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Abstract 

DNA replication is regulated throughout the cell cycle to ensure that the entire genome 

is replicated once per cell cycle. Replication licensing is a key process required for the 

initiation of DNA replication. Replication licensing refers to the chromatin loading of 

an essential replication factor, the MCM2-7 helicase. This is loaded onto DNA early in 

the cell cycle. MCM2-7 stay bound on chromatin until cells enter S-phase where CDKs 

act upon the MCM2-7 complex leading to the initiation of DNA replication. The 

processes of replication licensing and initiation are separated during the cell cycle to 

ensure these activities do not overlap as this can result in the rereplciation of DNA. 

Separation of the two processes enables licensing inhibition prior to the activation of 

CDKs.A key regulator of MCM loading is a coiled-coil protein called geminin. 

Geminin potently inhibits licensing by binding and inhibiting the replication licensing 

factor Cdt1. In somatic cell cycles geminin is degraded by the 26S proteasome to allow 

licensing to take place. However, in embryonic cell cycles geminin remains stable 

throughout the cell cycle. This is essential as geminin is a duel function protein. It is 

required in embryonic cell cycles to maintain pluripotency; therefore it must remain 

stable in these cell types. It is alsoa potent inhibitor of DNA replication; therefore it 

must be subjected to some form of inactivation. 

The aim of this project was to identify the molecular mechanism of geminin inactivation 

in Xenopus egg extracts. Experiments undertaken during this project have demonstrated 

that geminin is both stable and inactive in Xenopus egg extracts. In addition some 

factors essential for the inactivation of geminin have been identified. The kinetics of 

inactivation have been determined and is has been demonstrated that interphase inactive 

geminin is biochemically distinct from active metaphase geminin.  
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1.0 Introduction 

1.1 The Cell Cycle 

When a eukaryotic cell commits to proliferation it is taking on the monumental task of 

precisely duplicating billions of basepairs (bp) of deoxyribonucleic acid (DNA) and 

correctly segregating the entire genome into two daughter cells. These processes must 

be completed flawlessly with almost no room for error; this is particularly so in 

multicellular organisms in which inherited errors in the genome can have profoundly 

catastrophic effects resulting in the development of cancer. However, cells faithfully 

carry out these processes and billions undergo cell division every day in the human 

body. This highlights the fact that cells contain robust mechanisms to ensure the 

essential tasks of DNA replication and segregation are carried out precisely and 

accurately with close to zero error. 

The cell division cycle is essentially an ordered sequence of events which progresses in 

only one direction to ensure the timely and precise duplication of DNA, followed by 

segregation of the replicated DNA into two daughter cells (Figure 1). When a cell enters 

the cell cycle it is fully committed to achieving these goals as there is no way to reverse 

the process and the only way to interrupt the cycle is to enter apoptosis, controlled cell 

death. The cell cycle is highly regulated using intricate feed-forward and feed-back 

mechanisms to ensure essential processes are carried out sequentially and in the correct 

temporal order. To prevent inappropriate progression, the cell cycle contains robust 

checkpoints where key criteria must be satisfied for progression, and cells which fail to 

satisfy these criteria ultimately enter apoptosis. 

DNA is replicated in a period of interphase termed S-phase, which is preceded and 

followed by gap phases, G1 and G2 respectively. During G1 of the cycle cells pass a 

restriction point to ensure the cell is prepared for DNA replication in the following S- 
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Figure 1: Regulation of the Cell Cycle. Different cyclin CDK pairs drive progression through the cell 

cycle. During mitosis CDK activity leads to the activation of the APC/C. The APC/C triggers the 

completion of mitosis and separation of duplicated chromatids into two daughter cells. 

phase and during G2 mechanisms or checkpoints ensure the cell and the newly 

duplicated DNA are prepared for mitosis. During mitosis the duplicated DNA is 

segregated into two genetically identical daughter cells. 

The eukaryotic cell cycle is driven by cyclin-dependent kinases (CDKs). CDKs regulate 

the activity of many target proteins by phosphorylation, thereby orchestrating the 

specific activities and processes that occur at different cell cycle stages.CDKs require a 

coactivator protein, termed cyclin, to form an active CDK-cyclin heterodimer. The 

number of unique CDKs and cyclins can vary in organisms. Multiple CDK-cyclin pairs 

are formed to regulate CDK activity, direct substrate specificity and control CDK 

localisation. The temporal order of the cell cycle is controlled by the sequential 

expression and degradation of the cyclin proteins. Cyclin levels oscillate during the cell 

cycle to ensure the correct CDK-cyclin pairs are active in the correct sequence, 
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activating and inhibiting processes where required, to drive ordered progression through 

the cell cycle.  

The cyclic nature of cyclin expression highlights the importance of timely protein 

destruction. Ubiquitination, and the subsequent destruction, of target proteins plays a 

crucial role in the regulation of the cell cycle. During mitosis, the activity of the 

Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligase causes 

ubiquitination and degradation of cyclins, resulting in a period of low CDK activity, 

essentially resetting the cell cycle. CDKs and the APC/C are together considered the 

masters of the cell cycle (Pines, 2011). 

DNA replication initiation is strictly regulated throughout the entire cell cycle. Each 

basepair of DNA in the genome is faithfully duplicated once and only once per cell 

cycle. To achieve this, the process of replication initiation is split by the cell cycle into 

two distinct non-overlapping stages, origin licensing and origin firing. The regulation of 

origin licensing is the focus of this thesis. 

1.2 The Replicon Model 

Ever since it became apparent that DNA is the carrier of genetic information one of the 

fundamental goals of modern biology has been to understand how cells carry out the 

monumental task of DNA replication.Jacob and Brenner put forward a model 52 years 

ago, using the properties of bacterial transcription, to describe the molecular mechanism 

of DNA replication initiation in bacteria. It was proposed that there are two genetic loci 

essential for replication initiation; a functional protein encoded by an ‘initiator’ gene 

would bind a specific ‘replicator’ sequence of DNA to initiate replication. DNA 

replication initiated from the replicator would then proceed until the entire genetic 

element was copied (Jacob and Brenner, 1963). This provided a paradigm for early 

research on DNA replication and this model was found to hold true for DNA replication 
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in bacteria and for viruses such as the polyomavirus, Simian Transforming Virus 40 

(SV40).  

Higher eukaryotic organisms maintain very large genomes with billions of basepairs of 

DNA packaged as multiple linear chromosomes in the nucleus.In this context the 

initiation of DNA replication requires a more complex regulation than what was first 

hypothesised for bacteria. In spite of this, the generalisations of the Replicon Model can 

be applied to most model organisms and it has been found that significant functional 

homology is observed in proteins that are involved in the replication of DNA. This early 

work provided a greater understanding of the molecular mechanisms of DNA 

replication and the types of proteins required to carry out specific roles in the process.  

1.2.1 DNA Replication Initiation in Bacteria 

Replication initiation of the Escherichia coli (E. coli) circular chromosome was found 

to take place at one site, named the replication origin (ori) (Louarn et al., 1974) and 

proceeds in a bidirectional process until the entire circular chromosome is replicated. 

The replication origin was shown to be a single defined DNA sequence termed oriC 

(Oka et al., 1980). DnaA uses ATP to bind oriC leading to the unwinding of the 

origin(Sekimizu et al., 1987, Sekimizu et al., 1988). This permits the binding of DnaB-

DnaC complex. DnaC deposits DnaB onto the single stranded DNA, which triggers 

DnaB activation (Wahle et al., 1989a, Wahle et al., 1989b). DnaB forms a hexameric 

complex with helicase activity and recruits additional replication proteins, such as 

single stranded binding protein and DNA gyrase (Bramhill and Kornberg, 1988, West, 

1996). In terms of the replicon model oriC represents the ‘replicator’,or the site of 

replication initiation, and DnaA, DnaB and DnaC together represent the ‘initiator’. 

Work in E. coli identified three key roles that could be expected of eukaryotic ‘initiator’ 



5 

 

proteins.They must bind to sites of replication initiation, unwind the DNA and serve to 

recruit additional factors allowing replication (Bramhill and Kornberg, 1988). 

1.2.2 DNA Replication Initiation of the SV40 Virus 

The SV40 genome consists of a circularised DNA template which contains a single 

sequence defined replication origin, termed ori, which represents the Replicon 

‘replicator’. SV40 requires a single viral protein, T-antigen, for replication of the virus 

DNA and hijacks additional replication factors from the host cell. T-antigen carries out 

multiple functions, first acting as the replicon ‘initiator’ by binding to the origin of 

replication and later functioning as a hexameric replicative helicase. The requirement 

for host cell replication proteins led to the development of an in vitro SV40 replication 

system (Challberg and Kelly, 1979a, Challberg and Kelly, 1979b), which has been 

invaluable for identifying key replication factors and for early investigations into the 

molecular mechanisms of eukaryotic DNA replication. 

1.3 Eukaryotic Origins of Replication 

1.3.1 Requirement for multiple origins 

The Replicon model is too simplistic to adequately explain the complexities of DNA 

replication in higher eukaryotes. One significant difference is that higher organisms 

have much larger genomes, that are divided amongst multiple linear chromosomes 

which must be replicated in a relatively short time during S-phase, before the onset of 

mitosis (Figure 2). For this, a single replication origin is insufficient. It was shown in 

cultured cells of Chinese hamster ovary and HeLa cells that subsections of certain 

chromosomes replicated DNA replication at different times during S-phase,suggesting 

that there are multiple replication start sites or‘origins ofreplication’ within the 

eukaryotic chromosome(Taylor, 1960, Cairns, 1966, Huberman and Riggs, 1968). In 
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fact, hundreds or thousands of origins of replication fire within a single eukaryotic S-

phase, depending on the cell type and developmental stage.  

 

Figure 2: DNA Replication from a Single or Multiple Origins.(A) Replication of a circular chromatid 

from a single origin as occurs in bacteria. (B) Replication of linear a chromosome from multiple origins, 

as occurs in higher eukaryotes. Origins can fire at different times and some remain dormant and do not 

fire in the absence of replicative stress. 

In addition to the many origins that are used during a single S-phase there is an excess 

of potential origins which are not used under normal circumstances. The numbers of 

excess origins have been quantified and depending on the model system there are 

anywhere from 3-10 fold more origins of replication capable of initiating DNA 
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replication which are not used (Burkhart et al., 1995, Donovan et al., 1997, Mahbubani 

et al., 1997, Wong et al., 2011) and are passively replicated during S-phase (Santocanale 

and Diffley, 1996, Woodward et al., 2006). Subsequent work has shown that these 

excess origins function as ‘dormant origins’ (Woodward et al., 2006). These origins 

have theoretically the same likelihood as any other origin to fire in S-phase. Dormant 

origins are present to provide additional initiation sites in the event of replicative stress-

dependent fork stalling during S-phase (Ge et al., 2007). How cells determine whether 

an origin will fire or not is not well understood, however origin firing appears to be a 

stochastic process. 

1.3.2Origins of Replication in Yeast 

The origins of replication of the budding yeast Saccharomyces cerevisiae (S. cerevisiae) 

are the best characterised of all eukaryotic organisms. It has been shown by numerous 

methods that budding yeast contains approximately 482 origins of replication (Siow et 

al., 2012, Newman et al., 2013) which contain a consensus DNA sequence. These 

sequences were first identified as they permitted the replication of transforming 

plasmids introduced into yeast cells, allowing them toreplicate autonomously without 

incorporation into the chromosome. These sequences are referred to as Autonomously 

Replicating Sequences (ARSs) (Struhl et al., 1979, Stinchcomb et al., 1979). It was 

subsequently shown that replication initiates proximal to the ARS element providing 

further evidence for their role as the origin of replication (Brewer and Fangman, 1987, 

Huberman et al., 1987). Mutational analysis has shown that ARSs contain multi-domain 

DNA sequences. One of these domains, the A/T rich ARS Consensus Sequence (ACS), 

is conserved across all ARS elements. The ACS consists of 11 bp (Broach et al., 1983) 

and it is essential but not sufficient for ARS function (Celniker et al., 1984). The ACS 

together with an additional site 3’ to the ACS facilitate the binding of  a multiprotein 
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complex termed the Origin Recognition Complex (ORC) to double stranded DNA (Bell 

and Stillman, 1992). ORC is therefore analogous to a multiprotein Replicon ‘initiator’.  

The fission yeast Schizosaccharomyces pombe (S. pombe) is phylogenetically distant 

from S. cerevisiae. S. pombe also contain ARS-like elements capable of conferring 

autonomous replication in a transforming plasmid (Johnston and Barker, 1987). 

However, they do not contain specific sequences analogous to the 11 bp ACS, but 

consist of redundant A/T rich stretches of DNA (Maundrell et al., 1988, Clyne and 

Kelly, 1995) which recruit the S. pombe homologue of ORC (Ogawa et al., 1999).  

The binding of ORC in S. cerevisiae appears to influence nucleosome positioning 

around the ACS, creating a more open chromatin environment, similar to open 

transcription promoters (Berbenetz et al., 2010, Eaton et al., 2010). In S. pombe the 

preference for A/T rich DNA may suggest that a relaxed DNA structure is important for 

origin selection. Taken together this data suggests that although origin selection has an 

intrinsic element that is controlled by the DNA sequence itself, there is an additional 

level of influence from the surrounding chromatin environment. With the evolution of 

defined origins of replication, both S. cerevisiae and S. pombe ensure that there is a 

sufficient number of replicators for each round of DNA replication and that origins are 

distributed to ensure DNA replication can be carried out efficiently with no sections of 

DNA left unreplicated (Newman et al., 2013). 

1.3.3 Origins of Replication in Higher Eukaryotes 

In higher eukaryotic cells, such as animal cells, origins of replication are ill-defined, and 

it appears that these cell types may lack the equivalent of a conserved Replicon 

‘replicator’. To date no defined genetic element has been identified that determines an 

origin in metazoans. DNA of various sources replicate efficiently independently of 

DNA sequence and initiation occurs randomly in Xenopus egg extracts (Mechali and 
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Kearsey, 1984, Blow and Laskey, 1986, Hyrien and Mechali, 1992, Mahbubani et al., 

1992) and human cells (Krysan and Calos, 1991). However whether conserved DNA 

sequences play a role in metazoan origins remains unresolved. This is due in part to the 

unsuccessful application of genetic assays that isolate replication origins in higher 

eukaryotes such as those that enabled a thorough characterisation of S. cerevisiae 

origins. 

Significant progress has been made recently using sophisticated technologies such as 

DNA microarrays and genome-wide sequencing of nascent DNA strands during 

replication to map replication origins. However, a comparison of datasets generated 

using these techniques has revealed that the origin mapping data is discordant, with 

significant variation arising due to differences in the techniques applied and cell types 

that were used (Hyrien, 2015). In spite of this, some common features have been 

identified across numerous datasets and some origins of replication have correlated well 

with transcription start sites and CpG islands (Cadoret et al., 2008, Sequeira-Mendes et 

al., 2009, Cayrou et al., 2011, Valenzuela et al., 2011). There was also significant 

overlap in datasets suggesting that G-rich motifs associated with origins in Drosophila, 

mouse and human cells (Cayrou et al., 2011, Besnard et al., 2012, Cayrou et al., 2012).  

While there is still some uncertainty about the role of the DNA sequence itself, there is 

undoubtedly a role for chromatin organisation and it appears that open chromatin states 

may aid in recruiting ORC. A transition from random initiation sites to intergenic 

sequences is observed when significant transcription occurs at the midblastula (MBT) 

transition in developing Xenopus(Hyrien et al., 1995) and Drosophila embryos (Sasaki 

et al., 1999).  In addition, specific histone modifications particularly methylation and 

acetylation are associated with origin sites and may open up chromatin to facilitate 

origin selection (Sherstyuk et al., 2014). It is becoming apparent that there are multiple 
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regulatory mechanisms that influence the placement of origins in higher eukaryotes. 

Origin selection is influenced by cell type and state of differentiation. Therefore it is 

likely that multiple mechanisms have evolved to allow a more plastic placement of an 

origin and enable a metazoan cell to adapt to a more challenging lifecycle than those of 

single celled eukaryotes. 

1.4 DNA Replication Occurs Once per Cell Cycle 

1.4.1 Dealing with thousands of origins 

Replicating massive eukaryotic genomes with high processivity and precision requires 

many origins of replication to fire within a single S-phase. This however raises another 

potential difficulty: if multiple origins fire at different times throughout S-phase how do 

cells differentiate betweenunreplicated DNA and the newly synthesised DNA strands? 

How do they ensure no origins fire more than once?  Origin firing is coordinated to 

ensure DNA is replicated completely, with no section of DNA being replicated more 

than once. To achieve this, the cell must differentiate between replicated and 

unreplicated DNA. 

1.4.2 Cell Fusion Experiments 

Rao and Johnson carried out cell fusion experiments to investigate whether nuclei from 

different stages of the cell cycle could be induced to undergo DNA replication(Rao and 

Johnson, 1970). They observed that G1 cells fused to S-phase cells underwent DNA 

replication prematurely. This suggested that G1 nuclei were competent to respond to 

signals generated in S-phase cells that trigger DNA replication. However, G2 cells 

fused to S-phase cells did not rereplicate their DNA while the S-phase cells replicated 

DNA normally, suggesting G2 nuclei are not competent to respond to the DNA 

replication inducing signals of S-phase cells. When G2 cells were fused to G1 cells, G1 

nuclei replicated normally, suggesting there was no inhibitory activity in the G2 cells 
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(Rao and Johnson, 1970). Taken together,these findings suggested that G1 cells are 

competent to respond to a diffusible replication promoting factor, this competence is 

lost in G2 nuclei that have already been replicated and after passing through mitosis the 

replication competence is restored. These experiments suggested that cells have a 

mechanism allowing them to differentiate between prereplicative and postreplicative 

DNA and ensure once per cycle replication. 

1.4.3 Xenopus laevis Cell Free System 

Further insights into the mechanisms ensuring once per cycle replication arose from 

research performed in Xenopus laevis eggs and egg extracts. Xenopus eggs are naturally 

arrested at metaphase II of meiosis and enter the cell cycle upon fertilisation, which is 

triggered by an intracellular wave of calcium. In only 7 hours the eggs rapidly carry out 

11 rounds of DNA replication and cell division. During these rapid embryonic cell 

cycles there are negligible G1 or G2 phases and DNA replication lasts approximately 20 

minutes in vivo. During the 12
th
 cell cycle significant transcription begins triggering 

MBT and the cell cycles become elongated. These eggs carry out the first 11 cycles in 

the absence of transcription and maintain large stockpiles of mRNA and proteins that 

function during the cell cycle. DNA microinjected into these eggs replicates semi-

conservatively and only once per cell cycle, demonstrating that this system can maintain 

normal cell cycle events (Harland and Laskey, 1980). 

Due to the large size of the Xenopus laevis eggs, their stockpiles of replication proteins 

and their ability to regulate DNA replication similar to mammalian cells, they became 

an ideal source for an in vitro DNA replication system. A cell-free frog egg extract 

system was prepared to study the effect of purified cytoplasm on demembranated sperm 

chromatin (Lohka and Masui, 1983). This system was developed further and 

Xenopuslaevis egg extracts were prepared that could support semiconservative semi-
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discontinuous replication on a range of DNA templates with varying efficiencies (Blow 

and Laskey, 1986). Efficiency was in part dependent on the ability to form a 

nucleus(Blow and Laskey, 1986) with a bilayer and nuclear pores capable of importing 

protein using adenosine triphosphate (ATP) (Newmeyer et al., 1986). Inegg 

extractsnuclei form around sperm DNA at different times and individual nuclei are able 

to replicate independently (Blow and Watson, 1987). This suggested that in addition to 

signals generated in the cytoplasm that promote S-phase,some intranuclear signal must 

regulate the initiation of thousands of origins at the level of the individual nucleus. 

Despite remaining in the S-phase promoting extract, individual nuclei never rereplicated 

their DNA suggesting that the nuclear environment may play a key role in the 

regulation of once per cycle replication. Therefore, Xenopus egg extracts represented an 

ideal system for the biochemical analysis of proteins involved in the initiation of 

eukaryotic DNA replication. 

1.4.4 Licensing Factor Model 

Blow and Laskey emulated the results of Rao and Johnson in Xenopus egg extracts. 

They showed that there is a single round of DNA replication per cell cycle and that G2 

nuclei do not rereplicate when transferred into fresh extract. To replicate again nuclei 

must pass through mitosis during which time the nucleus breaks down. Rereplication 

could be induced in G2 by disruption of the nuclear envelope(Blow and Laskey, 1988). 

This suggested that DNA replication is controlled by compartmentalisation of 

replication factors between the nucleus and cytoplasm and led to the development of the 

licensing factor model. The licensing factor model predicted the existence of a factor 

which would establish once per cycle replicationdue to fourdefinitive features:  

1. It must bind to or modify DNA before S-phase.  

2. It must be essential for the initiation of DNA replication.  
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3. It must support a single initiation event and must be removed or inactivated by 

DNA replication.  

4. It must be unable to gain access to the nucleus until after the nuclear envelope 

breaks down in mitosis. 

1.4.5 Evidence Supporting the Licensing Factor Model 

Nuclear formation is a requirement for DNA replication in egg extracts (Newport, 1987, 

Blow and Sleeman, 1990) and inextracts treated with nuclear pore inhibitors the 

initiation but not elongation of DNA replication was inhibited (Cox, 1992). The role of 

the nucleus in ensuring once per cycle replication was confirmed when nuclei from 

synchronised HeLa cells were added to Xenopus extracts.G1 nuclei replicated 

semiconservatively whereas G2 nuclei were unable to rereplicate. However, 

permeabilisation of the G2 nuclei during their preparation resulted in replication upon 

addition to extracts. This showed that the nuclear membrane is crucial for distinguishing 

between pre- and post- replicative DNA and for the mechanisms that ensure once-per-

cycle replication (Leno et al., 1992). These data fit the licensing model where 

permeabilisation of the membrane would allow the licensing factor access to the DNA 

to support more initiation events. It was also shown that the inability to replicate G2 

nuclei is due to the absence of a positive acting factor rather than the presence of a 

negative replication inhibiting factor (Coverly et al., 1993). 

The most significant evidence in support of the licensing factor model came from 

experiments that utilised a broad-spectrum kinase inhibitor, 6-(Dimethylamino)purine 

(6-DMAP). 6-DMAP treated metaphase extracts were unable to initiate DNA 

replication despite being able to form normal interphase nuclei and therefore lacked an 

activity that satisfied all 4 features of the licensing factor model:  

1. A 15 minute preincubation in untreated activated extract was sufficientto allow 

DNA to be completely replicated in 6-DMAP extract, suggesting that during this 
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15 minute period the DNA had been modified in some way that did not require 

nuclear formation, as nuclear formation took 20 minutes in these extract. This 

ability was lost in 6-DMAP treated extracts. Therefore 6-DMAP extract lacked 

the ability to modify or ‘license’ chromatin itself. 

2. 6-DMAP treated metaphase extracts failed to initiate DNA replication, but could 

form nuclei, a prerequisite for DNA replication and could elongate previously 

initiated replication forks. Therefore 6-DMAP extracts contained activities 

necessary for DNA replication but lacked a factor essential for the initiation of 

DNA replication.  

3. G2 nuclei do not rereplicate when transferred to fresh extract, unless 

permeabilised. Permeabilised G2 nuclei did not rereplicate, however, when 

transferred to 6-DMAP extract. This shows that the activity inhibited by 6-

DMAP supports a single initiation event.  

4. Intact 6-DMAP nucleitransferred to untreated extract do not initiate DNA 

replication. Permeabilisation of the 6-DMAP nuclei however resulted in 

replication upon transfer to untreated extract.This shows that 6-DMAP nuclei 

lack a factor which cannot cross the nuclear envelope.  

With data to support the existence of an essential licensing factor, an in depth 

biochemical characterisation of the initiation of chromosomal DNA replication in 

Xenopus was now required to determine what the licensing factor was and how it 

worked. Alternative approaches were performed in yeast to molecularly characterise the 

difference between G1 and G2 nuclei in S. cerevisiae. Genomic footprinting 

experiments were carried out using a DNase I protection assay to determine the 

nucleotide position of protein-DNA complexes. Early work on plasmids containing 

ARS sequences identified a protein binding extensively to the ACS which resembled 

the footprint of ORC (Bell and Stillman, 1992, Diffley and Cocker, 1992). It was then 
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shown that replication origins exist in distinct states pre- and post-replication. The post-

replicative state, from S-phase to mitosis, resembled that obtained in vitro with mixtures 

of ORC and origin DNA, whereas the pre-replicative state formed upon mitotic exit and 

persisted throughout G1 and consisted of an extended footprint (Diffley et al., 1994). 

This suggested that additional factors bound at origins before S-phase and were 

removed from origins as replication initiated, consistent with the replication licensing 

model. This complex was denoted the pre-replicative complex (pre-RC) 

1.5 DNA Replication Licensing 

1.5.1 The MCM2-7 Complex is The Licensing Factor 

The licensing factor was purified to homogeneity from Xenopus egg extracts and found 

to consist of heterohexameric minichromosome maintenance (MCM) complexes 

(Chong et al., 1997, Thömmes et al., 1997). The licensing reaction has since been 

shown to be molecularly defined as the loading of MCM2-7 complexes onto chromatin 

at origins of replication. The MCM genes were first identified in an S. cerevisiae screen 

where mutants in MCM2, MCM3, and MCM5 failed to retain centromere- and ARS-

containing minichromosomes over a number of cell cycles (Maine et al., 1984). MCM4 

(originally CDC54) and MCM7 (originally CDC47) were isolated as cell division cycle 

mutants (Moir et al., 1982, Hennessy et al., 1991) and MCM6 (originally mis5) was 

originally identified as a chromosome segregation mutant in S. pombe(Takahashi et al., 

1994). To simplify the nomenclature these genes were renamed MCM2 through 

MCM7(Chong et al., 1996). MCM genes are highly conserved among eukaryotes and 

are present in archaea. Each MCM2-7 genes possesses unique sequences that define 

distinct evolutionarily conserved classes. Eukaryotic organisms have six genes, one 

from each class, as the MCMs are not functionally redundant, while archaea typically 

contain a single MCM gene. MCM2-7 genes also possess regions with significant 

sequence homology and the proteins are members of the of AAA
+
 ATPase family. 
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MCM2-7 proteins form a 600 kDa heterohexameric ring-shaped complex in a 

1:1:1:1:1:1 stoichiometry (Adachi et al., 1997, Fujita et al., 1997, Kubota et al., 1997). 

MCM proteins were shown to be essential for the establishment of the prereplicative 

complex footprint in S. cerevisiae(Labib et al., 2001) and MCMs have been 

unequivocally shown to be the licensing factor hypothesised by Blow and Laskey 

(Figure 3). MCM function was heavily investigated after their initial discovery and after 

a decade of research it was apparent that the MCM2-7 complex satisfies each prediction 

of the licensing factor model: 

1. MCMs bind to chromatin: MCMs bind to chromatin in yeast (Hennessy et al., 

1990, Yan et al., 1993),Xenopus egg extracts (Chong et al., 1995, Kubota et al., 

1995, Madine et al., 1995) and mammalian cells (Thommes et al., 1992, Hu et 

al., 1993, Todorov et al., 1994). 

2. MCMs are essential for DNA replication: MCMs were shown to be essential for 

viability in S. cerevisiae (Hennessy et al., 1991)  and S. pombe(Miyake et al., 

1993, Takahashi et al., 1994) and function in the initiation of DNA replication at 

replication origins in S. cerevisiae (Sinha et al., 1986, Gibson et al., 1990, Yan et 

al., 1991, Chen et al., 1992, Yan et al., 1993, Dalton and Whitbread, 1995), 

Xenopus egg extracts (Chong et al., 1995) and mammalian cells (Kimura et al., 

1994, Todorov et al., 1994, Fujita et al., 1996).  

3. MCMs support a single initiation event at each origin. MCMs are removed from 

the DNA during S-phase in yeast cells (Hennessy et al., 1990, Hennessy and 

Botstein, 1991, Chen et al., 1992, Yan et al., 1993, Young and Tye, 1997), 

Xenopus egg extracts (Kubota et al., 1995, Chong et al., 1995) and mammalian 

cells (Kimura et al., 1994, Todorov et al., 1995, Krude et al., 1996). Following 

initiation, MCMs were found to associate with non-origin DNA, moving 

progressively away from origins (Aparicio et al., 1997). 
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4. MCMs are unable to bind to chromatin from late G1 until cells pass through 

mitosis. Although it is not excluded from the nucleus of mammalian cells, as the 

model predicts, MCMs are unable to bind or relicense chromatin until they pass 

through mitosis (Todorov et al., 1995) (Discussed in detail see section 1.7). 

 

Figure 3: Regulation of Licensing during the Cell Cycle. DNA becomes licensed from late mitosis 

until G1 by the loading of MCM2-7 double hexamers. MCM2-7 hexamer activity removes MCM2-7 

from the licensed origin during S-phase. Additional hexamers are unable to bind chromatin until cells 

pass mitosis and enter the next cell cycle. 

Studies using MCM degron mutants suggested that MCMs were required for elongation 

in addition to initiation (Labib et al., 2000). In agreement with this, chromatin 

immunoprecipitation experiments have shown MCMs associate with non-origin DNA 

with a pattern similar to polymerase ε (Polε) during S-phase (Aparicio et al., 1997).  

Sequence comparison of conserved MCM motifs with DnaA, a prokaryotic ATPase 
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domain containing protein, identified walker A and walker B motifs, suggesting MCMs 

may be DNA-dependent ATPases required for DNA unwinding (Koonin, 1993). A 

purified dimeric heterotrimer of MCM4/6/7 was found to possess some weak 3’-5’ 

helicase activity (Ishimi, 1997). Subsequent work has demonstrated that MCM2-7 

represents the eukaryotic replicative helicase (Bochman and Schwacha, 2009, Riera et 

al., 2014). After loading inactive double hexamers onto DNA, cells enter S-phase where 

MCM2-7 is subjected to activating phosphorylations by Cdc7 and CDK activity leads to 

the recruitment of Cdc45 (Kubota et al., 2003) and GINS (Takayama et al., 2003). 

MCM2-7, Cdc45 and GINS together form a holoenzyme with highly processive DNA 

helicase activity termed the CMG (Gambus et al., 2006, Moyer et al., 2006, Ilves et al., 

2010). 

Metazoan MCM2-7 complexes in solution form a cracked ring structure and assume a 

left-handed lock-washer shape with a natural discontinuity called the MCM2/5 ‘gate’ 

(Costa et al., 2011). This gap or gate allows for the entry and exit of double or single 

stranded DNA into the heterohexameric ring (Samel et al., 2014). After (pre-replicative 

complex) pre-RC assembly two hexamers form planarised conjoined rings (Evrin et al., 

2009, Remus et al., 2009). After CMG formation and binding to single stranded DNA, 

ATPase domains form into a right handed spiral conformation (Costa et al., 2014). 

Therefore, distinct conformations are associated with the loading, activation and single 

stranded DNA binding of MCM2-7 suggesting that these conformations are required in 

the correct sequence for the complex to mature into a functional helicase. Cryo-electron 

microscopy (cryo-EM) data shows that double stranded DNA enters the MCM2-7 C-

terminal AAA
+
 domains but the CMG binds to and translocates along single stranded 

DNA in the 3’ to 5’ direction (Costa et al., 2014) suggesting that DNA unwinding is 

carried out by a ploughshare mechanism (Takahashi et al., 2005). This model predicts 
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that a single hexamer translocates along duplex DNA and sterically separates the two 

DNA strands as they emerge from the helicase. 

1.5.2 Reconstitution of Licensing: the essential factors 

All the essential factors required for replication licensing, or the loading of MCM2-7 

complexes onto chromatin, have been identified. There are three essential licensing 

factors: ORC, Cell division cycle 6 (Cdc6) andCdc10-dependet transcript 1 (Cdt1). The 

licensing reaction has been reconstituted completely using proteins purified from 

Xenopus egg extracts (Gillespie et al., 2001) and later using tagged MCM2-7 complexes 

purified from S. cerevisiae cells arrested in G1 with recombinant ORC, Cdt1 and Cdc6 

from bacteria or baculovirus (Evrin et al., 2009, Remus et al., 2009). These proteins are 

all highly conserved in eukaryotic cells. ORC, Cdc6 and MCM2-7 are part of the AAA
+
 

class of ATPases. AAA
+
 proteins contain two domains, an ATP binding domain and a 

nucleotide interacting helix domain. ATP binding and hydrolysis coordinates the 

physical relationship between the two domains, allowing AAA
+
 proteins to convert the 

chemical energy provided by ATP hydrolysis into conformational changes that can 

exert a physical force on a protein complex. AAA
+
 proteins therefore have the ability to 

mediate the assembly and remodelling of protein complexes. This suggests that ORC, 

Cdc6 and Cdt1 act in concert to load MCM2-7 complexes onto the DNA by sequential 

ATP-coupled conformational changes. An introduction to each licensing factor is 

outlined below, and a detailed description of the molecular mechanism of MCM2-7 

loading is outlined in section 1.5.3. 

1.5.2.1. The Origin Recognition Complex  

The Origin Recognition Complex, as previously noted, was identified as an ARS 

binding complex in S. cerevisiae(Bell and Stillman, 1992). It is a six subunit complex 

and proteins were named 1-6 in order from the largest to the smallest. Deletion of any of 
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these genes results in lethality in S. cerevisiae(Bell et al., 1993, Foss et al., 1993, Li and 

Herskowitz, 1993, Micklem et al., 1993, Bell et al., 1995, Loo et al., 1995). ORC genes 

are likely to exist in all eukaryotes. ORC1-5 orthologues were identified in organisms as 

diverse as yeast, flies (Gossen et al., 1995), plants (Diaz-Trivino et al., 2005), frogs 

(Carpenter et al., 1996, Rowles et al., 1996, Romanowski et al., 1996)  and humans 

(Gavin et al., 1995). ORC-like proteins are also found in most species of archaea (Barry 

and Bell, 2006). ORC1-5 exhibit homology to AAA
+
 ATPases and each has a winged 

helix domain for DNA binding. Orc1, Orc4 and Orc5 contain functional ATP-binding 

sites in metazoans. ORC6 genes are also present in metazoan genomes and are identified 

by an ORC6 protein fold. They have no homology to ATPases but resemble the general 

transcription factor IIB (Liu et al., 2011). ATP is required for the binding of ORC to 

DNA, however binding to DNA inhibits ORC ATPase activity (Bell and Stillman, 1992, 

Klemm et al., 1997). 

ORC binding to origins serves as a scaffold for the sequential association of additional 

replication factors in all eukaryotes. This has been shown to be essential for initiation of 

DNA replication in S. cerevisiae(Fox et al., 1995), S. pombe(Grallert and Nurse, 1996) 

and Drosophila(Landis et al., 1997) cells while immunodepletion of ORC in Xenopus 

egg extracts abolishes replication (Carpenter et al., 1996, Rowles et al., 1996). The 

crystal structure of a eukaryotic ORC has recently been solved demonstrating that the 

complex resembles a bilayered ring where the winged-helix domains sit atop a layer of 

AAA
+
 folds (Bleichert et al., 2015). ORC proteins also have additional roles whereby 

they can influence nucleosome positioning, transcriptional silencing and they have been 

shown to interact with heterochromatin and centromeric DNA (Pak et al., 1997, 

Duncker et al., 2009, Eaton et al., 2010).  
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1.5.2.2 Cdc6 

Cdc6 was first identified as a mutant in a set of cell division cycle screens in S. 

cerevisiae (Hartwell, 1976). Cdc6 is conserved in every eukaryotic organism and Cdc6 

homologues are found in archaea (Barry and Bell, 2006).Cdc6 is an AAA
+
 family 

protein which has sequence homology to Orc1. Genetic studies in S. cerevisiae and S. 

pombe established a role for Cdc6 in the initiation but not elongation of DNA 

replication (Hogan and Koshland, 1992, Kelly et al., 1993, Nishitani and Nurse, 1995, 

Piatti et al., 1995, Muzi Falconi et al., 1996, Detweiler and Li, 1997). Biochemical 

studies in Xenopus egg extracts have shown that Cdc6 only binds chromatin in the 

presence of Orc2 and it is required for chromosomal DNA replication (Coleman et al., 

1996). Similar observations were made in mammalian cells where microinjection of 

human Cdc6 antibodies blocked S-phase entry (Hateboer et al., 1998, Yan et al., 1998). 

Cdc6 is essential for pre-RC assembly in S. cerevisiae(Cocker et al., 1996, Santocanale 

and Diffley, 1996) and was shown to be essential for the chromatin binding of MCM2-7 

in Xenopus egg extracts (Coleman et al., 1996) and S. cerevisiae(Aparicio et al., 1997, 

Donovan et al., 1997, Tanaka et al., 1997). MCM loading requires an intact Cdc6 

AAA+ domain (Donovan et al., 1997, Perkins and Diffley, 1998, Wang et al., 1999, 

Schepers and Diffley, 2001). 

Cdc6 also plays additional roles in the cell cycle, independent of its role in replication 

licensing. Cdc6 is a mitotic polo-like kinase 1 substrate and functions in regulating 

chromosomal segregation (Yim and Erikson, 2010). Cdc6 also interacts with ATR and 

is required for the ATR/Chk1 mediated S-phase checkpoint (Murakami et al., 2002, 

Oehlmann et al., 2004). Cdc6 can also interact with the polycomb protein Bmi1 and 

may play a role in transcriptional regulation (Agherbi et al., 2009). 
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1.5.2.3 Cdt1 

Cdt1 was originally identified in S. pombe as an essential gene required for DNA 

replication that is under transcriptional control of Cdc10 (Hofmann and Beach, 1994). 

Cdt1 homologues have been identified in S. cerevisiae(Tanaka and Diffley, 2002b), C. 

elegans(Zhong et al., 2003), Drosophila(Whittaker et al., 2000), Xenopus(Maiorano et 

al., 2000) and humans (Wohlschlegel et al., 2000). It was subsequently shown to be a 

licensing factor required for chromatin loading of MCM2-7 in S. pombe(Nishitani et al., 

2000), Xenopus egg extracts (Maiorano et al., 2000, Tada et al., 2001) and S. 

cerevisiae(Tanaka and Diffley, 2002b). Cdt1 contains two winged helix domains but no 

ATP binding motif unlike other replication licensing factors. The chromatin binding of 

Cdt1 is ORC and Cdc6 dependent (Maiorano et al., 2000, Gillespie et al., 2001). Cdt1 

interacts with MCM2-7 via a C-terminal domain (Ferenbach et al., 2005). Cdt1 is a key 

target for regulation of replication licensing in metazoan cells (See Section 1.7). Cdt1 

has an additional function in mitosis where it interacts with the Nec1 loop of the Ndc80 

complex to facilitate stable microtubule kinetochore attachment (Varma et al., 2012).  

1.5.3 Molecular Mechanism of Licensing  

Licensing occurs by the stepwise assembly of ORC, Cdc6 and Cdt1 at origins and 

together they facilitate sequential loading of two MCM2-7 complexes onto DNA. The 

two MCM2-7 hexamers bind tightly together in a head-to-head orientation and remain 

inactive around double stranded DNA (Evrin et al., 2009, Remus et al., 2009, Gambus 

et al., 2011). Loading two MCM2-7 complexes head-to-head allows for the initiation of 

bidirectional forks in S-phase. Significant insights into the molecular mechanism of 

MCM2-7 chromatin loading have been gained from biochemical approaches and 

structural studies using reconstituted S. cerevisiae systems. More recently, single 

molecule analyses that can capture dynamic and transient events in real time have shed 
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light on the later steps in the reaction and have determined how the second MCM2-7 is 

recruited into the pre-RC.  

ORC binds to origin DNA in an ATP-dependent manner (Bell and Stillman, 1992). An 

Orc4 catalytic arginine is essential to complete the ATPase active site of Orc1 (Bowers 

et al., 2004). DNA binding causes a conformational change, separating Orc1 and Orc4 

(Sun et al., 2012) which suppresses ORC ATPase activity (Bell and Stillman, 1992, 

Klemm et al., 1997). This may prevent futile ATP hydrolysis before pre-RC assembly. 

ORC recruits Cdc6 to DNA. In S. cerevisiae Cdc6 plays a role in ensuring the correct 

placement of origins. Whereas ORC and Cdc6 form stable complexes at ARS 

sequences, non-origin DNA induces Cdc6 ATPase activity causing the complex to 

disassemble (Speck and Stillman, 2007). As metazoan origins may not require a genetic 

element for origin specification it is unclear whether Cdc6 plays a role as a specificity 

factor in these organisms. S. cerevisiae ORC/Cdc6 can bind and license non-origin 

DNA in vitro(Evrin et al., 2009, Remus et al., 2009), which is capable of initiating 

replication (On et al., 2014) suggesting it is formally possible that any DNA sequence 

can support licensing. However, Cdc6 has a fast off-rate and ORC/Cdc6 is a short-lived 

complex. ORC/Cdc6 at non-origin DNA has a half-life of 5.5 ± 0.1 s, whereas 

ORC/Cdc6 at ARS1 has a half-life of 9.6 ± 0.1 s giving a higher specificity to origins 

for MCM2-7 loading during in vitro reconstitution experiments (Duzdevich et al., 

2015). Disassembly of the ORC/Cdc6 complex is likely due to ORC- and DNA-

dependent Cdc6 ATPase activity (Randell et al., 2006b). Cdc6 binding induces a 

conformational change in ORC and the ORC/Cdc6 complex forms a ring shape that is 

likely to wrap around DNA (Sun et al., 2012, Sun et al., 2013). Cryo-EM data showed 

that in origin bound ORC/Cdc6 complexes Orc6 extends outwards to enable interactions 

with Cdt1 while the Orc4 arginine finger remains too distant from Orc1 and further 
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ORC conformational changes are therefore required to enable ATPase activity (Sun et 

al., 2012). 

In S. cerevisiae, Cdt1 and MCM2-7 is imported into the nucleus as a complex (Tanaka 

and Diffley, 2002b) and Cdt1-bound MCM2-7 is recruited to DNA bound ORC/Cdc6. 

In metazoan cells however, Cdt1 and MCM2-7 bind independently to the origin. In the 

absence of Cdt1, a C-terminal Mcm6 extension blocks MCM2-7 binding to ORC/Cdc6 

suggesting that Cdt1 binding causes conformational changes in MCM2-7 (Zhang et al., 

2010, Evrin et al., 2013). The Mcm3 C-terminus interacts with Cdc6 during recruitment 

and mutants in this region block the interaction of Cdt1/MCM2-7 with ORC/Cdc6 

(Frigola et al., 2013, Sun et al., 2013). It has been hypothesised that the licensing 

factors, behaving in a similar manner to that of a clamp loader, facilitate conformational 

changes to open the Mcm2 and Mcm5 ‘gate’ and slide it over double stranded DNA 

(Yardimci and Walter, 2014). 

In the presence of a non-hydrolysable ATP, an intermediate 1.1 MDa complex is 

formed consisting of ORC/Cdc6/Cdt1/MCM2-7 (OC6C1M) (Evrin et al., 2013, Sun et 

al., 2013). Cryo-EM data has suggested that the OC6C1M may wrap around DNA, as it 

was observed that a central channel traverses the entire length of the OC6C1M and may 

contain DNA (Sun et al., 2013). Confirming the MCM2-7 complex at this stage is 

wrapped around DNA, a rapamycin-inducible linkage between Mcm2/Mcm5 was 

shown to stabilise MCM2-7 on DNA during OC6C1M formation and before ATPase 

activity (Samel et al., 2014). In this 3 tiered complex the MCM2-7 AAA
+
 C-terminal 

domains interact with ORC/Cdc6 AAA
+
 domains and the MCM2-7 N-terminal domains 

face outwards. The MCM2-5 gate is partially open in this structure (Sun et al., 2013) 

and this complex is salt sensitive (Fernandez-Cid et al., 2013), indicating that it is not 
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stably bound around double stranded DNA. This may allow for quality control and 

release of MCM2-7 at this stage if required. 

The OC6C1M is a very short lived complex (Sun et al., 2014) and its formation induces 

conformational changes in ORC/Cdc6, forming a spiral structure which leads to 

ORC/Cdc6 ATPase activity (Fernandez-Cid et al., 2013, Sun et al., 2013). The ATPase 

activity of Orc1 and Cdc6 triggers the release of Cdt1(Randell et al., 2006b)and the 

subsequent formation of an OC6M complex (Fernandez-Cid et al., 2013). ATPase 

activity is dependent on the interaction of Cdt1 with Mcm6 and the OC6M was shown to 

be a genuine precursor capable of recruiting a second Cdt1/MCM2-7 for the formation 

of a salt-stable double hexamer (Fernandez-Cid et al., 2013). OC6M formation takes 

seconds in the presence of hydrolysable ATP, but conversion into salt-stable double 

hexamers was slow taking over 5 minutes. The C-terminus of Cdt1 was sufficient for 

OC6M formation, but the N-terminus of Cdt1 was required for formation of salt-stable 

double hexamers (Fernandez-Cid et al., 2013). Differences in reaction kinetics and the 

requirement for independent Cdt1 interactions hinted that the recruitment of the first and 

second MCM2-7 complexes occur by different mechanisms. A further late-stage 

OC6MM intermediate has been observed, however the quality of the cryo-EM made it 

difficult to determine the presence of Cdc6 and naming the complex OC6MM was 

speculative, therefore this complex may have consisted of OMM alone (Sun et al., 

2014). This indicated that MCM2-7 may dimerise on DNA before it is released from 

ORC. 

Total internal reflection fluorescence microscopy of immobilised, fluorescently labelled 

DNA incubated with ATP and fluorescently labelled recombinant S. cerevisiae 

replication licensing factors has allowed for the study of single molecules in the 

licensing reaction (Figure 4). This technique enabled the recording 
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ofproteinarrival/departure times and  short-lived intermediates were identified which 

could not be detected by the previously used structural and biochemical approaches 

(Ticau et al., 2015). This work confirmed that two MCM2-7 heterohexamers are 

recruited to the origin, one at a time. It was shown that Cdc6 always dissociates first 

from the OC6C1M, followed by Cdt1. This differs from previous models which 

suggested that Cdt1 was removed first (Fernandez-Cid et al., 2013). A second Cdc6 

molecule was recruited to ORC followed by a second Cdt1/MCM2-7. Again, Cdc6 was 

found to dissociate first, followed by Cdt1 and ORC resulting in the loading of a 

double-hexamer of MCM2-7 (Ticau et al., 2015). It was found that a single ORC is 

responsible for recruitment of both MCM2-7 hexamers (Duzdevich et al., 2015, Ticau et 

al., 2015), ruling out numerous hypothesised models (Yardimci and Walter, 2014). Due 

to the physical separation, it is unlikely that ORC can interact directly with the second 

MCM2-7 hexamer and retention times of Cdc6 and Cdt1 are much longer during the 

loading of the second hexamer, correlating well with previous biochemical data that 

suggested the two hexamers are loaded by alternate different mechanisms. MCM2-7 

complexes do not bind together in solution (Evrin et al., 2009), therefore it is likely that 

OC6C1M and OC6M formation causes conformational changes in the MCM2-7 N-

terminus, which allow it to interact with and load the second MCM2-7. In support of 

this, FRET-CoSMoS was used to determine the timing of double hexamer formation 

and it was shown the recruitment of the second MCM2-7 results in double hexamer 

formation prior to release of Cdc6 and Cdt1. This suggests that MCM2-7 N-terminal 

interactions occur before loading of the second hexamer. This is followed by Cdc6 

release, the subsequent simultaneous release of Cdt1 and ORC and loading of a salt 

sensitive MCM2-7 head-to-head double hexamer (Ticau et al., 2015). 
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Figure 4: The Molecular Mechanism of Licensing. ORC binds to chromatin for the entire process of 

double hexamer formation. MCM2-7 complexes are recruited one at a time. ORC recruits Cdc6 and in 

turn Cdt1/MCM2-7 to form the OC6C1M. In the presence of hydrolysable ATP Cdc6 is released, followed 

by Cdt1. An additional Cdc6 is recruited, followed by Cdt1/MCM2-7, to form the OC6C1MM. Cdc6 is 

released first followed by Cdt1 and ORC, leaving a head-to-head double hexamer tightly wrapped around 

the DNA. Figure adapted from (Ticau et al., 2015). Further work is required to determine the ATP 

requirements of each step of the reaction. 

1.5.4 Additional Factors that Effect Licensing 

Reconstitution of licensing with Xenopus egg extract and S. cerevisiae purified proteins 

has identified the essential licensing factors, ORC, Cdc6 and Cdt1. Together with 

MCM2-7, DNA and ATP these are the minimal requirement for licensing in vitro. 

Additional factors have been identified that can influence licensing, however these are 

not functionally critical to the actual molecular mechanism of licensing, but rather 

facilitate licensing by other mechanisms or play regulatory roles. 
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1.5.4.1 Hbo1  

Human acetylase binding to Orc1 (Hbo1) was identified as an Orc1 binding protein in a 

yeast two-hybrid screen from a HeLa cell cDNA library (Iizuka and Stillman, 1999). 

Hbo1 knockdown caused a significant reduction in MCM loading, but had no effect on 

ORC, Cdc6 or Cdt1 in human cells (Iizuka et al., 2006). Immunodepletion of Hbo1 in 

Xenopus egg extracts increased ORC and Cdc6 chromatin binding, reduced Cdt1 

chromatin binding, blocked MCM loading and inhibited DNA replication. Replication 

was rescued by addition of Cdt1 (Iizuka et al., 2006). This suggested that Cdt1 was 

inhibited in Hbo1 depleted extracts. One caveat to this data however, was an issue with 

the specificity of the antibodies. Hbo1 is an approximately 70 kDa protein, whereas the 

depleted band in these extracts migrated at approximately 130 kDa on SDS-PAGE. 

Chromatin immunoprecipitation experiments in human cells demonstrated that Hbo1 

can associate with origin DNA and this occurs specifically in G1 and depends on Cdt1. 

It was suggested that Hbo1 is a Cdt1 co-activator, as co-expression of Hbo1 in Cdt1 

overexpressing cells triggered increased rereplication compared to overexpression of 

Cdt1 alone (Miotto and Struhl, 2008). Overexpression of Hbo1 and its co-factor Jade1 

increased histone H4 acetylation at origins and enhanced MCM chromatin association. 

Inhibition of this H4 acetylation leads to a reduction in MCM loading, suggesting that 

H4 acetylation by Hbo1 at origins facilitates replication licensing (Miotto and Struhl, 

2010). Taking advantage of an engineered CHO cell line that allows for microscopic 

visualisation of chromatin structural changes it was observed that targeting Cdt1 to a 

specific region resulted in a striking Hbo1- and H4 acetylation-dependent chromatin 

decondensation coupled with MCM loading in G1 (Wong et al., 2010). This indicates 

that rather than participating in the licensing reaction itself, Hbo1 may facilitate 

licensing by organising chromatin at the origin. Hbo1 may also represent a link between 

stress signalling and licensing. Activation of p53 in G1 leads to p53/Hbo1 interactions, 
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reduced Hbo1 histone acetyltransferase activity and reductions in MCM loading (Iizuka 

et al., 2008). In addition, JNK1 activation in response to stress leads to Cdt1 

phosphorylation and reduction in Hbo1 recruitment to origins (Miotto and Struhl, 2011). 

1.5.4.2 ORCA 

ORC associated (ORCA) protein was identified by mass spectrometry as an ORC 

interacting protein and has been implicated to function in licensing. Tethering ORCA to 

an artificially generated LacO region resulted in ORC recruitment. Whether this resulted 

in licensing at this location was not tested (Shen et al., 2010). ORCA binds to chromatin 

in a cell cycle dependent manner and depletion of ORCA in human primary cells 

resulted in a reduction of ORC chromatin association, causing cells to accumulate in G1 

(Shen et al., 2010). This suggests that ORCA aids in the stable association of ORC on 

chromatin. ORCA stability is Orc2 dependent and Orc2 knockdown results in ORCA 

destruction (Shen et al., 2010). ORCA has also been shown to interact with Cdt1, 

however the impact of this on licensing has not been investigated (Shen et al., 2012). 

Knockdown of ORCA resulted in a reduction of chromatin association of ORC. MCM2-

7 chromatin binding was either unaffected or reduced depending on cell type (Shen et 

al., 2010). ORCA colocalises with ORC at heterochromatic sites and has been shown to 

bind to repressive histone marks, suggesting it may link licensing to higher order 

chromatin structure, or play a role in regulating the non-licensing functions of ORC 

(Bartke et al., 2010). 

1.5.5 MCM Stability on Chromatin  

A key property of MCM2-7 double hexamers that enables cell cycle regulation and 

ensures once per cycle regulation, is its ability to stably bind DNA once loaded. Once a 

double hexamer is loaded it remains indefinitely bound to chromatin until it is removed 

by DNA replication (Kuipers et al., 2011). This inherent ability of MCM2-7 double 
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hexamers to stably bind DNA is likely due to the conformational changes induced by 

their N-terminal interactions. In a head-to-head complex each MCM2-7 is twisted at a 

30° angle, which is likely to inhibit ATPase activity and orientate the Mcm2-5 gates in 

two directions to prevent slippage off the DNA (Sun et al., 2014). Once an MCM2-7 

double hexamer is formed it no longer requires any of the licensing factors. This allows 

for a sequential two-step reaction for the initiation of DNA replication that can be 

temporally separated by the cell cycle. Once MCMs have been loaded the licensing 

factors, ORC Cdc6 and Cdt1, are subjected to multiple forms of regulation to ensure 

that no licensing can occur after G1. Following licensing, in the next step towards 

initiation MCM2-7 complexes are subjected to S-phase specific phosphorylations which 

leads to the formation of an active helicase. CDK activity plays a key role in regulating 

the switch from the first to second step of initiation. As CDK activity rises during G1 it 

leads to the inactivation of licensing factors and once CDK activity reaches a threshold, 

cells enter S-phase where CDKs and other factors inhibit licensing while promoting 

replication initiation. This regulation is described in detail in section 1.7. 

1.6 DNA Replication 

1.6.1 Reconstitution of Initiation in S. cerevisiae 

MCM2-7 chromatin loading is essential but insufficient for DNA replication. An 

activity termed S-Phase Promoting Factor (SPF) is required to activate licensed origins. 

SPF activity is provided by CDKs and Dbf4/Drf1 Dependent kinase (DDK). They act 

on multiple essential substrates to facilitate the assembly of a large pre-initiation 

complex (pre-IC) at a licensed origin. Pre-IC formation leads to the activation of the 

CMG and the subsequent unwinding of DNA. All DNA polymerases use a single 

stranded primer to synthesise a new DNA strand. RNA priming can only occur on 

single stranded DNA, therefore DNA unwinding is required prior to initiation. 

Significant work performed over the past 25 years has combined biochemical 
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investigations using Xenopus egg extracts and yeast genetics to identify and characterise 

proteins that function in the initiation of DNA replication. This has culminated in the in 

vitro reconstitution of replication initiation using 42 purified S. cerevisiae proteins, 

defining the minimal complement of proteins required for regulated replication 

initiation. For pre-IC formation; ORC, Cdc6, Cdt1, MCM2-7, DDK, CDK, Sld3, Sld7, 

Cdc45, Sld2, GINS, Dpb11 and Polε. For pre-IC activation; Mcm10, Polα, RPA, Ctf4 

and TopoII are required) (Yeeles et al., 2015)(Figure 5). 

Salt stable MCM2-7 double-hexamers were loaded onto magnetic bead bound DNA 

using purified proteins. Licensed DNA was incubated with DDK and it was shown that 

MCM2-7 was the only essential DDK target in vitro(Yeeles et al., 2015). The exact sites 

remain unclear, but Mcm2, Mcm4 and Mcm6 appear to be important targets (Randell et 

al., 2010, On et al., 2014), however N-terminal mutants of Mcm5 can bypass DDK 

requirement (Hardy et al., 1997). There are two essential targets for S-phase CDK 

activity, Sld3 and Sld2. DDK-phosphorylated MCM2-7 is bound by Sld3/Sld7 and 

Cdc45. Sld2 phosphorylation facilitates interaction with Dbp11 in solution, leading to 

the assembly of an Sld2/Dbp11/GINS/Polε pre-loading complex (pre-LC) that is 

recruited to the chromatin bound Sld3/Sld7/Cdc45/MCM2-7 complex via interactions of 

Dpb11 with Sld3 (Yeeles et al., 2015). In this system the order of addition of CDK and 

DDK was not important, disagreeing with previous reports, which suggested that DDK 

must act first (Heller et al., 2011). However, yeast extracts were used in these 

experiments as opposed to purified proteins, and therefore they could have potentially 

contained phosphatases that would remove phosphorylations in the absence of ongoing 

DDK activity. DDK- and CDK-dependent recruitment of Sld3/Sld7/Cdc45 and 

Sld2/Dbp11/GINS/Polε leads to the formation of salt-stable CMG. MCM2-7 has been 

shown to encircle single stranded DNA in the CMG (Costa et al., 2014) and it is likely 

that formation of salt stable CMG in these assays correlates with extrusion of  
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Figure 5: Reconstitution of the Initiation of DNA Replication in Eukaryotes. The combined action of 

DDK and CDK leads to the recruitment of Sld7/Sld3/Cdc45 and Sld2/Dpb11/GINS/Pol� complexes to 

phosphorylated MCM2-7 double hexamers. Recruitment of MCM10 leads to the unwinding of DNA and 

additional factors, RPA and Topo II are recruited to coat single stranded DNA and unwind catenated 

DNA respectively. Recruitment of Polα leads to origin firing and dNTP incorporation. Figure was 

adapted from (Yeeles et al., 2015). 

single stranded DNA. MCM10 is recruited next and this leads to the recruitment of 

RPA, indicating that the origin DNA has been melted due to CMG activation (Yeeles et 

al., 2015). A separate study demonstrated that RPA recruitment required ATP 

hydrolysis, suggesting that salt stable CMG formation may trigger MCM2-7 
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conformational changes leading to ATPase activation (Heller et al., 2011). Addition of 

Polα allowed DNA replication to begin and triggered origin firing. RPA, TopoII and 

Ctf4 were required for efficient elongation, but were not absolutely required for origin 

firing. TopoII is required to relieve supercoils ahead of the replication fork and DNA 

catenation. Ctf4 links Polε to the CMG (Simon et al., 2014). Factors involved in DNA 

replication elongation (Polδ, RFC, PCNA and Mrc1) were not used in this study and 

reconstitution of coupled leading and lagging strand replication will be a future goal for 

this system (Yeeles et al., 2015).  

1.6.2Metazoan pre-IC 

There is significant conservation of the molecular machinery from yeast to 

mammalians, with a few instances of functional orthologues, suggesting that the general 

mechanisms of initiation have been tightly conserved across eukaryotes. In metazoans, 

Treslin/Ticrr and TopBP1 are genuine homologs of Sld3 and Dpb11, respectively, and 

RecQ4 may be a functional orthologue of Sld2. However each of these three metazoan 

proteins have diverged significantly and have additional domains. CMG formation is 

also orchestrated by SPF in higher eukaryotes yet the essential CDK targets, analogous 

to S.cerevisiae Sld2 and Sld3 remain unknown.  

Treslin contains a conserved Sld3 Cdc45-interacting site (Itou et al., 2014). CDKs 

phosphorylate Treslin in human cells and Xenopus egg extracts and this is required to 

promote the interaction of Treslin with TopBP1 and Cdc45, in addition to Cdc45 

association with origins (Kumagai et al., 2010, Boos et al., 2011, Kumagai et al., 2011). 

MTBP has been proposed to be the functional homolog of Sld7, although it shares little 

to no sequence conservation with Sld7. However, MTBP interacts with Treslin 

throughout the cell cycle and its depletion prevents CMG assembly (Boos et al., 2013). 

RecQ4 has been suggested to be a Sld2 homolog despite very limited sequence 
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conservation. There is a weak similarity in a RecQ4 N-terminal domain that can interact 

with TopBP1. This domain is required for DNA replication in Xenopus egg extracts. 

However, RecQ4 is dispensable for Cdc45 and GINS recruitment, but is required for 

polymerase recruitment (Sangrithi et al., 2005, Matsuno et al., 2006). Therefore, 

whether or not RecQ4 is the functional homolog of Sld2 is still unclear. Human and 

Xenopus Mcm10 function differently than S. cerevisiae Mcm10 appearing to be 

required for CMG assembly rather than CMG activation (Wohlschlegel et al., 2002, Im 

et al., 2009, Di Perna et al., 2013). Additional novel factors with no homologues, 

GemC1 (Balestrini et al., 2010) and DUE-B (Chowdhury et al., 2010), have been 

implicated to have a role in Cdc45 recruitment, suggesting that helicase activation is 

more complex in higher Eukaryotes. 

1.6.3Replication Elongation 

Once DNA unwinding is activated two separate forks move in opposite directions. The 

complex at each fork is referred to as the ‘replisome’ and all cells have the same core 

replisome components: helicase, DNA polymerases, circular sliding clamps, a 

pentameric clamp loader, primase and single strand binding protein (O'Donnell et al., 

2013). Elongation of the first RNA primer becomes the leading strand and this is 

synthesised by Polε tethered to the CMG by Ctf4 (AND1 in human cells) (Simon et al., 

2014). Multiple priming events occur on the lagging strand to form 100-200 bp Okazaki 

fragments synthesised by Polδ. The RFC clamp loader assembles PCNA sliding clamps 

at the replisome to function with both Polε and Polδ (Hedglin et al., 2013). DNA 

polymerases alone are distributive and synthesise few nucleotides before dissociation 

from DNA. PCNA essentially tethers the polymerases to DNA, substantially increasing 

processivity. A primase/polymerase switch mechanism couples leading and lagging 

strand synthesis making fork progression more processive. 
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1.6.4Termination of Replication Forks 

As two converging forks meet there must be a mechanism to ensure that the DNA 

between the two forks is replicated and the two replisomes become disassembled. 

Continuation of one fork and not the other would result in rereplication. It has recently 

been demonstrated in S.cerevisiae(Maric et al., 2014) and Xenopus egg extracts 

(Moreno et al., 2014) that Mcm7 becomes polyubiquitinated with K48-linked chains to 

facilitate CMG disassembly via Vcp/p97/Cdc48. This ubiquitination was carried out by 

the cullin family of ubiquitin ligases. This fits well with the replication licensing model 

that states that the licensing factor, MCM2-7 should be inactivated or removed by DNA 

replication. 

1.7 Cell Cycle Regulation of Replication Licensing 

1.7.1 Importance of Once Per Cycle DNA Replication 

To accommodate for large genome sizes, eukaryotic cells initiate hundreds to thousands 

of origins of replication during S-phase. To ensure a complete yet once per cycle DNA 

replication and solve the problems associated with firing multiple origins, these cells 

use a two-step initiation reaction: licensing first, followed by origin firing. A key 

property of chromatin bound MCM2-7 double hexamers is their ability to remain stably 

bound for a number of hours in the absence of licensing factors. This allows for the 

sequential processes of licensing and origin firing to be temporally separated during the 

cell cycle. Thus, cells avoid the catastrophic effects of both under-replication and 

rereplication. 

1.7.1.1 Consequences of Under-replication 

In normal mammalian cells a p53 dependent licensing checkpoint exists to ensure cells 

cannot enter S-phase without a sufficient number of licensed origins (Nevis et al., 

2009). Inhibition of licensing by expression of a non-regulatable geminin (Shreeram et 
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al., 2002) or knockdown of licensing factors (Feng et al., 2003, Machida et al., 2005, 

Liu et al., 2009, Nevis et al., 2009) causes cells to arrest in G1. This ‘licensing 

checkpoint’ ensures cells do not enter S-phase in conditions which would allow under-

replication to occur. S. cerevisiae do not appear to have a licensing checkpoint and can 

enter S-phase in the presence of insufficient licensed origins. This leads to DNA double 

strand breaks, increased recombination and gross chromosomal rearrangements (Hogan 

and Koshland, 1992, Bruschi et al., 1995, Lengronne and Schwob, 2002, Tanaka and 

Diffley, 2002a). This kind of damage might lead to the development of cancer in 

multicellular organisms. Mouse models have been developed to study the effects of 

origin deficiency in mammalian cells. Mcm4
chaos3

 and MCM2
IRES-CreERT2

 mutants result 

in reduced cellular levels of Mcm4 and Mcm2 respectively. This results in a consequent 

reduction in the level of licensed origins, leading to genomic instability and tumour 

development (Pruitt et al., 2007, Shima et al., 2007). A reduction in licensed origins 

increases inter-origin distance which leads to high levels of fork stalling (Kawabata et 

al., 2011). Replication intermediates were found to persist into mitosis, increasing the 

number of cells with lagging chromosomes, acentric fragments and micronuclei, likely 

the driving force behind the genomic instability and tumour development (Kunnev et 

al., 2010, Kawabata et al., 2011, Ozeri-Galai et al., 2011, Burrell et al., 2013). 

Overexpression of the oncogene cyclin E is another well studied example that 

demonstrates the detrimental effects of under-replication. Cyclin E is a G1/S cyclin and 

positive regulator of CDK2, which accelerates S-phase entry (Ekholm-Reed et al., 

2004). This impairs MCM2-7 loading and cells enter S-phase with insufficient licensed 

origins (Ekholm-Reed et al., 2004). Overexpression of cyclin E and the consequent 

reduction of licensed origins is associated with longer replication tracks, increased 

ssDNA formation and RPA binding, increased fork stalling and genomic instability 

(Spruck et al., 1999, Bartkova et al., 2005, Bester et al., 2011). This data suggests that 
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under-replication of DNA due to deregulation of licensing can be a driving force for 

chromosomal instability and the development of cancer. Consistent with this, human 

cancer cells have compromised licensing checkpoints. These cells therefore enter S-

phase in the presence of reduced licensed origins leading to DNA damage, abortive S-

phase and apoptosis (Shreeram et al., 2002, Feng et al., 2003, Nevis et al., 2009).  

1.7.1.2 Consequences of Rereplication 

Licensing factors are subject to strict regulation during the cell cycle from late G1 until 

passage mitotic exit. No rereplication can occur during the periods of high CDK activity 

present from S-phase until mitosis. Rereplication causes genomic instability leading to 

and cell death in S. cerevisiase(Mimura et al., 2004, Wilmes et al., 2004) and 

mammalian cells (Zhu et al., 2004). How rereplication causes genomic instability is not 

well understood. In S. cerevisiae, Xenopus egg extracts and human cells rereplication 

causes DNA damage which leads to checkpoint activation (Vaziri et al., 2003, 

Melixetian et al., 2004, Zhu et al., 2004, Archambault et al., 2005, Green and Li, 2005, 

Li and Blow, 2005, Davidson et al., 2006, Zhu and Dutta, 2006, Liontos et al., 2007, 

Liu et al., 2007, Machida and Dutta, 2007). A number of mechanisms have been 

proposed to describe precisely how rereplication-dependent DNA breaks arise. At very 

high levels of relicensing, head-to-tail collisions of rereplicating forks were proposed to 

cause fork stalls that progress into DNA breaks in rereplicating Xenopus egg extracts 

(Davidson et al., 2006).In human cells it was shown that deregulated origin firing leads, 

by an unknown mechanism, to an accumulation of ssDNA gaps. This preceded double 

strand break formation and checkpoint activation. Persistence of ssDNA then caused 

double strand breaks when encountered by a rereplicating fork (Neelsen et al., 2013). 

Significant rereplication could deplete replication factors and dNTPs and impede fork 

progression, which could cause rereplication-induced ssDNA and DNA damage (Bester 

et al., 2011). The presence of incompletely replicated chromatids or unresolved repair 
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intermediates in mitosis can result in aberrant mitosis, generation of anaphase bridges, 

unbalanced chromosome segregation and subsequent genomic instability (Gisselsson et 

al., 2000, Janssen et al., 2011, Wilhelm et al., 2014). There is evidence to suggest that 

cancer cells do not possess an intact rereplication checkpoint (Vaziri et al., 2003, Liu et 

al., 2007), therefore deregulated licensing and rereplication could drive tumorigenesis. 

Consistent with this idea, licensing factors are frequently upregulated in cancer cells 

(Xouri et al., 2004, Tachibana et al., 2005, Tatsumi et al., 2006, Liontos et al., 2007, 

Jones et al., 2013). In addition, Cdt1 or Cdc6 overexpressing cells injected into 

transgenic mice led to tumour formation, demonstrating that Cdt1 and Cdc6 can both 

act as oncogenes, linking excessive licensing with cancer development (Arentson et al., 

2002, Seo et al., 2005a, Liontos et al., 2007). However, Cdc6 oncogenic activity may be 

a consequence of a mechanism other than deregulated licensing, as Cdc6 overexpression 

was found to reduce transcription at the INK4/ARF locus (Gonzalez et al., 2006b).  

1.7.2Regulation of Licensing Factors in S. Cerevisiae 

The control of replication licensing in yeast is mediated entirely by CDK activity. Each 

of the licensing factors, ORC, Cdc6 and Cdt1/MCM2-7 are subjected to control by 

CDK activity. CDKs regulate protein expression, subcellular localisation and activity. 

They also mediate the binding of inhibitors and targets proteins for destruction. The 

reliance of regulation on CDK activity has been demonstrated where overexpression of 

a CDK inhibitor, Sic1, permitted relicensing in S-phase and G2 with consequent 

rereplication (Dahmann et al., 1995, Noton and Diffley, 2000). 

1.7.2.1 ORC 

In S.cerevisiae Orc2 and Orc6 have multiple CDK phosphorylation sites. 

Hyperphosphorylated Orc2 and Orc6 are observed from late G1 until mitosis (Nguyen 

et al., 2001, Wilmes et al., 2004). Orc6 also contains a cyclin-binding (Cy) motifwhich 
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mediates an interaction with Clb5, the subunit for S-phase CDK (Wilmes et al., 2004). 

CDKs do not affect ORC ATPase activity, ORCs ability to bind to bead-bound origin-

containing DNA or the recruitment of Cdc6 to ORC on DNA (Chen and Bell, 2011). In 

the presence of nonhydrolysable ATP, CDK-phosphorylated ORC can assemble the 

licensing intermediate OC6C1M complex but this complex cannot undergo changes 

required for OC6M formation (Fernandez-Cid et al., 2013). Therefore, CDK inhibits the 

recruitment of the Cdt1/MCM2-7 complex to origin DNA by regulating ORC. Clb5 

interaction with ORC can also sterically inhibit Cdt1 recruitment (Chen and Bell, 2011). 

Phosphorylation of Orc2 and Orc6 also blocks Cdt1 recruitment (Chen and Bell, 2011), 

although exactly how these phosphorylations regulate the molecular mechanism of 

licensing has not been investigated. Considering the intricacy of this molecular 

mechanism and the importance of sequential conformational changes it could be 

predicted that phosphorylation changes the structure of functional Orc2 and Orc6 

regions. A complete ORC remains bound to S.cerevisiae chromatin throughout the cell 

cycle, where it likely plays additional roles in the cell cycle, thus a mechanism that can 

interrupt the molecular mechanism of licensing rather than the localisation or stability 

of ORC is required in this organism. 

1.7.2.2. Cdc6 

S. cerevisiae Cdc6 is subjected to multiple forms of regulation. CDK phosphorylation of 

the transcription factor Swi5 blocks its association with DNA (Moll et al., 1991) and 

this regulates Cdc6 expression, ensuring Cdc6 levels are high only in G1 (Zwerschke et 

al., 1994, Piatti et al., 1995). CDK phosphorylation of Cdc6 by G1 cyclins generates 

two distinct binding sites for the CRL1
Cdc4

 E3 ubiquitin ligase (Drury et al., 1997, 

Elsasser et al., 1999, Jang et al., 2001, Perkins et al., 2001). CRL1
Cdc4

 mediated 

ubiquitination leads to rapid degradation of Cdc6 during late G1 and S-phase (Drury et 

al., 1997, Drury et al., 2000). However, Cdc6 is more stable in late G2 and mitosis. This 
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is due to the mitotic cyclin Clb2, which binds to CDK phosphorylated Cdc6 and blocks 

one of the CRL1
Cdc4

 binding sites to increase G2/M stability of Cdc6 (Elsasser et al., 

1996, Weinreich et al., 2001, Mimura et al., 2004). Clb2-bound phosphorylated Cdc6 is 

inactive and cannot bind to origin bound ORC to support MCM2-7 loading (Mimura et 

al., 2004). 

1.7.2.3. Cdt1/MCM2-7 

CDK phosphorylation of Mcm3 leads to the export of Cdt1/MCM2-7 from the nucleus 

from S-phase until cells pass through mitosis. Chromatin associated MCM2-7 is 

unaffected and remains bound until removal following DNA replication (Hennessy et 

al., 1990, Labib et al., 1999, Nguyen et al., 2000, Tanaka and Diffley, 2002b, Liku et 

al., 2005). 

1.7.2.4 Redundancy and Rereplication 

Inhibition of any single mechanism alone does not lead to significant levels of 

reinitiation in yeast (Drury et al., 1997, Labib et al., 1999, Nguyen et al., 2000, Nguyen 

et al., 2001, Wilmes et al., 2004). Mutating two pathways simultaneously generally 

leads to detectable rereplication and cell death; the severity of the phenotype very much 

depends on the combination of mutations (Wilmes et al., 2004, Mimura et al., 2004, 

Archambault et al., 2005, Green and Li, 2005). Loss of all three regulatory mechanisms, 

however, results in significant amounts of rereplication in G2/M-arrested cells (Nguyen 

et al., 2001, Chen and Bell, 2011) demonstrating the redundancy in the mechanisms 

yeast use to inhibit replication licensing. This redundancy is required to ensure the 

system is robust enough to prevent the detrimental effects of rereplication. 

1.7.3Regulation of Licensing Factors in Metazoans 

In animals, reinitiation must be prevented at tens of thousands of origins during each 

cell cycle and over the course of development which involves billions of cell cycles. 
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Regulation of replication licensing in multicellular organisms therefore requires even 

more robust mechanisms to ensure once per cycle replication and metazoans have 

evolved additional control mechanisms that are not present in yeast. Replication 

licensing in animals is inhibited by three main mechanisms: inhibition of Cdt1, 

destruction of Cdt1 and regulation of pre-RC factors by CDKs. In these cell types, there 

is an apparent focus on Cdt1 regulation. Although CDKs do play a direct role in the 

regulation of replication licensing, downregulation of Cdt1 by multiple mechanisms is 

the major contributor to the inhibition of licensing (Fujita, 2006). Consistent with this, 

overexpression of Cdc6 or ORC individually does not cause significant rereplication in 

mammalian cells (Petersen et al., 1999, Vaziri et al., 2003, Saha et al., 2006, Tatsumi et 

al., 2006). However, in Xenopus egg extracts, Drosophila and mammalian cells, 

inhibition of Cdt1 regulation alone can induce significant rereplication, implying that 

mechanisms targeting ORC or Cdc6 are insufficient for preventing extensive 

rereplication (Vaziri et al., 2003, Melixetian et al., 2004, Nishitani et al., 2004, Thomer 

et al., 2004, Zhu et al., 2004, Arias and Walter, 2005, Li and Blow, 2005, Maiorano et 

al., 2005, Yoshida et al., 2005, Liu et al., 2007, Sugimoto et al., 2008). However, 

overexpression of both Cdt1 and Cdc6 has an even greater effect on rereplication than 

overexpression of Cdt1 alone(Vaziri et al., 2003). 

1.7.3.1 Inhibition of Cdt1 by Geminin 

Cdt1 activity is inhibited by geminin binding (Wohlschlegel et al., 2000, Tada et al., 

2001) (Further discussed in Section 1.8). Cdt1 inhibition by geminin is the major 

pathway for the inhibition of licensing in Xenopus egg extracts (Tada et al., 2001, Li 

and Blow, 2005, Kisielewska and Blow, 2012). In mammalian cells geminin levels 

remain low in G1 due to APC/C activity and rise during late G1 to inhibit Cdt1 in S-

phase, G2 and mitosis, providing a window of opportunity for licensing to occur during 

late mitosis and early G1 (McGarry and Kirschner, 1998, Wohlschlegel et al., 2000, 
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Nishitani et al., 2001). Geminin depletion or deletion induces a G2/M checkpoint, 

accompanied by substantial rereplication or S-phase delays depending on cell type 

(Klotz-Noack et al., 2012). These phenotypes are all most likely due to the induction of 

rereplication, highlighting the important role geminin plays in the regulation of 

replication licensing (Melixetian et al., 2004, Zhu et al., 2004, Karamitros et al., 2010). 

There is evidence that geminin may play a dual role in Cdt1 regulation by stabilising as 

well as inactivating Cdt1 in G2/M (Ballabeni et al., 2004, Ballabeni et al., 2013). This 

may ensure sufficient levels of Cdt1 are maintained for its mitotic function and also to 

ensure sufficient levels remain for efficient licensing after the metaphase-anaphase 

transition.  

1.7.3.2 Inhibition of Cdt1 by Destruction 

In human cells Cdt1 mRNA remains fairly constant throughout the cell cycle (Nishitani 

et al., 2001) but protein levels peak in G1 and decrease during S-phase (Wohlschlegel et 

al., 2000, Nishitani et al., 2001). In all eukaryotic cells Cdt1 is targeted for destruction 

by multiple mechanisms mediated either by PCNA, CRL1 or the APC/C. Cdt1 is 

targeted for destruction by the CRL4
Cdt2

 E3 ubiquitin ligase by a mechanism that is 

coupled to DNA replication (Kim and Kipreos, 2007, Abbas and Dutta, 2011, Havens 

and Walter, 2011). Cdt1 is recruited to CRL4
Cdt2

 via an interaction with PCNA during a 

normal S-phase (Zhong et al., 2003, Arias and Walter, 2006, Senga et al., 2006). This 

mechanism is conserved from fission yeast through metazoans (Arias and Walter, 2005, 

Jin et al., 2006, Ralph et al., 2006, Guarino et al., 2011) and PCNA-dependent 

ubiquitination is the main route for Cdt1 destruction during DNA replication and 

additionally to the DNA damage response (Higa et al., 2003, Arias and Walter, 2005, 

Arias and Walter, 2006, Jin et al., 2006, Lovejoy et al., 2006, Nishitani et al., 2006, 

Senga et al., 2006, Ishii et al., 2010, Roukos et al., 2011). How exactly Cdt1 is recruited 

to PCNA has not been investigated, although the interaction is known to be mediated by 
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a Cdt1 PCNA interacting protein box (PIP box) (Arias and Walter, 2006). Knockdown 

of components of CRL4
Cdt2

 E3 ubiquitin ligase has been shown to cause substantial 

Cdt1 dependent rereplciation in C. elegans, Zebrafish and human cells (Zhong et al., 

2003, Jin et al., 2006, Lovejoy et al., 2006, Sansam et al., 2006). During Xenopus early 

embryonic cell cycles however, a low nucleoplasm to cytoplasm ratio exists which 

allows Cdt1 levels to remain relatively stable (Kisielewska and Blow, 2012). Therefore 

this PCNA-coupled mechanism is likely to play a more significant role in cell cycles 

that are near to or post-MBT. 

Cdt1 is also targeted for destruction by CRL1
Skp2

 in S-phase by cyclin A-CDK2 and (Li 

et al., 2003, Liu et al., 2004, Nishitani et al., 2004, Sugimoto et al., 2004, Takeda et al., 

2005) in G2 by cyclin E-CDK2 (Liu et al., 2004). This is replication independent and 

requires CDK dependent phosphorylation of Cdt1 at threonine 29 (Liu et al., 2004). 

Importantly, however, inhibition of this mode of Cdt1 regulation by expression of a 

threonine to alanine mutant does not cause rereplication in human cells (Lovejoy et al., 

2006). 

In Xenopus egg extracts and human cells Cdt1 is also targeted for destruction by the 

APC/C after the metaphase to anaphase transition (Li and Blow, 2005, Sugimoto et al., 

2008). This is thought to limit the accumulation of Cdt1 to prevent excessive licensing 

in G1 (Blow and Gillespie, 2008) and mutation of Cdt1 D-box resulted in rereplication 

in human cells (Sugimoto et al., 2008). 

1.7.3.3 CDKs, ORC and Cdc6  

A role for CDK regulation of preRC factors has been conserved in metazoans, however 

the specific outcomes of CDK phosphorylation tend to vary in different organisms. In 

Xenopus CDK targets Orc1 and Orc2 for phosphorylation (Carpenter et al., 1996). This 

results in the release of Orc1 from chromatin during S-phase (Rowles et al., 
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1996)whereas the rest of ORC remains chromatin bound until it is released during 

mitosis by Orc2 phosphorylation (Hua and Newport, 1998, Findeisen et al., 1999, 

Rowles et al., 1999, Romanowski et al., 2000). In Xenopus egg extracts the inhibition of 

ORC plays a small but significant role in the prevention of relicensing in mitosis (Tada 

et al., 2001). In human cells Orc1 is removed from the DNA during S-phase until 

mitosis (Mendez and Stillman, 2000, Natale et al., 2000, Kreitz et al., 2001). S-phase 

CDKs phosphorylate Orc1 leading to CRL1
Skp2

 mediated destruction (Natale et al., 

2000, Mendez et al., 2002, Ohta et al., 2003, DePamphilis, 2005). Phosphorylation and 

ubiquitination of Orc1 can also trigger nuclear export during S and G2 phase (Saha et 

al., 2006). Human Orc2 is also subjected to CDK dependent phosphorylation resulting 

in its dissociation from chromatin (Lee et al., 2012), consistent with observations in 

Xenopus. 

In Xenopus Cdc6 is removed from chromatin after the binding of MCM2-7 and reloads 

in S-phase where it plays an important role in the regulation of the intra-S checkpoint 

(Oehlmann et al., 2004). In human cells CDK phosphorylation mediates export of 

ectopically overexpressed and endogenous Cdc6 to the cytoplasm beginning in late G1 

lasting until mitosis (Saha et al., 1998, Fujita et al., 1999, Jiang et al., 1999, Petersen et 

al., 1999, Pelizon et al., 2000, Delmolino et al., 2001, Kim et al., 2007, Kim and 

Kipreos, 2008). Some Cdc6 remains bound to or rebinds chromatin (Fujita et al., 1999, 

Coverley et al., 2000, Mendez and Stillman, 2000, Alexandrow and Hamlin, 2004) 

where it plays a role in the S-phase checkpoint (Murakami et al., 2002, Clay-Farrace et 

al., 2003, Oehlmann et al., 2004). Human Cdc6 is also an APC/C
Cdh1

 target and levels 

fall quickly as G1 progresses (Mendez and Stillman, 2000, Petersen et al., 2000, 

Clijsters et al., 2013). Cdc6 also contains a PIP box, that mediates PCNA dependent 

destruction in S-phase to prevent Cdc6 reaccumulation (Clijsters and Wolthuis, 2014). 
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1.8 Geminin 

1.8.1 Geminin Structure and Function 

Geminin was first identified in a small pool expression screen as a protein that was 

degraded in mitotic Xenopus egg extracts (Lustig et al., 1997, McGarry and Kirschner, 

1998). Geminin was shown to be a potent inhibitor of DNA replication, acting 

specifically at the licensing stage, as geminin addition to Xenopus egg extracts 

prevented MCM2-7 chromatin loading (McGarry and Kirschner, 1998). Geminin was 

found to inhibit licensing by inhibiting Cdt1 in Xenopus egg extracts and human cells 

(Wohlschlegel et al., 2000, Tada et al., 2001). Geminin homologues have since been 

found in worms, flies, avians, fish and mice (Quinn et al., 2001, Yanagi et al., 2002, Del 

Bene et al., 2004, Yanagi et al., 2005, Luo et al., 2007). No homologue has been found 

in yeast. 

Geminin inhibits licensing by binding to Cdt1. Studies of the crystal structure of the 

coiled-coil of geminin alone or in a complex with Cdt1 by X-ray crystallography (Lee et 

al., 2004, Saxena et al., 2004, Thepaut et al., 2004, De Marco et al., 2009) and the 

analysis of geminin deletion mutants has defined several functional domains. The N-

terminus is responsible for geminin destruction, nuclear localisation and also contains 

the geminin neuralising domain (described in section 1.8.3) (Figure 6). The coiled-coil 

of geminin consists of seven heptad repeats (Xenopus geminin 94-152) and mediates the 

formation of parallel homodimers. Dimerisation is mediated by multiple leucine and 

isoleucine residues (Saxena et al., 2004). Geminin forms an atypical coiled-coiled as 

there are several residues in the a and d positions of the heptad repeats which are not 

ideal for stabilisation (Saxena et al., 2004). It appears that geminin dimers can self-

associate to form additional tertiary structures. Sedimentation velocity and 

sedimentation equilibrium analysis of full length Xenopus geminin identified a single 
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species with a molecular weight of 52.69 kDa, corresponding to a dimer (Benjamin et 

al., 2004). 

 

Figure 6: Geminin Structural Domains. Sequence alignment of Xenopus laevis, human and mouse 

geminin genes. Residues that control stability are in red. Residues that interact with Cdt1 are in blue. The 

neutralising domain is highlighted green. Areas implicated as having a role in nuclear import/export are 

highlighted purple. The coiled-coil domain is wrapped in black boxes. The Brg1 interaction domain is 

wrapped in an orange box. 

 SAXS data suggested that truncated coiled-coils form tetramers, or a head-to-tail dimer 

of dimers, in solution (Thepaut et al., 2004). The only structural work carried out the 

full length recombinant protein identified a human geminin tetramer, a parallel dimer of 

dimers, by cryo-EM (Okorokov et al., 2004). This structure required the N-terminal 80 

amino acids for tetramerisation. This suggests that geminin exists as either a dimer or 

tetramer (dimer of dimers). Dimerisation of geminin is essential for Cdt1 inhibition 

(Benjamin et al., 2004, Saxena et al., 2004). Geminin-Cdt1 complex formation is 

mediated mainly by hydrophobic interactions. The N-terminal portion of 
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dimerisedgeminin coiled coils (Xenopus geminin 94-152) contains the primary Cdt1 

interaction site. Mutation of this site causes a 2000-fold reduction in Cdt1 interaction as 

measured by isothermal calorimetry and mutants do not inhibit licensing in extracts 

(Benjamin et al., 2004, Lee et al., 2004, Saxena et al., 2004). A secondary interaction 

site is situated N-terminal to the coiled-coil (Xenopus geminin 
95
DLM

97
) and disruption 

of this interaction causes a 15-fold reduction in Cdt1 binding and licensing inhibition 

activity (Benjamin et al., 2004, Lee et al., 2004, Saxena et al., 2004). The identification 

of interaction sites, the determination of crystal structures and assays of geminin 

mutants together suggested that geminin binds Cdt1 to inhibit it, forming a heterotrimer.  

A crystal structure of truncated human geminin:Cdt1 complexes was solved and 

indicated that geminin and Cdt1 can form a heterohexameric complex (De Marco et al., 

2009) (Figure 7). Here, a tertiary interaction site at the C-terminus of the coiled-coil of 

geminin (Human geminin 145-160, Xenopus geminin 153-168) mediates an interaction 

between two head-to-tail geminin:Cdt1 heterotrimers. SAXS data supported the 

formation of a heterohexamer as truncated geminin:Cdt1 complexes formed a structure 

with a molecular mass of 90 kDa, matching the expected size, whereas deletion of 

residues 145-160 of geminin resulted in a reduction in complex size to ~37 kDa, as 

expected for a heterotrimer (De Marco et al., 2009). SAXS analysis of complexes 

consisting of full length Cdt1 and geminin indicated a molecular mass of ~165 kDa, 

suggesting that heterotrimer and heterohexamer formation may be a dynamic process 

(De Marco et al., 2009). 

How exactly geminin binding inhibits Cdt1 is not fully understood. It has been proposed 

that steric inhibition of Cdt1 by geminin prevents interactions with MCM2-7 (Lee et al., 

2004). Supporting this, it was shown that in the heterohexameric structure geminin 
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interaction buried key Cdt1 residues required for MCM2-7 loading (De Marco et al., 

2009). In contrast to the licensing reaction described in yeast, Cdt1 and MCM2-7 are 

 

Figure 7: Crystal Structures of Geminin in Cdt1:GemininComplexes. The crystal structure of 

geminin in a truncated mouse Cdt1:geminin complex (2ZXX) anda truncated human Cdt1:geminin 

complex (2WVR) is shown. Residues interacting with Cdt1 are highlighted in orange, NLS residues are 

highlighted in blue.The mouse geminin dimer makes two contacts with Cdt1 forming an axe-shaped 

heterotrimer. Human geminin dimers make two contacts with Cdt1 similar to the mouse structure with an 

additional interaction site at the C-terminus of a second Cdt1-bound geminin dimer, resulting in the 

formation of a heterohexamer. Figure adapted from (Caillat and Perrakis, 2012). 

recruited separately to the origin in metazoans, potentially providing an opportunity for 

geminin recruitment and Cdt1 inhibition. Cdt1 can recruit geminin to chromatin 

suggesting that geminin inhibition of Cdt1 occurs at the origin (Gillespie et al., 2001, 

Xouri et al., 2007, Ode et al., 2011). In addition, it has been shown that addition of 

geminin or geminin
DEL

 (geminin lacking the destruction box (D-box)) in Xenopus 

licensing reactions results in the stabilisation of Cdc6 and Cdt1 on chromatin, similar to 

the addition of non-hydrolysable ATP in yeast assays (Gillespie et al., 2001, Randell et 

al., 2006a, Ode et al., 2011). This suggests that geminin may inhibit Cdt1-dependent 
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conformational changes required to trigger ATPase activity at the origin, either directly 

by binding Cdt1 or indirectly by preventing MCM2-7 recruitment. However, an 

alternative mechanism has been suggested, where geminin inhibits Cdt1’s ability to 

bind to chromatin (Yanagi et al., 2002). Recent evidence suggests that this also occurs 

in Xenopus egg extracts. If geminin
DEL

 is added prior to DNA addition, Cdt1 is not 

recruited to DNA (Gillespie, P.J. unpublished data)   

In somatic cells geminin is completely degraded by the APC/C
Cdc20

 at the metaphase-

anaphase transition and is absent until transcription is triggered by E2F in late G1 

(McGarry and Kirschner, 1998, Yoshida and Inoue, 2004, Clijsters et al., 2013). 

Geminin contains an N-terminal RXXL D-box motif that mediates its APC/C-

dependent ubiquitination and subsequent degradation (Figure 6). Mutation of the D-box 

generates a non-regulatable geminin in Xenopus egg extracts and human cells (McGarry 

and Kirschner, 1998, Shreeram et al., 2002). Additional residues downstream of the D-

box also contribute to geminin destruction. When the APC/C becomes active at the 

metaphase-anaphase transition it is able to selectively modify targets in a specific order, 

leading to a reproducible temporal pattern of target protein destruction that contributes 

to the tight control of cell cycle progression through mitosis. The E2 used by the 

APC/C, either Ube2E or UbcH10, influences the processivity of ubiquitination. In 

addition, there are intrinsic motifs on the substrate proteins, in addition to a D-box or 

KEN box, that influence processivity (Williamson et al., 2011). A motif originally 

identified in securin as the TEK box was shown to be required for the initiation of 

ubiquitination, independent of motifs required for APC/C interaction (Jin et al., 2008). 

This mechanism was investigated further and led to the identification of the 

ubiquitination initiation motif (IM) in geminin (Williamson et al., 2011). Differences in 

chain initiation motifs can determine the rate of substrate degradation. The geminin IM 

consists of 
50
RTK-KRK

62
 and targets this protein for efficient and processive 
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ubiquitination making geminin an early target for destruction after the activation of the 

APC/C
Cdc20

(Benjamin et al., 2004, Williamson et al., 2011)(Figure 6). Additional 

residues between the D-box and the IM have been implicated to play a role in geminin 

destruction in Xenopus egg extracts; mutation of  
42
SASG

45
 or 

47
LVG

49
 prevented 

destruction of recombinant geminin (Benjamin et al., 2004). Rapid geminin degradation 

allows Cdt1 to participate in the licensing reaction. This occurs in telophase 

immediately after APC/C activation (Dimitrova et al., 2002, Clijsters et al., 2013). High 

levels of geminin are then maintained from S-phase until mitosis, to ensure Cdt1 cannot 

initiate rereplication.  

Geminin is a nuclear protein. Xenopus geminin has a nuclear localisation signal (NLS) 

and this motif is essential to prevent rereplication (Yoshida et al., 2005). Two bipartite 

NLS sequences have been reported, 
74
RTK-KRK

62
(Benjamin et al., 2004) and 

60
KRK-

KKAK
74
(Boos et al., 2006)(Figure 6). Data showing that a fluorophore labelled peptide 

of geminin 59-78 is imported into Xenopus nuclei lends supports to the 
60
KRK-KKAK

74
 

motif as the NLS (Yoshida et al., 2005). However, the KKAK motif is only conserved 

in Xenopus and in mammalian cells a conserved RRK motif in the coiled-coil was 

shown to mediate NLS activity (Boos et al., 2006). The localisation of geminin RRK 

mutants was recovered by co-expression of Cdt1. This however suggests that geminin 

import in mammalian cells may not only be due to intrinsic signals, but also occur via 

Cdt1 interaction (Boos et al., 2006). Xenopus and mammalian geminin also contains a 

highly conserved nuclear export signal LEDLKDLDL and mutation of this motif can 

affect geminin localisation in mammalian cells (Boos et al., 2006, Luo et al., 

2007)(Figure 6).  
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1.8.2Geminin in Embryonic Cell Cycles 

Although it was first identified as an unstable protein, it has been shown that 40-60% of 

geminin remains stable in interphase Xenopus extracts (Hodgson et al., 2002). The 

identification of geminin as a stable protein was initially a controversial observation as 

it was discordant with data from human cells and the fact that it was initially identified 

in a Xenopus egg extracts screen as an unstable protein. This disagreement was 

explained by an apparent difference in the regulation of endogenous and exogenously 

supplied recombinant geminin in the Xenopus extract, where recombinant protein is 

degraded with a much higher efficiency than the endogenous protein (Hodgson et al., 

2002). In support of this, geminin was subsequently shown to be the main nuclear 

inhibitor of licensing in egg extracts (Hodgson et al., 2002, Arias and Walter, 2005, 

Yoshida et al., 2005, Li and Blow, 2005). Egg extracts do not support transcription 

therefore it is essential that geminin is not totally destroyed after cell cycle entry to 

ensure there is sufficient protein to prevent rereplication (Li and Blow, 2005).  

The stabilisation of geminin is not a unique property of theXenopus egg extract in vitro 

system. Geminin is stable in vivo in the embryonic cell cycles of a number of 

organisms. In the rapidly proliferating cells of the Xenopus early embryo the levels of 

Cdt1 and geminin are persistently high remaining stable the cell cycle, as observed by 

western blotting of embryo lysates (Kisielewska and Blow, 2012). In the Drosophila 

early embryo the first fourteen cell cycles occur in a syncytium within a single 

multinucleate cell, and consist of very rapid S-M cycles. Immunofluorescence 

microscopy of geminin in Drosophila embryos showed that geminin levels remain high 

during syncytial divisions, irrespective of cell cycle stage and show no evidence of 

mitotic destruction (Quinn et al., 2001). This implies that these cells can license and 

replicate DNA in the presence of geminin. Geminin was also present in the nucleus of 

endoreduplicating adult Drosophila ovaries which undergo multiple rounds of DNA 
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replication without passing through mitosis, again suggesting that DNA replication can 

occur in the presence of geminin in these specific cell types (Quinn et al., 2001). It was 

observed by immunofluorescence microscopy that all cells are geminin positive in an 

asynchronous culture of highly proliferative chick embryonic fibroblasts (Luo et al., 

2007). Western blot analysis of synchronised CCE28 mouse embryonic stem cells 

showed that geminin is stable throughout the cell cycle including G1 (Fujii-Yamamoto 

et al., 2005). Consistent with this, geminin levels measured by western blot remained 

constant in mouse ES cells after a release from mitotic shake off. Importantly this did 

not affect entry into S-phase or inhibit DNA replication as indicated by BrdU 

incorporation (Yang et al., 2011). Taken together this data suggests that the stabilisation 

of geminin in G1 may be a common feature of rapidly replicating embryonic cell cycles. 

1.8.3Requirement for G1 Geminin 

As described above, it appears that geminin is a stable protein during embryonic cell 

cycles. This creates a significant problem of how do cells proliferate in the presence of 

such a potent DNA replication inhibitor? How do these cells carry out licensing with 

stable levels of geminin throughout the cell cycle and why do these cells not destroy 

geminin? In fact it is essential that these cells do not destroy geminin. Not only is it 

likely that there is insufficient time to synthesise geminin prior to S-phase during fast 

cleavage cycles, but geminin has additional roles other than replication inhibition. 

Therefore it is possible that these cells have a mechanism to stabilise geminin during 

these cell cycles. Geminin was discovered in two separate small pool screens 

simultaneously in the Kirschner laboratory, one as a mitotically degraded replication 

inhibitor (McGarry and Kirschner, 1998) and another as a clone isolated from stage 6-7 

blastulae that induces neural plate expansion post injection into embryos at the four cell 

stage (Kroll et al., 1998). Xenopus laevis is a pseudotetraploid organism with many 

functionally redundantgenes with and closely related paralogues. Both Xenopusgeminin 
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clones identified are 89% identical at the amino acid level and have identical properties. 

The Latin for twins is gemini and these proteins were therefore named geminin. 

Geminin has since demonstrated dual functionality where it has been proposed that to 

coordinates proliferation and differentiation decisions. By competitively interacting 

with transcription factors and chromatin remodelling complexes geminin regulates 

multiple pathways in a cell context dependent manner to influence development, 

organogenesis and cellular homeostasis. 

During development geminin promotes the specification of pluripotent progenitors into 

an early neural lineage. In Xenopus, geminin’s role in early neural lineage specification 

was first shown to be due to its ability to supress BMP4 expression and upregulate 

proneural gene expression. This required a minimum region of geminin 38-90, 

designated the neutralising domain (Kroll et al., 1998). The molecular mechanism of 

geminin’s role in neural specification is not understood; residues 38-90 do not include 

the coiled-coil which has been implicated in regulating numerous protein-protein 

interactions and it is likely that an unidentified interacting protein binds to geminin in 

this region. However, full-length geminin-dependent regulation of the epigenetic state 

has been demonstrated in Xenopus and mammalian cells and this could account for fate 

determination. By mediating the function of the Polycomb repressor complex and 

facilitating hyperacetylation of chromatin, geminin induces neuroectodermal 

specification and while restricting mesoderm, endoderm and ectoderm commitment by 

setting a threshold in cells that must be overcome for extrinsic stimuli to induce these 

alternative lineage fates (Lim et al., 2011, Yellajoshyula et al., 2011, Yellajoshyula et 

al., 2012, Caronna et al., 2013). Some insights into the molecular mechanism by which 

geminin carries out these functions have been gained from work in chick embryos. The 

interaction of geminin with Brm (Brg1 homolog), the catalytic subunit of the SWI/SNF 

complex, enhances Sox2 expression, the earliest marker for neural plate development. 
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This interaction is inhibited by the binding of ERNI binding to geminin. ERNI recruits 

HP1 to enhancer sequences on chromatin to repress Sox2 expression.Antagonistic 

interactions between BERT and ERNI facilitate geminin-dependent Sox2 expression. 

(Papanayotou et al., 2008). 

After the initial lineage specification, geminin maintains neural progenitors in a 

proliferative state prior to subsequent differentiation. In Xenopus,geminin competes 

with proneural b-HLH transcription factors for the binding of Brg1 to inhibit 

transcriptional activity and control the timing of neurogenesis (Seo et al., 2005b, 

Yellajoshyula et al., 2012). In contrast to this geminin inhibits the expression of neural 

genes in non-neural cells in the developing mouse, highlighting the importance of 

cellular context in determining the outcome of geminin activity during development 

(Kim et al., 2006). 

Geminin has been implicated to function in various forms of organogenesis. In Medaka 

fish, geminin binds the homeodomain protein Six3 to antagonise the differentiation 

inducing role of Six3 during eye development (Del Bene et al., 2004). During mouse 

and chick development geminin also inhibits Hox family members through the 

Polycomb complex to regulate axial patterning establishment and body segmentation 

(Luo et al., 2004). Geminin also promotes cellular homeostasis in a number of contexts. 

As described above geminin maintains a pool of neural progenitors to control the timing 

of neurogenesis. In mouse and human cells, geminin is also involved in the maintenance 

of long term proliferating hematopoietic stem cells (Ohtsubo et al., 2008) and peripheral 

T-cells (Karamitros et al., 2010). 

The strongest evidence supporting an essential role for geminin stabilisation in 

embryonic cell cycles, is the role of geminin in maintaining pluripotency. Geminin is 

required at the earliest stages of development during the cleavage cycles that occur 
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immediately after fertilisation. This is in contrast to cell context dependent fate-decision 

functions which occur later in development. Geminin-null mice embryos are pre-

implantation lethal. Geminin knockout ES cells lose pluripotency, endoreduplicate and 

arrest at the 8-cell stage (Gonzalez et al., 2006a, Hara et al., 2006). Geminin antagonises 

Brg1 in these cells to maintain the expression of factors that establish pluripotency. 

Loss of geminin causes a loss of Oct4, Sox2 and Nanog, and these cells differentiate to 

trophoblasts (Yang et al., 2011). Interestingly, geminin is also required for the 

reprogramming of fibroblasts and the generation of induced pluripotent stem cells 

(Tabrizi et al., 2013), indicating that elucidating the mechanisms mediating the 

stabilisation of geminin in G1 could have an application in generating efficient iPS 

cells. Regulation of G1 length is a major determinant of differentiation. It is thought that 

a longer G1 allows transcription factors to accumulate and reach thresholds to commit 

cells to specific fate decisions. This combined with the fact that geminin maintains 

pluripotency suggests that it is essential that geminin is stabilised throughout G1 of 

embryonic cell cycles. 

1.8.4 The Inactivation of Geminin 

Injection of geminin mRNA into Xenopus embryos at the two-cell stage had no effect 

on proliferation in cells until after MBT (Kisielewska and Blow, 2012). As discussed 

above these cells maintain relatively stable levels of geminin. This suggests that even 

the addition of excess of geminin does not affect the cleavage cycles in the embryo, and 

that these cells are able to maintain proliferative capacity in the presence of 

constitutively high levels geminin (Kisielewska and Blow, 2012). Knockdown of 

geminin to ~20% of normal levels in mouse ES cells has no effect on ploidy or neural 

fate commitment Despite such a large reduction in protein levels geminin maintains its 

normal functions, indicating that in untreated cells geminin is present in excess, yet 

these cells continue to divide rapidly (Yellajoshyula et al., 2011). Together, 
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thisevidencesuggest that highly proliferative embryonic stem cells maintain high levels 

of geminin throughout the cell cycle to maintain pluripotency. This is somewhat 

paradoxical as geminin is a potent replication inhibitor. Therefore it is essential that 

these cells support mechanisms to inactivate geminin after mitosis to facilitate licensing 

and ensure proliferative capacity for the next cell cycle. Biochemical data gathered in 

Xenopus egg extracts lends support to this hypothesis and has provided evidence that 

geminin is indeed inactivated after the metaphase-anaphase transition.  

Gel filtration of extracts showed that high molecular weight geminin-Cdt1 complexes 

break apart after the metaphase-anaphase transition (Hodgson et al., 2002). 

Recombinant geminin
DEL

 added to interphase extracts binds to Cdt1, reforming the high 

molecular weight complex, demonstrating that endogenous interphase Cdt1 is capable 

of interacting with geminin (Li and Blow, 2004). However, recombinant Cdt1 

pulldowns from extracts demonstrated that interphase geminin only weakly interacts 

with Cdt1 (Hodgson et al., 2002). Taken together this suggests that endogenous 

interphase geminin has been inactivated and is no longer capable of binding Cdt1. In 

addition, geminin-Cdt1 complex reformation was observed following geminin nuclear 

import (Hodgson et al., 2002). This supports the idea that geminin activity is tightly 

regulated in egg extracts to facilitate licensing after the metaphase-anaphase transition 

and to inhibit rereplication in S-phase. 

Several mechanisms have been hypothesised to describe geminin inactivation. There is 

evidence to suggest that geminin is regulated by post translational modification (PTM), 

by protein-protein interactions, or by regulation of gem-Cdt1 complex stoichiometry (Li 

and Blow, 2004, Hodgson et al., 2002, De Marco et al., 2009, Lutzmann et al., 2006, 

Ode et al., 2011).  
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The post-translational modification hypothesis fits well into a model where geminin is 

modified at the metaphase-anaphase transition rendering it inactive in the cytoplasm to 

permit Cdt1 activity. Nuclear formation and geminin import would then separate 

geminin from the modifying enzyme or increase the local concentration of demodifying 

enzymes in the nucleus in order to reactivate geminin and prevent rereplication. It has 

been shown that CDK-dependent APC/C activity is required for geminin inactivation 

and the activation of licensing (Li and Blow, 2004). However, proteasomal degradation 

was not necessary for the activation of licensing, suggesting that APC/C mediated 

ubiquitination can also control target protein activity by mechanisms other than 

proteasomal destruction (Li and Blow, 2004). This is true for cyclin B which can be 

inactivated by mono- or poly-ubiqutination (Dimova et al., 2012). Gel filtration analysis 

of metaphase extracts that were supplemented with very low amounts of S-labelled 

recombinant geminin or geminin
DEL

 prior to release into interphase demonstrated that 

the D-box motif was essential for the inactivation of geminin, leading the authors to 

conclude that APC/C mediated ubiquitination is required for geminin inactivation (Li 

and Blow, 2004). As inactivated geminin does not show a shift on SDS-PAGE 

indicative of ubiquitination, Li and Blow concluded that APC/C-mediated 

polyubiqutination of geminin may lead to a second modification. 

An alternative hypothesis is that geminin is inactivated by interaction with other cell 

cycle regulated proteins. Geminin has been shown to interact with multiple coiled-coil 

proteins and that this is important for cell fate decisions. Pre-incubation of recombinant 

geminin with recombinant HoxA11 caused a reduction in geminin-dependent Cdt1 

pulldown from cell extracts, suggesting HoxA11 competes with Cdt1 for geminin 

binding (Luo et al., 2004). Furthermore, overexpression of HoxB7 or HoxA11 in mouse 

embryonic fibroblasts reduced the amount of Cdt1 that co-immunoprecipitates with 

geminin (Luo et al., 2004). High levels of Xenopus Six3 or Six6 could compete with 
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recombinant Cdt1 for binding to GST-geminin in vitro(Del Bene et al., 2004), however, 

the Six6 interaction site was found to be distinct from the Cdt1 interaction 

sites..However, these specific interactions are unlikely to account for geminin 

inactivation during cleavage cycles as these transcription factors are not expressed until 

later in development. A number of laboratories have undertaken bioinformatic searches 

to identify novel replication factors by searching for sequence similarities to key 

domains of known replication proteins. Using the geminin coiled-coil as a query led to 

the identification of two proteins with geminin-like coiled-coils, Idas and GemC1, 

defining a new family of geminin-like proteins (Balestrini et al., 2010, Pefani et al., 

2011). As the geminin coiled-coil mediates dimerisation and is required for the 

inhibition of licensing, these proteins are likely to interact with geminin due to the 

similarity in the coiled-coil regions and could therefore potentially represent novel 

geminin inhibitor proteins.The human geminin coiled-coil shares 53% identity with Idas 

at the amino acid level. Idas can interact with geminin in human cells and may carry out 

functions similar to geminin as it appears to participate in both the cell cycle and cell 

fate decisions. Depletion of Idas in human cells causes an abnormal S-phase, whereas 

overexpression results in multipolar spindle formation (Pefani et al., 2011). Idas was 

found to be a key regulator of multicilliate cell differentiation by coordinating cell cycle 

exit, centriole assembly and controlling the transcription of FoxJ1 (Stubbs et al., 2012). 

Xenopus GemC1 (Geminin coiled-coil containing protein 1) shares a 39% identity with 

the coiled-coil of human geminin at the amino acid level. It was shown that this protein 

cannot interact with Cdt1, however an interaction with geminin was not investigated. 

GemC1 was proposed to play a role in the initiation of DNA replication, specifically in 

the recruitment of Cdc45 to aid in CMG formation (Balestrini et al., 2010). A recent 

publication has identified a crystal structure of truncated human geminin:GemC1 

heterodimers and demonstrated that these proteins can interact when expressed in 
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bacteria and human tissue culture cells, suggesting that GemC1 could play a role in 

regulating geminin function (Caillat et al., 2015). 

There is evidence that geminin activity is controlled by the stoichiometry of the 

geminin:Cdt1 complex. It was originally thought that a geminin dimer binds to Cdt1 to 

form an inhibitory heterotrimer (Benjamin et al., 2004, Lee et al., 2004, Saxena et al., 

2004, Ferenbach et al., 2005). Inactivation of geminin then releases Cdt1 to allow 

licensing to occur. This view was challenged after the identification of a 

heterohexameric geminin:Cdt1 complex which led to the hypothesis that heterotrimer is 

permissive for licensing and heterohexamers are not permissive for licensing (De Marco 

et al., 2009). An equilibrium between heterohexamer and heterotrimer could 

theoretically coordinate a switch to regulate licensing. This is an interesting hypothesis, 

as regulation of the relative levels of these proteins alone could regulate the activation 

of licensing. Additionally, heterotrimer and heterohexamer formation could be mediated 

by PTMs or protein conformational changes. There is biochemical evidence to support 

the existence of a permissive complex; a co-expressed and purified geminin
DEL

-Cdt1 

complex had licensing activity similar to Cdt1 alone when added to interphase extracts 

(Lutzmann et al., 2006). 

1.9 Aim of this Thesis 

Embryonic cell cycles proceed and DNA replication licensing occurs in the presence of 

constitutively high levels of the replication inhibitor protein geminin. Evidence from 

Xenopus egg extracts suggest that geminin is inactivated to allow licensing after the 

metaphase-anaphase transition and reactivated to prevent rereplication after nuclear 

formation. The aim of this project was to investigate the multiple hypotheses that have 

been proposed to regulate geminin inactivation and determine the molecular mechanism 

that accounts for the stabilisation and inactivation of geminin in Xenopus egg extracts.  
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2.0 Materials and Methods 

2.1 Reagents and Standard Solutions 

Reagents and standard solutions were made up in MilliQ in H2O 

2.1.1 6-Dimethylaminopurine (6-DMAP) (Sigma) 

50mM, in H2O 

2.1.2 Barth 

15mM Tris, 88 mM NaC1, 2 mM KCl, 1 mM MgC12, 0.5 mM CaCl2, pH 7.4 

2.1.3 Bortezomib (Boston Biochem) 

200 mM in Dimethyl Sulfoxide (DMSO) 

2.1.4 Calcium Ionophore A23187 (Sigma) 

10 mg/ml, in DMSO 

2.1.5 Coomassie Stain Solution 

40% (v:v) Ethanol, 10% (v:v) Acetic Acid, 0.1% (w:v) Coomassie Brilliant Blue R250 

(VWR) 

2.1.6 Coomassie Destain Solution 

40% (v:v) Ethanol, 10% (v:v) Acetic Acid 

2.1.7 Cycloheximide (CHX) 

10 mg/ml, in H2O 

2.1.8 Cytochalasin D 

10 mg/ml, in DMSO 
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2.1.9 D-Box Peptide 

26 mM, in LFB1/50. D-Box peptide (RRTALGDVTNKVSE) (Peter et al., 2001) was 

custom synthesised by Insight Biotechnology 

2.1.10 Dejelly Solution 

2% (w:v) Cysteine in H2O 

2.1.11 Dynabead [150/500] Wash Buffer (DB150/500) 

20mM Na2HPO4/NaH2PO4, 0.1% (v:v) Tween 20, either 150 or 500 mM NaCl, pH8.0 

2.1.12 Energy Regenerator (ER) 

10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 1 M 

Phosphocreatine Disodium Salt, 600 µg/ml Creatine Phosphokinase, pH 7.6 

2.1.13 Extract Lysis Buffer (ELB) 

10 mM HEPES, 50 mM KCl, 2.5 mM MgCl2, 1 mM Dithiothreitol(DTT), 0.25M pH 

7.7 

2.1.14 Extract Dilution Buffer with Sucrose (EDB-S) 

50 mM HEPES, 50 mM KCl, 10% (w:v) sucrose, 2 mM DTT, 0.4 mM MgCl2, 0.4 mM 

Ethylene Glycol Tetraacetic Acid (EGTA), 1 µg/ml each of aprotinin, leupeptin and 

pepstatin, pH 7.6 

2.1.15 Hoechst 33258 

10 mg/ml, in H2O (used at 20 µg/ml) 

2.1.16 Licensing Factor Buffer 1 (LFB1) 

40 mM HEPES, 20 mM K2HPO4/KH2PO4, 10% (w:v) sucrose, 50 mM KCl, 2 mM 

MgCl2, 1 mM EGTA, 2 mM DTT, pH 8.0. The number following LFB1 denotes the 

concentration of KCl, e.g. LFB1/50 contains 50 mM KCl 
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2.1.17 Licensing Factor Buffer 2 (LFB2) 

LFB1 supplemented with 2.5 mM Mg-Adenosine Triphosphate (Mg-ATP)  

2.1.18 Lysolecithin 

5 mg/ml, in H2O 

2.1.19 Modified Marc’s Ringer (MMR) 

5 mM HEPES, 100 mM NaCl, 2 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 0.1 mM 

Ethylenediaminetetraacetic acid (EDTA), pH 7.8 

2.1.20 Nuclear Isolation Buffer (NIB); with Sucrose (NIBS) 

50 mM HEPES, 50 mM KCl, 5 mM MgCl2, 2 mM DTT, 0.1% (v:v) Triton X-100, 25 

mM β-glycerophosphate, 0.5 mM spermidinde-3HCL, 0.15 mM spermine-4HCL, 

pH8.0; NIB supplemented with 15% (w:v) Sucrose 

2.1.21 Phosphate Buffered Saline with Tween 20 (PBS/T) 

1 X PBS (Fisher), 0.02% (v:v) Tween-20 

2.1.22 Protease Inhibitors 

Aprotinin, 10 mg/ml, in H2O 

Leupeptin, 10 mg/ml, H2O 

Pepstatin, 10 mg/ml in Dimethylformamide 

2.1.23 Proteinase K 

20 mg/ml proteinase K, 10 mM Tris, 50% (v:v) glycerol, pH 7.5  

2.1.24 Rehydration Buffer 

30mM Tris, 7 M Urea, 2 M Thiourea, 1.2% (w:v) 3-[(3-

Cholamidopropyl)dimethylammonio]-1-Propanesulfonate (CHAPS), 0.4% (w:v) 

Amidosulfobetaine-14 (ABS-14), 0.25% (v:v) Ampholytes (GE Healthcare), 43mM 

DTT, pH 8.0 
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2.1.25 6 X Sodium Dodecyl Sulfate (SDS)-Polyacrylamide Gel Electrophoresis 

(PAGE) loading Buffer 

440 mM Tris, 12% (w:v) SDS, 30% (v:v) Glycerol, 30% (v:v) β-Mercaptoethanol, 0.1% 

(w:v) Bromophenol Blue, pH 6.8 

2.1.26 2Dimension (2D) SDS Buffer 

50mM Tris, 25 mM DTT, 0.0002% (w:v) Bromophenol Blue, 6 M Urea, 2% (w:v) 

SDS, 30% (v:v) Glycerol, pH 8.8 

2.1.27 Sepharose Wash Buffer 

40 mM HEPES, 20 mM K2HPO4/KH2PO4, 100 or 500 mM KCl, 2 mM MgCl2, 1 mM 

DTT, 2mM EGTA, 10 % (w:v) sucrose, 10 µg/ml each of aprotinin, leupeptin and 

pepstatin, pH 8.0 

2.1.28 Stop C 

20mM Tris, 5 mM EDTA, 0.5% (w:v) SDS, pH 7.5 

2.1.29 SuNaSp 

15 mM HEPES, 0.25 M sucrose, 75 mM NaCl, 0.5 M spermidine, 0.15 mM spermine, 

pH 7.6 

2.1.30 Transfer Buffer 

12.5 mM Tris, 85.9 mM Glycine, 10% (v:v) Methanol 

2.1.31 Ubiquitin Reagents 

His6-Ubiquitin (His-Ub), Methylated Ubiquitin (M-Ub), UbiquitinK11R (K11R Ub), 

K11-only Ubiquitin (K11O Ub), UbiquitinK48R (K48R Ub), K48-only Ubiquitin 

(K48O Ub) were made up to 5 mg/ml in LFB1/50. Ubiquitin Vinyl Sulfone was 

supplied at 250 µM in MES. All reagents were purchased from Boston Biochem. 



64 

 

2.1.32 XBE2 

10 mM HEPES, 100 mM KCl, 2 mM MgCl2, 0.1 mM CaCl2, 1.71% (w:v) sucrose, 5 

mM EGTA, pH 7.7 

2.2 Extract Preparation and Use 

2.2.1 Frog Injections and Egg Collection 

10-12 female frogs were treated with 50 units of Pregnant Mare Serum Gonadotrophin 

by subcutaneous injection three days before eggs were to be collected. One day before 

egg collection, frogs were treated with 500 units Chorionic Gonadotrophin 

(Chorulon) by subcutaneous injection to induce egg laying. Frogs were placed overnight 

into separate laying tanks containing approximately 2.5 L MMR. During egg collection 

only good quality eggs were pooled and tanks containing dirty buffer, activated, 

apoptotic or stringy eggs were discarded. Individual bad eggs from the pool of useful 

eggs were removed during the extract preparation using a plastic transfer pipette. 

2.2.2 Preparation of Metaphase arrested Extract 

Eggs were washed with MMR at room temperature to remove non-egg debris. Excess 

MMR was removed and eggs were incubated in dejelly solution. Dejelly solution was 

removed and replaced several times and eggs were swirled gently to encourage 

dejellying. This process takes approximately 10 minutes. Dejellied eggs were washed 

with XBE2 followed by 100 ml XBE2 supplemented with 10 µg/ml each of Aprotinin, 

Leupeptin and Pepstatin. Eggs were transferred to 14 ml Polypropylene tubes (Grenier 

BioOne) each containing 1 ml of XBE2 supplemented with 10 µg/ml each of Aprotinin, 

Leupeptin, and Pepstatin and 100 µg/ml Cytochalasin D. Eggs were packed by 

centrifugation at 1,400 x g for 1 minute in a Beckman JS-13.1 rotor at 16°C. Any 

activated eggs resting on the surface were removed with a plastic transfer pipette.  
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Eggs were then fractionated by crush-spinning at 16,000 x g for 10 minutes in a 

Beckman JS-13.1 rotor at 16°C. The cytoplasmic fraction was collected by puncturing 

the tube with a 19 G needle. All steps after this point were carried out at 4°C. Extract 

was supplemented with a 1:80 dilution of ER, LFB1/50 to 15% (v:v) and 10 µg/ml each 

of Cytochalasin D, Aprotinin, Leupeptin, and Pepstatin. Extract was centrifuged at 

84,000 x g for 20 minutes in a Beckman SW55Ti rotor at 4°C.  

The thick lipid layer was removed from the top of each tube with a spatula and the 

golden cytoplasmic layer was carefully collected by pipetting. Extract was 

supplemented to 1% (v:v) glycerol before being frozen in 25 µl, 100 µl and 200 µl 

aliquots in liquid nitrogen. Aliquots were stored at -80°C.  

2.2.2.1 Testing Metaphase Arrest 

Extracts were tested for their ability to maintain metaphase arrest for up to 6 hours by 

observing nuclear formation, or the lack thereof, by UV and light microscopy. 

2.2.3 Using Metaphase Arrest Extracts 

Extract was thawed in a room-temperature water bath and supplemented 1:40 with ER 

and 1:40 with 10 mg/ml Cycloheximide. Extracts were then stimulated to release from 

metaphase arrest by the addition of 0.3 mM CaCl2. Extract was typically incubated at 

20°C for 15 minutes to ensure complete release, unless otherwise stated. 

2.2.4 Preparation of Nucleoplasmic Extract 

Collected eggs were washed with MMR to remove non-egg debris. Dejelly solution was 

added and eggs were gently swirled at intervals. Eggs were washed three times with 

Barth and resuspended to a volume of 100 ml. Eggs were activated in vivo by the 

addition of 10 µl of 10 mg/ml Calcium Ionophore A23187 for 10 minutes at room 

temperature. This was carried out to avoid potential inconsistencies in extract quality 

that are associated with crush spin activation.  Eggs were observed to have activated 
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after the vast majority rolled animal side up with contracting dark pigment. Eggs were 

washed three times with Barth, three times with cold ELB and were transferred to 14 ml 

Polypropylene tubes (Grenier BioOne). Eggs were centrifuged at 1,400 x g for 1 minute 

in a Beckman JS-13.1 rotor at 4°C. The supernatant and any apoptotic eggs were 

removed and eggs were centrifuged at 16,000 x g for 10 minutes in a Beckman JS-13.1 

rotor at 4°C. The cytoplasmic fraction was gathered by puncturing the tube with a 19 G 

needle and placed in a 50 ml falcon tube on ice. This crude cytoplasm was used to 

generate nucleoplasmic extract (NPE)(Lebofsky et al., 2009), as outlined below. 

Crude cytoplasm was supplemented 1:200 with 10 mg/ml Cycloheximide, 1:1000 with 

10 mg/ml Aprotinin, 10 mg/ml Leupeptin and 1 M DTT, 1:2000 with 10 mg/ml 

Cytochalasin D (This deviates from the published protocol which used Cytochalasin B) 

and 1:1500 with 5 mg/ml Nocodazole and mixed gently by inversion, ensuring no 

bubbles were formed. Extracts were centrifuged at 20,000 x g in a Beckman JS-13.1 

rotor for 20 minutes at 4°C. The top layer of lipids was completely removed with the 

bottom of a plastic pipette and a vacuum aspirator fitted with a gel loading tip. Extract 

was added to a 50ml tube on ice with care taken to avoid the dark granular material of 

the pellet. Extract was supplemented 1:40 with ER and 1:100 with 0.2 M ATP and 

mixed by inverting. Extract was transferred to 5 ml tubes (BD Falcon 352063) and 

warmed to room temperature for 5 minutes. 1 ml per tube was taken and 90 µl of 600 

ng/ml sperm DNA was added and mixed thoroughly with a P1000 pipette 15 times 

before being returned to the 5ml tube. Extract and sperm reactions were mixed by 

inversion 10 times and incubated at 22°C. Further mixing was carried out by inversion, 

5 times every 10minutes. At 60 minutes, assembly was monitored by adding 1 µl of the 

reaction mixture to 1 µl Hoechst 33258 and observing nuclear morphology by UV and 

light microscopy.  
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Once nuclei grew to an average diameter of 25-30 µm, which took 75-90 

minutes,reactions were transferred to a glass round bottom tube (VWR 212-0030) inside 

a 14 ml Falcon  containing 3ml cold MilliQ H2O on ice. Water levels were adjusted so 

that the meniscus was at the same height as the meniscus of the extract. Reactions were 

centrifuged at 19,000 x g in a Beckman JS-13.1 for 3 minutes at 4°C. Nuclei were 

removed from the top with a cut-off P200 pipette tip and added to a 1.5 ml tube on ice. 

Nuclei were transferred to 5 x 20 mm tubes (Beckman 342630) using a cut off P200 

pipette tip and centrifuged at 259,000 x g in a Beckman TLS-55 with 358614adaptors 

for 30 minutes at 2°C. Tubes were placed on ice and any lipids were removed with a gel 

loading tip equipped vacuum pump. NPE was transferred to a new tube, avoiding 

contamination from membranes and chromatin pellets, and frozen in 20 µl aliquots on 

liquid nitrogen. 

2.2.5 Preparation of Pre-Incubated Extract 

Metaphase extract released for 10 minutes with 0.3 mM CaCl2 was supplemented with 

sperm DNA to a final concentration of 10 ng/µl and incubated at 20°C for 90 minutes. 

Extracts were diluted with 3 volumes of ice cold LFB2/50 and mixed vigorously before 

being centrifuged in 7 x 21 mm polycarbonate thickwall tubes (Beckman 343775) at 

230,000 x g in a Beckman TLA-100 for 20 minutes at 4°C. The supernatant was 

recovered and frozen in liquid nitrogen in 25 µl aliquots. 

2.2.6 Sperm Nuclei Preparation 

15 male frogs were primed with 50 units of Chorionic Gonadotrophin (Chorulon) 5-9 

days prior to removal of the testes. Frogs were euthanised in MS222 (0.2% (w:v) 

Tricaine mesylate MS222, 0.5% (w:v) NaHCO3, pH 7.5). Testes were removed and 

washed in EB. Extraneous tissue and blood vessels were removed with dissection 

forceps. Testes were transferred to a petri dish containing 10 ml EB and were finely 
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chopped with a razor blade. Chopped material was pooled and filtered through a 25 µm 

nylon filter and spun at 2,000 x g in a swinging-bucket rotor for 5 minutes at 4°C, this 

spin was repeated until the supernatant no longer appeared cloudy. The pellet was 

resuspended in a total volume of 0.5 ml SuNaSp per testis. This was supplemented with 

25 µl of 5 mg/ml Lysolecithin per testes and incubated at room temperature for 5 

minutes. 1 µl sperm was mixed with 1 µl of 20 µg/ml Hoechst 33258 and examined for 

demembranation by UV microscopy. Demembranation of sperm by Lysolecithin allows 

staining to occur. If <95% of sperm appeared stained under UV then Lysolecithin 

treatment was repeated. Demembranated sperm were then centrifuged at 2,000 x g in a 

swinging-bucket rotor for 5 minutes at 4°C. Lysolecithin was quenched by resuspending 

pellets in 0.5 ml SuNaSp containing 3% (w:v) BSA for each testis. Sperm were 

centrifuged again and the pellet washed by resuspension in 0.5 ml EB for each testis. 

The wash step was repeated and sperm were resuspended in 100 µl EB containing 30% 

(v:v) glycerol for each testis. DNA content was calculated, assuming a Xenopus haploid 

genome contains 3 pg of DNA, by counting the number of sperm and somatic cells in a 

1:100 dilution of sperm preparation in EB on a haemocytometer. Stock was diluted in 

EB 30% (v:v) glycerol to give a final concentration of 400 ng/µl DNA and aliquots 

were stored long term at -80°C. Working aliquots of DNA were kept at -20°C. 

2.3 Assays 

2.3.1 DNA Replication assays and TCA precipitation 

Extracts were supplemented with 0.3 µCi α-
32
P dATP, released by the addition of 0.3 

mM CaCl2 and incubated for 15 minutes at 20°C. DNA was added at 6 ng/µl, unless 

otherwise stated, extract was mixed thoroughly and aliquoted into 10 µl per timepoint. 

Reactions, which typically lasted 90 minutes, were terminated by the addition of 160 µl 

Stop C containing 0.2 mg/ml Proteinase K and incubated at 37°C for 30 minutes. DNA 

was precipitated by adding samples to snap-cap tubes (BD Falcon 352063) containing 4 
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ml ice-cold 10% TCA, 2% (w:v) Na4P2O7 and incubating at 4 °C for 30 minutes. 

Precipitated material was resuspended by inverting the tubes. 40 µl of TCA samples 

were spotted onto paper filters for the measurement of 1% total counts of 
32
P. The 

remainder of samples were filtered under vacuum through glass microfibre filters. 

Empty tubes were rinsed with 10% TCA and this was applied to the vacuum filter. 

Filters were washed with 5% TCA, 0.22% (w:v) Na4P2O7 followed by 100% (v:v) 

ethanol. Paper and glass filters were dried under infra-red light. 
32
P on the dried filters 

was measured by scintillation counting in 1 ml Optiscint. The percentage of total counts 

incorporated (%TC) was calculated as follows:  

%TC = Sample counts / (1% Total counts x 99) 

Assuming an endogenous concentration of 50 µM dATP in extract(Blow and Laskey, 

1986), the total dATP incorporation is calculated as follows:  

[dATP incorp.] = (%TC / 100) x 50 µM  

= %TC / 2 µM 

Assuming the ratio of GC:TA is 1:1, then total dNTP incorporation can be calculated as 

follows:  

[dNTP incorp.] = (%TC / 2 µM) x 4  

= %TC x 2 µM  

= %TC x 2 µmoles/litre 

Assuming an average molecular weight for dNMP of 327, then dNMP incorporation can 

be calculated as follows:  

[dNMP] = %TC x 2 x 327 µg/litre 

= %TC x 0.654 ng/µl. 

2.3.2 D-box Assay 

Extract supplemented with 0.3 µCi α-
32
P dATP was activated by addition of 0.3 mM 

CaCl2. At 2, 4, 6, 8, 10, 12 and 14 minutes after activation 10 µl aliquots were added to 
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tubes containing 0.76 µl of 26 mM D-box peptide (2 mM final concentration) and 0.5 µl 

of 100 ng/µl sperm DNA (5ng/µl final concentration) and mixed carefully by pipetting. 

Samples were incubated with DNA for 3 minutes to allow for minimal licensing and 

subsequently supplemented with 0.5 µl of 2 µM geminin
DEL

 (100 nM final 

concentration) to prevent further licensing. Reactions were incubated for 90 minutes 

before DNA replication was measured by TCA precipitation. 

2.4 Chromatin Isolation 

Extracts supplemented with sperm (final concentration of 10 ng/µl) were aliquoted into 

10 µl samples per timepoint. Samples were diluted 1:50 with NIB and 100 µl NIBS 

(NIB supplemented with 15 % (w:v) sucrose) was carefully added to the bottom of the 

tube. Chromatin was pelleted by centrifugation at 1,800 x g in a swing bucket rotor at 

4°C. NIB was removed and the sucrose pellet was washed once with 100 µl NIB. The 

NIBS cushion was removed to leave 15 µl remaining per tube. This was centrifuged at 

23,000 x g for 2 minutes in a fixed angle rotor at 4°C to concentrate the chromatin pellet 

at the tube wall. Supernatant was removed and the chromatin was resuspended in SDS-

PAGE loading buffer. Samples were analysed by SDS-PAGE. Histones were analysed 

by Coomassie staining as a loading control and proteins of interest analysed by western 

blotting. 

2.5 Antibody Techniques and Protein Pulldowns 

2.5.1 Antibody Bead Preparation for Immunodepletion 

Protein A Sepharose beads were washed four times with 100 mM Hepes, pH 8.0. Beads 

were recovered by centrifugation in a swing bucket rotor at 2,000 x g for 2 minutes at 

4°C. 2 volumes of antibody serum, adjusted to 100 mM Hepes, pH 8.0 was added to the 

beads and tubes were placed securely inside a 50 ml falcon tube for a 1 hour incubation 

on a roller at room temperature. Beads were washed three times with 100 mM Hepes, 
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pH 8.0 and once with 100 mM Hepes, pH 8.0 freshly supplemented with 1 mM 

Phenylmethylsulfonyl Fluoride (PMSF). Beads were washed three times in 100 mM 

Hepes, pH 8.0 to remove the PMSF followed by three washes in LFB1/50. All wash 

steps were ten times the bed volume. 

2.5.2 Immunodepletion 

Buffer was completely removed from pre-prepared Protein A-antibody beads with a gel 

loading tip. Beads were added to 200 µl of extract and mixed by gently tapping the tube. 

For Cdt1 depletion, beads were added at 70% of extract volume. For geminin depletion 

beads were added at 40% of extract volume. Tubes were placed securely inside a 50 ml 

falcon tube and samples were mixed on a roller for 40 minutes at 4°C. Extracts were 

spun through a 25 µm Nybolt filter to remove beads and for both Cdt1 and geminin a 

second round of depletion was carried out before being frozen in liquid nitrogen and 

stored at -80°C. 

2.5.3 Antibody Affinity purification 

All solutions were filtered through a 0.2 µm filter and were applied to the column using 

a peristaltic pump (Watson Marlow 505S) at a flow rate of 1 ml/minute. A 1 ml HiTrap 

NHS-activated HP column (GE Healthcare) was activated with 6 ml of ice-cold 1 mM 

HCl. 1 ml of antigen above a concentration of at least 0.5 mg/ml in coupling buffer (0.1 

M NaHCO3, 0.5 M NaCl, pH 8.3) was added to the column and the column was let 

stand for 30 minutes. Alternatively, larger volumes of antigen at concentrations below 

0.5 mg/ml were circulated through the column for 30 minutes. Columns were washed 

with 10 ml of Blocking Buffer (0.5 M Ethanolamine, 0.5 M NaCl, pH 8.3) and left to 

stand for 30 minutes to ensure all unreacted NHS-groups were blocked. Columns were 

washed sequentially with 10 ml of 10 mM Tris, pH 8.0, 10ml of 0.1 M glycine, pH 
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2.0, 10 ml of 10 mM Tris, pH 8.0 and 10 ml of 0.1 M Triethylamine, pH 11.5. All 

washes were repeated before washing with 30 ml of PBS.  

15 ml of serum was diluted 1:2 with 2 X PBS and NaN3 was added to a final 

concentration of 0.1% (v:v). Serum was filtered through a 0.2 µm filter before being 

applied to the column, recirculating overnight at 4°C. The column was washed with 50 

ml of Washing Buffer (1 X PBS, 0.5 M NaCl, 0.1% (v:v) Triton X-100) followed by 50 

ml of 1 X PBS. Antibodies were eluted from the column with 0.1 M glycine, pH 2.6. 1 

ml of elute was collected in 1.5 ml Eppendorf tubes containing 100 µl of 2 M Tris, pH 

8.5. Antibodies were quantified on a Nanodrop 2000 (Thermo) and the highly 

concentrated fractions were pooled and dialysed against 1 X PBS. Glycerol was added 

to a final concentration of 30% (v:v) and antibodies were stored at -80°C. Some 

peptides used for affinity purification were insoluble and purified under denaturing 

conditions. To prevent precipitationthese peptides were dialysed into coupling buffer 

containing 1 M urea. 

2.5.4 Crosslinking of Protein A/G Dynabeads 

50 µl of beads were placed in a magnet (Dynal MPC-P-12), supernatant was removed 

and beads were resuspended in 200 µl of PBS/T. 1.66 µl of antibody serum or 20 µg of 

affinity purified IgG was added and incubated with rotation at room temperature for 15 

minutes. Beads were washed twice with 200 µl of PBS/T and twice with 200 µl 

Conjugation Buffer (20 mM Na2HPO4/NaH2PO4, 0.15 M NaCl, pH 7.5). 200 µl of 5 

mM Bis[sulfosuccinimidyl] suberate (Thermo) (made up in conjugation buffer) was 

added and antibody bound beads were incubated for 30 minutes at room temperature 

with rotation. Reactions were stopped by addition of 12.5 µl 1 M Tris, pH 7.5 for 15 

minutes at room temperature with rotation. Beads were washed three times with 200 µl 

PBS/T and stored at 4°C for up to 2 months. 
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2.5.6 Immunoprecipitation 

50 µl of metaphase arrested or interphase extract was diluted 1:5 with ice-cold 

LFB1/50. Extracts were centrifuged, to remove any precipitates or aggregates, at 14,000 

rpm for 20 minutes at 4°C in a fixed angle rotor. 1-5 % (v:v) serum or 1-20 µg purified 

antibody was added and mixed well. The extract/antibody mixture was incubated for 1 

hour on ice or at 4°C. 10 µl of pre-washed Protein A/G Sepharose or 20 µl Protein A/G 

Dynabeads was added to the extract/antibody mixture, mixed well and rotated at 4°C for 

1 hour. Protein A/G agarose beads were washed three times with 400 µl of Sepharose 

wash buffer containing 100 mM, 500 mM and 100 mM respectively. Protein A/G 

Sepharose was recovered, and unbound proteins in the wash supernatant separated out, 

by centrifugation at 2000 x g for 2 minutes at 4°C in a swinging bucket rotor. Protein 

A/G Dynabeads were recovered in a magnetic stand on ice. Beads were washed three 

times with 200 µl of Dynabead 150, Dynabead 500 and Dynabead 150. Proteins were 

recovered from the beads by boiling in SDS-PAGE loading buffer for 5 minutes at 

95°C. 

2.5.7 Geminin 10 Minute Immunoprecipitation 

Metaphase or interphase extract was diluted 1:2 with ice-cold LFB1/50 and mixed 1:1 

with Protein A Dynabeads crosslinked to geminin antibody serum. Samples were mixed 

by rotation for 10 minutes at 4°C before being placed in a magnet for 1 minute. 200 µl 

of DB150 was added and mixed thoroughly to reduce viscosity and allow beads to 

pellet. Beads were washed a further 2 times, with 200 µl of DB500 followed by DB150. 

Beads were boiled for 5 minutes in SDS PAGE loading dye. 
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2.6 SDS-PAGE and Western blotting 

2.6.1 SDS-PAGE 

Samples were boiled for 5 minutes in SDS-PAGE loading dye. Samples were spun in a 

benchtop centrifuge to incorporate any condensation and vortexed briefly. Samples 

were loaded onto 12 or 20 well 4-12% Bis-Tris NuPAGE gels (Life Technologies) 

(unless stated otherwise). Electrophoresis was carried out at 80 V for an initial 15 

minutes to allow for efficient stacking prior to being run at 170 V in 1X NuPAGE 

MOPS Running Buffer (Life Technology).  

2.6.2 Coomassie Staining 

SDS-PAGE Gels were incubated in Coomassie stain overnight. Destain was added and 

refreshed at intervals of 45 minutes until sufficiently destained. Gels were incubated in 

water to reswell before scanning on an EPSON Perfection V500 scanner at 800 dpi. 

2.6.3 Western Blotting 

Gels were transferred onto Hybond Polyvinylidine Fluoride (PVDF) (GE Healthcare) in 

Transfer Buffer for 2 hours at 80 V using a Biorad 2.5L Trans Blot cell on ice. 

Membranes were blocked in 5 % (w:v) skimmed milk (Marvel) in PBS/T for 1 hour at 

room temperature and washed in PBS/T for 10 minutes. Primary antibodies, typically in 

3% (w:v) BSA PBS/T, were incubated for 1-2 hours at room temperature and blots were 

washed in PBS/T for 10 minutes. HRP-conjugated secondary antibody was incubated 

for one hour at room temperature and blots were washed for 20 minutes. Blots were 

incubated for 5 minutes in Supersignal West Pico ECL (Thermo) before being exposed 

on film (Kodak) or in a Fujifilm LAS4000 camera. Film was scanned on an EPSON 

Perfection V500 at 800 dpi and images were prepared in Photoshop. Fujifilm images 

were saved as TIFF files, processed in Photoshop and only images acquired with the 
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camera were used for the quantification of bands, carried out with Aida imaging 

software. 

 

Protein Target Species Manufacturer Dilution 

TopBP1 Sheep A. Gambus/Blow Lab 1:1000 

Mcm2 Rabbit (Thömmes et al., 1997) 1:3000 

Mcm3 Rabbit (Mahbubani et al., 1997) 1:3000 

Mcm7 Mouse (Thömmes et al., 1997) 1:3000 

Cdt1 Rabbit (Tada et al., 2001) 1:1000 

Cdc45 Sheep (Gambus et al., 2011) 1:2000 

Cyclin B2 Rabbit J. Gannon 1:2000 

Geminin Rabbit (Tada et al., 2001) 1:2000 

GemC1(1-97) Rabbit K. Creavin/Blow Lab 1:1000 

His6 Mouse GE Healthcare 1:1000 

Anti-Mouse HRP Donkey GE Healthcare 1:10000 

Anti-Rabbit HRP Donkey Cell Signalling 1:5000 

Anti-Sheep HRP Donkey Sigma 1:2500 

Table 1: Antibody Conditions for Western Blotting 

 

2.7 2D Gel electrophoresis 

Whole extract or immunoprecipitated geminin samples were denatured in Rehydration 

buffer for 2 hours at room temperature with shaking. Samples were supplemented 1:150 

with 9M acrylamide and were alkylated for 1.5 hours at room temperature with shaking. 

Samples were centrifuged at 16,000 x g for 10 minutes in a fixed angle rotor to remove 

any particulate matter. pH 3-5.6 NL 7 cm or pH 3-10 NL 24 cm Immobilon DryStrips 

(GE Healthcare) were rehydrated overnight. For 7 cm strips the max volume was 125 µl 

and max protein load was ~50 µg. Samples were prepared with 0.5 µl of whole extract 

or with a geminin immunoprecipitate from 200 µl of extract. For 24cm strips the max 

volume was 400 µl and max protein load was ~500 µg. Samples were prepared with 10 

µl of whole extract or with a geminin immunoprecipitate from 800 µl of extract. 

Isoelectric focusing was carried out using an Agilent 3100 OFFGEL fractionator.A 

focusing charge was applied at 250 V for 30 minutes before a ramp to 5,500 V, which 

was applied for a minimum of 33,000 Voltage Hours.  
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Strips were incubated in 2D SDS buffer for 30 minutes at room temperature before 

proteins were separated by SDS-PAGE on 4-12% Bis-Tris ZOOM gels. Gels were then 

subjected to western blotting or alternatively protein staining and gel excision of spots 

for mass spectrometry.  

2.8 Analytical Size exclusion chromatography 

Analytical gel filtration experiments were performed on a Thermo Ultimate 3000 HPLC 

system. 

2.8.1 MAbPAC SEC-1 (Thermo) 

Samples were centrifuged through a 0.2 µm PVDF filter (Millipore) to remove 

particulate matter prior to injection. Typically 38 µl samples, equivalent to 1% column 

volume, were injected on a 4 x 300 mm 5 µm MAbPAC SEC-1 column equilibrated 

with ice-cold LFB1/200 (NaCl instead of KCl) at 150 µl/min. A total of 24 x 75 µl (30 

seconds) fractions were collected from 1.2 - 3 ml (8 - 20 minutes).Fractions were 

analysed by SDS-PAGE followed by Coomassie Staining or Western blotting. 

2.8.2 Superose 6 (GE Healthcare) 

Samples were centrifuged through a 0.2 µm PVDF filter (Millipore) to remove 

particulate matter prior to injection. 20 µl samples were injected on a2.4 ml Superose6 

PC 3.2/30 equilibrated with ice-cold buffer (Specific Buffers mentioned in the text)at 25 

µl/min. A total of 24 x 50 µl (120 seconds) fractions were collected from 0.8 - 2 ml (32 - 

80 minutes). Fractions were analysed by SDS-PAGE followed by Coomassie Staining 

or Western blotting. 
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2.9 Size Exclusion Chromatography coupled to Multi Angle Light 

Scattering  

Size Exclusion Chromatography coupled to Multi Angle Light Scattering (SEC-MALS) 

experiments were performed on a Thermo Ultimate 3000 HPLC system with an inline 

miniDAWN TREOS multiangle light scattering detector (Wyatt) and Optilab T-rEX 

differential refractive index (dRI) detector (Wyatt). Prior to performing SEC-MALS 

experiments a Superdex200 10/300 GL (GE Healthcare) or MAbPac SEC-1 (Thermo) 

column was equilibrated overnight at 300 µl/min or 150 µl/min, respectively, with 0.1 

µm filtered buffer (40 mM HEPES, pH 8.0, 200 or 1000 mM KCl) and the differential 

refractive index (dRI) detector’s reference cell was purged with the running buffer. For 

accurate mass determination 150 µl (for Superdex) or 40µl (for MAbPac) of 

recombinant geminin at 2 mg/ml was injected onto the column when flat baselines were 

observed for all light scattering (LS) angle detectors and the dRI index detector with 

background scattering in LS detector 2 not in excess of 0.0001 Volts. Molar masses 

across elution peaks were calculated using ASTRA v6.0.0.108 software (Wyatt). 

2.10 Glycerol Gradients 

100 µl of extracts diluted 1:5 with LFB1/50 or molecular weight markers were layered 

carefully on 4ml linear 5-50% (v:v) or 5-28% (v:v) glycerol gradients in LFB1/200 and 

centrifuged in a Beckman SW60Ti rotor at 363,137 x g for 16 hours at 4 °C. 200 µl 

samples were collected. 

2.11 Mass Spectrometry 

2.11.1 Sample preparation 

All sample preparation was performed with the help of GRE proteomics. Samples were 

resolved by SDS-PAGE, gels were stained with Instant blue stain (Expedeon)and gel 
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pieces were excised with a clean scalpel. Gel pieces were washed twice with 150 µl 50 

mM NH4HCO3,100 % (v:v) Acetonitrile (ACN) for 10 minutes at room temperature 

with shaking. Supernatant was discarded and 100 µl of 100 % (v:v) ACN was added 

prior to addition of 100 µl of NH4HCO3. Gel pieces were incubated at 37 °C with 

shaking for 30 minutes. Supernatant was removed and gel pieces were dried completely 

in a vacuum centrifuge at 45°C. Proteins were reduced with 50 µl 10 mM DTT for 45 

minutes at 55°C with shaking. DTT was removed and proteins were alkylated with 50 

µl of 55 mM Iodoacetamide in the dark at room temperature for 30 minutes. 

Supernatant was removed and gel pieces were washed twice with 150 µl of 50 mM 

NH4HCO3, 100 % (v:v) ACN for 10 minutes with shaking. Gel pieces were dried 

completely in a vacuum centrifuge at 45°C. 50 µl of Trypsin (20 µg/ml in 50 mM 

NH4HCO3 pH 8.0(Thermo)) or Lys-C(20 µg/ml in 50 mM NH4HCO3 pH 8.0 (Thermo)) 

was added and gel pieces were incubated overnight at 37°C. 50 µl of 100% (v:v) ACN 

was added and samples were sonicated in an ice cold sonication bath for 15 minutes to 

release peptides. Supernatant was collected. Sonication of gel pieces was repeated with 

100 µl 70% (v:v) ACN, 0.1%(v:v)Trifluoroacetic acid (TFA) and the supernatants were 

combined. Sample volumes were reduced to ~60 µl in a vacuum centrifuge at 60°C. 

C18 ‘Ziptips’ were prepared by inserting a small circle of C18 filter disk as a frit into a 

gel loading tip. Tips were then loaded with 10 µl of 0.1% (v:v) TFA and 7 µl of a 1:1.4 

slurry of POROS C18 in 70% (v:v) ACN, 0.1% (v:v) TFA. C18 ‘Ziptip’s’ were 

activated with 20 µl 50% (v:v) ACN, 0.1%(v:v)  TFA and washed with 20 µl 0.1% (v:v)  

TFA acid before loading 60 µl of sample peptides. Samples were washed with 20 µl 

0.1% (v:v) TFA and 40 µl 50% (v:v) ACN, 0.1%(v:v) TFA was added twice to elute 

bound peptides. Sample volumes were reduced to ~10µl in a 60°C vacuum centrifuge.  
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2.11.2 Sample Submission 

Samples were submitted to the Fingerprints Proteomics Facility, University of Dundee 

by GRE proteomics. 10 µl samples were analysed on a LTQ Orbitrap Velos Pro 

(Thermo). 

2.11.3 Data Analysis 

Raw Spectral data were analysed using MaxQuant version 1.0.13.13. The fixed 

modification selected was Carbamidomethylation (C) and specific variable 

modifications, such as Acetylation (K) and Methylation (K/R) were selected. 

2.12 Recombinant Protein: Cloning and Expression 

2.12.1 Cloning: His6-Geminin 

A full length Xenopus laevis Geminin H pET28(a) plasmid, which adds an N-terminal 

His6-tag, was kindly gifted by Dr. Thomas J. McGarry (McGarry and Kirschner, 1998). 

This plasmid was found to have an N-terminal insertion of 81 amino acids between the 

His6-tag and the protein start methionine (Figure 49). PCR primers with flanking 

restriction sites were designed with homology to the geminin start methionine and stop 

codon. Primers were custom synthesised by Oligonucleotide Synthesis Service, 

University of Dundee. 

Forward primer with Nde1 insertion (5’- 3’):  

CCC CCC CAT ATG AAT ACC AAC AAG AAG CAG AGA TTG 

Reverse primer with BamH1 insertion (5’- 3’): 

CCC CCC GGA TCC CTA GAC AGT ATG TGC ATC CAT ATT C 

Full length wild type geminin was PCR amplified from the original plasmid using the 

following recipe and the cycle was repeated 30 times using an Eppendorf Mastercycler 

Thermal Cycler: 
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Table 2: PCR Recipe and Cycle Conditions 

 

PCR products were run on 0.8% (w:v) agarose gel and DNA was visualised using 

Ethidium bromide. The band corresponding to the correct size was excised from the gel 

and prepared using a QIAquick gel extraction kit (Qiagen). Both the PCR amplified 

insert as well as the target vector, pET15b (Novagen), were digested with Nde1 and 

BamH1 (New England BioLabs) in order to generate complementary sticky DNA 

overhangs for ligation. Restriction digestions were performed at 37°C in Cutsmart 

buffer (New England BioLabs) for 1 hour. For the pET15b plasmid a sequential double 

digest was carried out followed by Calf intestinal alkaline phosphatase treatment (New 

England Biolabs) at a final concentration of 10U/reaction for 1 hour at 37°C. Restriction 

digested DNA and PCR products were run on 0.8% (w:v) agarose gel, bands were 

excised and DNA prepared using a QIAquick gel extraction kit followed by a final 

cleanup with GeneJET PCR Purification kit (Thermo). Insert and target vector were 

ligated using T4 DNA ligase (New England BioLabs) using a 3-fold molar excess of 

insert. Ligation reactions were performed at room temperature for 1 hour. 5 µL of 

ligated DNA product was then transformed into competent cells. Single bacterial 

colonies were picked fromLysogeny broth(LB) agar selection plates and used to 

inoculate pre-warmed LB media supplemented with Ampicillin. Clones were incubated 

overnight at 37°Cwith shaking. Preparation of plasmid DNA was carried out using a 

 Concentration Volume (µl)  Temperature (°C) Time (sec) 

Plasmid 100 ng/µl 5  98 18 

Forward Primer 10 µM  2.5  98 30 

Reverse Primer 10 µM  2.5  65 30 

Phusion Mix 2 X 25  72 30 

Water  15  72 120 

Total  50  22 Hold 
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QIAprep kit (Qiagen). Sequence validation was carried out by DNA sequencing 

performed in-house using the Dundee sequencing service. 

2.12.2 Recombinant Protein Expression: His6-Tagged Geminin 

Lemo21(DE3) Competent E. coli (New England BioLabs) were transformed to express 

His6-tagged wildtype Xenopus laevis geminin. Glycerol stocks were made of a highly 

expressing clone. A P200 pipette tip was used to scrape the glycerol stock and inoculate 

a 100 ml starter culture of LB supplemented with Ampicillin and Chloramphenicol. 

Starter culture was either incubated at 37°C for 5-6 hours or at room temperature 

overnight. 7 ml of confluent starter culture was used to inoculate 500 ml cultures which 

were pre-warmed to 37°C. At an OD600 of 0.5-0.7 the temperature was reduced to 25°C 

and cultures were induced to express protein by addition of 1 mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG). After 3 hours cultures were combined and centrifuged in 

a Beckman JLA-8.1000 rotor at 15,900 x g for 10 minutes at 4°C.  

Cells from 3 L of culture were resuspended in 30 ml of 40 mM HEPES, 100 mM KCl, 

pH 8.0 containing Complete EDTA Protease inhibitor cocktail (Roche). Cells were 

lysed partially by freeze-thawing. Cells were frozen in liquid nitrogen and thawed in a 

room temperature water bath. After cells had thawed for 10 minutes, Benzonase (25 

Units/µl) was added at 1:1000 and lysates were returned to the waterbath. Once lysates 

were thawed completely (around 20 minutes), lysates were placed on wet ice and 

subjected to sonication for 60 seconds (10 seconds on, 20 seconds off) at 30% 

amplitude. Lysates were centrifuged at 10,000 x g in a Beckman JA-25.50 rotor for 20 

minutes at 4°C, supernatants were collected and supplemented with Imidazole to a final 

concentration of 15 mM. Ni-NTA slurry (Life Technologies) was equilibrated with 40 

mM HEPES, 100 mM KCl, 15 mM Imidazole, pH 8.0 and added to the lysate for batch 
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binding. Lysates were rolled for 1 hour at 4°C before being applied to a 10 ml 

disposable polypropylene column (Life Technologies).  

The column was sequentially washed with 50 ml of 40 mM HEPES, 100 mM KCl, 30 

mM Imidazole, pH 8.0, 50 ml of 40 mM HEPES, 500 mM KCl, 30 mM Imidazole, 

0.1% (v:v) Triton X-100, pH 8.0 and 50 ml of 40 mM HEPES, 100 mM KCl, 30mM 

Imidazole, pH 8.0. Protein was eluted off the column with 15 ml of 40 mM HEPES, 100 

mM KCl, 300 mM Imidazole, pH 8.0. Eluted protein was concentrated in a 30,000 kDa 

molecular weight cutoff centrifugal filter unit (Millipore) to 700 µl before being applied 

to a Superdex 200 10/300 GL. Proteins were fractionated at 300 µl/min in 40 mM 

HEPES, 100 mM KCl, pH 8.0 on a Thermo Ultmate3000. Geminin fractions were 

pooled and frozen in liquid nitrogen or concentrated to 2 mg/ml for SEC-MALS. 

2.12.3 Recombinant Protein Expression: His6-Tagged Cdt1 

A full length Xenopus laevis Cdt1 prSETb plasmid, which adds an N-terminal His6-tag, 

was kindly gifted by Dr. Marcel Méchali. BL21 (DE3) E coli(Maiorano et al., 2000). 

(Novagen) transformed with this plasmid were found to produce recombinant protein in 

the absence of IPTG induction, which likely had a toxic effect on cells. Cells lines such 

as Rosetta 2 (Novagen) which are designed to stop leaky expression were found to 

produce very little protein after induction with IPTG. BL21 (DE3) cells were used for 

expression but measures were taken to ensure that these cells never reached a stationary 

phase after being woken from glycerol stocks. 

A P200 pipette tip was used to inoculate a 30 ml starter culture of LB supplemented 

with Ampicillin. Starter cultures were incubated at room temperature overnight for 10-

12 hours. 5 ml of starter culture was used to inoculate 500 ml cultures which were pre-

warmed to 37°C. At an OD600 of 0.4-0.6 the cultures were induced to express protein by 

addition of 1 mM IPTG. After 3 hours cultures were combined and centrifuged in a 
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Beckman JLA-8.1000 rotor at 15,900 x g for 10 minutes at 4°C. Cells from 2 L of 

culture were lysed in 35 ml BugBuster (1 X BugBuster Extraction Reagent (Novagen), 

40 mM HEPES, 50 mM KCl, pH 8.0) supplemented with Complete EDTA Protease 

inhibitor cocktail (Roche) and Benzonase (25 Units/µl) at 1:1000. Cells were lysed by 

pipetting and were placed on a roller at room temperature for 30 minutes. Lysates were 

centrifuged at 16,000 x g in a Beckman JA-25.50 rotor for 20 minutes at room 

temperature.  

Cdt1 was expressed in an insoluble form and supernatants were discarded. Pellets 

containing Cdt1 were resuspended with 20 ml of Solubilisation Buffer (40 mM HEPES, 

20 mM K2HPO4/KH2PO4, 200 mM KCl, 8 M Urea, pH 8.0) and were left on a roller 

overnight at room temperature. Insoluble material was removed by centrifugation at 

16,000 x g in a Beckman JA-25.50 rotor for 20 minutes at room temperature. The 

supernatant was supplemented with 15 mM Imidazole and added to 2 ml of pre-

equilibrated Ni-NTA slurry. Batch binding was carried out on a roller for 3 hours at 

room temperature. The beads mixture was applied to a 10 ml disposable polypropylene 

column (Life Technologies) and the flowthrough was discarded. The column was 

washed twice with 25 ml of Cdt1 Wash Buffer (40 mM HEPES, 500 mM KCl, 8 M 

Urea, 30 mM Imidazole, 0.03% (v:v) Triton X-100, pH 8.0) and proteins were eluted 

with 10 ml of Cdt1 Elution Buffer (40 mM HEPES, 200 mM KCl, 8 M Urea, 300 mM 

Imidazole, 0.03% (v:v) Triton X-100, pH 8.0). 

Purified insoluble Cdt1 was refolded in 3 ml Pur-A-Lyzer Maxi 12000 (Sigma) at 4°C 

by a stepwise dialysis in THED200 (0.03% Triton, 20mM HEPES, 20% (v:v) Ethylene 

Glycol, 1 mM DTT, 200 mM KCl) supplemented with various amounts of Urea 

beginning with 4 M overnight and followed sequentially by 2 M, 1 M, 0.5 M, 0 M and 0 
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M for 3 hours each. Purified refolded His6-Cdt1 was frozen in 20 µl beads in liquid 

nitrogen and was stored in liquid nitrogen. 

2.12.4 His6-Tagged GemC1 

A full length Xenopus laevis GemC1 p-DEST17 plasmid, which adds an N-terminal 

His6 tag, was a kind gift from Dr. Vincenzo Costanzo(Balestrini et al., 2010). BL21 

(DE3)E. coli(Novagen) cells were transformed and a highly expressing clone was 

picked to make a glycerol stock. Glycerol stocks were used to inoculate 30 ml of LB 

supplemented with Ampicillin and cultures were incubated at37ºC overnight with 

shaking. 5 ml of overnight culture was added to 500 ml LB supplemented with 

Ampicillin and incubated at 37ºC. At an OD600of 0.6 - 0.8 cultures were induced with 1 

mM IPTG.After 3 hours at 37ºC cultures were combined and centrifuged in a Beckman 

JLA-8.1000 at 15,900 x g for 10 min at 4ºC. Cells from 2 L of culture were lysed in 35 

ml BugBuster (1 X BugBuster Extraction Reagent (Novagen), 40 mM HEPES, 50 mM 

KCl, pH 8.0) supplemented with Complete EDTA Protease inhibitor cocktail (Roche) 

and Benzonase (25 Units/µl) at 1:1000. Cells were lysed by pipetting and were placed 

on a roller at room temperature for 30 minutes. Lysates were centrifuged at 16,000 x g 

in a Beckman JA-25.50 rotor for 20 minutes at room temperature.  

His6-GemC1 was insoluble and was found in the pellet. Pellets were solubilised in 20ml 

of IMAC5 (20mMTris, 0.5M NaCl, 5mM Imidazole, 8M urea,pH8.0) on a roller 

overnight. Insoluble material was removed by centrifugation at 16,000 x g in a 

Beckman JA-25.50 rotor for 20 minutes at room temperature. Supernatant was applied 

to pre-equilibrated 2 ml slurry of Ni-NTA in a 10 ml disposable column. Columns were 

washed 3 times with 10 ml of IMAC5 supplemented with 20mM Imidazole. Proteins 

were eluted with 10 ml of IMAC5 supplemented with 300mM Imidazole and collected 

in 1 ml fractions. Fractions were analysed by SDS-PAGE and Coomassie staining and 
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crudely quantified against BSA standards. Fractions were combined to give 

concentrations of ~0.3 mg/ml of GemC1, as higher concentrations were found to 

precipitate during dialysis. Proteins were refolded in a step-wise dialysis in 20mM 

HEPES, 200mM KCl, 1mM DTT,pH8.0 starting with 4M urea overnight at 4ºC, 

followed by 2 hours each at 2 M, 1M, 0.5 M and then dialysed twice in dialysis buffer 

containing no urea. 

2.12.5 MBP-Tagged GemC1 

A full length Xenopus laevis GemC1 pMAL-c4X plasmid, which adds an N-terminal 

Maltose Binding Protein (MBP) tag, was a kind gift from Dr. Vincenzo 

Costanzo(Balestrini et al., 2010). BL21 (DE3)E. coli(Novagen) cells were transformed 

and a highly expressing clone was picked to make a glycerol stock. 

Glycerol stocks were used to inoculate 30 ml of LB supplemented with Ampicillin and 

cultures were incubated at37ºC overnight with shaking. 5 ml of overnight culture was 

added to 500 ml LB supplemented with Ampicillin and incubated at 37ºC. At an 

OD600of 0.4the temperature was reduced to 18°C. Cultures were induced to express 

protein with 1 mM IPTGfor4 hours. Cultures were combined and centrifuged in a 

Beckman JLA-8.1000 at 15,900 x g for 10 min at 4ºC. Cells from 2 L of culture were 

resuspended in 25 ml ice cold 1 X PBS supplemented with Complete EDTA Protease 

inhibitor cocktail (Roche). Lysozyme was added at 1 mg/ml and cultures were rotated at 

4°C for 30 minutes. Triton X-100 was added to 1% (v:v)and cells were sonicated at 

50% amplitude for 20 seconds on ice. Partially lysed cells were rotated for 30 minutes 

at 4°C. Lysates were sonicated a further 2 times at 30% amplitude for 20 seconds. 

Lysates were centrifuged at 16,000 x g in a Beckman JA-25.50 rotor for 20 minutes at 

room temperature. Soluble protein fraction was filtered through a 0.2 um filter before 

being added to 1ml of pre-washed Amylose Resin (New England BioLabs) in a 50 ml 

tube. Protein batch binding was carried out for 2 hours at 4°Cwith rotation. Resin was 
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washed 3 times with 20ml of 20 mM Tris, 200 mM NaCl, 1 mM EDTA, pH 

7.4supplemented withComplete EDTA Protease inhibitor cocktail (Roche) by 

centrifugation at 2,000 x g in a swinging bucket rotor for 4 minutes at 4°C. Beads were 

transferred to 2ml low adhesion tubes and protein was eluted by incubation with 20 mM 

Tris, 200 mM NaCl, 1 mM EDTA, pH 7.4supplemented withComplete EDTA Protease 

inhibitor cocktail (Roche) and 0.1mM Maltose for 2 hours at 4°C. 
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3.0 Geminin is Stable and Inactive in Interphase Xenopus Egg 

Extracts 

3.1 Introduction 

Geminin was originally identified as a protein that when expressed in Xenopus egg 

extracts was destroyed by the APC/C(McGarry and Kirschner, 1998).Xenopus egg 

extracts contain large stockpiles of proteins that function during the cell cycle, allowing 

them to undertake the cell cycle in the absence of transcription. Since geminin was 

found to be a target of the APC/C and was shown to be absent from somatic human 

cells in G1 (McGarry and Kirschner, 1998, Wohlschlegel et al., 2000), it was expected 

that endogenous geminin would be absent from Xenopus interphase extracts. However, 

it was found that a proportion of geminin remains stable in egg extracts and becomes 

the main nucleoplasmic inhibitor of rereplication(Hodgson et al., 2002, Arias and 

Walter, 2005). This implies that not only is a portion of the endogenous protein stable in 

interphase, but that this stability is essential to ensure once per cycle DNA replication. 

Importantly, it was then shown that this observation is not specific to the in vitro system 

and the levels of geminin do not vary significantly in vivo during the cleavage cycles of 

the Xenopus early embryo (Kisielewska and Blow, 2012). In addition, evidence is 

accumulating to suggest that this is a property of all embryonic stem cells (Quinn et al., 

2001, Yang et al., 2011).  

This project was undertaken using Xenopus egg extracts with the aim of elucidating the 

mechanism of geminin inactivation. The addition of calcium to metaphase arrested 

extracts triggers the metaphase-anaphase transition and cell cycle entry and this is 

accompanied by an abrupt activation of the licensing system. To enable a study of the 

events that occur shortly after calcium stimulation that lead to the activation of 
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licensing, the majority of experiments were carried out using metaphase-arrested 

extracts. Xenopus egg extracts provide a robust system for the study of DNA 

replication, however, there can be subtle but significant differences in the activities and 

properties of extracts prepared by different protocols in different laboratories. One 

relevant example of this was the initial controversy that followed the observation that 

geminin is in fact stable in interphase egg extracts. This issue was resolved when it was 

shown by multiple laboratories that geminin is the main nucleoplasmic inhibitor of 

rereplication in egg extracts and also stable in vivo during the cleavage cycles of the 

early embryo.  

Thus it was of vital importance to confirm the various reports that indicate that geminin 

is both stable and inactive following the metaphase-anaphase transition, and to ensure 

that extracts prepared for use during this project supported the reported functions. This 

would show that metaphase-arrested extracts are an appropriate system to facilitate a 

characterisation of the mechanism of geminin inactivation. 

3.2 Destruction kinetics of Geminin and Cdt1  

In order to demonstrate the stability of geminin and Cdt1 after the metaphase-anaphase 

transition long timecourses were undertaken in the absence of added DNA. Under these 

conditions, only APC/C dependent destruction should be observed. Samples were taken 

at intervals after the addition of calcium to metaphase-arrested extracts and geminin and 

Cdt1 protein levels were analysed by western blot and quantified by 2D densitometry 

(Figure 8). 

The result from two extracts demonstrate that there is some degree of extract to extract 

variation in the exact amounts of protein destroyed, however the kinetics of destruction 

for geminin and Cdt1 are reproducible (Figure 8). There is a clear difference in the 
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kinetics of Cdt1 and geminin destruction and this was the case in all extracts tested. 

Approximately 50-60% of geminin is degraded within 10 minutes after the addition of  

 

Figure 8: 40-50% of Geminin is stable 90 minutes after entry into Interphase.Samples were taken at 

different times after the addition of calcium and analysed by western blot to demonstrate the stability of 

geminin and Cdt1. Bands were quantified and plotted as a percentage of zero. Two extracts are shown to 

demonstrate extract to extract variation in the total levels of destruction at 90 minutes. Arrows indicate 

specific bands.* represents non-specific bands. 
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calcium. The remaining 40% of the protein remains stable thereafter. Geminin contains 

a ubiquitin initiation motif making it an efficient target of the APC/C (Williamson et al., 

2011), which is likely to be responsible for the rapid destruction observed. Within the 

initial 10 minutes of high geminin instability Cdt1 levels remain relatively constant. 

Cdt1 destruction occurs later, beginning after approximately 20 minutes. Cdt1 in 

somatic cells is a target of the APC/C
Cdh1

(Sugimoto et al., 2008). Cdh1 is not expressed 

in Xenopus until later in development; therefore all APC/C activity in extracts depends 

on APC/C
Cdc20

(Lorca et al., 1998). This may account for the slow kinetics of Cdt1 

destruction, where efficient targets of APC/C
Cdc20

, such as securin, Cyclin B and 

geminin would be targeted first followed by a second wave of targets such as Cdt1. The 

observation that geminin levels remain approximately constant during the period when 

Cdt1 is being degraded suggests that the surviving geminin is in some way protected 

from the APC/C-mediated degradation. 

Whereas geminin destruction follows a hyperbolic curve where it is rapidly degraded 

followed by a period of relative stability, after an initial lag Cdt1 destruction follows a 

slow linear reduction in levels. However, the extent of Cdt1 destruction varied between 

extracts. This experiment clearly demonstrates that a portion of geminin remains stable 

after metaphase-arrested extracts pass through the metaphase-anaphase transition into 

interphase. After an initial period of rapid destruction, approximately 50% of geminin 

remains stable during the licensing period and over time levels slowly fall and stabilise 

at a level of 30-40% by 90 minutes. 

3.3 Destruction kinetics in the presence of DNA 

Cdt1 is subjected to DNA replication-dependent destructionand the extent of destruction 

depends on the amount of DNA added (Arias and Walter, 2005, Kisielewska and Blow, 

2012). It has been shown that geminin levels remain high in vivo(Kisielewska and 
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Blow, 2012), however the effect of DNA concentration on geminin stability has not 

been investigated in extracts. After fertilisation in vivo, the concentration of DNA 

during the first cell cycle is very low, approximately 10 pg/µl, therefore the kinetics of 

Cdt1 destruction shown in the prolonged timecourse above are not likely to differ 

significantly from the kinetics of destruction in vivo. However, in the absence of DNA, 

licensing, nuclear envelope assembly and replication do not occur. Therefore, it was 

also of interest to determine the stability of geminin and Cdt1 in the presence of DNA 

throughout the licensing period and during DNA replication to determine if geminin 

remains stable over long timecourses in the presence of DNA, as occurs in vivo.  

The concentrations of DNA added were 3 and 20 ng/µl which represent approximately 

the DNA concentrations at cleavage cycles 8 and 11 respectively. DNA replication was 

measured to show that extract was capable of replicating up to 25 ng/µl of DNA (Figure 

9A). DNA replication timecourses were performed and samples were taken at different 

times post calcium addition, analysed by western blot and quantified by 2D 

densitometry. Egg extracts, in general, are very viscous solutions making the equal 

pipetting of small volumes technically challenging. The viscosity also changes as 

extracts progress through the cell cycle, becoming more viscous over time. To minimise 

this effect and to ensure samples were equally loaded cut-off P2 pipette tips were used 

allowing equal loading in the absence of DNA. However the presence of DNA 

exacerbated this issue and some variability in loading was unavoidable; this can be seen 

by assessing at the intensity of non-specific bands (Figure 9B). Therefore to more 

accurately quantify the western blots by 2D densitometry, intensities were normalised 

against the non-specific bands.  An additional timepoint of 120 minutes was included to 

show levels at the end of S-phase. A control containing no DNA gave the same result as 

previously shown (Figure 8), with geminin destruction kinetics following a hyperbolic 
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curve and Cdt1 remaining stable for 20 minutes before a slow linear decrease in levels. 

The addition of 3ng/µl DNA resulted in a greater reduction of Cdt1 levels compared to  

 

Figure 9: The Kinetics of Geminin and Cdt1 Destruction in the Presence of DNA. (A) To 

demonstrate the capacity of the extract a DNA replication assay was carried out at 25 ng/µl of DNA. (B) 

Extracts were supplemented with 0/3/20 ng/µl of DNA and incubated for 5 minutes prior to calcium 

addition. Samples were taken at different times after the addition of calcium and analysed by western blot 

to demonstrate the stability of geminin and Cdt1. Arrow indicate specific bands. Non-specific bands are 

denoted by an asterisk. Samples between 12-20 minutes were reproducibly overloaded, therefore 

intensities measured by 2D densitometry were normalised to  nonspecific bands. 

the no DNA control, with levels beginning to stabilise at later timepoints. This later 

stabilisation compared to the no DNA control may be due to the sequestration of Cdt1 

in the nucleus where the APC/C is inactive, whereas in the absence of DNA the APC/C 

remains weakly active and continues to degrade Cdt1. The addition of 20ng/µl results in 
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an almost complete destruction of Cdt1. The Cdt1 destruction observed is DNA 

replication-dependent (Arias and Walter, 2005, Arias and Walter, 2006) and the timing 

is concurrent with the initiation of DNA replication during this experiment (Figure 9A). 

As an additional control to show that extracts had entered interphase, samples were 

taken at 120 minutes and nuclei were observed by UV/Phase microscopy. Large round 

nuclei were present with recondensed DNA, indicative of G2 extracts which have 

replicated their DNA. The addition of DNA at either concentration did not have any 

effect on the stability of geminin, compared to the no DNA control. Geminin 

destruction followed a hyperbolic curve, as observed in all samples, with the majority of 

geminin destruction occurring within 10 minutes of calcium addition followed by 

stabilisation of 40-50 % of protein (Figure 9B). Geminin degradation was largely 

unaffected by the addition of DNA.  

The effect of DNA on Cdt1 stability can be seen when comparing the quantified data 

(Figure 10). Cdt1 degradation increases with DNA concentration as expected. However, 

the addition of DNA had no effect on the amount or kinetics of geminin destruction 

(Figure 10). This clearly demonstrates that geminin remains stable after extracts enter 

the cell cycle after metaphase arrest. In extracts DNA becomes maximally licensed 

within 15 minutes of calcium addition. Here, greater than 50% of endogenous geminin 

is present throughout the licensing period of 15 minutes, and this seemingly has no 

effect on the ability to replicate DNA. This suggests that geminin has been inactivated 

for its ability to inhibit licensing. 
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Figure 10: Geminin levels are unaffected by the presence of DNA. Samples shown in Figure 

9B were quantified by 2D densitometry. Intensities were normalised against nonspecific bands 

and plotted as a percentage of 0 minutes. Cdt1 destruction increases with DNA concentration, 

whereas geminin destruction kinetics and total levels destroyed are unaffected. 
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Figure 11: The Effect of DNA concentration on Geminin and Cdt1 Stability.Data from 

Figure 10 is plotted together to show the effects of DNA addition on protein stability. Cdt1 is 

unstable in the presence of DNA due to replication coupled destruction. Geminin levels are 

unaffected by the addition of DNA.    

 

3.4 Geminin-Cdt1 complexes break after the Metaphase-Anaphase 

Transition 

Geminin is a potent inhibitor of DNA replication due to its ability to bind to and inhibit 

Cdt1 and in turn inhibit replication licensing. As shown above, Xenopus egg extracts 

can license and replicate DNA while in the presence of at least 50% of the normal pool 

of endogenous geminin which persists during the licensing period (Figure 8 and Figure 

9). Since geminin is such a potent inhibitor of licensing and levels persist during the 



96 

 

licensing reaction, it is likely that geminin in interphase extracts is inactive. Evidence 

supporting this hypothesis has previously been published by our laboratory. Geminin 

inhibits Cdt1 by binding to it (Tada et al., 2001, Wohlschlegel et al., 2000). Therefore 

the most straightforward assay for geminin activity is to observe complex formation 

with Cdt1. Previous reports have shown that recombinant geminin
DEL

 (Geminin with a 

D-box deletion) can interact with interphase Cdt1, as determinedby gel filtration(Li and 

Blow, 2004),while the majority of interphase geminin does not bind to recombinant 

Cdt1, as determined by Ni-NTA pulldown of His6-Cdt1 (Hodgson et al., 2002). Taken 

together these data suggest that interphase geminin is not competent to bind to Cdt1 and 

is therefore inactive. It wasimportant to further investigate these observations and show 

in my extractsprepared during this project that whereas interphase geminin is not 

competent to bind Cdt1, interphase Cdt1 is competent to bind geminin. This would be 

achieved by undertaking experiments that demonstrate protein-protein interactions 

while ensuring consistent methodologies to perform reciprocal experiments. There was 

a preference for endogenous protein-only experiments, as previous reports have 

suggested that recombinant geminin may be regulated differently than endogenous as 

recombinant was preferentially degraded, while endogenous was inactivated (Hodgson 

et al., 2002). 

Geminin and Cdt1 were immunoprecipitated from metaphase and interphase extracts in 

order to observe their ability to interact in each cell cycle phase. Immunoprecipitation of 

endogenous geminin from metaphase extract pulled down high levels of Cdt1, 

demonstrating that there is a strong interaction between geminin and Cdt1, as expected 

(Figure 12). The reciprocal immunoprecipitation of Cdt1 gave a similar result, with a 

strong pulldown of geminin. This can be seen when comparing the intensity of geminin 

and Cdt1 in metaphase samples. However, immunoprecipitation of geminin from 

interphase extract resulted in a greatly reduced pulldown of Cdt1 (Figure 12, lanes 2 and 
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6). In addition, during reciprocal Cdt1 immunoprecipitates, geminin was only observed 

at very high exposures indicating that only a very weak interaction exists in interphase 

(Figure 12, lane 8). This demonstrates that the interaction of endogenous geminin and 

Cdt1 is dramatically reduced after the metaphase-anaphase transition. However, it is 

never a complete separation of geminin-Cdt1 complexes as some degree of co-

immunoprecipitation of proteins remains in reciprocal experiments in interphase 

extracts. 

 

 

Figure 12: Geminin-Cdt1 Interactions Change Dramatically in Interphase. (A) Metaphase and 

interphase extracts were incubated with pre-immune serum or anti-geminin/Cdt1 serum on ice for 45 

minutes. Samples were supplemented with 30% (v/v) protein A Sepharose. Beads were isolated, washed 

and samples were analysed by western blotting. (B) Metaphase and interphase extracts were 

supplemented with 100 nM His6-Cdt1 for 30 minutes on ice. Samples were supplemented with 10 µl of 

Ni-NTA and incubated on a roller at 4°C for 30 minutes. Beads were isolated and washed and pulldowns 

were analysed by western blotting. (C) Same for (B) except samples were supplemented with 100 nM 

His6-geminin
DEL

. 

To further investigate the change in the interaction of geminin and Cdt1 metaphase and 

interphase extracts were fractionated by size exclusion chromatography. This revealed a 

number of cell cycle phase-dependent complexes. The fractions from two individual 

columns are shown to demonstrate any slight column-to-column variation in sample 

fractionation from 443-66 kDa. Samples from the void volume are also shown to 

demonstrate that there are no peaks higher than 669 kDa, consistent with previous 
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reports (Figure 13)(Hodgson et al., 2002, Li and Blow, 2004). In metaphase extracts, a 

high molecular weight complex of geminin and Cdt1 is observed between 669-443 kDa 

with an additional proportion of geminin fractionating into a separate peak, between 

443-200 kDa (Figure 13)(Hodgson et al., 2002, Li and Blow, 2004). 15 minutes after 

the metaphase-anaphase transition in interphase extracts, Cdt1 runs at a lower molecular 

weight, consistent with the loss of its binding to geminin. During interphase, geminin 

fractionates into two previously unidentified peaks, one that partially co-fractionates 

with Cdt1 between 443-200 kDa and a second smaller peak between 200-66 kDa 

(Figure 13). These results differ from previous reports where only a single interphase 

peak was identified (Hodgson et al., 2002, Li and Blow, 2004). However, the current 

work used a MAbPac SEC-1 column which provides a greater resolution across the 

desired range of 669-69 kDa compared to the Superose 6 columns used in previous 

experiments. The fractions from two different columns are shown to demonstrate that 

there is a slight column to column variation in the resolution of the peaks. Comparing 

the migration of geminin in metaphase and interphase, the lower molecular weight 

metaphase peak and the higher molecular weight interphase peak partially overlap, but 

are shifted by a fraction (Figure 13A, lane 11 and 12; Figure 13B, lane 12), which could 

be a difference of 100 kDa at this column’s resolution. This suggests there are four 

distinct geminin complexes, two in metaphase and two in interphase. These data show 

that the majority of high molecular weight metaphase geminin and Cdt1 complexes 

separate during exit from metaphase, further supporting the observation made by 

immunoprecipitation of endogenous proteins that geminin-Cdt1 interactions change 

significantly as extracts enter the cell cycle. 

There was an issue with non-specific bands partially co-fractionating with geminin 

(Figure 13, lanes 15, 16 and 17. Figure 14) which also run close to geminin on SDS-

PAGE. To show that this band is non-specific, geminin was immunodepleted and 
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extract was fractionated by size exclusion chromatography. Extract was >95% depleted 

of geminin compared to whole extract and a band can be seen in the depleted extract 

which is likely to correspond to the contaminating band found in gel filtration fractions 

(Figure 14A). The contaminating bands persisted and fractionated into the same 

fractions in the absence of geminin (Figure 14B, lane 8, 9 and 10), suggesting that it is 

indeed non-specific. These non-specific bands could also be separated from geminin on 

SDS-PAGE by running a 12% Bis-Tris gel (Figure 14C). 

 

Figure 13: Geminin is fractionated into Multiple Peaks by Size Exclusion 

Chromatography.Metaphase or interphase extract was diluted 1:5 with LFB1/50 and spun through a 0.2 

µm filter. Samples were loaded at 1% of total column volume on a MAbPAC SEC-1 and fractionated at 

0.15 µl/min into 75 µl fractions. 25 µl of fractions were analysed by western blotting. (A) and (B) show 

the fractionation of two separate columns. X indicates input extract to show specificity of bands.  
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Figure 14: Specificity of Geminin Bands on Gel Filtration. (A) Extracts were immunodepleted of 

geminin. A titration of extract versus an equivalent amount of total and depleted extract were blotted for 

geminin to quantify the depletion. (B) Geminin immunodepleted extract was loaded at 1% of total column 

volume on a Mab PAC SEC-1 and fractionated at 0.15 µl/min into 75 µl fractions. 25 µl of fractions were 

analysed by western blotting and key fractions were blotted to show the fractionation of non-specific 

bands which run close to geminin on SDS-PAGE in lanes 8, 9 and 10. (C) Extract was loaded at 4% of 

total column volume on a Mab PAC SEC-1 and fractionated as in (B). 25 µl of fractions were separated 

by SDS-PAGE on either a 4-12% or 12% fixed Bis-Tris gel and analysed by western blotting. Arrowhead 

indicates the appearance of a non-specific band above geminin in fractions 8, 9 and 10. 
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3.5 Endogenous Interphase Geminin cannot bind recombinant Cdt1  

To determine whether the loss of geminin-Cdt1 complex formation on exit from 

metaphase was dependent on changes to geminin or Cdt1, the interactions of 

endogenous Cdt1 or geminin with recombinant protiens was investigated. His6-Cdt1 

was incubated in metaphase and interphase extract for 30 minutes and recovered with 

Ni-NTA (Figure 15A). Geminin was specifically pulled-down with His6-Cdt1 in 

metaphase extracts, showing that it is competent to bind to Cdt1 and is therefore active. 

A relatively low amount of geminin was pulled-down with His6-Cdt1 from interphase 

extracts suggesting that the majority of geminin in interphase extracts is unable to bind 

to His6-Cdt1. To show that this was not due to an activity in interphase extracts which 

would make His6-Cdt1 incompetent to bind to geminin the reciprocal experiment was 

performed. His6-Gem
DEL

 was incubated in metaphase or interphase extract for 30 

minutes before being recovered with Ni-NTA (Figure 15B). His6-Gem
DEL

 was used 

rather than full length geminin to ensure that the results could not be altered by ongoing 

APC/C-dependent destruction of the recombinant geminin. His6-Gem
DEL

recovered from 

metaphase did not pull down significant amounts of endogenous Cdt1 compared to a 

control containing noHis6-Gem
DEL

. This is likely because all of the endogenous 

endogenous Cdt1 is already bound to geminin, via a particularly strong interaction 

(Tada et al., 2001). In contrast, His6-Gem
DEL

recovered from interphase extracts yielded 

high levels of Cdt1. This implies that endogenous Cdt1 is competent to bind to geminin 

in interphase egg extracts. 

These data suggest that the abilities of metaphase and interphase endogenous geminin 

differ in their ability to interact with Cdt1. To further persue this observation, metaphase 

and interphase extracts were supplemented with 100 nM His6-Cdt1 for 15 minutes 



102 

 

before being diluted 1/5 with buffer (LFB1/50), filtered through a 0.2 µm filter and 

fractionated by size exclusion chromatography.  His6-Cdt1 added to metaphase extracts  

 

Figure 15: Interphase Geminin does not interact with His6-Cdt1 by Pulldown. Metaphase 

or interphase extracts were supplemented with (A) His6-Cdt1 or (B) His6-Gem
DEL

 and incubated 

on ice for 30 minutes. Recombinant proteins were recovered with Ni-NTA. 25% inputs are 

shown. 

bound to the excess geminin that normally runs at a peak of 200-400 kDa (Figure 16, 

lane 9 and10), to form additional high molecular weight geminin-Cdt1 complexes 

between 443-669 kDa (Figure 16, lane 6 and 7). This implies that excess geminin in 

metaphase extracts is competent to bind to Cdt1, in agreement with observations from 

pulldown experiments (Figure 15A). However, His6-Cdt1 added to interphase extracts 

had no effect on the migration of endogenous geminin (Figure 16B). Both geminin 

interphase peaks eluted in the same fractions as the interphase extract only control. This 

shows that endogenous interphase geminin is not competent to bind to Cdt1, again 

agreeing with pulldown experiments. 
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The converse experiment was carried out to show that the loss of interaction was 

specific to geminin and not a change in the ability of Cdt1 to be bound by geminin. 

Metaphase and interphase extracts were supplemented with 100 nM His6-Gem
DEL

 for 15  

 

 

Figure 16: Interphase Geminin does not Cofractionatewith His6-Cdt1 by Size Exclusion 

Chromatography.(A) Metaphase extract was supplemented with 100 nM His6-Cdt1 and 

incubated for 15 minutes. Extract was diluted 1:5 with LFB1/50 and filtered through a 0.2 µm 

filter before being fractionated by size exclusion chromatography. Fractions were analysed by 

western blotting to observe complex formation. (B) Interphase extract was treated as in (A). 

minutes before being diluted 1/5 with LFB1/50, filtered through a 0.2 µm filter and 

fractionated by size exclusion chromatography (Figure 17). His6-Gem
DEL

 added to 

metaphase extract fractionated into the Cdt1-free geminin peak between 443-200 kDa. 

This agrees with the observation that His6-Gem
DEL

does not pull down significant 

amounts of Cdt1 in metaphase. This shows that Cdt1 is maximally bound by 
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endogenous geminin in metaphase. The amount of geminin bound cannot be increased 

or exchanged with recombinant protein. His6-Gem
DEL

 added to interphase extract could 

bind Cdt1 to reform the 669-443 kDa high molecular wight complex. This demonstrates 

further that Cdt1 in interphase extracts is capable of interacting with geminin, and that it 

is endogenous geminin that has been altered resulting in a loss of geminin-Cdt1 

interactions. 

 

Figure 17: InterphaseCdt1Cofractionates with His6-Geminin
DEL

 on Size Exclusion 

Chromatography.(A) Metaphase extract was supplemented with 100 nM His6-Geminin
DEL

 and 

incubated for 15 minutes. Extract was diluted 1:5 with LFB1/50 and filtered through a 0.2 µm 

filter before being fractionated by size exclusion chromatography. Fractions were analysed by 

western blotting to observe complex formation. (B) Interphase extract was treated as in (A). 
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3.6 Summary - Geminin is Stable and Inactive in Interphase Extracts 

Experiments carried out here have shown that geminin is a relatively stable protein in 

interphase extracts and up to 30-40% reamins for at least 90 minutes. The addition of 

high levels of DNA results in the degradation of Cdt1, but has no effect on the stability 

of geminin. Greater than 50% of geminin remained in extract during the licensing 

reaction, and this did not interfere with the ability to replicate DNA. Therefore this 

interphase geminin does not interfere with the repliction licensing reaction. This 

suggests that geminin is inactive in interphase egg extracts. The most simple assay that 

can be used to assess geminin function is to determine whether it can bind to Cdt1. 

Experiments here show that the interaction between geminin and Cdt1 changes 

dramatically after the metaphase-anaphase transition. In metaphase geminin exisits in 

two major forms: in a high molecular weight complex with Cdt1 between 669 and 443 

kDa and a lower Cdt1-independent 200 kDa complex. In interphase geminin also exitis 

in two major forms: one at approximately 200 kDa that partially co-fractionates with 

Cdt1 and a lower Cdt1-independent complex that runs above 66 kDa. Assessing the 

interaction of geminin and Cdt1 with recombinant proteins has shown that the loss of 

interaction between geminin and Cdt1 is due to a change in geminin activity rather than 

Cdt1. 
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4.0Regulation of Geminin by the APC/C and Post-

Translational Modification 

4.1 Introduction 

The E3 ubiquitin ligase activity of the APC/C orchestrates the exit of Xenopus eggs 

from metaphase of meiosis II. To maintain a metaphase arrest eggs contain an APC/C 

inhibitory activity termed cytostatic factor (CSF). CSF activity is provided by Emi2 

which inhibits the APC/C by protein-protein interactions to prevent ubiquitin ligase 

activity (Sako et al., 2014). A signalling cascade after calcium addition leads to the 

activation of CamKII and subsequently to the Plk- and SCF-mediated inactivation and 

destruction of Emi2 (Hansen et al., 2006). Loss of CSF results in the rapid activation of 

the APC/C. During metaphase arrest, licensing activity is inhibited by geminin-

dependent inhibition of Cdt1 and to some extent by CDK activity (Tada et al., 2001). 

CDK activity is also required for APC/C activation thereby creating a negative feedback 

loop. CDKs activate the APC/C, which in turn destroys B-type cyclins leading to the 

inactivation of CDKs and the subsequent exit from metaphase (Li and Blow, 2004). A 

previous report has shown that APC/C activity is also essential for geminin inactivation 

(Li and Blow, 2004). Therefore, in addition to mediating mitotic exit (by destroying 

cyclin B), the APC/C also coordinates licensing activation by regulating the two 

inhibitors, geminin and CDKs (Figure 18).  

Cyclin B is completely destroyed by APC/C-mediated ubiquitination in egg extracts. 

This destruction means that Xenopus egg extracts must translate new protein in order to 

pass through multiple cell cycles, as cyclin B protein must be translated for mitotic 

entry at the end of each cycle. Geminin, however, is not completely destroyed (Hodgson 

et al., 2002)(Figure 11) and interphase inactive geminin runs at its native molecular 
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weight on SDS-PAGE(Li and Blow, 2004). This observation led Li and Blow to 

propose that ubiquitination of geminin may be a prerequisite for its inactivation and 

while interphase geminin becomes deubiquitinated and in turn inactivated by some 

additional mechanism such as PTMs or by forming other protein-protein interactions (Li 

and Blow, 2004).  

 

Figure 18: Control of Licensing activation by the APC/C. Geminin and CDK activity inhibit licensing 

activity in metaphase. Geminin inhibits Cdt1 by direct binding. CDK inactivates ORC by direct 

phosphorylation. It is not clear whether CDK inhibits Cdc6 in metaphase arrested egg extracts directly by 

phosphorylation or indirectly by preventing ORC chromatin binding. Activation of the APC/C by calcium 

addition leads to the rapid inactivation of CDK activity due to a complete degradation of B-type cyclins. 

Geminin inactivation is downstream of APC/C activity and it has been proposed that geminin is 

ubiquitnated prior to inactivation. APC/C-dependent inactivation of CDK and geminin triggers licensing 

activity.  

It has been reported thatinactive interphase geminin becomes reactivated after nuclear 

import in Xenopus egg extracts: following nuclear assembly a metaphase-like high 

molecular weight complex of geminin and Cdt1 is found on gel filtration (Hodgson et 
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al., 2002). This observation leads one to hypothesise a mechanism where geminin is 

regulated by post-translational modification. In this model, the activation of a geminin 

modifying protein at the metaphase-anaphase transition facilitates the activation of 

licensing in the cytoplasm. Licensed DNA then drives nuclear formation and the 

subsequent nuclear import of geminin. Separation of nuclear geminin from the 

inactivating activity of the cytoplasm or compartmentalisation with a demodifying 

protein leads to the reactivation of geminin to inhibit licensing before the initiation of 

DNA replication (Gillespie et al., 2007).  

Multiple mechanisms have been hypothesised to account for geminin inactivation, a 

number of which involve post translational modification of geminin. The aim of this 

chapter is to gain insights into the molecular events that occur downstream of APC/C 

activation that result in the inactivation of geminin and to determine whether geminin 

activity is regulated by post translation modification.  

4.2 The APC/C Mediates a Switch in Licensing Activity 

A published report showed that geminin was subjected to APC/C-dependent 

ubiquitination and that this was a prerequisite for geminin inactivation (Li and Blow, 

2004). Therefore it was necessary to investigate the role of the APC/C as it is known to 

be upstream of geminin inactivation and determine the effect of APC/C activation on 

geminin activity.  

It has previously been shown that the 26S proteasome is dispensable for the activation 

of replication licensing. This was demonstrated using the well-established 26S 

proteasome inhibitor MG132 (Li and Blow, 2004). MG132 is soluble in DMSO and is 

required at relatively high concentrations for a complete inhibition of the proteasome in 

egg extracts. High amounts of DMSO causes problems with nuclear formation, 

therefore an alternative inhibitor was found. 0.1 mM bortezomib prevents cyclin B 
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destruction up to 15 minutes after the metaphase-anaphase transition, showing that at 

this concentration the proteasome is inhibited (Moreno et al., 2014). Replication 

licensing and DNA replication are unaffected by 26S proteasome inhibition, despite the 

fact that the licensing inhibitors geminin and cyclin B are not destroyed (Li and Blow, 

2004). To show that geminin inactivation is unaffected by inhibition of the proteasome, 

metaphase extract supplemented with or without 0.1 mM bortezomib was released into 

interphase for 15 minutes and fractionated by size exclusion chromatography (Figure 

19). The fractionation of inactive interphase geminin was unaffected by bortezomib 

addition, showing that protein destruction is dispensable for the inactivation of geminin. 

It has been reported that cyclin B destruction is not essential for CDK inactivation 

(Nishiyama et al., 2000, Chesnel et al., 2006). Therefore it is likely that geminin can 

also be regulated by methods other than proteolysis following APC/C dependent 

ubiquitination.  

 

Figure 19: Protein Degradation is not required to Inactivate Geminin. Metaphase extract or 

metaphase extract supplemented with 0.1 mM bortezomib was released into interphase for 15 minutes 

before 1//5 dilution with LFB1/50, filtered through a 0.2 µm membrane and fractionated by size exclusion 

chromatography. 

To assess the role of the APC/C in the activation of replication licensing, a specific 

APC/C inhibitor was required. A peptide of the cyclin B D-box motif 

(RRTALGDVTNKVSE)is a well-established competitive inhibitor of the APC/C used 

in Xenopus egg extracts (Peter et al., 2001). A D-box peptide was custom synthesised 



110 

 

and control experiments were undertaken to demonstrate the ability of the peptide to 

inhibit the APC/C. Metaphase extracts were supplemented with D-box peptide and 

Cdt1, cyclin B and geminin levels were measured by western blot analysis 30 minutes 

after the addition of calcium (Figure 20A). D-box peptide inhibited protein degradation 

at a concentration of 2 mM. A complete inhibition of the APC/C would render extracts 

incapable of metaphase exit in response to calcium addition. To demonstrate that this is 

the case in D-box treated extracts, nuclear formation was observed by UV/phase 

contrast microscopy after the addition of calcium. D-box treated extract failed to exit 

mitosis, as judged by a lack of nuclear formation after 30 minutes (Figure 20B). Taken 

together these data demonstrate that the APC/C is strongly inhibited by 2 mM D-box, in 

agreement with previous results generated using a different peptide (Li and Blow, 

2004). 

Since protein destruction is not required for the activation of licensing it is likely that 

APC/C activity directs inactivation of geminin and CDK through methods other than 

ubiquitin-mediated proteolysis. If a regulatory role such as this is mediated by the 

APC/C, is continuous APC/C activity required to maintain the ability to license? D-box 

peptide was used to gain more information about the length of time that APC/C activity 

is required for following its activation by calcium addition. An assay was undertaken to 

determine if continuous or ongoing APC/C activity is required after calcium addition to 

inhibit geminin and maintain the ability to replicate DNA. D-box peptide was added at 

defined times after calcium stimulation and DNA replication was measured after 90 

minutes (Figure 21A). Addition of D-box peptide within 10 minutes of calcium addition 

resulted in a complete inhibition of DNA replication. This suggests that APC/C activity 

is essential for at least 10 minutes after calcium addition. 
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Figure 20: D-box peptide Inhibits APC/C activity. (A) D-box peptide was titrated into metaphase 

extract prior to calcium addition. The levels of APC/C targets Cdt1, geminin and Cyclin B2 after 30 

minutes were analysed by western blot to determine the activity of the APC/C. (B) UV/Phase microscopy 

of sperm DNA incubated for 30 minutes in various extracts. Addition of 2 mM D-box before calcium 

addition prevents release from metaphase arrest, as DNA remains condensed and nuclei fail to form.  

To determine whether the APC/C mediated event that occurs after 10 minutes is 

maintained or reversed in the absence of APC/C activity, D-box was added 10 minutes 

after calcium and extracts were incubated for defined times before the addition of DNA 

(Figure 21B). A loss of DNA replication after a prolonged incubation would suggest 

that the APC/C-dependent event is reversed over time. A reduction in DNA replication 

was observed after longer incubations, however this reduction also occurred in control 

samples, suggesting that the APC/C-dependent activity required for DNA replication is 

maintained after an initial 10 minutes of APC/C activity. Therefore, the APC/C 
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regulates DNA replication in a switch like manner. A threshold of APC/C activity is 

required and after this is reached APC/C activity is no longer required. 

 

Figure 21: APC/C Activity is Required for 10 Minutes After Calcium Addition. (A) Extracts were 

supplemented with D-box at various times after calcium addition to inhibit the APC/C. DNA was added 

at the same time as D-box and DNA replication after a further 90 minutes was measured. (B) Extract was 

activated for 10 minutes before addition of either buffer or D-box. Extracts were incubated for defined 

times before the addition of DNA and DNA replication was measured at 90 minutes. 



113 

 

 

The assays above were an indirect measure of licensing, where it is inferred that if DNA 

replication occurred, then the DNA first must have been licensed. To confirm this, 

further experiments were designed to investigate the effects of APC/C inhibition on 

licensing activity more directly. To do this, assays included a minimal licensing step. 

‘Maximally’ licensed DNA contains a vast excess of MCM2-7 complexes, which 

represent dormant origins. ‘Minimally’ licensed DNA has the minimum number of 

MCM2-7 complexes to support replication of ~100% of the input DNA with normal 

kinetics (Oehlmann et al., 2004, Woodward et al., 2006). In an extract where licensing 

is fully active, DNA requires a 3 minute incubation for minimal licensing of ~5 ng/µl of 

DNA, after which time further licensing activity can be inhibited by addition of 

geminin
DEL

. By including a minimal licensing step in the D-box assay, the effect of D-

box addition on licensing activity specifically can be measured. Assays were carried out 

where D-box or buffer was added at various times after calcium stimulation. DNA was 

subsequently added and incubated for 3 minutes before licensing was inhibited by the 

addition of geminin
DEL

. Total DNA replication was quantified after 90 minutes (Figure 

22). In control samples where extracts were supplemented with buffer only, a linear 

increase in licensing activity was observed which plateaued at 6-8 minutes when the 

licensing reaction was fully activated. In samples supplemented with D-box no activity 

was observed at early timepoints before a switch like activation in licensing activity was 

observed at 6-8 minutes (Figure 22). This suggests that the activation of replication 

licensing requires at least 6-8 minutes of ongoing APC/C activity, after which point the 

APC/C is no longer required.  

In the D-box assay, plotting the control samples at the same timepoints as the D-box 

samples can be considered somewhat misleading (Figure 22). In reality, these samples 
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are not inhibited by the addition of buffer and therefore these samples have an extra 6 

minutes to activate the licensing machinery and carry out replication licensing before  

 

Figure 22: The APC/C Regulates a Switch in Licensing Activity after 6-8 Minutes. Extracts were 

supplemented with Buffer (LFB1/50) or 2 mM D-box peptide at defined times post calcium addition. 

DNA was added 3 minutes later and incubated for 3 minutes to allow for minimal licensing. Licensing 

was stopped by addition of 100 nM His6-Geminin
DEL

. Reactions were incubated for a further 90 minutes 

before DNA replication was measured. Average of 3 experiments; error bars represent standard error. 

the addition of geminin
DEL

 compared to the treated samples. For a more appropriate 

control the D-box assay was repeated with DNA addition following 1 minute after D-

box addition (Figure 23). These experiments were also performed in a different extract, 

which had slightly slower kinetics. In the control sample a linear increase was observed 

which began to plateau after 10 minutes. D-box treated samples again demonstrated an 

APC/C-dependent switch in the activation of licensing, this time occurring at 8-10 

minutes (Figure 23A). Reducing the incubation time of the D-box prior to DNA 

addition was successful in decreasing the gap between the control and treated samples.  

This switch-like activation of licensing could be due to the regulation of CDK activity, 

geminin activity or both simultaneously. It is difficult to determine whether this effect is 
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due to geminin inactivation directly, however, the role of CDK activity can be tested 

using a CDK inhibitor. To determine which of these two APC/C targets is responsible 

for the switch in activity, the D-box assay was repeated with the addition of 6-DMAP at 

the time of D-box addition to inhibit CDK activity (Figure 23B). 6-DMAP was used as 

it was previously shown to inhibit mitotic CDK activity with only small effects on 

interphase CDK activity required for the initiation of replication (Blow, 1993). If 

APC/C dependent inactivation of CDK was responsible for the switch in licensing 

activation, then D-box/6-DMAP samples should closely resemble the control 

experiment. Whereas the addition of 6-DMAP did result in a faster rise in licensing 

activity in the control sample and the D-box samples, it did not alter the observed 

switch in activation (Figure 23B). Even in the presence of 6-DMAP, early timepoints do 

not contain any licensing activity, differing substantially from the control samples. This 

demonstrates that the target downstream of APC/C responsible for the switch in 

licensing activity is not CDKs. Therefore, geminin inactivation is likely to be 

responsible for the observed kinetics.  

APC/C-dependent ubiquintation typically results in destruction of target proteins by the 

26S proteasome. To gain more information about the nature of the switch in licensing 

activity the D-box assay was carried out in the presence of 0.1 mM bortezomib to 

inhibit the proteasome (Figure 23C). The addition of bortezomib would determine if the 

switch required APC/C mediated protein destruction, or an alternative outcome of 

APC/C activity. Inhibition of the proteasome had no effect on the appearance of the 

switch, suggesting that protein destruction is not required. This is consistent with data 

that shows the proteasome is not required for licensing or DNA replication (Li and 

Blow, 2004). Therefore an APC/C dependent event which does not induce protein 

destruction is responsible for a switch like activation of licensing which is most likely 

acting through geminin.   
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Figure 23: APC/C-dependent Switch is not due to Cyclin B Regulation and does not Require 

Protein Degradation. (A) Extracts were supplemented with Buffer (LFB1/50) or 2 mM D-box peptide at 
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defined times after calcium addition. DNA was added 1 minute later and incubated for 3 minutes to allow 

for minimal licensing. Licensing was stopped by addition of 100 nM His6-Geminin
DEL

and reactions were 

incubated for a further 90 minutes before DNA replication was measured. Average of 3 experiments; 

error bars represent standard deviation. (B) Reactions were carried out as in (A), with 3 mM 6-DMAP 

addition in all samples at defined times supplemented together with either Buffer (LFB1/50) or D-box. 

(C) Metaphase extracts were pretreated with 0.1 mM bortezomib before reactions were carried out in (A).  

The control samples in the D-box experiments do not truly represent the licensing 

activity at the timepoints shown (the time when D-box peptide was added ) as the 

licensing activity can continue to increase throughout the experiment until geminin
DEL

 is 

added, giving these samples an additional 4-6 minutes compared to D-box samples. To 

define the times more precisely an additional control was performed where DNA was 

added to extract at different times, followed 3 minutes later by geminin
DEL

 addition 

(Figure 24). Licensing activity showed a linear increase and reached its maximal value 

at 8-10 minutes after calcium addition, in line with previous experiments. These results 

confirm the idea that APC/C activity is required for 8-10 minutes for geminin to 

become stably inactivated, and that continued APC/C activity is not required for the 

inactive state of geminin to be maintained. 

4.3 The Ubiquitination of Geminin 

We have found that there is an APC/C-dependent switch in the ability to license DNA 

8-10 minutes after calcium addition. This does not result from CDK inactivation, 

suggesting that this effect is mediated downstream of APC/C leading to the inactivation 

geminin (Figure 23B). This could be due to direct APC/C mediated ubiquitination of 

geminin or indirect due to APC/C acting on another unidentified protein (i.e. APC/C is 

upstream of geminin in a pathway that results in geminin inactivation). It was also 

shown that this switch does not require protein destruction. Li and Blow proposed that 

geminin is ubiquitinated prior to inactivation (Li and Blow, 2004). This predicts that all 

geminin is subjected to ubiquitination, with some, but importantly not all, being 

destroyed with some being deubiquitinated and subsequently inactivated. One caveat to  
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Figure 24: Licensing Activity Occurs within 8 minutes of Calcium Addition. DNA was added to 

extracts at defined times after calcium addition and incubated for 3 minutes before supplementation with 

100 nM His6-Geminin
DEL

. DNA replication was measured after a further 90 minutes.  

this conclusion is thatexperiments showing ubiquitinated species of geminin focused on 

the ubiquitination of recombinant geminin rather than endogenous protein, which is 

preferentially degraded rather than inactivated in extracts (Hodgson et al., 2002, 

McGarry and Kirschner, 1998). Furthermore, the quantity of endogenous geminin that 

is subjected to ubiquitination was not investigated, therefore it is possible that only the 

portion of geminin that is targeted for destruction is ubiquitinated while the portion that 

becomes inactivated may be regulated by an alternative method that requires APC/C 

activity upstream. Addition of K48R ubiquitin (Lysine 48 mutated to Arginine) was 

shown to stabilise geminin and prevent changes in geminin-Cdt1 complex formation, 

suggesting that K48 linked chains were required for geminin inactivation (Li and Blow, 

2004). However, the K48R mutant could have prevented inactivation of Emi2 to block 

exit from mitosis. Additional controlswould have clarified whether extracts in this 

experiment had failed to inactivate geminin specifically or had failed to exit mitosis, as 

it is difficult to study these as separate APC/C-dependent processes. 
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We attempted to determine whether direct ubiquitination of geminin was a prerequisite 

for geminin inactivation (Figure 25A). To undertake these studies ubiquitin vinyl 

sulfone (UbVS) was used to inhibit deubiquitinases (DUBs). Metaphase or interphase 

extract was untreated or supplemented with 20 µM UbVS for 30 minutes. This results in 

a complete inhibition of DUBs and subsequently free ubiquitin is depleted from the 

extract as it is sequestered in large conjugates generated by the proteasome, preventing 

ubiquitin turnover. The depletion of large ubiquitin ubiquitin conjugates serves as a 

positive control for the activity of UbVS as a DUB inhibitor. UbVS treated/ubiquitin 

depleted extract was supplemented with 44 µM wild-type (wt) ubiquitin and 

reformation of high molecular weight complexes was observed at 0, 25, 45 and 75 

minutes after addition of wt-ubiquitin. This experiment demonstrates the effectiveness 

of UbVS as a DUB inhibitor and shows that ubiquitin depletion can be rescued by the 

addition of exogenous protein.  

To determine whether protein ubiquitination in general is required for replication 

licensing metaphase extracts were depleted of ubiquitin by the addition of UbVS for 30 

minutes (Figure 25B). This resulted in a failure to activate licensing in response to 

calcium addition. However, licensing was rescued by the addition of exogenous 

ubiquitin. This demonstrates that ubiquitin is required for the activation of licensing, but 

DUBs are dispensable. To demonstrate that the loss of MCM loading upon UbVS 

addition was due to a failure to activate the licensing system, rather than being a specific 

some other step of MCM loading, the previous experiment was repeated in interphase 

extract. Extracts were released into interphase before UbVS treatment and the depletion 

of ubiquitin (Figure 25C). When the licensing machinery was previously activated by 

the addition of calcium, the rescue of ubiquitin depletion with exogenous protein was 

not required for licensing. This demonstrates that ubiquitination, but not DUB activity, 

is required specifically for the activation of replication licensing. 
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Figure 25: UbVS inhibits Deubiquitinases Resulting in Ubiquitin Depletion. (A) Metaphase or 

interphase extract was untreated or supplemented with 20 µM UbVS for 30 minutes. UbVS treated extract 

was subsequently untreated or supplemented with 44 µM wild-type (wt) ubiquitin. Samples were taken at 

0, 25, 45 and 75 minutes after ubiquitin addition and analysed by western blot against ubiquitin to assess 

reformation of high molecular weight ubiquitin complexes. (B) Untreated, UbVS treated/ubiquitin 

depleted, and UbVS treated/ubiquitin rescued metaphase extract was supplemented with calcium and 

incubated for 15 minutes. DNA was added and incubated for 20 minutes before chromatin was isolated 

and analysed by western blot to determine the levels of licensing. (C) Untreated, UbVS treated/ubiquitin 

depleted or UbVS treated/ubiquitin rescued interphase extract was supplemented with DNA and 

incubated for 20 minutes. Chromatin was isolated and analysed by western blot to determine the levels of 

licensing. 
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The activation of replication licensing requires APC/C activity and free ubiquitin. The 

UbVS reagent can be applied to gather more information about the type of 

ubiquitination that is being undertaken in extracts. Metaphase extracts were depleted of 

ubiquitin by UbVS treatment. To determine what kind of chain types are required for 

the activation of licensing, depleted extracts were rescued with various ubiquitin 

mutants (Figure 26B). The APC/C catalyses mainly the addition of K11 chains on 

substrates and some K48 linked chains. Metaphase extracts were then supplemented 

with methylated ubiquitin (which cannot form chains), K48R ubiquitin (which cannot 

form K48 linked chains), K48O ubiquitin (which can only form K48 chains), K11R 

ubiquitin (which cannot form K11 linked chains) and K11O ubiquitin (which can only 

form K11 linked chains). Extracts were released into interphase by calcium addition and 

the level of licensing activity determined by chromatin isolation and western blot of 

Mcm2 and Mcm7. There was a small level of background licensing in the ubiquitin 

depleted control, however addition of wild-type ubiquitin resulted in a strong activation 

of licensing. Equal levels of activity were observed for K48R ubiquitin, demonstrating 

that K48 chains are dispensable for replication licensing. Methylated ubiquitin, K48O 

and K11O all resulted in a reduced level of replication licensing suggesting that mono-

ubiquitination, multiple mono-ubiquitination, K48 chains and K11 chains are all able to 

influence replication licensing activation to some extent. K11R ubiquitin strongly 

inhibited licensing suggesting that K11 chains are essential for the activation of 

licensing.  
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Figure 26: Chain Types Required for Licensing and the Reactivation of Geminin. (A) Ubiquitin 

reagents were separated on an SDS-PAGE gel and stained with coomassie to ensure the concentrations 

were relatively similar. (B) Metaphase arrested extract was supplemented with UbVS and incubated for 

30 minutes to deplete ubiquitin. Extracts were supplemented with different ubiquitin mutants prior to the 

addition of 10 ng/µl DNA. Chromatin was isolated after 20 minutes and the levels of licensing were 

determined by western blot for Mcm2 and Mcm7. A coomassie stain of histones is shown as a loading 

control. (C) Interphase extract was supplemented with UbVS and ubiquitin to inhibit DUBs and prevent 

ubiquitin depletion. DNA was added at 10 ng/µl and extracts were incubated for 90 minutes before being 

diluted 1/4 with LFB2/50 containing 0.1% Triton to lyse nuclei and centrifuged to remove DNA. The 

supernatant was filtered through a 0.2µm membrane and fractionated by size exclusion chromatography. 

Fractions were analysed by western blot for geminin and Cdt1. 
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As a simple control during this experiment to determine whether K11R ubiquitin 

addition inhibited replication licensing activation specifically or prevented the exit from 

metaphase arrest, nuclear formation was analysed by UV/phase contract microscopy. 

Interestingly, all UbVS-treated samples, including wild type rescues, were unable to 

form nuclei or decondense sperm DNA. Therefore this assay could not be used to 

determine the specificity of K11R’s effect on replication licensing. The inability to form 

nuclei was tested further and it was found that addition of UbVS to interphase extract 

before DNA addition did not affect nuclear formation, suggesting DUBs are required to 

facilitate nuclear formation and chromatin decondensation specifically upon exit from 

metaphase arrest. 

Li and Blow hypothesised that geminin ubiquitination is a prerequisite to geminin 

inactivation. To learn more about the role of geminin ubiquitination, treating extracts 

with UbVS, bortezomib and rescuing ubiquitin depletion with tagged forms of ubiquitin 

would allow for the identification of ubiquitinated geminin species by pulldowns. These 

kinds of experiments would give information about the chain types and kinetics of 

geminin ubiquitination, but would not give any information about the activity of 

geminin. If the hypothesis of Li and Blow is correct, the bulk of geminin is 

ubiquitinated, resulting in the degradation of some, but the remainder is subjected to 

DUB activity as a prerequisite to inactivation. If this is true, the addition of UbVS 

should block the reactivation of geminin. Geminin becomes reactivated after nuclear 

import and complex formation with Cdt1 can been seen by size exclusion 

chromatography. An experiment was undertaken to determine if UbVS blocks the 

reactivation of geminin in pre-incubated extracts (Figure 26C). Interphase extract was 

treated with UbVS for 15 minutes to ensure DUB inhibition and supplemented with 

wild type ubiquitin to prevent depletion. DNA was added at 10 ng/µl and extracts were 

incubated for 90 minutes before the generation of a soluble ‘pre-incubated extract’ (PIE) 



124 

 

by dilution and centrifugation. The pre-incubated extract was then fractionated by size 

exclusion chromatography and fractions were analysed by western blot for geminin and 

Cdt1 complex formation. A geminin-Cdt1 complex between 669 and 443 kDa had 

reformed (Figure 26C). Nuclear formation was observed by UV/phase microscopy at 90 

minutes to ensure extracts had progressed through the cell cycle. Large round nuclei 

with recondensed chromatin were observed indicating that extracts were in interphase 

and the complex observed on gel filtration could not simply be a metaphase arrested 

complex. This experiment shows that geminin deubiquitination is not required for its 

reactivation. It also shows that not all geminin is subjected to ubiqutination as this 

experiment was carried out in the absence of DUBs but in the presence of the 26S 

proteasome, therefore all ubiqutinated species were presumably destroyed.  

4.4 Investigating the Role of Geminin Phosphorylation 

It has been reported that geminin is modified by multiple PTMs in human, mice and rat 

cells (Figure 27). The majority of these modifications are phosphorylation.Whereas the 

majority of these reports are from big data experiments that search for specific PTMs, a 

number of reports have investigated the role of geminin modifications directly (Roukos 

et al., 2007, Zhou et al., 2012, Tsunematsu et al., 2013, Blanchard et al., 2014). 

Attempts have been made in the Blow laboratory to investigate geminin 

phosphorylation in the context of geminin reactivation. Incubation of interphase 

geminin separated by gel filtration or immunoprecipitated interphase geminin with 

lambda phosphatase did not increase the interaction of interphase geminin with His6-

Cdt1 (Hodgson, B., unpublished observation). This data did not support a role for 

dephosphorylation as a geminin activator. Previous attempts have been made in the 

Blow laboratory to identify novel geminin PTMs by mass spectrometry analysis of 

geminin immunoprecipitated from metaphase and interphase Xenopus egg extracts 

(Gillespie, P.J., DiSanto, R., unpublished observation). These previous efforts did not 
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Figure 27: Multiple Modifications of Human Geminin. A complete list of geminin modifications that 

have been identified by mass spectrometry is available at www.phosphosite.org. Human geminin is 

shown with the residue position and type of modification identified. Some modifications were identified 

in mice or rats and are shown on the equivalent residue in human protein. Multiple modifications have 

been verified by methods other than mass spectrometry. Modifications are clustered in the N-terminus 

near the motifs that regulate geminin stability. The D-box motif is shown from 22-31. A second cluster of 

modifications is located near the coiled-coil, which is shown from 96-144. The coiled-coil is responsible 

for geminin dimerization and Cdt1 binding. A third cluster in the C-terminus has been shown to regulate 

geminin cleavage after caspase activation. P- phosphorylation, A- acetylation Ub- ubiquitination. 

identify novel Xenopus geminin modifications but was also unable to conclusively rule 

out PTM as a method for geminin regulation and therefore this mechanism warranted 

further investigation. 

To gain evidence supporting a role for phosphorylation in the regulation of licensing, 

experiments were designed to inhibit kinases and phosphatases known to function at 

relevant stages of the cell cycle and determine the effects on DNA replication licensing. 

Metaphase or interphase extract was supplemented with inhibitors and chromatin was 

isolated and analysed by western blot to determine the effect of drug addition on Mcm3 

chromatin loading(Figure 28).Plk1 inhibition by BI2456 and inhibition of the APC/C by 

a D-box peptide had a significant effect resulting in the inhibition of licensing when 

added to metaphase extract. From this type of experiment, however, it was not possible 

to determine whether this effect was due to a direct interaction with the licensing 

reaction, or an indirect inhibition of licensing due to issues with mitotic exit.  

To look directly for novel phosphorylations and other PTMs of Xenopus geminin, 

geminin immunoprecipitated from metaphase and interphase extracts were trypsinised  
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Figure 28: Inhibition of a Number of Known Kinases does not inhibit Licensing. Phosphatases and a 

number of potentially active kinases were treated with inhibitors before or after the addition of calcium. 

Chromatin was isolated and the amount of MCM3 loading was determined to assess the effect of 

phosphatase or kinase inhibition on licensing. Coomassie staining of histones is shown as a loading 

control. Microcystin was added to inhibit both phosphatase 1 and 2. Inhibitor III was added to inhibit 

Aurora A. ZM was added to inhibit Aurora B. BI2536 was added to inhibit Plk1. PHD was added to 

inhibit Cdc7. D-box peptide was added to inhibit the APC/C as a positive control. Some contamination 

was observed in the no DNA and metaphase controls in the lower panel. Levels of MCM3 in treated 

samples are comparable to the untreated sample and equal histone loading was observed. 

and analysed by mass spectrometry. To increase the probability of identifying any 

existing phosphorylations, duplicate samples were processed by phosphoenrichment. 

The combined coverage from duplicate samples (untreated and phosphoenriched 

together) is shown (Figure 29). Moderate coverage of geminin H and L proteins was 

observed, however no phosphorylated peptides or alternatively modified peptides were 

identified. This experiment neither confirms nor rules out PTMs as a potential 

mechanism for geminin regulation as the unidentified peptides may be modified with 

PTMs.  
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Figure 29: Coverage of Geminin Peptides. The combined coverage of peptides from trypsinised and 

phosphoenriched geminin immunoprecipitation samples is shown, highlighted in blue. Motifs that 

regulate protein stability, mediate Cdt1 interaction and make up the coiled-coil are underlined. There was 

moderate coverage of geminin H and geminin L in both metaphase and interphase. However, no modified 

peptides were identified. 

4.5 Reactivation of Geminin Over Time 

The identification of an on/off switch mechanism fits well with the hypothesis that 

geminin is regulated by post-translational modification. It is likely that a portion of 

geminin is targeted for degradation and the remainder is regulated by a mechanism 
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other than ubiquitination. Initial mass spectrometry experiments were unsuccessful in 

identifying geminin PTMs, therefore an alternative method was required to find 

evidence supporting the existence of a modification. 2D gel electrophoresis separates 

proteins by two intrinsic properties. First proteins are separated by charge on an 

isoelectric focusing (IEF) strip and second by size on a SDS-PAGE gel. Specific spots 

are then identified by western blot. 

1 µl equivalents of metaphase and interphase extracts were separated on 7 cm pH 3-5.6 

and pH 3-11 IEF strips(Figure 30). The theoretical pI of geminin H and L is 5.06 and 

4.81, respectively. Therefore two spots are expected for geminin. 2D gels produced 

variable results, but overall the data suggested that multiple charged forms of geminin 

exist which vary depending on the cell cycle stage. This difference was more apparent 

on the pH 3-11 strip (Figure 30B). It is tempting to speculate that these charge states 

could be due to PTMs during the cell cycle.  

If there is a modification, there must be an explanation as to why it has not been 

identified by mass spectrometry. This has been attempted previously without success in 

the Blow laboratory. One simple explanation is that peptides which are consistently not 

identified could contain modifications. Increasing the input of immunoprecipitated 

geminin and analysing duplicate samples with a combination of proteases should 

increase coverage and the likelihood of identifying any potential modifications. A 

second explanation could be that the modification is lost during the 

immunoprecipitation. There is not sufficient endogenous geminin to analyse whole 

extracts directly, therefore immunoprecipitations must be performed. However, 

protocols that require long incubation times could allow for a slow loss of modifications 

over time. It has been reported that the ability to license chromatin is lost over time in 

Xenopus interphase extracts (Blow, 1993, Mahbubani et al., 1997). This was thought to  
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Figure 30: Multiple Forms of Geminin Identified by 2D Gel Electrophoresis. (A) Metaphase and 

interphase extracts were denatured in rehydration buffer and 1 µl equivalents were used to rehydrate pH 

3-5.6 IEF strips overnight. Proteins were separated by isoelectric focusing for a total of 33,000 voltage 

hours followed by SDS-PAGE and western blotting for geminin. (B) The experiment was carried out as in 

(A) on a pH 3-11 IEF strip. 

be due to a loss of Cdt1 activity between 60-120 minutes after calcium addition 

(Mahbubani et al., 1997). It was later shown that Cdt1 is targeted for destruction by the 

APC/C (Li and Blow, 2005) and it was hypothesised in our laboratory that ongoing 

APC/C-dependent destruction of Cdt1 may account for this loss of activity. However, it 

was demonstrated that Cdt1 levels remain above ~50% for at least 90 minutes after 

entry into interphase (Figure 11). An alternative explanation for this loss of Cdt1 

activity could be a reactivation of geminin over time in extract. Therefore it was 

attractive to investigate whether this loss in Cdt1 activity was due to a reactivation of 

geminin over time rather than destruction of Cdt1. 

To test geminin activity over time the most appropriate assay was to observe complex 

formation with Cdt1. Extract was fractionated by size exclusion chromatography at 

various times after calcium addition and fractions were analysed by western blot for 
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geminin and Cdt1 (Figure 31A). Cdt1 and geminin eluted in the expected fractionsin 

metaphase and 15 minute interphase extracts (compared to Figure 13). After further 

incubation the geminin complexes shifted into higher molecular weight complexes 

concurrently with Cdt1. Western blotting during these experiments produced excessive 

background as non-specific bands become more intense over time. This experiment was 

carried out multiple times with multiple extracts, each yielding reformation of geminin-

Cdt1 complexes. To further demonstrate the reformation of high molecular weight 

complexes geminin bands in lanes 1-8 were quantified by 2D densitometry and plotted 

as a percentage of total protein per lane over time (Figure 31B). This suggests that 

geminin may reform a high molecular weight complex over time in interphase. 

4.6 Identification of Novel Geminin Post-Translational Modifications 

Previous experiments undertaken by the Blow laboratory which aimed to identify novel 

geminin PTMs by mass spectrometry were unsuccessful. Early work carried out during 

this project also failed to identify modifications by mass spectrometry. Geminin 

reactivation was subsequently observed over time in interphase extracts, therefore the 

likelihood that previous mass spectrometry experiments provided false negatives 

increased, as geminin samples may have been reactivated during the long incubation 

times of the IP protocols. To get the most reliable and conclusive data on geminin 

PTMs it was critical that geminin IPs were optimised to ensure extracts still maintained 

inactive geminin. Geminin appears to reactivate as soon as 30 minutes after calcium 

addition (Figure 31), therefore an optimal protocol is required to complete geminin IPs 

within 30 minutes of calcium addition. 
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Figure 31: Geminin Reactivates Over Time. (A) Metaphase extract was released by calcium addition 

and extracts were incubated at 20°C for various times before being diluted 1/5 with LFB1/50, spin filtered 

through a 2 µm membrane and applied to a MAbPAC SEC-1 column for size exclusion chromatography. 

Metaphase extract was fractionated to show the high molecular weight complex of active geminin bound 

to Cdt1. X denotes 0.5 µl equivalents of input samples. Arrow indicates non-specific band. Double line 

indicates geminin. Metaphase and 15 minute samples were not run long enough on SDS-PAGE to 

separate the non-specific band from geminin in lanes 8, 9 and 10. (B) The geminin bands in lanes 1-8 

were quantified by 2D densitometry. Samples are plotted as a percentage of total intensity to demonstrate 

the movement of geminin from right to left over time, consistent with complex reformation. 
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A geminin IP protocol using crosslinked protein-A Dynabeads was optimised to 

determine an incubation time and dilution factor that allows a pulldown of geminin to 

near depletion levels, as quickly as possible (see methods 2.5.7). It was important to 

include a dilution to quickly cool extracts to 4°C to slow down enzyme activities. 

Increasing the dilution factor reduced the speed of the pulldown (compare lanes 2 and 3) 

and increasing the time resulted in a greater pulldown (compare lane 3 and 7). A 

dilution factor of 1/2 and an incubation of 10 minutes resulted in near depletion levels 

of geminin and complete depletion of Cdt1 in metaphase extract. The level of depletion 

was not increased with a longer incubation time (Figure 32A: compare geminin levels in 

lane 10 and 12). Therefore this was selected as the optimal condition. Two bands 

remain in the supernatant and it is likely that the stronger band is the same non-specific 

band observed close to geminin on size exclusion chromatography (Figure 14). 

Interphase extracts were also tested for all optimisation conditions as there is a much 

greater viscosity in these extracts, which could have required an alternative protocol for 

fast efficient IPs. However, a 1/2 dilution for 10 minutes also provided the most 

efficient IP in interphase extracts (Figure 32). This pulled down the greatest amount of 

geminin with the least amount of Cdt1 co-IP, suggesting it contains mostly inactive 

geminin (Compare lanes 6 and 8).  

The optimised geminin immunoprecipitation protocol could now be used to provide 

samples for mass spectrometry. This protocol gives some assurance that metaphase and 

interphase samples contain a majority of active and inactive geminin protein, 

respectively. From the time of calcium addition until the final wash of the IP and 

denaturation of samples by boiling in gel loading buffer, no longer than 30 minutes will 

have passed; at this timepoint the majority of geminin runs at a low molecular weight on 

gel filtration indicative of inactive protein (Figure 31). Having this confidence in the 

activity of the sample is essential to form a conclusion on the existence of 
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Xenopusgeminin PTMs, either positively or negatively, assuming a good coverage of 

proteins is obtained. 

 

Figure 32: Optimisation of Geminin Immunoprecipitation. (A) Metaphase extracts were mixed 1:1 

with protein A DynaBeads crosslinked with geminin antibody serum, diluted 1/2 or 1/5 with ice cold 

LFB1/50 and incubated for 5, 10 or 15 minutes. Beads were isolated and washed thoroughly. 5% of input, 

an equivalent amount of bead flowthrough and the immunoprecipitated samples were analysed by western 

blot to determine the levels of geminin pulldown and depletion. Two exposures are shown to demonstrate 

IP samples and supernatants at relevant levels. (B) Experiments were carried out as in (A) with interphase 

extracts. A metaphase immunoprecipitation was run as a positive control represented by a star. 

Duplicate geminin 10 minute IP samples were prepared from metaphase and interphase 

extracts. To ensure a more complete coverage of regions which are consistently and 

repeatedly unidentified, duplicate samples were prepared for digestion with trypsin and 

Lys-C. A control western blot was performed to show the difference in activity between 
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metaphase and interphase samples (Figure 33A). The reduction of geminin levels and of 

Cdt1 co-IP suggest that activities are maintained during the IP. Samples were resolved 

by SDS-PAGE and stained with Coomassie (Figure 33B). In the event that modified 

geminin proteins are less efficient antigens the input and flowthrough samples were also 

included for mass spectrometry analysis.Supernatant samples were slightly overloaded 

compared to inputs. Specific bands were excised and digested with trypsin or Lys-C and 

peptides were analysed by MS/MS. A recombinant full length geminin sample was also 

included as a technical control.  

The coverage of geminin H and L proteins from each sample is summarised in  

Table 3. A visual representation of peptide coverage of geminin H and L proteins is also 

shown (Figure 34, Figure 35 and Figure 36).An almost complete coverage of 

recombinant geminin H peptides was obtained (97.7% coverage with trypsin and Lys-C 

combined) showing that samples were efficiently digested and that good coverage of IP 

samples should be expected. A low coverage of peptides was obtained in metaphase 

input and flowthrough samples (Figure 34). However, both interphase input and 

flowthrough samples had an increased coverage compared to metaphase equivalents 

(Figure 35). The interphase flowthrough sample gave an unexpectedly high coverage of 

58% for geminin H suggesting that the IP was less efficient compared to metaphase 

samples, however there was some overloading observed on the input gel which may 

account for additional protein. Metaphase IP samples gave a good coverage of 85% and 

88% for geminin H and L respectively. Identification of interphase peptides was slightly 

lower with 74% and 77% coverage of Geminin H and L respectively. These 

experiments resulted in the identification of significantly more geminin peptides, giving 

a more complete coverage, compared to previous experiments. The loss of some 

peptides in interphase compared to metaphase IPs could be due to the quantity of input, 

as less geminin is present in interphase extracts. Alternatively, interphase geminin may 
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be a less efficient antigen due to modification, which is consistent with the high 

coverage obtained from interphase flowthrough samples.  

 

   
Meta   Inter   

Geminin Enzyme input IP FT Input IP FT Recombinant 

H Trypsin 0 76.70% 0 10% 69% 55% 95.89% 

 Lys-C 5.47% 47% 19.17% 10.90% 42.90% 5.40% 63% 

 Combined 5.47% 85.85% 19.17% 21% 74.43% 58.45% 97.72% 

L Trypsin 6.01% 84.9% 15.27% 25% 65.74% 11.50% - 

 Lys-C 0 65.27% 0 0 62.50% 0 - 

 Combined 6.01% 88.88% 15.27% 25% 77.31% 11.57% - 
 

Table 3: Summary of Geminin Coverage by Mass Spectrometry 
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Figure 33: Samples for Mass Spectrometry. (A) Control western shows the activity of samples used. 

Interphase geminin weakly interacts with Cdt1 showing that it is mostly inactive. (B) Coomassie stain of 

samples for mass spectrometry analysis. Boxed area shows slices that were processed by in gel digestion 

of proteins. 
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Figure 34: Coverage of Geminin Peptides in Metaphase Inputs and Flowthrough.The coverage of 

peptides from metaphase (A) input and (B) flowthrough samples digested with trypsin (Blue) and Lys-C 

(Red) are highlighted. Motifs that regulate protein stability, mediate Cdt1 interaction and make up the 

coiled-coil are underlined. There was low coverage of geminin H and geminin L in both metaphase input 

and flowthrough.  
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Figure 35:Coverage of Geminin Peptides in Interphase Input and Flowthrough. The coverage of 

peptides from interphase (A) input and (B) flowthrough samples digested with trypsin (Blue) and Lys-C 

(Red) are highlighted. Overlap of peptides identified by both enzymes is shown in purple. Motifs that 

regulate protein stability, mediate Cdt1 interaction and make up the coiled-coil are underlined. There was 

low coverage of geminin H and geminin L in interphase input sample and geminin L in the flowthrough 

sample. However, there was moderate coverage of geminin H in the interphase flowthrough. 

 



139 

 

 

Figure 36:Coverage of Geminin Peptides in Metaphase and Interphase IPs. The coverage of peptides 

from (A) metaphase and (B) interphase geminin IP samples digested with trypsin (Blue) and Lys-C (Red) 

are highlighted. Overlap of peptides identified by both enzymes is shown in purple. Motifs that regulate 

protein stability, mediate Cdt1 interaction and make up the coiled-coil are underlined. There significant 

coverage of geminin H and geminin L in metaphase IPs and good coverage of proteins in interphase IPs. 
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Peptide and PTM identification was performed by two programs which use different 

search algorithms, MaxQuant and PEAKS. MaxQuant matches the m/z of peptides to a 

reference database and searches for spectra of identified peptides with user specified 

modifications. PEAKS uses de novo sequencing to search all peptides for all 

modifications and although it uses a reference database initially, that is not absolutely 

required for peptide identification. A number of acetylated and methylated peptides 

were identified using MaxQuant (Table 4), however none were identified with PEAKS. 

In addition a greater coverage of peptides was observed in MaxQuant. As there was no 

concordance between MaxQuant and PEAKS in the identification of modifications, the 

spectra for each modified peptide is shown to further support their existence (Figure 

38). The spectra plot the relative abundance and m/z of b and y ions. B and y ions show 

where the bonds have fragmented along the amino acid backbone (Figure 37). 

Fragments that retain the charge on the N-terminal fragment are b ions and y ions retain 

the charge on the C-terminus. 

Geminin is an APC/C target due to the presence of a D-box motif. An additional 

ubiquitin initiation motif consisting of the residues 
50
RTK-KRK

62
 makes geminin a 

more efficient substrate of the APC/C (Benjamin et al., 2004, Williamson et al., 2011). 

R50-methylation, K52-methylation and K62-acetylation were identified on peptides 

from metaphase geminin IPs. This suggests that geminin stability may be regulated by 

the post-translational modificationof the ubiquitin initiation motif. R50-methylation and 

K52-methylation were, however, also detected in interphase IPs, although they were 

much less abundant as only 2% of peptides were modified. A mutational analysis of 

geminin it has previously shown that the mutation of K60 and K62 to alanine partially 

stabilised recombinant geminin in extracts, whereas a combination of R50, K52, K60 
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and K62 mutants resulted in a complete stabilisation of recombinant geminin (Benjamin 

et al., 2004). K116 is a highly conserved residue located in the coiled-coil region of  

 
Geminin Modified sequence 

Acetyl 

 (K) 

Methyl 

(K/R) Enzyme Stage Sample 

Mod 

Ratio 

1 L 7QR(m)SDVENPSMSIKNYIVDK(m)25 0 2 Tryp Inter Input 1 

2 L 116K(m)ALYEALQENEK127 0 1 Tryp Inter Input 0.008 

3 L 116K(m)ALYEALQENEK127 0 1 Tryp Inter Input 1.99 

4 L 63LWNDQLTSK(m)K72 0 1 Tryp Inter Input 1 

5 L 63K(ac)LWNDQLTSK71 1 0 Tryp Meta IP 0.11 

6 H 38VIQPSASGCLVGR(m)50 0 1 Tryp Meta IP 0.04 

7 L 38VIQQSASGCLVGR(m)TK(m)52 0 2 Lys Meta IP 0.62 

8 L 116K(m)ALYEALQENEK127 0 1 Tryp Meta IP 2.56 

9 L 62KLWNDQLTSK(m)K(m)72 0 1 Tryp Inter IP 1 

10 L 38VIQQSASGCLVGR(m)TK(m)52 0 2 Lys Inter IP 0.02 

11 L 7QRSDVENPSMSIK(m)19 0 1 Tryp Inter IP 1 

12 H 2NTNK(ac)K(m)QR(m)LDMEK13 1 2 Lys Meta FT 1 

13 H 2NTNK(ac)K(m)QR(m)LDMEK13 1 2 Lys Inter FT 1 

14 L 116K(m)ALYEALQENEK127 0 1 Tryp Inter FT 1 
 

Table 4: Modified Geminin Peptides Identified by Mass Spectrometry. The Mod Ratio refers to the 

ratio of modified peptide intensity to total intensity for that peptide. Modified peptides identified in 

immunoprecipitation samples are highlighted in bold. Peptide 9 methylation is shown in italics: the 

peptide is monomethylated either on K71 or K72 
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Figure 37: b and y Ions generated by Mass Spectrometry. Peptide fragments that retain the charge on 

the N-terminal fragment consist of b ions and y ions retain the charge on the C-terminus. B and y ions 

show where the bonds have fragmented along the amino acid backbone and aid in the identification of 

PTM locations. 
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Figure 38: Spectra of Modified Geminin Peptides. The spectra generated by MaxQuant are shown for 

the 14 modified geminin peptides listed in Table 4. The Y-axis represents relative abundance and the X-

axis represents m/z. Y ions are shown in red and b ions are shown in blue. Differentially charged ions are 

shown in cyan, yellow and black. The quality of spectra can be judged by the number of b and y ions and 

the intensity of specific ions. Inset: peptides are shown with the position of b and y ions and the identified 

modified peptides. All peptides, with the exception of Peptide 9, fragmented sufficiently to successfully 

identify each modified residue. Peptide 9 did not fragment in a manner that could pinpoint the modified 

residue, therefore either K71 or K72 is methylated. (DE = deamidated, ME = methylated, AC = 

acetylated) 
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Figure 39: Sites of Geminin Post-translational Modifications.The positions of residues modified by 

post translational modification on peptides from (A) metaphaseand (B)interphase extract. 32-40 shows the 

position of the D-box. 104-154 shoes the position of the coiled-coil. A=acetylation M=Methylation. The 

modifications were highlighted in blue for IPs, red for flowthroughs and green in inputs. 

geminin within the primary Cdt1 interaction site (Figure 6)(De Marco et al., 2009). This 

could hold potential as a key site for regulating the ability of geminin to interact with 

Cdt1, however the K116 methylation was abundant in both metaphase and interphase 

samples. The methylation of K5, K6 and R8 was observed in the flowthrough in both 

metaphase and interphase, suggesting that proteins containing these modifications may 

be less bind less efficiently to the geminin antibody during the IP. 

The function of these modifications cannot be speculated upon as the extreme N-

terminus of geminin has no known functions, however the residues here are very well 

conserved. K71, which is part of a proposed nuclear localisation signal domain (Boos et 

al., 2006),was methylated in interphase. This is not likely to be playing a role in the 

regulation of geminin function. Residues K19 and K25, which are situated close to the 

D-box motif, were also methylated suggesting they may potentially play a role in 

stabilisation of the protein. 

No modifications were identified in key domains that would be predicted to have major 

implications on the ability of geminin to interact with Cdt1. However, although this 
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experiment made improvements in identifying geminin peptides by mass spectrometry, 

it has not been exhaustive in showing that geminin activity is not regulated by post-

translational modification. To come to a conclusion on this mechanism of inactivation a 

complete coverage of the geminin proteins is required. In these experiments a key 

residue located between the primary and secondary Cdt1 interaction sites (residues 108-

115 of geminin H) is missing from all samples. This is consistent with all other mass 

spectrometry carried out in the lab. A modification here could potentially play a role in 

modulating geminin activity. This peptide was identified in the recombinant geminin 

control sample, suggesting that this peptide may not be detected due to some form of 

modification. A large peptide covering residues 144-165 of geminin H is identified in 

metaphase, but not in interphase samples. The region contains geminin’s tertiary Cdt1 

interaction site. This site has been shown to mediate the formation of a geminin-Cdt1 

heterohexamer (De Marco et al., 2009) and it has been hypothesised that hexamer 

formation is required for the inhibition of Cdt1. Therefore, a modification of this region 

by PTM could potentially regulate geminin activity. Identification of these peptides 

specifically in metaphase and not in interphase suggests that may not be identified due 

to a modification.  

4.7 A Potential Role for SUMO 

The preparation of peptides for mass spectrometry requires protein digestion with 

trypsin or another protease. The digestion of a SUMOylated protein removes the SUMO 

from the target protein and this leaves no detectable mark. Therefore if geminin was 

targeted for SUMOylation, it would not be detectable by mass spectrometry. It has been 

reported that Geminin can interact with the SUMO-specific proteases/isopeptidases 

SENP1 and SENP2 in human cells (Gardner et al., 2011). This suggests that geminin 

may be a target for sumoylation. Geminin sequences were analysed with SUMO site 

prediction software (http://sumosp.biocuckoo.org/online.php) and two potential 
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consensus sites were identified in Xenopus geminin H and L and a single site in human 

geminin (Figure 40A). These sites are both located within the coiled-coil region, 

suggesting that should they exist they could potentially play a role in regulating geminin 

activity.  

In vitro sumoylation reactions were carried out with either SUMO1, SUMO2, or 

SUMO2-T90K and wild type recombinant geminin. SUMO2-T90K was included as this 

modification allows for the detection of the modified site by mass spectrometry. 

Samples were analysed by SDS-PAGE followed by Coomassie staining. Formation of 

higher molecular weight conjugates shows that geminin can be a substrate for mono-

sumoylation and the addition of sumo chains in vitro. In a two hour reaction the levels 

of sumoylated geminin were relatively low compared to the control reaction carried out 

with the known target, IRF2 (Figure 40B and C). The majority of modified geminin in 

this reaction was present in a mono-sumoylated form. After a 4 hour incubation SUMO 

chains were added onto recombinant geminin (Figure 41). These bands were shown to 

be geminin specific by western blot analysis. This confirms that geminin is a potential 

SUMO substrate.  
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Figure 40: Geminin is SUMOylated in vitro. (A) Identification of two potential SUMOylation 

consensus sites (ψKxE) in Xenopus geminin H and L, once of which is conserved in human cells. Both 

sites are located within the coiled-coil of geminin. SUMOylation assays carried out for 2 hours with 

SUMO1, SUMO2 and SUMO2-T90K in a control reaction of a known SUMO target IRF2 (B) or geminin 

(C). After 2 hours samples were analysed by SDS-PAGE and coomassie staining.  
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Figure 41: Specificity of Geminin bands in Geminin in vitro SUMOylation Assay. SUMOylation 

assays carried out for 4 hours with SUMO1, SUMO2 and SUMO2-T90K in a control reaction of a known 

SUMO target IRF2 (B) or geminin (C). After 4 hours samples were analysed by SDS-PAGE and 

coomassie staining or western blot analysis for geminin. 
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4.8 Summary- APC/C mediates a Licensing switch and geminin is 

modified by PTMs 

The aim of this chapter was to gain insights into the molecular events that occur 

downstream of APC/C activation that result in the inactivation of geminin and to 

determine whether geminin is being regulated by post translation modification. A 

threshold of APC/C activity is required for the inactivation of geminin, which take 6-8 

or 8-10 minutes, after which time the APC/C is no longer required. This APC/C activity 

is likely to mediate regulation of geminin by methods other than ubiquitination as there 

is a pool of geminin that is not modified by ubiquitin during the exit from metaphase 

arrest and this portion of geminin can be reactivated in the nucleus in the absence of 

DUB activity. Multiple post-translational modifications of geminin H and L were 

identified by mass spectrometry after IP protocols were optimised to provide samples 

relatively quickly. The identified modifications potentially result in the stabilisation of 

geminin. PTMs in regions which would be expected to alter the function of geminin 

were not identified; however key regions of interphase geminin were not covered in the 

experiment. In addition, geminin has been shown to be a potential to be a target of 

SUMOylation. 
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5.0Regulation of Geminin by Protein-protein Interactions 

5.1 Introduction 

The binding of an inhibitor could sequester geminin, freeing Cdt1, to allow for licensing 

activity after the metaphase-anaphase transition. A number of geminin interacting 

proteins have been reported and the best characterised of these are the interactions of 

geminin with coiled-coil proteins that function during cell fate decisions. Pre-incubation 

of recombinant geminin with recombinant HoxA11 was found to reduce geminin-

dependent Cdt1 pulldown from cell extracts, suggesting HoxA11 competes with Cdt1 

for geminin binding (Luo et al., 2004). Overexpression of HoxB7 or HoxA11 in mouse 

embryonic fibroblasts also reduced the amount of Cdt1 that co-immunoprecipitates with 

geminin (Luo et al., 2004). In addition, high levels of Xenopus Six3 or Six6 was shown 

to compete with recombinant Cdt1 for binding to GST-geminin in vitro(Del Bene et al., 

2004). These reports lend support to a mechanism where activation of a geminin 

inhibitor protein at the metaphase-anaphase transition could preferentially bind to 

geminin and result in the activation of licensing. However, these specific interactions 

are unlikely to account for geminin inactivation in Xenopus egg extracts as these 

transcription factors are not expressed until later in development. Thus it is of interest to 

determine whether geminin is bound by novel proteins during the activation of licensing 

in Xenopus egg extracts. 

An alternative protein-protein interaction mediated mechanism has been described 

where geminin-Cdt1 complexes self-associate into larger complexes with specific 

stoichiometries that determine the activity of the complex. This model predicts that 

geminin-Cdt1 complexes can exist in multiple forms. There is evidence to suggest that a 

heterohexameric complex (geminin:Cdt1 at 4:2 ratio) is inhibited for licensing activity 
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and a heterotrimer (geminin:Cdt1 at 2:1 ratio) is permissive for licensing (De Marco et 

al., 2009). An equilibrium between these complexes could coordinate a stoichiometric 

switch mechanism to regulate licensing. This switch could be mediated by changing the 

absolute concentrations of geminin and Cdt1 or by modifying key interaction sites. 

There is biochemical evidence to support the existence of a permissive complex; a co-

expressed and purified geminin
DEL

-Cdt1 complex was shown to retain licensing activity 

similar to Cdt1 alone when added to interphase extracts (Lutzmann et al., 2006). 

Therefore, this model requires validation with endogenous proteins alone and to 

determine the stoichiometry of geminin and Cdt1 complexes at different stages of the 

cell cycle in egg extracts. 

The main aim of this chapter is to investigate the potential role of protein-protein 

mediated interactions in the regulation of geminin activity. Experiments were 

undertaken to provide evidence for or against either of the hypothesised mechanisms: 

the sequestration of geminin by an inhibitor or the stoichiometric switch of geminin-

Cdt1 complexes.  

5.2 Endogenous Geminin-Cdt1 Complex Size and Stability 

Fractionation of metaphase and interphase extracts by size exclusion chromatography 

has shown that geminin elutes into four potentially distinct peaks (Figure 13). Whereas 

both of the metaphase complexes are capable of interacting with Cdt1, neither of the 2 

complexes identified in interphase extracts are competent to bind to Cdt1 (Figure 16). 

Ithas been shown that geminin becomes reactivated upon nuclear import (Hodgson et 

al., 2002) and this has been hypothesised to increase the local concentration of geminin 

to drive the formation of geminin-Cdt1 complexes that are not permissive for licensing 

(De Marco et al., 2009). Geminin has been predicted to cooperatively bind to Cdt1 to 

form multimers in the nucleus lending support to the stoichiometric switch hypothesis 
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(Ode et al., 2011). This model predicts the formation of a large complex in the nucleus. 

Experiments were undertaken to observe the reformation of endogenous geminin and 

Cdt1 complexes in the nucleus (Figure 42). It was important to determine if unique or 

nucleus-specific geminin-Cdt1 inhibitory complexes were formed or whether all 

inhibitory geminin-Cdt1 complexes in egg extracts form the same complex that is 

present in metaphase. The observation of larger complexes would support the 

hypothesis that multimers of geminin-Cdt1 form in the nucleus to provide inhibitory 

activity. 

Pre-incubated extract (PIE) was prepared by allowing nuclei to assemble in extract for 

45 minutes, after which time extract was diluted and centrifuged, spin-crushing the 

nuclei and leaving geminin in the supernatant (Hodgson et al, 2002). During the 

incubation, nuclear assembly and nuclear protein import occurs, resulting in the 

reactivation of geminin. PIE was fractionated by size exclusion chromatography and 

analysed by western blot for geminin and Cdt1 (Figure 41A- 45 minutes).Samples 

immediately after the void volume were included to ensure no high molecular weight 

complexes were excluded from the analysis. Whereas the majority of geminin in this 45 

minute sample elutes at a low molecular weight indicative of inactive protein, all the 

Cdt1 identified co-fractionates with geminin between 669 and 443 kDa, similar to a 

metaphase geminin-Cdt1 complex, suggesting that a portion of geminin was  reactivated 

sufficiently quickly to inhibit Cdt1 at the start of S-phase. This data suggests that 

metaphase and nuclear inhibitory geminin-Cdt1 complexes are likely to consist of the 

same ratio of geminin and Cdt1.  

To further investigate the size of nucleoplasmic geminin and Cdt1 complexes, a 

‘Nucleoplasmic Extract’ (NPE)(Walter et al., 1998) was prepared. In this procedure, 

nuclei assembled for 90 minutes are carefully floated in extract, so that intact nuclei are 
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separated from the cytoplasm before spin-crushing is performed. NPE was fractionated 

by size exclusion chromatography to observe nuclear geminin-Cdt1 complex 

formation(Figure 42B). Evidence of a metaphase-like geminin-Cdt1 complex in NPE 

would further support that idea that only a single inhibitory complex is formed in 

extracts. However, NPE was found to contain little or no Cdt1, as it is presumably 

subjected to replication-coupled destruction during the 90 minute reaction. Therefore, 

NPE could not be used to identify inhibitory geminin-Cdt1 complexes. Interestingly, 

however, geminin eluted into a single peak between 443 and 200 kDa, similar to the 

lower molecular weight peak of metaphase geminin, suggesting that this complex 

consists of reactivated geminin.  

In addition to investigating the size of nuclear geminin-Cdt1 complexes, PIE was 

generated at two timepoints, 45 and 90 minutes, and analysed by size exclusion 

chromatography to give a rough estimation of the kinetics of geminin reactivation 

(Figure 42A).The inhibitory geminin-Cdt1 complexes migrating between 669 and 443 

kDa, is lost over time, as is the case in NPE, presumably due to the DNA replication 

dependent destruction of Cdt1. At 45 minutes the bulk of geminin remains in a ~150 

kDa complex, comparable to interphase inactive geminin. By 90 minutes this lower 

peak of geminin shifted to a higher molecular weight at ~250 kDa, similar to the peak of 

uncomplexed active geminin observed in metaphase extract. This suggests that the bulk 

of geminin became reactivated from 45-90 minutes during the later stages of DNA 

replication. It is hypothesised that geminin nuclear import follows quickly after nuclear 

formation to ensure Cdt1 is inhibited before CDKs reach a threshold of activity capable 

of initiating DNA replication (Hodgson et al., 2002, Gillespie et al., 2007). In this 

context the slow kinetics of reactivation observed here (Figure 42A) are surprising as 

this suggests that the bulk of geminin is not immediately reactivated upon nuclear 

import, but requires a slower mechanism to reform an inhibitory complex. One caveat to 
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this observation, however, is that the kinetics of geminin nuclear import are not known, 

and therefore the 45 minute PIE may contain a mixture of active nuclear and inactive 

cytoplasmic geminin. The observed transition from a lower inactive complex to a higher 

active geminin complex may therefore reflect a continued import of geminin from the 

cytoplasm to the nucleus from 45-90 minutes. To investigate this point, NPE could be 

prepared at different times after nuclear addition, to distinguish between nuclear and 

cytoplasmic pools of geminin. 

 

Figure 42: Fractionation of Geminin-Cdt1 Complexes in PIE and NPE.(A)Extracts were released into 

interphase for 15 minutes by calcium addition and supplemented with 10 ng/µl of DNA. Extracts were 

then incubated for 45 or 90 minutes. Nuclei were lysed by a 1/4 dilution with LFB2/50 supplemented 

with 0.1% Triton and centrifuged to remove the DNA. Supernatants were filtered through a 0.2µm 

membrane before being fractionated by size exclusion chromatography. Fractions were analysed by 

western blot for geminin and Cdt1. Specific Cdt1 bands are present in lanes 6, 7 and 8. A frequently 

observed non-specific band runs slightly larger than Cdt1 on SDS-PAGE in lanes 10, 11 and 12. (B) NPE 

(see Methods) was fractionated by size exclusion chromatography and fractions were analysed by western 

blot for geminin and Cdt1. 
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Inhibitory geminin-Cdt1 complexes elute on gel filtration at a high molecular weight 

between 669 and 443 kDa. Cdt1 is a 69.5 kDa protein and it elutes at approximately 443 

kDa in interphase. Geminin H and L proteins are 25.3 kDa and 24.8 kDa respectively 

and presumably exist as homo- and/or hetero-dimers of approximately 50 kDa in egg 

extracts. However, geminin elutes at multiple sizes between 66-200 kDa, at 200 kDa 

and at 443 kDa depending on the cell cycle stage. As Cdt1 contains alpha helical 

regions and geminin forms an elongated coiled-coil, when subjected to gel filtration 

these proteins are expected to fractionate at molecular weights higher than those 

predicted by the molecular mass of the proteins alone. However, these high molecular 

weight elution profiles could also be indicative of complex formation with novel 

regulatory proteins. 

To investigate the hypothesis that the sequestration of geminin by an inhibitor protein 

results in the activation of licensing, metaphase and interphase extracts were 

fractionated by size exclusion chromatography in the presence of increasing 

concentrations of salt (Figure 43). A salt titration could potentially interrupt charge-

charge interactions, and a shift of a geminin complex to a larger elution volume might 

indicate the loss of a binding partner. Under normal running conditions of 200 mM 

NaCl, metaphase geminin and Cdt1 complexes fractionated as expected, however, the 

extract used contained a relatively low amount of lower molecular weight metaphase 

geminin compared to typical extracts. This however did not affect the elution profile of 

geminin in interphase extract and two geminin peaks are observed below 443 and 200 

kDa, respectively (lanes 9 and 12). At higher salt concentrations the transfer of proteins 

onto the membrane during the western blot was impeded, however the peak elutions 

could still be observed at high exposures. Metaphase geminin-Cdt1 complexes were 
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unaffected by the addition of 500 mM NaCl. The second geminin peak however, shifted 

to the right at this salt concentration, with an extra peak appearing just below 200 kDa 

(shift from lane 9 to 12). Interphase Cdt1 also began to shift one fraction to the right at 

500 mM NaCl (shift from lane 8 to 9). Interphase geminin elution was significantly 

affected at 500 mM NaCl with the only observed fraction eluting close to 66 kDa (shift 

from 9 and 12 to 13). The majority of complexes were not affected further by increasing 

salt to 1000 mM, however, interphase geminin complexes shifted further and eluted at 

and below 66 kDa (lane 14). Geminin and Cdt1 interact tightly by hydrophobic 

interactions and the inactive metaphase geminin-Cdt1 complexes at ~500 kDa were not 

affected by salt at any concentration. This is consistent with a ~500 kDa complex that 

consists of geminin and Cdt1 only, as charge-charge mediated interactions should be 

disrupted at high salt. This experiment also shows that all geminin complexes, except 

for metaphase geminin-Cdt1, are sensitive to salt to some extent. 
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Figure 43: Geminin and Cdt1 Fractionation at High Salt. Metaphase and interphase extracts were 

diluted 1/5, filtered through a 0.2 µm membrane and fractionated by size exclusion chromatography. 

Fractions were analysed by western blot for geminin and Cdt1. Orange asterisk indicates Cdt1 peak 

elution. Arrow indicates interphase geminin peak elution. 

To gain more information about geminin complex stability and determine if the 

metaphase and interphase geminin complexes can interconvert, the peak geminin 

fractions were pooled and reapplied to the gel filtration column under the same 

conditions as the first round of fractionation (Figure 44). The more stable the geminin 

complexes are, the more likely they are to elute into the same fractions after the second 

run. Both metaphase peaks eluted at essentially the same size, demonstrating that these 

consist of stable complexes. Interphase complexes, however, were lost after being 

reapplied to the column, suggesting that they were unstable and took on a different form 

during the second fractionation. Potentially this could be a false negative if the protein 

concentration was simply too low for detection, however non-specific bands which 

were less abundant than geminin in the input (see lane 8 upper band) did elute into the 
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original fractions (interphase lane 9 and 10), suggesting the geminin peak was lost due 

to complex instability. This data, together with salt titration experiments, suggests that 

geminin not bound to Cdt1 may undergo dynamic charge-charge mediated interactions, 

either with itself or potentially with an unknown interacting protein. 

5.3 Estimating the Molecular Weight of Geminin and Cdt1 Complexes  

It appears that the metaphase inhibitory geminin-Cdt1 complex is likely to represent the 

largest stable form of geminin-Cdt1 multimers that form in egg extracts including both 

cytoplasmic and nuclear inhibitory complexes. In addition, fractionation of extracts in 

high salt did not alter the size of this complex suggesting it likely to consist of geminin 

and Cdt1 only. Optimisation of linear glycerol gradient sedimentation to resolve 

geminin and Cdt1 complexes was performed to allow for an estimation of the molecular 

weight of geminin and Cdt1 containing complexes using the Siegel and Monty equation 

(Erickson, 2009). This would in turn give information on the stoichiometry of 

endogenous geminin and Cdt1 complexes. 
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Figure 44: The Stability of Geminin Complexes.Metaphase and interphase extracts fractionated by size 

exclusion chromatography both contain two geminin species. Peak 1 (blue boxes) and peak 2 (red boxes) 

of metaphase and interphase fractions were pooled and reapplied to the column for a second fractionation. 

Elutions were analysed by western blot for geminin. 

Preliminary experiments were performed with metaphase extract on a broad glycerol 

gradient of 5-50% to observe the sedimentation of geminin and Cdt1 (Figure 45). The 

refractive index of fractions in a control run is shown to demonstrate that linear 

gradients had formed. Molecular weight markers were run with each experiment as 

there is experiment-experiment variation. A single geminin complex was observed 

which fractionated well with Cdt1.In an attempt to gain a greater resolution across 

geminin and Cdt1, samples metaphase and interphase extracts were applied to a 5-28% 

glycerol gradient. The refractive index and molecular weight marker controls are shown 

(Figure 46). Geminin and Cdt1 fractions were analysed by western blot, quantified by 

2D densitometry and intensity was plotted against fraction number to demonstrate the 

distribution of proteins (Figure 47). Both geminin and Cdt1 eluted at smaller apparent 

molecular weights in interphase compared to metaphase extract, consistent with gel 
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filtration data, however the resolution of the gradient was not sufficient to separate 

geminin and Cdt1 in interphase extracts.  

The distribution of molecular weight markers by gel filtration and glycerol gradient 

sedimentation was plotted to generate standard curves to estimate the Stoke radius and 

Sedimentation coefficient, respectively (Figure 48). These data were then used to 

calculate the molecular weight of geminin and Cdt1 containing complexes using the 

Siegel and Monty equation, M = 420.5(RSS) (Erickson, 2009). 

The calculated molecular weight for the metaphase geminin-Cdt1 complex was 144 kDa 

(Figure 48). In a stoichiometric switch mechanism geminin-Cdt1 complexes are 

hypothesised to switch from a permissive heterotrimer to an inhibitory heterohexamer, 

in response to a cell cycle regulatable factor, such as local concentration or PTM. 

However, the molecular weight of the inhibitory complex, estimated by Siegel and 

Monty, does not fit well to a heterohexamer (geminin:Cdt1 at 4:2) which has an 

estimated molecular mass of 240 kDa, but does fit closer to a heterotrimer 

(geminin:Cdt1 at 2:1) which has an estimated molecular mass of 120 kDa. In fact the 

144 kDa geminin-Cdt1 complex fits best to a tetramer (geminin:Cdt1 at 3:1) which has 

a molecular mass of 144 kDa, however it can be expected that geminin is a constitutive 

dimer in extracts. It has been suggested that the average error for molecular weight 

estimations by Siegel and Monty is ± 10% (Erickson, 2009). Taking this into account a 

2:1 heterotrimer is a much more likely fit. If the 2:4 (Cdt1:geminin) heterohexamer is 

indeed the inhibited form of Cdt1, it is not stable enough to be maintained during gel 

filtration. The Cdt1-independent portion of metaphase geminin, estimated to be 109 

kDa, appears to form a tetramer (4 x 25 kDa = 100 kDa). The larger interphase geminin 

complex, estimated to be 93 kDa, is also close to a tetramer but runs slightly smaller. 

This may represent a tetramer with an altered shape in interphase or metaphase extracts. 
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The smaller interphase geminin complex, estimated to be 73 kDa, which is similar to a 

trimer (3 x 25 kDa = 75 kDa). This may represent a dimer with an altered shape. 

Alternatively interphase peak 1 and peak 2 may consist of dimers bound by interacting 

proteins, as these interphase geminin complexes were salt sensitive.  
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Figure 45: Sedimentation of Metaphase Extract Through a 5-50% Glycerol Gradient.(A) A control 

tube was run to demonstrate the linearity of the gradient. (B) Gel filtration markers or (C) 100 µl of 1/5 

diluted metaphase arrested extract were applied to a 5 ml 5-50% glycerol gradient and proteins were 

separated by centrifugation for 16 hours at 363,137 x g. 200 µl fractions were collected and analysed by 

SDS-PAGE followed by Coomassie staining or western blot analysis for geminin and Cdt1. 
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Figure 46: 5-28% Glycerol Gradient Controls.(A) A control tube was run to demonstrate the linearity 

of the gradient. (B) Gel filtration markers were applied to a 5 ml 5-50% glycerol gradient and proteins 

were separated by centrifugation for 16 hours at 363,137 x g. 200 µl fractions were collected and analysed 

by SDS-PAGE followed by Coomassie staining. These controls were run alongside metaphase and 

interphase extract samples (Figure 47). 
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Figure 47: Sedimentation of ExtractsThrough a 5-28% Glycerol Gradient.(A) 100 µl of 1/5 diluted 

metaphase and interphase extracts were applied to a 5 ml 5-28% glycerol gradient and proteins were 

separated by centrifugation for 16 hours at 363,137 x g. 200 µl fractions were collected and analysed by 

western blot analysis for geminin and Cdt1.(B and C)The intensity of geminin and Cdt1 in metaphase 

and interphase fractions were quantified by 2D densitometry. 
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Figure 48: Molecular Weight Estimation by Siegel and Monty. (A) Fractionation of molecular weight 

markers and metaphase and interphase extracts by SEC. (B)Sedimentation of molecular weight markers 

and metaphase and interphase extracts on a 5-28% glycerol gradient. (C) Molecular weight markers from 

A were used to plot a standard curve for the Stokes radius (Rs). (D) Molecular weight markers from 

Figure 46 were used to plot a standard curve for the sedimentation coefficient (Sv). (E)RS was calculated 
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for peak fractions in A using the standard curve C. (F) Sv was calculated for peaks in B using the 

standard curve D. (G)Molecular weights were calculated with the equation M = 420.5(S.RS).  

5.4 Attempts to Reconstitute Geminin-Cdt1 Complexes with 

Recombinant Proteins 

The molecular weights of endogenous complexes calculated by Siegel and Monty 

cannot all be accounted for simply by variations of geminin and Cdt1 proteins 

alone.This discrepancy between the estimated molecular weights and predicted 

molecular weights of complexes with specific stoichiometries allows for speculation on 

the role of novel interacting proteins in egg extracts. To gain further insight into the 

makeup of geminin and Cdt1 complexes and determine whether observed complexes 

consist of geminin and Cdt1 alone or may involve additional proteins, it would be 

informative to reconstitute complexes with recombinant proteins for analysis by size 

exclusion chromatography. Any geminin or Cdt1 containing complexes observed in 

extracts that do not correlate well to recombinant complexes would likely contain an 

interacting protein, or are folded into an altered shape.  

Expression of wild-type His6-Geminin in bacteria was found to produce mostly 

insoluble protein and any purified soluble protein would consistently smear on gel 

filtration, suggesting that it was unfolded. The geminin expression plasmid (which was 

used in the original geminin paper of McGarry and Kirschner (McGarry and Kirschner, 

1998)) was sequenced and found to contain an extra 84 nucleotides insertedat the N-

terminus between the thrombin cleavage site and the geminin start methionine (Figure 

49). A BLAST search of the fragment found that it was made up of a multiple cloning 

site from a previous plasmid and a portion of geminin mRNA. Full length wild type 

geminin was cloned into a pET15b expression vector and protein expression was 

optimised to produce high amounts of soluble protein. This was achieved by reducing 

the incubation temperature to 25°C after induction with IPTG (Figure 50). 
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Figure 49: Recombinant Geminin Insertion.(A)Multiple sequence alignment of geminin (1), the 

geminin
DEL

 plasmid (2) and the wild type geminin plasmid (3). The green box denotes the His6 tag. The 

red box denotes the Thrombin cleavage site. The black box surrounds the aberrant insertion. The 

nucleotide sequence was BLASTED and found to consist of a cloning plasmid multiple cloning sequence 

(B) and a portion of geminin mRNA (C). 

As a control to show that this protein was active and therefore likely to be correctly 

folded, recombinant geminin was tested for its ability to inhibit DNA replication. 

Recombinant full length geminin or geminin
DEL

 was titrated into interphase extract 5 

minutes prior to DNA addition and the levels of DNA replication were measured after 

90 minutes (Figure 51). DEL is a more inhibitory protein, consistent with previous 

reports, coordinating a switch in licensing inactivation from 30-60 nM. Wild type 

protein fully inhibited licensing in a switch like manner from120-240 nM, showing that 

this protein was active and therefore was likely to be correctly folded. 
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Figure 50: Optimisation of Soluble Geminin Expression. (A) 5 clones were selected and assessed for 

their ability to express geminin after stimulation with IPTG. (B)The time and temperature of expression 

was optimised to produce high levels of soluble protein. Expression for 3 hours at 25°C produced high 

levels of soluble protein (T: total, S: soluble, I insoluble). 
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Figure 51: The Activity of Full Length Recombinant Geminin. Extract released into interphase was 

supplemented with a titration of geminin
DEL

 or wild type His6-Geminin prior to DNA addition. DNA 

replication measured after 90 minutes and expressed as a percentage of the no addition control. 

To determine whether this active recombinant protein alone can from complexes 

resembling those observed in extracts, recombinant geminin was fractionated by size 

exclusion chromatography (Figure 52). The peak fractions eluted between 443 and 200 

kDa, resembling the second geminin peak of metaphase arrested extract, which has been 

previously shown consists of active geminin. Therefore the second peak in metaphase is 

likely to exist as a geminin-only complex. At an estimated molecular weight of 108 

kDa, this complex of endogenous geminin that is able to bind Cdt1 and inhibit licensing 

is likely to be a tetramer, or dimer of dimers. Therefore the recombinant protein alone in 

solution is also assumed to be a tetramer. Interestingly, geminin complexes 1 and 2 

from interphase extracts are estimated to have slightly smaller molecular weights, 

suggesting they may not be capable of tetramer formation. Interphase geminin 

complexes were sensitive to high salt. Therefore, in an attempt to break the recombinant 

tetramer and observe the elution profile of a geminin dimer, the recombinant protein 

was fractionated by size exclusion chromatography in the presence of increasing salt 

concentrations. A broadening of the geminin peak was observed in the presence of 500 

mM NaCl. At 1000 mM the peak elution shifted a fraction to the right, eluting at 200 

kDa. The broadening of the peak at 500 mM salt suggests that there is a dynamic 



173 

 

interaction of geminin dimers to form tetramers and this interaction is disrupted by high 

salt. Assuming the recombinant geminin is a tetramer at low salt suggests that in high 

salt a dimer is formed at 200 kDa. Therefore geminin dimers in extract would be 

expected to fractionate at 200 kDa. Interphase geminin complexes fractionate to either 

side of this, suggesting geminin dimers are not present in extract or that they are 

modified in some way that alters their hydrodynamic radius. This is hints that interphase 

geminin is either bound by an interacting protein, or has an altered shape.  

To get a more conclusive measure for the molecular weight and in turn stoichiometry of 

recombinant geminin complexes, recombinant geminin was analysed by SEC-MALS 

(Size Exclusion Chromatography with Multi-Angle Light Scattering analysis). In a 

properly calibrated system the light scattering can be used to accurately measure the 

molecular mass of a complex. The recombinant protein shown in Figure 52was purified 

by an optimised protocol which used LFB100 buffer. During initial SEC-MALS 

experiments proteins were applied to a Mab-PAC SEC-1 columnin the presence 

LFB100 buffer, however issues surfaced with proteins eluting much later than expected, 

suggesting that at the high concentrations required for SEC-MALS the protein was 

interacting with the matrix of the column. The buffer was simplified (40 mM HEPES, 

100 mM KCl, pH 8.0) and recombinant protein was run on a 24 ml Superdex 200 

column. An initial experiment was undertaken under these conditions with a relatively 

impure sample of recombinant geminin (Figure 53). The geminin specific peak gave a 

molecular weight of 120 kDa. This is consistent with a tetramer of recombinant geminin 

(27.5 kDa x 4 = 110 kDa). There was a contaminating protein present in the sample 

which is likely to have increased the molecular weight slightly from ~110 to ~120 kDa. 

The specificity of the peak and the protein is shown. A duplicate sample was 

fractionated and elutions were collected and subjected to SDS-PAGE followed by 
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Coomassie staining or western blotting for His6-tag. SEC-MALS shows that 

recombinant geminin which is able to inhibit licensing consists of a tetramer. 

 

 

Figure 52: Fractionation of Recombinant Wild-type Geminin. Full length wild-type His6-Geminin 

was fractionated by size exclusion chromatography on a Mab-PAC SEC-1 column and fractions were 

analysed by SDS-PAGE and Coomassie staining. The UV trace is shown to demonstrate the broadening 

of the peak at higher salt concentrations. 
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Figure 53: Recombinant Geminin Analysed by SEC-MALS is 120 kDa. The UV trace from the SEC-

MALS experiment is shown. The geminin complex eluted in a peak at 37 minutes. A duplicate sample 

was fractionated by SEC only to demonstrate the specificity of geminin bands.  
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Next, attempts were made to reconstitute geminin-Cdt1 complexes. Recombinant Cdt1 

was purified from insoluble pellets in bacteria under denaturing conditions and refolded 

in a THED200 buffer system. Cdt1 was liable to precipitate during the refolding of 

dialysis, and it appeared that the solubility depended not only on the concentration of 

Cdt1 but also on the concentration of contaminating proteins; the lower the Cdt1 

concentration and the higher the amount of impurities the more soluble recombinant 

Cdt1 was. This made it difficult to analyse recombinant Cdt1 alone by chromatography 

as it was usually purified at a relatively low concentration and would readily precipitate 

on the columns, presumably once the separated from the stabilising contaminating 

proteins.  

Experiments were designed to vary the ratios of geminin and Cdt1 and to analyse 

complex formation by size exclusion chromatography at various salt concentrations, but 

this was not achieved. Recombinant Cdt1 only stayed in solution at very high 

concentrations of recombinant geminin on a MAbPac SEC-1. This was consistent with 

previous work undertaken in the lab that showed that Cdt1 required either IGG, BSA or 

PVA to stay in solution during chromatography ((Tada et al., 2001)). The complex of 

geminin alone peaked between 443 and 200 kDa. Preincubation of His6-geminin with 

His6-Cdt1 for 15 minutes prior to size exclusion chromatography resulted in a shift of a 

small portion of geminin to a smaller elution volume suggesting that these proteins had 

formed a complex (Figure 54). This reconstituted geminin-Cdt1 complex eluted at 443 

kDa, much lower than expected compared to geminin-Cdt1 inhibitory complexes found 

in metaphase extract which elute closer to 669 kDa. This recombinant complex appears 

more similar to interphase Cdt1 which also elutes at 443 kDa, suggesting that His6-

geminin and His6-Cdt1 may not interact in a similar manner to the interactions between 

endogenous proteins. 
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To ensure the issues with Cdt1 stability were not column-specific, additional 

chromatography was performed on a Superose 6 column with PVA containing buffer. 

Initial experiments under these conditions did seem to maintain Cdt1 stability and 

allowed for a more stoichiometric reconstitution of geminin-Cdt1 complexes, however 

all complexes ran at 443 kDa and did not appear to resemble the inhibitory geminin-

Cdt1 complexes identified in extract. 

5.5 Is There a Dynamic Stoichiometric Switch?  

Chromatin becomes maximally licensed approximately 15 minutes after the addition of 

calcium to metaphase arrested extracts (Blow, 1993). The striking difference in the 

kinetics of geminin and Cdt1 destruction that was observed (Figure 8 and Figure 9) 

suggested that the activity of the APC/C creates a period within 10 minutes where the 

ratio of geminin to Cdt1 is dramatically altered. While geminin is reduced to 

approximately 40-50% at this timepoint, Cdt1 levels are relatively stable. Therefore the 

relative levels of geminin and Cdt1 change during the licensing period, which has been 

hypothesised to control the stoichiometry and in turn the activity of these proteins. It has 

also been shown that the ability to license chromatin falls over time after the addition of 

calcium to metaphase extracts (Mahbubani et al., 1997). This loss of activity could be 

explained by the slow change in the relative levels of these proteins due to the linear 

reduction of Cdt1. As geminin levels stabilise and Cdt1 destruction begins after 

approximately 20 minutes the relative levels would change to favour licensing 

inhibition. A simple way to investigate this stoichiometric switch hypothesis would be 

to determine the relative ratio of geminin to Cdt1 after the metaphase-anaphase 

transition and throughout the licensing period. For this, an accurate quantification of 

endogenous proteins in metaphase arrested extracts was required. With a known amount 

of protein in metaphase arrested extracts, the molar ratio of proteins can be plotted over 

time using the destruction timecourse data. 
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Figure 54: Formation of Recombinant Geminin-Cdt1 Complexes. (A) UV absorption of recombinant 

complexes fractionated on a MAbPac SEC-1. (B)Fractions were analysed by western blot analysis for 

His6 to detect both geminin and Cdt1. A dark exposure is shown to demonstrate the Cdt1 peak. In 

addition this exposure emphasises the relative ratios required to maintain Cdt1 in solution.  
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Recombinant full-length Cdt1 and geminin were quantified against BSA standards of 

known concentrations (Figure 55). Recombinant proteins of known concentrations were 

then used to quantify endogenous protein concentrations by western blot and 

densitometry analysis. The concentration of geminin and Cdt1 in metaphase extracts 

was found to be 55 and 41 nM, respectively. 

Experimental data was taken from Figure 9 to calculate the changes in the molarity of 

geminin and Cdt1 over time after the addition of calcium. Molar ratios were then 

calculated and plotted over time (Figure 56). Both the ratio of geminin to Cdt1 (G/C) 

and the ratio of Cdt1 of geminin (C/G) are shown. Although they are essentialy the 

same data, plotting of both together gives a greater appreciation of the switches in ratios 

that were observed. In the absence of DNA the relative amount of Cdt1 increases 

rapidly as geminin is degraded in response to calcium addition (Figure 56A). An 

immediate switch is observed and Cdt1 becomes more concentrated than geminin by 4 

minutes. The relative concentration of Cdt1 continues to rise until a peak is observed at 

16 minutes. This correlates well with previous reports that demonstrated that the 

licensing system becomes fully activated 15 minutes after calcium addition (Blow, 

1993). Cdt1 remains relatively more concentrated than geminnin until 60 minutes after 

calcium addition, after which time geminin becomes relatively more concentrated due to 

APC/C-mediated destruction of Cdt1. This is again consistent with previous reports 

which stated that licensing factor activity is lost from 60-120 minutes due to the loss of 

Cdt1 activity (Mahbubani et al., 1997). These data fit very well to the hypothesis that 

the relative ratios of geminin to Cdt1 can coordintate the Cdt1-dependent licensing 

activity. In the presence of 3 ng/µl of DNA the switches in the realive ratios are even 

more striking (Figure 56B). The addition of DNA has no effect on the initial 

degradation of geminin and an immediate switch is observed with Cdt1 becoming more 
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concentrated at 4 minutes and reaching maximal levels at 15 minutes. Within the next 

30 minutes nuclear formation occurs leading to the initiation of DNA replication. DNA 

replication dependent destruction of Cdt1 then leads to a pronouced switch in the 

relative concentration of geminin at 45 minutes. If activity is regulated by the relative 

ratios of these proteins then the observed data for extracts supplemented with 3 ng/µl 

DNA would suggest that Cdt1 reamins active from 15-45 minutes. If this was the case 

then rereplication is likey to occur. As soon as nuclear envopes are assembeled, which 

usually takes 10-25 minutes, geminin nuclear import is likey to increase the relative 

ratio of geminin to Cdt1. Therefore the relative ratios of geminin to Cdt1 are likely to 

switch much sooner than 45 minutes within individual nuclei. Taken together this data 

is consistent with a mechainsm where the activity of replication licensing is influenced 

by the relative ratios of geminin and Cdt1. 
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Figure 55: Quantification of Endogenous Geminin and Cdt1 in Metaphase extract. (A) Recombinant 

Cdt1 was quantified against a BSA standard of known concentration. (B) Cdt1 quantified in A was used 

to determine the concentration of protein in metaphase extract. (C)Recombinant geminin was quantified 

against a BSA standard of known concentration. (D)Geminin quantified in C was used to determine the 

concentration of protein in metaphase extract. 
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Figure 56: The Change in Molar Ratio of Geminin and Cdt1 Complexes Over Time.Data from 

Figure 10 andFigure 55 was used to determine the change concentrations of geminin and Cdt1 during 

timecourses. This was the used to calculate the Molar ratio of geminin to Cdt1 (and vice versa) and 

plotted over time. While both curves are essentially the same data both were plotted to better appreciate 

the observed switches in relative ratios over time. (A)Changes in the relative ratios of geminin and Cdt1 

over time in extract. (B)Changes in the relative ratios of geminin and Cdt1 over time in extract 

supplemented with 3 ng/µl of DNA. 

A dynamic stoichiometric switch hypothesis has been proposed (De Marco et al., 2009). 

There is good evidence here that there is an on/off switch in the ability to license DNA 

which depends on the relative concentrations of geminin and Cdt1. The next step was to 

determine how this concentraion dependent change was implemented and whether it is 

mediated by complex assembly as hypothesised. Therefore it was of interest to proove 

the existence of two different geminin:Cdt1 complexes. So far we had not observed 

complexes larger than the one at 669 kDa and no evidence that the samples of geminin 

and Cdt1 that cofractionate in interpashe were interacting or not. So to determine if 
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there are two geminin-Cdt1 complexs with differing stoichiometries geminin samples 

were immunoprecipitated from SEC fractions. Geminin was immunoprecipitated across 

11 fractions and analsyed for the ability to pull down Cdt1 (Figure 57). The 

superantants were run after the IP to show the levels of protein depletions. Geminin 

immunoprecipitated from  metaphase gel filtration samples was present in two peaks as 

expected, with the larger peak efficiently pulling down endogenous Cdt1 (Figure 57A). 

In the supernatant, both geminin and Cdt1 were depleted. Geminin immunoprecipitated 

from interphase extract produced two peaks as expected (Figure 57B). Fractions 5 and 6 

were predicted to form an interphase geminin-Cdt1 complex which would be permissive 

for licensing. However no Cdt1 was co-immunoprecipitated with geminin in these 

fractions and supernatant are shown to contain Cdt1 while geminin samples were 

sufficiently depleted. This data suggests that interphase geminin does not form any 

complexes with Cdt1. This is consistent with earlier experiments that showed Cdt1 

addition to interphase extract did not result in an alteration of geminin fractionation 

(Figure 16). Taken together this data suggests that although the relative concentrations 

of geminin and Cdt1 may play a role in the acitvation of licensing this role is not 

mediated through a dynamic formation of geminin-Cdt1 complexes of different 

stoichiometries. 

5.6 The Geminin Family of Proteins  

The identification of two proteins with geminin-like coiled-coils, Idas and GemC1, 

defined a new family of geminin-like proteins (Balestrini et al., 2010, Pefani et al., 

2011). The geminin coiled-coil mediates dimerisation and this is required for the 

inhibition of licensing. Due to the sequence similarity of the coiled-coil regions these 

proteins may be able to interact with geminin and therefore have good potential to 

represent novel geminin inhibitor proteins. 



184 

 

 

 

Figure 57: Immunoprecipitation of Geminin from SEC fractions. (A) Metaphaseextract was 

fractionated by size exclusion chromatography and geminin was immunoprecipitated from 11 fractions 

and analysed for the ability to pull down Cdt1. The supernatants were run after the IP to show the levels 

of protein depletions.(B) Interphaseextract was fractionated by size exclusion chromatography and 

geminin was immunoprecipitated from 11 fractions and analsyed for the ability to pull down Cdt1. The 

supernatants were run after the IP to show the levels of protein depletions. 1 and 2 mark non-specific 

bands. Cdt1 is marked with an X. 



185 

 

 

5.6.1 Idas is not present in Xenopus Egg Extracts 

During the initial stages of this project a number of Idas antibodies were raised against 

100 amino acid peptides from the N- and C- terminus (by Peter Gillespie) or full length 

Idas recombinant protein. Four antibodies were raised in total and each was affinity 

purified against its cognate antigen. However no bands were consistent among proteins 

bands by western blot and mass spectrometry analysis of immunoprecipitation samples 

failed to identify Idas in Xenopus egg extracts. During this project Idas was found to be 

a key regulator of multicilliate cell differentiation during organogenesis and it could 

coordinate cell cycle exit, centriole assembly and control the transcription of FoxJ1 in 

these cells (Stubbs et al., 2012). Here, it was shown that Idas expression was first 

detected during gastrulation. Gastrulation occurs in stage 12 embryos and therefore Idas 

should be absent from present in Xenopus egg extracts, as appeared likely from the lack 

of specific bands.  

5.6.2 GemC1 is a Geminin Interacting Protein 

GemC1 was proposed to play a role in the initiation of DNA replication, specifically in 

the recruitment of Cdc45 to aid in CMG formation (Balestrini et al., 2010). This study 

showed that GemC1 does not bind to Cdt1 but the authors did not investigate the 

interaction of GemC1 with geminin. GemC1 antibodies were raised against an N-

terminal 1-97 peptide (Amino acids 1-97, by Peter Gillespie) and full-length 

recombinant His6-GemC1. A specific band could commonly identified by each 

antibodies was not found (Figure 58). However, the ability of each antibody to 

recognise GemC1 was demonstratedby their ability to recognise MBP-GemC1 by 

western blot (Figure 58). Affinity purification of antibodies was carried out and 

attempts were made to immunoprecipitate GemC1 and identify a specific band. 

Antibody light chains migrate   to the molecular weight predicted for GemC1 by SDS-
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PAGE, making band identification impossible by immunoprecipitation and western blot 

analysis. IPs using crosslinked antibodies may have negatively affected the antibodies 

as no bands were identified by SDS-PAGE and western blotting. However, in an 

attempt to identify GemC1, mass spectrometry analysis was undertaken on a gel slice 

between cut between 30-50 kDa from a non-crosslinked GemC1 IP. This resulted in the 

identification of a just a single GemC1 peptide with a low abundance. Taken together 

this demonstrates that multiple antibodies were generated which were capable of 

detecting GemC1, however it is likely that GemC1 was present at a low concentration in 

Xenopus egg extracts. 

To determine whether GemC1 can interact with geminin MBP-GemC1 was incubated in 

metaphase and interphase extracts and pulled down with amylose resin. Samples were 

immunoblotted for MBP-GemC1 with a GemC1 antibody, a proposed interacting 

protein, TopBP1, and for geminin. MBP-GemC1 was found to specifically pull down a 

significant proportion of geminin in both metaphase and interphase extractsand no 

geminin was pulled-down in the absence of MBP-GemC1 (Figure 59A). TopBP1, 

however, was not detected suggesting that these proteins do not interact in extracts. This 

was unexpected as TopBP1 hypothesised to recruit GemC1 and in turn Cdc45 for the 

initiation of DNA replication (Balestrini et al., 2010). Therefore pulldowns were 

repeated and the interaction of MBP-GemC1 with TopBP1 and Cdc45 was assessed 

(Figure 59B). This was consistent with initial pulldowns, demonstrating that MBP-

GemC1 and TopBP1 did not interact in metaphase or interphase extracts. MBP-GemC1 

also failed to pulldown Cdc45 from metaphase and interphase extracts suggesting that 

these do not interact. In a reciprocal experiment TopBP1 was immunoprecipitated and 

samples were assayed for the co-precipitation of Cdc45 and GemC1 (Figure 59C). A 

significant amount of  TopBP1 was specifically pulled-down with the anti-TopBP1 

antibody in both metaphase and interphase extract, however no GemC1 or Cdc45 were  
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Figure 58: GemC1 Antibody Characterisation. In an attemptto characterise antibodies and identify a 

GemC1 whole extract (X) and MBP-GemC1 were separated by SDS-PAGE and western blotted with pre-

immune serum, terminal bleed serum and affinity purified antibodies. A Coomassie stain of His6-GemC1 

separated by SDS-PAGE is shown to demonstrate the approximate size of the protein. 
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bound, suggesting that these proteins do not interact in the cytoplasm of metaphase and 

interphase extract. 

GemC1 was first identified due to its sequence similarity to the geminin coiled-coil 

(Figure 60A). Geminin dimerization is mediated by the coiled-coil and the primary Cdt1 

interaction site is located within the coiled-coil region. This suggests that GemC1 could 

interact with geminin via the coiled-coil domains and inactivate geminin by preventing 

the interaction with Cdt1. Having established that geminin could interact specifically 

with recombinant GemC1 in egg extracts (Figure 59A) it was important to determine 

whether this interaction had any effect on the activity of geminin. Human His6-GemC1 

and geminin proteins were co-expressed in bacteria and a stoichiometric complex was 

purified(This work was carried out by Christophe Caillat at The Netherlands Cancer 

Institute)(Figure 60C). Licensing inhibition assays were undertaken to determine the 

activity of various geminin-GemC1 complexes (Figure 60B). Extracts were released 

into interphase for 15 minutes to ensure the licensing reaction was active before being 

supplemented with a titration of geminin-GemC1 complexes. Extracts were incubated 

for 10 minutes before being supplemented with DNA and DNA replication was 

measured after 90 minutes. dGeminin dimers were very effective as licensing inhibitors, 

consistent with previous reports (Caillat et al., 2013), resulting in a complete inhibition 

of replication at all concentrations. Licensing inhibition assays were undertaken with 

dGeminin-dGemC1 complexes and this demonstrated that heterodimers inhibited 

licensing with an IC50 of ~480 nM. Truncated heterodimers therefore have a 

significantly reduced ability to inhibit replication licensing compared to geminin 

homodimers. dGeminin-GemC1complexes inhibited replication licensing at an IC50of 

240-480 nM, suggesting these complexes were better inhibitors of licensing compared 

to dGeminin-dGemC1 complexes. However,dGeminin-GemC1complexes were not 

present in stoichiometric amounts as some degradation of GemC1 was observed (Figure 
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60). Taken together, the data presented here suggests that GemC1 could potentially 

represent a novel geminin inhibitor, however it is unlikely to be present in Xenopus 

extracts at sufficient concentrations to effect geminin activity.  

 

 

Figure 59: GemC1 Interactions by Pulldown and Immunoprecipitation. (A) Metaphase and 

interphase extracts were supplemented with 200 nM MBP-GemC1. MBP-GemC1 was pulled down with 

amylose resin (AMY) and samples were analysed by SDS-PAGE and western blot for TopBP1, MBP-

GemC1 (Blotted with affinity purified-rabbit 1-97) and geminin. Input and flow through (FT) samples are 

shown to give an indication of protein depletion (B)Metaphase and interphase extracts were supplemented 

with 200 nM MBP-GemC1. MBP-GemC1 was pulled down with amylose resin (AMY) and samples were 
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analysed by SDS-PAGE and western blot for TopBP1, MBP-GemC1 (Blotted with affinity purified-

rabbit 1-97) and Cdc45. Input and flow through samples are shown to give an indication of protein 

depletion. (C)TopBP1 was immunoprecipitated from metaphase and interphase extracts supplemented 

with 200 nM MBP-GemC1 using ProteinA DynaBeads crosslinked to affinity purified TopBP1 

antibodies. Inputs, IPs and flowthrough was separated by SDS-PAGE and analysed by western blot 

analysis for TopBP1, Cdc45 and MBP-GemC1 (Blotted with affinity purified-rabbit 1-97). 

 

 

Figure 60: Assaying the activity of Geminin-GemC1 complexes. (A) Comparison of geminin and 

GemC1 proteins used in this study (DB= D-box, CC= coiled-coil). (B) Licensing inhibition assays: 

extracts were released into interphase for 15 minutes before being supplemented with various 

concentrations of geminin-GemC1 complexes. DNA was added after 10 minutes and replication was 

measured after 90 minutes. (C) Coomassie stain of proteins used in B. (degradation products are marked 

with an asterisk). 
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5.7 Summary 

The main aim of this chapter was to investigate the potential role of protein-protein 

mediated interactions in the regulation of geminin activity. Experiments were 

undertaken to provide evidence for or against either of the hypothesised mechanisms: 

the sequestration of geminin by an inhibitor or the stoichiometric switch of geminin-

Cdt1 complexes.  

A switch like behaviour of the relative molar ratios of geminin and Cdt1 was observed 

which correlated well with the activation of licensing. However, this is unlikely to result 

in a switch from a permissive heterotrimer to an inhibitory heterohexamer; 

immunoprecipitation of geminin from interphase gel filtration fractions demonstrated 

that geminin and Cdt1 do not interact under these conditions and therefore it is unlikely 

that an active heterotrimer is formed in extracts. In fact, the molecular weight of the 

geminin-Cdt1 complex formed in metaphase extracts was estimated to be 143 kDa, 

suggesting that this complex is in fact a heterotrimer. Comparing the geminin-Cdt1 

complexes that form in metaphase-arrested extract, PIE and NPE showed that the 143 

kDa complex is the only geminin-Cdt1 complex that forms in extracts. This suggests 

that geminin can from a heterotimer with Cdt1 to inhibit licensing or geminin is 

inactivated to break this complex and free Cdt1 can than take part in the licensing 

reaction. 

All Cdt1-free geminin fractions identified by gel filtration were sensitive to high salt, 

suggesting that geminin exists in multiple forms or was present in different complexes. 

Active recombinant geminin elutes at the same volume as active metaphase geminin, 

and these were estimated by SEC-MALS and Siegel and Monty, respectively, to be 

geminin tetramers. Recombinant geminin never eluted at the same volume as either of 

the two interphase geminin complexes, even after the addition of salt. This suggests that 
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interphase geminin is biochemically different than active recombinant and metaphase 

geminin. The larger interphase complex was estimated to be slightly lower than a 

tetramer. This could be due to a change in the shape of the protein, or this complex may 

consist of novel geminin interacting proteins. Similar to this the estimated molecular 

weight of the smaller geminin interphase fractions did not fit well to a dimer or 

tetramer, suggesting that it had an altered shape or was part of a novel complex. This 

provides good evidence that geminin may be regulated by the interaction of novel 

proteins. It was demonstrated that GemC1 can bind strongly to geminin in extracts and 

that geminin-GemC1 complexes are ineffective licensing inhibitors compared to 

geminin alone, suggesting that GemC1 may be a novel geminin regulator; however, 

GemC1 is not likely to be present at high enough quantities in extract to carry out this 

role.  
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6.0 Discussion 

6.1 Summary of Data Presented  

Calcium addition facilitates a rapid destruction of geminin. Geminin levels fall to 50% 

within 15 minutes and the remaining protein is stable after this time with approximately 

40% remaining at 90 minutes. 

We have confirmed the previous reports that Cdt1 is subjected to DNA replication-

coupled degradation and quantified this effect on endogenous protein using sperm 

DNA. DNA addition had no effect on the amount or kinetics of geminin degradation. 

Plotting molecular ratio of Cdt1 to geminin over time demonstrates a switch which 

correlates well with reports on the timing of licensing activation. 

We have shown by co-immunoprecipitation and gel filtration studies that geminin and 

Cdt1interactions change significantly at the metaphase to anaphase transition, consistent 

with published data. The gel filtration columns used had good resolving power resulting 

in the identification of four potentially unique geminin complexes. Co-

immunoprecipitation and gel filtration studies were also used to demonstrate the 

interactions of endogenous geminin with recombinant Cdt1 and endogenous Cdt1 with 

recombinant geminin. These studies have shown that interphase geminin is unable to 

interact with Cdt1, therefore it is inactive.  

We have confirmed previous reports that show that the 26S proteasome is not required 

for geminin inactivation. 

Replication licensing is activated almost immediately after calcium addition and activity 

increases linearly until a maximum is reached at 10-12 minutes after calcium addition. 
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We have demonstrated that ongoing APC/C activity is required for licensing activity 

until a certain threshold is reached. Approximately 8 minutes after calcium addition 

ongoing APC/C activity is no longer required for licensing activity and a switch in 

APC/C dependence is observed. This was independent of CDK inactivation and does 

not require protein degradation, implying that 8 minutes of continuous APC/C activity 

is required to inactivate geminin, and after this timepoint APC/C E3 ubiquitin ligase 

activity is no longer required. 

The depletion of free ubiquitin results in a failure to activate the licensing system. More 

specifically K11 linked ubiquitin chains are required for the activation of replication 

licensing. However, we have also provided evidence to suggest that DUBs are not 

required for the reactivation of geminin and therefore it is likely that direct 

ubiquitination is not a prerequisite for geminin inactivation during the metaphase-

anaphase transition. 

We have identified multiple geminin post-translation modifications by mass 

spectrometry and demonstrated that geminin can be SUMOylated in vitro. 

Analysis of metaphase-arrested cytoplasm and S-phase nucleoplasm by gel filtration 

suggests that only one type of geminin-Cdt1 complex forms in extract and this complex 

has been estimated to be 143 kDa, which is likely to be a heterotrimer. In addition, co-

immunoprecipitation of gel filtration fractions was used to demonstrate that geminin 

and Cdt1 do not interact in interphase extracts, suggesting that only free Cdt1 is active 

for licensing. 

Active recombinant and endogenous geminin complexes were estimated by SEC-MALS 

and Siegel and Monty respectively to form tetramers, which were sensitive to high salt. 

Interphase geminin complexes were distinctly different than active geminin complexes 



195 

 

and could not be reconstituted with recombinant geminin. This suggests that interphase 

geminin has been altered in some way compared to active metaphase geminin. 

The distinct difference between metaphase and interphase geminin complexes could be 

accounted for by the interaction of a geminin inhibiting protein. GemC1 is a geminin 

interacting protein that could potentially play a role in the regulation of geminin, 

however it is likely only present in extracts at a very low concentration. 

6.2 Multiple Hypothesised Mechanisms 

The aim of this project was to determine the molecular mechanism that accounts for the 

stabilisation and inactivation of geminin in Xenopus egg extracts. Geminin is a coiled-

coil domain-containing protein that inhibits Cdt1 through protein-protein interactions to 

prevent DNA replication licensing. In somatic cell cycles the mechanism of geminin 

regulation is relatively simple; it is either active or completely degraded by the 

proteasome. In embryonic cell cycles only a portion of geminin is destroyed, therefore 

these cell types must regulate licensing by turning geminin off and on. Hypothetically, a 

mechanism for turning geminin activity on and off should be straight forward; a cell 

cycle controlled and reversible way of preventing geminin’s interaction with Cdt1 is 

required. An on/off mechanism such as this is a common requirement for many cell 

cycle regulated proteins and mechanisms that are generally implemented to achieve this 

include direct protein post-translational modification, protein-protein interactions or 

regulation of subcellular localisation. The mechanism of geminin inactivation could 

hypothetically be straightforward, but in reality this is not the case. The enigmatic 

nature of this mechanism is highlighted by the number of wide ranging models that 

have been hypothesised to account for geminin inactivation. 
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The four basic models are shown (Figure 61). The following sections discuss how data 

obtained during this project fits into the multiple proposed models and a new model for 

the inactivation of geminin is shown based on the data during this project. 
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Figure 61: The Basic Models of Geminin inactivation. (A) Regulation by post-translational 

modification. Geminin is subjected to inacitivaing modifications to release free Cdt1 to take part in the 
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licensing reaction. Geminin is imported upn nuclear formation where is is reactivated in the nucleus. (B) 

A second PTM Model: the APC/C dependent inhibition of geminin. Activation of the APC/C by calcium 

additon leads to the ubiquitination of geminin. This allows free Cdt1 to take part in the licensing reaction. 

Geminin is then subjected to proteasome mediated destruction, reactivation by DUBs, or DUBed and 

inactivated by an additional mechanism. (C)Regulation of geminin by a stoichiometric switch in complex 

formation. Changes in the relative molecular rations of geminin and Cdt1 could provide a dynamic switch 

to control protein activity. (D)Inhibition of geminin by a novle interacting proein. Activation of a cell 

cycle regulated geminin inhibitor proein could sequester geminin away from Cdt1 to facilitate licensing.  

6.3 The Role of Post Translational Modifications 

~50% of endogenous geminin remains stable in interphase extracts. The APC/C is 

shown to remain activate as it continues to degrade Cdt1, therefore this stabilisation is 

geminin specific and is not simply due to the loss of E3 ubiquitin ligase activity over 

time. This predicts that there must be a mechanism to stabilise geminin in interphase 

extracts. A number of geminin post translational modifications were identified. The 

most interesting of these were a cluster of methylated and acetylated residues centred on 

the ubiquitination initiation motif of geminin- 
50
RTK-KRK

62
. This motif has been 

shown to generate an intrinsic signal, separate to the D-box, that makes geminin a 

particularly efficient target of the APC/C (Williamson et al., 2011). Mutation of these 

charged residues to alanine leads to the stabilisation of geminin during in vitro APC/C 

ubiquitination reactions (Williamson et al., 2011) and also in Xenopus egg extract 

(Benjamin et al., 2004). Therefore it is likely that these post translational modifications 

are responsible for the stabilisation of geminin in interphase egg extracts. 

Approximately 50% of geminin is consistently destroyed. This matches well to mass 

spectrometry data, as 60% of metaphase peptides were acetylated at K62. This also 

correlates well with 2D gels electrophoresis data that shows multiple spots of various 

intensities. Therefore, a mechanism whereby geminin is stabilised in interphase egg 

extracts through modification of the ubiquitin initiation motif is proposed. 
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Showing that DUBs were not required for the inactivation of geminin suggests that 

geminin is regulated by mechanisms other than ubiquitination. Identification of multiple 

spots on 2D gel electrophoresis, identification of modified peptides by mass 

spectrometry and the observation that interphase geminin complexes may have an 

altered hydrodynamic radius all suggest that geminin activity may be regulated by 

PTMs. However, no modifications were observed on or around key sites on the protein. 

One explanation for this could be that the peptides were not identified due to the 

modification itself. In line with this a specific peptide between the primary and 

secondary interface was never identified which could have a functional significance. A 

region covering the tertiary Cdt1 interaction site was also specifically lost specifically in 

interphase samples.  

If geminin is subjected to a number of post-translational modifications which are 

required for different outcomes i.e, stabilisation and/or inactivation, then it is likely 

there is a mechanism to target a specific portion of the protein for neither or both 

modifications. It could be proposed that Cdt1 would either target geminin for 

destruction to enable a rapid activation of licensing, or for stabilisation/inactivation to 

maintain relative amounts of geminin for S-phase and the following mitosis. This is 

analogous to the duel function of geminin that is carried out in G2 and mitosis inhuman 

cells to stabilise Cdt1 (Ballabeni et al., 2013). It has been shown that Cdt1 depleted 

metaphase extracts that are stimulated to with calcium do not destroy significant levels 

of geminin, suggesting that Cdt1 targets geminin for destruction (Maiorano et al., 2004). 

This was tested by supplementing metaphase extracts with recombinant Cdt1 prior to 

release into interphase, however these preliminary results were inconclusive. 
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6.4 The Role Protein-Protein Interactions 

Experiments undertaken to determine whether geminin could be regulated by a 

stoichiometric switch demonstrated that no interaction can be detected between geminin 

and Cdt1 in interphase. This suggests that only free Cdt1 can participate in the licensing 

reaction. The idea that a geminin-Cdt1 complex could be active for licensing first came 

about when a co-expressed geminin
DEL

-Cdt1 complex added to extract was shown to be 

equally active compared to Cdt1 alone (Lutzmann et al., 2006). This disagreed with 

earlier work carried out in Xenopus egg extracts that resulted in the reconstitution of 

replication licensing. Licensing factor activity could be reconstituted with purified Cdt1 

or recombinant Cdt1 and this was blocked by the addition of geminin (Gillespie et al., 

2001). In addition, fractionation of partially purified endogenous Cdt1 on phenyl 

sepharose was able to separate free interphase Cdt1 from geminin-bound interphase 

Cdt1. These fractions were assayed for their ability to rescue replication in Cdt1 

depleted extracts and it was conclusively shown that only free Cdt1 could efficiently 

rescue replication(Tada et al., 2001). The Geminin-Cdt1 complex size was consistent 

across various extract types, and this complex was likely a heterotrimer. However, this 

work did not rule out the possibility that higher molecular weight complexes can form, 

as all gel filtration was carried out in relatively high salt buffer (200 mM NaCl). 

Observing the molar ratios of geminin and Cdt1 in extract throughout the replication 

cycle of Xenopus egg extract provided compelling evidence for the existence of a 

protein concentration dependent switch in licensing activity. Therefore a mechanism 

could be hypothesised where geminin and Cdt1 do not interact at all at a high ratio of 

Cdt1 to geminin, but form complexes at high concentrations of geminin. While this 

mechanism remains possible, it is based on an observation rather than experimental 

evidence, and the switch in molar ratio may be a cause or consequence of replication 

licensing. 
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The estimation of geminin and Cdt1 complexes sizes by Siegel and Monty and 

experiments demonstrating the instability of geminin complexes in high salt suggest that 

interphase geminin may be inactivated by an interacting protein. Licensing assays 

carried out using geminin-GemC1 complexes showed that GemC1 has a significant 

effect on the ability of geminin to inhibit licensing and therefore has good potential to 

be a geminin regulating protein 

6.5 The Role of the APC/C During Replication Licensing Activation 

The only essential function of the APC/C for the activation of replication licensing in S. 

cerevisiae is the inactivation of CDKs (Noton and Diffley, 2000). We have shown in a 

Metazoan model that ongoing APC/C activity is essential for 8 minutes to activate 

licensing and after this timepoint APC/C E3 ubiquitin ligase activity is no longer 

required. This shows that higher eukaryotes contain an APC/C regulated protein that 

inhibits DNA replication licensing that is not present in yeast cells. This protein is 

geminin (Li and Blow, 2004). Therefore, the inactivation of geminin specifically 

requires at least 8 minutes of APC/C E3 ubiquitin ligase activity. 

Three essential requirements have been identified during this project for the activation 

of replication licensing: 8 minutes of APC/C E3 activity; free ubiquitin and the ability 

to form K11 linked ubiquitin chains on substrate proteins. These requirements can all be 

deduced to be specifically required for geminin inactivation. 8 minutes of APC/C E3 

ligase activity is required in the presence of CDK inhibitors, therefore this activity is 

required to inhibit geminin; K11 linked ubiquitin chains are essential for licensing 

activation, therefore ubiquitin is essential and this is likely to be specific for geminin 

inactivation as it has been shown that cyclin-B inactivation can occur in the absence of 

chain by multiple mono-ubiquitination (Dimova et al., 2012). Taken together, 8 minutes 

of APC/C K11 linked ubiquitin chain formation is required either directly or indirectly 
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to inactivate geminin. Once this has occurred the APC/C is no longer required. In 

addition two functions that are dispensable for replication have been identified during 

this project, proteasomal degradation and DUB activity. While specific ubiquitin chain 

types are essential the 26S proteasome is not essential for licensing activation. It is 

important to highlight the implications of the non-essential nature of DUBs, DUBs were 

found to be dispensable for the reactivation of geminin after nuclear import. This 

implies that geminin is not inactivated by direct ubiquitination. 

Taking this together I propose that geminin is inactivated by two separate APC/C 

dependent mechanisms, first by direct ubiquitination to rapidly inactivate geminin in 

response to calcium, and second by an indirect mechanism as the APC/C is no longer 

required after 8 minutes. It is likely that there is an APC/C substrate that is regulated 

during the metaphase-anaphase transition albeit with slower kinetics than CDK and 

geminin, which then acts to inhibit geminin. This explains why licensing can still be 

activated without the proteasome and without APC/C after a certain time; the APC/C is 

required to temporarily inhibit geminin while also activating a geminin inhibitor, either 

directly or indirectly. This mechanism takes all observations into account. Ongoing 

APC/C activity is required until the second mechanism is activated because Cdt1 

activation in the absence of ongoing APC/C activity is labile, there is an additional pool 

of free geminin capable of binding to and inhibiting Cdt1. Assuming the K11 linked 

chains are sufficient to break the interaction of geminin and Cdt1, ongoing APC/C 

activity is sufficient even in the absence of protein destruction as the second mechanism 

is unaffected by loss of the proteasome and mediates geminin inactivation, resulting in 

an irreversible change in the requirement of the APC/C and the activation of licensing.  

This model is supported by data that shows bulk geminin ubiquitination occurs within 

10 minutes of calcium addition after which point high molecular weight species of 
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geminin are not observed (Li and Blow, 2004). Data presented in this thesis has shown 

that interphase geminin has distinct properties compared to activate metaphase geminin 

which could represent a protein interactor or geminin modification consistent with the 

second step in the APC/C-dependent mechanism. 

A good candidate for this hypothesised modifier/interactor would be a CDK regulated 

protein. Inhibition of the modifier/interactor by high CDK in mitosis would ensure 

geminin activity. CDK activity leads to APC/C activation which in turn rapidly destroys 

mitotic cyclins to inhibit CDK. Phosphatases become prevalent and remove mitotic 

phosphorylations as extracts enter interphase. Dephosphorylation of the 

modifier/interactor after 8 minutes would lead to the inactivation of geminin. Nuclear 

important later in the cell cycle would reactivate geminin as the geminin modifier is 

once again inhibited by high CDK activity in the nucleus. 
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Figure 62: Geminin is regulated by the APC/C via Two Distinct Mechanisms This is a model based 

on all the observed data of this thesis. The activation of the APC/C results in an immediate conjugation of 

K11 linked chains on all types of geminin complexes. Assuming that K11 chains can inhibit geminin 

activity before destruction, then APC/C activity starts to accumulate free Cdt1, resulting in the linear 

activation of licensing. Extracts, however, have a large pool of active geminin. Therefore this extra pool 

of geminin can bind to and inhibit the free Cdt1. This makes the activation of Cdt1 labile and makes the 

initial 8 minutes of APC/C activity reversible. The interaction of this free geminin with activate Cdt1 is 

likely to be responsible for the loss of licensing activity at early timepoints during D-box assays. While 

geminin and CDK are the two main targets known for the regulation of replication licensing, they are not 

necessarily the main targets for APC/C ubiquitin activity. Therefore while the APC/C mediates  the initial 

activation of licensing by modifying geminin it also mediates activation of a second geminin inhibiting 

pathway. After 8 minutes this second geminin inactivator is reversibly active to inhibit geminin and 

therefore the APC/C is no longer required to maintain licensing activity.  
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7.0 Conclusion and Future Outlook 

The work presented in this thesis has focused on a characterisation of the mechanisms 

that inactivate and stabilise geminin in Xenopus egg extracts. Whereas some progress 

has been made in determining the key players that facilitate these outcomes, further 

work is required to demonstrate how each step in the molecular mechanism is 

undertaken. In the future it would be of interest to develop an assay that would allow 

recombinant geminin to become inactivated by extracts. This would allow for a 

mutational analysis of sites to determine what residues are required for geminin 

inactivation and reactivation by observing the ability to form specific complexes in 

extract or PIEs. In addition would be interesting to further investigate the mechanism of 

geminin G1 stabilisation in mouse and human embryonic cells by mutating the 

ubiquitination initiation motif and searching for post translational modifications by 

mass spectrometry. In light of my proposed speculative mechanism for the role of the 

APC/C it would be interesting to do a ‘big data’ experiment to characterise all the 

APC/C targets at the metaphase-anaphase transition. This could be carried out using 

UbVS to deplete ubiquitin, rescuing the extract with His6-Ubiquitin and performing 

denaturing Ni-NTA pulldowns at various times after calcium addition. Samples could 

then be prepared by sequential FASP to identify multiple post translational 

modifications such as ubiquitination, acetylation and phosphorylation. 
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