets shared into segments representing 

different features (cells)49. The cell tracking is the temporal aspects in which the two or 

three dimensional segments representing cells in successive images are linked to form 

tracks of cells49. These two aspects of the cell tracking are reviewed in following two 

subsections. 

1.4.1 Segmentation techniques  

Prior to cell segmentation specific pre-processing steps are often required to prepare the 

image for segmentation. These pre-processing steps include noise reduction, correction 

of inhomogeneous illumination, stitching of images and fusing z-slices into one 2D 

image48. After the pre-processing the actual segmentation is performed. The simplest 

image segmentation technique is image thresholding50. In this technique the pixels with 

intensity value over a certain fixed threshold form a foreground and rest of the pixels 

form a background50. This technique is error prone under varying image conditions (like 

noise), photobleaching, auto fluorescence or locally varying intensities55. A second, 

more advanced segmentation technique is to fit cell models to the image data56. In this 
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technique predetermined intensity templates are fitted to the shape and intensity profiles 

of the cells in the image data. This technique works well if cells have relatively uniform 

shapes and intensity profiles. On contrast the model fitting is likely to fail if cells 

display a varying morphology49. 

A popular technique for the cell segmentation is the watershed transform49. In this 

technique the image is considered as an intensity landscape. The idea is that the image 

forms a landscape of ‘ridges‘ and ‘valleys’ and this is utilised to achieve segmentation 

by filling the landscape from the ‘valleys’ with water and checking where the ‘water’ 

meets the segment boundaries57. Problems of this technique are sensitivity to noise and 

fragmented segmentation result (oversegmentation)49. With appropriate postprocessing 

and preprocessing this technique is usable in many instances49. The watershed 

segmentation approach may be used for segmenting individual cells or tissue with 

tightly packed cells58, 59. If a nuclear marker is used for the segmentation or cells are 

loosely packed, the image data is first thresholded to define the foreground and 

background intensity levels60, 61. Only the foreground is then segmented to capture 

shapes of nuclei. Both two and three dimensional image data may be segmented using 

this technique60, 62. Alternative formulations of the watershed segmentation algorithm 

exist to handle discontinuous cells boundaries63. In case of a membrane marker initial 

thresholding of the image is not required as the local image features (like local minima) 

are used as segmentation seed points54. The tendency of oversegmentation may be 

utilised as an advantage to generate multiple sets of voxels representing parts of cells58. 

These sets are typically called supervoxels. Furthermore, a hierarchical tree structure 

may be established amongst the supervoxels and this structure may then be used when 

merging the supervoxels into segments representing cells60, 64. Additionally, the 

hierarchical supervoxel structure may be used in the cell tracking (described in next 

subsection) 64. Finally, membrane segmentation may be achieved by using nuclei as 
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seed points for the membrane segmentation63. Most of the segmentation algorithms are 

using the nuclei instead of cell membranes to establish whether a part of an image 

should form a segment representing a cell or no54. 

The fourth category of segmentation algorithms is comprised of deformable models49. 

The definition of the deformable model is either explicit (active contours) or implicit 

(level sets)65. Explicit models are normally used in two dimensional applications and the 

implicit methods can have any dimension49. Active contour methods require a coarse 

initial segmentation as a starting point which then is refined by the method66. Level set 

based methods can segment multiple non connected segments simultaneously49. All the 

deformable models operate by minimising an energy functional which causes evolution 

of the segment boundary to converge around a desired structure in the image67-69. The 

energy functional is composed of two types of terms, image related terms and image 

independent terms70. The dependent terms are used take into account image based 

features like intensity, texture and intensity gradients. The image independent terms are 

responsible of shape features like curvature, surface area and length of the boundary71. 

The deformable model segmentation techniques tend under segmentation the image 

data49. Level set based methods can be used in tracking and in detection of cell divisions 

(described in more detail in next subsection)65. Finally, gradient flow based method can 

be used to segment nuclei72. In this technique local image gradient fields are used to 

find local points to which the field is converging (sink)72. A segment is then formed by 

tracing back all the pixels in the image that converged into the local sink. In this project 

we have used watershed segmentation based approach to segment outlines of cells from 

2D time-lapse image sequences. The reasoning behind this choice is presented in 

discussion the chapter (see subsection 6.2.2).  
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1.4.2 Tracking techniques and applications 

The next step in the cell segmentation and tracking pipeline is to connect the obtained 

segments temporarily to achieve tracking of cells49. The simplest approach, to achieve 

tracking of cells is to connect the segments to the closest segments in the following time 

frame73. This tracking approach works only if absolute and relative motions of the cells 

are sufficiently small (less than half of cell diameter).49 Tracking of sparsely spaced 

individual particles is easier but this does not often yield enough information about the 

system that is being studied73. In epithelial sheets all the cells are tightly packed and 

tracking of objects that are next to each other is necessary54, 74.  

The level set technique described in previous subsection may be used achieve tracking 

in addition to the segmentation of cells65. This is possible as the dimensionality of the 

technique is not limited. The tracking aspect is achieved by placing the segment of the 

current time point over the image of the following time point and by evolving the level 

set boundary using the energy functional based on the new image data65. The same 

technique then allows detection of cell lineage branching as the evolved level set 

boundary will split into different boundaries65. A disadvantage of this technique is that 

the displacement of locations of cells between two consecutive time points are assumed 

to be relatively small (less than half cell diameter)65. In addition, level set techniques are 

slow when tracking order of 10,000 or more cells64. 

Particle image velocimetry may be utilised to connect segmentation of two consecutive 

time points46. In this technique local image features are correlated with a local 

neighbourhood in the subsequent image49. This technique may be further improved by 

first sharing image into supervoxels (described in previous subsection) representing 

local features then evaluating the deformation between consecutive frames of the image 

sequence using the supervoxels74. An interesting extension of this technique is to 
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establish a hierarchy between the supervoxels, that is to find which supervoxels should 

be merged first in case an oversegmentation has occurred64. Furthermore, a Gaussian 

mixture model is used to merge the over-segmented segments and to find the most 

probable matching segment from the subsequent time point in order to achieve tracking 

of cells64. Use of the supervoxels and GPU based computations greatly reduced the time 

required for tracking using Gaussian mixture model64.  

Finally, to achieve temporally consistent segmentation global methods may be used73. 

In this technique particles are first segmented and then the particles are linked into 

initial tracks. This is followed by a process of merging and splitting the obtained tracks 

in order to gain more consistent and correct final tracking result73. Both of the tracking 

steps are formulated as linear assignment problems and solved using heuristic 

techniques to achieve near globally optimal solution73. A more recent technique extends 

the previous approach by utilising hierarchical supervoxels obtained by 

oversegmentation60. A global optimisation was then performed to find a solution to a 

formulation (joint segmentation graphical model) connecting all spatiotemporal 

supervoxels into tracks of cells60. A probabilistic classifier was included into the 

formulation of tracking problem to achieve automatic cell division detection, that is to 

connect mother and daughter cells temporally60. Other techniques reported for the cell 

division detection included automatic monitoring of the shape of the nucleus, automatic 

detection of specific features associated with cell division such as intensity change and 

manual division annotation as part of the automatic tracking46, 62-64, 75, 76. In this project 

we have used PIV based technique to achieve tracking of cells. The reasoning behind 

this choice is presented in the discussion chapter (see subsection 6.2.2). 

Several techniques have been developed to quantitatively analyse cell behaviours using 

the automatically (or manually) obtained cell tracking and segmentation data24, 77. These 
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techniques achieve continuous spatiotemporal dissection and quantification of tissue 

deformation, cell intercalation and local cell shape changes24, 77. With the quantitative 

techniques detailed information about morphogenetic processes of zebrafish and 

Drosophila development have been achieved24, 78, 79. Automatic tracking of cells is 

becoming an increasingly popular technique and it has been used in several recent 

studies to investigate development of Drosophila and zebrafish24, 60, 62-64, 71, 79-81. 

Automatic cell tracking has not been used to obtain quantitative information of all the 

cells in epiblast of chicken embryo. An open question is how to achieve reliable and 

robust segmentation and tracking of cells in the chick epiblast during the formation of 

the primitive streak? Furthermore, how to achieve this using cell membrane marker in 

absence of nuclei and mitotic markers? A major biological question is how to utilise the 

segmentation and tracking information to quantitatively understand which combination 

of cell behaviours is responsible for the tissue deformation driving primitive streak 

formation during gastrulation? 
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2 AUTOMATIC TRACKING ALGORITHM FOR FOLLOWING 

CELLS IN EPITHELIAL SHEETS 

The epithelial sheets of interest in our study contain ~100,000 cells as detailed in the 

previous chapter. Due to the vast number of cells it is important to able to track cells in 

an automatic manner. This chapter describes the details of an automatic tracking 

algorithm that is used to segmentation and track cells in the chick epiblast. In this study 

segmentation is a process in which image shared into segments (sets of pixels) 

representing cells. 

The tracking algorithm itself is outlined in detail in section 2.1. This is followed by 

introduction of a variant of the tracking algorithm used for manual validation of the 

tracking data (section 2.2). Finally, the manually validated data is used to evaluate the 

correctness of the tracking algorithm (section 2.3). In addition the performance of the 

tracking algorithm is measured in the same section. 

2.1 Automatic tracking algorithm 

The automatic tracking algorithm operates on a time lapse sequence of 2D sections of 

the apical chicken epiblast. The next subsection (subsection 2.1.1) describes main idea 

of the automatic tracking algorithm and the following subsections describe details of the 

algorithm. 

2.1.1 Key idea of the automatic tracking algorithm 

Goal of the automatic tracking algorithm is to track cell centroids over time, to detect 

cell divisions, to detect ingressing cells and to identify outlines of each cell in each time 

point. Volumetric time lapse sequences were imaged using a light sheet microscope. 

Details of the used microscope and data handling are described in section 4.1 of the 

computational methods chapter. The tracking algorithm operates on 2D time lapse 
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sequences of outlines of cells. In our study a 2D time lapse sequence is obtained from a 

volumetric time lapse sequence by first identifying the apical surface of epiblast of the 

chick embryo. The surface is then projected on a plane to obtain a 2D image. This 

process is then repeated independently for all desired time points. The procedure of 

surface projection is described in detail in computational methods chapter in section 4.2. 

In some experiments the embryo was imaged in two complementary halves by imaging 

both sides sequentially. In these instances the surface projection data sets were stitched 

together using method described in the methods chapter in section 4.3.  

The automatic tracking algorithm starts by segmenting the first image of the 2D time 

lapse sequence (Figure 2.1). In this process the image is divided into sets of pixels 

representing cells. The sets are called segments. The first segmentation does not use 

prior information about the locations of the cells and is called time independent 

segmentation. Details of this segmentation are given in subsection 2.1.2. Each segment 

in the first segmentation initiates a track of cell (Figure 2.1). These tracks are then used 

to initialise a tracking structure. The structure is used for storing cell centroids, cell 

neighbourhood relations, temporal connectivity of cell centroids and information about 

cell lineages. Details of the data structure are given in subsection 2.1.5. 

After the first segmentation and initialisation of the data structure the automatic tracking 

algorithm will proceed in a sequential manner through all the remaining time points. 

This is illustrated by loop in the flow chart of the figure 2.1. The first step in the loop is 

to evaluate the local tissue flow between the previously segmented image and the 

subsequent image (time points t and t+1). As tissue is deforming locally over two 

consecutive time points and field of view is large it is not sufficient to use rigid 

registration. Instead, a particle image velocimetry based tissue velocity field is 

evaluated between two consecutive time points (t and t+1). The resolution of this tissue 
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displacement field is similar to the average diameter of cells. This guarantees that 

individual cells can be tracked correctly. Details of this method are described in 

computational methods chapter in section 4.4. 
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Figure 2.1 Flow chart of outline of automatic tracking algorithm. A) The tracking 
algorithm starts by time independent segmentation of first time point. Subsequent time 
points are tracked and segmented in a sequential manner. New cell segmentation is 
achieved by utilising current segment centroids and registration between two 
consecutive time points. Ingression and division events are detected from the new 
segmentation. B) Variables used in A are detailed in this table. C) Legend for different 
types of flow chart symbols. 

 

description symbol interval

number of 
images 

n N/A

filtered 
images 

IF(t) t=1,2,…,n

segmentation S(t) t=1,2,…,n

tracking 
results

T(t) t=1,2,…,n

registration R(t,t+1) t=1,2,…,n-
1

seed points P(t) t=1,2,…,n

t = 1

stop

no

start

R(t,t+1) = tissue flow between time points 
IF(t) and IF (t+1)

t=t+1

t equals n?

yes

VARIABLES

predefined 
process

data

terminator

process

decision

LEGEND

S(1) = Time independent segmentation of  IF(1)

T(1) = Initialise tracking results T with S(1)

P(t+1) =  generate  segmentation seed points using 
R(t,t+1) and T(t)

S(t+1) =  seed points  segmentation of IF (t+1) with 
P(t+1) 

Detect ingression and division. Update T(t+1) and 
S(t+1)

T(t+1) = Tracking results of S(t+1)

save  S and T

A B

C
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The tissue velocity field between the consecutive time points (t and t+1) is then used 

together with previously identified cell centroids (in time point t) to predict which are 

new centroid locations of the cells (in time point t+1) (Figure 2.1). Shapes of previously 

segmented cells (time t) together with the predicted new locations of cells in time point 

t+1 are used to generate seed points for the segmentation. These seed points are then 

used to segment the image of time point t+1. This will guarantee that number of 

segments is preserved over two consecutive time points. New segments of cells (in time 

point t+1) are then used to calculate new centroid locations and these are then used to 

refine the initial estimate of the cell’s location. This cell centroid based segmentation 

method is described in detail in subsection 2.1.3. After the segmentation the track data 

structure is updated with new cell outlines and centroids (Figure 2.1). 

The procedure described above guarantees that number of cells is conserved over two 

consecutive time points. In epithelial tissue number of cells may not stay constant as 

cells divide and ingress. In the automatic tracking algorithm cell divisions and 

ingressions are detected by comparing segmentation of two consecutive time points 

(time points t and t+1, see subsection 2.1.4). If a cell is detected to ingress it is removed 

from the tracking structure. Similarly, if cell is detected to divide its track is connected 

to two newly induced daughter cells (for details of this procedure see subsection 2.1.4). 

After changes in the number of cells are made a new time point is processed (Figure 

2.1). Finally, the tracking structure and all the cell segmentations are saved to be used 

for further analysis. The tracking algorithm is implemented in Matlab scripting 

language. A short description of Matlab is given in computational methods chapter in 

section 4.5. 
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2.1.2 Time independent cell segmentation 

As described in previous section the tracking algorithm segments the image of the first 

time point without prior tracking information about cell locations. Prior to segmentation 

the image is filtered with a bandpass filter in ImageJ with following settings: large 

structures down to 20 pixels, small structures up to 1 pixel and automatic saturation. 

This is followed by smoothing of the images with a Gaussian filter (radius of 1 pixel). 

The bit depth of the images is 8. For more details about ImageJ see section 4.6 in the 

computational method chapter. 

After the filtering the image is segmented. To segment the filtered image local minima 

with height less than 10 are suppressed. This is followed by watershed segmentation of 

the image. As a result each remaining local minima in the suppressed image forms a 

segment (set of pixels) around of it. An example of suppressed local minima and 

corresponding watershed segmentation is illustrated in panels B and C of figure 2.2, 

respectively. These image processing steps are implemented in Matlab (see section 4.5). 
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Figure 2.2 Outline of the automatic tracking algorithm. A) Raw image of cell 
membranes in the first time frame. B) Segmentation of the image A is obtained by using 
local grey value minima (white blobs) as seed points for watershed segmentation 
algorithm. C) Segmentation of the image A. Outlines of cells (white lines) are found by 
the segmentation algorithm and saved as a binary image. D) Seed points for 
segmentation of the second time point are obtained by shrinking segments of the image 
C. In addition, registration between the two time points is utilised to tracking and 
correct positions of segments. E) Image of cell membranes of the second time frame. 
The tracking algorithm aims to track cells between images A and E. Throughout this 
figure location of a cell is marked with red blob. F) New seed points (D) obtained from 
the first image are projected over the image E using tissue velocity field. G) 
Segmentation of the image E is obtained using the seed points of the image F. H) 
Outline of a diving cell shown as red. Green and blue lines are long axis and short axis 
of dividing cell, respectively. The white scale bar is 10 μm.  

 

2.1.3 Segmentation using cell centroids 

After the segmentation of the first time point rest of the time points are segmented in a 

sequential manner using the previous segmentation and tissue velocity field between 

two consecutive time points (t and t+1). The first step in this process is to consider each 

segment in the current segmentation (Figure 2.2 C). These segments are then shrunk to 

40% of their original size. The seed point is chosen to be bigger than just a single pixel 

to increase likelihood of capturing the local image minima within the cell. The initial 

centroids of these shrunk segments are the same as the centroids of the original 

A B C D

E F G H
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segments (Figure 2.2 D). The shrunk segments are used as segmentation seed points for 

the time point t+1 (Figure 2.2 E). To compensate for local drifts in the tissue the shrunk 

segments are then positioned over the time point t+1 displaced by a certain distance 

calculated from the tissue velocity field (Figure 2.2 F). In this process the tissue velocity 

field is used to estimate a displacement vector for each segment centroid independently. 

Once the seed points are determined, the image of time t+1 is segmented in same 

manner as in time independent segmentation (Figure 2.2 G and subsection 2.1.2). The 

cell centroid locations are then computed from the new segmentation and the initial 

estimates of locations of cells are updated with the new centroid locations. This 

segmentation scheme achieves simultaneously tracking and segmentation. In addition 

the number of segments is guaranteed to be conserved over time. 

A problem of this type of segmentation is that cells flow into the field of view being 

imaged. These cells do not get correctly segmented as number of segments is conserved. 

An example of this problem is illustrated in panels A and B of figure 2.3 where cells are 

flowing into field of view from the bottom boundary. To deal with this problem, PIV 

based tissue velocity fields are used to identify which parts of the boundaries have 

flowed in. This is done by placing a densely sampled polygon on the boundary of the 

image (red line in Figure 2.3 A). Each vertex point of this polygon is then displaced 

with the velocity field to obtain a deformed polygon (red line in Figure 2.3 B). To find 

out which cells have flowed in, a time independent segmentation is performed for the 

image region that is outside of the deformed polygon (Figure 2.3 C and subsection 

2.1.2). Furthermore, all segment centroids that are outside of the deformed polygon are 

used as additional seed points for the segmentation of the following time point (black 

dots in Figure 2.3 D). An example of such segmentation is shown in panel E of figure 

2.3. This method guarantees correct segmentation of inflowed cells regardless of 

magnitude of inflow velocity of tissue (see figure 2.3 F for a comparison). The 
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reasoning why the watershed segmentation and PIV based tracking algorithm was 

developed is provided as part of the discussion chapter (see subsection 6.2.2). 

 

Figure 2.3 Automatic tracking of cells that flow into field of view. A) Raw image of 
cell outlines of first time point. B) Raw image of cell outlines of second time point. 
Particle Image Velocimetry (PIV) velocity field is used to determine how boundary of 
field of view (red outline in A) deforms between images of panels A and B. Red line in 
panel B shows that inflow has occurred from outside in the lower part of the image. C) 
To segment these new cells correctly, time independent segmentation is performed. D) 
Black circles mark cells that were detected to be outside the red inflow boundary in 
panel C. E) The detected new cells are used together with already existing cells to 
segment the new time point (panel B). F) Segmentation of panel B without adding new 
cells to the segmentation. The white scale bar is 40 μm. 

2.1.4 Cell division and ingression detection 

The automatic tracking algorithm conserves to number of tracked cells over time as 

shown in previous subsections. As number of cells is not conserved in ingression and 

cell division events these cell behaviours need to be detected separately. Ingressing cells 

are detected using two criteria. Firstly, if a cell after segmentation has only two 

neighbours it is considered to ingress. Secondly, if area of a cell after segmentation has 

a smaller area than a certain threshold (150/magnification in this study [an area much 

A B C

D E F
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smaller than an average cell]) the cell is marked as ingressing cell. Reliable 

segmentation of cells smaller than this was found difficult in practice. Once a cell has 

been marked as an ingressed cell in the tracking data structure it is no longer considered 

as a new seed point in the following segmentations. 

Cell divisions are detected by first considering how long time a cell has been tracked. 

The track of a cell has to be longer than a threshold (5 h in this study). If track of a cell 

starts from the first time point the cell is allowed to divide at any time starting from the 

second time point. Similarly, if a cell has flowed into field of view the cell may divide 

at any time. In case a cell meets the listed requirements of shape and cross sectional area 

of the cell are considered. Length and width of the cell is measured along major axis 

and minor axis of an ellipse that is fitted to the shape of the cell, respectively (Figure 2.2 

H). If the length is 2.5 times longer than the width, the area is greater than a threshold 

(in this study 2500/magnification [an approximate area of a dividing cell]) and the area 

is smaller than a threshold (in this study 25000/magnification [area that is significantly 

larger than a dividing cell]), the cell is tested for a cell division. 

To test if the cell should divide further checks are made. Firstly the cell is segmented 

into two daughter cell candidates. The time independent segmentation is used for this by 

inserting two seed points onto major axis of an ellipse fitted to the shape of the cell (see 

subsection 2.1.2 for details). Both seed points are one fourth of the cell’s length from 

cell’s centroid. After the segmentation of the daughter cell candidate segments are 

quantified to test whether the mother cell should divide. The cross sectional area of a 

larger daughter cell may not be more than 50% greater than cross sectional area of 

smaller daughter cell. This guarantees that daughter cell candidates have a similar size. 

Eccentricities of both daughter cell candidate segments must be below 0.7. This 

guarantees that daughter cells are not too elliptic. In addition, the average pixel intensity 
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on the newly created segment boundary between new daughter cells must be greater 

than the average pixel intensity within the mother cell. This guarantees that a new cell 

junction is forming between the daughter cells. If all these conditions are met the cell is 

marked to divide in the tracking structure. 

2.1.5 Data structure of tracking data 

The automatic tracking algorithm stores cell based tracking data into a data structure 

that is organised in such a way that the tracking data of each individual is stored as an 

individual data entry. The data storage is implemented as a Matlab structure array. Each 

element in the structure array has fields for storing all the following information about a 

cell: time indices, centroid location, fitted ellipse parameters, perimeter and list of 

neighbours (Table 2.1). All of these four fields contain information for every time point 

in which the cell is present. In addition information of where the track started and 

finished are stored. Each cell has its own unique index in the tracking structure. These 

indices are used to store the neighbouring cells in the tracking structure. Additionally, 

the cell indices are used for marking the mother-daughter cell relations (Table 2.1). Cell 

lineages may be constructed using these stored indices.  
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Table 2.1 Data structure of a track of a cell. 

 

2.1.6 Embryo wide cell tracking example 

The automatic tracking algorithm described in this section can be used to track large 

numbers of packed epithelial cells over periods of time that are relevant for analysing 

cell behaviours during early gastrulation of chicken embryo. An example such a 

tracking result is shown in figure 2.4. The figure illustrates clearly vortical tissue flows 

during formation of the primitive streak as cells are moving to the midline to the site of 

forming primitive streak. 

description attribute size

Number of time points in track n scalar

Time point index t 1 x n

Centroid location [pixel] cent n x 2

Fitted ellipse parameters (major axis [pixel], minor axis 
[pixel], orientation of major axis [degrees])

ellipse n x 3

Perimeter of cell [pixel] perim 1 x n

Index of mother cell. -1 if cell exists in first time point. -42 
if cell flows into field of view.

birth scalar

Cell termination status.  0 if cell still exists. -1 if cell 
ingressed. -3 if cell divided.

death scalar

Indices of daughter cells. Zeros if no daughters. daughters 1 x 2

A structure for storing neighbouring cells. Each element 
contains a set of indices of neighbouring cells at the time 
point.

neighs 1 x n
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Figure 2.4 cell tracks of epiblast cell flows obtained using the tracking algorithm. 
Each red line segment represents the track of a cell over a 2.5 h period. The green lines 
show the positions of cells over the last 15 min. For clarity only 5% of all the tracks are 
shown in this presentation. The white scale bar is 200 μm. 

 

2.2 Collection of ground truth tracking and segmentation data 

To validate tracking quality of the automatic tracking algorithm described in previous 

section it is important to collect ground truth data sets. To do this I implemented a semi-

automatic tracking algorithm which works similarly to the automatic tracking algorithm. 

In this algorithm the user is visually inspecting the tracking result and interactively 

correcting the locations of seed points in order to achieve a correct segmentation. 

Ingressions and cell divisions events are marked manually when necessary. The semi-

automatic tracking algorithm provides all the same tracking data as the automatic 

tracking algorithm. 

2.2.1 PIV based drift compensation of region of interest 

To validate tracking result is it important to follow same set of cells from an embryo 

over time. It is not sufficient to follow a fixed field of view in the embryo due to tissue 

AP
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flows occurring during the normal development. These local tissue flows or a drift of 

the whole embryo may occur along anterior-posterior or lateral directions. To cope with 

this problem I am using PIV tissue velocity fields to follow and cut out a desired part of 

the tissue over time (see more details from subsection 4.4.2). This drift compensated 

image sequence is then used as the input time lapse sequence for the semi-automatic 

tracking algorithm described in next subsection. 

2.2.2 Semi-automatic tracking algorithm 

In order to gather ground-truth data sets user has to manually correct the tracking result 

in a drift compensated image sequence. It would be fairly complicated to manually 

correct a fully tracked sequence as tracking errors often propagate. A better way for 

dealing with tracking errors is to correct them immediately after they have occurred. On 

the other hand it is advantageous if user does not need to deal with trivial tracking 

decision like linking up a centroid of a cell that did not change its position relative to its 

neighbours and did not considerably change its shape or size. The user will generally 

need to give more attention to a region with frequent cell divisions as dividing cells 

need to be annotated manually. In addition, cells close to dividing cells are often 

changing their cross sectional area due to pressure exerted by the dividing cell. 

The semi-automatic tracking algorithm is similar to the automatic tracking algorithm 

with a few simplifications (see section 2.1). The semi-automatic tracking algorithm 

starts by performing a time independent segmentation of the first frame of a desired 

time sequence (Figure 2.5, subsection 2.1.2). Here segmentation means that image is 

divided into simply connected sets of pixel and segment boundaries between these 

pixels. The segmentation is performed with a watershed segmentation algorithm (for 

more details see section 4.5). The resulting cell segmentation of the first time point is 

shown to the user by overlaying the segment boundaries (cell outline), with the original 
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background image. In addition cell centroids are marked with coloured blobs. It is then 

task of the user to visually verify that that correct number of segments is created (no 

over segmentation and no under segmentation) and that cells are segmented along their 

outlines (Figure 2.5). If number of cells is not correct user can either add or delete 

segments. If cells are not correctly segmented user may modify segmentation by 

altering locations of the segmentation seed points (Figure 2.5). In both cases, after an 

action of the user, a new segmentation is calculated and shown to the user. 

Once a correct segmentation of the first time point is accomplished, the user may 

proceed to the next time point. In this case positions of cell centroids and precomputed 

PIV based tissue velocity fields are used to compute new centroid positions (similar to 

the automatic tracking algorithm described in previous section). User is expected to cut 

out a large enough region from an embryo so that cells do not flow in or flow out from 

the selected field of view. New centroid positions are then used to compute a new 

segmentation in same way as described in the previous paragraph. The user may then 

visually inspect the new segmentation and alter number of cells or locations of the cell 

centroids. A cell belonging to the same track has the same colour in all the time points, 

which facilitates the tracking. In case of a cell division the user must manually annotate 

new daughter cells (Figure 2.5). Similarly, ingressing cells will be annotated separately. 

At any time user may save the tracking information and segmentation. This data is 

stored into a file that can be loaded back to the semi-automatic tracker script to continue 

the work. Data structure of the semi-automatic tracking algorithm is same as the one 

used for the automatic tracking algorithm (2.1.5). An implementation of graphical user 

interface of the semi-automatic tracking algorithm is described in detail in Appendix I. 

In addition, instructions how to use the GUI are provided. 
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Figure 2.5 Flow chart of outline of semi-automatic tracking algorithm. The tracking 
algorithm starts by time independent segmentation of first time point. Subsequent time 
points are tracked and segmented in a sequential manner. New cell segmentation is 
initially achieved by utilising current segment centroids and registration between two 
consecutive time points. The achieved segmentation is then modified by user if needed 
by repositioning segmentation seed points. In addition the user has to induce division 
and ingression events. Once all the modifications are done for the current time point 
user may move to the next time point. At any time user may save the current session. 
Variables and flow chart symbols used here are same as in figure 2.1. 

2.2.3 Semi automatically annotated domains 

The semi-automatic tracking algorithm described in the previous section was used to 

collect manually validated tracking data. This was done by choosing four domains from 
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different regions of chicken epiblast while the primitive streak was forming. These 

regions were from the developing streak, lateral from the streak, posterior from the 

streak and anterior from the streak. The lateral domain was followed over period of 750 

min and all the other domains were followed over period of 600 min (Figure 2.6 A). It 

can be seen from the initial and final positions of the domains that anterior and posterior 

domains stay close to their initial positions and that streak and lateral domains move 

towards the developing primitive streak. 

Initially each of the domains consisted of a selection of cells from a square area (Figure 

2.6 B-D). Cells or corresponding daughter cells in the streak domain experience 

interdigitation and the domain elongates along midline of the embryo while contracting 

perpendicular to that (Figure 2.6 B). It is also worth noting cells of this domain do not 

change their shape in an anisotropic manner while the domain is elongating. The 

anterior domain grows in size but the shape of the domain remains largely the same 

(Figure 2.6 C). The posterior domain elongates a small amount along the midline of the 

embryo, but not as much as the streak domain (Figure 2.6 D). Finally, the lateral domain 

experienced a similar deformation as the streak domain, but the deformation was not as 

pronounced as in the case of the streak domain (Figure 2.6 E). 
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Figure 2.6 Result of semi-automatic tracking. A) Four different regions are tracked 
over time. Initial positions of the domains are shown as coloured squares. Final 
positions, 600 min later, are shown with coloured deformed polygons. B-E) Initial and 
final shapes of domains. The colours used for segmentation are same as in A. Coloured 
dots illustrate how individual cells and possible their daughter cells have moved over 
the tracking period. The white scale bars are 100 μm. 

 

D E F

0 min

600 min

B

AP

600 minA

AP

600 min0 minC

AP

D E

AP

0 min

AP

0 min

600 min 750 min



57 
 
2.3 Validation and performance of the tracking algorithm 

To validate correctness of the automatic tracking algorithm we performed automatic 

tracking of semi-automatically curated four domains described in the previous 

subsection. These automatically obtained cell tracks and segmentations were then 

compared to the semi-automatically validated tracks. All four semi-automatically 

annotated domains together contained 712 cell tracks. Distribution of lengths of these 

cell tracks were compared to the lengths of corresponding automatically obtained track 

lengths (Figure 2.7 A). The comparison was done from the beginning of each individual 

semi-automatically annotated track. For the comparison the automatic and semi-

automatic track lengths were separated into bins of 30 min (Figure 2.7 A). The 

distributions look similar except for the first and for the second bin indicating that many 

tracks in the automatic segmentation are terminating prematurely briefly (within one 

hour) after initiation of the track. When comparing track lengths of automatically 

tracked cells and track lengths of the corresponding manually tracked cells it clear that 

many of the tracks have similar length (Figure 2.7 B). It can also be seen that some of 

the automatic tracks regardless to length seem to terminate prematurely (Figure 2.7 B). 

Ratios between automatic track lengths and the corresponding semi-automatic track 

lengths were evaluated to determine what percentage of the tracks were correct (Figure 

2.7 C). In this quantification track of a cell is considered to span between two 

consecutive cells divisions. The ratio value one was most frequent indicating that 50% 

of the tracks had desired length and thus the corresponding cells were correctly tracked 

throughout the experiment. On average, lengths of automatically obtained cell tracks 

were 69% from the corresponding semi-automatically annotated tracks. 

Additionally, cell linkage accuracy was used to measure how correctly cell centroids 

between two consecutive time points were linked together. This was done separately for 
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all the four semi-automatically annotated domains (Figure 2.7 D). For the anterior and 

the posterior domains the linkage accuracy was close to the 98% throughout the time 

sequence. For the streak domain and the lateral domain the linkage accuracy was 

initially similar to the other two domains and was decreasing over time. 

Finally, to measure correctness of segmentation of the automatic tracking algorithm a 

Dice similarity coefficient was computed between the corresponding automatic and 

semi-automatic segmentations 54, 82. In this Dice measure all the time points and all the 

cells were compared independently. The measure was evaluated using sets of pixels of 

the automatic segment (pixels A) and sets of pixels of the semi-automatic segments 

(pixels B) in following way: 

 𝑄𝑄 =
2|𝐴 ∩ 𝐵|
|𝐴| + |𝐵| (2.1) 

Where A and B are sets of pixels from the two segmentations. The dice coefficient 

ranges from perfect match (value one) to complete mismatch (zero)82. The similarity 

coefficient was evaluated for all the semi-automatically annotated domains over time 

(Figure 2.7 E). The Dice coefficient indicated more than 90% match for all the domains 

during first 300 min and after this the match between segments started to decrease over 

time. The anterior and posterior domains had Dice coefficient larger than 80% 

throughout the image sequence. In the other two domains (streak and lateral) the 

initially high Dice value decreased to close 60% towards the end of the sequence. 

The correctness of cell division detection of the automatic tracking algorithm was 

verified by overlaying the detected cell division events over the image data used for the 

tracking automatic. This was done for regions 6000x2560 pixels in two distinct time 

points. One of the time points was selected prior to onset of cell flows and the other 

time point was selected from a time point where the cell flows had already started. Site 
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of the primitive streak was visible in these regions. To manually find all the cell 

divisions from these large regions the images were shared into small domains and three 

consecutive time points were viewed to the user in order to determine and annotate 

where cell divisions occurred. A total number of cell divisions annotated in this way 

were 1119. Similarly, the annotated regions contained 1140 automatically detected cell 

division events. The manually annotated cell divisions were then compared to the 

automatically detected cell divisions. The automatic tracking algorithm detected 67.4% 

of all the occurred cell divisions (754 out of 1119) (Figure 2.7 F). In addition, 66.1% of 

the automatically detected cell divisions were actual cell divisions (754 out of 1140) 

(Figure 2.7 F). This implies f-measure value of 0.667 used in literature to combine the 

detection rates thus indicating similar quality of cell division detection as achieved in 

case in Drosophila embryos60. 

The ingression events were validated in a different way than the cell division events due 

to difficulty of identifying all the ingression events from a large region of embryo. To 

validate the ingression detection the tracking data of the semi-automatically annotated 

domains were used (Figure 2.6). All the automatically obtained cell ingression events 

were overlaid with the semi-automatically identified ingression events and with the cell 

image data. These overlays were then used to determine which of the detected 

ingression events were correct and which were incorrect. The total number of ingression 

events occurring in the manually annotated domains was 92. Similarly, the total number 

of automatically detected ingression events was 103. Automatic tracking algorithm 

detected 21% of all the ingression events that occurred in the semi-automatically 

annotated domains (precision) (Figure 2.7 G). In addition, 18% of all the automatically 

detected ingression events were actual ingression events (recall) (Figure 2.7 G). This 

implies f-measure value of 0.19. 
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Figure 2.7 Validation of tracking using semi-automatically annotated domains. A) 
Distribution of track lengths in all semi-automatically annotated domains (blue) and 
corresponding automatically tracked domains (red). Range of each bin is 30 min. B) 
Lengths of automatically obtained cell tracks compared to lengths of the corresponding 
semi-automatically obtained cell tracks. C) Distribution of track length ratios. Mean of 
the distribution is 0.687. D) Cell linkage accuracy in each of the four domains measured 
over time. E) Dice coefficient of cell segmentation measured in each of the four 
domains over time. F) Annotated cell divisions. G) Annotated ingression events. 
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A typical experiment consists of a 2D image sequence with resolution 8000x2560 pixels 

(5.2x1.7 mm) over 300 time points (16 h). The number of cells over such a region varies 

over time, but on average is around 60,000. The tracking algorithm requires typical 

around 72 h to process such a data set. 
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3 ANALYSIS OF TISSUE DEFORMATIONS AND CELL 

BEHAVIOURS DURING PRIMITIVE STREAK FORMATION 

IN CHICKEN EMBRYO 

This chapter illustrates how the automatic tracking algorithm and the semi-automatic 

tracking algorithm were used to study cell behaviours during primitive streak formation 

in chick embryo. The main aim was to use statistical methods to quantify cell 

behaviours in order to answer to question which of the cell behaviours drive the vortical 

tissue flows and elongation of the primitive streak in the epiblast. In addition, we used 

PIV based methods to gain better understanding how tissue deforms and to have a 

different method to compare our results. We tracked epiblast cells during formation of 

the primitive streak and used this data to dissect various cell behaviours. This chapter 

starts by measuring the tissue deformation with four different methods (section 3.1). 

This is followed by quantification of various cell behaviours including: intercalation in 

section 3.2, cell size changes and cell shape changes in section 3.3, cell division in 

section 3.4 and finally, ingression in section 3.5. In addition, observations on super-

cellular myosin cables are described in section 3.6. 

3.1 Tissue deformation 

We measured and analysed tissue deformation using two different methodologies (PIV 

and cell track based). Firstly, we used averaged PIV to compute tissue deformation and 

expansion (3.1.1). Secondly, PIV based velocity fields were used to compute tissue 

deformation strain rates (3.1.2). Thirdly, automatic cell tracking data were used evaluate 

cell based tissue strain rates (3.1.3). Finally, tissue strain rate was evaluated utilising the 

semi-automatically tracked cells (3.1.4). 
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3.1.1 Tissue deformation based on averaged tissue velocity fields 

To quantify tissue deformation we used PIV based tissue velocity fields. A detailed 

description of PIV is given in computational methods chapter (4.4.1). We evaluated PIV 

velocity fields independently for nine different embryos. Development in these nine 

time lapse sequences started generally at different time points. Additionally, 

orientations and positions of primitive streaks were not generally same in these nine 

embryos. To average velocity fields we had to perform a spatiotemporal alignment of all 

the embryos. Temporal alignment was performed by finding a similar developmental 

stage from each embryo and aligning gastrulation sequences in time. For spatial 

alignment position and orientation of the primitive streak were used to translate and 

rotate each embryo into the same coordinate system. After all the embryos were spatio-

temporally aligned an averaged velocity field was computed. The spatiotemporal 

alignment of embryos is described in detail in subsection 4.4.1. 

The averaged velocity field was used to compute tissue contraction expansion map. In 

this method an initial square grid was overlaid over embryo. The deformation of each 

grid cell was computed over time using the averaged tissue velocity field. The area of 

each cell of the grid was at each time point compared to the initial area by computing 

ratio between current area and the initial area. Contraction and expansion relative to the 

initial time was calculated and visualised with red colour (expansion) or blue colour 

(contraction) (Figure 3.1). The contraction-expansion map shows that tissue in the 

midline of the embryo started to contract first. This region then got larger eventually 

spanning the whole mesendoderm. Simultaneously to the contraction, tissues anterior to 

the primitive streak started to compress in the direction of streak extension and elongate 

perpendicular to the streak. Meanwhile, tissues surrounding the contracting 

mesendoderm started to expand all around the forming primitive streak. Finally, only 

site of the primitive streak was contracting and all other regions were expanding. In 
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addition, the deformation map showed how tissue was moving towards the primitive 

streak from lateral positions. The fact that contraction in midline of the embryo was the 

first event shown by the deformation map suggests that cells in the midline are pulling 

cells from the lateral positions. 
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Figure 3.1 Tissue deformation of averaged tissue velocity fields. This is a contraction 
and expansion map computed from averaged tissue velocity fields from nine embryos. 
Contraction and expansion are annotated with blue and with red colour respectively. 
Spatiotemporal alignment between embryos was generated in a semi-automatic manner. 
The black scale bar is 200 μm. 
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3.1.2 PIV based tissue deformation strain rates 

The tissue contraction expansion map described in previous subsection was considering 

deformation of the tissue relative to the start of the experiment. To better capture local 

tissue deformations we used PIV based tissue velocity fields to compute tissue 

deformation strain rates from the spatial gradients in the local velocity field. These 

strain rates were then averaged over spatiotemporal domains to visualise the strain rate 

field (Figure 3.2). The strain rate computation procedure is described in detail in 

computation methods chapter in subsection 4.4.3. Only the symmetric component of the 

strain rate field was visualised. The symmetric component was decomposed into 

anisotropic component and isotropic components. The anisotropic component was 

visualised as a blue line in direction of contraction, the perpendicular expansion 

component was not visualised. The isotropic component is shown as a circle, coloured 

red or blue in case of expansion or contraction, respectively. 

The tissue deformation strain rate field evaluated and averaged in spatiotemporal 

domains revealed isotropic contraction at the site of streak formation (Figure 3.2). This 

site experienced contraction throughout the time sequence. The magnitude of the 

isotropic contraction increased over time. Regions around the site of primitive streak did 

not show any significant deformation initially. The surrounding regions started to 

isotropically expand towards the end of the time sequence. Simultaneous with the 

isotropic contraction an anisotropic contraction occurred in site of mesendoderm cells. 

This tissue was contracting in an orientation perpendicular to the midline of the embryo 

and expanding along the midline. The magnitude of this contraction increased over time 

and the region showing this type of behaviour expanded along the forming primitive 

streak and contracted in lateral direction. A down side of this PIV based analysis is that 

cell rearrangements are not captured in great detail and thus cell based methods are 

required as presented in following sections. 
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Figure 3.2 Tissue flow based tissue strain rates. A-D) Symmetric part of PIV based 
tissue deformation tensor during the primitive streak formation in chicken embryo. 
Isotropic component of the strain rate is visualised with blue circles and red circles for 
contraction and for expansion, respectively. The anisotropic component of the strain 
rate is shown with blue lines in direction of contraction. Yellow dots indicate the area 
that eventually collapses into the primitive streak. The tissue velocity field is shown 
with yellow lines where the open end indicates direction of the motion. The white scale 
bar is 200 μm long. Red scale bar indicates a strain rate of 10-4/s and a tissue domain 
velocity of 4μm/min. 

 

3.1.3 Tissue statistics based measure 

The previous subsection described how the epiblast tissue is deforming. To dissect 

which individual cell behaviours reflect the observed tissue deformations we used 

automatic cell tracking data. A cell track based tissue deformation field was computed 

using the statistical methods explained in detail in computational method chapter (see 

section 4.8). The computed cell track based strain rate that corresponds to the PIV base 

deformation strain rate is known as the statistical symmetrized velocity gradient (V). 

This statistical measure quantifies how the cells are rearranging relative to each other 

over time. As in the previous subsection, only the symmetric strain rate component 

decomposed into an isotropic and anisotropic part was visualised. The anisotropic 
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component was visualised as a blue line in direction of contraction (Figure 3.3). The 

isotropic component was shown as red or blue coloured circles in case of expansion or 

contraction respectively. 

Before the onset of tissue motion there were no appreciable deformations (Figure 3.3 

A). Once the motion initiated, the mesendoderm cells started to rearrange causing the 

tissue to expand along the midline and contract perpendicular to that (Figure 3.3 B). The 

tissue at the site of streak formation started to contract isotropically. Similarly, the tissue 

anterior form the forming primitive streak started to contract isotropically. Four hours 

later similar deformation patterns were present (Figure 3.3 C). At this stage the 

magnitudes of both anisotropic and isotropic contraction had increased. Contractions 

were still occurring throughout the mesendoderm cell population that had now 

deformed to cover a larger area along the forming primitive streak. Four hours later the 

magnitudes of both types of contraction were still strong at site of the primitive streak 

(Figure 3.3 D), but the relative magnitude of the isotropic contraction had increased. 

Additionally, tissue anterior from the primitive streak was contracting. The magnitudes 

and spatiotemporal patterns of the isotropic and anisotropic strain rates calculated by 

both methods (cell and PIV based) were in a good agreement. 
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Figure 3.3 Tissue strain rate based on individual cells. A-D) Symmetric part of cell 
tracks based tissue deformation strain rate tensor during the primitive streak formation 
in chicken embryo. Isotropic component of the strain rate is visualised with blue circles 
and red circles for contraction and for expansion, respectively. Anisotropic component 
of the strain rate is shown with blue lines in direction of contraction (the positive 
component with the same magnitude is not shown). Yellow circles indicate the area that 
eventually collapses to the primitive streak. Tissue velocity field is shown with yellow 
lines where open ends of lines indicate direction of the motion. The white scale bar is 
200 μm long. Red scale bar indicates a strain rate of 10-4/s and a tissue domain velocity 
of 4μm/min. 

 

3.1.4 Tissue tectonics based measure  

To estimate tissue strain rates in the semi-automatically tracked domains we used a 

different statistical method than the one used in previous subsection. This method is 

called tissue tectonics and details of the method are given in computational methods 

chapter (section 4.9). The method computes a deformation strain rate for each cell in a 

domain and then averages all the deformations within domains. Principal components of 

the symmetric part of the strain rate are presented as blue line and red line in direction 
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contraction and in direction of expansion, respectively. A sample domain of tissue 

deformation strain rates of individual cells is presented in figure 3.4 A.  

We analysed the four semi-automatically annotated domains presented in previous 

chapter (Figure 2.6). The tissue tectonics based deformation strain rates were computed 

in each domain in all time points. The strain rates of all the time points within each 

domain and were then pooled together into polar histograms (Figure 3.4 B-E). The 

value in each bin was the average of all the principal magnitudes falling into the bin. 

The bins were then coloured similarly as the strain rate lines in figure 3.4 A. The streak 

domain showed expansion along the primitive streak and contraction perpendicular to 

that (Figure 3.4 B). The magnitudes of the deformations were weaker in all the other 

three domains (Figure 3.4 C-E). Both the lateral and the posterior domains (Figure 3.4 C 

and E) showed similar patterns as the streak domain (Figure 3.4 B). The anterior 

domain did not show a clear pattern (Figure 3.4 D). All this is in good agreement with 

deformation tensor calculations of the previous section suggesting that the deformation 

is strongest at the site of the forming primitive streak. 
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Figure 3.4 Tissue tectonics based average tissue strain rate in semi-automatically 
annotated domains. A) Symmetric component of tissue strain rate visualised for a time 
point. Blue line and red line indicate direction of contraction and expansion, 
respectively. B) Pooled, magnitude weighted polar histogram of all the strain rates of all 
the time points of the streak domain. C-E) Same as B for the lateral domain, for the 
anterior domain and for the posterior domain, respectively. The white scale bar is 10 μm 
and 10-4/s. 
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Prior to the onset of motion an alignment (perpendicular to the midline) of anisotropic 

components of the intercalation strain rates was visible on posterior side of the 

mesendoderm domain indicating a rearrangement of tissue (Figure 3.5 A). After the 

initiation of motion the alignment disappeared and a new weak alignment started to 

form indicating contraction of the mesendoderm (Figure 3.5 B). Four hours after the 

onset of motion the whole mesendoderm domain showed very clear alignment of the 

anisotropic intercalation strain rate components perpendicular to the forming primitive 

streak (Figure 3.5 C). Another 4 hours later the alignment had spread towards anterior 

as the developing primitive streak was extending (Figure 3.5 D). These findings clearly 

show that the cells in the mesendoderm intercalate, pulling tissue from lateral positions 

towards the midline of the embryo and that these tissues are pushed along the midline to 

induce extension of the primitive streak. 
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Figure 3.5 Cell based intercalation strain rate. A-D) Symmetric part of cell tracking 
based intercalation strain rate tensor during the primitive streak formation in chicken 
embryo. Isotropic component of the strain rate is visualised with blue circles and red 
circles for contraction and for expansion, respectively. Anisotropic component of the 
strain rate is shown with blue lines in direction of contraction (the positive component 
with the same magnitude is not shown). Yellow circles indicate the area that eventually 
collapses to the primitive streak. Tissue velocity field is shown with yellow lines where 
open end of lines indicate direction of the motion. The white scale bar is 200 μm long. 
Red scale bar indicates a strain rate of 10-4/s and a tissue domain velocity of 4μm/min. 

 

3.2.2 Semi automatically annotated domains 

To estimate the intercalation rate in the semi-automatically tracked domains we used a 

tissue tectonics based measure. Details of the method are given in computational 

methods chapter (section 4.9). A sample domain of intercalation strain rates of 

individual cells is presented in figure 3.6 A. 

We analysed the four semi-automatically annotated domains presented in previous 

chapter (Figure 2.6). The tissue tectonics based deformation strain rates were computed 

in each domain in all time points. The strain rates of all the time points within each 
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domain were then pooled together into polar histograms (3.6 B-E). The value in each 

bin was the average of all the principal magnitudes falling into the bin. Bins were then 

coloured similarly as the strain rate lines in figure 3.6 A. The streak domain showed 

expansion along the primitive streak and contraction perpendicular to that (Figure 3.6 

B). Magnitudes of the deformation were weaker in all the other three domains (Figure 

3.6 C-E). Both the lateral and the posterior domains (Figure 3.6 C and E) showed 

similar patterns as the streak domain (Figure 3.6 B). In the anterior domain magnitude 

of the intercalation was weak (Figure 3.6 D). This suggests that tissue at the site of the 

primitive streak is intercalating strongest and adjacent tissues intercalate also but less 

vigorously. 

Other evidence of intercalation was the fact that cells in the semi-automatically 

annotated streak domain and lateral domain rearranged in a biased manner (Figure 2.6 B 

and E). In both of these domains cells were initially forming a square and a linearly 

organised set of cells was selected (coloured blobs). Over time the initial selection of 

cells expanded along the streak axis and contracted perpendicular to that. The cells 

marked with the blobs spread along the anterior-posterior axis. Cells of the posterior 

domain showed similar but weaker behaviours as those in the streak domain and the 

lateral domain. The posterior domain did not show contraction (Figure 2.6 D). The 

anterior domain stayed almost the same except for some small rearrangements of the 

cells in that domain (Figure 2.6 C). 
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Figure 3.6 Tissue tectonics based average intercalation strain rate in semi-
automatically annotated domains. A) Symmetric component of intercalation strain 
rate visualised for one time point. The blue and red lines indicate direction of 
contraction and expansion, respectively. B) Pooled, magnitude weighted polar 
histogram of all the strain rates of all the time points of the streak domain. C-E) Same 
as B for the lateral domain, for the anterior domain and for the posterior domain, 
respectively. The white scale bar is 10 μm and 10-4/s. 

 

3.3 Cell size and cells shapes changes 

In addition to intercalation, cell shape changes are another important potential driver of 

the primitive streak formation. The average cross sectional area of cells is analysed in 

subsection 3.3.1. The cell shape changes are further analysed using statistical methods 

in subsections 3.3.2 and 3.3.3. Finally the alignment of cell shapes is analysed in last 

subsection (3.3.4). 

3.3.1 Cross sectional area of cells 

We used time independently segmented cells to quantify how averaged cross sectional 

area of cells is changing over time. To visualise cross sectional area changes the embryo 

was divided into small domains in each of which the average cross sectional area was 
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computed for each time point (Figure 3.7 A). These computations showed that a 

gradient in the average cross sectional area was already present prior to the onset of 

motion in the embryo (Figure 3.7 A first panel). The cell size was smallest at the site 

where primitive streak was going to form and the average cell size was radially 

increasing from this site. Starting from this initial time point the cross sectional area of 

cells was gradually decreasing over time (Figure 3.7 A second and third panel). The 

radial gradient was preserved over time. 

Due to light scattering properties of the embryonic tissue it was not possible to image 

full length of mesendoderm cells in apical-basal direction. Thus a direct measurement of 

all the cell volumes was impossible. As a solution only volumes of cells just prior to the 

cytokinesis were measured, as these cells were rounding up and became nearly 

completely visible from the apical side of the epiblast. This method is described in 

detail in computational methods chapter (section 4.7). The cross sectional area of all the 

cells and cross sectional area of cells prior to cytokinesis was measured in two domains 

from the embryo (domains B and C in Figure 3.7 A). the relative cross sectional area of 

cells decreased significantly (by 40-65% depending on position) in both of the domains, 

whilst the cross sectional area of the dividing cells stayed nearly constant (Figure 3.7 B 

and C). This implies that cells are elongating along the apical-basal axis in preparation 

for ingression, resulting in the observed decrease in cross sectional area. 
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Figure 3.7 Changes in cell volume and cross sectional area during early 
development. A) Changes in cellular cross-sectional area over time. The average cell 
diameters were calculated from the segmented images in small domains and colour 
coded as indicated in the legend. Size of coloured squares is 6,600 μm2. The white scale 
bar is 200 μm. B) Relative average cell volume of spherical cells prior to cytokinesis 
(red line) and relative average apical cell diameter (green line) in the posterior domain 
(marked with B in panel A). C) Same volume and cross-sectional area measurements 
for the anterior domain (marked with C in panel A). 
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In addition, change in cross sectional area of cells of semi-automatically annotated 

domains was quantified. The domains are shown in Figure 2.6. The average cross 

sectional area of cells was decreasing at a similar rate in all of the four domains (Figure 

3.8). The streak domain and the lateral domain ended up having the smallest cross 

sectional area. The average cross sectional area of the lateral domain was initially at the 

level of the anterior domain and the posterior domain but decreased to the level of the 

streak domain. This suggests that all mesendoderm cells significantly contract their 

apical cross section, presumably in preparation for ingression (Figure 3.8 and Figure 2.6 

A). 

 

Figure 3.8 Average cross sectional area cells in each of semi-automatically 
annotated domain. The streak domain is blue, the lateral domain is black, the anterior 
domain is green and the posterior domain is red. 

 

3.3.2 Tissue statistics based measures 

To quantify cell shapes and cell sizes we used a similar statistical method as was used 

for quantification of tissue deformation and cell intercalation. Here we used tissue 

texture tensor. This method is described in detail in computational methods chapter 

(section 4.8). The tensor quantifies the magnitude and directional orientation of cell 

shapes. The magnitudes of both principal components of the texture tensor, reflecting 
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average cross sectional areas of cells, are visualised with red lines in corresponding 

principal directions. Prior to the onset of motion mesendoderm cells are aligned in a 

direction perpendicular to the midline of the embryo (Figure 3.9 A). After the motion 

has started the alignment of the mesendoderm cells got stronger (Figure 3.9 B). 

Additionally, the cross sectional area of cells decreased throughout the embryo. The 

alignment was no longer detectable four hours later and did not reappear (Figure 3.9 C 

and D). The computed decrease in the cross sectional area of cells is in good agreement 

with the measure presented in the previous subsection. 

 

 

Figure 3.9 Cell based tissue texture tensor. A-D) Symmetric part of cell tracking 
based tissue texture tensor during the primitive streak formation in chicken embryo. 
Both principle components of the tensor are shown with red lines. Yellow circles 
indicate the area that eventually collapses into the primitive streak. Tissue velocity field 
is shown with yellow lines where the open end indicates direction of the motion. The 
white scale bar is 200 μm long. Red scale bar indicates a tensor magnitude of 200 μm2 
and a tissue domain velocity of 4μm/min. 
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To further quantify how the cross sectional area of cells and cell shapes are changing 

over time the temporal change of the tissue texture tensor was computed. This measure 

is called the statistical internal strain rate and details are given in the computational 

methods chapter (section 4.8). This statistical cell shape change strain rate is visualised 

similarly to the tissue deformation strain rate and to the intercalation strain rate 

illustrated in two previous subsections. Red colour and blue colour correspond to the 

expansion and contraction, respectively. Before the onset of motion the anisotropic 

component of the symmetric part of the tensor showed contraction along to the midline 

for the mesendoderm cells (Figure 3.10 A). This indicated an elongation of the shapes 

of the mesendoderm cells in direction perpendicular to the midline. After the motion 

started an anisotropic contraction indicated counteracting the occurred elongation of the 

mesendoderm cells (Figure 3.10 B). Anisotropic components started to become stronger 

at the site of the forming primitive streak towards the end of the time sequence (Figure 

3.10 D). 
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Figure 3.10 Cell shape strain rate based on cell tracking. A-D) Symmetric part of 
cell tracking based cell shape strain rate tensor during the primitive streak formation in 
chicken embryo. Isotropic component of the strain rate is visualised with blue circles 
and red circles for contraction and for expansion, respectively. Anisotropic component 
of the strain rate is shown with blue lines in direction of contraction (the positive 
component with the same magnitude is not shown). Yellow circles indicate the area that 
eventually collapses into the primitive streak. Tissue velocity field is shown with yellow 
lines where the open end of lines indicates direction of the motion. The white scale bar 
is 200 μm long. Red scale bar indicates a strain rate of 10-4/s and a tissue domain 
velocity of 4μm/min. 

 

To compare the relative magnitudes of the intercalation strain rate and the cell shape 

change strain rate we overlaid the anisotropic components of these tensors. Intercalation 

and cell shape change were quantified with blue and green colour, respectively. Prior to 

the onset of motion these to anisotropic components had opposite directions with 

similar magnitudes (Figure 3.11 A). This suggests that local intercalations and shape 

changes occur, due to a balancing of the effects of shape change and intercalation and 

that no tissue deformations occur at this stage of development. 
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This is also confirmed by statistical tissue deformation strain rate prior the motion onset 

(Figure 3.3 A). After the motion onset only few spatially scattered motif pairs showed 

opposite directions (Figure 3.11 B-D). In addition, magnitudes of the intercalation grew 

stronger than the magnitudes of the cell shape changes, showing that intercalation 

became a dominant factor. 

 

 

Figure 3.11 Anisotropic components of cell shape strain rate and intercalation 
strain rate. A-D) Anisotropic components of symmetric part of cell tracking based 
intercalation strain rate tensors during the primitive streak formation in chicken embryo. 
The anisotropic component of the intercalation strain rate is shown with blue lines in 
direction of contraction (the positive component with the same magnitude is not 
shown). Similarly, the anisotropic component of the cell shape strain rate is shown with 
green lines. Yellow circles indicate the area that eventually collapses into the primitive 
streak. Tissue velocity field is shown with yellow lines where the open end indicates 
direction of the motion. The white scale bar is 200 μm long. Red scale bar indicates a 
strain rate of 10-4/s and a tissue domain velocity of 4μm/min. 

 

3.3.3 Tissue tectonics based measure 

To quantify cell shape change in the semi-automatically annotated domains a tissue 

tectonics based measure was used. Details of this method are given computational 
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methods chapter (section 4.9). This measure evaluated a cell shape change strain rate for 

each cell within each domain for each time point (Figure 3.12 A). Red and blue colours 

correspond to expansion and contraction, respectively. The measure was evaluated for 

the semi-automatically annotated domain illustrated in previous chapter (Figure 2.6). 

Both the streak domain and the lateral domain showed nearly uniform contraction 

(Figure 3.12 B and C). The anterior domain and the posterior domain did not show any 

deformation (Figure 3.12 D and E). This again is in a good agreement with the 

quantification of the average cross sectional areas of cells. This also suggests that 

mesendoderm cells are actively contracting whilst cells in other regions might get 

smaller due to cell divisions. 
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Figure 3.12 Tissue tectonics based average cell shape strain rate in semi-
automatically annotated domains. A) Symmetric component of cell shape strain rate 
visualised for a time point. Blue line and red line indicate direction of contraction and 
expansion, respectively. B) Pooled, magnitude weighted polar histogram of all the strain 
rates of all the time points of the streak domain. C-E) Same as B for the lateral domain, 
for the anterior domain and for the posterior domain, respectively. The white scale bar is 
10 μm and 10-4/s. 

 

3.3.4 Alignment of cell shapes 

To quantify the alignment of the cells, the automatically tracked and segmented cell 

outlines were used. An ellipse was fitted to the shape of each cell in each time point. 

This was done using the normalized second-order central moments of pixels of the 

segment83. This was done independently for each cell and each time point of time lapse 

sequence. The orientation of the major axis of the fitted ellipse was then considered to 

represent the orientation of the corresponding cell. A cell was considered to be polarised 

if the eccentricity of the fitted ellipse was greater than 0.87. To visualise spatio-

temporal patterns of cell alignment the embryo was divided into square domains (Figure 
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3.13). To quantify the average polarity in each domain a polar histogram was 

constructed from the orientations of polarised cells. 

This measure showed a clear pattern amongst the mesendoderm cells prior to the motion 

onset (Figure 3.13 A). These cells were polarised along the in direction perpendicular to 

the midline of the embryo. After the motion initiated the polarity increased (Figure 3.13 

B). During the following three hours the alignment was lost completely (Figure 3.13 C). 

This observed bias and alignment in shapes of cells is also observed the tissue texture 

tensor measure (Figure 3.9). The initially forming polarity of cells might facilitate 

intercalation and formation of the observed myosin chains (see section 3.6). The cell 

polarity could be cellular mechanism or rise from the physical properties of the epiblast. 

Further studies are required to establish how the polarity rises. 
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Figure 3.13 Alignment of cell shapes. An ellipse is fitted to shape of each individual 
cell. Only cells with ellipse eccentricity of >0.87 are considered. Orientations of the 
ellipses with eccentricity greater than 0.87 are used to form polar histograms in several 
individual domains. Percentage point numbers show how many percent of cells are 
considered in each domain. Scale bar in each panel is 200 μm. 
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3.4 Cell divisions 

3.4.1 Frequency of cell divisions 

The frequency of cell divisions was measured from both the automatically tracked cell 

data sets and from the semi-automatically tracked data sets. We observed that cells were 

dividing on average once in 6 hours, but that rates of cell divisions were not constant 

over time in the semi-automatically annotated domains (Figure 3.14 A). The same was 

true for the automatically tracked domains (Figure 3.14 B). This suggests most likely a 

partial synchrony but the implications of this are currently unknown. 

 

Figure 3.14 Frequency of cell divisions. A) Cumulative number of cell division events 
in each of semi-automatically annotated domain. The streak domain is blue, the lateral 
domain is black, the anterior domain is green and the posterior domain is red. B) 
Number of cell divisions over time in the embryo shown in figure 3.15. 

 

3.4.2 Orientation of cell divisions 

The orientation of cell divisions in different regions in the embryo was quantified from 

the automatically tracked cell data sets. The orientation of a division was measured by 

quantifying the orientation between two daughter cells immediately after the cytokinesis 

relative to the anterior-posterior axis of the embryo. To visualise average orientation of 
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the cell divisions the embryo was divided into square domains. Then a polar histogram 

was constructed for each domain by pooling the orientations of cell divisions within the 

domain over a period of two hours (Figure 3.15). 

Prior to onset of motion cell divisions were polarised in the direction perpendicular to 

the midline of the embryo within mesendoderm area (Figure 3.15 A). After the start of 

motion the divisions became less polarised (Figure 3.15 B) until two hours later the 

polarity was almost completely lost (Figure 3.15 C). The polarity of the cells coincides 

with alignment of the cell shapes (Figure 3.13). This suggests these two events are 

likely related. It is a possibility that biased cell shapes are biasing orientations of cell 

divisions, alternatively it is possible that the same mechanism that biased cell 

orientation (tension) also biases the direction of cell division. Furthermore, as cell 

divisions are preferably occurring in direction perpendicular to the forming primitive 

streak it is unlikely that cell divisions are driving elongation of the primitive streak. 
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Figure 3.15 Polar histograms showing the distributions of the cell division axes in 
domains in different parts of the embryo. Each domain contains the all the cell 
divisions occurring over a 2.1 h period. Scale bar is 200 μm. 

 

3.5 Ingression 

3.5.1 Semi-automatically annotated domains 

Cell ingressions were quantified from the semi-automatically tracked domains 

illustrated in previous chapter (Figure 2.6). For the first 6 hours not many ingression 

events occur in any of the domains (Figure 3.16). After this number of ingression events 

starts to rapidly increase in the streak domain. Similarly, 3.5 hours after this the number 

of ingressions starts to increase in the lateral domain (Figure 3.16). The number of 
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ingressions stays at much lower levels in both anterior domain and posterior domains. 

All this suggests is in agreement that mostly mesendoderm cells are ingressing and that 

ingressions occur only whilst the primitive streak is already forming. It seems that 

initial decrease of the cross sectional area of the mesendoderm cells culminates into 

ingression. 

 

Figure 3.16 Cumulative number of ingression events in each of the semi-
automatically annotated domains. The streak domain is blue, the lateral domain is 
black, the anterior domain is green and the posterior domain is red. 

 

3.5.2 Automatically tracked cells 

To quantify spatiotemporal occurrence of ingression events from whole embryo 

automatically tracked cell data were used. There was no clear initial pattern in 

occurrence of ingression events (Figure 3.17 first panel). Later a pattern started to 

emerge highlighting the site of the forming primitive streak as a site for the ingression 

events (Figure 3.17 second and third panels).  
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Figure 3.17 Number of ingression events. Blue colour and red colour correspond to 
less frequent and more frequent cell division event, respectively. The embryo is same as 
in figure 3.15. Scale bar is 200 μm. 

 

3.6 Role of myosin cables during primitive streak formation 

We investigated role of myosin II in the primitive streak formation utilising 

phosphorylation of myosin light chain84. We found that myosin localises into the cell 

junctions in an organised manner in the posterior area pellucida. The myosin localised 

into the aligned junctions spanning 2-8 cell diameters and thus forming cables (Figure 

3.18 A). The cables were not present in the posterior area pellucida. These cables appear 
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when the mesendoderm starts to contract and the lateral cell flows initiate85. These 

experiments were carried out by Dr Manli Chuai. 

To investigate involvement of myosin I family to the formation of the observed cables 

we used an inhibitor called pentachloropseudilin (PCP). This chemical inhibited 

formation of the observed myosin cables in posterior area pellucida (Figure 3.18 B). 

Interestingly the normal tissue motions and thus the formation of the primitive streak 

were completely blocked after addition of the PCP (Figure 3.19). Prior to the addition 

the inhibitor the cell based tissue strain rates were seemingly normal but after the 

addition of the inhibitor all tissue deformations stopped rapidly (Figure 3.19 A). 

Similarly, both the intercalation and cell shape change strain rate components indicated 

absence of these processes within the tissue after application the PCP (Figure 3.19 B). 

This suggests that the myosin I is required for the formation of the phosphorylated 

myosin light chain cables and that these cables are required for the formation of the 

primitive streak. 
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Figure 3.18 Localisation of super cellular phosphorylated Myosin light chain 
cables (pMlc). A) pMlc (green) organises into super cellular cables in the posterior area 
pellucida (PAP) (lower row). Actin is stained with red. The cables are not present in the 
anterior area pellucida (AAP) (top row). B) The pMlc cables are not present in posterior 
area pellucida 2 hours after addition of PCP. Scale bar in first panel is 1 mm and other 
scale bars are 25 μm. 
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Figure 3.19 Inhibition of Myosin analysed with statistical strain rate analysis. A) 
Tissue strain rate based on individual cells 5 h before addition (top panel), 30 min after 
addition (middle panel) and 5 hours after addition (bottom panel). Symmetric part of 
cell tracks based tissue deformation strain rate tensor. Isotropic component of the strain 
rate is visualised with blue circles and red circles for contraction and for expansion, 
respectively. Anisotropic component of the strain rate is shown with blue lines in 
direction of contraction (the positive component with the same magnitude is not 
shown). B) Anisotropic components of cell shape strain rate and intercalation strain 
rate. The anisotropic component of the intercalation strain rate is shown with blue lines 
in direction of contraction (the positive component with the same magnitude is not 
shown). Similarly, the anisotropic component of the cell shape strain rate is shown with 
green lines. The white scale bar is 200 μm long. Red scale bar indicates a strain rate of 
10-4/s and a tissue domain velocity of 4μm/min. 
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4 COMPUTATIONAL METHODS 

This chapter describes the computational methods used and developed in this work. The 

first section of this chapter illustrates details of the light sheet microscope used in this 

study (4.1). The second section shows details of used surface projection algorithm (4.2). 

The third section explains in detail how embryos imaged in two halves are stitched 

together. This is followed by detailed description of particle image velocimetry (4.4). 

Sections 4.5 and 4.6 explain how ImageJ and Matlab have been used, respectively. The 

next section describes how volumes of dividing cells were estimated (4.7). Sections 4.8 

and 4.9 describe two alternative methods for computing cell track and cell outline based 

tissue statistics. Finally, an automatic drift compensation algorithm for confocal 

microscopy is described (4.10). 

4.1 Light sheet fluorescence microscope used in this study 

We used light sheet fluorescence microscope to image cell membranes from chick 

embryos. The membranes were tagged with Myr-EGFP. The fluorescent chicken strain 

is explained in detail in our publication85. The culture conditions and culture chambers 

used are described in Nature protocol exchange86. Light sheet microscopy is ideal for 

this study as it enables imaging of whole chick embryo at a resolution at which 

individual cells are clearly visible. Additionally, light sheet microscopy is well suited 

for 3D imaging due to low levels of photobleaching and phototoxicity. The setup of our 

light sheet microscope follows closely the design of a standard scanned fluorescent light 

sheet microscope38. The main difference of our system to the standard one is that both 

illumination and imaging objectives are oriented at 45° degree angle relative to the 

horizontal surface of the flat chick embryo. Our light sheet microscope system consists 

of CMOS camera, a 3-axis stage, a 2-axis scanner and a 488nm solid state laser85. Both 

illumination and imaging objectives are Nikon 10x water immersion objectives. 
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Embryos are kept in a heated chamber at 37 °C. Several millimetre wide samples are 

imaged at a 1.84 μm interval. Imaging one time point typically takes 2-3 minutes. To 

compensate for height variations in the surface of the embryo an automatic height 

adjustment is performed along the z-axis of the stage (this is described in detail in 

subsection 4.1.4). In addition, features like the primitive streak might not stay in field of 

view of the microscope throughout the time sequence. This is compensated using 

automatic drift compensation (for details see subsection 4.1.5). As a result of imaging, 

typically, 3000 images (2560x400 pixels) are collected per time point. The amount of 

image data per time point is then typically 1 TB over period of 15 h. The light sheet 

microscope is controlled by a dedicated C++ acquisition program and a light sheet 

microscope program. These two program packages are run parallel on two independent 

computers and the details are given in following two subsections. 

4.1.1 Acquisition program 

The acquisition program is responsible for controlling the camera, processing of 

collected images to perform height adjustment, processing of collected images for drift 

compensation and for storing the acquired image data on a fast raid system. The 

acquisition program collects frames at each time point sequentially. The flowchart of 

the acquisition program is shown in panel A of figure 4.1. The acquisition program 

keeps track of the time point and current frame being imaged. After initialisation the 

acquisition program waits for the software library of the camera to send a software 

trigger signal indicating that the camera has acquired an image. After the signal is 

received the newly acquired image is read in by the acquisition program. After this the 

acquisition program checks if a desired number of images have been collected for the 

current time point. If the desired number is not yet reached the process is repeated. The 

automatic height adjustment displacement to be applied in the next scan is computed 

after acquisition of the frame (this process is detailed in subsection 4.1.4). 
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Once the desired number of images has been collected by the acquisition program the 

calculated height profile is sent to the light sheet microscope program. This is followed 

by computation of the automatic drift compensation in case user has enabled this feature 

(see subsection 4.1.5 for details). The automatic drift compensation keeps the desired 

feature of the embryo in a selected, fixed position of the field of view. This enables user 

to image the same feature throughout the experiment. The drift compensation 

information is sent to the light sheet microscope program. After this the acquired time 

point is saved to the hard disk. Finally the acquisition program waits for the desired 

number of time points to be acquired, if yes then the program stops. Otherwise the 

program proceeds to wait for the first image of the next time point to arrive. 
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Figure 4.1 Outline of two programs driving light sheet microscope. A) Acquisition 
program is responsible of collection and storing of images. The acquisition program 
also evaluates height profiles used for automatic height adjustment. In addition, 
automatic drift compensation is computed in the acquisition program. B) Light sheet 
microscope program controls all the other hardware devices (laser, scanner and stage). 
The light sheet microscope program runs parallel with the acquisition program. The 
light sheet microscope program sends a hardware trigger signal to the camera while 
light sheet is being scanned. After all the images of a time point have been scanned the 
light sheet microscope program waits to get height profiles and drift compensation 
information from the acquisition program. 

 

4.1.2 Light sheet microscope program 

Light sheet microscope program is responsible for controlling the laser, the AOTF, the 
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and time points sequentially. The light sheet microscope program starts by initialising 

the height profile used by the stages for the collection of the current time point (Figure 

4.1). This height profile typically consists of five spatial points used for approximating 

the surface of the embryo. The user selects these points by visual inspection of the 

sample for the first time point. Intervals between these five sequential points are linearly 

interpolated using 1.84 μm steps in x-direction. After initialisation of the height profile 

the stage is moved to the first position of the profile. This is followed by scanning of the 

light sheet using the scanner. The scanner triggers the CMOS camera of the microscope 

using a hardware trigger. After this the stage program checks if the desired number of 

frames has been collected for the current time point. If the end has not been reached the 

program repeats the procedure using the next stage position from the height profile. 

Once the collection of the current time point is finished the light sheet microscope 

program waits to receive the surface position information and drift compensation data 

from the acquisition program. After both have been received the light sheet microscope 

program calculates a new height profile that is used for acquisition of next time point. 

The surface position data are used to update the z-coordinates of the height profile in 

order to drive the surface of the embryo to the desired position for each of the five xz-

points separately (see details from subsection 4.1.4). The automatic drift compensation 

data are used to update the x-coordinates of the five surface profile points. The y-

coordinate of all the five profile points is altered using the automatic drift compensation 

data. Once the new height profile is generated the light sheet microscope program 

proceeds to the acquisition of the next time point in case desired number of time points 

has not yet been reached. The program stores the absolute positions of stages for each 

acquired frame for each time point. 
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4.1.3 Communication between the two programs 

As briefly mentioned in two previous subsections there are three different 

communications between the two programs. These communications guarantee 

synchrony between the two programs. The first communication is a hardware signal 

between the scanner and the camera. This guarantees that an image is acquired every 

time after the stage has been moved to the desired new position and the scanner is 

started by the program. An assumption here is that the acquisition program is always 

ready to receive an image after camera receives the trigger from the light sheet 

microscope program. Thus it is important for the acquisition program to process the 

acquired image fast enough. 

The second point of communication between the two programs occurs when the light 

sheet microscope program waits for the acquisition program to send the height profile 

data. This data is written to a file to the hard disk to a shared folder, which both 

programs can access. This text file contains an integer number on each row of the file. 

Each number is then a difference between measured surface position and desired surface 

position in pixels. 

The final point of communication between the acquisition and the light sheet 

microscope program is the transfer of automatic drift compensation data. This 

information is written to a file that both programs can access. The (text) file contains 

two integers representing the displacement vector in pixels that the light sheet 

microscope program applies to the stage position. Once the acquisition program has 

written both of these files the acquisition program saves the image data and proceeds to 

wait the light sheet microscope program to start a new time point.  
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4.1.4 Automatic height adjustment 

The automatic height adjustment is part of the two programs of the light sheet 

microscope (Figure 4.1). The purpose of the automatic height adjustment is to keep the 

surface of the embryo as close in the focal plane of the light sheet during scanning as 

possible. This enables the best possible focus throughout the sample and this also 

compensates for drifts of the embryo along the z-axis. Another benefit is that the height 

of the acquired frames can be reduced as surface of the sample is guaranteed to stay in 

middle of the field of view. 

The first step in the automatic height adjustment algorithm is to compute for each 

acquired frame the difference between the surface of the embryo and a desired height to 

which surface should be adjusted (Figure 4.2 A). This has to be done for each frame. 

The desired height is normally in the middle of a frame. To compute the surface 

position in a frame the central 25% of the image is used to calculate the height (interval 

between vertical blue lines in figure 4.2 A). To determine the position of the surface the 

variance of intensities is computed for each row of pixels within the 25% horizontal 

interval. The row with the highest variance is selected to represent the surface of the 

embryo (solid red line in figure 4.2 A). The difference between the detected surface and 

desired position of the surface (dashed red line in figure 4.2 A) is computed for each 

frame of the point. These computations are performed in the acquisition program 

immediately after each frame has arrived from the camera. 

The computed height difference values are used in the light sheet microscope program 

to evaluate z-coordinates of the surface profile of the next time point. This is done by 

adding the difference between current position and the desired position to z-coordinates 

of each of the points used for controlling profile of the stage positions (points Xi in 

figure 4.2 B). Old position and new positions are presented with a solid line and with a 
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dashed line in figure 4.2 B, respectively. To obtain the height difference at point Xi all 

the height differences on interval [(Xi-1+Xi)/2 (Xi+Xi+1)/2] are averaged. 

 

Figure 4.2 Automatic height adjustment. A) Z-coordinate of surface of embryo is 
estimated by the acquisition program (solid red line). Difference between the detected 
surface position and desired surface position (dashed red line) is evaluated for each 
acquired frame and sent to the light sheet microscope program. The image represents a 
slice through embryo in 45° angle. B) Height profile used by stage of the microscope 
(solid blue line). The previously used height profile is modified in the light sheet 
microscope program according to the height differences computed in the acquisition 
program. The white scale bar is 50 μm. 

 

4.1.5 Automatic drift compensation 

The automatic drift compensation is part of the two programs controlling the light sheet 

microscope. The purpose of this algorithm is to allow user to choose a feature from the 

embryo and then to keep this feature in fixed position in the field of view of the 

microscope. This type of compensation is useful if one wants to follow for example the 

primitive streak throughout the time sequence, especially when imaged at higher 

magnification. 

The automatic drift compensation algorithm has to counteract the drifts occurring in the 

tissue in stage coordinate system (vector 𝑚�(𝑡) in figure 4.3). First the acquisition 
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program estimates the displacement between images of two consecutive time points 

using a PIV based method that is implemented in CUDA. This method provides the 

acquisition program with a vector indicating the magnitude and direction of tissue 

displacement between two consecutive time points in the image coordinate system 

(vector �̅�(𝑡) between two green dots). The vector is an average vector over local 

neighbourhood of tissue (200 µm by 200 µm). The vector �̅�(𝑡) is measured in pixels 

and is transformed into the stage coordinate system to obtain vector 𝑢�(𝑡). Finally, the 

stage motion of in the stage coordinate system between the two time points is denoted 

with �̅�(𝑡). In all these vectors the argument t denotes time interval from time point t-1 to 

time point t. Using this we can write following 

 𝑢�(𝑡) = �̅�(𝑡) + 𝑚�(𝑡) (4.1) 
To compensate for the drift of the tissue position the stage needs to be adjusted as 

follows: 

 �̅�(𝑡 + 1) = −𝑚�(𝑡) (4.2) 
When 𝑚�(𝑡) from the first equation is substituted to this the desired form is obtained  

 �̅�(𝑡 + 1) = �̅�(𝑡) − 𝑢�(𝑡) (4.3) 
This formula is applied to achieve continuous stage adjustment that keeps a desired 

feature of the embryo in a fixed position in the field of view.  
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Figure 4.3 Principle of automatic drift compensation. u(t) is a drift of a feature 
(green dot) in image coordinate system between two consecutive images I(t-1) and I(t). 
v(t) is the corresponding shift in stage coordinate system. The vector v(t) can be seen as 
a sum of stage shift between the two consecutive time points and actual drift of the 
feature in embryos coordinate system. The white scale bar is 5 μm. 

 

An example of automatic tissue drift compensation is illustrated in figure 4.4. The user 

selects a desired feature (red square close to the primitive streak) from first image using 

the GUI of the acquisition program (Figure 4.4 A). The algorithm takes the tissue drift 

into account and preserves the relative position of the primitive streak in the field of 

view over period of 8.2 h (Figure 4.4 B). During this time interval the embryo drifted 

over 1 mm both in x-direction and in y-direction (Figure 4.4 C). Initially, the primitive 

streak is 0.8 mm away from the boundary of the image in in y-direction. If the drift of 

the embryo was not compensated the primitive streak would had moved out of the field 

of view of the microscope. The drift of the embryo is not necessarily uniform or linear 

over time (Figure 4.4 D). In this example the embryo is first drifting slowly for 1 hour. 

The magnitude of drift then increases rapidly and starts immediately decrease slowly. 

, , 

Image at time point : Image at time point : 
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Figure 4.4 Live tissue tracking allows consistent imaging of primitive streak while 
tissue is drifting. A) In the beginning of experiment microscope’s field of view is 
chosen in a way that primitive streak is middle of the image. In addition, Region Of 
Interest (ROI) is chosen (red square). The tissue tracking algorithm adjusts 
automatically stage of the microscope in a way that same part of the embryo is followed 
by the ROI. B) After 8.2 h the primitive streak has elongated and relative location of the 
primitive streak to ROI is same is in panel A. Scale bar is 200 µm long. C) XY Position 
of the embryo over period of 8.2 h. Initial position is in the origin of the graph. The 
primitive streak would not be visible in panel B if drift of the tissue had not been 
compensated. D) Adjustments applied to the position of the embryo between 
consecutive time points. In addition to the X and Y coordinates also height is adjusted 
(Z coordinate). 

 

0 h

8.2h

A

B

-1 0 1-1.5

-1

-0.5

0

0.5

1

1.5

x displacement [mm]

y 
di

sp
la

ce
m

en
t [

m
m

]

C

0 2 4 6 8 10-0.05

0

0.05

time [h]

di
sp

la
ce

m
en

t [
m

m
] x

y
z

D

x

y



106 
 
4.2 Surface projection algorithm 

The surface projection algorithm is used to project an uneven surface of the embryo 

onto a 2D plane. The algorithm uses the volumetric images collected by the light sheet 

microscope as input data. The flow diagram of the algorithm is shown in figure 4.5. The 

3D images saved by the acquisition program are stored into files that hold the acquired 

frames in chronological order. The surface projection algorithm reads in these frames 

and stores them into memory in a rectangular coordinate system in a way that pixels 

along any coordinate axis are easily accessible. 

The surface projection algorithm processes each time point independently, therefore 

only one time point worth of image data is read into memory. As part of the 

initialisation each z-plane of the rectangular 3D image is divided into square 

interrogation windows (64x64 pixels). The algorithm then proceeds to compute surface 

height independently in each of the interrogation windows. To speed up the 

computation the algorithm it first considers only every second z-slice within an 

interrogation window. The algorithm computes for each z-slice how many 2D DFT 

power spectrum components exceed a certain threshold (here 665). In addition, the 

average pixel intensity is evaluated for each z-slice. As a next step both sets of values 

are independently normalised in a range from zero to one. Finally, the normalised 

number of DFT coefficients is added to the normalised number of average pixel 

intensities by weighting the latter two times more compared to the first one. Then a z-

slice having a maximum sum is taken as an initial estimate of surface height. 

This height is then refined by considering z-slices from the interval ranging from four 

slices above the detected height to four slices below the detected height. Power 

spectrums of 2D DFTs are evaluated for all the nine z-slices. All the nine power 

spectrums are then normalised to range from zeros to one using maximum value from 
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all the nine spectrums. Then the algorithm computes for each z-slice how many 

normalised components exceed a certain threshold (here 0.74). Finally, the z-slice 

having maximum number of components exceeding the threshold is considered a 

surface height for the interrogation window. 

Once the surface height is evaluated for each interrogation window the obtained 

combined surface is smoothened spatially using 3x3 median filter. Finally, the smooth 

surface is used to interpolate a height map that has a height for each xy pixel. The height 

map is then used to select which pixels of the rectangular 3D image are used in 

projected 2D plane. The rectangular 3D image is obtained from the acquired 2D images 

by interpolating the image volume. For each interpolated pixel the new value is average 

of two closest pixels (Figure 4.6). The surface projection algorithm is performed 

independently for all the time points of the time lapse sequence.  
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Figure 4.5 Outline of the surface projection algorithm. This algorithm processes raw 
3D time sequence and extracts surface of embryo from each time point independently. 
First raw data of a time point is read in. After this the whole field of view is divided into 
in a square grid in the xy-plane. Then the algorithm finds surface height in each of these 
grid squares independently. This is done using DFTs and absolute image intensity. After 
all the grid points are processed the obtained surface is smoothed spatially. Finally, the 
smoothened surface is used to extract surface of the embryo into a projected 2D image. 
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Figure 4.6 Interpolation of volumetric images. Black dots and lines represent original 
images acquired at 45° angle to the horizontal direction (x-axis). Only one dimension of 
the acquired images is shown (the other dimension runs along the y-axis). Images are 
collected with spacing 4𝑠/√2 where s is the pixel size of the camera. This yields 
geometry where only every “fourth” image is collected. Pixels of the missing images are 
represented with red and green pixels. The missing pixels are interpolated from the two 
closest pixels by taking an average intensity. The missing pixels adjacent to the 
acquired images (red dots) are interpolated as shown with red arrows (notice that the red 
planes are not identical but are interpolated in a mutually similar manner). The missing 
pixels between the acquired images (green dots) are interpolated as shown with green 
arrows. 

 

4.3 Stitching two halves of embryo 

In some of the acquired image sequences two halves of a same embryo were collected 

sequentially. This resulted in an image sequence with a time difference (typically 3 min) 

on the boundary between two halves of an embryo (Figure 4.7A). These two halves had 

to be stitched together to enable accurate PIV velocity field computations and correct 

tracking of cells. Before stitching the halves the both were independently processed 

using the surface projection algorithm described in the previous section. To guarantee 

that no information was lost the halves were acquired so that images overlapped at the 

boundary (typically 160 pixels). 

The easiest procedure for stitching would be to overlap images from both halves and 

compute average pixel value over these two images. This did not provide good enough 

results as illustrated in figure 4.7B. To perform better stitching at the interface between 
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two halves of the embryo PIV based tissue velocity fields were utilised (see details from 

section 4.4). The velocity field was used to find matching regions between the two 

halves and this matching information was interpolated to find pixel pairs over the 

interface. Pixel values of the matching pairs were then averaged over the interface and 

the new pixel value was placed in middle of the line between two initial pixel positions. 

After this some pixel values from the interface were possibly missing. These values 

were filled in using median filter (5x5 kernel size). The described procedure was 

performed independently for all the time points of the image sequence. This type of 

stitching provided consistent image over the interface between two halves of the embryo 

(Figure 4.7C). 
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Figure 4.7 Stitching of two halves of embryo. A) The embryo is imaged in two parts, 
first upper half and then lower half (halves are separated with the red line). The two 
halves are three minutes apart. The white scale bar is 200 μm. B) The two halves are 
overlapping on the boundary and in this panel the overlapping region (cyan box) is 
average of the two halves. C) In contrast to the panel B the overlapping boundary region 
is averaged by utilising the PIV to find similar parts of the images from both halves. 
The white scale bar in B and C is 50 μm. 
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4.4 Digital particle image velocimetry 

Digital particle image velocimetry is a technique used for finding a non-rigid 

registration between two images. In our case this is a mapping between two consecutive 

images of a time lapse sequence that shows approximately where each pixel of the first 

image is located in the second image. To approximate this mapping we are using a 

Matlab toolbox called PIVLab (version 1.32)87. This toolbox performs digital PIV 

between consecutive pairs of images of an image sequence. We were using 

piv_FFTmulti.m function of the toolbox that computes the PIV using DFTs to speed up 

computations. The function also supports using multiple passes for the PIV evaluations. 

We used interrogation window size of 64x64 pixels for the first pass and 32x32 pixels 

for the second pass. The overlap between the interrogation areas was chosen to be 50%. 

The function also uses sub-pixel peak finding and post-processing of the obtained 

displacement vector between passes to achieve better results87. 

Normally this process is run from the GUI of PIVLab, the toolbox uses only one Matlab 

process. To speedup this I used parallel computing toolbox to run up to 12 Matlab 

processes simultaneously to compute different time point intervals of the image 

sequence. The output of the PIV algorithm is a tissue velocity field where we have a 

vector for every 16 pixels both in x and y direction representing the displacement of the 

image region between two consecutive time points. Often for visualisation purposes it is 

required to perform a spatial or temporal averaging (or both) to visualise the tissue 

velocity field smoothly (Figure 1.3). 

4.4.1 Averaging tissue velocity fields and contraction expansion maps 

I have developed an algorithm which allows us to overlay and subsequently, to average 

the PIV velocity fields from several embryos (Figure 4.8). First, I annotated a point 

from both anterior and posterior end of primitive streak, separately for each time point 
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and for each experiment. In addition, I estimated time of onset of motion from each 

experiment. The annotated points were then used to translate centre point of primitive 

streak into origin of generalised coordinate system (Figure 4.8A-A’). This was done 

separately for each embryo and for each time point. This was followed by a rotation of 

each experiment in order to align all primitive streaks in all time points (Fig 2A’-A’’). 

The time of motion onset was used for temporal alignment of the different experimental 

time sequences. The same spatial alignment, rotation and temporal alignment was used 

for corresponding velocity fields. 

I used the described algorithm to align 9 different experiments. Outlines of these 9 

experiments at three distinct time points are shown 4.8B-B’’. Furthermore, taking 

average of overlaid images verifies that primitive streaks are aligned (Figure 4.8C-C’’). 

Primitive streaks are not yet formed at 0 h (Figure 4.8C). 6 h after the beginning 

primitive streaks start to be visible as a vertical bright line in middle of the image and 

finally at 12 h streaks are well visible (Figure 4.8C’-C’’).  
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Figure 4.8 Averaging of PIV tissue velocity fields. A) In each experiment and in each 
time point, location of central point of primitive streak (origin of coordinate system 
x’y’) and orientation of the primitive streak (y’ axis points to anterior direction) is 
different. A-A’) To take this into account in time sequences the centre point of the 
primitive streak (origin of the x’y’) is moved into origin of general coordinate system 
xy individually for each time point and for each experiment. A’-A’’) To correct for the 
orientation of the primitive streak the y’ axis is rotated to point in same direction with 
the coordinate general coordinate axis y independently for each time point and for each 
experiment. Anterior and posterior ends of the primitive streak are shown with green 
blobs (A-A’’). B-B’’) Coloured rectangles represent outlines of nine different 
experiments in three distinct time points over period of 12 h. C-C’’) Average intensity 
of nine overlaid embryos in same spatial and temporal positions as in B-B’’. At 12 h the 
primitive streak is well visible as a vertical line. The white scale bar is 1 mm. 

 

4.4.2 PIV tracking of a region of interest 

A desired initial field of view is chosen by defining coordinates of a rectangular image 

region. The image region is then followed over desired number of time points using a 

tissue velocity fields. In order to decide how the rectangular image region is moving 
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between two consecutive time points the tissue velocity field is averaged over the 

selected rectangular region. The resulting vector is then used to displace each of the 

corner coordinates of the rectangular region. The procedure is then repeated for a 

desired number of time points. In each time point, the corner coordinates are used to 

crop part of the image in order to obtain a stack of images in which the desired part of 

the tissue appears to be stationary. Due to non-uniform and non-linear flows not all of 

the initially selected cells are staying in the field of view of the cropped image 

sequence. A large enough region should be selected to be able to follow cells in the 

middle of the region throughout the time sequence. 

4.4.3 PIV strain rates 

We evaluated tissue strain rates using following using spatial gradient of the tissue 

velocity fields. The velocity field tensor  
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was decomposed in a symmetric part and rotational part. The symmetric part is 
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Substituting equation (4.4) into equation (4.5) following for is obtained: 
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The strain rate tensor of equation (4.6) was then further decomposed into an isotropic 

expansion contraction term and into an anisotropic shear term as follows: 



116 
 

 𝜉 =
1
2

⎝

⎜
⎛
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦
𝜕𝜕

0

0
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦
𝜕𝜕 ⎠

⎟
⎞

+
1
2

⎝

⎜
⎛

𝜕𝑣𝑥
𝜕𝑥

−
𝜕𝑣𝑦
𝜕𝜕

�
𝜕𝑣𝑥
𝜕𝜕

+
𝜕𝑣𝑦
𝜕𝑥

�

�
𝜕𝑣𝑥
𝜕𝜕

+
𝜕𝑣𝑦
𝜕𝑥

� −
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦
𝜕𝜕 ⎠

⎟
⎞

 (4.7) 

In the visualisations the isotropic term was visualised as a blue or red circle for 

contraction or for expansion, respectively. The anisotropic term was visualised as blue 

line in direction of contraction (direction of the eigenvector that had negative 

eigenvalue). The velocity field gradients for the matrix L were estimated using central 

differences over intervals of 32 pixels. For visualisation the computed strain rate fields 

were averaged over 10 time points (~ 30 min) and over 13 spatial points (~200 pixels) 

along both spatial dimensions. 

4.5 Image processing in Matlab 

Most of the image analysis, cell tracking and analysis of all the tracking data were done 

using Matlab language and software88. The Interp2 function of Matlab was used for 

linear interpolation of the tissue velocity fields where necessary. In addition, to the core 

functionality of the Matlab, Image Processing toolbox was used for achieving 

segmentation. To impose segmentation seed points imhmin function of Matlab was 

used. After this watershed command of Matlab was utilised to segment the seed pointed 

image. Watershed algorithm uses the idea that image can be divided into segments by 

applying idea of basin-like landforms to image pixel intensity landscape57. 

Additionally, the Parallel Computing toolbox of Matlab was used to speed computations 

where multiple independent instances of loops could be evaluated parallel. This was 

used to speed up computations of PIV based tissue velocity fields as well as generation 

of surface projection images for the acquired time lapse sequences. 
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4.6 Image processing in ImageJ 

ImageJ is a software for scientific image analysis89. The software is controlled using 

graphical user interface but can be also controlled using build in macro language for 

executing the commands. Furthermore, ImageJ can be accessed from the command line 

without starting the graphical user interface and like this ImageJ may be used 

completely independently from the user. I utilised this mode of operation to write a 

Matlab function that can first start ImageJ session on the background and then 

automatically runs ImageJ macro code from an automatically pointed file. The hard 

drive of the computer was used to pass image data from the Matlab to the ImageJ and 

vice versa. With this implemented function ImageJ was used to perform pre-processing 

of images prior to cell segmentation. 

4.7 Quantification of cell volume 

In most of the spatio-temporal regions of the embryo it is not possible see the basal side 

of the epithelial cells when imaging from apical side. This makes the direct cell volume 

measurements impossible. To solve this problem I measure volumes of cells prior to 

cell division. Cells prior to cytokinesis round up into spherical shape and are often close 

to the apical surface of epiblast, which enables measuring the full volume of these cells 

(Figure 4.9 A shows an example of cell volume prior to a cell division). The volume of 

a cell prior to cell division can be estimated by using a automatically detected cell 

centroid (in apical plane) and by maximising mean intensity of volumetric image on a 

sphere by varying radius of the sphere and depth coordinate of the sphere (Figure 4.9 

B). The outline of the optimal sphere is shown in figure 4.9 A as a blue circle. 

Figure 4.9 C-E shows the spatial and temporal distribution of cell radii prior to cell 

divisions. The means of the distributions are decreasing only slightly over time and 

there are no significant spatial differences in the means. In later time points the 
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distributions show that smaller cell radii are likely as well (Figure 4.9 E). This is 

possible due to errors in cell tracking and automated cell division detection. Results in 

the figure 4.9 suggest that cell volumes are essentially conserved throughout the 

experiment. A notable temporal difference is that at time interval 4.9-7.3 h the absolute 

number of cell divisions is higher compared to the earlier or later time points. 
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Figure 4.9 Estimation of radius of cell prior to cytokinesis. A) Cross sections of a 
cell prior to cell division at different heights. The first image (0 um) is from apical side 
and the last image (39 um) is from basal side. Blue circle in the images represent a 
sphere approximating outlines of the dividing cell. B) The blue line in the panel A is 
found by maximising intensity of sphere when varying depth of centroid of sphere and 
radius of the sphere. This panel shows the maximisation landscape. This procedure of is 
repeated for all the dividing cells in the whole embryo. C-E) Distribution of radii of 
dividing cells in several spatial and temporal regions (means of each distribution are 
indicated in graphs). There is no strong spatial dependence in the average cell radius, 
but the average cell radius is decreasing slightly over time. Cell division events are 
more frequent in panel D compared to the panels C and E. The white scale bar is 200 
μm. 
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4.8 Statistical strain rate tensor computations 

These statistical methods have been derived to evaluate the discrete counterparts of the 

isotropic and anisotropic tissue deformations based on the dynamics of the spatial links 

connecting the centroids of cells (Figure 4.10)90. For the calculation of the cellular 

deformation based on the positions of the cell centroids we calculated the texture tensor 

M that provides information on the size, shape and alignment of the cells at a given time 

point in a particular region90. 

 𝑀 = �〈𝑋
2〉 〈𝑋𝑋〉

〈𝑋𝑋〉 〈𝑋2〉
� (4.8) 

Where 

 (𝑋,𝑋) = (𝑥2 − 𝑥1, 𝜕2 − 𝜕1) = 𝑟2 − 𝑟1 = 𝑙 (4.9) 
The links l were defined as vectors connecting the centroids of neighbouring cells 

(Figure 4.10). The length and orientation of the links were captured in the so called link 

matrices which are averaged over the domain of interest. We calculated these averages 

based on the links between all neighbouring cells in circular domains of 65 µm radius 

that cover the embryo (Figure 4.10A,A’). 

The dynamic changes in link length and orientation were used to calculate the statistical 

symmetrized velocity gradient V, the discrete analogue of the tissue strain rate tensor. It 

was calculated as follows 90:  

 𝑉 =
𝑁𝐶

2𝑁𝑡𝑡𝑡
�𝑀−1(𝑡) 〈𝑙⨂

Δ𝑙
Δ𝑡
〉 + 〈

Δ𝑙
Δ𝑡
⨂𝑙〉𝑀−1(𝑡)� (4.10) 

where 

 Δ𝑙 = 𝑙(𝑡 + Δt 2⁄ ) − 𝑙(𝑡 − Δt 2⁄ ) (4.11) 
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Here Nc is the number of links present at both ends points of time interval Δt and N

tot
 is 

number of all links of cells that have their centroid within the circular domain at the 

time t. The symbol⊗ represents the tensor outer product. M is calculated as previously 

shown. The tensor variation was evaluated between successive time intervals, typically 

2.5-3 min (Figure 4.10 B,B’).  

We also computed the variation of statistical internal strain rate dU/dt. This tensor 

quantifies how cell size and shape change contribute to the total tissue deformation. The 

tensor is defined as follows90: 

 𝑑𝑑
𝑑𝑡

=
1

2Δt
[log𝑀(𝑡 + Δt 2⁄ ) − log𝑀(𝑡 − Δt 2⁄ )] (4.12) 

Here links are chosen from end points of the same time interval (Δt) as for evaluation 

the tensor V (Figure 4.10 D,D’). 

Finally, we calculated the statistical topological rearrangement rate P. This tensor 

measures contribution of cell intercalation to the total tissue deformation90.  

 𝑃 = −
1

2Δt𝑁𝑡𝑡𝑡
(𝑁𝑎〈𝑚𝑎〉 − 𝑁𝑑〈𝑚𝑑〉)𝑀−1(𝑡) (4.13) 

Where, ma are links that exist in the end the time interval Δt but not in the beginning 

and md are links that exist in the beginning of the time interval but not in the end. Na is 

number of appearing links and Nd is number of disappearing links (Figure 4.10C,C’). 

For visualisation, the computed tensor fields were displayed as a moving average over 

10 time points (~ 30 min). 
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Figure 4.10 Statistical strain rate tensors computed from cell tracks and cell 
segmentations. AA’) Tissue texture tensor computed using link vectors (yellow lines) 
between centre cell and all the neighbouring cells. Neighbour relationships are 
determined from the cell segmentation (red pixelated lines). Isotropic part of the tensor 
is visualised with red circles and with blue circles in case of expansion and contraction 
of tissue, respectively. Anisotropic part of the tensor is visualised with blue line in 
direction of contraction. All colours are the same in rest of the panels. BB’) Tissue 
deformation tensor computed using changes in preserved links between two consecutive 
time points. CC’) Intercalation strain rate tensor is calculated from appearing and 
disappearing links between two consecutive time points. The intercalation strain rate 
may not be traceless for a single cell but when averaged over a larger domain a traceless 
tensor is obtained. DD’) Change in cell shape tensor is change of the tissue texture 
tensor over time. The white scale bar is 5 μm. 

 

4.9 Tissue tectonics 

This method uses automatic cell tracks and cell segmentation to quantify how tissue is 

deforming24. In addition, relative contribution of intercalation and cell shape changes 

are quantified by the method. All of these three measures are expressed as tensors (2x2 

matrices) for each cell. To compute a tensor for a cell its nearest neighbours and second 
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by finding the symmetric part of the approximated tissue velocity field gradient matrix. 

Eigenvalues and eigenvector of the deformation rate tensor describe magnitude and 

direction of deformation, respectively. Negative (contraction) and positive (expansion) 

deformations were visualised from blue lines and with red lines, respectively24. 

The cell shape change strain rate is approximated independently from the deformation 

strain rate tensor using ellipses fitted to the shapes of the cells within domains. The cell 

shape change tensor is then computed by approximating the required deformation of an 

ellipse of a cell from first time point of the interval to the last time point of the interval 

for each cell within the domain. All these individual deformations are then averaged to 

obtain a tensor for the cell in the middle. Finally, intercalation strain rate tensor is 

approximated indirectly by subtracting the cell shape change deformation strain rate 

from the overall deformation strain rate24. 

4.10 Automatic drift compensation in confocal microscopy 

During my project I developed and implemented an algorithm for automatic control of 

sample position for Leica TCS SP8 MP microscope equipped with Matrix Screener 

CAM. This algorithm enabled user to select an initial position from embryo and keep 

imaging the same tissue over time even if sample is drifting along any of the three 

coordinate axes. The algorithm is implemented in Matlab that is running on the same 

computer with the software controlling the microscope. Matlab is communicating with 

the microscope’s software using the CAM to adjust position of the stage and to collect 

images. 

The first step in the drift compensation algorithm is for user to choose initial imaging 

position (X, Y), Z-interval ([Z0, Z1]) and number of z-slices (Figure 4.11). After this a 

network communication socket is opened between the script running in Matlab and the 

software running the microscope. After this consecutive time points will be acquired 
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until user requests to stop the drift compensation script running in Matlab. A z-stack 

with pre-defined number of images (and relative heights) is acquired per each acquired 

time point. The acquisition of a time point is triggered on pre-defined time intervals to 

achieve constant time interval between consecutive time points. Each slice within a z-

stack is acquired independently by first sending a CAM command to move stage to the 

correct position and subsequently triggering imaging of the slice. 

From the first time point the user may choose for which region of the image drift 

compensation is computed. This is done using the graphical user interface of the drift 

compensation Matlab script (Figure 4.11). Once the region has been chosen surface 

height of the embryo is automatically evaluated by finding which acquired z-slice has 

highest mean intensity within the interrogation region. The height from the first image 

is then used as a reference height for all the following time points. The difference 

between the reference height and detected surface height is used to adjust Z-coordinate 

of the stage position between all the consecutive time intervals. 

To compensate drifts occurring along the other two stage axes (x and y), the tissue flow 

between two consecutive time points is estimated (Figure 4.11). This is done by 

computing the cross-correlation between images of two consecutive time points within 

the interrogation region. The location of maximal cross-correlation is then used as the 

flow vector between the two time points. This process is repeated independently 

between the selected “surface” slice of the first time point and each slice of the z-stack 

of the subsequent time point. Finally, the flow vector from the z-slice having the 

maximum cross-correlation value is chosen to be used as flow vector between the time 

points. This part of the algorithm is similar to the drift compensation algorithm used for 

the light sheet microscope (subsection 4.1.5). Previous stage shift is taken into account 

as shown previously in equation (4.3). 
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Figure 4.11 Flowchart of tissue drift compensation algorithm for confocal 
microscope. 

 

The automatic drift compensation algorithm allows imaging of a feature in embryo over 

several hours while tissue might be drifting along any of the spatial dimensions. As an 

example we imaged tip of forming primitive streak over 4.8 hours (Figure 4.12 AB). 
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field of view while the tissue drifted over 500 µm in direction of y axis and nearly 200 

µm along the z-axis (Figure 4.12 CD). Without the drift compensation the tip of the 

streak would have not been visible throughout the imaged time lapse sequence. 

 

Figure 4.12 Drift compensation for confocal microscope. A) Maximum projection of 
z-stack (90 µm) in the beginning of the experiment (scale bar 100 µm). B) Maximum 
projection of z-stack (90 µm) 4.8 h after the beginning (Scale bar 100 µm). C) 
Adjustment of embryo’s position over time along each of three coordinate axes. D) 
Stage position in 3D axis coordinates. First time point (0 h) is at the origin. 
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5 PRELIMINARY RESULTS ON LINEAR FILAMENTS 

BETWEEN THE VITELLINE MEMBRANE AND EPIBLAST 

While analysing and processing the volumetric time lapse image sequences of primitive 

streak formation we identified tubular structures between the vitelline membrane and 

the apical side of (myr-EGFP) expressing cells. These image sequences were acquired 

using the light sheet microscope described in the previous chapter (see section 4.1). 

The cell membrane tag highlighted tubular structures between the vitelline membrane 

and the apical side of the epiblast cells (Figure 5.1 A). In rest of this chapter we call 

these tubular structures filaments. The filaments were not detected prior to the onset of 

motion in embryo. The filaments could be identified only once epiblast cells started to 

move relative to the vitelline membrane. Initially the filaments were spanning the space 

from the apical side of the cells to the vitelline membrane (Figure 5.1 D). Once the 

epiblast cells started to move the filaments started to elongate in the direction of 

movement whilst staying connected to the two initial attachment points (Figure 5.1 D). 

The attachment points in the apical side of cells kept moving with respect the point on 

the vitelline membrane thereby elongating the filaments (Figure 5.1 D). It seemed that 

filaments could elongate to span distances covering tens of cell diameters but this 

maximum distance has not been verified quantitatively. The rate at which the filaments 

elongated depended of the rate at which the underlying cells moved. The filaments were 

potentially visible in all the regions of the embryo but it seemed that filaments were 

denser in the posterior area pellucida where the primitive streak started to form. 

Furthermore, density of the filaments was higher in the posterior area pellucida where 

the primitive streak is forming. In every embryo, where at least some filaments were 

visible, the filaments were found in the posterior are pellucida.  
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The diameter of the filaments was between one and two microns. The intensity of the 

filaments was approximately three times less than the intensity of the apical cell 

membranes (Figure 5.1 BC). This could be due to fact that the filaments are thin 

structures (compared to the cell membranes) and thus contain less signal molecules. The 

filaments are difficult to detect since their signal intensity is close to the noise level 

(Figure 5.1 C). The signal-to-noise ratio varied between different experiments and in 

most of the experiments no filaments were visible. Most of the filaments had a similar 

intensity suggesting a rather uniform thickness (Figure 5.1 A). Only few of the 

filaments were significantly brighter than the others although this has not been analysed 

quantitatively. For example, brightness of the filament in Figure 5.1 D was not 

enhanced and intensity on this filament is similar to the intensity on the cell membranes. 

A reason for this could be that some of the filaments are thicker than others and thus 

contain more fluorescent signal molecules. The intensity of the filaments was always 

strongest when the filaments were initially observed and their intensity then gradually 

faded. Over a period of approximately 10 hours from the onset of motion the majority 

of filaments were not detectable anymore, this could be due to photobleaching, or due to 

increased light scattering as a result of bacterial infection.  
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Figure 5.1 Linear filaments between the vitelline membrane and the epiblast. A) 
Linear filaments spanning over several cell diameters are located between the vitelline 
membrane and apical side of the epiblast cells. End points of a filament are marked with 
cyan arrows. These filaments are labelled with same marker (GFP) as the cell 
membranes. B) The apical cell membranes are located 8.5 µm below the filaments. The 
contrast and brightness of the panels A and B has been adjusted independently as the 
intensity of the filaments is lower than the intensity of the cell membranes. Brightness 
of image of panel A has been increased fourfold relative to the panel B. C) Intensity of 
filaments, cell membranes and background in different embryos. D) Dorsal ventral cross 
sections (left column) of a filament over period of two hours. Vitelline membrane end 
of the filament is marked blue circle and the end attached to the apical side a epiblast 
cell is marked with red circle. Right column shows the corresponding cross sections of 
apical side of epiblast cells. Elongation of the filament corresponds to the flow of the 
epiblast cells. Numbers in the right column are minutes. The white scale bars are 5 μm. 
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6 DISCUSSION AND FUTURE WORK 

6.1 Light sheet microscopy enables robust imaging of cell and tissue movement 

of the epiblast of the chick embryo 

We developed and used a light sheet microscope that enabled us to image the epiblast of 

the chick embryo during the primitive streak formation (Figure 1.5). The DSLM method 

was used instead of the SPIM to achieve a better quality light sheet for imaging35. To be 

able to use light sheet microscopy in imaging of the flat chick embryos it was essential 

to develop a new culture technique86. Furthermore, to achieve consistent imaging of all 

the epiblast cells we developed a transgenic chick strain where the cell membrane are 

labelled through tagging with Myr-EGP 85. It is essential to collect information of the 

majority of cells in epiblast to draw conclusions about the roles of distinct cell 

behaviours during morphogenesis60, 64. One advantage of this chick strain is that cell 

neighbour relationships can be studied in great detail as the cell membranes are tagged 

instead of nuclei (Figure 1.4). The ability to label cell membranes has allowed a detailed 

study of cell behaviours like intercalation and cell shape changes in Drosophila and in 

zebrafish24, 79. Furthermore, light sheet microscopy is an excellent technique for 

performing this study as photobleaching and phototoxicity are minimal. 

As a result of light sheet microscopy imaging we obtained large volumetric time lapse 

image sequences covering more than half of the chick embryo. Imaging was typical 

done at 10x magnification with 1.84 um steps by imaging around 2500 slices. After 

appropriate interpolation this yielded datasets of 8000x2560x300 pixels that was 

sufficient to observed outlines of cells in detail (Figure 1.4). This provided a basis to 

study the behaviours of all the individual cells at the position of the forming primitive 

streak (as will be discussed in following section). Even broader spatial coverage was 

achieved by imaging two adjacent halves of the embryo in a sequential manner (Figure 
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1.3). The temporal resolution of single scans was around three minutes, which enabled a 

detailed spatio-temporal analysis of cell behaviours during formation of the primitive 

streak. The temporal resolution was at the lower limit of that suitable to observe detailed 

cell behaviours and a higher temporal resolution, as used with smaller organisms60, 64, 

would presumably facilitate the tracking of cells. This was certainly the case in the 

double scan experiments where it was not always possible to correctly link up cells over 

time due to too long intervals between successive time points. 

To further improve image quality an automatic height adjustment algorithm was 

implemented to keep the surface of the embryo in the focus of the light sheet (Figure 

4.2). This was achieved by automatically adjusting position of the stage of the 

microscope to compensate for the surface undulations along the AP axis of the embryo. 

An advantage of a variance based surface finding is that the method is fast91.Without 

this feature of the program driving the microscope it would not have been possible to 

acquire a consistent high quality image of the whole epiblast. This method only 

achieves optimal focus only along one axis, if surface of the embryo is curved along the 

medial lateral axis not all areas will be in optimal focus. The dynamic height adjustment 

enabled a reduction of the volumetric image data to be collected since the surface of the 

embryo was guaranteed to stay in the middle of the acquired image. This is crucial as 

the light sheet microscopes generally produce large data sets and any reduction in the 

size of the image data is useful35, 48. In addition to reduction of the image data size, the 

use of compression algorithms could be utilised to further reduce the data set size for 

storage but this has not been implemented in our data handling pipeline, since these 

algorithms are currently still too slow. Reduction of data set size would enable storage 

of the full data sets for an increased number of experiments.  
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The processes described above enabled imaging of the primitive streak formation over a 

period of around 15 h. The previously reported vortical flows are clearly visible in the 

data sets obtained. These data now form a basis for a detailed reconstruction of the 

observed cell flows in terms of spatiotemporal patterns of cell behaviours (Figure 1.3)10. 

The level of detail in the acquired volumetric image data sets is similar to the quality 

achieved with model organisms such as Drosophila and zebrafish41, 45. This suggests 

that similar level of detail of analysis of cell behaviours should be possible as has been 

achieved in the lower organisms in order to understand morphogenesis60, 64. 

A further development of the program controlling the light sheet microscope enabled us 

to keep a desired feature of imaged sample in a fixed position in the imaged field of 

view (Figure 4.4). This was achieved by measuring the displacement of the feature in 

embryo between the consecutive time points and then adjusting position of the embryo 

accordingly using the stage of the microscope (Figure 4.3). This enabled imaging of a 

feature of embryo (like tip of the streak) with high spatial resolution using high 

magnification (for example 40 times). The ability to observe a fixed piece of tissue at 

high magnification enables the study of cell behaviours in a greater detail. This feature 

will be used in future studies to observe how individual cell are behaving in or in the 

proximity of the primitive streak. This could then provide more detailed information 

about cell intercalation and cell ingression processes.  

A similar automatic drift compensation scheme was developed for controlling a 

confocal multiphoton microscope (Figure 4.11). This algorithm kept surface of the 

imaged embryo in a fixed position in an acquired image stack over time. Similarly, a 

desired feature on the surface of the imaged embryo was kept in a fixed position (Figure 

4.12). This enabled detailed imaging of small region of embryo over period of several 

hours (Figure 4.12). The automatic drift compensation was implemented using the 
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CAM interface provided by Leica Microsystems. This algorithm enables detailed 

imaging of a fixed feature of embryo and such a data set may be used for a detailed 

analysis of cell behaviours at high magnification by two photon microscopy which 

should allow analysis at larger depth. A disadvantages of the use of the confocal 

microscope is that it is not possible to acquire dense 3D stacks as are acquired using 

light sheet microscopy and there is also the added problem of extensive photodamage35. 

The CAM interface allows interaction with software controlling the microscope and has 

enabled development of interesting user based applications like a rare event detection 

and high resolution sample screening92. The use of the CAM enables in principle the use 

of a commercial microscope setup to develop user specific imaging protocols, making 

full use of the existing optics. This is an easier approach as a custom build microscope 

is not required. 

In the future, the temporal resolution of the current light sheet microscope will be 

improved to enable even more detailed imaging of the chicken embryo. Additionally, 

the automatic drift compensation will be used to acquire data sets were a feature of 

embryo (like primitive streak) is imaged with higher magnification which then enables 

more detailed analysis of cell behaviours. Finally, imaging with several channels would 

enable simultaneous membrane and nuclei segmentations as has been used in studies of 

lower organisms54, 63. 

6.2 Automatic cell tracking enables quantitative analysis of large tissues 

6.2.1 Extracting 2D image sequences from volumetric microscopy data 

The light sheet microscope generates volumetric time lapse image sequences but due to 

scattering of emitted light the deeper layers are not well visible. This implies that the 

basal side of epiblast cells was not visible in most parts of the embryo. Thus we decided 

to extract a cross section through the apical surface of the epiblast of chicken embryo to 
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perform automatic cell tracking (Figure 4.5). The surface projection algorithm used for 

extracting the apical surface relied on image intensity and changes in the image 

intensity (high number of Fourier power spectrum components). This approach worked 

well if the epiblast was thick enough but especially in the later stages the method started 

select tissues from the hypoblast. This was a problem particularly outside of the central 

region (area pellucida) of the embryo. It is critically important to extract best possible 

surface for tracking. Further improvement of the surface finding would likely facilitate 

automatic cell tracking and segmentation. One way to improve the surface finding 

would be to detect the rapid intensity change between apical side of epiblast and low 

intensity noise on top of the epiblast. Although occasional occurrence of bright objects 

between vitelline membrane and apical side of cells would need to be handled as a 

special case in this approach. Projection of 2D surfaces from volumetric image 

sequences has been a successful approach in quantitative cell tracking based studies of 

morphogenesis of Drosophila and zebrafish embryos24, 79.  

Secondly, some of the embryos were imaged in two halves in order to cover larger area 

from the epiblast and thus to increase likelihood to image the whole primitive streak. 

This increased likelihood to simultaneously image the observed the vortical flows and 

the entire midline of developing embryo (Figure 1.3). The two halves of embryo were 

stitched together to generate a continuous surface projection image covering the whole 

embryo (Figure 4.7). The projected and stitched 2D time lapse image sequence was then 

used for tracking of cells to achieve a large field of view from the whole embryo (Figure 

1.3). 

6.2.2 Automatic cell tracking 

To track cells and outlines of cells from an embryo wide time lapse sequence containing 

in the order of 100,000 cells several hundred time points make it not feasible to use 
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manual methods for annotation and tracking of cells49. To achieve tracking and 

detection of the outlines of each cell within the chick epiblast a tracking algorithm was 

developed (Figure 2.1 and Figure 2.4). In this algorithm the segmentation (detection of 

outlines of cells) was performed using a watershed algorithm57. Watershed 

segmentation was chosen in order to avoiding of undersegmentation49. Thresholding 

based segmentation approaches were not suitable in our study since membrane signal 

was not consistent enough93. Level set methods would have not been fast enough for the 

large scale segmentation and is also not suitable for the tracking approach we have 

chosen64. It is anyway possible that future work on the level set methods would yield 

results demonstrating their feasibility for solving the cell segmentation and tracking 

problem in chicken epiblast. Additionally, level set methods are prone to under-

segmentation of cells which is not ideal for our efforts to track all the epiblast cells49. 

Watershed algorithms have been successfully used to segment cells in several studies of 

embryos of other organisms54, 60-62. In studies of Drosophila and zebrafish embryos that 

contain order of 10,000 cells nuclear markers are often used which makes the 

segmentation task easier54, 60, 64, 74. An advantage of cell membrane based segmentation 

is ability to quantify the cell neighbour relationships accurately, which enables detailed 

dissection of cell behaviours like intercalation 24, 79, 80. 

The temporal sampling interval used in our experiments where cells were potentially 

moving more than half of average cell diameter between consecutive time points, 

making the use of tracking methods based on nearest point assignment not applicable72, 

73. Studies of lower organisms do not suffer this problem as due to their much smaller 

size the whole tissue can generally be imaged at higher temporal resolution60, 64. In 

addition multidimensional level set methods could not be used to propagate segments 

over time64. Instead the tracking step of our automatic cell tracking algorithm was 
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achieved by first computing the approximate cell motions between two consecutive time 

points using PIV46.  

The second step of the tracking algorithm was to use the PIV velocity field to estimate 

where cells will move between two consecutive time points and finally the watershed 

segmentation was performed using the estimated new locations as seed points. By 

assigning the seed points we avoided oversegmentation problem associated to the 

watershed segmentation technique49. In addition, the cell tracking and segmentation 

were achieved in a same step that conserves the number of segments from time point to 

the next. The disadvantage of this technique is that cells flowing into the field of view 

have to be detected separately. As a result we are able to track all the cells in chick 

epiblast during primitive streak formation. This has not been achieved in previous 

studies trying to dissect the primitive streak formation10, 15, 27. 

6.2.3 Quality of tracking 

The quality of tracking achieved by the automatic tracking algorithm was assessed by 

comparing the automatically obtained tracks with tracks from the semi-automatically 

annotated domains. 50% of all the tracks were found to be correct throughout tracking 

periods and on average 69% of the track lengths were tracked correctly. Some of these 

tracking errors arise due to cells displaying only small cross sections in the surface of 

tracking. A reason for cells to have small cross sections is that diving cells exert 

pressure to the neighbouring cells. Secondly, temporal fluctuations in the absolute 

heights of surface sectioning induce problems for consistent cell detection. To improve 

this, global optimisation methods could be used generate consistent cell tracks by 

connecting segments in a spatiotemporally optimal manner60, 73. Another measure for 

quantifying the correctness of tracking is the cell linkage accuracy. This measure 

showed initially comparable results (close to 98%) to the linkage accuracy achieved in 
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tracking of cell nuclei in Drosophila embryos60, 64, 94. In later time points the cell linkage 

accuracy decreased in sections of tissue approaching the site of the forming primitive 

streak. In these tissues the cross sectional areas of cells are rapidly decreasing and 

number of narrow cells (small cross sectional area) was too high for the tracking 

algorithm to work correctly.  

The quality of segmentation was quantified using the Dice similarity measure, an on 

average 90% accuracy was achieved for the first 5 hours of the image sequences. After 

this the accuracy was decreasing in all the domains, but the decrease was largest in the 

domains approach the primitive streak. Similar initial segmentation quality has been 

achieved in zebrafish embryos54. One reason for the Dice measure to show poor results 

towards the end of the time sequences is that several small cells were not correctly 

detected and thus tissue was undersegmented. This occurs especially in area of the 

primitive streak. 

Cell divisions were detected in our algorithm using heuristic rules. Similar approaches 

have been taken in case of zebrafish and Drosophila embryos64. The F-measure for cell 

division detection achieved by our algorithm was 0.67. Similar quality of division 

detection (0.72) has been achieved in a recent study of Drosophila embryo60. In other 

studies cell divisions were automatically detected during Drosophila nervous system 

development (F-measure 0.48) and later manually curated to obtain correct cell 

divisions64. This type of manual curation would not be possible in our study as the 

number of cell divisions is much larger and thus manual curation of whole data set 

would be far too time consuming. To improve the cell division detection capability of 

our algorithm, global tracking techniques or probabilistic machine learning techniques 

could be used 60, 73. 
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Ingressing cells are detected in our automatic tracking algorithm using simple heuristic 

rules. Ingression detection quality 0.19 (F-measure) is poor and is not good for 

quantitative ingression detection. To improve ingression detection external cues like 

high membrane signal intensity of junctions in ingressing cells could be used, although 

this could be difficult as in many cases membranes of non ingressing cells also have 

brighter areas. Additionally, when an ingression event occurs, junctions between cells 

collapse into a single vertex point (with four or more edges). Such vertices could be 

detected from the segmentation and used to increase probability of detection of 

ingression events. Furthermore, in the region were ingressions occur frequently the 

cross sectional areas of cells are small and thus it is presumable not enough to detect 

ingressions using external cues only but robust a cell tracking is a required. Correct 

ingression detection is highly dependent on the correct and consistent detection of the 

surface of the embryo. If this detection is not accurate enough false ingression events 

may be generated. We observed that in many cases dividing cells are squeezing their 

neighbours, which also may lead to false positive ingression detection. To solve this 

problem accurate 3D segmentation of cells would be most helpful, however at present 

this process is to slow to be practical for our large data sets. 

6.2.4 Future work to improve cell tracking 

A problem in using 2D projections of surface of epiblast is that the shapes of the cells 

may vary temporarily as the surface is not always projected from the same position in 

apical-basal direction. In future, this problem could be solved by performing three-

dimensional segmentation as has been performed in lower organisms60, 64. Even if this 

3D segmentation would not cover full length of cells in apical-basal direction the 

segmentation could be used for more detailed observation of cell-cell intercalation and 

cell division processes. In addition, identification of apical side of cells based on sudden 

intensity change would help to localise the surface of the embryo better. A problem of 
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this approach would be that bright objects on top of the epiblast that we often observe 

are likely to interfere with this type of detection. In addition, it might be an interesting 

idea to try if a spatiotemporally global tracking methods could yield more consistent 

tracking results60. Finally, a use of nuclear marker might enable use of recent methods 

developed for tracking epithelial cells in Drosophila and in zebrafish60, 64. Finally, future 

work is required to achieve tracking speed that would enable real time tracking of cell 

as achieved in C++ and GPU powered methods and algorithms64. 

6.3 Tissue deformations and cell behaviours in chicken embryo during the 

primitive streak formation 

6.3.1 Tissue deformation during the primitive streak formation 

After onset of motion the central area pellucida starts to contract while all the 

surrounding regions begin to expand slowly (Figure 3.1). Furthermore, the tissue in 

posterior area pellucida starts to contract perpendicular to the midline and expand along 

the forming primitive streak. These cell movement patterns are similar as shown in a 

previous study15. While this process continues the tissue in the anterior end of the 

forming primitive streak starts to buckle up. The mesendoderm tissue is initially 

arranged in a sickle shaped region, which then transforms into the primitive streak 

(Figure 3.2, Figure 3.3 and Figure 3.4). This suggests that cells from the sickle shaped 

region from the posterior area pellucida are forming the primitive streak.  

The tissue strain rate field showed that mesendoderm population of cells contracts in an 

anisotropic manner perpendicular to the midline of the embryo (and expands along the 

midline) throughout the primitive streak formation. In a study based on movement of 

individual scattered cells the authors argued that the anisotropic motion of cells is likely 

caused by intercalation but could not present evidence based on all the individual cells 

in the epiblast15. Only when the primitive streak has already started to form (but not yet 
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fully elongated) the tissue in the streak starts to contract in an isotropic manner (Figure 

3.2, Figure 3.3 and Figure 3.4). This implies that the anisotropic process starts to act 

before the isotropic contraction begins. This suggests the primitive streak forms as a 

biphasic process27, 85. 

The onset of motion in the embryo occurs in the midline of the embryo and then spreads 

rapidly laterally suggesting that the anisotropic contraction in the midline of the embryo 

is driven actively85. This also implies that the cells from the lateral positions are actively 

pulled by the cells in the midline in order to induce the observed cell flows. The anterior 

buckling of the tissue along the forming primitive streak is pushing the cells anterior of 

the forming streak resulting in lateral expansion of these tissue domains. These two 

tissue deformations (the posterior pulling and the anterior buckling) are presumable 

responsible of establishing and maintaining the observed vortical flows identified by 

tracking the individual cells as reported in literature (Figure 1.2 and Figure 1.3)13, 15. We 

calculated the strain rates in the tissue using PIV based velocity fields as well as from 

the cell segmentation and tracking data. The results from both methods are in very good 

agreement, indicating that tissue deformation was robustly measured with both methods 

(Figure 3.2 and Figure 3.3)77. Based on the tissue based measurements and the cell 

based measurements both cell intercalation, cell shape changes are plausible potential 

drivers of the observed cell flows and elongation of the primitive streak. A discussion of 

cell behaviours underlying these deformations is provided in the following subsection. 

6.3.2 Cell behaviours driving the primitive streak formation 

Starting from the onset of motion and throughout period of the extension of the streak 

the mesendoderm precursor cells are intercalating (Figure 3.5 and Figure 3.6). This 

contracts the same sickle shaped cell population in direction perpendicular to the 

midline of the embryo and elongates the mesendoderm along the forming primitive 
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streak. This suggests that intercalation is a key driver of the elongation of the primitive 

streak. Additionally, this mechanism explains the induction of the vortical cell flows as 

the tissue is pulled to the midline and then further elongated along the midline. Our 

observations are consistent with an intercalation mechanism15. Similar observations 

based on limited number of cells have been reported in literature but with our analysis it 

is clear that potentially all the mesendoderm cells are intercalating15. 

In addition to the intercalation the cross sections of the epiblast cells were decreasing 

over time whilst the volumes of the epiblast cells stayed nearly constant (Figure 3.7). 

Cross sections of the cells in the posterior area pellucida shrank most (Figure 3.7). 

Isotropic contraction of the cross sectional cell shapes was weak at the time of onset of 

motion and got stronger in the site of the primitive streak when the streak had already 

formed (Figure 3.10). The contraction of the tissue in the site of the primitive streak has 

been argued to occur only due to ingressing cells but here we have shown that isotropic 

cell shape changes are also responsible of the tissue contraction27. Finally, cells in the 

site of the primitive streak are ingressing (Figure 3.16 and Figure 3.17). This suggests 

that the apical contraction of mesendoderm cells culminates to the ingression of cells 

which then further drives the contraction of mesendoderm cell population. Similar, 

observations were made in a recent study were authors reported that rate of ingressions 

is high in the site of forming primitive streak27. The ingression events are not detected 

very accurately using the automatic tracking algorithm and thus exact spatiotemporal 

patterns of ingression are likely to be inaccurate. 

Future work is required to improve the ingression detection in order to quantify the 

important ingression events accurately. The apical cell contraction mechanism pulls 

cells from the lateral positions to the midline of the embryo and thus assists formation 

of the lateral vortical cell flows. In addition, the contraction mechanism counteracts the 
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elongation of the primitive streak, but magnitude of this counteracting strain rate is not 

as strong as elongation strain rate induced by intercalation (Figure 3.11). Ingression and 

apical cell shape change driven deformation mechanism has previously been proposed 

to drive primitive streak formation4. It has been proposed that ingression could be an 

actively driven with Nodal signalling dependent mechanism27. In Drosophila 

ingressions have been observed to occur passively in some circumstances95. We propose 

that cells in front of the extending streak are squeezed out and may ingress passively. 

A previous study has shown that the mechanism driving germband extension during 

development of Drosophila consist of two processes: cell shape changes and 

intercalation79. This highlights the importance to quantify different cell behaviours 

simultaneously. It is also worth noting that development of the primitive streak driven 

by combined intercalation and cell shape change mechanism might not require long 

range interactions between cells27. 

Prior to the onset of motion polarised cell shapes were oriented perpendicular to midline 

of the embryo (Figure 3.10 and Figure 3.13). Soon after the motion onset the polarity of 

cells was largely lost. This oriented polarity of the cell shapes presumably assists the 

observed intercalation of cells and propagation of pulling forces in direction of the 

lateral mesendoderm. In addition to the orientation of asymmetrically shaped cells, cell 

divisions were initially also oriented in the direction perpendicular to the midline of the 

embryo (Figure 3.15). Similarly, a previous study has reported that some of the cell 

divisions are polarised in direction of the motion of mother cells, although this study 

was done only on a small scattered subset of cells of epiblast15. Our results show 

consistent pattern of biased cell division orientations of almost all the divisions in the 

deforming mesendoderm. Our hypothesis is that the orientations of the cell divisions are 

biased due to polarised shapes of the cells as has been reported in case of different 
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model organisms96, 97. As the cell divisions are polarised in direction perpendicular to 

the forming primitive steak it is unlikely the oriented cell divisions would be the driver 

of elongation of the primitive streak as has been suggested previously18. 

In future studies different chicken embryos could be aligned in a similar spatiotemporal 

manner as in the contraction-expansion fields (Figure 3.1). This would enable more 

accurate quantification wild type embryos and also enable detailed comparison of these 

embryos to inhibitory experiments. 

6.3.3 Myosin cables 

Myosin light chain phosphorylation was found to localise in the apical cell junctions 

(Figure 3.18). In the posterior area pellucida the expression was forming 2 to 8 cells 

long cables that were oriented perpendicular to the forming primitive streak, in direction 

of the cell flows. The cables were not detected in other regions in the embryo. Inhibition 

of myosin II prevented the observed cables from forming and also strongly inhibited 

formation of the primitive streak85. This suggests that myosin II is in a key role of 

junctional contraction that could be the driver of the observed intercalation of the 

mesendoderm. Interestingly inhibition of myosin I prevented the myosin cables from 

forming (Figure 3.18). Furthermore, tissue deformation was inhibited completely 

(Figure 3.19). In addition, the cell shape change and intercalation strain rates were very 

low and as a result no largescale tissue deformations were observed (Figure 3.19). This 

suggests that myosin I has role in the formation of myosin II cables. Myosin I has been 

shown to act as a tension sensor98. It is possible that increasing tension on the aligned 

junctions leads to assembly of myosin II via myosin I mediated mechanism as tissue is 

contracting. This mechanism would promote contraction of new junctions and thus 

drive the observed intercalation behaviour. The observed myosin II dependent 

directional contraction mechanism driving the intercalation of cells is similar to the 
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mechanism driving Drosophila germband elongation84. Similarly, myosin cables were 

identified to be responsible of rosette based intercalation of cells in Drosophila99, 100.  

6.4 Filaments between vitelline membrane and epiblast of cells in chicken 

embryo 

The cell membrane tag (Myr-EGFP) labelled tubular structures between the apical side 

of cells and the vitelline membrane (Figure 5.1). These filamentous structures spanned 

between two points on the apical side of epiblast cells and on the vitelline membrane. 

During the movement of the epiblast, the filaments elongated since they appeared to 

stay attached to the same point on the vitelline membrane. As these filaments are tagged 

with a membrane label it is likely that the filaments are membrane tubes spanning 

between the two attachment points. 

The filaments were not observed in all embryos investigated. A reason for this could be 

that in most of the experiments the imaging conditions were not suitable for 

distinguishing the weak fluorescence of the filament signal from noise level in the 

acquired images. It might be that the filaments can only be seen in highly fluorescent 

embryos and under conditions of optimal alignment of the light sheet of the microscope. 

Alternatively, the filaments could be an artefact from the culture method used for 

imaging chicken embryos with the light sheet microscope86.  

The filaments were spanning tens of cell diameters and diameter of the filaments 

seemed to vary from one to two microns. The filaments appear to be similar as thin 

super cellular projections discovered from Drosophila101. These projections, called 

cytonemes, have been found to contain parallel actin filaments bundles and to be thin 

tubular extensions of plasma membranes of cells101. A function of cytonemes in 

drosophila is to assist Hedgehog signalling that regulates growth102. The cytonemes 

appear geometrically similar to the filaments we found from the chicken embryos. 
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Filaments were identifiable only once the underlying cells started to move relative the 

vitelline membrane but presumable the filaments existed even prior the onset of motion. 

The filaments seemed be strongly visible in the posterior are pellucida in the region 

where the primitive streak started to form. This suggests that the filaments would have a 

role in formation of the primitive streak.  

Future work on these filaments is required to characterise why the filaments disappear 

over time. This could be done by annotating both end points of filaments over time and 

by observing what happens at the time the filaments disappear. Furthermore, the 

annotation of the apical end of the filament would answer to the question if filaments 

are attached to the same epiblast cell over time. So far only 10 times magnification has 

been used to image filaments successfully. In future, experiments with higher 

magnification (20x or 40x) would presumable provide more details on the localisation 

of the filaments. Secondly, more work is required to characterise what are the optimal 

culture and imaging conditions in order to observe the filaments. Thirdly, it is an 

interesting question whether the filaments contain actin or transmit any signalling 

molecules as the cytonemes do in Drosophila? Finally, the key question will be to 

uncover the role of the filaments in primitive streak formation. One hypothesis could be 

that the filaments are responsible of cell-cell signalling. 
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APPENDIX I 

GUI of semi-automatic tracking algorithm 

The semi-automatic tracking algorithm described in previous subsection is implemented 

as a Matlab GUI application. During starting up of the GUI user may load saved 

tracking session or user may start a new session. In case a new session is started user is 

asked to select an image sequence for tracking. A basic functionality of the graphical 

user interface is to change selected time point. This is done by using arrow keys, scroll 

wheel of mouse or slider shown in the GUI (Supplementary figure 1). The current time 

is shown in top left corner of the GUI. Another basic functionality is to toggle what is 

viewed in the image panel of the GUI (Supplementary figure 1). This is done using the 

checkboxes of the GUI. Options are: current segmentation, time independent 

segmentation, background image, projection (segmentation seed points) and cell 

centroids (Supplementary figure 1). Any combination of the five options may the 

chosen. The save button of the GUI is used to save the tracking session at any time. 

Background image, current segmentation and time-independent segmentation are shown 

in grey scale, red outline and green outline, respectively (Supplementary figure 2 A). 

Cell centroids and projected points are shown as coloured circles and coloured dots, 

respectively (Supplementary figure 2 AA’). To perform segmentation for the first time 

point user has to press segmentation button (Supplementary figure 1). Seed points for 

this segmentation are generated automatically. Result of the segmentation is overlaid 

with background image in the GUI (Supplementary figure 2 A). A set of cells is 

automatically selected from the middle of the tracking region and illustrated to user by 

showing corresponding cell centroids with coloured circles (Supplementary figure 2 A). 

User may alter which segments are selected by left clicking the segments. After current 

image is segmented project button of the GUI is enabled and it is used get seed points 
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for the next segmentation. These new seed points (coloured dots) are overlaid with 

following image and shown in the image panel of the GUI (Supplementary figure 2 A’). 

After this a new segmentation may be performed as earlier (Supplementary figure 2 

A’’).  

In some cases the new seed points are not positioned correctly to achieve a desired 

segmentation as shown in figure 2 B. User may correct this by altering positions of the 

seed points by first left clicking a seed point and then left clicking a new location 

(Supplementary figure 2 B’). After this a new segmentation has to be performed to 

check if segmentation got corrected in a desired manner (Supplementary figure 2 B’’). 

In case of a cell division a new segment is not generated automatically but an under 

segmentation occurs (Supplementary figure 2 C). To correct for this user has hold shift 

key while clicking seed point of a cell that has divided. After this, positions of new 

daughter cells are clicked to generate to new seed points (Supplementary figure 2 C’). 

Finally, new segmentation is generated as earlier (Supplementary figure 2 C’’). In case 

of an over segmentation or cell ingression user may remove a seed point by holding 

control key while clicking a seed point and perform a new segmentation 

(Supplementary figure 2 D’D’D’’). If user wants to create a new seed point key ‘a’ 

should be pressed after clicking a desired location of the new seed point. 
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Supplementary figure 1. Graphical user interface of semi-automatic tracking 
algorithm. Image in the middle shows background image of currently selected time 
point. Time point number is shown in top left corner. Segment button segments the 
image using current seed points. In case of initial time point seed points are generated 
automatically. With project button user may generate seed points for the next time 
point. User may use slider, scroll wheel or arrow keys to move between time points. 
Checkboxes are used to alter which all information is overlaid in the image window. 
Save button is used to save current session. 
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Supplementary figure 2. Use of the semi-automatic tracking algorithm. A) 
Segmentation of current time point is shown with red pixels. Coloured circles show 
which centroids user is actively tracking. A’) Newly generated seed points for the 
following time point. A’’) Segmentation of the new time point. B) Several mistakes in 
segmentation. B’) User has repositioned several seed points. B’’) New segmentation is 
generated based on the new seed points. Position of all three B panels is shown as red 
square in panel A’’. C) Cell coloured with cyan has divided and is incorrectly 
segmented. C’) User induces daughter seed points. C’’) Position of all three C panels is 
shown as green square in panel A’’. D) Cells in the region appear oversegmented or a 
cell has ingressed. D’) User removes the seed points. D’’) Position of all three D panels 
is shown as blue square in panel A’’. The white scale bars are 5 μm in length. 

A’ A’’A

B’ B’’B

C’ C’’C

D’ D’’D
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