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Preface

The work presented in this thesis was originally carried out in conjunction with
Cancer Research UK (CRUK), which financially supported the data collated from
artificial tanning units through out England. The project took place at the Pho-
tobiology Unit, Ninewells Hospital Dundee, during 2010-2015. The research topic
concerns the emissions from sunbeds and the impact of artificial tanning units on
human skin. The research was done done under the guidance of Professor Harry
Moseley and Doctor Sally Ibbotson.
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Abstract

UV radiation has the ability to cause erythema, photoaging and photo-cancer. In
2010 Westminster wanted information on sources of artificial UV radiation in par-
ticular sunbeds. The objective of this study was to measure the spectral outputs
from artificial tanning units throughout England and to compare the outputs to
European and British compliance levels.

The emissions from the collated data allowed the calculation of exposure doses
of each sunbed. By applying plausible sunbed exposure habits (no of sunbed ses-
sions per year) it was possible to use this data in a skin cancer mathematical model.
The time-dose model is based on cumulative lifetime exposure dose and age. The
first step was to apply plausible sunbed habit scenarios using the collated emission
data which was used in a mathematical model to estimate the risk of developing
non-melanoma skin cancer.

Another objective of this study was to determine the optical properties of skin
tissue that govern the transport of light through tissue and secondly to develop a
model for light transport in tissue that makes it possible to investigate the number
of photons absorbed beneath the skin. Different skin types of various pigmentation
levels were investigated.

To this end, the absorption and scattering properties of tissue as a function of
wavelength were derived. The effect of photo-lesion formation from DNA damage
was investigated. To study light transport in tissue, a Monte Carlo model has was
developed. This model gives a full 3-D simulation of light transport, and takes into
account specular reflection and refraction at the tissue boundaries. To validate the
model, predictions have been tested against reliable analytical data. Monte Carlo
simulations are implemented to investigate the propagation of UV photons in skin
tissue. In this thesis, a data driven semi-empirical model is presented that used spec-
tra obtained from sunbed emissions in the Monte Carlo Radiative Transfer (MCRT)
code. A number of applications of the model, together with results from experiments
are presented such as skin type photo-shielding and quantification of DNA damage.

UV radiation can affect the appearance and the sensitivity of human skin by
triggering a biophysical response such as eythema (redness). A pilot study is pre-
sented that investigates if multiple sub-erythemal doses can induce erythema in
the skin. The study involved healthy volunteers and photosensitive patients. It is
demonstrated that the multiple sub-erythemal doses have an additive mechanism.
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Chapter 1

Introduction

1.1 Overview and Motivation

Sunlight represents the primary source of life and energy on Earth, yet excessive

exposure to solar ultraviolet radiation (UVR) is deleterious to biologic systems.

For Homo sapiens the correct balance of radiation exposure necessary for health

maintenance varies dramatically between individuals depending on skin phenotype,

presence of pathologic photosensitivity, and genetic factors. For normal healthy,

individuals, sunlight is necessary for promoting a psychological sense of well being

as well as providing the energy for endogenous vitamin D(3) synthesis [122]. On

the other hand, excessive sunlight leads to photoaging, immunosuppression, and

photocarcinogenesis [116,233].

Ultraviolet (UV) irradiation present in sunlight is an environmental human car-

cinogen. The toxic effects of UV from natural sunlight and therapeutic artificial

lamps are a major concern for human health. The major acute effects of UV irradi-

ation on normal human skin comprise sunburn inflammation (erythema), tanning,

and local or systemic immunosuppression. At the molecular level, UV irradiation

causes DNA(Deoxyribonucleic acid) damage such as cyclobutane pyrimidine dimers

(CPDs) and (6-4) photoproducts, which are usually repaired by nucleotide excision

repair (NER). Chronic exposure to UVR leads to photoaging, immunosuppression,

and ultimately photocarcinogenesis. Photocarcinogenesis involves the accumulation
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of genetic changes, as well as immune system modulation, and ultimately leads to

the development of skin cancers. In the clinic, artificial lamps emitting Ultraviolet

B(UVB) and Ultraviolet A(UVA) radiation in combination with drugs are used in

the therapy of many skin diseases, including psoriasis and vitiligo. Although such

therapy is beneficial, it is accompanied with undesirable side effects. Thus, UV ra-

diation is like two sides of the same coin: on one side, it has detrimental effects, and

on the other side, it has beneficial effects.

Solar radiation reaching the earth’s surface includes UV, visible, and IR radiation

between 290 and 4000 nm. Upon reaching earth, wavelengths greater than 2500 nm

are absorbed by the Earth’s atmosphere by water vapor and carbon dioxide, whereas

wavelengths less than 290 nm are absorbed in the atmosphere by nitrogen and

oxygen via the ozone layer. Thus, the solar radiation finally reaching us at the

Earth’s surface usually has wavelengths between 290 to 2500 nm, as seen in Figure

1.1.

Terrestrial sunlight fluctuates dramatically not only in terms of overall intensity

but also in its spectral composition by time of day, elevation, and latitude. These

effects on spectral irradiance predominantly affect the UV component of the solar

spectrum. The quality and quantity of solar radiation vary depending on geography

and time. Skin cancers are associated with the increased exposure to UVR from the

sun [154]. Modern sunbeds emit approximately 95% – 99.9% UVA and 0.1% – 5%

for UVB [267].

Clinical, epidemiological and molecular evidence has demonstrated that DNA

damage and the subsequent mutations induced by the UV component of sunlight

are critical events in the incidence of skin tumours [99, 147, 248]. While the sun,

a natural UV source, is known to cause DNA damage and skin cancer, another

artificial source of UV radiation are tanning units or sunbeds. The motivation for

this work was to collate a comprehensive dataset for sunbed emissions throughout

England. Second, the aim was to incorporate this data in various plausible scenarios

and models to predict skin cancer risk.
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Figure 1.1: Schematic of electromagnetic spectrum with Solar radiation wavelengths.

The increased use of sunbeds, emitting significant amounts of UVA, is of concern,

especially since a substantial proportion of young people use sunbeds [301]. There is

evidence to suggest the the risks of melanoma are associated with sunbed use [32].

In the past, studies on the risk of sunlamp use for the development of skin cancer

have suffered from various methodological and practical problems, such as strong

confounding factors of sunbed use with sun exposure. However, even in studies that

reported a positive association, adjustment for these potential confounder factors

and the dose response were not always carried out, which casts uncertainties on the

interpretation of the results. Even though there has been a previous sunbed assess-

ment carried out in Scotland [211] there were a lack of objective measurements for

sunbed exposure in England. There was also a shortage of quantitative data on the

emissions from the new “high power” sunbeds with definitive traceable calibration

and measurement techniques.

In the past, there has been recall bias in recalling lifetime sun and sunbed expo-

sure in cases and controls [17, 26, 71, 280, 286]. In the work reported in this thesis,

the sun dose is calculated from lifetime cumulative day-to-day and holiday exposure.

In addition, there was also no reliable information on the frequency and duration of

sunbed use. This issue was addressed in this study, whereby the sunbed dose was
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calculated from sunbed exposure times and number of sessions. This data with var-

ious plausible scenarios allowed the modelling of skin cancer risk. A computational

skin model was also developed that used the measured emission spectra from the

sunbeds to provided a data-driven semi-empirical simulation of photon penetration

with a biological endpoint to quantify DNA damage.

Taken together, the available data support the idea that CPDs rather than pho-

tooxidative damage may be responsible for the genotoxic effect of UVA in mam-

malian cells, a notion which is confirmed by the mutational specificity of UVA. In

addition, the induction of CPDs at biologically relevant doses of UVA radiation lead

us to suggest that UVA radiation may be involved in solar mutagenesis.

In the 20th century, people associated skin damage only with the inductions of

burns, with only the UVB component causing harm. Therefore, sunscreens were

developed only to block the UVB radiation. Thanks to these sunscreens, people

felt protected and could then spend several hours in the sun without seeing the

appearance of sunburn.

1.1.1 History of Tanning

The ancient Egyptians, Greeks and Romans first discovered the healthy benefits of

sunbathing, known as “heliotherapy”(sun therapy).

Prior the Industrial Revolution, it was the high society who had a pale skin,

as they worked or stayed indoors, while the lower classes were mainly outdoors

and were sun exposed. During the industrialisation of society in the 19th century,

with introduction of machines, the working classes started working indoors in the

factories. In the 20th century only the wealthy had the time and money to afford

recreational outdoor life, such as going to the beach, sports, walking in the moun-

tains, skiing and sailing, and having a tan became the symbol of the moneyed class

and being healthy. By the early 1920s, daily exposure to sunlight was also advised

as a cure for many diseases such as acne, rickets and tuberculosis, especially for chil-

dren. By the 1930s, a suntan had become a symbol for health and wealth. During



5

the 1960s, swimwear fashion changed with the introduction of the bikini, allowing

women’s bodies to receive nearly total UV exposure. Since the 1950s, holidays to

sunny destinations and charter flights initially to Mediterranean regions and later

to the subtropical countries became popular, and could be afforded by an increasing

number of people.

In the 1940s, suntan lotion was originally developed to promote the tanning

process and not to protect against the sun. During this period, people associated

skin damage only with the induction of burns, with only the UVB component causing

harm. Therefore, sunscreens were designed only to block the UVB radiation. Thanks

to these sunscreens, people felt protected and could then spend several hours in the

sun without seeing the appearance of sunburn. In the 1950s, the first wariness that

sunlight could cause melanoma emerged [161]. In the 1960s, indoor tanning became

possible through the use of sunlamps. These artificial tanning lamps were used at

home and emitted a broad spectrum of radiation from Ultraviolet C (UVC) to infra-

red (IR). In the late 1970s to early 1980s, it was suggested that an UVA induced tan

was safer than one caused by UVB and UV lamps were then produced with minimal

or no UVB radiation [250,286]. Thus, for decades, people have been exposed to high

doses of UVA.

Throughout the 1970s and 1980s, reports of the increasing incidence and mor-

tality rates of melanoma were reported [15, 53, 164], while fashion suggested that

suntans make you look and feel healthier. The use of sunbeds became increasingly

popular during the 1980s. Tanning salons flourished and sunbeds became available

for use at home. Tanning became increasingly popular, despite a growing body of

scientific evidence indicating that it not only leads to premature aging of the skin,

but also causes skin cancer [161, 174]. Awareness of the association between UV

exposure and skin cancer gained more ground. One of the reasons for this was when

people became concerned about the damage to the ozone layer in the early 1980s.

To some individuals, a tanned skin is socially desirable. Thus, the ‘suntanning in-

dustry’ has expanded, particularly in northern Europe and North America, in which
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artificial sources of UVR supplement exposure to sunlight. In the early days many

people were exposed to UVR from a mercury or carbon arc lamp for treatment [186].

1.2 Ultraviolet Radiation

The term ultraviolet means “beyond violet”, violet being the colour of the shortest

wavelengths of the visible spectrum. In 1801, the German physicist Johann Wil-

helm Ritter studied radiation at wavelengths shorter than this violet region and

observed a type of invisible light beyond violet [97]. At that time, many scientists

including Ritter, concluded that light was composed of three separate components:

an infra-red, a visible-light and an ultraviolet. Different parts of the spectrum were

understood through contributions from Macedonio Melloni [24], Alexandre-Edmond

Becquerel [56] and others in 1900s. UV light is an electromagnetic radiation with

a wavelength from 100 nm to 400 nm, shorter than that of visible light but longer

than X-rays depicted in Figure 1.2. UVR is officially divided into UVC (100− 280

nm), UVB (280− 315 nm) and UVA (315− 400 nm), with UVA being sub-classified

into UVAII (315− 340 nm) and UVAI (340− 400 nm).

UVC and short-wavelength UVB (280 − 290 nm) are totally blocked by the

atmosphere and thus are not considered as a hazard for human health. The long-

wavelength UVB (290 − 315 nm), the most energetic terrestrial wavelengths, rep-

resents 0.4 − 5.5% of the solar UV spectrum at the surface of Earth. Exposure to

solar UVR is a major risk factor in the induction of skin cancer. UVB radiation

is, however, most efficient at producing DNA damage, essentially bipyrimidine pho-

toproducts, which lead to the mutagenic events at the origin of tumours [248]. In

contrast, lower-energy UVA photons (315 − 400 nm) constitute the large majority

of terrestrial UV radiation but are less cytotoxic than UVB radiation.

However, the recent widespread use of artificial tanning units accompanied by

prolonged periods of sunbathing with UVB-blocking sunscreens, has led to a large

increase in the level of human exposure to UVA which can potentially cause mu-

tations [239]. This trend is also emphasised by the popular use of high-intensity
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UVA-tanning sunbeds [296].

Recent work concerning the interaction of UVA radiation with cultured cells has

revealed the mutagenic effect on eukaryotic cells [272]. At present, the premutagenic

DNA lesions induced by UVA have not been identified.

Figure 1.2: Schematic of UV wavelengths and DNA absorption range.

UV radiation is a toxic agent with genotoxic effects. It has been discovered to

be associated with chromosome aberrations caused by breaks in the DNA strands.

Various mechanisms exist to repair DNA if damaged by UVR, for example, the

nucleotide excision repair (NER) mechanisms [265]. In NER, a small region of the

strand surrounding the damage is removed from the DNA helix as an oligonucleotide.

Oligonucleotides are short nucleic acid polymers usually consisting of 13 − 25 nu-

cleotides. The term oligonucleotide is derived from the Greek “oligo,” which means

“few” or “small”. The length of the oligonucleotide is usually denoted by the term

“mer”, which is Greek for “part.” The small gap remaining in the DNA helix is filled

in by the sequential action of DNA polymerase and DNA ligase. NER recognises a

wide range of damage, including damage caused by UV irradiation and chemicals.

UV induced damage is involved in the initiation of melanoma; melanin is involved

in the formation of free radicals [21]. UVB exposure is considered to be responsible

for non-melanoma skin cancer, as it generates CPDs in skin cells, which in turn can

develop into cutaneous squamous cell or basal cell carcinomas [203]. Through the

increasing usage of UVA tanning beds and the parallel rise in the development of
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melanomas, the adverse effects of UVA exposure was also suggested [203]. Like UVB,

UVA can cause non-melanoma skin cancers, but tumours take longer to develop and

require much higher doses. UVA-induced skin cancers have been thought to derive

from indirect damage to DNA caused primarily by the generation of reactive oxygen

intermediates [204].

1.2.1 DNA Damage

DNA is a large, high molecular weight macromolecule composed of subunits called

nucleotides. Genomic DNA, located in the nucleus of cells, is the basis of our genetic

identity, controlling cellular functions. This identity is coded by four nitrogenous

bases represented by letter’s: A for adenine, T for thymine, G for guanine and C

for cytosine. A and G are purines. C and T are pyrimidines. These four bases are

organised in a precise structure: the genome, which is shared by all cells within a

given organism. DNA has a double helix structure, as shown in Figure 1.3, in which

two complementary strands of nucleotides coil around each other. The two outside

helices of DNA form a sugar phosphate backbone.

Figure 1.3: A schematic of DNA double helix adapted from Double Helix [281].



9

DNA repair refers to an assembly of mechanisms by which a cell singles out and

corrects damage to the DNA molecules that encode its genome. UV radiation is an

exogenous environmental factor that can cause DNA damage and excessive exposure

from sunlight or sunbeds can lead to skin cancer [166, 190]. It has been estimated

that DNA can undergo 1 million alterations in a day [172], which results in less

than 0.0002% of the 6 × 109 bases [3 × 109 base pairs (bp)] of the human genome.

DNA damage to the genome is constantly been corrected by repair processes in the

system. The chances of tumour formation increases when lesions in integral tumour

suppressor genes like the TP53 gene are unrepaired, thus affecting the cell’s ability

to repair. Abnormalities in the TP53 gene, which codes for the p53 protein, have

been discovered in more than 50% of human cancers [137].

One frequent damage occurs when adjacent bases, which usually bond across

the “ladder”, bond with each other instead. As a result a bulge is formed and the

distorted DNA molecule does not operate correctly.

A cell with DNA damage can have three possible fates: 1) the repair succeeds and

the cell becomes healthy, 2) the repair fails and the cell dies, or 3) the repair remains

faulty, but the cell survives the fault characteristics and may become carcinogenic.

The chances of DNA repair error increases after excessive exogenous UV exposure

when the body’s ability to repair is saturated [10].

UV photons affect the DNA molecules of living organisms in different ways.

There are two main types of DNA damage: endogenous and exogenous. Exogenous

sources of DNA damage are caused by external agents such as UV radiation from

the sun or sunbeds, while endogenous damage occurs from reactive oxygen species

(ROS) produced from normal metabolic byproducts. In living cells ROS are formed

continuously as a consequence of metabolic and other biochemical reactions. These

ROS include superoxide (O2–·), hydrogen peroxide (H2O2), hydroxyl radicals (OH·)

and singlet oxygen (1O2). The induction of 8-Oxoguanine (8-oxo) is one of the most

common DNA lesions resulting from ROS and can result in a mismatched pairing

with adenine resulting in G to T and C to A substitutions in the genome [179].
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ROS free radicals are generally considered to develop primarily from UVA exposure

causing oxidative damage of the bases.

UV radiation, present in sunlight and sunbeds, can cause damage to the genetic

information in the cell’s DNA molecules. This occurs from UVR absorbed by the

nucleic acid bases, and the resulting energy from a photon can induce strand changes

leading to photo-products. The most frequent photo-products are the consequences

of bond formation between adjacent pyrimidines within one strand, and, of these,

the most frequent are CPDs. Pyrimidine dimers are the most representative DNA

lesion [183].

1.2.2 Cyclobutane Pyrimidine Dimers

The absorption of UV can result in the formation of intra-strand CPDs in DNA,

which can lead to mutations or cell death [117,150,158]. Pyrimidines are molecular

components in the biosynthesis process and include thymine and cytosine as seen in

Figure 1.4. Thymine and cytosine are two of the base-pair components of DNA, the

others being adenine and guanine. UV radiation has been experimentally demon-

strated to cause DNA damage, mostly by the formation of dimeric photoproducts

between adjacent pyrimidine bases on the same strand. Two forms of pyrimidine

dimers have been well described: CPDs and (6-4) photo-products (pyrimidine pyrim-

idinone adducts). These are the two predominant DNA lesions caused by absorption

of photons and are considered to be responsible for the mutations observed in skin

tumours [42].

CPDs are formed by the covalent binding of carbon atoms at the C5 and C6 po-

sitions of two adjacent pyrimidines (thymine and/or cytosine), whereas (6-4) photo-

products result from the covalent binding between the C6 and C4 positions [47,269].

CPDs were at least 20 — 40 times more prevalent than any other DNA photo-

product when DNA or cells were irradiated with simulated sunlight [299]. A recent

in vivo study has demonstrated that UVAI has the ability to produce CPDs which

was considered to just be a UVB mechanism in the past [194]. Therefore, sunbeds,
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Figure 1.4: Chemical structures for pyrimidine dimers [180].

a high UVA source, have the ability to generate CPDs. This is further bolstered in

a study where short-term tanning salon exposure (10 sessions in 2 weeks) resulted

in the formation of CPDs [289].

Cyclobutane dimers can be removed from the DNA of eukaryotic cells by the

powerful excision repair mechanism that is deficient in cells from most sun-sensitive,

skin cancer-prone patients with the hereditary disease, xeroderma pigmentosum

[98,153]. There is increasing evidence that UVA generates pyrimidine dimers in DNA

directly [135]. Previous studies that determined the frequency of CPDs in human

engineered skin for solar UVA and solar simulator UV sources showed similar CPD

formation [237,260]. A quantifiable CPD yield was calculated from a dose equivalent

to 2 hours at noon time [260]. Despite the fact that the formation of pyrimidine

dimers has been demonstrated in the UVA range [234], it requires between 3 and 6

orders of magnitude more energy at 365 nm than that required by UVB. Recently,

Mouret et al. [203] showed that thymine dimers were induced in human cells and

human skin by UVA. These authors even suggested that the yield of UVA-induced

thymine dimers could be higher than the yield of 8-oxo-deoxyguanosine (8 oxo-dG)

oxidative damage. So far, the nature of the photosensitizer involved in such a process

is unknown. In fact, UVA toxicity mainly depends on indirect mechanisms in which

ROS are generated through photo-activation of endogenous photosensitizers such as

porphyrins, riboflavin and quinones.
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Photon Energy

One way to describe electromagnetic radiation other than as wave motion is to

consider the radiation as a stream of particles. These are called photons. Each

operating photon represents a certain amount of energy. It can be useful to con-

sider UV energy incident upon an area in terms of the number of photons, or the

photon density. Each photon carries an amount of energy called a quantum, E (J),

determined from quantum mechanics as [197]:

E = hv = h
c

λ
(1.1)

where:

h = Planck’s constant, 6.626× 10−34 (JS)

v = frequency, (Hz)

c = the speed of light, 3× 108 (ms−1)

λ = wavelength(nm)

Since hc is constant, we see that the photon energy increases with decreasing

wavelength. For a certain dose it is possible to calculate the number of photons. For

example the frequency of an UVA wavelength at 365nm corresponds to 8.21×1014Hz

and the energy is calculated to be 5.44× 10−19J/photon. Inverting this value gives

1.83×1018 photons/Joule. So for a typical sunbed session of 2 – 3 standard erythemal

dose (SED), where 1 SED = 100 Jm−2, a 2 SED exposure produces 1.83 × 1020

photons per m2.

Radiometric Quantities

Radiometry can be applied to all optical sources and to all exposures to optical

radiation (including solar radiation and UVR). In radiometry, radiant energy is the

energy of electromagnetic radiation. The SI unit of radiant energy is the joule (J).

Power is the rate at which energy is delivered, and is measured in watts (Js−1). The

quantity of radiant energy may be calculated by integrating power with respect to

time.
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Energy(J) = Power(W)× time(s) (1.2)

Irradiance, E, is the radiation power incident on a flat surface of unit area

(Wm−2). The term ‘spectral’ placed before any of the quantities implies restric-

tion to a unit wavelength band, for example spectral irradiance (watts per square

metre per nanometre) [199].

A surface exposed to irradiance, E, over a given time (s) results in a dose, (Jm−2).

The relationship is shown in the equation below:

dose(Jm−2) = E (Wm−2)× time(s) (1.3)

Fluence, H, is often confused with dose as it is also measured in energy per

unit area, Jm−2. The difference is that dose refers to light incidence at the surface

while fluence is the total amount of radiant energy from all directions incident on

an infinitesimally small sphere of surface area divided by the cross sectional area of

that sphere.

The term fluence rate was introduced by Rupert in 1974 [240]. For the purposes

of this work, a clear distinction needs to be made between “irradiance” and “fluence

rate”. The quantities have the same units (W m−2) but are conceptually quite

different. Note that the definitions given here apply for any wavelength range. The

fluence rate (symbol E
′
; units (W m−2)) is defined as the total radiant power incident

from all directions onto an infinitesimally small sphere of surface area divided by the

cross sectional area of that sphere. Note fluence rate can be thought of as spherical

irradiance, as defined by the International Commission on Illumination (CIE) [3].

1.3 Methods of Measuring Ultraviolet Radiation

UVR can be measured by chemical or physical detectors, often in conjunction with

a monochromator or band-pass filter for wavelength selection. Physical detectors
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include radiometric devices, which depend for their response on the heating effect

of the radiation, and photoelectric devices, in which incident photons are detected

by a quantum effect such as the production of electrons. Chemical detectors include

photographic emulsions, actinometric solutions and UV-sensitive plastic films.

Spectroradiometry

The fundamental way of characterising a source of UVR is on the basis of its spec-

tral emission distribution, which indicates the spectral irradiance as a function of

wavelength. The data is obtained by an instrument called a spectroradiometer which

measures radiometric quantities in narrow wavelength intervals over a given spectral

region.

A spectroradiometer comprises three essential components [108]:

1. input optics, such as an integrating sphere or Teflon diffuser, which collects

the incident radiation and conducts it to the entrance slit.

2. a monochromator, which disperses the radiation by means of one or two wave-

length dispersive devices (either diffraction grating or prism). The monochro-

mator incorporates an entrance slit, mirrors to guide the radiation from the

entrance slit to the dispersion device and on to the exit slit, where it is incident

on radiation detector.

3. a radiation detector, normally a photodiode or, for higher sensitivity, a pho-

tomultiplier tube.

Spectroradiometry is generally considered to be the best way of specifying UV

sources, although the accuracy of spectroradiometry, particularly with respect to

the UVB waveband of terrestrial radiation, is affected by a number of parameters

including wavelength calibration, band width, stray radiation, polarization, angular

dependence, linearity and calibration sources. It is therefore essential to employ a

double monochromator for accurate characterisation of terrestrial UVR [20].
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The Photobiology Unit in Ninewells Hospital (Dundee) provides a radiometer

calibration traceable to National Physical Laboratory (NPL, Teddington, UK) and

accredited by United Kingdom Accreditation Service (UKAS). This traceability was

achieved by exposing UV radiometers to an appropitate phototherapy source and

comparing against a calibrated spectroradiometer (DM 150, Bentham Instruments

Ltd Reading, UK). The spectroradiometer is calibrated using two NPL transfer

lamp standards: a deuterium lamp (CL3, Bentham Instruments Ltd) and a Quartz

halogen lamp (CL2, Bentham Instruments Ltd). The standard lamps are measured

by the Bentham spectroradiometer and compared at each wavelength to their known

irradiance as given by the NPL.

1.4 UV Radiation Effects On The skin

The skin is the organ most exposed to environmental UVR. Exposure to UVR

may result in erythema and sunburn, tanning, skin aging, photosensitivity, and

carcinogenesis in the form of non-melanoma skin cancer (NMSC) and cutaneous

malignant melanoma.

The acute and long-term normal clinical effects of solar ultraviolet radiation

(UVR) on the skin are well established. These include erythema (sunburn), pig-

mentation (tanning), skin cancer and photoaging [293].

The acute clinical effects of exposure to sunlight or artificial tanning units UVR

consist of erythema and pigmentation, as well as thickening of the epidermis, in

particular the upper stratum corneum layer. Erythema is an acute cutaneous in-

flammatory reaction that follows excessive exposure of the skin to UVR due to

increased blood volume. It is the most prominent and well-known acute response

to UV radiation, and is associated with the classic signs of inflammation, such as

redness, warmth, tenderness and oedema (fluid retention).

There are also other biological reactions, such as immunosuppression and the

photosynthesis of vitamin D(3), which will not be discussed here. Most human UV

radiation exposure is from sunlight, but other sources such as phototherapy lamps,
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sunbeds, arc-welding apparatus and unshielded fluorescent and metal halide lamps

can cause similar effects. The individual erythema and tanning responses of human

skin are primarily genetically predetermined.

Skin colour is an important factor in offering photo-protection from UVR and

thus determines the likelihood that an individual will develop erythema [18]. While

fair-skinned type I individuals only require 15 – 30 mins in noontime Summer sun-

light to induce an erythemal reaction, people with moderately pigmented skin may

take 1 – 2 hours of exposure and dark skin type III and greater will normally not

burn. Other phenotype traits that may influence susceptibility to sunburn are eye

colour, hair colour and freckles. The erythema biological reaction to ultraviolet ra-

diation depends on the waveband range, which we investigate in the next chapter.

Table 1.1 represents the different skin types (I – VI) and the characteristic tanning

history responses. A typical individual with skin type I would be of Celtic origin

with red hair, blue eyes and freckles. This skin type has a high propensity to burn.

Table 1.1: Fitzpatrick skin type adapted from [90].

Skin type Tanning history Description

I Always burns, never tans White skin colour
II Usually burns, minimal tanning White skin colour
III Sometimes burns, average tanning White skin colour
IV Slightly burns, above average tanning Light Brown skin colour
V Rarely burns, strong tanning Brown skin colour
VI Never burns, deeply pigmented Black skin colour

A chromophore (chromo = colour, phore = carrier) is a chemical molecule that

absorbs a specific wavelength of the electromagnetic spectrum. One of the major

chromophores in skin tissue is melanin, the complex molecule largely responsible

for the colour of skin and hair. Most melanin is stored in microscopic subcellular

structures called melanosomes.

Another major skin chromophore is haemoglobin in the red blood cells that are

abundant within blood vessels and that are in close proximity to the walls of the

vessels.

Melanin pigments represent the most important UVR protecting factor of human
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skin. Two subtypes of melanin have been identified, occurring in various volumes

in skin. The black to brown eumelanin is found predominantly in dark hair and

eyes as well as in the skin of dark-haired subjects. The yellow-reddish pheomelanin

mainly occurs in the hair and skin of blond-and red-haired individuals. Noticeable

amounts of pheomelanin were detected in melanocytic especially dysplastic lesions,

and the highest degrees of pheomelanin were found in melanoma cells [243].

Melanin absorbs highly in the ultraviolet region of the spectrum as displayed

in Figure 1.5, thus acting as a photo-shield protecting cellular structures in the

lower layers of the skin [212]. Melanin is not a good scavenger of free radicals in

light-skinned phototypes I-II. Moreover, melanin can produce free radicals, namely

reactive oxygen species (ROS), and damage cellular material including DNA.

The role of the two subtypes eumelanin and pheomelanin during the interaction

with UVR is not fully clear. Eumelanin appears to be more photoprotective melanin

of human skin,whereas pheomelanin is associated with phototoxic effects [136].

UVR increases the risks of developing skin cancer, mainly in susceptible people

(skin types I–II and tendency to freckle, with many naevi). For all skin cancers, skin

photo-type is an important determinant of risk; people who are prone to sunburn

have a higher risk of developing skin cancer compared with those who tan easily and

do not burn [90,173].

Haemoglobin is carried in red blood cells, or erythrocytes, and comprises ap-

proximately 40 -– 45% of whole blood. It is responsible for delivering oxygen from

the lungs to the body tissues and returning waste gases, such as carbon dioxide, to

the lungs to be exhaled. Haemoglobin consists of the protein globin bound to four

haem groups. Each haem group contains an iron atom at the centre of a ring-like

structure. An iron atom in the ferrous (Fe2+) form will bind physically to an oxygen

molecule to become oxygenated, as opposed to oxidised which would involve a chem-

ical bond. Therefore, one haemoglobin molecule with its four iron centres can carry

a total of four molecules of oxygen, in which case it is said to be 100% saturated. In

the oxygenated state haemoglobin is known as oxyhaemoglobin (HbO2). The deoxy-
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Figure 1.5: Chromophore absorbance in human tissue reproduced from [231].

genated form, with no oxygen molecules attached, is known as deoxyhaemoglobin

(Hb).

Water (H2O) is the most abundant molecule in the human body, accounting for

60–80% of total body mass [178]. The water content varies with tissue type and

is age and gender-dependent. Owing to its high concentration in most biological

tissue, water is considered to be one of the most important chromophores in tissue

spectroscopy measurements. However, between 200 and 900 nm there exists a region

of low absorption. Hence, the water is not a major chromophore in the UV region.

1.5 Skin Cancer

Human skin cancers are closely associated with exposure to UV [30, 84, 273]. The

frequency of precancerous lesions depends, among other things, on the frequency of

damage induced by carcinogenic agents such as UV photons. The work presented in

this thesis quantifies the DNA photon absorption and the formation of CPDs. Skin

cancers are predominantly caused by the CPD lesions in DNA produced by the UV

component from the sun. Therefore, sunbeds, also a UV source, have the capability
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to induce skin cancers.

Skin cancer occurs when there is an abnormal growth of cells, and leads to uncon-

trolled cellular proliferation, which in turn develops into a tumour and cancer. The

main types of skin cancer are non-melanoma (basal and squamous cell carcinoma)

skin cancers and melanoma skin cancer shown in Figure 1.6. The non-melanoma

skin tumours originate from keratinocytes that have undergone malignant transfor-

mation, while melanoma results from transformed melanocytes in the skin. The

availability of epidemiological evidence indicates clearly that solar UV radiation is

associated with skin cancer. Thus, UV radiation is the main etiological agent pro-

ducing human skin cancer. By investigating UV DNA damage the initialisation of

photolesion induction, tumourgenesis and carcinogenesis can be dissected.

Secondary effects from DNA damage in stem cells or extracellular structures are

elastosis, premature aging of the skin, wrinkling and intra-ocular cataracts [258].

Figure 1.6: Skin cancers a) SCC, b) BCC and c) melanoma from left to right provided
by Dr.Sally Ibbotson, PBU, Dundee, Ninewells Hospital.

1.5.1 Non-melanoma skin cancer

Non-melanoma skin cancer (NMSC), consisting of basal cell carcinoma (BCC) and

squamous cell carcinoma (SCC), is the most common cancer in Caucasians. Cau-

casian stems from the Caucasus mountain region that describes white people of
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European ancestry. This type of skin type is rated as skin type I and II on the

Fitzpatrick scale and is usually related to individuals of Celtic origin with pale com-

plexion that freckle easily. However, the precise relationship between UVR and

the risk of NMSC is complex, and the relationship may differ by skin cancer type.

Predominantly, NMSC occurs in maximally sun-exposed anatomical sites of fair-

skinned people. NMSC is uncommon in individuals of skin type V and VI with

naturally high pigmentation. The head and neck region is the most common site

for BCC and SCC; 80% – 90% of cases occur in this area in the general population.

NMSC is more common in people older than 50 years, and the incidence in this age

group is increasing rapidly [102]. People with immune suppression, including organ

transplant recipients, also are at higher risk. Genetic conditions, such as basal cell

nevus syndrome, xeroderma pigmentosum (a condition in which there is a geneti-

cally determined defect in the repair of DNA damaged by UVR) [219] and albinism,

are risk factors for the accelerated development of NMSC. Treatment with UVR for

psoriasis also increases risk [170].

UVR is the most important aetiological factor for induction of SCC and BCC [60,

165,196]. For SCC, the cumulative total exposure is the main risk factor [253], while

for BCC, both total exposure and the exposure pattern may play roles [165, 195].

Patterns of solar UV exposure are continuous (i.e. individuals working outdoors

or living in a geographic region with a high annual UV index) or intermittent (i.e.

individuals working indoors and experiencing most of their sunlight exposure on the

weekends or while holidaying to regions with a higher UV index than their place

of residence). An intermittent exposure pattern is relatively more associated with

BCC compared to an overall total dose [101,155].

UV irradiation of albino mice has demonstrated the development of skin cancer

in laboratory conditions with SCC been the most prevalent. Studies of time-dose

realtionships have shown the link between exposure and the incidence of skin can-

cers [64]. These studies have provided time-dose-response expressions which can be

implemented in the analysis of epidemiological data and form the foundation for the
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risk model in Chapter 3. The cumulative UV dose over a life time appears to be

the main risk factor for SCC skin cancer. Recently UV exposure has been shown to

induce melanoma in transgenic mice and opposums [167]. Melanoma is more asso-

ciated with UV exposure earlier in life in comparison to SCC which is more related

to a lifelong cumulative UV dose [288]. Furthermore, the time-dose relationship in

murine studies have provided valuable data on the wavelength dependency of UVR

to induce skin cancer. The most complete SCC skin cancer action spectrum was

developed by De Gruijl et al. [62] from albino hairless mice, called SCUP–m (Skin

Cancer Utrecht Philadelphia-murine) discussed later in Chapter 2.

This SCUP-m action spectrum was adapted by de Gruijl and van der Leun [59]

for humans by including the differences in skin transmission between murine and hu-

man skin. This led to the development of the human action spectrum for SCC, called

the SCUP–h (Skin Cancer Utrecht Philadelphia-human) action spectrum which is

plotted in Figure 2.16. The SCUP–h action spectrum closely resembles an action

spectrum for CPD formation in DNA following an adjustment for transmission of

the epidermis [95].

1.5.2 Melanoma

Cutaneous malignant melanoma is less common than the familiar NMSC, basal and

squamous cell tumours of the skin, but has a much higher probability of fatality.

It is mainly a disease associated more with fair skin type individuals, but people

with a more pigmented skin can also develop melanomas. Melanoma results from

transformed melanocytes in the skin. Melanomas represent less than 10% of all skin

cancers, yet they account for the vast majority of skin related deaths due to the

high metastatic potential. Melanoma incidence rates continue to rise in Europe over

the last few decades [66]. Previously published data estimated that around 86% of

malignant melanomas in the UK in 2010 were linked to exposure to UVR from the

sun and sunbeds [103,213].

Intermittent exposure to UVR is the main environmental risk factor for melanoma,
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especially in combination with endogenous factors such as skin types I, II, immune-

deficient status and genetic predisposition [13]. Patients with genetic UV repair

abnormalities like xeroderma pigmentosum are at a 1000-fold increased risk of de-

veloping melanoma [112]. This indicates that UV can cause skin cancer but in most

people it is repaired. However, some people can have a genetic predisposition to

skin cancer. If there is a family history of melanoma, the relative risk of developing

another skin cancer is 2 – 3 fold [121].

Melanoma is uncommon in black (skin type VI) people probably due to a better

photo-protection of the skin by a larger amount of pigment in the skin. UVR is

considered a less substantial risk factor for skin cancer in individuals of this skin

type. In addition, melanomas appear more often on the non-pigmented regions of

the skin [113] for this phenotype. However, it is usually the non-tanned (higher risk)

individual that seeks a tan and uses a sunbed.

The increased use of sunbeds, emitting high amounts of UVA, is of concern,

especially since a substantial proportion of young people use sunbeds [301]. This

could have grave implications down the line as there is a lag time in developing skin

cancer. Although there has not been a definitive link with sunbed use and risk of

melanoma, it is likely that the effects on the skin are equal for all sources of UVR.

Previous studies on the risk of sunlamp use for the development of skin cancer, have

suffered from various methodological and practical problems.

UV radiation is specifically carcinogenic to the skin because it does not penetrate

the body any deeper than the skin. A 2007 meta-analysis by the International

Agency for Research on Cancer(IARC) reported positive associations of ever use of

tanning beds with increased risk of melanoma and SCC [110]. In 2009, the IARC

classified UV radiation from tanning beds as “carcinogenic to humans” (group 1

carcinogen) on the basis of its meta-analysis [92]. Since the individuals with poor

ability to tan are more likely to use indoor tanning beds more often but are also

more sensitive to UV damage [80], some have argued that these individuals are more

susceptible to skin cancer after indoor tanning [26].
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A meta-analysis that found a 75% increase in the risk of melanoma when indoor

tanning started during adolescence or young adulthood [32]. An update of this meta-

analysis has now revised this figure upwards to an 87% increased risk of melanoma

with first use of sunbeds before the age of 35 years, with the risk increasing with the

number of sunbed sessions. Colantonio et al. reconfirmed the association between

sunbeds and melanoma, and also suggested that newer tanning beds were not safer

than older models [51]. A 2014 study estimated that more than 400,000 cases of skin

cancer may be attributable to sunbeds in the United States each year causing 245,000

basal cell carcinomas, 168,000 squamous cell carcinomas, and 6,000 melanomas [282].

Another study by Lazovich et al. found that the risk of getting melanoma increased

the more years, hours, or sessions spent indoor tanning [162].

1.6 Monte Carlo Radiative Transfer Method

The Monte Carlo Radiative Transfer (MCRT) method was first implemented in

astrophysics to model the distribution of cosmic dust distribution which is three di-

mensions (3-D). Modelling dust grain absorption and scattering requires 3-D radia-

tive transfer calculations. However, the 3-D radiative transfer problem suffers from

non-local coupling due to scattering where a photon created at one location can

affect a very distant region through scattering. Nevertheless, Woods et al. [294,295]

has provided a code that is capable of solving these 3-D radiative transfer problems

which has been adapted for a 3-D skin tissue model.

How UVR behaves beneath the surface of the skin is the key to understanding the

absorption of a photon by DNA. One technique to ascertain a photon’s behaviour is

the Monte Carlo (MC) method, as applied to the transport of light radiation which

is based on the radiative transport equation (RTE) described in Equation 1.5. This

RTE involves computer-simulated calculations of photon propagation in scattering

turbid media.

In the simplest form, Monte Carlo simulations are where photons are injected

into a medium individually and their paths traced until they are either absorbed or
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permanently scattered out of the region of interest [216]. The rules of photon prop-

agation are expressed as probability distributions (hence the name ‘Monte Carlo’),

which are based on the geometry and optical properties of the tissue media. Monte

Carlo is an integration method that allows to solve multidimensional integrals by

sampling from a suitable stochastic distribution. The accuracy of Monte Carlo es-

timator depends on the number of samples (N) obeying Poisson statistics:

σ =
1√
N

(1.4)

1.6.1 Tissue turbid media

Absorption and scattering coefficients of in-vivo human skin provides critical infor-

mation on non-invasive skin diagnoses for aesthetic and clinical purposes. To date,

very few in-vivo skin optical properties have been reported. In past studies, reported

absorption and scattering properties of in-vivo skin in the wavelength range from

650 to 1000 nm [270]. Tissue medium is highly scattering with photons effectively

bouncing off structures in the skin (mainly collagen fibre bundles).

Scattering of the photon continues until it either exits from the skin (back scat-

tering) or is absorbed by a chromophore. Human skin, especially the epidermis,

contains several major solar UVR absorbing endogenous chromophores including

DNA, urocanic acid, amino acids and melanin [300]. The overall effect of scattering

and absorption means that the penetration of photons decreases with depth in the

skin. Shorter UVB wavelengths are more easily scattered and do not penetrate very

far, however longer UVA wavelengths are less easily scattered and penetrate more

deeply in skin tissue. In this work, we present a MC approach to model the path of

a photon using in-vivo optical properties.

The MC technique describes the fate of a photon that expressed, in the simplest

case, as probability distributions that describe the step size of a photon’s movement

between sites of photon-tissue interaction, and the angles of deflection in a photon’s

trajectory when scattering events occur.
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The MC method permits the usage of complex and detailed models, while re-

taining simple implementation. The disadvantages of the Monte Carlo method are

noise introduced by the stochasticity and long simulation time when high accuracy

is needed. Hence, large numbers of photons are launched to build up a realistic

model of photon propagation. Thus, the MC method is computationally intensive,

as millions of photons are simulated.

1.7 The Radiative Transfer Equation (RTE)

The propagation of electromagnetic radiation is often described by Maxwell equa-

tions [275]. However, it must be noted that the skin may be too complicated a

medium for a Maxwell solution, due to the inhomogeneity and complex micro struc-

tures [216,292].

In the last few decades, RTE has been more popular in tissue optics than the

Maxwell equations. The RTE model assumes that the light purely follows the par-

ticle model. There is no interaction between photons, nor interference. The moti-

vation in RTE modelling is to predict the energy transport in turbid media.

As a result of non-locality effects and multi-dimensionality, the RTE Equation 1.5

is too complicated to be solved analytically for a 3-D skin medium. Therefore, the

RTE is usually approximated in order to obtain a more tangible model. Although

various numerical approximations [33, 125, 157, 226] are used to solve RTE, 3-D

RTE is commonly solved using the Monte Carlo (MC) technique. This numerical

stochastic approach is adopted for MC simulations in this thesis [225].

As light passes through a small volume of space there are two possibilities:

1. the intensity is either reduced by absorption or scattering of radiation out of

the beam.

2. the intensity is increased by the emission of photons by matter in the volume

or scattering of photons originally headed in other directions into the same

direction as the beam is pointed towards.
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The two possibilities are governed by the absorption coefficient µa , the scattering

coefficient µs and the emissivity jv. The absorption µa and scattering µs coefficients

which, are both wavelength dependent given in units cm−1, are discussed in Chapter

4 and are related to the optical properties for different skin layers and chromophores.

The emissivity is a local source of photons.

The RTE models the time and spatial change of specific intensity Iv (r, ŝ, t) in

the tissue defined in Section 5.4. For now consider the change in specific intensity

Iv (r, ŝ, t) equal to the loss in energy due to absorption and scattering out of ŝ,

plus the gains in energy from light scattered into the ŝ-directed packet from other

directions and from any local source of light at locationr for time point t. The

light transport in tissue can be modelled by examining how the specific intensity

Iv (r, ŝ, t) changes when it passes through an infinitely small volume, dV. The RTE

is shown in Equation 1.5 [44].

This energy balance is represented by terms in the RTE as follows:

1

c

∂Iv (r, ŝ, t)

∂t
+ Ŝ • ∇Iv (r, ŝ, t) = − (µa + µs) Iv (r, ŝ, t)︸ ︷︷ ︸

aborption and scattering

+ µs

∫
4π

p (ŝ, ŝ′) Iv (r, ŝ′, t) dΩ′︸ ︷︷ ︸
scattering

+ jv (r, ŝ, t)︸ ︷︷ ︸
source

(1.5)

where Iv is the specific intensity at spatial location r moving towards Ŝ in units

(Wcm−2sr−1Hz−1) (Figure 5.2 ). In volume element in position, r, the radiation is

scattered to a new direction, Ŝ ′. The scattering angle is determined by the scatter-

ing phase function, p (ŝ, ŝ′), representing the probability of light with propagation

direction ŝ′ being scattered into solid angle dΩ around ŝ depicted in Figure 5.2.

The phase function depends only on the angle between the scattered ŝ′ and incident

ŝ directions. The phase function describes the anisotropic scattering behaviour of

photons in biological tissue and is further discussed in section 5.3.

The left hand side of RTE is the time derivative of Iv divided by the speed of

light, c, to represent the change of specific intensity per distance travelled. This
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Figure 1.7: The phase function describes the change of photon direction from ŝ′ to
ŝ for a scattering event scattering at point r within a solid angle.

change is equal to the four additive terms on the right hand side of Equation 1.5.
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Each term in Equation 1.5 is represented below:

1

c

∂Iv (r, ŝ, t)

∂t
+Ŝ•∇Iv (r, ŝ, t)

Difference between the flow of energy entering and exiting the volume as a function

of time, i.e the net flow.

(µa + µs) Iv (r, ŝ, t)

Loss of energy due to absorption and scattering.

µs

∫
4π
p
(
ŝ, ŝ′

)
Iv
(
r, ŝ′, t

)
dΩ′

Gain in energy due to scattering in all directions ŝ′ into direction ŝ

jv (r, ŝ, t)

Local Sources: The emission component jv (r, ŝ, t) is the local source of photons oth-

erwise known as volume emissivity (Wcm−3sr−1) and represents the power injected
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into a solid angle centred on Ω in a unit volume at r inside a scattering medium.

Once the optical properties of the tissue are established in Chapter 4, the RTE

can be implemented to calculate the fluence rate, Ψ(r, t) in units (Wcm−2) at any

position for a given source specification. The fluence rate is an important to model

the distribution of UVR as it passes through biological media [278] and can therefore

predict how the UV will reach certain skin layers, such as the basal layer.

The fluence rate, Ψ(r, t), is defined as the energy flow per unit area per unit time

irrespective of flow direction and is obtained by integrating the specific intensity

over the entire 4π solid angle at a location r.

Ψ (r, t) =

∫
4π

Iv (r, ŝ, t) dΩdv (1.6)

The MC method offers a stochastic approach to model light propagation based

on radiative transfer theory. The MCRT technique is further discussed in Chapter 5.

1.8 Thesis Overview

Having introduced the main objective of the project, this section will give an overview

of the thesis from characterisation, SCC risk modelling, optical properties, MC mod-

elling, DNA damage and skin UV effects.

Chapter 2 introduces the artificial tanning units and the development of the

calibration methods. The various types of sunbeds are described with corresponding

spectral emissions. Also discussed are the measuring techniques employed when

collating the sunbed emissions in the field. The application of biological weighting

factors to the obtained sunbed data is also reported.

In Chapter 3, the application of plausible scenarios from the sunbed outputs

yields a dose. The various doses are implemented in a simple power law equation

with age and dose parameters to yield a relative risk. The relative risk compares a

baseline sun exposure to a sunbed user for various sunbed use regimes.
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Chapter 4 discusses the derivation of optical properties for tissue media in the

UV range. The main skin layer absorption and scattering coefficients are described.

Published data on optical properties is reviewed. The main UV chromophores are

also postulated from first principals.

Chapter 5 elucidates the MCRT method from distribution functions and skin

attenuation coefficients. The phase function is described in more detail along with

scattering governance. The model for photon transport in multi-layered tissues has

been coded in Fortran 77 programming language. The model represents a semi-

empirical 3-D simulation of human tissue data driven by sunbed and solar spectra.

Monte Carlo simulations offer a rigorous, yet flexible approach to photon transport

in turbid tissue media. The skin model is verified with published data on fluence for

tissue media. A comparative test demonstrates the number of absorbed photons for

noontime sun and a sunbed session. One of the goals in this work was to quantify

DNA damage in terms of pyrimidine dimer lesion formation from sunbeds. MCRT

offers a tool to evaluate the number of absorbed photons to develop CPD lesions.

By knowing the number CPD lesions formed from the photon yield for the sun

one can indirectly measure the absorbed photons from a sunbed. Simulations also

considered different skin types and compare photo-shielding of each.

Chapter 6 describes the investigation into sub-erythemal dose for healthy and

photosensitive patients. Also described, is the melanin skin type characterisation

from readings.

Chapter 7 gives an overall review of the techniques developed in this thesis

and their ability to predict skin cancer risk and lesion formation. Suggestions for

additional work are also discussed, highlighting the direction from here towards the

main aim of the project: to predict the potential photo-carcinogenesis from sunbeds.
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Chapter 2

Artificial Tanning Units

2.1 Introduction

Sunbeds are an artificial source of UV radiation emitting primarily in the wavelength

range 280 – 400nm. UVA is the primary component of sunbeds and accounts for 95 –

99% of the total UV. The International Agency for Research on Cancer (IARC),

an agency of the World Health Organization, has classified sunbeds as a Group 1

carcinogen, which is the highest risk category [81,91].

Despite the unequivocal evidence for the dangers of sunbeds mentioned in the

previous Chapter 2, before this study there was a shortage of objective data on the

levels of UV radiation received and the detailed spectrum to which sunbed users

were exposed. Previous preliminary studies carried out in Scotland revealed high

levels of UVB found in new high-power sunbeds [200, 201, 211]. These studies also

revealed that the estimated cancer risk from sunbeds had increased by a factor of

three in the last 10 years due to the use of high-power sunlamps.

A British and European Standard, introduced in 2003 [8], set limits on the

UV emission of sunbeds. However, no study had been performed to investigate

compliance with the standard in England. The standard did not oblige sunbed

operators in England to provide advice on health risks to customers. Conversely,

operators in Scotland come under the Public Health Scotland Act 2008. During

the study English operators could operate unmanned premises, equipped with coin-
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operated sunbeds available to anyone of any age. Indeed, there have been reports of

under age sunbed use in the North of England at the time of this study in 2010 [266].

Since the 2003 British Standard was published there has been the introduction

of the Sunbed (Regulation) Act 2010 to ban under 18s using sunbeds. However,

unmanned sunbed premises still exist in England. In various regions of England,

tanning outlets are required to operate under licence from their local authority, but

UV emission levels are not compared against regulatory limits due to the cost and

complexity of obtaining reliable data.

In this study all the sunbeds were compared to a compliance level of 0.3 Wm−2

erythemal-weighted irradiance. This is the maximum irradiance limit for UV tan-

ning equipment and is based on the opinion of the EU’s Scientific Committee on

Consumer Products (SCCP) [1]. As a comparison it represents the intensity of the

midday sun in the summer in the Mediterranean. Strictly speaking the safe limit

is intended to match sunbed output to the maximum that human Caucasians have

biologically evolved to deal with. It is important to assess whether the artificial

tanning unit was operating within the specification and guidelines in the British

and European Standard (BS EN 60335-2-27:2003) [8].

The BS-EN standard classifies UVR emitters into four ‘types’ depending on the

wavelength of the UVR emitted and the levels of irradiance in Wm−2 displayed in

Table 2.1. This classification will also dictate to the operator the circumstances

under which the appliance can be used. It should be noted that a fundamental

weakness of this system is that an operator of a sunbed can undertake a complete

re-fit of the lamps, which could essentially change the ‘UV type’, unknown to the

users and perhaps even the operator.

The main purpose of the standard is to impose a classification labelling of UVR

emitting devices. It also ensures that safety information and instructions for use are

produced by the sunbed manufacturer. Type 3 sunbeds are intended for general use

and it is expected that sunbeds in beauty parlours will compare to the limits shown

in Table 2.1.
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Table 2.1: Erythemal Irradiance UV appliance Limits and Classification of use
(Source: BS-EN 60335-2-27:2003).

UV Type UVB (λ : 280− 320nm) UVA (λ : 320− 400nm) USE
(Wm−2) (Wm−2)

Type 1 <0.0005 >0.15 Supervised
Type 2 0.0005 -0.15 >0.15 Supervised
Type 3 <0.15 <0.15 Unskilled
Type 4 >0.15 <0.15 Medical

The aim of this work was to measure the sunbed spectra emissions for sunbeds

across England including North Tyneside, Cheltenham, Coleford, Newton Abbot,

Derbyshire, Nottinghamshire and boroughs of London. A biological action spectrum

(explained later in this chapter) was applied to the resulting data. The weighted data

was then compared with the British and European standard on sunbed emissions

compliance levels.

2.1.1 History of Tanning Lamps

In 1906 a German company called Heraeus developed a high pressure mercury-

vapour, quartz glass lamp that produced high levels of UVR. These lamps offered

medical treatment of calcium deficiency and bone disorders until the 1930s, with

tanning as a welcomed side effect.

In 1960s, Friedrich Wolf decided to use UV lamps for non medical benefits in

commercial tanning. He asked Philips to make him the world’s first tubular UV

lamp, from which the original wooden sun benches were made.

Before the mid 1970s, the source of UVR was usually an unfiltered, medium or

high pressure mercury arc lamp which emitted a broad spectrum of radiation, from

UVC to visible and Infra-red (IR) radiation [73]. The units often incorporated one

or more IR heaters and were commonly called “sunlamps”. By incorporating several

mercury arc lamps into a “solarium”, whole body exposure was achieved. Tanning

devices based on mercury arc lamps emit relatively large quantities of UVB and UVC

radiation, resulting in a significant risk of burning and acute eye damage. Solaria
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that incorporate unfiltered mercury arc lamps are therefore now less popular [70].

Sunbeds, incorporating high-intensity UVA fluorescent lamps, were developed

in the 1970s. These devices consisted of a bed and/or canopy incorporating 6 – 30

fluorescent lamps. Later, canopies were added and recognisable sunbeds appeared in

the late 1970s consisting of high-intensity UVA fluorescent lamps. Vertical sunbeds

were invented in the late 1980s. The first high-pressure tanning beds incorporating

more than a single high-pressure lamp were manufactured in the mid to late seventies

by companies such as Ultrabronz and JK Ergoline. These units required special filter

glass to remove the UVC and the majority of the UVB that was emitted. These

were generally large units, with a padded area to lie on and consisted of 6 to 36

lamps in a canopy or canopy and bench configuration 150 – 180 cm in length as seen

in Figure 2.1. The earliest type of UVA lamp used in sunbeds is represented by the

Philips TL09, Wotan LI00/79 and Wolff Solarium lamps [74].

Figure 2.1: Horizontal Unit UWE ibed XTT R© Lamps(×57) : Cosmedico 200W.

Specially designed fluorescent lamps are used in solaria for artificial tanning

units [109]. The emission spectrum from these lamps comprises the fluorescence

continuum, extending from about 315 to 400 nm and peaking at 360 – 370nm. These

lamps have spikes in the spectrum which are the emission lines of mercury atoms;

the most dominant ones are at 313, 365, 405, 408, and 436 nm [107]. The UVA
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irradiance at the skin surface from a typical sunbed or suncanopy containing these

lamps is between 50 and 150Wm−2 [34, 40].

In the late 1990s a new generation of advanced, stylish fully enclosed artificial

tanning units emerged. At first, sunbed tanning consisted of lying on a flat acrylic

sheet for 30 minutes or more. Then there was the ‘stand-up’ or vertical units often

seen in gyms. With the introduction of ’high power’ (180 – 250W) output lamps,

session times reduced. Body cooling was introduced as lamps got hotter, and then

air conditioning.

2.1.2 Artificial Tanning Units

Tanning lamps are the part of a tanning bed, booth or other tanning device that

actually produce the artificial ultraviolet radiation. While there are literally hun-

dreds of different tanning lamps, they can usually be classified into basic groups:

low pressure and high pressure.

The fundamental purpose of the tanning lamp is to develop a suntan by means

other than exposure from the sun. This is accomplished in a tanning bed, tanning

booth, tanning canopy or free standing tanning unit. The quality of the tan (or how

similar it is to a tan from the natural sun) depends upon the spectrum of the light

that is generated from the lamps. Most tanning lamps produce much more UV than

the sun on a typical day. This gives the sunbed user a faster base tan, but one that

fades faster and offers less protection from the sun than a natural tan.

High pressure lamps are 3 to 5 inches long and typically powered by a ballast

with 250 to 2000 watts. The most common is the 400 watt variety that is used as an

added face tanner in the traditional tanning sunbed. High pressure lamps use quartz

glass, and as such do not filter UVC. Because UVC can be particularly harmful, a

special filter glass (usually purple) is required that will filter out the UVC and UVB.

The purpose with high pressure tanning lamps is to produce an ultra high amount

of UVA only. Using a tanning sunbed or other device with high pressure lamps but

no filter glass is extremely dangerous and should never be done. UVC is used in



36

germicidal lamps and for water purification [254] but damages human skin. The

contents of a high pressure lamp are inert gas (such as argon) and mercury [77].

There are no phosphors used, and the mercury is clearly visible if it is not in a

gaseous state.

Low pressure lamps more closely resemble the common fluorescent lamp used in

offices. Like all fluorescent lamps, low pressure tanning lamps work when the ballast

directs enough energy to the lamp that a plasma is generated inside the lamp. The

lamps are coated on the inside with special phosphors and contain a small amount

of mercury (20mg typical).

Unlike high pressure lamps, the glass that is used in low pressure lamps filters out

the UVC. Once the plasma is fully flowing in the lamp (less than one second), it strips

away the outer electrons from the mercury, which emits short wavelength photons

that are absorbed in the phosphor coating causing emission of longer wavelengths

suitable for tanning. Typical lifespans for low pressure lamps are from 300 to 1600

hours of actual use although they may actually light (and produce very little UV)

for as much as 5000 hours.

Three types of artificial tanning units were included in this research, which are

referred to as ‘vertical’, ‘horizontal’ and ‘high pressure’ sunbeds. Many establish-

ments use the horizontal ‘lie down sunbeds’ which consist of an upper canopy and

lower base bench arrayed with a total of 40 to 50 lamps of power range 80 – 250

watts an example of this type seen in Figure 2.1. The upper canopy might have a

built in ‘facial’ tanner with high pressure xenon lamps and the lower bench could

have integrated shoulder lamps either eight low power (25 watts) or two high pres-

sure lamps. It should be noted that there also may be booster ‘spaghetti’ lamps

(15 – 25W) arranged in between the larger upper canopy lamps. Hence forth this

type of sunbed will be referred to as Type H.

The vertical sunbeds (Type V) are usually known as ‘stand up beds’ or ‘sunshow-

ers’ whereby a person stands inside a cabin and is irradiated from 48 – 60 lamps in

either a circumference or split up into equal banks e.g. (4 banks x 13 lamps) seen
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Figure 2.2: Vertical Unit: megaSun R© T230W Tower by KBL Lamps 230W (×52).

in Figure 2.2. The lamps are guarded either by a metal cage or UV grade Perspex

Acrylic sheeting.

The ‘high pressure’ or Type HP sunbeds are either a Type H combination, where

the canopy consists of the high pressure metal halide lamps from 300 – 1000W and

the lower unit has the regular low pressure lamps, or a type V combination with high

pressure lamps. The goal of high pressure lamps is to provide high UVA output.

Vertical tanning units can also contain just high pressure lamps.

2.2 Materials and Methods

2.2.1 Sunbed Spectra

The measurements of vertical sunbeds were taken without the cabin being occupied.

In order to mimic an occupied cabin for a type V sunbed folding plastic crates were

stacked upon each other as in Figure 2.3. This had the effect of placing a barrier

behind the collecting optics to absorb UV radiation in a similar manner to a client
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Figure 2.3: Vertical Unit Sunvision R© Alisun 180XXL Lamps(×48): Cosmedico
Cosmolux 180W.

standing within the cabin. The diffuser and optical fibre were placed in a custom

holder and mounted on top of a camera tripod at a height of 160 cm. The holder was

clamped in place and the face was directed parallel to a bank of lamps positioned

22 cm away using a spacer. This distance approximated to the position of someone

standing in the cabin. The door was closed and the optical fibre transmitted the UV

radiation to the spectrometer, which was placed outside the cabin to avoid heating.

For horizontal sunbeds, measurements were taken of the canopy and lower lamps

separately. To measure the UV from the lower lamps, a bespoke designed holder was

used to hold the front end of the collecting optics in close proximity to the lamps.

The design of the holder prevented light entering from the upper canopy, which

would normally be blocked by the client’s body. The mean of three readings was

calculated from a central 15 cm zone. The holder was then flipped over to measure

the UV from the canopy (mean of three readings). Used this way, the collecting

optics were raised 20 cm above the perspex acrylic surface at a similar position to

that occupied by someone lying on the sunbed. A black cloth was used to cover the

lower lamps in order to block both light from the lower lamps and also reflections
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that would not be present in an occupied sunbed. The outputs from the canopy and

lower lamps were usually similar. However, the higher of the two readings was used,

as clients do not generally turn over during treatment and so one side will receive the

higher dose. Figure 2.4 shows that there are three different types of sunbed spectra

measured on-site. The most common type of sunbed spectrum with characteristic

mercury spikes occuring at 313mnm and 365nm, is depicted in red.

Figure 2.4: Three typical spectral emission for artificial tanning units.

The next sections describe the calibration techniques used to ensure accurate

measurements for the sunbed emission spectra.

2.2.2 Calibration

All calibration was carried out in the photophysics laboratory of the Photobiology

Unit (PBU), Ninewells Hospital, University of Dundee, Dundee.

Spectrometry

Spectroradiometry covers the measurement of spectral radiance and spectral irradi-

ance. Spectral irradiance, for example, is the spectral distribution of the radiation

incident on a surface, per unit area of that surface. A spectradiometer normally
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consists of input optics, a device for splitting the radiation beam into its constituent

wavelengths and a suitable detector system.

For in field sunbed measurements a portable spectroradiometer was used. A

schematic of the array-based spectroradiometer Maya 2000Pro Ocean Optics Spec-

trometer (Ocean Optics, Dunedin, FL, U.S.A.) is shown in Figure 2.5.

Figure 2.5: Maya Pro 2000 spectradiometer (Oceanoptics.com) [4].

1. SMA Connector - Secures the input fibre to the spectroradiometer. Light from

the input fibre enters the optical spectroradiometer through this connector.

2. Slit - A dark piece of material containing a rectangular aperture, which is

mounted directly behind the SMA Connector. The size of the aperture regu-

lates the amount of light that enters the spectroradiometer and controls spec-

tral resolution.

3. Filter - Restricts optical radiation to pre-determined wavelength regions. Light

passes through the filter before entering the optical bench. Both bandpass and
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longpass filters are available to restrict radiation to certain wavelength regions.

4. Collimating mirror - Focuses light entering the optical bench towards the Grat-

ing of the spectrometer.

5. Grating - Diffracts light from the collimating mirror and directs the diffracted

light onto the focusing mirror.

6. Focusing Mirror - Receives light reflected from the grating and focuses the

light onto the CCD (charge-coupled device).

7. Detector with OFLV Filter - Variable Longpass Order-sorting Filters are ap-

plied to the detector’s window to eliminate second and third order effects.

8. Back-thinned Area Detector - 75% quantum efficiency and bins pixels in a

vertical column to acquire from the entire height of the spectroradiometer’s

slit image. This improves light collection and signal-to-noise significantly. This

2-D area detector is back-thinned (back-illuminated).

The array spectroradiometer’s main advantages over a double grating scanning

spectroradiometer are:

1. Portability

2. Lightweight

3. Fast acquisition times

However, the instrument does have some disadvantages:

1. Stray Light

2. Dark noise

3. Dynamic Range

On site measurements of sunbeds were made using a Maya 2000Pro Spectrometer

with the diffraction grating tuned to 230 – 440nm for optimum UV measurement.
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(a) Bentham calibration with 6 bank of
Philips 100W UVA lamps 30cm from Ben-
tham.

(b) Maya Pro 2000 connected to laptop with
SpectraSuite and optical fibre 600µm diam-
eter to cosine detector.

Figure 2.6: Calibration of spectroradiometer.

The input optics consisted of an optical fibre and cosine corrector with Spectralon

diffusing material (CC-3-UV-S). The spectrometer was calibrated to UVA fluores-

cent lamps with a similar spectral distribution to that found in cosmetic tanning

units.

A double grating scanning spectroradiometer was used for the characterisation

and calibration techniques shown in Figure 2.6a. The calibration was performed by

taking simultaneous measurements, at a distances of 30cm, from a bank of six Philips

Cleo Performance 100W–R lamps with the Maya 2000Pro and a bench based double

grating monochromator (Bentham DM150). The calibration of the monochromator

is traceable to the NPL.

For consistency, during the calibration the CC-3 cosine diffuser end of the op-

tical fibre probe was mounted in the same holder that was used during sunbed

measurements. This was then placed 10cm above the diffuse input sensor of the

Bentham monochromator. The Bentham was given at least 2 hours warm up prior

to calibration while the UV lamps were given 5 minutes to warm up.

The output from the Bentham is multiplied by the Bentham calibration file,

which is derived from calibrated lamps and traceable to NPL. This gives the spectral

irradiance of the source. Spectral Irradiance =

measured Bentham signal(nA) x Bentham calibration file (mWm−2.nm−1.nA−1).
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The spectral irradiance (mWm−2.nm−1) data from the Bentham is then divided

by the output from the Maya to give a calibration file. This calibration file is then

multiplied by the Maya output anytime a measurement of a sunbed was performed.

A calibration factor at each wavelength increment was derived for the spectrometer

thus:

CFλ = EBλ/ESλ (2.1)

where CFλ is the correction factor at wavelength λ,

EBλ is the irradiance as measured by the Bentham at wavelength λ, and

ESλ is the output from the spectrometer at wavelength λ.
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2.2.3 Dark Light Correction

With all spectrometers some signal is recorded even when the instrument is in dark-

ness, due to thermal dark current generation. A dark current occurs in a CCD

device such as the spectrometer whether the sensor is being exposed to light or

not. Therefore a dark light correction had to be applied to the reading. A dark

current was recorded when the spectroradiometer was in true darkness with the

lights switched off. The CC-3 cosine diffuser end of the optical fibre probe was

covered with black cloth during the dark reading as a secondary precaution. Fig-

ure 2.7 shows a dark reading for integration time 500ms and acquired for 3 averages.

Figure 2.7: Dark reading in counts per second (CPS).

Here the wavelengths from 279.93 – 400.06 nm with raw counts were averaged

depending on the number of measurements taken. A typical dark reading in Fig-

ure 2.7 shows a defective pixel occurring at 305nm. A pixel is defective when the

the responsiveness differs compared to the mean values of all neighbouring pixels.

Here the defective pixel differs by ± 4%.

Please note, that all the light measurements were dark light corrected with the

same acquisition times.
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2.2.4 Stray Light Correction

Stray light is one of the most problematic issues when measuring optical radiation.

Stray light is defined as light detected by the measurement system when or where it

should not exist [249]. The stray light recordings for So and Sfilter have been dark

light corrected with the same integration times.

There are two basic types of stray light :

1. External stray light - due to scattering from outside e.g. scattering around the

edges of a filter or reflections off walls;

2. Internal stray light - due to scattering and reflections within the spectrometer.

External stray light is a potential problem in all optical radiation measurements

regardless of the measuring equipment. External stray light was reduced in this

study with the use of black cloth to cover reflective surfaces and areas of the sunbed

not being measured. It should be noted during calibration that the photophysics

lab is painted black to further reduce the effects of stray light. Internal stray light

is an inherent problem in many array systems because of their small size. It is much

more difficult to remove internal stray light in a physically small system where there

is a restriction on the use of baffles .

If the stray light can not be physically removed then the artefact needs to be

removed through calculation. The most common approach to compensate for in-

system stray light is to use a series of cut-off filters. A cut-off filter transmits radia-

tion only above a certain wavelength. The important feature of these filters is that

for a certain wavelength range the transmission is near zero. The levels of stray light

in the Maya were assessed as follows:

(a) A broadband source similar to that likely to be encountered in sunbeds, was

measured with no filter (S0) for the entire wavelength range of interest (280 –

400nm).

(b) The measurement was then repeated with the cut-off filter placed against the

input optics (Sfilter).
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(c) The ratio between the two measurements was determined and multiplied by 100 to

get the percentage (%) of stray light seen in Equation 2.2.

%Straylight =

(
Sfilter
So

× 100

)
(2.2)

where Sfilter is the signal with filter

So is the signal transmission without filter.

(d) For a cut-off filter, stray light % should be zero for wavelengths below the the cut-

off mark. Any non zero signal in these regions is likely to indicate the presence of

in-system stray-light.

(e) The measurements were repeated for a sufficient number of filters to enable an

assessment of stray light performance across the whole region of interest to be made-

performance at one particular wavelength cannot be taken as representative of the

whole thing.

(f) Once the stray light percentage is calculated for the wavelength range, the average

% is applied to the measurements. It is important to note that the quantity of stray

light will depend upon the light source being measured.

As a result of the known stray light artefact, a correction was introduced across

all measurements using the filter method as described above.

A broadband xenon arc source and filters with cut off wavelengths 305nm, 345nm,

375nm and 420nm were used to asses stray light. A dark reading was subtracted from

both filtered and non filtered reading. The ratio of signal with filter to signal without

filter (i.e. transmission) was plotted against wavelength. A visual representation of

the internal stray light can be seen in Figure 2.8. There is also noise present in the

signal as the light levels are close to the limitations of the device.
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Figure 2.8: Percentage of straylight for series of cut-off filters with ≈ 5% stray light
for 310 nm – 390 nm.

2.2.5 Cosine Response

UV radiation that reaches the surface of the skin comes from different angles from

the the lamp source. Diffuser heads with angular response proportional to the cosine

of the zenith angle are needed for the sunbed irradiance measurements.

The CC-3 cosine-corrected irradiance probes are optics designed to collect radi-

ation from a wide field of view, thus eliminating light collection interface problems

inherent in other sampling devices. The probe used for the measurements was the

CC-3-UV-S with SpectralonTM diffuser screwed onto the end of an optical fibre,

making an irradiance probe. The probe couples to a spectrometer to measure the

intensity of light normal to the probe surface. When coupled to a spectrometer, these

irradiance probes can be used to measure UVA and UVB radiation from artificial

tanning units.

The radiant power incident on a flat surface is proportional to the cosine of the

angle between the direction of the incident radiation and the surface normal. As

the skin is an approximation for a flat surface, the dose will depend on the angle

of the radiation. [257]. Thus, a spectroradiometer used for measurement irradiance

(Wm−2) or counts per sec should have an angular response that matches the cosine
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as closely as possible.

E =
Iecosθ

r2
(2.3)

where E= irradiance

Ie = radiant intensity

θ = angle of illumination to normal of irradiated area

r = distance of point source from irradiated area.

Measurements were performed using a xenon arc lamp to calculate the angular

response of the MayaPro 2000. The detector was positioned at a distance of 60 cm

on the sling arm jig seen in Figure 2.9. Measurements were performed at 0◦ with

incremental angles of 10◦ reaching both clockwise and anticlockwise as far as ± 60◦.

Due to the bulk of the xenon arc lamp the light source could not be positioned at

further angles.

Figure 2.9: Spectroradiometer, xenon-arc lamp and jig used to measure angular
responses.
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2.2.6 Diffuser Quality

The quality of the diffuser is defined by the diffuse cosine error f2 which is defined

as:

f2 (θ) =

(
S (θ)

S (0◦) cos (θ)
− 1

)
× 100% (2.4)

where S (θ) is the measured signal at the zenith angle θ. This formula assumes

the angular response to be independent of the azimuth angle. The integrated cosine

error, as defined in CIE technical report [65], can be calculated as

f2 =

60◦∫
0◦

|f2 (θ) | sin (2θ) dθ (2.5)

The weighting term sin(2θ) = 2cos(θ)sin(θ) ensures that the contribution of the

integrand goes to zero at large zenith angles, where the effective area of the diffuser

approaches zero, as well as at small zenith angles, where the cone of angles of the

spherical coordinate system approaches zero. Parameter f2 gives the fractional error

caused by the non-ideal angular response of the diffuser head under the assumption

that the radiance is constant [65].

Measurements for Cosine response

The angular response of the UV probe was determined by rotating the broadband

light source at 10◦ intervals from −60◦ to 60◦ with respect to the stationary detector

source centred on the jig. The measured angular responses and the ideal cosine

response function are displayed in Figure 2.10.

The first step was to normalize the signal at θ = 0◦. The counts per second

were multiplied by integration steps and then summed. By integrating equation

2.4 between −60◦ to 60◦ the error can be represented by the value f2 Equation

2.5. The f2 value was measured as f2 = 6.69% , which is below the 10% maximum

recommended for commercial UV radiometers [228].
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Figure 2.10: Measured angular responses and the ideal cosine response function.

2.2.7 Dynamic Range

The term ‘dynamic range’ can be used to describe the range of signal levels over

which the system will operate reliably. It is usually limited at the lower end by

noise and dark current, and at the upper end by system non-linearity and saturation

effects. Thus in order to specify the dynamic range of a system it is necessary to

investigate its dark current characteristics and its linearity. Manufacturers usually

state the dynamic range of their systems in terms of number of bits for example a ‘16

bit dynamic range’. This relates to the performance of the analog-to-digital (A/D)

converter alone. The Maya2000Pro contains a Hamamatsu S10420 CCD which is

a two dimensional CCD. The sensor has 2048 x 64 active pixels and acquisition

times from 6ms to 5 seconds. Since the dynamic range signal of the 16 bit CCD did

not measure details at the lower and upper ranges in one acquisition, a method to

increase dynamic range was required.

One method of increasing dynamic range is to use multiple integration times

A long integration time is likely to give a saturation at the upper region of the

spectral output but more information at the lower sector seen in Figure 2.11. A

short integration time reveals the upper sector of the spectral output but there was

a loss of detail at the lower sector.
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The dynamic range can be increased by merging the two spectra together in a

technique called ‘splicing’ [100]. The spectrum is acquired twice, each time with

a different integration time. The UVA peak is measured with a short integration

time, while a large integration time allows for an accurate measurement of the lower

signals, ignoring the saturated response of the UVA peak. Dark readings obtained

at corresponding short and long integration times were subtracted from the spectral

measurements. The sensitivity of the spectrometer depends on the count rate, so

a 2048 arrays element recording a high number of counts for a long integration

time must be corrected relative to elements providing a low number of raw counts

for short integration time. The spectrum correction is implemented by measuring

the spectrum of a reference source with known relative spectral irradiance. The

known normalized counts-per-second (CPS) spectrum is divided or multiplied by

the normalised measured reference spectrum to obtain the relative spectral response

correction.

Figure 2.11: Graph showing long integration time (t = 6secs) reaching saturation
and short integration time (t = 500ms) revealing upper peak.

Afterwards, both measured spectrum data are combined to generate a spectrum

with a larger dynamic range. This is achieved by getting each spectrum in CPS by

multiplying the short integration time 500ms × 2 and dividing 6 sec counts by 6.
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The merging occurs at wavelength section of greatest overlap and least deviation

in raw counts. For example if the longer integration time has a count of 6937.55

at 317.75nm and the least gap in raw counts is at the next wavelength of the short

integration time then the counts will take over with 7054.4 counts at 317.86. The

raw counts are taken above the longer integration time as there is less noise so

there is a greater signal-to-noise ratio (SNR). Typically the merging took place

from bottom to peak at wavelengths from 316.12nm to 319.27nm and then from

peak to bottom at wavelengths 390.95 to 398.53. A spectrometer with a CCD array

Figure 2.12: Merged Spectra.

detector acquires a spectrum over an extended wavelength range by accumulating

two spectra at different integration times. Comparison of the measured wavelengths

and the known wavelengths suggests that artefacts exposed by splicing do not play

a critical role in the wavelength calibration. Figure 2.12 displays the long, short

and merged spectral sunbed shaped normalised. The merged spectra has a greater

dynamic range.
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2.2.8 Linearity

A system is linear if the output varies in direct proportion to the input, for exam-

ple, if the responsiveness of the system is constant as the input is varied. If there

is no straight line relationship between the measured signal and the input quantity

relationship a system is non-linear. Non-linearities may arise due to the character-

istics of individual pixels in the array or because of imperfections in the amplifiers

or other electronics. In most cases the system will be linear within a certain range

of operating conditions, but will become non-linear if these conditions are exceeded.

Manufacturers frequently state that their systems are “linear” without further

qualification of this statement and usually any linearity checks that are performed

relate only to one element, such as the electronics, rather than the complete system.

For example, a known electrical signal may be applied to the detector electronics and

a record made of the number of counts generated. The deviation from a straight fit

of this data is then quoted as the linearity of the system; in fact, it is the linearity of

the detector electronics alone and the system itself may show very different linearity

characteristics.

Figure 2.13: Linear regression fit and 95% confidence levels bands (dark blue).

Therefore, it was necessary to assess the linearity of the spectrometer as a whole
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system. With most spectrometers the signal is integrated over a period of time and

the “raw” (unprocessed) data is presented as the actual measured signal levels. The

linearity test involved recording the raw counts for a range of integration without

reaching saturation (a fall-off in response) at the high integration times. The in-

tegration times ranged from 15.625 ms seconds to 25,000 ms and the counts were

recorded at wavelength λ = 330.5nm using the same incident power and distance

from the source.

The results show the system is linear with linear regression R2 = 0.98 goodness

of fit for integration times up to 25,000 ms and further examination of the data

reveals that the saturation plateau beyond this point is due to saturation at about

65,000 counts for the spectrometer. Note also that the noise on the signal 5 500ms

integration time appears as “noise” on the measured non-linearity. The regression fit

in Figure 2.13 ignores the saturation point at the longer integration time of 30,000

ms which is never encountered during during sunbed acquisition times. Here the

spectroradiometer has been evaluated for short, medium and long integration times

at the same distance from the source. Care needs to be taken that the out signal is

not significantly affected by noise at low integration times. Any change in the mea-

sured linearity with integration time is likely to indicate saturation of the detector

array, and can be used to set an upper limit to time-integrated signal which can be

measured reliably.
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2.2.9 Biologically Effective Weighting Spectra

An action spectrum is a weighted wavelength range that describes the relative effec-

tiveness of photon energy in producing a particular biological response. “Biological

response” may refer to effects at a molecular level, such as DNA damage, or inflam-

matory response like erythema. An action spectrum is used as a weighting factor

for the UV spectrum to find the actual biologically effective irradiance for a given

effect. This relation is described in the Equation 2.6 below for erythemal weighted

irradiance, EWI (λ):

EWI(λ) =

∫ 400nm

280nm

E(λ) A(λ) dλ (2.6)

where

E(λ) (J.m−2)) is the spectral irradiance

A(λ) is the biological action spectrum for erythemal damage (described below)

d(λ) is the integration step.

A photo induced biological response begins with the absorption of a photon

by a chromophore. These chromophores can initiate a photochemical reaction for

example DNA demonstrates a peak absorption at 260nm with a significant tail into

the UVB, and proteins such as tryptophan and tyrsosine have a peak absorption

around 280nm with a tail into the UVB. A wavelength dependent spectrum to

quantify the biological effectiveness by weighting the UVB and UVA component is

called the action spectrum.

However, not every photon absorbed necessarily produces a photochemical reac-

tion. The number of defined events occurring per photon absorbed by the system is

called the quantum yield Φ(λ):

Φ(λ) =
number of events

number of absorbed photons
(2.7)

It is not possible to carry out measurements of UV absorption by chromophores

in vivo. What is usually studied in photobiology is the relationship between surface
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exposure and the biological response under investigation. A wavelength dependence

can be deduced by measuring the exposure, E(λ), required at different wavelengths

to evoke the same level of response. Artificial UV tanning units have the potential

to cause premature ageing, erythema and carcinoma in human skin. Several studies

indicate that there is a wavelength dependency with more emphasis on wavelengths

≤ 320nm.

Studies of the wavelength dependence of tumour induction in mouse skin and of

erythema induction in human skin indicate the efficiency of damage induction by

UV photons in the wavelength range 280 – 400nm [62,185].

Erythemal Weighting

The biological weighting function used to approximate the wavelength-dependent

sensitivity of Caucasian skin to erythema inducing radiation is the model proposed

by McKinlay and Diffey [185], and adopted as a standard by the Commission Inter-

nationale de l’Éclairage (CIE) [3]. This model is given by the equations (wavelengths

λ in nm):

A(λ) =


1, if λ < 298.

10−0.094(λ−298), if 298 ≤ λ < 328.

10−0.015(λ−139), if 328 ≤ λ.

(2.8)

The normalisation of the McKinlay and Diffey action spectrum for erythema

is chosen to be such that the function is equal to unity at 298 nm. Because the

normalisation of A (λ) is arbitrary, the units of exposure should also be considered

to be arbitrary.

The biological effectiveness of the UV radiation is represented by the plot in

Figure 2.14, the skin is 1000 times more sensitive to radiation at 285 nm than to

that at 320 nm. The effect of applying an erythemal weighting factor [62, 185] is

demonstrated in Figure 2.15. Although the emission from the sunbed is mainly in the

UVA region, when it is weighted by the erythemal action spectrum, the significance
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Figure 2.14: Erythema action spectrum.

of the short wavelength UVB becomes apparent. It is the convolution of this action

spectrum and the spectral irradiance that gives the erythemal weight irradiance for

a sunbed. The summation value is then the sunbed output level in Wm−2 and this

number should not exceed 0.3 Wm−2 plotted in Figure 2.15.

Figure 2.15: Data from an UWE R© Starflight sunbed Lamps: Newtechnol-
ogy 100W (17 top; 17 bottom) showing the spectral irradiance (black) and the
erythema-weighted spectrum (grey). The total UV erythema-weighted irradiance
is 0.36 Wm−2.
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Skin Cancer Utrecht Philadelphia Human (SCUP-h) Weighting

Another method of estimating the wavelength dependence of carcinogenesis by UV

radiation is the application of the Skin Cancer Utrecht Philadelphia action spec-

trum. The original collaboration was on the SCUP-m (murine) action spectrum

based on the induction of tumours by UV exposure on albino SKH:HR1 mice. The

SCUP-h (human) action spectrum was developed by transforming the SCUP-m to

include the transmittance spectrum of human epidermis [62]. The SCUP-h shifts

relative effectiveness emphasis to 299nm. While the relative effectiveness occurring

at mercury emission line 313nm is reduced by a magnitude of ten.

Figure 2.16: Logarithmic scale of SCUP-h action Spectrum with spline curve fit.

As there is no formula for the SCUP-h action spectrum a spline curve was fitted

to match the integration steps of the Maya spectrometer which increments in steps of

0.10 or 0.11nm. The spline curve fit is a polynomial interpolation avoiding Runge’s

phenomenon. In mathematics, a spline is a numeric function that is piecewise-

defined by polynomial functions, and which possesses a sufficiently high degree of

smoothness at the places where the polynomial pieces connect. The log relative

effectiveness is displayed Figure 2.16, and a typical sunbed spectrum weighted by

the SCUP-h action spectrum is shown in Figure 2.17.
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Figure 2.17: Type H: UltraSun R© Sunrise 3500 Lamp: 120W Sunfit Pro+ Top(×17)
Bottom(×16) Weighted SCUP-h: 0.63 Wm−2.

According to measurements by Freeman et al. [96] the action spectrum for the

induction of CPDs in human skin resembles the SCUP-h action spectrum, especially

in the UVB region as seen in Figure 2.18. A similar plot up to 310nm can be

produced for mouse skin with data on CPD from Johnson [138] and Ley et al. [168].

This indicates that pyrimidine dimers are a dominant cause of the UV-induced

squamous cell carcinomas.

Figure 2.18: Comparison of the estimated action spectrum for squamous cell car-
cinoma in humans, SCUP-h (curve) [59] and the measured action spectrum for
induction of CPDs in human skin (red triangles) [96].
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Although the erythemal action spectrum can also vary, it bears a close resem-

blance to the SCUP-h action spectrum [29,58]. Young et al. reported that there was

a similarity for the thymine dimer action spectra in human epidermis and erythema

suggesting that DNA is the chromophore for erythema [302]. While there is still an

uncertainty in the UVA range from 340 to 400nm the dip is closely related to findings

by Tyrell et al. [159]. The spectrum of yield for induction of oxidative DNA base

8-oxo-dG in human skin fibroblasts damage closely resembles the SCUP-h action

spectrum.

ROS action spectra

UV radiation activates a series of cascading biological reactions in human skin.

Continuous exposure to UV radiation stimulates inflammatory processes that con-

tribute to the accumulation of free radicals. The reactions of over-exposure of the

skin to sunlight are well documented. While UVB is the dominant wavelength to

induce erythema, UVA has been associated with the generation of free radicals es-

pecially by reactive oxygen species (ROS) [303]. The production of ROS is one of

the key components of photodamage. Increased ROS load has been implicated in

photoaging [223] and photocarcinogenesis [245]. Biological effects induced by UVA

are mainly related to the generation of reactive oxygen species (ROS) [268].

At longer UVA wavelengths, indirect effects mediated by active oxygen species

become more important and induce various damages including DNA breaks and

oxidative modifications of nucleic acid bases. However, DNA absorbs in the UVA

and UVB region of the spectrum. While absorption of UVB is mainly attributed

to the formation of CPDs, it has been shown that CPDs have the potential to be

induced also by UVA [79, 203]. Considering that UVA acts mainly through the

generation of ROS it made sense to apply the ROS action spectrum to the UVA

dominant lamp spectra.

ROS are chemically reactive molecules containing oxygen. Examples include

oxygen ions and peroxides. ROS are formed as a natural byproduct of the normal
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metabolism of oxygen and have important roles in cell signalling and homeostasis.

However, during times of environmental stress such as exposure to UV, ROS levels

can increase dramatically. This may result in significant damage to cell structures.

Cumulatively, this is known as oxidative stress. One major contributor to oxidative

damage is hydrogen peroxide (H2O2), which is converted from super oxide.

These free radicals are at the beginning of a cascade of molecular biological

events with potentially destructive effects and potential photo-carcinogenesis. The

action spectrum shown in Figure 2.19 is derived from [304]. Convolution of the ac-

tion spectrum with sunlight spectral irradiance showed that 50% of the total skin

oxidative burden was generated by the UVA component.

Figure 2.19: Free radical action spectrum in the UV range. The spectrum is nor-
malised to 1 at 355 nm [303].
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2.3 Results

2.3.1 Irradiance of Artificial Tanning Units compared to

Natural Sun

The erythemal irradiance of the natural sun at midday was compared to the erythe-

mal irradiance to Type H, V and HP tanning units observed during inspections. The

spectral irradiance for the sun was recorded by Laboratory of Atmospheric Physics,

University of Aristotle, Thessaloniki, Greece 40◦39′N, 22◦58′E for 18th July 2009 at

10.36 Universal Time (UT) , which is solar noon when the irradiance is maximum

seen below in Figure 2.20. The erythemal and SCUP-h action spectra were applied

to the solar spectra the results of which are seen in Figure 2.21. The erythemal

irradiance was calculated from the spectral irradiance to be 0.19Wm−2 while the

SCUP-h weighting resulted in value of 0.43Wm−2. These results were used as a

comparative test for the sunbed outputs.

Figure 2.20: Solar spectrum Thessaloniki 40◦39′N, 22◦58′E Zenith Angle = 24.06◦

noon time.
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Figure 2.21: Erythemal (black line) and SCUP-h (grey line) weighted irradiance for
solar spectrum Thessaloniki 40◦39′N, 22◦58′E Zenith Angle = 24.06◦ noon time.

2.3.2 Shoulder and Facial Tanning Output

The majority of sunbeds used UVA fluorescent tubes for irradiating the body and

shoulders, while filtered metal halide lamps, which have a higher proportion of

UVA1, irradiated the face. Only five high pressure quartz units were encountered

during the survey. This type of exposure was primarily in the UVA. The essential

difference between standard tanning sunbeds and high-pressure sunbeds like the

Sunquest X6 in Figure 2.22 is the type of lamps they use. Instead of the fluorescent

tubular lamps used in standard sunbed units, high-pressure sunbeds use quartz

lamps to vary their UV output. In addition, the X6 high-pressure tanning stand has

a series of filters that block out most of the (UVB) rays while allowing UVA rays to

penetrate deeper into skin.

High-pressure lamps range from 600 – 2000 watts and are virtually all UVA ex-

posure. Comparatively, power of standard tanning lamps ranges from 100 – 180

watts. Eighty three of the horizontal tanning units had facial lamps incorporated

in them. But two of the sunbeds had non functioning facial lamps. A typical facial
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and shoulder lamp for type H sunbed are depicted in Figure 2.23.

Figure 2.22: High Pressure Unit: Sunquest UV Intensiv X6 R© (6 lamps × 4 columns)
500-1000W.

Figure 2.23: Ergoline R© Excellence 700 Face Lamps(×4): Ultra VIT 2.4 520W shoul-
der lamps(×12): Ergoline SD 25W.

The use of filtered high pressure metal halide lamps for irradiating the body or

face delivers less of the UVB erythemal irradiance and hence less erythemal burning.
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Figure 2.24: Free radical effectiveness spectrum (grey curve) calculated for High
Pressure Face Ergoline Ultra VIT 2.3 500W (black curve).

However the UVA exposure may be higher potentially leading to the induction of

malignant melanomas. UVA radiation is only slightly less effective than UVB with

regards the induction of melanocyte hyperplasia a precursor to melanoma in shaved

opossums [167].

UVA irradiation has been shown to induce free radicals, including reactive oxygen

species in melanocytes which cause oxidative DNA damage [160] and thus may cause

DNA mutations contributing to melanoma genesis.

Figure 2.24 shows a typical spectrum from a HP and facial quartz lamp at 1000W

and 500W. Total UVA outputs have a tendency to be higher than for fluorescent

lamps. Since the quartz lamps have emissions mainly in the UVA spectrum we

applied the ROS action spectrum to investigate the wavelength dependency for free

radicals.
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Sunbed Providers

The majority of the inspections occurred at fitness centres, gyms, beauty salons,

hairdressers and tanning centres. However the tanning centres were at the core of

the survey with 65 establishments visited. This was followed by beauty salons and

hairdressers see Figure 2.25. The places offering tanning in the category of ‘Other’

included swimming pools, post office and company sport facilities where tanning is

offered as an auxiliary service.

Figure 2.25: Distribution of tanning establishments.

The quantity of tanning units available at the sites ranged between 1 and 8 units

with 63% of the tanning units been type V and 36% being type H. The remaining

1% consisted of the HP type. In general the vertical beds were marketed as having

the stronger ‘fast tan’ lamps with the highest power detected at 250W. Although

the higher end of power existed at 235W, 200W and 180W there were also lamps

found at 100W and 80W. There is no guarantee that replacement lamps are the

same as those originally supplied by the manufacturer of the sunbed. Furthermore

when a lamp is replaced it will have a much higher output. The UV levels decrease

by approximately 20 – 30% after 600 hours of use [285]. All this equates to confusion

amongst the consumers who may not know how powerful the tanning unit is if the

cabin says 180W but the lamps are 250W. One example was a tanning cabinet with
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a mixture of lamps which were replaced individually as they degraded. This then

left new powerful lamps and old lamps operating at 70% of their original output.

The percentage of sunbed types encountered on the study shown in Figure 2.26 with

over two-thirds of the stand-up variety.

Figure 2.26: Percentage of tanning unit categories.

Results

The effective erythemal UVB, UVA and total irradiance from each tanning unit was

calculated. This is the summed total for the convoluted spectral irradiance and

the erythemal action spectrum for UVB, UVA and total UV range. Comparing the

magnitude of the UVB region with the UVA region allows the tanning units to be

classified by the BS-EN standards. The results from this study has shown that 90%

of the sunbeds tested were emitting UV radiation above the permitted level allowed.

The European Standard (see BS EN standard referenced above) in which safe limits

for UV radiance are stated, specifies a limit of 0.3 Wm−2.

The significance of the total erythemal irradiance, UVB irradiance and UVA

Irradiance was assessed performing a SigmaPlot t-Test with Shapiro-Wilk normality

method. The mean erythemal irradiance is almost double the compliance level. In
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relation to the total UV irradiance it was found that only 10% can be categorised as

type 3. Consequently the remaining 90% of the tanning units fall under the category

as type 4 requiring medical advice.

Figure 2.27: UVB Irradiance. Figure 2.28: UVA Irradiance.

The UVB weighted erythemal irradiance of 0.35 ± 0.17Wm−2 (n=402) shown

in Figure 2.27. This mean value is more than double the compliance limit of 0.15

Wm−2. Further examination reveals that only 15% of the results are below this

compliance value. Moreover two tanning units were outputting UVB irradiance at

the 1.0 Wm−2 mark with a maximum of 1.06 Wm−2. Significant spectral irradiance

in the UVB range at 313nm can contribute to 20 – 25% of erythema effectiveness.

The UVA weighted erythemal irradiance average was 0.21 ± 0.06Wm−2 (n=402)

shown in Figure 2.28, which is above the compliance limit of 0.15 Wm−2. Further

examination reveals that only 26% of the total artificial tanning units are below the

compliance value of 0.15Wm−2. The maximum UVA erythemal irradiance was 0.44

Wm−2.

Total erythemal irradiance ranged between 0.10 Wm−2 and 1.32 Wm−2 with a

mean 0.56± 0.21Wm−2 (n=402) shown in Figure 2.29. Only 10% of the sunbeds

were below the compliance level 0.3Wm−2.
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Figure 2.29: Total UV, UVB and UVA Irradiance.

Facial and Shoulder Erythemal Irradiance

A total of 80 facial lamps were measured from horizontal sunbeds and the erythema

irradiance was calculated for each displayed in Figure 2.30. UVB values ranged from

0.01 Wm−2 to 0.31 Wm−2 with a mean of 0.12 ± 0.05W m−2 (n=80). The UVB

mean is below the 0.15 Wm−2 compliance level. The UVA values ranged from 0.06

Wm−2 to 0.41 Wm−2. As expected with UVA Irradiance the value of the mean is

higher at 0.19 ± 0.09W m−2 (n=80).

In contrast to the UVB mean the UVA mean is above the 0.15 Wm−2 limit value.

In fact 52 of the sunbeds can be classified as type 3 with under UVB wavelength

range. While only 27 of the tanning units can be in the same classification under the

UVA wavelength. The total erythemal irradiance for the facial lamps had a maxi-

mum value of 0.64Wm−2. The average total erythemal irradiance was 0.32 ± 0.11W

m−2 (n=80) which is slightly above 0.3 Wm−2 compliance. Only 29 of the tanning
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units were overall classified as type 3 totalling both UVB and UVB irradiance.

Figure 2.30: Total UV, UVB and UVA Irradiance.

A total of forty measurements were taken from shoulder lamps in sunbeds, all

of which were fluorescent lamps at 25W except one which was a quartz lamp at

240W and had an erythemal irradiance of 0.97 Wm−2 and SCUP-h 1.75 Wm−2.

These were HD lamps on Ergoline Prestige 990 Dynamic Power unit. Only one of

this type was encountered during the measurements and so was omitted from the

shoulder total erythemal irradiance shown in Figure 2.31.

The mean total erythemal irradiance for the 25W shoulder lamps was (0.30± 0.14W

m−2 (n=39) which is just above the 0.3 Wm−2 compliance level. The majority of

shoulder lamps were below the irradiance limit with 61 % compliant. The mean

UVB erythemal irradiance of 0.20±0.10W m−2 (n=39) was above the 0.15Wm−2

compliance. The mean UVA erythemal irradiance of 0.10 ± 0.04W m−2 (n=39) was

below the 0.15Wm−2 compliance level.
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Figure 2.31: Total UV, UVB and UVA irradiance.

SCUP-h

The total SCUP-h weighting is also analysed with a one way t-test. A two sample

t-test was implemented to compare the irradiance between licensed and unlicensed

areas. The statistical significance was taken as p <0.05.

The SCUP-h weighted effective irradiance for the tanning units varied between

0.17 Wm−2 and 2.52 Wm−2 with a mean of 0.99 ± 0.41W m−2 (n=402) shown in

Figure 2.32. The effective SCUP-h for Mediterranean noon sun was calculated at

0.43Wm−2. Hence, comparing this value to the mean total SCUP-h it can be said

that the average artificial tanning unit is nearly 2.5 times more carcinogenic per

minute exposure than that of midday Mediterranean sun. The maximum SCUP-h

value was 2.52 Wm−2 and this was measured from a Vertical unit using 250W lamps.

Using this strongest tanning unit measured in this current work, the comparison

factor was over six times that of Mediterranean sun.

The mean total SCUP-h for the quartz facial lamps was 0.52 ± 0.22W m−2

(n=80) which was above the midday Mediterranean sun SCUP-h calculation of

0.43Wm−2. Based on measurements attained in this study the SCUP-h equivalent

to 0.3Wm−2 erythemal irradiance turns out to be 0.48Wm−2. Over 33% of facial
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Figure 2.32: SCUP-h total.

tanners(27 facial tanners) have SCUP-h values that are lower than 0.43Wm−2, but

two facial tanners were about three times the value for midday Mediterranean sun

of 0.43Wm−2. The mean SCUP-h for the shoulder lamps was also calculated at 0.54

± 0.25W m−2 (n=39) which is above 0.43Wm−2 value.

Regional Variation

Results from sunbeds surveyed around England are shown in Table 2.2. There

were 76 sunbeds surveyed in the metropolitan borough of North Tyneside and

Newcastle-upon-Tyne in North-East England. This area includes the unlicensed

areas of Wallsend, North Shields, Whitley Bay, Forest Hall, Camperdown, Dudely,

West Allotment and Gosforth. In total 56 tanning units were measured across

Nottinghamshire and Derbyshire. These included the licensed areas of Chesterfield,

Mansfield, Ashfield and Ripley, and Amber Valley.

Six London boroughs were visited during the survey. These were the licensed

boroughs of Barnet (n = 48), Bromley (n = 32), Islington(n = 47) and Sutton (n =

33), and the unlicensed Newham (n = 24) and Bexley (n = 41). In the South West

of England measurements were conducted in Cheltenham, Coleford and Newton
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Abbot in the Teignbridge district of Devon. These were all licensed regions.

Table 2.2: Erythemal Irradiance levels for UVB, UVA and Total UV(combined).

Total erythemal UVB erythemal UVA erythemal SCUP-h∗

irradiance irradiance irradiance irradiance

Location n Wm−2(SD) Wm−2(SD) Wm−2(SD) Wm−2(SD)

London Barnet 48 0.48(0.24) 0.29(0.19) 0.19(0.07) 0.85(0.45)
London Bromley 32 0.48(0.23) 0.29(0.18) 0.19(0.08) 0.89(0.45)
London Islington 47 0.47(0.20) 0.27(0.17) 0.20(0.07) 0.83(0.39)
London Sutton 33 0.49(0.13) 0.29(0.13) 0.20(0.06) 0.85(0.28)

London Newham 24 0.57(0.20) 0.38(0.14) 0.19(0.06) 1.03(0.36)
London Bexley 41 0.50(0.17) 0.31(0.14) 0.19(0.05) 0.88(0.34)
North Tyneside 76 0.70(0.21) 0.46(0.17) 0.24(0.05) 1.25(0.42)

South-West 45 0.45(0.25) 0.27(0.18) 0.18(0.08) 0.79(0.46)
Derbyshire 56 0.53(0.19) 0.33(0.15) 0.20(0.07) 0.93(0.37)

All sunbeds 402 0.56(0.21) 0.35(0.17) 0.21(0.06) 0.99(0.41)

* SCUP-h, skin cancer Utrecht Philadelphia-human (skin-cancer weighting fac-

tor).

At the time of the study, North Tyneside and the London boroughs of Bexley

and Newham were unlicensed. A two group t-test was implemented between the

licensed and unlicensed London boroughs. The difference between the mean values

of sunbed irradiance for the two groups was not statistically significant (p = 0.237).

When the two-group t-test was performed between the unlicensed North East and

the licensed South West, there was a statistically significant difference in the mean

values of the two regions (p <0.001).

An average erythema-effective irradiance of 0.56 Wm−2 was determined for sunbeds.

This corresponds to a UV index of 22.4, which is significantly higher than the UV

index of 8.5 of the high summer sun at noon at intermediate latitudes [107]. The

index is equal to the EWI (in Wm−2) multiplied by 40. An Index of 12 is equivalent

to an EWI of 0.3Wm−2.
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2.4 Discussion

In this work, considerable care was taken to ensure that UV measurements were

accurate. The array spectrometer used in this study has a CCD detector. One of

the major technical limitations of CCD arrays is the high level of stray light. For

this reason, stray light corrections were carried out. Another error can arise when

measurements are being taken in an unoccupied sunbed. A person standing in or

lying on a sunbed absorbs incident UV radiation; when the sunbed is unoccupied,

radiation from one bank of lamps strikes the opposite lamps and reflectors, and

reflects on to the detector. The methodology adopted ensured that this error did

not occur. These two measurement artefacts would both lead to an inappropriately

high radiation output value, and so considerable care was exercised to ensure that

the data collected were reliable.

To date there have been only a small number of sunbed studies carried out in

which full spectral measurements were performed on site. Spectral data are required

to give accurate information on the UVA and UVB content of sunbeds and to allow

the use of weighting factors in the analysis. The importance of measuring on site

is that the spectrum and intensity of UV radiation depend on the type, condition,

age, stacking density and temperature of the lamps, the design and condition of the

reflectors, and the material and condition of the perspex lamp protector.

A hazard assessment of 38 artificial tanning units carried out in Scotland in 1998

found that SCUP-h irradiances were comparable with U.K. summer sunlight [200].

These results were confirmed in a similar study published shortly afterwards [184].

A follow-up study of 133 sunbeds in Scotland in 2007 found that the median of the

SCUP-h irradiance of all lamps was then equivalent to Mediterranean sunlight [211].

This was due to the widespread use of ‘fast tan’ lamps. Although the new British

and European standard was in place, 83% of sunbeds exceeded the UVB limit set

out in the new standard.

Since 1983, all tanning models in Norway have needed approval before being

sold, and type-3 limits were applied from late 1992 onwards [208,209]. However, on-
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site inspections in 1998–99 revealed that only 28% of tanning devices were equipped

with the correct lamps (i.e. the same type of sunlamps as approved), though this

had increased to 59% in 2003. This highlights another problem, which is ensuring

that replacements lamps are the same as or similar to the original.

In a recent similar study on sunbed emissions by Public Health England found

that 85% of the 197 sunbeds were over the limits of a type-3 sunbed [146].

In this work, on-site spectral measurements were performed on 402 sunbeds in

England. The mean erythema weighted UVB and UVA irradiances were 0.35 ±

0.17Wm−2 and 0.21 ± 0.06Wm−2, respectively, and the mean erythemal total UV

irradiance was 0.56 ± 0.21Wm−2. Only 10% of sunbeds tested complied with the

type-3 limit.

There is a trend that may be identified from reviewing the reports on recent mea-

surements of sunbeds. UV emissions are increasing with the development of new

high-power sunlamps. Moreover, the publication of a European Standard in 2003

does not seem to have arrested this development. Sunbeds with erythema-weighted

UVB irradiance exceeding 0.15Wm−2 should be used only following medical ad-

vice,according to BS EN 60335. Yet 85% of sunbeds tested exceeded this level. It

is interesting to note that for wavelengths less than 320 nm, the erythema action

spectrum resembles the absorption curve for DNA [235]. This will be discussed in

greater detail in Chapter 4. The SCUP-h action spectrum indicates the relative

effectiveness for induction of nonmelanoma skin cancer [62]. Its merit is in facilitat-

ing a quantitative comparison between artificial tanning units and sunlight. In the

present study, the mean SCUP-h irradiance was 2.3 times that of Mediterranean

sunlight. The maximum value recorded was six times higher than Mediterranean

sunlight. The CPD action spectrum follows a similar pattern to the SCUP-h. What

is important here is that UVR has the capability to form CPDs. This will be further

investigated in Chapter 5.

The ROS action spectrum is heavily weighted in the UVA so facial emission

spectra from the sunbed was an obvious choice for the convolution to display the
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number of ROS species generated.

Sunbeds tested in North-East England had significantly higher UV emissions

than those in the South West 0.7 ± 0.21Wm−2 versus 0.45 ± 0.25Wm−2. Sunbeds

are licensed in the South West but not in the North East. It may be that licensing

was a contributory factor in the difference observed, although there may be other

influences such as competition in the market place. In this respect, there was no

significant difference between the London boroughs that had licensing and those

that did not, and so in this more closely comparable area, licensing per se did not

appear to influence compliance with the European standard. This is not surprising,

as the local authorities do not have the capability for making the necessary UV

spectral measurements. A possible solution would be if only type-3 sunbeds were

permitted to be sold and used within the U.K., and units were inspected to show

that only the correct lamps were fitted.

Five of the tanning centres visited were unmanned and operated on a coin or

credit card system. Anyone of any age or skin type can turn up and use them, and

can have as many treatments as they wish. Until recently, these were in widespread

use, but they are now banned in Scotland. Individual studies examining the associ-

ation between sunbeds and skin cancer may have contradictory findings. Although

Elliot et al. [82] did not show a link between melanoma and sunbed use, Lazovich

et al. [162] found a dose–response relationship for years during which sunbeds were

used. A meta analysis combines results from all investigations, taking due account

of the strength of evidence in each study. In a recent meta-analysis, results from 25

studies were combined [32]. This revealed that use of sunbeds increased the risk of

melanoma by 20%. The risk of melanoma was almost doubled when use started be-

fore the age of 35 years [32]. It was estimated that 3438 cases (5.4%) of melanomas

in Western Europe were related to sunbed use. Calculations showed that 99 deaths

each year in the U.K. were attributable to sunbed use.

Most people use sunbeds for purely aesthetic reasons. If the sunbed were a cos-

metic product it would have been withdrawn years ago. However, legislation has
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been very slow in coming within the U.K. The bill regulating sunbeds in Scotland

was passed in 2008 and came into force in 2009. This banned unmanned salons

and prevented the use of sunbeds by those under the age of 18 years. It also re-

quired prescribed information on the health risks to be supplied to users. The other

governments in the U.K. followed Scotland’s example,and now England, Wales and

Northern Ireland all have legislation in place prohibiting the use of sunbeds by peo-

ple under the age of 18 years. Supporting measures still need to be introduced in

the legislation in England, which is the only nation in the U.K. to allow the use of

unmanned tanning salons.

The present study, covering 402 sunbeds spread throughout England, indicates

clearly that the current situation is very unsatisfactory, and much more needs to be

done in England to discourage the use of sunbeds. This investigation clearly shows

that 90% of sunbeds emit levels of UV radiation that exceed the limits allowed by the

British and European standard. The standard is intended to safeguard the public

but it is being largely ignored by the sunbed industry. Stricter control measures

must be put in place along with continued programmes of education. Otherwise,

the melanoma burden will continue to increase.

In the next chapter we incorporate our readings into plausible scenarios with

sunbed exposure sessions giving certain doses. From that we use a model to predict

the risk of squamous cell carcinoma developing later in life.
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Chapter 3

Squamous Cell Carcinoma Model

3.1 Squamous Cell Carcinoma

3.1.1 Introduction

Nonmelanoma skin cancers (NMSCs), predominantly squamous cell carcinoma (SCC)

and basal cell carcinoma (BCC), are the most common cancers in fair-skinned pop-

ulations throughout the world [252] with increasing incidence in recent years. The

use of indoor artificial tanning devices increases the risk of cutaneous malignant

melanoma [26], but the association with risk of squamous cell carcinoma of the skin

is unclear.

Chronic exposure to the sun generate regions of Actinic Keratoses (AK) contain-

ing keratinocytes which differentiate and proliferate [61]. AKs are characterised by

cutaneous lesions on sun exposed sites of skin types I–II [242]. The majority of these

keratoses will regress but approximately one in a thousand will progress to SSC [50].

Even though SCC is fully treatable some lesions may become locally invasive and

destructive, potentially leading to metastasis or death.

SCC and BCC appear especially in advanced age (70 years and up) mainly due

to cumulative lifetime UV exposure. They are found predominantly in the areas

exposed to the sun, either on the face, neck and hands. If they are detected early

enough, the majority of the NMSCs can be treated. While primary cutaneous
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SCC has a low rate of metastasis of approximately 5%, after it has metastasised

to distant locations the prognosis is generally poor [238]. The risk of metastasis

increases significantly in patients with high risk of SCC [38]. SCC is a preventable

cancer as UV radiation is the main environmental risk factor. In spite of this, levels

of SCC continue to rise throughout the population yearly.

Exposure to UV radiation (UVR) is the primary cause of NMSC, although the

pattern of exposure that gives rise to different types of NMSC appears to vary.

Squamous cell carcinoma is predominantly caused by long-term sun exposure. SCC

is the second most common type of skin cancer and affects at least 10,000 people in

the UK each year [251]. Although SCC has a high cure rate it can cause death if it

is neglected and allowed to spread. The average age standardised incidence rate for

2010 was 24.7 new SCC cases for every 100,000 in the U.K. [139].

This slow-growing disease affects individuals who have regular exposure to sun-

light. Until recently, this cancer was most common in older people, particularly men

who worked outdoors. Now, however, more women and younger individuals are be-

ing diagnosed with squamous cell skin carcinoma, especially those who spend leisure

time in the sun [83] and increased use of sunbeds [141]. Individuals with fair skin;

blonde or red hair; or blue, green or gray eyes have higher than average risk.

SCC occurs most frequently on areas of the body frequently exposed to the sun

such as the face, ears, neck, scalp, shoulders, and back. The rim of the ear and

lower lip are especially vulnerable to these cancers. Tumours sometimes develop on

areas where the skin has suffered injury: sun damage, burns, scars, sores, or sites

exposed to x-rays or chemicals. Chronic skin inflammation also may encourage the

development of squamous cell skin carcinoma.
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The characteristics of a person susceptible to developing SCC are:

(1) advanced age

(2) significant cumulative exposure to life in the sun

3.1.2 SCC Model

Solar UV radiation is recognised as the principal environmental cause of skin can-

cer. In particular, the risk of induction of squamous cell carcinoma (SCC) has been

shown to increase with cumulative exposure to UV radiation. Models of risk of

SCC induction have been developed but these do not include the use of sunbeds

and this was the purpose of the present study. To this end, the values of pub-

lished on-site UV levels emitted from sunbeds were used to provide real measured

sunbed exposure levels to inform the model. The model incorporated three condi-

tions of exposure: day-to-day, holiday and sunbed exposure. The risks associated

with different exposure scenarios were implemented in the model. Baseline exposure

comprised day-to-day and holiday exposure. Relative risk was defined as the risk of

SCC induction from (sunbed + baseline dose) / baseline dose. The algorithm was

implemented in Matlab programming package [182]. The purpose of this work is to

estimate the additional carcinogenic risk from the use of sunbeds using the actual

on-site UV measurements from sunbeds. To this end, several exposure scenarios

are considered in terms of use of sunbeds and type of sunbed used. The additional

risk factor is determined compared to sunlight exposure using a model developed

for SCC induction [63].

Fears et al. demonstrated for a given genetic susceptibility, that age and UVR

exposure are the most important determinants for relative risk [87].

Risk of SCC induction has been shown to follow a simple power-law relation in
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accordance with the following basic equation 3.1

Risk ∝ (annual UV dose)β(age)α+β (3.1)

The biological amplification factor ‘β’ reflects the fact that any percentage increase

of the annual UV dose results in a greater percentage increase in the incidence of

SCC. This is attributable to the steepness of the power relationship between the

doses of UV radiation and the incidence of skin cancer. The parameter ‘α’ reflects

an age dependent factor. The exponent values from α and β were derived from

values published in a review of epidemiological data [210]. In the present study,

we use the power parameters β = 2.3 and α = 3.8. This equation is applicable

to conditions where the annual exposed dose received by people remains unaltered

throughout life. However, in most cases changes in lifestyle with age indicate that

annual UVR exposure does not remain constant throughout life. This situation

occurs when one uses artificial tanning units for a limited period in a life span.

The situation of abrupt change in annual UV exposure was examined in a series

of time-dose experiments in mice by de Gruijl and resulted in an adapted version

of the equation to estimate the risk of NMSC [64]. The relative risk from total

body tanning using sunbeds will depend on the sunbed emission spectra output

(erythemal irradiance Wm−2), the length of time of each session, the number of

sessions per year and the number of years of use. Typical sunbed sessions were

noted during the original study to range from 2 minutes to 20 minutes. In our

analysis, we consider sunbed sessions lasting 3 minutes, 9 minutes and 12 minutes.

In general, lower output horizontal sunbed units had longer sunbed session times

compared to ‘fast tan’ vertical and horizontal units.

Sunbed Dose

We used the erythemal-weighted UV irradiance data from our published large scale

survey of sunbeds [267]. In this study, on-site UV spectra were measured from 402

artificial tanning units distributed across England. Instrumentation calibration was
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traceable to the NPL in order to ensure the reliability of the data. Sunbed exposure

was considered as an additional component in addition to day-to-day exposure and

holiday exposure. Erythemal irradiance is commonly expressed in terms of the Stan-

dard Erythemal Dose (SED), where 1 SED is equivalent to an erythemal effective

radiant exposure of 100 Jm−2 [185].

Baseline Dose

For day-to-day exposure, we used the median value of 166 SED which is taken

from a Danish epidemiological study [262]. Holiday exposure was also taken into

consideration in the model. The dose from one week holiday in the Mediterranean

sun has been shown to be equivalent to 57 SED [221]. In this study it was assumed

a whole-body holiday dose lasting for 10.5 days the national average time abroad a

proxy to holiday exposure [5]. The model also made the assumption that the holiday

exposure for a child did not begin until five years of age and there was no difference

in annual dose between teenagers and adults.

Body Site Weighting

We additionally examined the effect of exposure of various body-sites, from those

normally exposed such as face, posterior neck and arms to more usually unexposed

sites. The latter include the trunk and legs which account for approximately 80%

of body surface area. The normally exposed areas from day to day consist of the

face, posterior neck and hand. There is a significant difference between the dose to

the face and neck compared to the dose to the hand. Thus, a weighting factor ‘wLu’

= 2 was added to the upper regions which receive twice the dose compared to lower

‘wLL’ =1 regions [261].

The percentage of body-site area for daily exposure is approximately 10% de-

picted in Figure 3.1. This is split into 6% for face ‘AeU’ and posterior neck and 4%

for dorsal hands ‘AeL’. Ae is the total percentage area exposed day-to-day, 10%.

The fractional area for whole body exposure sunbathing or on a sunbed is approx-
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Figure 3.1: Body surface percentage areas: day-to-day exposure (face,neck and
hands) 10% and max exposure area 85% [16].

imately 85% ‘Au’ excluding volar hands and feet and parts covered by trunks or

bathing suit [16, 104]. Sunbed exposure was set for the years between 20 and 35

years with the age of first sunbed use being 20 years, and no sunbed use after age

35 years. By summating the dose contributions from day-to-day Dd holiday and

sunbed exposure we formulate subsequent equation of total dose TDe of normally

exposed body-sites (face, neck and hand):

TDe = a.Dd + (a− ah).DH + (a− as).Ds (3.2)

for a > ah (holiday exposure), as < a < 35 (sunbed exposure);

where Dd = wLu.Dd or wLL.Dd

Similarly for

TDu = (a− ah).DH + (a− as).Ds (3.3)

where

TDu is the dose for the routinely unexposed sites (legs, trunk, arms, etc.).
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3.1.3 Tumour Yield

The assumptions outlined above are incorporated into the equation to calculate tu-

mour yield for discrete age intervals of five years up to eighty years of age. For

this model we modified the equation to include the fraction of usually unexposed

and exposed areas and also a weighting factor for the face and wrist. This is due to

the fact that the Danish study found the correlation between the SED at the head

and wrist was statistically significant [261]. The dosimeter readings at the forehead

were double that of the wrist. Therefore the dose received was multiplied by two to

give a comparable UV facial exposure dose [262]. The average number of tumours

accumulated per individual at risk in a birth cohort of age “a” in absence of death

was referred to as the tumour yield. The following equation gives the tumour yield

YLD(a) at age ‘a’ and considers the areas of the body that are normally exposed in

day-to-day outdoor activities (subscript ‘e’) and the areas that are normally unex-

posed (subscript ‘u’) but receive additional exposure on a sunbed and on holidays.

The equation is composed of a purely UV dose-dependent factor and a purely time-

dependent factor and includes explicitly two terms representing the fractional area

exposed (i.e. normally sun-exposed and unexposed).

Y LD(a) =
∑

L

(∑
S

(
Ae

(
TDeU
tdo

)β
.
(
a
ao

)α)
+
∑

S

(
Au

(
TDu
tdo

)β
.
(
a
ao

)α))
(3.4)

where

tdo , reference total dose up to ao to match actual YLD(65)∑
L, sum over dose level for each person at risk∑
S, sum over body sites.

Expanding this further to include upper and lower areas of normally exposed

sites we deduced the following equation:
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(3.5)

For baseline calculation of just day-to-day and holiday dose the sunbed contribution

was omitted from the total dose calculation. The number of cases of SCC per year

was described as the age-specific incidence I(a) (the number of new cases per year

per individual at risk at age ‘a’) defined by:

I(a) =
∆(Y ield(a))

∆(a)
(3.6)

The first derivative of Yield with respect to ‘a’, which is estimated by the increase

in the yield, ∆ Yield, over a 5-year age interval, ∆ a. The baseline age-specific inci-

dence estimated from the Yield is scaled to the 2010 SCC incidence rate provided by

Public Health England (PHE) [7]. From the data we can establish the incidence per

105 persons for each 5-year age group. Initially, the yield difference was normalised

for each 5-year age group to the one at 65 years and then used a scaling factor to fit

the delta yield output across all ages to match the PHE data. The scaling factor ‘m’

is used to match incidence of SCC per 5-year age group (PHE data) to the number

of cases of SCC from our yield equation.

m =
Incidence(a)

∆Y ield(a)
(3.7)

The initial yield from the model is a good approximation of the exponential rise

of SCC cases with age; further scaling allows us to match our model to PHE data.

The exponential curves for PHE SCC cases and our model as a function of age are

in good correlation for baseline doses. The curve for incidence of SCC across all age

groups in the U.K. population is taken as the baseline without sunbeds (neglecting

a possible small contribution to the PHE data). Once the matching factor was

established it was applied to all the other scenarios where extra dose from sunbeds

yields more SCC tumours. By calculating the ratio of the area under the curve
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(AUC) between baseline ‘no sunbed’ and sunbed use it was possible to establish the

relative cumulative incidence (RCI), which should equal the relative risk (RR) (as

established by the ratio of yields).

RR =
incidence of SCC among persons exposed to sunbeds

incidence of SCC among persons not exposed to sunbeds
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3.1.4 Incidence

Increased Risk

The lifetime risk of developing cutaneous SCC was estimated for normal day-to-

day solar exposure and 10.5 days abroad in a Mediterranean resort with additional

sunbed exposure from ages 20 to 35 years. We investigated various exposure doses

using the UV outputs measured during our previous survey [267]. In order to con-

sider the effects of sunbed exposure over a wide range of sunbed outputs and exposure

times, we decided to examine the 5th, 50th and 95th percentile doses for sunbeds.

The dose from each sunbed scenario was added to the personal annual dose, as re-

ported in the Danish cohort study taking the 25th, 50th and 75th percentile of the

reported day-to-day population exposure. This allowed us to compare situations

of low day-to-day dose from an office worker who uses sunbeds extensively to an

outdoor worker who uses sunbeds infrequently. The relative contribution of sunbeds

to SCC incidence was calculated by dividing incidence per age group among sunbed

users by the baseline incidence without sunbed exposure. The worst case scenario

of approximately two 12-minute sessions per week (90 sessions) with the maximum

sunbed output amounted to an extra dose of over 850 SED per year.

Figure 3.2 provides a summary of all the annual doses encountered for a sunbed

session time of 12 minutes for different sunbed regimes of 15, 45, 60 and 90 sessions

per year shown as a boxplot graph. In some situations there will be an overlap

in doses from different scenarios. The average sunbed session time of 12 mins was

established in European study by Bock et al. [31]. Other sunbed times of 3, 6, 9

and 18 mins were also encountered during the original study. For example, if we

calculated the cumulative dose for a 9 minute session for a median sunbed output

twice weekly regime (90 sessions per year) the resultant dose was 262 SED. There can

be also an overlap of total dose from a sunbed depending on different exposure times

and overall sessions. This scenario is encountered if we calculate the cumulative dose

for a 9 minute session for median sunbed output for a weekly regime (60 sessions

per year) and compare the dose to a 12 minute session 45 times per annum. This
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would correspond to a cumulative dose of 176 SED for both scenarios or 2.9 SED

and 3.9 SED per sunbed session respectively.

Figure 3.2: Annual dose received due to sunbed use showing the effect of a 12
minute session and number of sessions per year based on the UV perecentile spread
of sunbed emission levels measured in the large-scale UK survey. [267] � mean level
output from a sunbed value of 0.54 Wm−2.  represent the extreme outputs of
sunbeds.

The same European study of nearly 5000 individuals aged 14–45 years revealed

a median sunbed exposure time of 180 min per year [31]. Further analysis of the

data showed that the 75th percentile annual sunbed exposure was 544 minutes which

is equivalent to 45 sunbed sessions for 12 mins. The sunbed dose is calculated as

the product of time (secs) by sunbed irradiance output. For example the median

irradiance results in a dose of 176 SED. During the previous study in which we

measured UV irradiance levels in England, it was noted that the horizontal units

predominantly had the highest session times of up to 20 mins which corresponded

with findings in an earlier Swiss study [181]. We can compare the various sunbed

doses calculated from our on-site sunbed irradiance study with the day-to-day dose

range calculated by Thieden et al. [263]. Once we established absolute sunbed doses

the next step was to put them in terms of risk by also including different day-to-
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Figure 3.3: Modelled age-specific incidence curves for rate of SCC induction model
with a day-to-day baseline dose 166 SED, plus a 10.5 holiday exposure of 85.5 SED
and a range of sunbed outputs. Rates are scaled according to age specific incidences
in the 2010 U.K. population per 100,000 persons (Source: PHE [7]).

day exposures which we have derived from the Danish study. The day-to-day dose

followed a log-normal distribution. The rationale was to obtain a risk estimate for

say an indoor worker with low solar exposure who might use a sunbed. Also we

investigated the other higher end of day-to-day exposure. The age specific incidence

was thereby derived from the median day-to-day exposure of 166 SED with holiday

dose 85.5 SED. This was known as the “baseline” dose. Any additional exposure

from sunbed dose was entered in the model to estimate the extra risk involved.

In Figure 3.3 above we illustrate the fitted age incidence curves with additional

UV sunbed dose for SCC pooled together for both sexes. The curves deviate from

the baseline after the last sunbed use at 35 years for higher sunbed doses. At the

higher sunbed doses we notice a much higher rate of incidence of SCC.

The model was setup for a less extreme sunbed use by changing the sunbed use

parameter for 10 years. The resulting incidence graph is represented in Figure 3.4.

While the previous two models with sunbed use might be still considered high

but still plausible it was decided to run the predicted incidence for a just sunbed use
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Figure 3.4: Modelled age-specific incidence rate for sunbed exposure from ages 20–30
years).

for 5 years. Figure 3.5 displays the predicted increased incidence for a low sunbed

use period. There is still a significant increase in incidence for just 5 years of sunbed

use.

Another estimate of the cancer risk can be put in terms of age standardised rate

(ASR). This is calculated by multiplying the age-specific incidence from our model

in 5-year intervals by European age standarised rates per 100,000 people. The ASR

is a summation over all age groups of age-specific incidences weighted by number

of people of that age group per 100,000 in the (European standardised) population.

Summed up to 80 years of age the age standarised rate is 26.6 per 100,000 persons

for a baseline 166 SED exposure and 10.5 holidays with no sunbed use. For a sunbed

use of median scenario output the incidence increases to 39.7 per 100,000 people at

80 years of age, i.e. 50 % increase.

We made the simplifying assumption that everybody is exposed to the base line

day-to-day exposure and holiday exposure. However, the daily dose varies over

the population and so we addressed this by using the distribution of day-to-day
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Figure 3.5: Modelled age-specific incidence rate for sunbed exposure from ages 20–25
years).

exposures from the Danish cohort study. Therein we also investigated the risk for

a range of sunbed outputs with a low day-to-day dose (110 SED), lower quartile

from Danish study, for baseline which would be analogous to an indoor office worker

with reduced day-to-day sunlight exposure. This scenario gives an ASR of 27.6 at

age 80 years for the median sunbed output. If we omit the sunbed contribution for

this day-to-day does we yield ASR 16.6. Also examined was a high day-to-day dose

(251 SED), upper quartile form Danish study, for the baseline which would occur in

people who work and spend lengthy spells outdoors such as builders, keen gardeners

and golfers. The baseline for this scenario resulted in ASR 48.4 when not including

sunbeds. The resultant ASR was 64.9 at age 80 years when including the median

sunbed use scenario as the relative day-to-day dose dominated over the extra UV

exposure from sunbeds.
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3.1.5 Relative Cumulative Incidence

In these calculations, based on various sunbed exposure scenarios, the additional

risk was estimated with escalation in annual UV dose from sunbeds. Age-specific

incidence curves were mathematically modelled for rate of SCC induction model

with a day-to-day baseline dose 166 SED, plus a 10.5 holiday exposure of 85.5

SED and a range of sunbed outputs. Rates were scaled according to age specific

incidences in the 2010 U.K. population per 100,000 persons [7]. The RCI is defined

as cumulative incidence of skin cancer up to a given age in sunbed users divided by

the cumulative incidence at the same age in non-sunbed users [69]. The cumulative

risk was estimated from scenarios used in Figures 3.3-3.5. RCIs (AUC) of SCC are

represented in Tables 3.1-3.3.

Table 3.1: RCI of sunbed user to non-sunbed user for a baseline day-to-day dose 166
SED, 10.5 holiday and additional sunbed dose based on a 12 min session 45 times
per year (equivalent to 6 min 90 sessions or 9 min 60 sessions).

Age (years) RCI for 5th Percentile RCI for Median RCI for 95th Percentile

Sunbed Dose 82 SED Sunbed Dose 176 SED Sunbed Dose 302 SED

55 1.4 1.9 2.8
80 1.2 1.6 2.1

In Table 3.1 there is a 90% increase for sunbed exposure for 15 years with a

median level output by mid-age 55. For the higher end sunbed outputs this can

significantly increase with a risk of three fold compared to a non sunbed user.

Table 3.2: Relative Cumulative Incidence (RCI) for exposure years 20–30 years.

Age (years) RCI for 5th Percentile RCI for Median RCI for 95th Percentile

Sunbed Dose 82 SED Sunbed Dose 176 SED Sunbed Dose 302 SED

55 1.23 1.55 2.05
80 1.16 1.37 1.68

Table 3.2 represents the RCI for a 10 year sunbed exposure period. There is still

quite a high increased risk of 55% for median level sunbed output and a two fold

increase for the higher sunbed emissions.



93

Table 3.3: RCI for exposure years 20 -25 years.

Age (years) RCI for 5th Percentile RCI for Median RCI for 95th Percentile

Sunbed Dose 82 SED Sunbed Dose 176 SED Sunbed Dose 302 SED

55 1.11 1.25 1.46
80 1.08 1.17 1.31

Table 3.3 displays the RCI for a 5 year period. While the RCI is lower than

the two previous regimes there still is a considerable risk. At 55 years old a median

sunbed output for 5 years would give a RCI of 25% and nearly 50% for the higher

end sunbeds.
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3.1.6 Conclusion

In this study we used on-site measurements of UV irradiance from sunbeds reported

previously in Chapter 2 [267] and applied a skin cancer risk model to these data.

We have considered the effects of using different sunbeds and a variety of plausible

exposure scenarios. The model used data from a Danish case-control study which

revealed an increased risk of SCC with lifetime sun exposure [236]. A risk model was

derived to include age at first sunbed exposure, annual sunbed exposure time and

annual holiday patterns. We calculated typical dose from different sunbed scenarios

such as the practice of pre-holiday ‘base’ tanning, moderate (15 sessions per year)

to higher over once a week exposure throughout the year. The percentile range

included: 5th percentile, median and 95th percentile sunbed doses. The RCI was

calculated by dividing the incidence of SCC for sunbed users with a 10.5 holiday

divided by that of a non-sunbed user with a 10.5 holiday. It is well established that

the anatomical site distribution of lesions is heavily weighted towards sun-exposed

sites, such as head, neck and face [94,175]. Due to the fact the distribution of SCC

tumours occur predominantly on chronically sun exposed sites we assumed equal

sensitivities for all anatomical sites. However, in this model we did include the

percentage area for normally exposed (face, neck and hand) and unexposed areas.

A weighting factor was applied between these regions as the head receives twice as

much dose as the hand.

The increased risk of SCC induction was calculated from the ratio of area under

the curve for baseline sunbed to non-sunbed user. For example, looking at the me-

dian sunbed output (176 SED) with the median annual day-to-day dose (166SED)

and a 10.5 holiday (85.5 SED) we can estimate the increase in RR. The risk at age

55 years would have increased ‘1.9’ fold for sunbed users who partake in a 12 min

session 45 times per year (or 6 min session 90 times per year) over a 15 year period

from age 20 to 35. SCC is a preventable cancer as UV radiation is the main envi-

ronmental risk factor. In spite of this, levels of SCC are increasing throughout the

population. However, there may be an under-estimate of SCC incidence in that only
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the first SCC per person is recorded on the cancer registries as per United Kingdom

and Ireland Association of Cancer Registries (UKIACR) rules [206]. Sunbeds are

now classified as Group I carcinogens [81,91]. The additional sunbed dose combined

with sunlight increases the the risk of non-melanoma skin cancer. As SCC is closely

associated with cumulative UV-exposure, sunbed users are not restricted by sea-

sons and accumulate unnecessary extra UV exposure throughout the year. Previous

studies in which multivariate analysis was used have demonstrated exposed anatom-

ical sites such as the head and neck to have a higher susceptibility to developing

SCC [94]. In our model we retain sensitivities across all body-sites equal.

Campaigns have been launched through popular media warning of the dangers

of sunbeds. It is important that the public understands the risks of UV exposure. In

addition, there is considerable variation in the output of artificial tanning units. The

results of the model indicate that the additional UV dose from sunbed use compared

to normal day-to-day solar exposure potentially adds a significantly increased risk

for development of SCC. These findings are consistent with previous meta-analyses

of sunbed use and NMSC risk, which found a significant increase in risk for the

development of squamous cell carcinoma [78, 111, 283]. Previous studies have re-

vealed strong links between sunbed use and the risk of SCC, with a dose-response

relationship [142,305]. While SCC occurs more frequently with older people mainly

due to the amount of UV exposure over a lifetime, young people are also at risk of

developing SCC, especially those who expose themselves to artificial tanning sources

such as sunbeds. As this is an unnecessary and avoidable risk, the data presented

here strongly support public health campaigns aiming to significantly reduce sunbed

exposure. The mathematical dose-time model predicts the increased risk of devel-

oping SCC later in life with sunbed use for a certain number of years. The sunbed

irradiance established in Chapter 2 permits us to apply plausible sunbed exposure

times to give a dose. This increased dose for an average sunbed of 176 SED per year

over a 15 year period can cause a 90% increase of developing SCC by mid 50s.
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Chapter 4

Optical Properties

4.1 Optical Properties of Skin

Accurate understanding of the optical properties of human skin remains a chal-

lenge to biomedical optics, and theoretical modelling of light propagation in skin

tissues continues to be active [12, 277]. The radiative transfer theory has served as

a framework for modelling light propagation and distribution within which vari-

ous numerical approaches have been pursued because analytical solutions are rarely

attainable [126].

One stochastic approach, the Monte Carlo method, in which a model of inde-

pendent photons undergoing random walk is used, has acquired extensive prefer-

ence above others owing to its strong capability to provide solutions with simple

algorithms in spite of the intense computing requirement [144]. However, the tis-

sue model is only as accurate as the optical properties entered into the MCRT code.

Thus, it is important to have accurate data for the various layers and light absorbing

chromophores.

The structure of the skin plays a role in the distribution of light, for the model we

assume optically smooth interfaces at the surface and between the layers. Optical

properties which determine a photon’s migration in the skin may be summarised

through the process interaction between UVR and the skin layers - absorption,

reflection and scattering.
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Light energy interacts with the skin by: absorption (chromophores absorb photon

energy and transform it into heat), elastic scattering (light changes its path due to

differences in refraction index within the skin.

4.1.1 Introduction

The four important optical parameters that influence the propagation of light through

tissue are the absorption coefficient (µa), the scattering coefficient (µs), the anisotropy

factor (g) and the refractive index (n). Human skin tissue can be considered as a

turbid media where both scattering and absorption of UV radiation occurs. As a

photon migrates through a turbid media it can be attenuated. The total attenuation

µt of the turbid media can be expressed by:

µt = µa + µs (4.1)

Where µa and µs are absorption and scattering coefficients respectively and are

typically measured in inverse centimetres. The average distance traversed by a

moving photon between successive absorption and scattering events is known as the

mean free path (MFP) displayed in Figure 4.1 . Hence the MFP of photons in the

turbid media is the inverse of total attenuation coefficient µ−1
t .

MFP =
1

µa + µs
(4.2)

The values of µa and µs are determined from published data on skin absorbing

and scattering optical properties in different skin layers.

The refractive index value, n, remained constant over the wavelength range while

the anisotropy factor, g, was wavelength dependent [277]. In the model the optical

properties for each layer are specified separately, but assumed uniform throughout

a specific layer. The skin model was divided into 101 layers and each layer into

101 × 101 segments to form a small 3-dimensional (3-D) volumes or voxels in the

grid. The photons absorbed in each of the voxels were registered to give the total
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Figure 4.1: One-dimensional representation of distance travelled by a photon be-
tween scattering and absorbing events in turbid medium.

absorption in each layer.

4.2 Absorption and Scattering Theory

The Beer-Lambert law describes the exponential attenuation of light as it passes

through an absorbing medium:

I (z) = I0e
−µaz (4.3)

Io is the initial intensity of the light and I is the intensity after passing through

a distance z of material with an absorption coefficient µa (note that this is the man-

ner in which the absorption coefficient is defined). The experimentally measured

absorbance of a material will typically be reported as one of the following two quan-

tities:

1. the absorbance, A (also called the optical density, OD):

A = log10

(
Io
I

)
(unitless) (4.4)
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2. the absorption coefficient µa,

µa(λ) = C ε (λ) (cm−1) (4.5)

which is the molar extinction coefficient of a chromophore, ε (M−1 cm−1), mul-

tiplied by the concentration of the chromophore, C (Molar). The molar extinction

coefficient of a substance is wavelength (λ) dependent. C is the concentration of

the absorbing species (this can be measured in a variety of units, and care must

be taken to ensure that the dimensionality of the above expressions is maintained).

In biological tissues there are many different chromophores of varying concentra-

tions depending on location. In this chapter the derivation of the absorption optical

properties is presented for the different skin layers and chromophores.

When a photon interacts with a turbid medium such as skin, one of the possible

outcomes is that the direction of the propagation can change. This type of inter-

action is called scattering. There are two types of scattering: inelastic and elastic.

The latter, is where there is no energy transfer between the incident photon and the

scattering molecule, while inelastic scattering is where the energy of the scattered

photon differs from the incident photon [124]. Scattering in biological tissue can

be modelled using the Mie and Rayleigh scattering conditions [241]. Mie scatter-

ing occurs from large tissue structures, such as collagen fibers. Mie scattering in

tissue is anisotropic, biased towards forward scattering. The scattering interactions

from particles smaller than wavelengths, such as from various small skin organelles,

can be modelled as Rayleigh scattering, which leads to scattering oriented almost

equally in all directions: isotropic scattering described in Figure 5.2. However, the

scattering angle is stochastic and the tendency for a photon to be forward or back-

ward scattered is governed in this work by the Henyey-Greenstein phase function

described in section 5.3. Monte Carlo simulations (see Chapter 5) serve as a method

to model the scattering of photons in a turbid medium based on the knowledge of

wavelength dependent scattering coefficient µs (cm−1). Scattering coefficients have
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been derived from published data and reviews of skin layer optical properties and

discussed in the following sections [25, 39,45,128].

4.3 Skin Structure

Human skin is is a partial translucent, multi-layered and heterogeneous medium and

is comprised of lipid cross-linked with proteins which form the essential barrier that

maintains tissue integrity [256]. Skin can be divided into three main sections: stra-

tum corneum, epidermis and dermis depicted in Figure 4.2. The stratum corneum,

a stratified structure composed mainly of dead cells, called corneocytes, is the first

and outermost section of human skin. Light absorption is low in this tissue, which

is considered by some authors to be part of the epidermis [271].

Figure 4.2: The skin has two layers: the epidermis and the dermis, below which lies
subcutaneous tissue. (Source: Adapted from the National Cancer Institute) [6].

The epidermal layer thickness can vary based on anatomical location and ranges

between 20 µm and 150 µm [12, 128, 220]. The epidermis consists of layers of ker-

atinocyte cells that progressively become cornified to develop a resilient tough exte-
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rior [163]. The basal epidermal layer is comprised of melanocytes that produce the

pigment melanin and transported by melansomes [171].

The dermis is situated directly underneath the epidermis. It is much thicker than

the epidermis, approximately 1 – 3mm [11,12]. The dermis also propagates and ab-

sorbs light, and it is mostly comprised of dense, irregular connective tissue with

nerves and blood vessels. The main absorber in the dermis is haemoglobin. Absorp-

tion of both oxyhaemoglobin and deoxyhaemoglobin have absorption peaks in blue

(400 – 420nm), and green-yellow range (540 – 577 nm), and decrease gradually for

longer wavelengths. Deoxyhaemoglobin has its highest absorption peak at 420nm,

and a second peak at 580nm. Oxyhaemoglobin shows its highest absorption peak at

410nm, and two secondary peaks at 550 – 600nm range. The intensity of absorption

directly depends on the volume fraction of tissue occupied by haemoglobin 0.2 –

7% [128]. The blood volume fraction in the cutaneous blood content (in the dermal

papillae about 100 – 200 µm from the surface) is about 2 – 5%, while in other parts

of the dermis the volume fraction is much lower [12]. A simplified schematic used

in the MCRT model is shown in Figure 4.3.

Figure 4.3: Skin layer schematic with chromophores.
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Other blood derived pigments, bilirubin and carotenoids, are responsible for

the yellowish and olive hue in basic skin tan. Beta-carotene and lycopene have

absorption peaks at 488 and 515nm, respectively, and bilirubin at 460nm. However,

the contribution of these blood chromophores are negligible in the UV range [55].

Further light absorption by other tissue chromophores that may contribute to the

the range of sunbed UV absorption include: epidermal nucleic acids (peak at 260nm)

and urocanic acid (peak at 277 nm) [115]. However, these epidermal chromophores

are usually surpassed by the absorption of melanin and weakly absorb in the UVA

region.

Melanin is produced by cells called melanocytes embedded in one of the epi-

dermis constituent layers and it is found in organelle particles called melanosomes.

According to Pathak and Fitzpatrick (1976) [215], melanin and the distribution of

melanosomes in the epidermis are the most important factors in the protection of

human skin from the effects of UVR. The epidermal absorption coefficient directly

depends on the volume fraction of epidermis that is occupied by melanosomes (1.3 –

43%) [129].

4.3.1 Epidermis

The dominant chromophore in this layer when dealing with UV is melanin. New

cells are generated in the stratum basale. These cells gradually migrate up into

the stratum spinosum and into the stratum granulosum. The stratum granulosum

contains granules of keratohyalin, which are involved in the keratin formation. In

this layer the nuclei and other cell components including melanin start breaking

down. The epidermis without the stratum corneum upper layer has scattering and

absorption coefficients that are lower than those for the stratum corneum but still

appreciably higher than for most other tissues.

As mentioned absorption in the epidermis is primarily due to the UV absorb-

ing chromophore melanin and flesh. Thus, the absorption coefficient, µa,epi, in the

epidermal layer can be expressed as the following [128]:
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µa,epi(λ) = µa,mel(λ)Vm + µa,base(λ)(1− Vm) (4.6)

where Vm is the volume fraction of melanosomes and µa,base(λ) is the background

human non-melanised tissue give by:

µa,base(λ) = 7.84× 108λ−3.255 (4.7)

The scattering on the epidermis is caused by inhomogeneities such as collagen

fibres and intracellular structures. The scattering optical properties are derived from

published data [25,39,217]. The results for the absorption and scattering coefficients

for the UVB and UVA range are displayed in Figure 4.4 .

Figure 4.4: Epidermis scattering coefficient and baseline absorption coefficient with-
out melanin.

While the epidermal layer absorption coefficient can be derived from the above

equations. Another method of obtaining the epidermal optical properties in vivo

is by a techniques called photoacoustics. This method uses a pulsed laser light,

which is then scattered within the skin tissue. Owing to local expansion “heat” the

pressure wave can be detected by a transducer similar to ultrasound. Meinhardt
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et al. obtained absorption coefficients for different skin phenotypes: I – IV [189].

However, the absorption coefficients were measured only in the range from 290 –

331 nm. So an extrapolation technique was employed using a Weibull curve fit

following the shape profile from Diffey et al. used to mathematically model photon

absorption in the skin [68]. The rationale for using the Weibull curve fit is that for

low melanised skin below 290nm it is uronaic acid that is the dominant chromophore

of UVR which follows a dipping peak shape at UVB-UVC border.

Figure 4.5: Epidermis absorption coefficient.

Skin that is regularly exposed to UV radiation display optical properties different

from those located in low exposure areas such as the volar arm. In our model we

used low pigmented site of the arm with skin types I – II from the Meinhardt study.

The data points for the unpigmented volar arm skin type were extrapolated with

Weibull curve fit to include wavelengths 280 – 400nm. The reasoning here is that

the Jacques [128] baseline solution only offered a totally non melanised eipdermis

which is not the true representation of skin as pigmentation is distributed through.

Thus, we use a low pigmented absorption coefficient for epidermis and can control

the skin type with the additional melanin layer with the melanosome volume fraction

discussed later in this chapter.
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The value for the mean scattering cosine, anisotropy factor g, is g u 0.72 where

g increases with increasing wavelength is published by Van Gemert et al. [277]. The

equation is established from goniometer measurements and displays good agreement

with Bruls et al. [39]. The dermal and epidermis g values are considered identical.

The experimental g value presented in Figure 4.6 suggest that skin layers are strongly

forward scattering media for wavelengths between 280 and 400 nm given by:

gepidermis∼dermis = 0.62 + 0.29λ× 10−3 (4.8)

Figure 4.6: Wavelength dependent anisotropy factor g for epidermis and dermis.

4.3.2 Dermis

The dermis, located beneath the epidermis, is responsible for the skin’s pliability,

temperature control and mechanical resistance. The dermis is primarily composed

of collagen fibres, nerves, capillaries, and blood vessels, but also contains elastin

and fibroblasts. The dermis consists of 70% of collagen fibres, giving it strength

and toughness. Elastin maintains normal elasticity and flexibility. The dermis is

composed of the papillary and reticular dermal layers. The papillary dermis connects
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the lower epidermis tissue layer.

Approximately half of the blood volume is occupied by red blood cells that are

responsible for oxygen transfer from the lungs throughout the body. Red blood

cells are composed mainly of haemoglobin molecules which reversibly bind to oxy-

gen molecules in the lungs to form oxyhaemoglobin. Haemoglobin is known as de-

oxyhaemoglobin once it has released its oxygen molecules. Haemoglobin absorp-

tion dominates the total absorption in the dermis in the visible range and near-

infrared (IR) compared to UV absorption. Since haemoglobin can be either in the

form of oxyhaemoglobin or deoxyhaemoglobin, their concentrations can be estimated

using the known molar extinction coefficients of biological tissues at different wave-

lengths [224]. The extinction coefficients for oxyhaemoglobin and deoxyhaemoglobin

are displayed in Figure 4.7. Both show peaks around 440nm with deoxyhaemoglobin

showing more pronounced peaks at longer wavelengths. The absorption coefficient

of the dermis is dominated by blood absorption and the papillary dermis total ab-

sorption coefficient was defined as:

µa,dermpap(λ) = (µa,ohb(λ) + µa,dhb(λ))Vp + µa,base(λ)(1− Vp) (4.9)

where:

µa,ohb(λ) = oxyhaemoglobin absorption coefficient,

µa,dhb(λ) = deoxyhaemoglobin absorption coefficient,

Vp = volume fraction (%) of the papillary dermis occupied by whole blood ÷ 100.

The absorption coefficient for oxyhaemoglobin is given by:

µa,ohb(λ) =
(εohb(λ))

66500
chb × SO2 (4.10)

where:

66500 = molecular weight of haemoglobin (g mole−1) ,
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chb(λ) = haemoglobin concentration (g L−1),

SO2 = Oxygen saturation %.

Similarly, the absorption coefficient for deoxyhaemoglobin µa,dhb(λ) was calcu-

lated using molar extinction coefficient εdhb(λ) and replacing SO2 with 1 − SO2 in

Equation 4.10.

Figure 4.7: Molar extinction coefficient for oxyhaemoglobin and deoxyhaemoglobin
reproduced Prahl et al. data [224].

According to the literature, oxygen saturation SO2 can range from 20% to 100

% for the dermal layers. In Figure 4.8 the dermis absorption coefficient for two

different saturation levels of 50% and 75% are determined [156, 222]. The blood

volume percent can also vary in the dermis depending on the location. The papillary

absorption coefficients were calculated for different volume percentages [128, 271].

The final papillary dermis parameters used were Vp=2% and SO2 = 75% highlighted

in red in Figure 4.8.

The dermis scattering coefficients are assumed to be identical [277] to the epi-

dermis and both skin layers adopt the anisotropy derived from g from Equation 4.8.
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(a) Oxygen saturation 50% (b) Oxygen saturation 75%

Figure 4.8: Dermis absorption coefficient.

4.4 Skin Chromophores

UVR may be transmitted, reflected, scattered or absorbed by chromophores in any

skin layer. Absorption is wavelength dependent and is derived from the optical

properties of the responsible chromophore. Absorption of UV radiation by a tis-

sue chromophore is a prerequisite for any photochemical or photobiological effect;

however, absorption does not necessarily have a biological consequence. The optical

properties of a skin layer are affected by the volume content of an acting chro-

mophore. The skin responds to UVR exposure by developing two defensive barriers:

thickening of the stratum corneum and the distribution of a melanin filter in cells

of the epidermis. The palms and soles are the regions with the thickest stratum

corneum, and they are exceptionally resistant to UV damage. The keratins and

proteins within the stratum corneum act mainly by scattering and absorbing the

UV. The melanocytes containing the melanosomes responsible for the biosynthesis

and storing of the melanin are located in the basal layer of the epidermis [54, 67].

In recent studies on skin colour it was established that the number of melanocytes

in the epidermal layer was independent of racial skin type [37,259].

The amount of melanosomes may differ between individuals of the same skin type

and even from one anatomical region to the next in the same individual. Differences

in skin type are dependent on variations in the size, number and aggregation of
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the melanosomes, both inside the melanocytes and keratinocytes, as well as on

the distribution throughout the epidermis. Previous histological detections have

confirmed the position and distribution of melanin residing around the basal layer

[37, 49]. In Figure 4.9 the melanin content in the basal layers of the epidermis is

substantially higher in black skin compared to Asian or white skin, although the

number of melanocytes is virtually identical in skins of different ethnicity.

a) b) c) 

Figure 4.9: Melanin content in the basal layers of the epidermis for different skin
types a) Caucasian, b) Asian and c) black [37].

4.4.1 Melanin

Melanin is a highly effective UVR absorbing chromophore and occurs in skin and

hair. It is a biological polymer and is derived from the oxidation of the amino

acid tyrosine [232]. The name ‘melanin’ originates from the ancient Greek melanos,

meaning ‘dark’. Human skin exists in a wide range of different pigmentation, ranging

from white to brown to black, which is due to the presence of melanin, which is

produced by melanocytes that branch up from the basal layer.

Melanin plays an essential role in shielding the body against harmful UV radia-

tion from environmental sources and sunbed exposure. We have to consider melanin

in our optical properties as it is the dominating chromophore in the UV region.

Melanin resides mostly around the basal layer of the epidermis for skin types I – III

and the suprabasal layer for skin types III – VI.

There are two types of melanin: the red/yellow phaeomelanin and a brown/back
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eumelanin. Their absorption spectra are high in the UV wavelengths and tails off in

the visible wavelengths, with higher values for shorter wavelengths in the UV range

as seen in Figure 4.10. The ratio between the concentration of phaeomelanin and eu-

melanin present in human skin varies from between individual’s, with much overlap

between skin types. Upon UV irradiation pheomelanin exhibits higher pro-oxidative

effects [13], whereas eumelanin is suggested to possess no phototoxic potential [14].

The primary and most vital function of eumelanin in the human epidermis is

protection against damage caused by UV radiation [37]. Eumelanin absorbs and

scatters UV photons, thus reducing the amount of damage caused to important

biomolecules and structures within and below the dermis [149, 192, 196, 207, 297].

The greatest evidence in support of the photoprotective role of eumelanin stems

from studies examining the regulation of its production and its location within the

skin, in supranuclear melanin caps within keratinocytes that are located in the

supra basal layer. Exposure to UVR upregulates production of eumelanin through

the immediate and delayed tanning responses, which results in darkening of the skin

and enhanced photoprotection [229].

Paradoxically, although melanin is a photo-protective it has also been associated

in the chain of events that lead to malignant melanoma [76,191], although this link

is very poorly understood. Highly pigmented skin is more protected from carcino-

genesis than unpigmented skin [171], but it has been suggested that pheomelanin

may actually function as a photosensitizer [145], and has been shown to actually

enhance DNA damage in cells in response to UVR [246, 284]. The skin is the most

common location of cancer in humans [171], and although melanoma is one of the

rarer types of skin cancer, it causes the majority of skin cancer related deaths [35].

The first possible link between pheomelanin and carcinogenesis involves pheome-

lan in generating ROS. Pheomelanin is known to generate ROS when irradiated with

UVA [177]. Although the mechanism of pheomelanin mediated ROS generation is

not thoroughly understood, pheomelanin seems to be unique in its ROS generation

ability when compared with eumelanin.



111

The variation in skin colour among different races and ethnicities is determined

mainly by the number, melanin content, and distribution of melanosomes produced

and transferred by each melanocyte to a cluster of keratinocytes surrounding it.

The melanin absorption level depends on how many melanosomes per unit volume

are in the epidermis. Typically, the volume fraction of the epidermis occupied by

melanosomes varies from 2.55 – 13.5% (lightly to highly pigmented skin types) as

noted in Table 4.1 [128].

The total absorption coefficient for each layer is the sum of the absorption co-

efficient for each pigment present in the layer, which is obtained by multiplying

the pigment’s spectral molar extinction coefficient by its estimated concentration

in the layer. The spectral molar extinction coefficients for these pigments, denoted

εeu(λ) and εph(λ) respectively, are obtained from the curves shown in Figure 4.10.

Figure 4.10: Spectral molar extinction coefficient ε curves for the melanin chro-
mophores present in skin tissues. Courtesy of S. Prahl and the Oregon Medical
Laser Center (OMLC) [224].

The total melanin absorption coefficient is expressed in Equation 4.11:

µa,mel(λ) = (µa,eu(λ) + µa,ph(λ))Vm (4.11)
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where:

µa,ph(λ) = phaeomelanin absorption coefficient, (cm−1)

Vm = volume fraction (%) of the epidermis occupied by melanosomes ÷ 100.

The absorption coefficient for eumelanin is given by:

µa,eu(λ) = (εeu(λ)ceu(λ)) (4.12)

where:

ceu(λ) = eumelanin concentration (gL−1).

Similarly, the absorption coefficient for phaeomelanin aph(λ) is calculated by

multiplying its spectral molar extinction coefficient εeu(λ) by its concentration ceu.

The model parameters for eumelanin and pheomelanin concentrations in the epi-

dermis are 80gL−1 and 12gL−1, respectively [143]. The eumelanin and pheomelanin

concentrations were retained at the above values for all skin types, while the value

volume fraction of the melanosomes was varied according to skin type. Thus, the

melanin (mg mL−1) in the epidermal layer was calculated by multiplying the total

melanin 92gL−1 concentration by the the volume fractions. Cmel is the total melanin

concentration in the epidermis calculated by total of ceu and cph and multiplying the

result by the volume fraction Vm.

According to the data reported by Jacques [129], the volume fractions of melanosomes

based on the whole skin epidermis are 1.3 – 6.3%, 11 – 16% and 18 – 43% for lightly,
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Table 4.1: Volume fraction of melanosomes for different skin types and corresponding
melanin concentrations.

Fitzpatrick (estimate) Volume fraction % Melanin concentration Reference

skin type melanosomes (mg mL−1)

I 2.55 2.34 [143]
I-II 3.8 3.49 [129]

II-III 5.2 4.77 [156]
III 8.45 7.76 [129]
IV 13.5 12.4 [129]

moderately and heavily pigmented skin, respectively. As a result, the corresponding

average values are 3.8%, 13.5% and 30.5%. However, these values were initially over-

estimated and a true value corresponds to a melanosome volume fraction Vm range

1.3 – 16% [127,143]. For this work it was considered that the epidermal melanin only

filled the basal layer of epidermis, and the remaining areas of epidermis were without

melanin. The skin geometry used here included a 10µm melanin layer, 10µm thick

basal layer of epidermis and an 80µm thick low pigmented layer of epidermis, the

volume fractions of melanosomes in the basal layer of epidermis were initially setup

for skin type I. Figure 4.11 shows the melanin absorption coefficients are displayed

for different melanin concentrations, volume fractions and corresponding skin types.

4.4.2 DNA Absorption

DNA absorbs highly in the UV and has a maximum wavelength absorbance around

260nm. This is due to the presence of the nitrogenous bases (A,G,C and T). Specifi-

cally, DNA absorbs wavelengths of between 245 and 290 nm [269], i.e. the UVC and,

to a lesser extent, UVB. This UV absorption by DNA provides the energy needed

for covalent binding of adjacent pyrimidines.

DNA Thymine-Adenine

Since DNA is the region where carcinoma originates knowledge of the photon ab-

sorption in this location is important in order to quantify lesion formation more
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Figure 4.11: Melanin absorption coefficient for various melanin concentration and
corresponding volume fraction of melanosomes.

specifically CPDs. Thus, the amount of absorbed photons in the DNA layer needs

to be determined. One of the challenges in determining the DNA absorption co-

efficient, µa,DNA, is that most published literature focused on 260nm or 280nm

wavelengths, the peak DNA absorption for single strand DNA (ssDNA) and double

stranded DNA (dsDNA) DNA, for cuvette absorbance (OD) for certain DNA con-

centrations [43]. Direct measurements of nucleic acid samples at OD260 or protein

samples at OD280 can be converted to concentration using the Beer-Lambert law,

which relates absorbance to concentration using the pathlength of the measurement

and an extinction coefficient. Generally, these standard coefficients are used in place

of the extinction coefficient for dsDNA, single stranded RNA, and ssDNA. However,

the purpose of this model was to investigate the UV absorption coefficient from all

bases in human genome.

One solution for this was to employ the extinction coefficient for an oligomeric

duplex dA20 : dT20, which has been used to determine photo-damage in DNA [41].
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The photochemical properties of the DNA duplex dA20 : dT20 are comparable

to those of the DNA single strands. It has been demonstrated that base pairing

increases the probability of absorbing UVA photons [23].

Thus, it was possible to use the wavelength dependent molar extinction coef-

ficient of the duplex dA20 : dT20 with DNA concentration to determine the DNA

absorption for our model. To calculate the DNA absorption coefficient we incorpo-

rate the Beer-Lambert’s Law from Equation 4.4:

µa,DNA(λ) = ε C (4.13)

where ε is the molar extinction coefficient provided by Mouret et al. [204] and C

is the concentration of DNA. The DNA concentration is derived from the method

employed by Mohlenhoff et al. using 6.6× 109 bases for human DNA [198].

In order to calculate the the DNA concentration from first principals a good

understanding of genome is required. The genome is all the genetic material in

the chromosomes of a particular organism. In eukaryotic cells (diploid cells), the

term “nuclear genome” is sometimes used to refer to the genetic information in the

nucleus (this is to distinguish the genes in the nucleus from those in eukaryotic

organelles, like mitochondria). The amount of DNA which corresponds to the size

of one diploid genome (C value). The genome size is generally given as the total

number of base pairs. For humans, that number is about 3 billion base pairs per

haploid genome, that is, in a sperm or egg. In somatic cells, which are diploid, the

number of basepairs is doubled. For calculating the number of bases for the equation

we multiply the number of basepairs 6.6× 109 by 2. The average size of nucleus is

approximately 10µm in diameter where all the DNA information is compacted as

seen in Figure 4.12 [86].

By using the volume of a sphere and the average radius for a diploid cell it is

possible estimate the total volume occupied by human genomic DNA.

V =
4

3
πr3 (4.14)
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Figure 4.12: Light microscopy image of a human epithelial sheet. The dark ovals are
the cell nuclei stained with silver. Adapted from electron micrograph from D. W.
Fawcett, The Cell, Its Organelles and lnclusions: An Atlas of Fine Structure [86].

Vnucleus =
4

3
π(5× 10−6)3

Vnucleus ≈ 10−13 L

Thus, assuming the above nuclear volume and using human DNA length of

1.32× 1010 bases based on average diploid cell the concentration C of DNA can be

derived from Equation 4.15

C =
(
1.32× 1010 / 6.023× 1023mol−1

)
/ 10−13 L (4.15)

≈ 0.22M

using a C = 0.22 M in Equation 4.13 and the molar extinction coefficient ε for

oligonucleotide [204], it is possible to calculate the absorption coefficient of DNA.

The DNA absorption coefficient for the UV wavelength range 280 – 400nm is dis-

played below in Figure 4.13 for C = 0.22 M.
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Figure 4.13: Chromophore absorption coefficient spectrum of oligonucleotide DNA
complex dA20 : dT20 for concentration C=0.22 M derived from Mouret et al. [204].

The DNA concentration per nucleotide determined by absorption spectroscopy

using the molar absorption coefficient at 260nm as 6600 M−1cm−1 [230] is in good

agreement with oligonucleotide DNA complex dA20 : dT20 extinction coefficient at

260nm. The absorption spectrum of the dA20 : dT20 duplex as shown in Figure.4.13

exhibits a long-wavelength tail over the UVA range.

Most investigations in the past have focused on UVB, but the longer UVA wave-

lengths have had less emphasis. This may be due to the fact that individual bases

do not absorb UVA radiation.

However, there have been studies that demonstrate that this is not the case for

oligonucleotide duplexes, which show a weak absorption tail above 300nm [204,255].

Furthermore, it has been revealed that absorption of UVA radiation by natural

isolated, genomic and oligonucleotide DNA leads to the production of mutagenic

CPDs [79, 95]. This is an important issue because UVA photons are much more

abundant than those of UVB when considering a solar or sunbed radiation [75].

Also please note the diploid DNA absorption coefficient is assumed to be a monolayer
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just below melanin layer at the basal layer shown in Figure 4.3.

In the next section we see how we can incorporate these optical properties in the

MCRT model to simulate the fate of a photon as it propagates through the tissue

turbid media. We then can see how many photons are scattered and absorbed with

different chromophores including DNA.

4.5 Reflection and Refraction

When light traverses a boundary with differing refractive indices, the light is partly

reflected back from the surface. This reflection is called specular or Fresnel reflection.

On entry into, and exit from, the grid a photon will undergo specular reflection

and refraction at the air tissue boundary. The refraction of light traversing from

one medium to another can be calculated from Snell’s law:

ni sin θi = nt sin θt (4.16)

where ni and nt are the refractive indexes of medium one and two, respectively,

θi is the angle of incidence and θt is the angle of transmission.

In traversing from a medium with a high refractive index to one with a lower

refractive index, total internal reflection occurs for angles larger than the critical

angle, θc = arcsin
(
ni
nt

)
. Therefore, any light radiated on the tissue–air boundary

greater than 46.43◦ will be reflected back into the tissue.

To account for specular reflection at the surface we can adopt the formula for

for Fresnel reflection, expressed as:

R (θi, θt) =
1

2

[
sin2(θi − θt)
sin2(θi + θt)

+
tan2(θi − θt)
tan2(θi + θt)

]
(4.17)

The probability of whether a photon is internal reflected or transmitted is de-

termined by a random generated number (RGN) in the code. If ξ < R (θi, θt) the

photon is internally reflected, otherwise the photon is transmitted, where ξ is RGN.

This permits the MCRT model to account for photons that escape the tissue–air
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Figure 4.14: Refractive index of air tissue boundary.

interface or are reflected back and continue on random path-length with updated

position and direction. This will be discussed more in Chapter 5.

Reflection of light on the skin surface occurs on the account of differences in

refraction indices between the air (1.0) and the corneal layer (1.38) displayed in

Figure 4.14. Equation 4.17 illustrates the proportion of light that is reflected and

refracted (transmitted towards deeper layers) on the air–skin interface, as functions

of incident angle of light and refractive index of the medium from which the light

beam approaches the skin (air usually) and the medium that further transmits the

light (incident and transmissive medium). When the incident angle is close to normal

(> 40◦) about 5% of light is directly reflected from the corneal layer surface, and

the remaining 95% enters the epidermis [12]. The reflected light does not interact

with the deeper tissue layers and is not colour-modified by skin chromophores.

The skin model maintains a single refractive index value for all skin layers because

there is negligible difference between layers, also we do not compensate for the sebum

effect at the surface. The presence of sebum smooths the roughness of the skin

surface and leads to a higher refractive index (1.5) increasing the amount of light

reflected off the air-sebum interface, and accentuates the appearance of shine [169].

In the next chapter we implement the established optical properties in multilayer

skin structure using the Monte Carlo technique.
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Chapter 5

Monte Carlo Radiative Transfer

Model

5.1 Introduction

The Monte Carlo method was first used for what are essentially experiments on

random numbers (random sampling) in 1944. However, long before then Monte

Carlo type techniques were sporadically applied. One of the first applications in

the second half of the nineteenth century can be considered to be ‘Buffon’s needle

problem’, where a needle is thrown a large number of times onto a set of equally

spaced lines on a board to find the value of Pi [114].

In the 1940s random sampling became a widely used technique. The technique

was applied to work on the atomic bomb, where the random diffusion of neutrons

in fissile material was modelled. This was also the time the phrase ‘Monte Carlo’

originated. This statistical approach is credited to Ulam and Metropolis, who refined

the original direct simulations with various variance reduction techniques [193]. The

first use of Monte Carlo techniques for the modelling of light transport in tissue was

reported in 1983 by Wilson and Adams [291].

Light propagation can be considered as a stream of particles, each with a lo-

calised quantum of energy (photons). Photon transport through turbid media can
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be mathematically expressed by the RTE (Equation 1.5). RTE is derived by con-

sidering the energy balance of incoming, outgoing, absorbed and emitted photons of

an infinitesimal volume element in the medium described in Chapter 1.

The Monte Carlo method, as applied to the transport of light radiation is based

on the RTE and involves computer-simulated calculations of photon propagation in

scattering media. The MCRT model was programmed in Fortran 77 and simulations

were performed on a computer with a processor Intel quad core i7 3632QM speed of

2.2 GHz, with each simulation taking approximately 5 minutes to complete 8 million

photon simulations.

The MCRT model used throughout this research was based on a three dimen-

sional (3-D) cube shaped geometry [294, 295] and removed the assumption of an

optically semi-infinite tissue volume. Simulations were performed on a 3-D Carte-

sian grid divided up into 101 x 101 x 101 grid cells. Each grid cell was represented

by a 3-D array location (i, j, k) and could be assigned varying wavelength-dependent

optical properties. The optical properties are characterised by µa, µs, g and n , as

described Chapter 4.

The Monte Carlo method permits the usage of complex and detailed models,

while retaining simple implementation. The disadvantages of the Monte Carlo

method are noise introduced by the stochasticity and long simulation time when

high accuracy is needed.

5.2 Probability distributions

Probability distributions are the core of the MCRT modelling. The “random walk”

of photons as they propagate down through turbid medium may be determined by

pseudo-random computer generated number. In order to sample quantities of scat-

tering angles and photon lengths it is possible to incorporate the use of probability

distribution functions (PDFs).

By randomly sampling from PDFs using cumulative distribution functions (CDFs),

variables such as optical depths (described in next section) and photon scattering
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directions may be randomly chosen at interaction sites, enabling the position, di-

rection and path of a photon to be determined. To ascertain the random walk of

a photon, certain random variables such as the path length between two scattering

events or the scattering angle, must be assigned at every interaction site. Therefore,

variables are sampled randomly from the probability distribution function P(x),

which defines the distribution of the variable x over the interval [a ≤ x ≤ b], where

b∫
a

P (x)dx = 1 (5.1)

Then the sampled, xi, where i = 1,2,3...n is randomly generated numerous times

based on a pseudo-random generator, which generates a random number ξi,

xi∫
a

P (x)dx = ξi (5.2)

where ξi is generally uniformly distributed over the interval [0,1].

By inverting the CDF it is possible to solve for xi. The values on the x-axis can

be obtained from taking the inverse of the function x = F−1(ξ) seen in Figure 5.1.
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Figure 5.1: Illustration of the inverse method.

These are the fundamental equations for the MCRT method, which depends

on pseudo-random numbers. By implementing these equations it is possible to
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randomly sample the optical depth, τ , the albedo, a, and the scattering angles -

cosine of the deflection angle, θ and the azimuthal angle, ψ.

5.2.1 Turbid Media

The manner in which skin reflects and transmits radiation of different wavelengths

is determined by the inherent optical properties of the skin layers derived in Chapter

4. Each of these layers has different inherent optical properties, primarily due to

differences in the concentration of melanin and blood. In an event driven simulation

the trajectory of a photon moving in a turbid medium has the probability of travel-

ling a distance S without interaction according to exp(−τ), where τ = µtS and µ−1
t

is the total mfp described in Equation 4.2.

The optical depth τ of a layer is the integrated attenuation coefficient of a beam

going perpendicularly through that layer. Light can be attenuated either by absorp-

tion or by scattering into another direction. Physically, the optical depth τ over a

distance S in a given direction is the number of photon mean free paths (mfps) over

that distance. In general the optical depth is expressed as

τ =

S∫
0

µtds (5.3)

where µt is the total attenuation coefficient and S is the physical distance to an

interaction site.

To randomly sample an optical depth, τ the following applies

P (τ) = e−τ (5.4)

By randomly sampling many τ , it is possible to deduce e−τ

ξ =

τ∫
0

e−τdτ = 1− e−τ (5.5)
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By solving for Equation 5.5 yields

τ = −ln(1− ξ)

Substituting ξ for (1− ξ) for range [0,1] gives

τ = −ln ξ (5.6)

where τ is the optical depth and ξ is a random number between [0,1]

Therefore, having sampled a random optical depth in the model it is possible

to derive the total physical distance S that the photon travels from Equation 5.3.

The step size of the photon is calculated based on sampling the probability for the

photon’s MFP. The photon is moved a propagation distance ∆s which is calculated

by RNG ξ. Thus, Equation 5.6 can be rearranged to provide a means of selecting

step size:

∆s =
−ln(ξi)

µt
(5.7)

After a photon has traversed a random optical depth , τ , it can be either scattered

or absorbed. This eventuality occurs depends on the albedo, a, which is simply the

probability that a photon is scattered (and not absorbed):

a =
µs
µt

(5.8)

where µt = µa + µs is the total attenuation coefficient and µs is the scattering

coefficient coefficient. Thus, for ξ <a the photon is scattered. Otherwise, the photon

is absorbed.
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5.3 Phase Function

One of the imperative aspects in Monte Carlo simulations is to define the new photon

direction after each scattering event. The phase function is the probability that a

photon will be scattered from one direction to another. The name is misleading

since the scattering has no connection with the phase of the incident light waves

and would be more appropriately called a scattering function.

The phase function first mentioned in Equation 1.5 describes the angular distri-

bution for a single scattering event and is usually assumed to be a function only of

the angle between the incident ŝ and scattered ŝ′ directions (Figure 5.2). If the in-

tegral(over all angles) of the phase function is normalised to equal one, then p(ŝ, ŝ′)

is the PDF for scattering from direction ŝ′ to direction s seen in Figure 5.2.

∫
4π

(ŝ, ŝ′)dΩ′ = 1 (5.9)

where 4π steradians in a complete sphere.

The phase function will differ from photon to photon. For simplicity an aver-

age phase function which adequately describes the most important features of the

scattering process can be used.

Hence, a parameter called the average cosine of the phase function is used to

describe the degree of anisotropy of the phase function. This parameter is often

denoted by g and is defined below in Equation 5.10

g = 〈cos θ〉 =

∫
4π

(ŝ′ · ŝ)P (ŝ′ · ŝ)dΩ (5.10)

Many estimates of the tissue phase function are used. But one of the most

common is the Henyey-Greenstein phase function [105,132]. The Henyey-Greenstein

phase function was first used for describing scattering of starlight off dust grains in

interstellar medium, but it is shown to be suitable also for describing scattering in

skin and other biological tissues.

The probability distribution for the cosine of the deflection angle, cos θ, is de-
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scribed by the Henyey-Greenstein phase function in Equation 5.11:

p(θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
(5.11)

where the parameter g is defined as the integral over all angles of the phase

function multiplied by the cosine of the angle θ.

The anisotropy factor g varies in the range from 0 to 1: g = 0 relates to isotropic

scattering. In pure forward scattering media, g = 1 and g = -1 in the case of pure

backward scatter. All three cases are depicted in Figure 5.2. The anisotropy range

for human skin is often: g ∈ [0.7 − 0.95] [105, 271]. The anisotropy factor for skin

tissue is wavelength dependent with a typical value of g≈ 0.7 [277].

Figure 5.2: The anisotropy factor, g, describes the angular distribution of light
scattering at any point x within turbid media. In the simplest case, light is scattered
equally in all directions (centre). Light is preferentially scattered in the backward
(left) or forward (right) direction.

5.3.1 Photon Scattering

The PDF for the scattered cosine of the deflection angle cos θ in tissue is charac-

terised by the Henyey-Greenstein phase function. The first order of function of the

Henyey-Greenstein function in Equation 5.11 is a good approximation of scattering

in skin. Hence we can sample the angle directly from Equation 5.11 which is an

exact distribution of the incident radiation:
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cos θ =
1

2g

{
1 + g2 −

[
1− g2

1− g + 2gξ

]2
}

if g 6= 0 (5.12)

The scattering of a photon is represented by two angles; the deflection angle θ

and the azimuthal angle, ψ depicted in Figure 5.3. For isotropic scattering, cos θ is

sampled over the interval range : [0,π].

cos θ = 2ξ − 1; if g = 0 (5.13)

Next the azimuthal angle, ψ, is sampled over the interval : [0, 2π] and may be

generated by multiplying a random number ξ: [0–1] by 2π.

ψ = 2πξ (5.14)

Thus, a photon is scattered at angle cos(θ, ψ). Note phase function has no

azimuth dependence.

Figure 5.3: The deflection angle, θ and the azimuthal angle, ψ.

Once the deflection angle is chosen, the new direction and the x and y coordinates

of the photon can be updated for the next event as in Equation 5.15. To specify

the spatial position of a photon in the grid, a Cartesian system is implemented with

coordinates (x, y, z). The direction of incident photons is initially specified by the

polar angle θ and the azimuthal angle ψ. To facilitate the coordinate transformations

that are required, the angles are converted into their corresponding direction cosines

(nx, ny, nz). These direction cosines form the components of a vector n of unit length
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pointing in the direction of the photon. Photons are launched into the grid with

initial photon Cartesian coordinates at the origin (x, y, z) and the direction of the

cosines of the photon are:

nx = sin θ cosψ (5.15)

ny = sin θ sinψ

nz = cos θ

Once the deflection θ and azimuthal angles ψ are chosen, the new direction and

the new (x, y,z) coordinates of the photon can be updated. Thus,

x = ∆x + nxds, y = ∆y + nyds, z = ∆z + nzds. (5.16)

Once the positions are updated the photon continues on it’s random walk until

another event and may be scattered, absorbed or escape from the grid.

5.4 Monte Carlo Radiative Transfer Model

The purpose of MCRT is to provide a numerical solution to the radiative transfer

equation (RTE) using the probabilistic nature of photon interactions. The MCRT

handles the photons as particles and does not account for the interference or other

phenomena associated with the wave nature of light.

The first step is to split the total energy equally amongst the photon packets.

Each packet, which has a direction of travel, then carries a fraction of the total energy

and these packets are related to the specific intensity Iv (r, ŝ, t) first introduced in

chapter 1, section Equation 1.5.

The specific intensity, Iv, is defined as the amount of energy ∆Ev flowing through

a unit surface area dA at angle θ normal to surface area per unit solid angle dΩ in

frequency range dv per unit time dt in units Wcm−2sr−1Hz−1.

The total energy rate (power) is also known as luminosity, L, in astronomy may
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be divided equally among MCRT photons:packet of energy. Each energy packet, Ei

is related to the specific intensity, Iv by the following equation

Iv (r, ŝ, t) =
∆Ei

cos θdAdΩdvdt
(5.17)

An energy parcel, Ei may be expressed in units Joules, J, as

∆Ei =
L∆t

N
(5.18)

where L is the luminosity -energy per second (Js−1) Watts, ∆t is the time in

seconds and N is the number of MCRT photons.

MCRT photon energy parcels are related to actual number of physical photons,

Nγ, through the subsequent equation

Nγ =
Ei
hvi

(5.19)

where h is Plank’s constant and vi is the frequency of the MCRT photon energy

packets.

The fluence rate, ψ(r, t) (Wcm−2) first described in Equation 1.6 is related to

the voxel photon power( Luminosity) (W) as follows

ψ =
L

N∆V

∑
i

Si (5.20)

where N is the total number of photons launched, ∆V is the volume of the cell

and
∑

i Si is summation of the photon path-lengths in a cell.

When a photon is absorbed it deposits energy in the tissue. Energy deposition

is calculated by including the Fluence rate with absorption coefficient component

expressed as:

Q =
L

N∆V

∑
i

µaSi (5.21)

where Q is the energy absorbed per cubic centimetre per second, L is the energy
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per second (Watts), ∆V is the volume of the cell, µa is the absorption coefficient

and
∑

i Si is summation of the photon path-lengths in a cell.

5.5 The MCRT Simulation

As we have seen, it is difficult to know how a single photon will behave in a medium.

What is easier to constrain is how an ensemble of N photons behave in terms of their

statistical properties. This is ideally suited for Monte Carlo methods. The basic

procedure is as follows:

1. Emit N photon packets (hereafter referred to simply as photons)

2. Track the progress of each photon, one-by-one, through the medium. The

locations of interaction are found by sampling optical depth τ from the dis-

tribution described in Equation 5.4. The scattering and absorption of the

photons are determined by sampling from the albedo and phase functions.

3. Photons are placed into a “bin” array depending on the position in the grid

cell. By generating many photons and capturing them in bins it is possible to

build up an image (analogous to photons captured on a CCD).

A 3-D grid array is used to describe the four-layer skin model. The model used

voxels of 10µm in each dimension representing the different tissue media types. Each

voxel is assigned a voxel type corresponding to the optical properties of that tissue

type. For example, in a four-layer skin model , the media types could be epidermis,

melanin, DNA or dermis depending on the depth in the grid.

A program schematic illustrates the movement of a photon depicted in Figure

5.4. Each excitation photon packet is launched from the source and migrates through

the cubic grid, whilst undergoing scattering or absorption.

The photons were launched down into the grid with defined optical properties

and propagate until it reaches its first interaction site, as given by Equation 5.6.

As a result, the photon is either scattered or absorbed, the probability of which is
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Figure 5.4: MCRT programme flow chart.

determined by the albedo a, where a high albedo value, corresponds to a more highly

scattering environment. If the photon is scattered in the grid, it will therefore scatter

into a new direction governed by the Henyey-Greenstein scattering phase function.

Scattering will continue until the photon is eventually absorbed or exits the grid.

The process continues in a loop until the number of simulated photons is reached.

The model includes photon reflection at the exterior boundary of the tissue domain.

The “repeating boundaries” are where photons may be internally reflected at the

exterior boundary undergoing further scattering or absorption. If absorption occurs,

the photon contributes to the amount of energy deposited in the corresponding cell.

To obtain images, photons are binned according to x, y, z positions depending

on the plane of interest. It is possible to to collect all photons and bin by their

wavelength λ to obtain spectra as a function of depth. So essentially any plane
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Figure 5.5: Schematic of midway slice for X-Z plane in grid (101 ×101× 101).

“slice” can be extracted from the 3-D matrix cube. The code generates a fluence

rate output file where we can extract a midway slice as seen in Figure 5.5, then by

averaging across all the columns it is possible to obtain a plot for fluence rate.

The code also generates an output file with the number of absorbed photons. In

Figure 5.6 is the sunbed spectra for the binned absorbed photons as a function of

wavelength. The spectral irradiance is attenuated in the upper 100 µm epidermal

layer by the optical properties. The photons are attenuated due to scattering and

absorption events. The longer UVA wavelengths penetrate further down into the

tissue compared to the shorter UVB wavelengths. However, the UVB component is

reaching the the critical basal layer, this drops of significantly with further depth.

By averaging all the slices in the X-Z plane for fluence rate it is possible to plot the

fluence rate as a function of depth in the skin seen in results Figure 5.11. It is pos-

sible to investigate the optical depth penetration of UV photons as they propagate

through turbid media which is the intensity dropped to 1/e (37%) of the incident

value [227].
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Figure 5.6: Absorption spectra as a function of depth. Colourmap: jet

Simulations were performed to investigate the impact of UV sources on the skin.

These included the sun (solar spectra) and artificial tanning units(sunbed spectra).

From these simulations the photon penetration and absorption can be deduced.

The results from these models indicated that light penetration can indeed reach the

deeper layers and cancer-prone basal layer at 100µm. We can even notice some of

the shorter UVB component reaching as far as 140µm which could be a thicker site

on the body.

In order to represent the observed histological structure of real skin seen in Chap-

ter 4 Figure 4.2, the boundary of the layers were modelled as periodic surfaces seen

in Figure 5.7. These boundaries are closer to the structure of observed histological

sections than plane boundaries. This can be important as the statistics of a photon

reflections at the boundary will be affected [188]. Another reason for the sinusoidal

basal layer is that the amplitude of undulations are known to range ±30% of basal

cell layer average depth which could affect the radiation protective properties of the

layer [152].
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The surface plot of sinusoidal form in Figure 5.7 describes the junction between

skin layers in the model, corresponding to a cross-section of a real image of the

epidermal boundary. The distribution and scale correspond to published data from

confocal micrographs for basal layer in human skin [134].

Basal Layer  
100  
3-D Sine wave 

1
0

0
0

  𝜇
𝑚

 
z x 

y 

𝜇𝑚 

Figure 5.7: 3-D Cube (101× 101× 101) with sinusoidal wave for papillae represen-
tation.

The light distribution down through the layers can be viewed by imaging the flu-

ence in the turbid media. Therefore, the structure of the model can be viewed more

specifically the papillae layer. This confirms the histological structure resembles real

skin tissue for layer boundaries. By extracting the X-Y plane from the fluence rate

3-D cube array it possible to simulate the dermal papillae in at depth ≈ 100µm, as

seen in Figure 5.8. Both the tissue architecture and size of the dermal papilla (round

patches) were consistent with observations by Jensen et al. on confocal micrographs

of epidermis foreskin [134].
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Figure 5.8: Simulated fluence rate image of sub-surface ≈ 100µm X-Y plane Scale
bar 60 µm. Colourmap: Eos (Earth observing system)

5.5.1 Validation of the Simulation

Once the skin models optical properties and structure were developed the code

required validation. The first step in validating the Monte Carlo code was to compare

the results for the remitted flux of photons from a semi-infinite homogeneous medium

with an analytic solution of the diffusion equation as has been done in the past by

several others [274].

Initially the code had to be validated to ensure that the simulation was producing

the same fluence rate achieved by Jacques et al. [133]. The specified parameters were

for single wavelength of 630nm, µa = 1.8 , µs = 21, n = 1.38, g = 0.88. The cube

size was 1cm × 1cm × 1cm in size. One million photons were launched for each

simulation. The results were compared to penetration of light as function of depth

obtained by Jacques et al. and were found to be in close agreement demonstrated

in Figure 5.9 [133].

Previously published data indicates that the formation of cyclobutane pyrimi-

dine dimers follows a linear regression with absorbed photons on the scale of approx-

imately 6 × 1014 [22, 203]. Kulunsics et al. present a yield for CPDs per kilo base

pair(kbp) caused by natural light on a clear Summer’s day at noontime [158]. They

state that in their comparison they only consider the UV components in dosimetry
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Figure 5.9: Mean of simulated fluence rate from MCRT and the fluence rate repro-
duced from Jacques [133].

which is ideal for our solar spectra investigation. By using the Thessaloniki spectra

in Figure 2.20 and calculating the UV dose it is possible to deduce the CPD for-

mation. In the code we have adapted the code to compensate for the direct and

diffuse component of sunlight [27]. A sunbed is considered to be purely a diffuse

light source.

Once validated the MCRT code is now in a position to be adapted for UV light

source such as the spectra obtained from collated 402 sunbed data set. The next

step was to change the light source from a collimated laser beam to a diffuse UV

lamp source. By applying this there will be photons entering the surface at all angles

isotropically. There is high fluence at the surface and falls off as function of depth.

Fluence is calculated by summing path lengths as photons are passing through the

cells therefore a higher fluence rate is experienced at the surface. As expected the

UV radiation is already diffuse from its starting point and falls off more rapidly

going down through the grid layers.

Next the optical properties for the UV range 280 – 400nm were added to the

model along with real sunbed spectra. Initially the model incorporated absorption

and scattering coefficients for the stratum corneum from previously published data
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[68].

A collated UV sunbed spectrum was inputted into the MCRT code to give an

informed simulation of penetration depth of UV into the epidermis. Individual

photons can be tracked as they exit the system, and bin them in x and y to make

images (given a specification of the image plane); we can simply collect all photons

and bin by their wavelength λ to obtain spectra. Photons are absorbed at certain

wavelengths, thus the position and number of the photons in a certain layer can be

recorded. Each grid layer in code is set up for 10 µm for each grid so by the tenth

layer it as at 100µm i.e. the basal layer. The recorded spectrum is then subtracted

from original sunbed spectra to give spectra shape as function of depth.

Comparison of anisotropy factor

The simulation can be further verified by testing for anisotropy. A g value close

to zero was coded into the simulation (here 0.1) so that the biological tissue was

assumed to be nearly isotropic. By implementing the absorption and scattering

coefficients of all four layers the forward propagation of photons is examined.
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Figure 5.10: Photon forward-biased scattering in tissue media. Colourmap: jet

Figure 5.10 displays the forward propagation of photons in the Z-X plane. As

the medium in Figure 5.10a is more isotropic than Figure 5.10b the transmittance

of photons is less. The higher g u 0.7 factor gives a more forward biased photon
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penetrating deeper into the dermis [277]. This test indicates that our model is

behaving in a fashion that we would expect from photons migrating through tissue

media [176]. Once the MCRT code was validated and functioning correctly the

simulations were executed.

5.5.2 MCRT Simulation Results

The computational results for our tissue media incorporating the established optical

properties in Chapter 4 are described in this section. The MCRT model simulates

the number of absorbed photons in each layer along with the fluence rate. The

number of absorbed photons for the solar and sunbed UV sources are evaluated and

compared.

The main objective for the biophysical model was to investigate the potential

DNA damage from artificial tanning units. While this was an unknown quantity,

there was published literature highlighting the UVA formation of pyrimide dimer

lesions, more specially cyclobutane dimers from sun exposure. It is believed these

lesions are the primary precursor of tumourgenesis and photo carcinoma.

The first simulations determined the amount of actual absorbed photons in the

DNA layer of the model and compare the solar and sunbed UV exposures. A melanin

level for skin type I was set for the MCRT code. Various exposure times were in-

vestigated for both UV sources to establish a time when the number of absorbed

photons was matched.

The next stage was to investigate different skin types to evaluate the natural

chromophore photo protection.

As the model simulates a UV spectral range and not just one single wavelength

a conversion factor is required in the code. Hence, the code converts from photon

energy to number of absorbed photons.cm−3 from Equation 5.17 by multiplying by

5 × 1015λ [λ × (10−9) / hc] as we are investigating purely the number of absorbed

photons in the DNA species.

In order to better understand the relative contribution of the different UV compo-
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nents to solar and sunbed mutagenesis we wanted to investigate how many photons

are actually getting absorbed in the cancer prone region of the basal layer where the

DNA resides.

Once the optical properties for skin tissue were established we did a comparative

test using the solar spectra in the model to give us a value of absorbed photons. The

next stage was to replace the UV source in the code with the sunbed spectra and

adjusting the irradiance levels accordingly. The aim was to compare the number of

absorbed photons per UV source.

Quantum Yield

For a given photo biological process, for instance, CPD formation, one may express

its efficiency in terms of a quantum requirement where the number of photons needed

for each CPD produced or, more commonly, in terms of its reciprocal. The “quantum

yield” is the the number of CPDs formed per photon absorbed. Thus, a quantum

yield is a ratio of absorbed photons that cause a biological change to the total

absorbed photons, expressed as:

φ =
NB

NA

(5.22)

where

NB = number of photons causing biological effect,

NA =total number of absorbed photons.

When quantum yield is measured as a function of the wavelength of light used,

then one obtains the so-called “action spectrum” for CPD formation as mentioned

in Chapter 2. If the dimer quantum yield is 1.0, every absorbed photon results

in a dimer formation. However, this is not the case as not every absorbed photon

leads to a CPD lesion. Until recently the quantum yields for CPD formation in the

UVA region has been unavailable [23]. Below in Table 5.1 yield fro UVB and UVA

component of UV spectra.
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Table 5.1: Quantum Yield for CPD formation.

UVB UVA Ref.

CPD Φ 0.05 0.0005 [22,23]

5.5.3 Results

Fluence Rate

The rate of photon fluence as described in Chapter 1 and defined in Equation 5.20

can be deduced from the simulation revealing information about the photon attenu-

ation down through tissue media. The fluence rate in a homogeneous turbid medium

tends to attenuate exponentially with tissue depth [278]. The layer specific absorp-

tions are bulk quantities that can be used to determine the amount of radiative

energy deposited in a layer. However, estimation of the fluence rate (Ψ) is necessary

to determine parameters such as penetration depth of photons in a multi-layered

turbid medium. The fluence rate (Ψ) is closely related numerically to the photon

absorption albeit with the omission of the local absorption coefficient, µa (cm−1) of

the layer.

Figure 5.11: The sunbed fluence rate Wcm−2 versus depth from skin surface (cm)
for skin model. Refractive index matching with n1 = 1.38 is assumed for all layers.
Epidermis thickness 100 µm. Dermis thickness 900 µm. Anistropy factor g u 0.7.
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Therefore, the fluence rate (Ψ) dictates how absorption occurs in the multilayered

MCRT model for a certain luminosity delivered over the grid size. Figure 5.11

illustrates the fluence rate with depth, Ψ(z), estimated by MCRT simulations. The

fluence rate exhibits the characteristic subsurface maximum near the tissue surface

due to the total internal reflection caused by refractive index mismatch. Conversely

photons that would have escaped from the boundary of a medium may be reflected

back down and have an increased chance of being absorbed. Furthermore, the

fluence near the surface is larger because the back-scattered light augments the

fluence. Figure 5.11 reveals a rapid fall off of photons as they migrate down then

trail off at the epidermis - dermis boundary. The fluence rate in the tissue decreases

exponentially with increasing depth.

The MCRT allows us to investigate the absorption of photons in terms J.cm−3.sec−1

for each species layer in our model, which can be converted to number of absorbed

photons photons.cm−3.sec−1 . The simulations were executed for solar and sunbed

spectrum and the absorbed energy for each layer was determined, as represented in

Figures 5.12, 5.13.

The first simulation incorporated the sunbed spectra for a skin type I phenotype

and the number of absorbed photons are depicted in Figure 5.12. By taking the

midway X-Y plane from the 3-D cube for each of the four layers it is possible to

image the number of absorbed photons per unit volume per sec. Each of the four

layer simulation outputs were concatenated and imaged in Matlab (R2011b, The

MathWorks Inc., Natick, MA, 2011) [182]. The addition of a colourmap, jet, scales

the intensity of the absorbed photons.

The next stage was to run a simulation with the solar spectra in order to com-

pare the number of photons absorbed in each DNA layer seen in Figure 5.14. The

simulations are implemented for incrementing times for solar UV spectra. Since

the number of absorbed photons is always a linear response for CPD formation the

number of CPDs per kbp can be deduced from the solar dose. Once this is estab-

lished we can they run the MCRT model with the sunbed spectra. This resulted
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Figure 5.12: Sunbed absorbed photons for multilayer skin model.
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Figure 5.13: Sun absorbed photons for multilayer skin model.

in a higher number of photons absorbed in the DNA, hence a higher number of

CPD formation. The measurement of CPD provides a highly relevant biological

endpoint with respect to photocarcinogenesis. DNA is the target for UV induced

carcinogenesis. The amount of absorbing DNA depends on the spectral irradiance
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(a) Solar Spectra, 60 Wm−2 (b) Sunbed Spectra, 280 Wm−2

Figure 5.14: Absorbed photons for Oligonucleotide DNA complex dA20 : dT20.

and the transmission through the skin. As the germinating basal layer is the most

cancer prone it is the region of interest for absorbing photons. Thus, this layer is

extracted from the overall concatenated matrix and isolated. The graphs depicted

the DNA absorbing basal layer for the sun and sunbed spectral irradiance number

of absorbed photons.

Although we know that CPDs are formed almost exclusively via direct absorption

by UVB with a higher quantum yield of production, this work demonstrates that

the absorption of UVA photons can lead to CPDs which in turn play a role in skin

cancer development.

Table 5.2: Mean absorbed photons for peaks and troughs.

Solar Sunbed

mean of peaks 3.68×1013 1.90×1014

mean of troughs 3.36×1013 1.68×1014

total mean 3.5×1013 1.78× 1014

Since the model had a sinusoidal basal layer it was possible to investigate the

difference in absorbed photons at the varying amplitude. The peaks are the upper

crest of amplitudes for the epidermis boundary layers. While the troughs are the

lower end of amplitude. The total mean value for the DNA absorption was 1.78×1014

photons for a sunbed and 3.5×1013 for the sun for exposures on 1 second, as described

in Table 5.2.

Since not all photons are forming a CPD on a one-to-one basis we consider the
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quantum yield efficiency of 0.05% for UVA in Table 5.1, the effective number of

photons producing CPDs. By calculating the mean absorbed photons for the DNA

species we can investigate the exposure of the sun for 30 minutes which has an

effective absorbed photons number of 0.31 × 1014 which is in line with published

data [22].

In order to quantify the formation of CPDs by the sun in comparison to the

sunbed we used the number of absorbed photons as a comparative value. The

yields of formation of lesions (CPDs/kbp/Jm−2) were governed by the equation

(1.4 ± 0.2) × 10−2 for UVA irradiation [158]. As the sun and sunbeds are emitting

95% UVA and 5% UVB we only consider the UVA yield ignoring the direct UVB

damage as method described by Kuluncsics et al. [158]. As a result we consider

only the the UVA component in the formation of CPD formation and not the UVB.

While it ignores the UVB damage it is useful for comparative purposes.

The dose for various times was calculated using solar total UV irradiance value

of 60Wm−2. Table 5.3 highlights the number of absorbed photons and CPDs for

incremental exposure times [158]. The effective absorbed photons is the application

of the UVA quantum yield described in Table 5.5.

Table 5.3: Time in noon sun, dose , CPD yield and absorbed photons.

time dose CPDs total effective
(mins) (kJ m−2) (kbp−1) absorbed photons absorbed photons

30 108 0.015 6.38×1016 0.31×1014

60 216 0.032 1.27×1017 0.63×1014

120 432 0.0604 2.55×1017 1.28×1014

The MCRT model simulated the sunbed spectra with UV irradiance of 280Wm−2,

a typical sunbed irradiance, with similar exposure times as above. It was discovered

that there was a higher magnitude of photon absorption occurring at the DNA region

when compared to simulations with the solar spectra. As a result, it was decided

to find a sunbed exposure time that yielded the same number of photons absorbed

for 60 minutes of sun exposure. By knowing the absorbed photons for the sun it is
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possible to obtain the number of CPDs likely to form as a proxy for a sunbed. Table

5.5 displays the number of absorbed photons for noon sun and the CPD values with

corresponding sunbed exposure time to yield a similar number of absorbed photons.

Table 5.4: Number of CPDs per kbp caused by natural light on clear summer day
at noon and equivalent sunbed session time.

UV Source Solar Sunbed

Absorbed photons ×1017 ×1017

CPDs(kbp−1) 0.032 0.032

Exposure time (60mins) (6mins)

The simulations return the same yield on photons reaching the DNA basal layer.

This indicates that 6 mins sunbed exposure causes the same amount of DNA damage

as with 60 mins of sunlight. Since we can look up the UVA formation CPDs from

literature for the solar source, we can equate the same number absorbed photons

to yield an equivalent amount of DNA damage. The UV irradiance of a sunbed

for value 280Wm−2 for 6 minutes gives the same amount if DNA absorption as 60

minutes sun exposure at 60Wm−2. While there is a factor of ten difference in the

times, there is only a factor of 4.6 difference in irradiance.

Skin Type Simulations

As there are many different skin phenotypes it is possible to investigate the differ-

ent photo-protective characteristics of each using the optical properties derived in

Chapter 4. The first stage was to run the simulations for skin types I to IV for the

solar spectra with exposure times 30–120 mins. Figure 5.15 indicates that higher

pigmented skin protection is only really significant from skin type III onwards.

As skin there is a lower skin skin cancer risk associated with skin types IV and

above, it was decided to investigate a medium pigmented skin cancer skin phenotype

III and compare the number of DNA absorbed photons to low pigmented skin type

I for a sunbed UV source.
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Figure 5.15: Total absorbed photons by DNA layer for different skin types at sun
exposure times 30, 60 and 120 mins.

The next step was to use the sunbed spectrum in the simulations and compare

the susceptibility of different skin types for typical sunbed exposure times.
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Figure 5.16: Total absorbed photons by DNA layer for skin type III for sunbed
exposure.

In Table 5.5 the UV melanin shielding is demonstrated for two typical sunbed
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exposure times. The higher skin type III has fewer absorbed photons in the cancer

prone basal layer when compared to skin types I and II. Skin type IV shows slightly

greater photo-protection but we are not modelling this skin type. In Figure 5.16

there is a high colourmap intensity for absorbed photons in the melanin layer for

skin type III. Note no time exposure as per second. When the melanin layers are

compared for the two skin types it becomes apparent that the higher skin type

offers the greater absorbed photons. This indicates a higher natural DNA shield

for higher skin types. Skin type I reveals a higher number of absorbed photons for

typical sunbed exposure times compared to skin type III.

Table 5.5: Comparison of the number of DNA absorbed photons for different skin
types.

time Skin type I Skin type III
mins Absorbed photons Absorbed photons Ratio∗

6 6.68×1016 4.94×1016 0.74
12 1.33×1017 9.88×1016 0.74

*Ratio’s denotes skin type III to skin type I.

In Table 5.5 comparing these skin types has highlighted that skin type I has a

higher amount of DNA photon absorption than skin type III. In agreement with

literature, it is demonstrated that skin type III has a greater photo-shielding effect.

Consequently, as expected, skin type III is more effective at protecting DNA. Skin

type I had on average approximately 35% more absorbed photons at the basal layer

for higher skin type III. There is still a high number of photons reaching DNA layer

for skin type III. The exposure times are standard for sunbed sessions. Skin type I

demonstrates a higher amount of absorbed photons for typical sunbed session times

of 6 and 12 mins giving a ratio of 0.74.

Discussion and Conclusion

The MCRT simulations determined the photon absorption in the turbid media for

the different skin layers. The simulations incorporated the optical properties for the
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various skin phenotypes established in Chapter 4. The DNA (basal layer) was the

layer of interest for cancer induction. The importance of the location of melanin

for DNA protection is described [207, 297]. In untanned skin types I–II melanin

pigments only reside in the basal layer of the epidermis acting as a protective cap

above DNA. In contrast, skin type VI individual’s have pigmentation is distributed

throughout the epidermis in the supra basal layer as seen in Chapter 4 Figure 4.9.

The MCRT model for the first time provides a method to investigate the amount

of UVR that reaches the cells in the epidermis, and thus can damage the DNA in

the cells. In addition, it is possible to examine the photo-protective properties of

melanin for the DNA. Photocarcinogenesis was assumed to occur in the basal layer

of the epidermis (z ≈ 100µm).

The first simulations validated the MCRT code by comparing the output to the

results generated by Jacques et al. [133] for single wavelength light distribution in

skin. The next set of simulations verified that the MCRT was behaving in the correct

manner by altering the anisotropy factor g and observing the the forward scattering

response. Once both these requirements were satisfied the experimental simulations

began. Two different UV spectra,the solar and sunbed, were implemented in the

simulations described in Chapter 2. The UV irradiance of each spectrum was cal-

culated and entered into the code accordingly. The number of absorbed photons

for each UV source were ascertained and compared. The simulations revealed a

magnitude of higher absorbed photons for the sunbed source. This corresponds to

the higher irradiance for the UV range of the spectrum compared with the solar UV

irradiance.

By introducing a time component we can investigate the number of absorbed

photons for the multilayer semi-empirical model at various times for midday sun

exposure. By extracting the DNA layer we get a quantifiable number reaching the

basal layer (cancer susceptible region). From our solar spectra we can calculate the

irradiance for our UV component only which translates to a number of CPDs seen in

Table 5.3. Data from previous studies inform us that above 1014 absorbed photons
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is enough to generate CPDs [22]. So we know there are enough absorbed photons

above this threshold to produce the photo lesions. More of the UV radiation from

solar and sunbeds is in the UVA region and thus we consider just the UVA region

for CPD formation. From literature we can use the linear relationship between UVA

dose and CPD generation [158].

While there is a factor of ten difference in the times, but only a factor of 4.6 dif-

ference in irradiance can be explained by the different characteristics of the inputted

spectra for sampling and the wavelength dependency of the optical properties. The

sunbed spectrum displayed in Figure 2.4 shows a peak at approximately 355nm,

while the sun spectra in Figure 2.20 has a more more broader shaper across the UV

range. So the sunbed spectrum gives a more focused absorption for the overlapping

integration wavelengths.

This comparative analysis using different UV spectra in conjunction with the

MCRT model, has permitted a direct evaluation of the UV shielding capacity of

the melanin layer. The capacity of melanin to protect against UV damage of the

skin has been previously described [106]. The MCRT simulations demonstrates a

comparative photo-protection efficiency against the formation of CPDs in basal layer

with respect to reduced absorbed photons. The lack of photo-protection afforded by

the UV for skin type I has been ascribed to the lower melanin content predominantly

located at the basal layer above the DNA.

The simulation’s results reveal that melanin does not provide adequate protection

in untanned skin type I, therefore providing an indication of potential carcinoma. In

Figure 5.16 there is a high colour map intensity for absorbed photons in the melanin

layer for skin type III in comparison to Figure 5.12 for skin type I. This would

indicate a greater level of photo-protection for higher skin types which agrees with

published literature [106]. It follows that the higher pigmentation for the higher skin

types offer a greater photo-protection for the DNA basal layer. DNA damage can

lead to oncongenic alterations that play important roles in the induction of cancers.

To evaluate the role of sunbeds the number of absorbed photons in the DNA layer
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was determined. CPDs are considered to be one of the most significant UV induced

DNA lesions as precursor for cancer. To establish this CPD yield a spectrum of

sunlight was first simulated. Published data yield a corresponding CPD formation

for a certain dose which was calculated from the UV irradiance and the exposure

times. By finding an equivalent sunbed session for a 60 min midday sunlight exposure

that yielded the same number of absorbed photons, it was possible to quantify the

number of CPDs for a sunbed. This is displayed in Table 5.5 the number of DNA

absorbed photons for a sunbed time of 6 minutes corresponds to a midday solar

exposure of 60 minutes. This is the fist time an attempt has been made to quantify

sunbed hazard in terms of DNA damage and potential CPD formation.§

§P Tierney, C Campbell, R M Valentine, J Woods, CTA Brown, K Wood, S L. Jacques,
H Moseley, “A Monte Carlo Radiative Transfer approach to determine DNA damage from UV
exposure of sunbeds”, Manuscript in Preparation.
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Chapter 6

Multiple Sub-erythema Exposure

Pilot Study

6.1 Introduction

For certain dermatology patients, UVR from sunlight can be an exogeneous agent

that precipitates a dermatosis (e.g. solar urticaria or chronic actinic dermatitis)

or the means by which a skin condition can be ameliorated or treated (e.g., pso-

riasis). Furthermore, as exemplified by polymorphous light eruption, sunlight can

also, paradoxically, serve as the both inciting factor and means of relief by natural

hardening with repeated sunlight exposure.

A range of different biologic effects of ultraviolet exposure on normal human skin

commence immediately after absorption of UV photons within the tissue. These

include skin reddening or erythema. A minimum erythema dose (MED) is defined

as the lowest actinic dose that produces a just noticeable erythema on normal, non

exposed skin. This quantity corresponds to a radiant exposure of monochromatic

radiation at the maximum spectral efficiency λ = 295nm of roughly 100 Jm−2 in

skin type I.

Generally the skin’s response to UV exposure is a protective and reparative

reaction. Sunburn is an example of inflammation, a photoreparative response of skin.
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Thickening of the epidermis is predominantly a protective response often associated

with inflammation. Delayed tanning of the skin may also result from UV exposure.

This protective response is due to the increased amount of melanin produced by

melanocytes in the basal layer. The degree of pigmentation is determined by an

individual’s skin type.

Abnormal photo-sensitivity to UVR occurs in a range of skin conditions, includ-

ing chronic actinic dermatitis (CAD). In order to confirm the diagnosis of CAD

photo-testing is carried out with a diffraction grating monochromator to determine

MED. This painless test involves exposing skin on the back to a range of different

doses of UV radiation and also to visible light. These tests usually reveal significant

photo-sensitivity to one or more of the wavelengths of these types of light. This

helps to establish the diagnosis and may also be useful when planning how best to

protect the skin from the responsible wavelengths.

Phototesting is used to evaluate the skin’s response to UVR and attempt to es-

tablish the spectrum of radiation that will cause adverse reactions or inhibit them.

A phototesting session can determine a) the MED; b) abnormal responses to UVR

and c) abnormal responses to visible light. Although phototesting guidelines have

recently become available [2], the UV irradiation doses able to induce erythema in

healthy individuals and standardised MED doses for testing have not been well es-

tablished in the literature [118]. Therefore, physicians who undertake phototesting,

may disagree about how to read and interpret the results. For practical purposes,

the MED thresholds described by Fitzpatrick [90] are usually considered reference

values for assessing an individual’s MED according to phototype.

Photo-sensitivity is generally tested on skin sites that are not normally exposed

to the sun and is measured 24 hours after irradiation, since UV erythema (par-

ticularly UVB) peaks within 24 hours of exposure. There is also variation of the

normal threshold depending on skin type, with the lightest skin types (types I—III)

generally having lower MED values reflecting higher sensitivity to UV radiation and
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darker skin types having higher MED values and lower sensitivity as seen in Table

6.1. It should be noted that the MED of UVA is measured in joules while the MED

of UVB is measured in millijoules. As UVA radiation is far less erythemogenic than

UVB, the skin can absorb and sustain UVA radiation without erythema by orders

of magnitude greater than UVB.

Table 6.1: Skin phototype and UV sensitivity [48].

Skin type UVB MED UVA MED

(mJcm−2) (Jcm−2)

I 15-30 20-35
II 25-40 30-45
III 30-50 40-55
IV 45-60 50-80
V 60-90 70-100
VI 90-150 >100

Monochromator photo-testing is essential for a diagnosis of CAD and other pho-

tosensitive disorders and it does this by establishing the MED at particular wave-

lengths. However, it does not directly predict how the patient will respond to

broadband emission from a lamp, which contains a range of UV wavelengths. The

question arises if a patient receives half a MED at one wavelength and another

half at a different wavelength, do they combine to effectively deliver an erythemal

dose? Conflicting results were published in the 1970s (Willis et al. 1972; Ying et al.

1974; Kaidbey and Kligman 1975) and there has been very little work done on this

since [140,290,298].

Resolving this issue would help in understanding whether or not there are dif-

ferent mechanisms involved in eliciting erythema at different wavelengths. More

practically, knowing how to combine sensitivity at different wavelengths will allow

us to predict more accurately how a photosensitive patient will respond to exposure

from a broadband source, which may contain a range of UV emissions. This is of im-

portance because of the introduction of energy efficient lighting that has been shown

to contain levels of UV radiation that may be damaging to photo-sensitive patients
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[5, 6]. Since the introduction of a new generation of monochromators, we are now in

a position to undertake this simple but crucial investigation into the effect of com-

bining multiples of sub-erythemal doses at different UV wavelengths in patients with

known photo-sensitivity as well as in healthy volunteers. The principal component

of the skin analysis was to successfully differentiate between a single-exposure MED

and a multiple exposure MED. In this study, we use a tristimulus colour analysis

in addition to the human eye to analyse the data obtained from healthy volunteers

and CAD patients to evaluate if a classification of a MED is more accurate than the

human eye.

Erythema

UV induced erythema (redness) of the skin occurs upon exposure to the sun or

artificial UV sources where a faint, transient redness may begin within minutes. For

the most part, the erythema response of skin to UV radiation is a delayed onset.

This delayed reaction may not appear for several hours after UV exposure, which

gradually increases to reach a maximum at 12–24 hours after exposure, and then

fades over several days. Erythema caused by UV radiation is mostly confined to the

exposed region and demonstrates the blood vessel dilation and increased quantities

of blood in the dermis.

The existence and degree of delayed erythema induced by exposure to UV ra-

diation are dependent upon exposure dose. For a given region, the exposure dose

equals the product of irradiance and exposure time. The erythema is relative to the

radiant energy delivered per unit area of skin surface and not to the rate of delivery

(irradiance) per se. Erythemal effects of UVA require a greater radiant exposure

compared to shorter wavelengths.

After irradiating adjacent sites of skin with increasing increments of UV exposure

doses, the skin is observed after 24 hours to find which sites become red as a result of

exposure. The lowest exposure dose required to produce a just perceptible erythema

is regarded as the threshold or breaking dose and it is this we use to define the MED.
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Generally, it is the reciprocal of this value, determined at various wavelengths, that

is plotted as erythema action spectrum [187]. Refer to Chapter 2 Figure 2.14 for

different action spectra for different wavelengths. Here the erythemal effectiveness

of 365nm is approximately 0.1% of that at 305nm.

Evaluation of redness induced by UV radiation is difficult to quantify; degrees of

redness of the skin are generally estimated by subjective visual evaluations, which

may differ from one observer to the next. Therefore, to determine the degree of

redness we used a chromameter to take measurements in addition to visual assess-

ments.

Wavelength Photoaddition

Apart from the induction of redness from a single exposure, UV erythema may be

induced by the combination of multiple exposures. There are three possible ways

by which suberythemal doses at different wavelengths may combine. Let MED(λ1)

represent the MED at wavelength λ1 and MED(λ2) be the MED at wavelength λ2.

1. Linear addition - In this mode, if the skin was exposed to half MED at (λ1)

plus half the MED at (λ2), this would produce a just perceptible erthema.

This may be written as,

0.5MED(λ1) + 0.5MED(λ1) = MED(λ1 + λ2)

2. Photoaugmentation - This means that adding 0.5MED(λ1) to 0.5MED(λ2)

produces a greater than just perceptible erythema, or,

0.5MED(λ1) + 0.5MED(λ1) > MED(λ1 + λ2)

3. Photoprotection or photorecovery - In this case the addition of 0.5MED(λ1)

and 0.5MED(λ2) fails to produce a perceptible erythema, as shown,

0.5MED(λ1) + 0.5MED(λ1) < MED(λ1 + λ2)
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Linear addition implies a single mechanism for erythema induction at λ1 and λ2.

If this does not occur, then there must be different mechanisms at λ1 and λ2. In this

present study we were interested in three wavelengths at sub erythemal doses. So in

our multiple exposures the three sub MED exposure should yield a just perceptible

MED

1/3 MED(λ1) + 1/3 MED(λ2) + 1/3 MED(λ3) = MED(λ1 + λ2 + λ3)

. This time the photoaugmentation follows

1/3 MED(λ1) + 1/3 MED(λ2) + 1/3 MED(λ3) > MED(λ1 + λ2 + λ3)

and similarly for photoprotection where

1/3 MED(λ1) + 1/3 MED(λ2) + 1/3 MED(λ3) < MED(λ1 + λ2 + λ3)

.

While the sum of the sub MED exposures can cause the above cases, it is also

possible that pre-irradiation of the site with a certain wavelength may influence the

outcome. Photo-augmentation, in which UVA irradiation enhanced the subsequent

response to UVB irradiation to a greater degree than expected from photoaddition,

was demonstrated by Willis et al. [290]. The authors found that erythema responses

to solar simulating radiation and sunlight were enhanced in skin pre-irradiated with

long UVAI (365nm) radiation. When the sequence of exposures to solar simulator

and UVA radiation were reversed similar intensification of the sunburn response

was observed. However, photo-augmentation was not reproducible in experiments

performed by Ying et al. [298] and Paul et al. [218]. Conversely, they demonstrated

additive property of high dose of UVA to subclinical UVB erythema.
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The concept of photoaddition was first proposed by Adams et al. in 1931 [9].

Sayre et al. revealed evidence of photoaddition phenomenon for UVC radiation. [244]

This result was confirmed by Ying et al. who discovered that in threshold ranges,

the erythemogenic properties of UVA and UVB were also linearly additive [298].

More recently, Diffey and Farr stated that there was a “lack of photorecovery of UV

erythema in human skin” [72].

In a study to exhibit photorecovery phenomena to UV erythema (300nm) by

longwave radiation , van der Leun and Stoop [276] observed that when 300nm irra-

diation was preceded by exposure λ > 315nm, the sunlight irradiated sites demon-

strated an increased sensitivity to 300nm. The investigators believed that the initial

irradiation of UVA could give an additive mechanism to the erythema produced at

300nm.

Wilis et al., using clinical observations, assessed the responses of human skin to

UVA, UVA + UVB and UVB alone [290]. Their findings indicated that UVA radia-

tion had an augmentative effect on sunburn damage caused by UVB. In comparison

to sites that were exposed to UVB alone, pre-irradiation of skin with UVA increased

the redness that occurred from UVB. This response was interpreted by the authors

as a synergistic effect between UVA and UVB.

6.1.1 Experimental Design

The minimal erythema dose (MED) was determined on the backs of 10 subjects at

wavelengths of 305, 335 and 365nm using an irradiation monochromator. At each

of the three central wavelengths, three determinations of the MED were carried out

using full bandwidths at half maximum intensity of 5nm, 27nm and 27 nm at the

respective wavelengths.

The design concept for the clinical trial involved splitting the MED into a third

at 305nm(UVB), 335nm(UVAII) and 365nm (UVAI). By taking a third of the dose

required for one MED at 305nm, 335nm and 365nm we investigate if the wavelengths

are linearly additive, where the sum of the fractionated MED of UVB and UVA can
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induce a just perceptible MED.

The order in which the UVR was irradiated was also investigated by using vari-

ous combinations of the wavelengths. This was achieved by comparing two different

sequence protocols:

Sequence I: UVB, UVAII, UVAI

Sequence II: UVAI, UVAII, UVB

The full sequence schematic is depicted in Figure 6.1 showing the five control

sites and Sequences I and Sequence II.

UVB 

305nm 

1/3 

MED 

UVAII 

335nm 

1/3 

MED 

UVAI 

365nm 

1/3 

MED 

305nm 

335nm 

365nm 

 𝑀𝐸𝐷 =1/3 MED + 1/3 MED + 1/3 MED = MED 
          >MED 
          <MED 

 

±40% 1/3 MED for UVAI , UVB 

 

 

365nm 

335nm 

305nm 

 

Sequence I Sequence II 

Figure 6.1: Multiple sub MED exposures.

In case the fractionated MED dose were below or above the threshold for inducing

an erythema we examined the effect of increasing and decreasing the fractionated

UVB and UVAI MED by ±40%. Here the MED is fractionated into one third
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MED at the UVAI and UVB with ±40% combinations. However, the ±40% did not

induce a significant different erythemal response. The next step was to raise the

fractionated one third MED with ±90% in order to catch any erythema that might

be just on the threshold of a response.

Five control sites were used in conjunction with the ±40% fractionated MEDs

depicted as green circles in Figure 6.2. These included three 1/3 MEDs at each

single wavelength 305nm, 335nm and 365nm known as Ctrls (a-e). In addition to

this were two control sites for sequences I and II without the ±40% fractional dose

UVB or UVAII known as Ctrl d) and e).

Figure 6.2: Schematic of the back with five control sites, Sequence I and Sequence
II ±40%. Control sites are designated Ctrls (a-e) from left to right.

Finally there were four combinations of the fractional doses for UVB and UVAII

for each sequence I (blue circles) and II (brown circles) depicted in Figure 6.2.

For Sequence I (blue circles) the fractional doses are as follows from left to right:

(a) UVB 1/3 MED +40 UVAII 1/3 MED UVAI 1/3 MED +40

(b) UVB 1/3 MED +40 UVAII 1/3 MED UVAI 1/3 MED -40
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(c) UVB 1/3 MED -40 UVAII 1/3 MED UVAI 1/3 MED +40

(d) UVB 1/3 MED -40 UVAII 1/3 MED UVAI 1/3 MED -40

Brown circles followed the same pattern as above except the UVAI exposure was

given first and the UVB last. The rationale behind this was to provide a greater or

lesser MED and observe the biological reaction. Then which ever combination gave

a response would give an indication of the mechanism.

Furthermore, several of the diseases that cause abnormal sensitivity to ultraviolet

radiation are precipitated or worsened by 320 – 400nm radiation. People with such

disorders may be sensitive to UVB or to UVA or to a wide spectrum of UV and

visible light. For this reason, we also investigated patients with CAD.



161

Chronic actinic dermatitis (CAD)

Chronic actinic dermatitis (CAD), previously known as actinic reticuloid, photo-

sensitivity dermatitis, photosensitive eczema, and persistent light reaction, is an

immunologically mediated photodermatosis characterised by pruritic eczematous le-

sions of areas exposed to the sun seen in Figure 6.3. Haxthausen first described

this condition in 1933 in a patient with hypersensitivity to light after intravenous

trypaflavine, a photosensitizing dye [120]. Actinic reticuloid and two milder forms

of CAD, referred to as photosensitive eczema and photosensitivity dermatitis, were

reported in 1974 [93].

Figure 6.3: CAD image of the posterior neck provided by Dr. Sally Ibbotston, PBU,
Ninewells Hospital, University of Dundee, Dundee.

The term “chronic actinic dermatitis” or “CAD” was introduced by Hawk et

al. in 1979 [119]. CAD is used to describe a particularly severe form of eczema in

which an individual is abnormally sensitive to light. CAD is deemed chronic when

the condition typically persists for a number of years. ‘Actinic’ means “caused by

sun” and ‘dermatitis’ (which is another term for eczema) means itchy inflammation

of the skin. The light doses are used to investigate the sensitivity of CAD patients

in the Photobiology Unit at Ninewells Hospital are shown in Table 6.2.

CAD is an eczematous disorder associated with disproportionate UVB sensitivity,

although abnormal UVA and visible light responses are also often seen. Phototesting
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Table 6.2: Monochromator phototesting CAD patient doses

Waveband Dose Dose Dose Dose Dose
(nm) (mJ cm-2) (mJ cm-2) (mJ cm-2) (mJ cm-2) (mJ cm-2)

305±5 3.9 8.2 18 39
335±27 220 470 1000 2200 4700
365±27 1000 2200 4700 10000 22000

is carried out with a grating monochromator to determine MED. CAD predominatly

occurs on sun-exposed areas such as the face, ears, scalp, ‘V’ shaped area of the neck

and the chest, forearms and backs of hands. There can be sharp cut-off lines where

covered areas meet sun-exposed skin. After some time, the skin becomes thickened,

dry and scaly. These changes may persist throughout the winter months but tend to

be more severe in the summer. In general CAD is more common in older males over

the age of 50 years but it can occur in younger people with atopic dermatitis [57].

Phototesting is the key investigation, with broad UV waveband sensitivity oc-

curring as a dermatitis rather than a sunburn response. Contact allergy recog-

nition and avoidance, along with photo-protective measures, are helpful in most

cases. Photochemotherapy, light sensitising drugs, psoralens, in combination with

UVA(PUVA), and systemic immunosuppression may be required in those patients

who fail to respond. In some cases, spontaneous resolution follows after a number

of years.

6.1.2 Materials and Methods

Measurements were obtained from the posterior backs of 10 healthy volunteers and 3

CAD patients. Skin responses were graded approximately 24 hours after phototest-

ing for severity of erythema and pigmentation using a pre-specified skin grading

scale shown in Table 6.4 and chromameter L*a*b* parameters are described later in

section 6.1.3. Visual grading was done by trained phototesting assessors according

to standard working practices of the Ninewells Hospital Photobiology Unit. The

backs of healthy volunteers and CAD patients were irradiated with varying doses of

UVA and UVB to determine MED in each of the wavelengths 305nm, 335nm and
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365nm. The subjects received overlapping suberythemal doses of UVA and UVB in

each of the several sites.

On day 1, after informed consent was taken, skin on the subject’s right or left

side of the back was exposed to irradiation at the wavelengths and doses indicated in

Table 6.3. Evidence of erythema was documented at 0, 5, 10, 15 and 30 minutes post

irradiation. Skin responses were visually assessed according to the scale provided in

Table 6.4 and approximate MEDs at each waveband determined.

Table 6.3: Monochromator Phototesting Healthy Volunteer Doses

Waveband Dose Dose Dose Dose
(nm) (mJ cm-2) (mJ cm-2) (mJ cm-2) (mJ cm-2)

305±5 27 56 120
335±27 3300 6800 15000 33000*
365±27 15000 33000 68000

* Only if skin type III

On day 2, the test site was examined for 24 hour delayed erythema and a

more precise MED established with smaller step incremental doses. Erythema was

visually assessed by the technicians and by chromameter readings.

On day 3, the precise MED from the delayed erythema response from day 2 was

visually assessed. At this stage the fractionated MED testing can be implemented.

Fractionated MED is where the dose to achieve 1 MED at a certain wavelength is

divided by a third as seen in Figure 6.1. Therefore, the sum of the dose at three

UV wavelengths will equal one MED. Further chromameter readings were taken to

assess for erythema.

On day 4, the fractionated MED body-sites were assessed for erythema. Ex-

amination took approximately 1 hour and included photography and chromameter

readings to quantify redness.

A chromameter (used for colourimetry) is a type of spectrophotometer which

can be used for complex colour analysis with high precision and can accurately

determine the spectral reflectance at each wavelength [13]. Several studies have

reported the quantification of skin colour and pigmentation using a colourimeter
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[14–16]. Different skin areas on the back of healthy adults were tested using the

chromameter to quantify small skin colour changes due to erythema. Chromameter

measurements detected increases in ‘redness’ with the a* parameter of the CIE

L*a*b* system discussed later in section 6.1.3

Study Subjects

Ten healthy, adults, aged 20–50 years, with Fitzpatrick’s skin type I, II, III or IV

were recruited. Sun protected areas of the back were chosen for irradiation sites.

Informed consent as well as complete medical histories were obtained. None of the

subjects had any history of drug hypersensitivity or abnormal reaction to sunlight.

They had not taken any drugs for 4 weeks and had avoided sun exposure on their

backs for 3 months prior to the study.

Visual evaluation of erythema was conducted by a panel of expert assessors on

a 0–4 standardised grading response scale listed in Table 6.4 .

Table 6.4: Grading of skin responses.

Observation Score

No evidence of any skin reaction 0
Faint but definite erythema filling the majority of the test site (i.e. the MED) 1

Definite, marked erythema 2
Erythema with evidence of oedema 3
Erythema, oedema and blistering 4
Query result, i.e. uncertain result ?

Brown pigment B
Flare F

Petechia G
Urticaria U
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Radiation source and dosimetry

The equipment used in phototesting comprises of a Bentham (TMS300) monochro-

mator and Bentham (IL450E) 450W xenon lamp with a rectifier power supply

(IREM Ex-30 G/1) suitable for the operation of high power arc lamps. The sys-

tem also includes an integrating sphere (Bentham 9938), optical radiation meter

(Bentham ORM400) and Liquid Light Guide (8 mm diameter, 2 m length, FOP-

UVL-2-d8)(Figure 6.4). The monochromator has the ability to split light into its

constituent wavelengths. Individual wavelengths can be selected and irradiated di-

rectly onto the surface of the back for varying time from 3 seconds to 15 minutes.

This procedure is painless.

Figure 6.4: Phototesting with monochromator and light guide.

Correlation of Chromameter with Expert Assessment

As an aside, an investigation was conducted to check if there was a correlation be-

tween expert grading of erythema with the instrument. Two chromameter readings

were obtained: the first on the non-irradiated site (background) and the second on

post irradiation (erythema). The difference after subtracting the background skin
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measurements, the UV irradiated site values were subtracted from the a* value of

the untreated site to obtain ∆a* value (see Table 6.5). Visual scoring of skin ery-

thema, as graded 1 to 4, based on a standardised scale, was done by a panel of

trained observers. The visual grading of skin erythema is generally considered the

difference between baseline skin colour and increase in redness as observed by the

eye. The subjective visual assessment of skin phototypes according to Fitzpatrick et

al. combines the intensity in melanisation and the erythemal response to sun expo-

sure [89]. Due to this subjective nature of skin evaluation we consider a chromameter

to quantify skin colour.

6.1.3 Chromameter

Skin colour measurements were made with a spectrophotometer (CM-700d, Konica

Minolta Sensing, Inc., Osaka, Japan) as seen in Figure 6.5. The spectral reflectance

on the device was set for standard illuminant D65 and recorded at 10 nm intervals

from 400 to 740 nm under the visual field of 2◦ for a standard observer. The device

is handheld and the aperture of the removable probes have diameters ranging from

3 mm to 9 mm. All readings were taken with light pressure applied to the skin to

avoid blanching.

Three-dimensional colour coordinates, i.e., L* (lightness), a* (red-green chro-

maticity index), b* (yellow-blue chromaticity index) in the CIELAB colour space,

were determined for each sample. The spectral reflectance curves and three-dimensional

CIELAB colour coordinates for different skin types and erythema were obtained. We

selected a numerical aperture size of 3 mm to measure the irradiated region on the

skin. The measurement using the spectrophotometer was performed 3 times, and

the mean values for each site were used in this study. The chromameter is calibrated

to CIE 1976 L*a*b* colour system using a white plate before each measurement.

The a* values represent red–green ratio (red shift, a* >0). Since skin redness is

primarily determined by the presence of hemoglobin and melanin, erythema can be

assessed using the redness parameter a* [85,279]. As erythema begins to appear, the
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Figure 6.5: Spectrophotometer (CM-700d) with calibration plate.

a* value becomes more positive. The MED threshold for colourimetry was chosen

according to COLIPA recommendations as an increase of the redness parameter

∆a∗ = 2.5 [88].

One of the advantages of using the CIELAB uniform colour space in expressing

the colour of the object is that the colour difference between two objects can be

expressed by a simple parameter, ∆E∗ The value is the distance between two points,

each expressed in terms of L*, a*, b*, in the CIELAB uniform colour space, as shown

in Figure 6.6. The colour difference parameter ∆E∗ - value is then calculated by the

following expression:

∆E∗ = [(∆L∗)2 + (∆a∗)2 + (∆b∗)2]1/2 (6.1)

where

L∗ = L1 − L2

a∗ = a1 − a2

b∗ = b1 − b2
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Figure 6.6: Colourimetric representation of colour space CIELAB.

The larger the ∆E∗ value, the larger the colour difference becomes. It is known

that a ∆E∗ of 1.0 is just discernible by the human eye. The ranges indicated the

degree of difference as: 1.0 to 3.0 for visible difference, 3.0 to 6.0 for appreciable

difference and 6.0 to 12.0 for much difference [46]. The L* and a* readings in

colourimetry are well suited to quantify erythema [19,247]. The L* value decreases

when erythema develops, indicating some skin darkening but to a relatively smaller

extent than the increase of a*.

For the MED, the ∆E∗, which is the colour difference of the normal skin and

the phototested area, was within the range of 1.0 – 4.0 shown in Figure 6.7 and

this showed a visible difference and could not be accepted as a same colour by the

spectrophotometer for ten of the subjects. For the MED, among the 10 healthy

subjects , the ∆E∗ of 5 subjects was within the range of 1.0 – 3.0, which could be

accepted as a difference of colours, and 5 subjects were within the range of 3.0 – 6.0,

which showed a distinct colour difference.

We know there is an erythema induced for these readings established on day

2 for phototesting. However, the visual assessment scoring for the control sites

and the sequences did not correspond with the chromameter readings. In fact all

the ∆E∗ values gave values >1 when some of the naked eye assessments indicated
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no erythema. Thus, the chromameter measurements could not be used in MED

quantification and the visual grading ranking was used.

Figure 6.7: ∆E∗ for each healthy subject red dashed line indicates threshold for
visible difference.
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Reflectance

For a turbid medium such as human skin, the diffuse reflectance, R(λ), determines

the apparent optical density, OD, of the medium [130]. Tissue chromophores such

as melanin content can be determined from the reflectance spectra in a model first

proposed by Kollias et al. whereby the slope of the optical density (OD) versus

wavelength in the range 620 – 720 nm can determine the melanin epidermal melanin

content [151]. This model was improved by Jacques et al. demonstrating any choice

of wavelength in the 600 – 900 nm range can be used to calculate the composition

of melanin [131]. The OD for turbid medium is expressed in Equation 6.2.

OD (λ) = −loge (R (λ)) (6.2)

Owing to the strong absorption of melanin in the UV spectral range the melanin

score (MS) may be defined as a slope of the in vivo reflectance spectrum ,which

correlates with melanin content [28]. The skin reflectance spectra, R(λ), for all ten

healthy volunteers were acquired with spectrophotometer (CM-700d). The spectra

for different skin types are displayed in Figure 6.8a. Figure 6.9 illustrates the analysis

technique whereby the OD at the wavelengths λ1 = 620nm and λ2 = 670nm are used

to acquire a slope in order to determine the melanin score. The MS is proportional to

the melanin content of the pigmented epidermis and is calculated with the following

equation:

MS =
OD(λ1)−OD(λ2)

λ2 − λ1

(6.3)

Figure 6.8 displays the reflectance for different pigmentation levels from the

spectrophotometer for wavelengths from 400 to 700nm and the calculated OD from

Equation 6.2.

Figure 6.9 shows three OD spectra for a) high, b) medium and c) low pigmented

skin types. We can see an example of the slope technique for the high pigmented

spectrum which gives a MS value of 1.8×10−3 from Equation 6.3. The MS value was
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Figure 6.8: Melanin characterisation.
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Figure 6.9: Optical density, OD = −ln(R(λ)). The MS and corresponding melanin
volume fraction (Vm) from look up tables [130].

used in the look up tables from Jacques [130] this translates to a melanosome volume

fraction of Vm = 6%. This volume fraction would correspond to a relatively high

pigmented skin type III. Investigating the spectrum (c.) in Figure. 6.9 MS=0.4 ×

10−3 which corresponds to a low pigmented skin type I with Vm=2.3%. The latter

is similar to the Vm used in the MCRT simulations described in Chapter 5.
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6.1.4 Statistical Analysis

Results from the volunteers and patients were compiled using the statistical package

SPSS (IBM SPSS V.20.,Chicago, Illinois, USA). In order to investigate correlation,

the chromameter “redness” readings for erythema were compared to visual gradings

done by eye. The readings were completed fully blinded, whereby the visual assessor

was concealed from the device readings so there would be no bias in the results. The

difficulty was comparing a yes/no MED visual assessment and the device reading.

A rank correlation for ordinal numbers was required to allow for “ties” in case

there was agreement between the device and the naked eye gradings. The statistical

test used was a non-parametric rank correlation, more specifically tau-b correlation

coefficient. This allowed a test for significance if p<0.05.

The p-value of 0.495 indicate there was no significant relationships between the

visual degree of colour Vs. chromameter readings since p>0.05. The lack of corre-

lation between the two methods has led us to rely on the visual assessment rather

than the chromameter. The PBU has carried out visual assessment of erythema for

many years and has been subject to regular audits. Thus, we can consider it more

reliable than the chromameter.

Visual observations are often graded on an ordinal (non linear) scale, as seen in

Table 6.4. Since this data is not a continuous numeric form, non-parametric anal-

ysis is usually performed. The choice of statistical analysis for significance between

the visual erythema MED rating and the control sites visual ratings including the

sequences was done using the Friedman test. This choice of test has been the sta-

tistical test for visual assessment [19,148]. The Friedman test is similar to repeated

measures Analysis of variance (ANOVA) that can be performed on ordinal (ranked)

data.

A non-parametric test is required when distribution is not normal. Visual ery-

thema grading scores for the 13 sites one each subject were ranked for the Friedman

test, with one been the least (assigned to lowest visual score) and three (assigned to

the highest grading) thus making rankings ordinal. Since the instrumentation did
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not offer a good grading for skin assessment it was decide to use the visual grading

readings to compare and established MED to the five control sites, the Sequence I

and Sequence II protocols. It was then possible to conducted a Friedman repeated

measures analysis of variance on ranks.

The null hypothesis was that there is no difference between the background and

the MED control groups or sequences. In Appendix A the ranks of each row are

calculated and the total rank of each column in each rank is returned. This is the

method for calculating the mean rank and is confirmed by the Sigmaplot output in

Appendix B. The three skin tests are put into blocks: Block 1: the controls, Block

2: sequence I and Block 3: sequence II. The Friedman test for Block 1 returns a

Chi-square value of 22.69 which is greater than the critical value of 11.07 for five

degrees of freedom with α = 0.05. In this case the null hypothesis is rejected i.e.

there is a statistically significant difference amongst the groups. However, there are 5

irradiation sites. We would like to know which of these sites are significantly different

from the MED and the controls. So the next step was to employ a post-hoc test to

compare pairwise background Vs. MED controls. The differences in the mean values

among the treatment groups are greater than would be expected by chance; there is

a statistically significant difference (p = 0.001). To isolate the group or groups that

differ from each other a pairwise comparison test was performed. The Friedman test

can itself be used as a post-hoc test when just two groups are involved. The results

of the multiple pairwise comparison tests are displayed in Tables 6.5–6.10.
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6.1.5 Results

Healthy MED - MED 40

When various incremental fractions of UVAI and UVB were used, erythema resulted

only when the sum of the MEDs for UVAI, UVAII and UVB was 1 or greater.

Thus, disagreement exists as to whether UVA radiation augments or simply adds

to the erythema produced by UVB alone. The skin types of all the subjects were

categorised by an expert assessor and the MED values for all three wavelengths

were ascertained from phototesting described above. The chromameter was used

to measure the average background readings, another method to investigate the

accuracy of the chromameter was to calculate ∆a∗ for each of the readings. However,

six of the 10 subjects had a negative ∆a∗ indicating that the background reading

was actually higher than the MED reading. The remaining four subjects had a

higher MED reading but the ∆a∗ did not give a difference greater than 2.5 which

is deemed minimum for erythema. Table 6.5 represents the Fitzpatrick skin type

for all ten healthy subjects with MED doses and L*a*b* readings and erythemal

difference reading for “redness” ∆a∗.

Table 6.5: MED, L*a*b* and ∆a* values for healthy volunteers posterior back.

Subject no. Fitzpatrick MED(mJ cm−2) Avg. background Erythemal difference

skin type 305±5 335±27 365±27 (nm) L* a* b* ∆a∗

1 II 68 18000 27000 65.84 6.89 13.95 -0.34
3 I 39 8200 18000 69.60 7.24 14.64 -3.09
4 II 68 1200 22000 70.38 2.99 13.00 0.67
6 II 100 1500 39000 65.70 7.34 15.45 0.76
7 II 100 6800 18000 64.04 9.11 15.20 -3.38
9 III 56 1500 33000 66.74 6.60 11.98 -0.86
10 III 56 10000 22000 67.64 5.35 16.09 0.13
11 III 39 12000 27000 67.73 6.07 19.99 -1.12
12 II 82 6800 33000 67.59 5.10 15.44 -1.37
13 II 47 6800 18000 70.94 4.45 12.29 0.39

The results of the post-hoc pairwaise Friedman test is represented in Table 6.6

with the p-value for significance for the background reading Vs. the five multi expo-



175

sure sub erythemal control sites for ±40% 1/3 MED described previously in Figure

6.2.

Table 6.6: Background unexposed site versus control groups (Friedman Two-Way
Analysis).

Comparison p-value

Background Vs. Ctrl. a .317
Background Vs. Ctrl. b .003∗

Background Vs. Ctrl. c .008∗

Background Vs. Ctrl. d .014∗

Background Vs. Ctrl. e .046∗

* Statistically significant difference (p <0.05).

When we investigate the sequences of ±40% 1/3MED we notice a significant

difference between background and control sites (Ctrls b-e). However, there was

no significance for Ctrl a) This seems idiosyncratic as one would expect the more

energetic UVB 305nm to induce an erythemal response. However, in our controls

we did not notice such a response.

The Friedman test was passed for both sequence groups with statistics in Ap-

pendix C. Thus, allowing for pairwise comparisons. Table 6.7 shows that the frac-

tionated doses at +40 − 40% and −40 − 40% for Sequence I have no significance

difference with p-values of 0.083, greater than 0.05. The pre-irradiation of UVB

at +40% would suggest a photo-recovery mechanism occurring. While one would

expect no difference at −40− 40% as the one third fractionated doses for UVB and

UVAI both are below the MED dose for 305nm and 365nm.

Again for sequence II there was no significant difference at the lower −40−40%.

Conversely, this time round we notice significance for Sequence II with +40−40% in

comparison to background site. So the UVAI first did enhance the post irradiation

of the UVB irradiation to produce erythema. This is interesting in that it might

offer an augmentative effect to provide synergy. Table 6.7 indicates the two different

sequences and the percentage of one third MED dose.

The next stage was to investigate if there was a significant difference in the visual
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Table 6.7: Background non-exposed site versus Sequences I and II ±40% 1/3Med
(Friedman Two-Way Analysis).

Comparison p-value

Sequence I Background Vs. +40 + 40% .008∗

Background Vs. +40− 40% .083
Background Vs. −40 + 40% .025∗

Background Vs. −40− 40% .083

Sequence II Background Vs. +40 + 40% .003∗

Background Vs. +40− 40% .005∗

Background Vs. −40 + 40% .025∗

Background Vs. −40− 40% .157

* Statistically significant difference (p <0.05).

scoring for Sequences I and Sequences II. The Friedman test was passed for both

sequence groups with statistics in Appendix C so a pairwise test was conducted.

The results for sequence I ±40%1/3Med indicate there is a significant difference

at +40 + 40% and −40 + 40%. The later sub erythemal dose combination points

towards an augmentative mechanism. Conversely, there is no significance for the

+40−40% which may seem counter intuitive considering the energetic UVB has the

higher fractional dose compared to UVA. However, the dose is given as multiples or

sub-multiples of MEDs. Therefore, one should expect the same fraction of a MED

at any wavelength to produce the same effect. For sequence II all the combinations

except −40−40% show a significant difference. Both sequences for −40−40% show

no significance which is expected since both UVB and UVAI have a fractional less

than the fractional 1/3 MED.

The results here are interesting with Sequence I +40 −40% which might suggest

post irradiation of UVA offers photorecovery. However, it was inconclusive whether

irradiating the site with 305nm first offered a synergistic effect or if the UVAI 365nm

had the same influence. However, a significant p<0.05 is also noted at −40 − 40%

for Sequence II which suggests that there could be equally an augmentative effect.

These results seem paradoxically different. A more probable explanation is that the

−40− 40% fractionated doses are just on the cusp on producing a MED. Therefore,
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in response to these results we redesigned our experiment to use Sequences I and

II ±90% 1/3 Med. The rationale was that we were not catching the MED for the

fractioned MED sequences. The new MED levels are explored section 6.1.6.

CAD Results

During the study only 4 of the 10 CAD patients were recruited. However, one of

these patients was dropped from the study as they did not meet the requirements

stipulated. Table 6.8 represents the three CAD patients readings for −40 − 40%

MEDs corresponding skin type and chromameter readings.

Table 6.8: Skin type, MED, L*a*b* and ∆ a* values for CAD patients posterior back.

Subject no. Fitzpatrick MED(mJ cm−2) Avg. background Erythemal difference

skin type 305±5 335±27 365±27 (nm) L* a* b* ∆a∗

1 I 12 680 3300 71.62 2.32 14.95 -1.89
2 I 5.6 1500 6800 66.29 4.99 13.42 -0.55
3 III 3.9 680 4700 65.58 5.54 14.68 0.23

Unfortunately, due to the time frame and low sample number valid statistics

could not be performed on this data. Further investigation is warranted to achieve

a higher sample group.
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6.1.6 MED 90

In the final series of experiments the fractional dose for UVB and UVAI are changed

from ±40% 1/3 MED to ±90% 1/3 MED with rationale that we produce a MED for

border line fractional doses. Figure 6.10 demonstrates a good responder for a skin

type II healthy subject under the new fractional dose regime. The controls show a

good erythemal response including both Sequence I and II.

The Friedman test for the background and the control sites returns a Chi-square

value of 17.51 which is greater than 11.07 for 5 degrees of freedom (dof) seen in Ap-

pendix D. Therefore we reject the null hypothesis as there is a significant difference

between the groups with a p-value of 0.04.

Figure 6.10: Example of day 4 multi sub-erythemal exposures for ctrls (a-e), Se-
quence I and Sequence II.

Investigating Sequence I and II ±90% 1/3 MED we reject the null hypothesis as

obtained Chi-square values of 26.128 and 28.359 (refer to Appendix E) respectively,

which is greater than the larger critical value (9.48) for 4 dof. Therefore a pairwise

test was implemented between the background non-exposed site and the control

MED group. This resulted in all control sites been significantly different.

Table 6.9 shows p-value for significance for the background unexposed site Vs.
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the five control MED sites ±90% 1/3 MED. This time round all the control sites

produced an MED according to the visual assessment scoring. This suggests a purely

photo linear addition.

Table 6.9: Background unexposed site versus control groups (Friedman Two-Way
Analysis).

Comparison p-value

Background Vs. Ctrl. a .025∗

Background Vs. Ctrl. b .014∗

Background Vs. Ctrl. c .008∗

Background Vs. Ctrl. d .014∗

Background Vs. Ctrl. e .005∗

* Statistically significant difference (p <0.05).

Again we wanted to investigate the various sequences with ±90% 1/3 MED. For

sequence I all combinations showed a significant difference except for the sequence

I at −90 − 90% which is expected as the fractionated dose at 305nm and 365nm

are both below the one third MED dose. This is the same case for sequence II

with −90− 90% been the only combination not to give a significant difference with

p-value 0.317 greater than 0.05. The fact that these two combinations do not result

in MED suggests no photoaugmentation mechanism occurs.

Table 6.10: MED versus Sequences I and II ±90% 1/3MED (Friedman Two-Way
Analysis).

Comparison p-value

Sequence I Background Vs. +90 + 90% 0.002∗

Background Vs. +90− 90% 0.014∗

Background Vs. −90 + 90% 0.008∗

Background Vs. −90− 90% 0.083

Sequence II Background Vs. +90 + 90% 0.002∗

Background Vs. +90− 90% 0.008∗

Background Vs. −90 + 90% 0.025∗

Background Vs. −90− 90% 0.317

* Statistically significant difference (p <0.05).
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Discussion and Conclusion

UVR is sometimes used as a treatment for various common skin conditions, including

psoriasis, acne, and eczema. The dosage of UV light is prescribed according to an

individual’s skin sensitivity. Human skin varies in its sensitivity to UV radiation

because of varying degrees of skin pigmentation, thickness, and other factors. Thus,

to establish the proper dosage of UV light to administer to a patient, the patient’s

MED was determined, which is generally understood as the amount of UV radiation

that will produce minimal erythema (sunburn or redness caused by engorgement of

capillaries) of an individual’s skin following an UV exposure. The effects of repeated

sub-erythemal UVR exposure on human skin have been insufficiently investigated.

Fractions of the predetermined MED were used in various combinations to show

superimposed sub-erythemal exposures of UVA and UVB could be added linearly.

The purpose of this study was to determine the MED in normal volunteers

and CAD patients following irradiation at wavelengths 305nm, 335nm and 320nm,

using full bandwidths at half maximum intensity 5nm, 27nm and 27nm at each

wavelength respectively. Then we compared the effectiveness of different wavelength

combinations assuming linear additivity or photo addition.

Figures 6.1 and 6.3 summarise the two sequences used in this investigation.

Sequence I involved irradiation with UVB first and the second with UVAI first, while

UVAII, second super imposed irradiated in the sequence, remained constant at just

1/3 of the fractional dose. An erythemal response was the biological endpoint for

the fractionated MED doses and sequence combinations. The order of the sequences

for each individual was generated by a random number (1-100) in a Matlab program

where if number < 50 Sequence I was irradiated first or if if number > 50 Sequence

II was irritated. The visual assessor was not involved in the phototesting and did

not know the sequence order maintaining a blind study.

Once the Friedman test revealed there was a significant difference among the

groups, a pairwise test was implemented using the Friedman two way statistics to

test if there was a difference between the background non-exposed site and the
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individual sub erythemal multi exposed sites.

In conclusion, the spectrophotometer as a colourimeter tool did not offer a quan-

titative assessment for subtle biological changes. Although Westerhof et al. [287] re-

ported that the a* value reflects the perceptive erythema or MED measured by the

optical method, the a* values measured in MED sites did not show any remarkable

pattern in this study. In addition, ∆E∗ values were all >1 even for irradiated sites

where the visual assessment score was 0 using the grading system in Table 6.4.

Therefore, all MEDs were determined by the naked eye. Various sequence com-

binations were developed to investigate the photobiological phenomena of multiple

fractionated MEDs to induce an erythemal reaction. The observed MEDs in each

subject at each central wavelength and bandwidth are given in Table 6.5. We can

see the corresponding L*a*b* readings for each skin type and the ∆a∗ for erythema

response. It must be noted that for many of these readings the difference between

background and irradiated MED site resulted in a negative value as many times the

a* for the background was higher than after exposure. All the ∆a∗ < 2.5 criteria

to quantify as an increase in erythema.

Referring to Tables 6.7 and 6.10 the +40 + 40% and +90 + 90% sites all gave

a significant increase in redness, which is unsurprising and does not help in the

understanding the question of - photoaddition. Likewise, the −40− 40% and −90−

90% sites failed to reveal redness and, again, does not improve our knowledge of

photoaddition mechanisms.

However, with one exception, there was a significant increase in redness where

a percentage increase of the fractional MED at one wavelength was balanced by an

equal decrease in percentage for the fractional MED at another wavelength. The

exception was +40− 40%, but since there was a significant erythema at +90− 90%,

it is likely that this was an aberrant result.

In summation, this pilot study implies that UVB, UVAII and UVAI are linearly

additive. In other words, there was no evidence to support either photoaugmentation

or photoprotection. Furthermore the order of which the wavelengths are irradiated
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is inconsequential to the ensuing reaction. We recognise there is considerable vari-

ability in the results but the conclusion is that UV exposure is linearly additive

between wavelengths 305 nm and 365 nm. This provides support for the practice of

considering exposure to a broadband source as being comparable to the summation

of response at each individual wavelength.

While the MED was ranked as a just perceptible erythema perhaps a well defined

demarcated MED would be of better consideration if the study was repeated. Since

the measurements involved such subtle changes of the skin a well defined MED could

be also more quantifiable by the spectrophotometer device. The lack of CAD data

was a problem for performing statistics with n=3 which stopped any comparison

with mechanisms for sub-erythemal with healthy subjects. This low sample number

and interesting results from the healthy subjects warrants further investigation with

a greater population sample.

Some of the difficulties incurred in this study were problems in interpreting the

erythema on day 4 of phototesting due to pressure points from bra-straps, noised

“blotchy” skin areas or an overheated subject.
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Chapter 7

Concluding Remarks

7.1 Summary

UVR is the main known environmental risk factor for skin cancer. Exposure to high

levels of UV is known to have consequences for human health including erythema,

DNA damage and skin cancer (BCC, SCC and melanoma).

Few studies have estimated the output from artificial tannings units and no data

existed in England prior to this work. The initial objective of the thesis was to

measure and collate the UV emissions from 200 sunbeds across the UK including

boroughs of London. The final number of measured sunbeds exceeded this number

reaching 402 making this the largest comprehensive study worldwide [267].

A diode array spectrometer was used to acquire the data. This was the obvious

choice for field measurements as it offered fast acquisition times which was important

for short sunbed sessions. The small compact nature of the device also offered good

portability which was necessary when moving quickly between sunbed premises.

However, calibration is paramount for this device to offer accurate results. The

spectrophotometer was calibrated in the photophysics lab with a reference source

that is traceable to the NPL. An inherent problem with spectroradiometers is that

they suffer from high levels of stray light, especially at shorter wavelenghts. How-

ever, stray light can be removed with careful mathematical corrections [52] ensuring

correct responsivity of the instrument. In this study a stray light correction method
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used wavelength cut-off filters described in Chapter 2.

One of the aims of the study requested by CRUK and Westminster was to com-

pare the output levels to the European compliance levels which states sunbeds should

not exceed the 0.3 Wm−2 erythemal weighted irradiance level described in Table 2.1.

The erythemal weighted irradiance level describes the ability of a particular dose

of UVR to induce erythema and serves as an indicator for adverse effect of the

sunbed. The weighted irradiance is calculated by weighting the sunbed’s emission

spectrum with a biologically effective action spectrum. The findings showed that

90% of sunbeds in the UK are over the compliance level [267]. An average erythema-

effective irradiance of 0.56 Wm−2 was determined for sunbeds. This corresponds to

a UV index of 22.4, which is significantly higher than the UV index of 8.5 of the

high summer sun at noon at intermediate latitudes [107].

While the erythemal action spectrum was used to compare the compliance lev-

els, another action spectrum called SCUP-h was used to investigate the potential

carcinogenic effect of sunbeds. The SCUP-h action spectrum indicates the relative

effectiveness for induction of nonmelanoma skin cancer [62]. Its merit is in facilitat-

ing a quantitative comparison between artificial tanning units and sunlight. This

action spectrum was also applied to the solar spectrum from Thessaloniki to give

a relative comparison between sun and sunbeds. In the present study, the mean

SCUP-h irradiance was 2.3 times that of Mediterranean sunlight.

A recent study by Public Health England confirmed the results in a similar study

on sunbed emissions where 85% of the 197 sunbeds were indeed over the compliance

limit [146]. This bolsters confidence in the accuracy of the calibration methodology

and in field measuring technique.

Squamous Cell Carcinoma

Chapter 3 presented a mathematical model that predicts the increased risk of SCC

with sunbed use. There is persuasive evidence both of experimental and epidemi-

ological nature that the sun can cause SCC, BCC and melanoma skin cancer. As
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SCC is directly related to UV exposure it was possible to develop a model to include

plausible sunbed scenarios including the exposure doses calculated from empirical

data. This is the first time a model has included sunbed use to predict increased

risk of SCC. The data presented here provides a dose-response relationship between

sunbed use and the risk of SCC. The model was based on a power law relationship

based on cumulative lifetime dose and advanced age. The model considered sunbed

use of a young adult beginning in their 20s and period of use for 5, 10 and 15

years. Other model scenarios could have been use but these we considered the most

relevant. There was also quite a variation in the sunbed output which translated

into a variation of times when a sunbed session exposure time was applied. Again

not every scenario was modeled but the 5th, 50th and 95th percentile was used to

give a flavour of the range. The sunbed time was set for 12 mins and day to day

dose 166 SED. The Relative Cumulative Incidence (RCI) of SCCs for sunbed user

to non-sunbed user for a baseline day-to-day dose 166 SED, 10.5 days holiday and

additional sunbed dose based on a 12 min session 45 times per year (equivalent to

6 min 90 sessions or 9 min 60 sessions) was found to be 90% increase for median

sunbed dose at 55 years of age and 180% increase for the top 95th percentile sunbed

output.

Optical Properties and Monte Carlo Radiative Transfer

Accurate understanding of the optical properties of human skin layer is vital for

modelling of light propagation in skin turbid media [12,277]. The radiative transfer

theory has served as a framework for modelling light propagation and distribution

described fully in Chapter 5. The tissue model is only as accurate as the optical

properties entered into the Monte Carlo Radiative Transfer (MCRT) code. Thus,

it is important to have accurate data for the various layers and light absorbing

chromophores. The optical properties were derived from published literature but

challenge was in deciphering which data were more reliable. Furthermore, much of

this published data was for optical properties in the visible range and it proved even
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more difficult to derive data for the UV wavelengths.

The main chromophores involved in skin tissue are melanin and haemoglobin.

In order to derive the melanin levels in the epidermis the concentrations were es-

timated from literature and personal correspondence. The final melanin contents

volume fraction Vm= 2.55% represented a skin type I individual. This number

was later confirmed by specrophotometer reflectance readings and conversion to a

melanin score which could be used in a look-up table, the result of which was Vm=

2.3% which was a good approximation of the melanosome volume fraction used to

calculate the melanin optical properties used in the MCRT simulations.

Quantification of DNA Damage

The main objective of the MCRT was to estimate the amount of photons absorbed

by the DNA. The DNA optical properties were established from first principles with

the molar absorption for oligonucleotide. Comparing the DNA adsorbed photon

yield for the solar and sunbed spectra allows us to establish a comparable value

for CPD formation. While we only consider the UVA component as generating

CPDs it is a valid argument as the increasing genotoxic evidence of UVA radiation

emerge. While the mechanism required to transfer energy of UVA to DNA directly

is yet unidentified there are studies showing CPD formation. Some argue that the

damage is an indirect process. However, this notion seems to downplay the fact that

absorbance of UVA radiation, albeit small, is not insignificant [255], and exposure in

sunbeds involve high radiation doses. Quantification of CPD frequency from UVR is

important to understanding DNA damage and the aetiology of photo-carcinogenesis.

The results confirm that subgroups of fair-skinned individuals are particularly ‘at

risk’. By understanding which patterns of exposure to natural and artificial sources

of ultraviolet radiation are most detrimental and which subgroups of the population

are most ‘at risk’ when exposed, one may be able to design more precise models by

using detailed phenotypic, sunbed and sun exposure data.

In DNA a cyclobutane pyrimidine dimer (CPD) is formed by linkage of two
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adjacent pyrimidines and can occur after UV irradiation. The induction of the

various CPD lesions is wavelength dependent. Formation follows photon absorption.

Most photoproducts are induced efficiently at the absorption maximum of DNA,

i.e. 260 nm, but the UVB wavelength range is still very effective in this respect.

Generally, cells possess effective mechanisms to remove damage from their DNA. In

mammalian cells NER is the most important mechanism for the removal of these

lesions from the genome [98].

The biological effects of UV exposure of the skin are manifold. In many of these,

mainly UVB-induced effects, CPDs have been shown to play important roles. The

research on this subject has made strong progress in demonstrating that UVA also

plays a role in CPD formation. UV can also indirectly cause damage to DNA. Indeed,

the long UVAI and UVAII are only very weakly absorbed by the DNA. On the

other hand, they excite cellular chromophores which, in turn, generate ROS [272].

Examples of ROS are singlet oxygen, hydrogen peroxide and hydrogen radical.

Few studies have analysed specifically the use of sunbeds as a function of skin

type and DNA damage. In 1992 the IARC stated “There is sufficient evidence

in humans for carcinogenicity of solar radiation. Solar radiation causes cutaneous

malignant melanoma and non-melanotic skin cancer” [14]. If we know that the

DNA chromophore is damaged by UVR and sunbeds contain a higher irradiance for

this UV region of spectrum it suggests that artificial tanning units have a greater

carcinogenic potential.

An increase in noninherited (somatic) mutations has been documented in aged

cells and tissues of both humans and mice, and presumably relates to cumulative

lifetime exposure to exogenous DNA damaging agents such as UVR. Somatic muta-

tion theory explains how DNA damage can lead to the malignant transformation of

cells. Thus it elucidates the connection between UV genotoxic agents and cancers.

Somatic mutagenesis theory, developed by Thilly [264], and improved by Holmquist

and Gao [123], attempts to predict the probability that damage generated by a

mutagen causes a mutation. This probability is theoretical and difficult, if not im-
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possible, to implement. It is dependent on the frequency of the damage sustained

by the mutagen, the speed by which the cell repairs the damage and the possibil-

ity that this damage becomes a mutation after the replication of DNA (mutagenic

potential). High frequency of damage to a particular nucleotide, a speed of slow

repair and a mutagenic potential of damage are ideal conditions for forming muta-

tion. This probability is also dependent on the fact that this mutation can lead to

tumourigenicity.

In fact, only a very small portion of our genomic DNA codes for genes, and only

a small portion of these genes are important in the maintenance of cell integrity.

The transfer must occur at the level of a gene that, when mutated, contributes to

the neoplastic development. Fundamentally sunbeds are a carcinogenic mutagen

and risk is enhanced with usage. Carcinogenesis risk is based on individual genetic

susceptibility. However this increases with enhanced exposure to photon hits. The

following sequence of events leads to skin cancer:

DNA absorbed photons→ CPD kbp−1 lesions→ tumourgenesis→ photo-carcinoma

7.2 Future Work

The Monte Carlo program could be further refined and extended. For instance the

absorbed photons in the DNA could be extended to included ROS and generation of

singlet oxygen species, possibly together with 6-4 photoproducts and CPDs. While

we can simulate the number of CPD lesions formed a step further would be find

the quantum yield for number of CPDs that lead to tumourgenesis. While not

every absorbed photon yields a lesion one possible refinement would be to adopt

the “double hit” theory where a skin cell requires at least two solar events in order

to emerge and become skin cancer [36]. It would be possible to implement this

model by tracking the location where the photon is absorbed in the DNA and if

two photons are absorbed in the same location then a mutation is formed in the

genome. The MCRT could be further refined by having the melanin and DNA
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diploid inter-dispersed in the epidermis instead of a mono-layer.

Collection of large datasets from case–control, families and twin studies with

detailed phenotypic and sunbed exposure data combined with genotyping may help

in the future in dissecting the relative contribution of genes and environment in the

causation of melanoma. The increase in sun exposure and sunbed use in Caucasian

populations over the last 20 years may also have a significant effect on the melanoma

risk in the years to come, so the true impact of sunbed exposure is, as yet, uncertain.

Possible refinements could be the addition of more time reduction techniques, or

more efficient programming, by improving algorithms and writing time critical parts

of the program in machine code. Future work would involve adding an extra layer to

account for degradation of sebum layer as we age, consider distribution of melanin

through out the epidermis for skin types IV and greater. Another advancement

would involve the ROS species for UVA generation of singlet oxygen generation

similar to work done in photodynamic therapy Monte Carlo modelling [274].

While the mathematical model for SCC considers period of sunbed use the risk

does not continue after cessation of sunbed use. However, this would not be the full

picture as there would be a lag time of tumour induction of UV exposure. This could

be possibly added to the SCC model to include the lag times. Another improvement

would be to consider the sensitivity of different body sites and possible cancer risk

weighting for different skin types. In this work we consider the sensitivity to be

equal for all the body-sites. However, normally unexposed unpigmented areas could

have a higher susceptibility to SCC.

The multiple sub-erythemal exposure clinical study could be redesigned to quan-

tify an MED as fully demarcated MED helping to better quantify the chromameter

readings.

The scope of this study covers a broad range from direct radiometric measure-

ments, epidemiology, MCRT modelling and clinical work. The main underlying

question addressed is the carcinogenic potential artificial tanning units possess.
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7.3 Conclusion

In conclusion, the work presented in this thesis has demonstrated the potential

photo-carcinogenic impact of artificial tanning units on the skin. The initial findings

on compliance levels have helped inform Westminster on sunbed dangers from which

laws have been imposed. However, much more has to be done to govern the industry.

This could be by introducing nationwide licensing or outright ban.

This thesis with its complementary publications has strived to inform the pub-

lic of the dangers of sunbeds. This is achieved by increasing the knowledge and

understanding of the mechanisms involved with artificial UV on skin through math-

ematical and MCRT modelling in addition to a clinical study. Firstly the SCC model

has demonstrated the increased like-hood of developing NMSC by mid 50s. While

the MCRT has revealed the UV penetration depths into the basal and the number

of absorbed photons. Lastly, the MCRT model has estimated the potential CPD

formation from sunbeds. UVA, previously, considered to be innocuous to humans,

may actually play a greater role in the induction of skin cancer. This thesis presents

a basic model which offers a tentative approach to quantify DNA damage. One has

to appreciate the level of complexities involved in human pathways to photoprotect

the skin from UVR [205]. Skin type I-II fair-skinned people require three to five

times less UVR to induce erythema than do those with moderately pigmented skin

skin type III-IV, and up to 30 times less than darkly pigmented people skin type

V-VI [214]. However, the MCRT simulations reveal that there is not a great deal of

difference in the number of absorbed of photons by DNA in basal layer (epidermis

100 µm) which suggests it is the genetic makeup of the system that handles the UV

damage from CPDs which is more efficient in some individuals.

Melanin also plays a protective role in the development of basal and squamous

cell carcinomas of the skin. This is seen in the consistent negative association

between these effects and skin pigmentation, although the precise mechanisms of

protection are not known. It was demonstrated that melano-compromised skin

type I had a higher degree of DNA photon absorption. In fact skin type I had on



191

average approximately 35% more absorbed photons at the basal layer than higher

skin type III. There is still a high number of photons reaching DNA layer for skin

type III. While pigmentation of an individual governs the amount of photo-shielding

for the DNA basal layer, susceptibility to photo-carcinoma is also dependent on a

individual’s genetic ability to repair DNA damage. The work here suggests that

that melanin may play a further role more than just photo-protection and may be

involved in the genetic ability to repair.

In Chapter 6 we demonstrated that multiple sub-erythemal exposures are pho-

toadditive giving an erythemal biological response for an individual’s MED. The

MED can vary from person to person depending on skin type. Young et al. suggests

that DNA is a major chromophore for erythema in the 280–340 nm region [302].

One of the main motivations for individual use of sunbeds is for appearance (i.e.

to look good) and general well-being, followed by “relaxation”, the pleasant feeling

of light and warmth, and the intention to get a “pre-holiday tan”. People can get

addicted to using sunbeds and the term tanorexic has emerged in recent years to

describe such excessive behaviour [202].

There is no doubt of the biological consequences of UV exposure and deleterious

effect it can have on humans at a cellular level. Sunbeds represent an additional

source of UVR which can increase the UV burden on the cellular DNA in the epider-

mis. The incidence of NMSC continues to rise each year and the use of sunbeds is

adding to these incidence rates. While SCC occurs more frequently in older people

mainly due to the amount of UV exposure over a lifetime, young people are also at

risk of developing SCC, especially those who expose themselves to artificial tanning

sources such as sunbeds. As this is an unnecessary and avoidable risk, the data

presented here strongly supports public health campaigns aiming to significantly

reduce sunbed exposure.

Increasing the awareness surrounding sunbed hazards has improved in recent

years with media campaigns. However, much work has to be done to inform the

public of their susceptibility to skin cancer from these artificial tanning units. If
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this has had one outcome, with its media presence, to make an individual consider

twice before using what is essentially a “cancer tube” then we would deem this work

a success.
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Appendix A

Ranking Stats

       Background          Crtl A         Ctrl B            Ctrl C           Ctrl D        Ctrl E 

Rated Ranked Rated Ranked Rated Ranked Rated Ranked Rated Ranked Rated Ranked 

1 2.5 1 2.5 2 5.5 2 5.5 1 2.5 1 2.5 

1 3.5 1 3.5 1 3.5 1 3.5 1 3.5 1 3.5 

1 2 1 2 2 4 1 2 3 5.5 3 5.5 

1 1.5 1 1.5 2 4.5 2 4.5 2 4.5 2 4.5 

1 2 1 2 2 5 2 5 2 5 1 2 

1 2 2 5 2 5 2 5 1 2 1 2 

1 1.5 1 1.5 2 4.5 2 4.5 2 4.5 2 4.5 

1 2.5 1 2.5 2 5.5 2 5.5 1 2.5 1 2.5 

1 2 1 2 2 5 2 5 2 5 1 2 

1 2 1 2 2 5 1 2 2 5 2 5 

Rank total: 21.5 24.5 47.5 42.5 40 34 

Rank mean: 2.15 2.45 4.75 4.25 4 3.4 

Figure A.1: Example of Ranking for Control Group MED Healthy Volunteers.
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Appendix B

Friedman Statistics

Figure B.1: SPSS Freidman test, Chi-Square=22.68.
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Appendix C

Post-hoc Friedman Statistics

Sequence I 

Sequence II 

Figure C.1: Sequences I and II for MED fractional sub-erythema dose ±40%.
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Appendix D

Friedman Statistics

Figure D.1: SPSS Friedman Test Controls 90, Chi-Square=17.51.
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Appendix E

Post-hoc Friedman Statistics

Sequence I 

Sequence II 

Figure E.1: Sequences I and II for MED fractional sub-erythema dose ±90%.
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Appendix F

Sunbed and Lamp Details

Table F.1: London Borough of Barnet

Type Type Lamp Watt Effective UVB Effective UVA Total Erythemal Weighting SCUP-H

Sunquest Aurora V Heraeus MagicSun 20/160R 160 0.56 0.26 0.82 1.45
Megasun Ultrapower 6800 H Heraeus Magicsun 20/160R 160 0.65 0.37 1.02 1.74

face 400 0.13 0.20 0.33 0.58
UWE P90 HP Heraeus MagicSun 20/160R 0.37 0.19 0.55 0.98

XTT 600 0.14 0.16 0.30 0.55
Face XTT 1000 0.12 0.16 0.28 0.51

Tansun Symphony V Sun Extreme B 250W 250 0.57 0.26 0.83 1.44
Tansun Symphony V Sun Extreme B 160-225W 225 0.65 0.29 0.94 1.66

Ergoline Affinity 660 Dynamic H Ergoline Dynamic Power SR 100-200 0.58 0.29 0.88 1.52
face 520 0.10 0.09 0.19 0.33

Ergoline Lounge V Ergoline SR VXL 180 0.47 0.22 0.69 1.21
Topaz V Sunquest SQR 180/200 0.74 0.33 1.07 1.97

Solec UVB R (German) V Solec UVB-R 160 0.28 0.14 0.41 0.71
GardaSun Sunshine 7000 V Sunfit XL3 180 0.09 0.15 0.24 0.39

Hex Cabin V Cosmolux VHR 160 0.30 0.18 0.48 0.80
Ergoline Classic 300 H NewColors 23/100R 100 0.44 0.19 0.63 1.13

face 400 0.10 0.14 0.24 0.40
Tansun VT2000 V Blue 2.2 /160W RXXL longlife (German) 0.17 0.10 0.27 0.45
UltraSun Tower V Sunfit XXl Pro 200 0.25 0.14 0.40 0.72

Sontegra H New Technology Energy TX SR 160 0.48 0.15 0.63 1.10
face 400 0.10 0.16 0.26 0.43

TanCab V Philips Cleo Swift XPT TL 200W-R 200 0.39 0.18 0.57 0.97
TanCab V Philips Cleo Swift XPT TL 200W-R 200 0.35 0.16 0.51 0.87
TanCab V Philips Cleo Swift XPT TL 200W-R 200 0.55 0.23 0.78 1.34

Megasun Ultrapower 6800 by KBL H Megasun Super R 160 0.23 0.16 0.39 0.64
Face 400 0.16 0.17 0.33 0.59

Ergoline Classic Turbo Power 500 H High Power 160w RM 0.32 0.27 0.58 0.94
face Ultra VIT 2.3 500 0.08 0.22 0.30 0.40

shoulder 25 0.36 0.18 0.54 0.93
Ergo SunLounge V Ergo turbo power 160 0.26 0.17 0.44 0.72

Topaz V Platinum Max 240 180/240 0.58 0.24 0.82 1.51
Topaz V Sunquest SQR 180/200 0.38 0.20 0.58 1.00

Sunvision V180XXl V New TechnologyIndependence Xtreme 200 0.26 0.11 0.37 0.68
MegaSun UltraPower 4000 H Sun-Xtreme B 160W-225W 225 0.77 0.29 1.06 1.98

face 400 0.18 0.16 0.34 0.60
UWE ibed Cosmedico 180 0.19 0.12 0.30 0.52

face Herasus SwingTM Powerspot 250 0.22 0.15 0.37 0.73
MegaSun by KBL V T230 MegaSun Pure Energy Reflector 160 0.47 0.21 0.68 1.21

UltraSun Power Tower V Sunfit Pro. XL + 180 0.26 0.14 0.40 0.69
Ergoline Avantgarde 600 H Fusion Power 1800XX(160R 2.6) 180 0.51 0.20 0.71 1.32

face Ultra VIT 2.3 500 0.16 0.36 0.52 0.78
shoulder Discover UVA/UVB 2.0 Longlife 25 0.18 0.08 0.26 0.46

MegaSun by KBL V Fusion Power 200 0.59 0.26 0.85 1.54
Tansun Vitesse V Sun Extreme B 160-225 0.63 0.29 0.92 1.61

Ergoline Affinity 660 Dynamic H Ergoline E2 80-200 0.08 0.13 0.21 0.31
Face 500 0.03 0.10 0.12 0.18

shoulder 25 0.09 0.09 0.17 0.29
Sun Angel S52 H Sonnen Angel 80-200 0.02 0.08 0.10 0.18

face Sonnen Angel type -B 420 0.02 0.10 0.12 0.19
UltraSun Alison V600 V Sunvision 225 0.41 0.18 0.60 1.09

Sunquest Aurora V Sunquest SQR 200 0.54 0.26 0.80 1.39
Sunquest Aurora V Sunquest SQR 200 0.60 0.27 0.87 1.57

GardaSun Sunshine 7000 V Sunfit XXl Pro 180 0.29 0.14 0.43 0.80



199

Table F.2: London Borough of Bexley

Type Type Lamp Watt Effective UVB Effective UVA Total Erythemal Weighting SCUP-H

UWE TuttiFrutti 41 UPP H New Technology 180 0.21 0.11 0.32 0.57
MegaSun 4000 UltraPower by KBL V Fusion Power 180 0.34 0.17 0.52 0.95

face 400 0.15 0.15 0.29 0.55
Ergoline Excellence 800 Turbo H Herasus Magicsun 160 0.41 0.21 0.62 0.82

face VIT 2.4 520 0.11 0.10 0.21 0.37
shoulder 25 0.25 0.11 0.36 0.62

Tansun Symphony V Cosmostar X-tra Intensiv 200 0.27 0.15 0.42 0.70
Solton X-50 Turbo V Herasus NewColors 160R/23 160 0.26 0.12 0.38 0.68

face 400 0.18 0.15 0.33 0.63
ErgolineEvolution 600 Turbo H Ergoline 160 0.26 0.22 0.48 0.78

face ultra VIT 2.4 520 0.20 0.21 0.41 0.74
shoulder Ergoline SD 25 0.26 0.11 0.36 0.62

Ergoline Unknown V Maylight XL 180W-R High Intensiv 180 0.19 0.15 0.33 0.56
Sunquest Aurora V Sunquest SQR 180/200 180 0.47 0.22 0.69 1.21

Sunquest Unknown H Sunquest SQR160 160 0.32 0.17 0.49 0.84
Sunquest Aurora H Sunquest SQR 200/225 225 0.41 0.21 0.62 1.08
Sunquest Aurora H Sunquest SQR 200/225 225 0.49 0.25 0.74 1.30
Sunquest Zenith H Sunquest SQR 180/200 180 0.39 0.15 0.54 0.99
Sunquest Aurora V Sunquest SQR 180/200 200 0.57 0.23 0.80 1.48
Sunquest Aurora V Sunquest SQR 180/200 200 0.55 0.22 0.77 1.43

Ergoline Classic 500 H Powerlight Inferno 200 0.52 0.23 0.75 1.40
face Ultra VIT 2.3 500 0.08 0.26 0.34 0.45

shoulder Solarium 25 0.32 0.15 0.47 0.80
Soltron M55 Reflex H Cosmosun 28R 200 0.52 0.19 0.72 1.34

face PSR 460 0.17 0.16 0.33 0.62
shoulder Soltor Solarium P 25 0.29 0.13 0.42 0.71

Tansun Vitesse V Cosmedico 160-200W 160-200 0.45 0.20 0.65 1.13
Tansun Vitesse V Cosmedico 160-200W 160-200 0.46 0.20 0.66 1.15

Luxura X5 by Harpo H New Tech. Independent B. Extreme B 160 0.54 0.22 0.76 1.42
face Maxlight HPA 400 0.09 0.21 0.30 0.48

Tansun V Cosmedico Cosmolux 160 0.27 0.15 0.43 0.70
Tansun V Cosmedico Cosmolux 160 0.40 0.21 0.61 1.04

Luxura X7 by Harpo H New Technology Independent SR200 200 0.55 0.26 0.81 1.45
face Maxlight HPA 400 0.16 0.19 0.36 0.62

Sunquest Aurora V Sunstream 200W 0.3W/m2̂ 200 0.14 0.19 0.33 0.50
Sunvision by Alisun V200XXl V Unknown 180 0.24 0.15 0.39 0.66

Sunquest Aurora V Sunquest SQR 200/225 225 0.45 0.23 0.68 1.15
Sunquest Aurora V Sunquest SQR 200/225 225 0.46 0.24 0.70 1.19
Sunquest Aurora V Bellarium 180/225W X’treme R Max 180 0.36 0.19 0.55 0.92
Sunquest Aurora V Bellarium 180/225W X’treme R Max 180 0.41 0.21 0.63 1.05
Sunquest Zenith H Sunquest SQR160 160 0.37 0.22 0.58 1.00
Sunquest Aurora V Tan 365 250W R Extreme 250 0.70 0.28 0.98 1.85
Sunquest Aurora V Tan 365 250W R Extreme 250 0.70 0.27 0.97 1.82
Sunquest Zenith H Sun-Xtreme B 160-225W Max 225 0.48 0.17 0.65 1.01
Sunquest Eclipse V Sun C-Xtreme Vit D 225 0.50 0.16 0.66 1.28

Table F.3: London Borough of Bromley

Type Type Lamp Watt Effective UVB Effective UVA Total Erythemal Weighting SCUP-H

UltraSun Solarwind 5000 H Sun-Xtreme B 160-225W Max 225 0.39 0.18 0.57 1.03
Sunquest Aurora V Sunquest SQR 180/200 200 0.40 0.24 0.64 1.07

Ergoline Excellence 800 turbo H Heraeus 160 0.31 0.13 0.44 0.81
face Ultra VIT 2.4 520 0.18 0.13 0.30 0.59

Ergoline Advantage 400 H Ergo 160 SR XXL Magic Power 160 0.55 0.22 0.77 1.45
face Ultra VIT 2.3 400 0.10 0.28 0.38 0.55

shoulder Heraeus 25 0.14 0.07 0.20 0.36
Ergoline 800 iq intelligent power-climatron H Ergo 160 SR XXL Magic Power 160 0.45 0.19 0.64 1.20

face Ultra VIT 2.3 400 0.20 0.12 0.32 0.65
Ergo 500 Classic H Sun Extreme B 160-225W 225 0.31 0.15 0.47 0.81

face ultra vit 2.3 400 0.05 0.14 0.19 0.29
shoulder Ergo SD 25 0.16 0.07 0.23 0.39

Ergo 600 Classic H Fusion Power 180XX 160R 2.6 180 0.43 0.16 0.59 1.11
face ultra vit 2.3 400 0.11 0.21 0.32 0.50

shoulder Philips Cleo 25 0.06 0.04 0.11 0.18
Sunquest Aurora V Fusion Power 200XXX CCt 200 0.49 0.19 0.68 1.26
Sunquest Zenith H Sunquest SQR 225W 225 0.38 0.18 0.56 0.96
Sunquest Aurora V Sunquest SQR 225W 225 0.56 0.27 0.84 1.45

Topaz V Sunquest SQR 225W 225 0.63 0.29 0.92 1.59
Tansun Symphony V Titan 200W 200 0.25 0.13 0.38 0.64
Tansun Symphony V Titan 200W 200 0.28 0.15 0.43 0.74

Ergoline Advantage 600 H Ergo XXL 160SR Magic Power 160 0.62 0.25 0.87 1.65
face Ultra Vit 2.3 400 0.13 0.26 0.38 0.57

shoulder Ergo SD 25 0.17 0.09 0.26 0.48
Sunquest Aurora V Ergoline 200W Magic Plus 2.4 R 200 0.65 0.30 0.95 1.70

Ergoline Advantage 600 H Bodysoft 364b Rss Reflector S 160 0.23 0.14 0.37 0.63
face ultra vit 2.3 400 0.04 0.10 0.15 0.21

shoulder Ergoline SD 254 25 0.09 0.05 0.14 0.55
Ergoline Excellence 700 H Ergoline 160XXl R Magic Power 160 0.65 0.24 0.89 1.67

face Ultra VIT 2.4 520 0.19 0.30 0.50 1.63
shoulder Ergoline SD 25 0.21 0.11 0.33 0.61

Ergoline Advantgarde 600 H Ergo XXl 160SR Magic Power 160 0.65 0.27 0.93 1.72
face Ultra VIT 2.3 400 0.11 0.31 0.41 0.54

shoulder Ergoline SD 25 0.18 0.09 0.27 1.72
Ergoline Excellence 700 H Ergoline 160XXl R Magic Power 160 0.71 0.28 0.99 1.86

face Ultra VIT 2.3 400 0.12 0.31 0.43 0.62
shoulder Ergoline SD 25 0.24 0.14 0.39 0.72

Ergoline Excellence 800 H Ergoline 160XXl R Magic Power 160 0.69 0.30 0.99 1.84
face Ultra VIT 2.4 520 0.16 0.26 0.43 0.69

shoulder Ergoline SD 25 0.38 0.17 0.55 0.94
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Table F.4: London Borough of Islington

Type Type Lamp Watt Effective UVB Effective UVA Total Erythemal Weighting SCUP-H

UVScan V New Technology Independence B 160 0.54 0.22 0.76 1.43
Garda Sunshine 7000 V Sunfit XL3 R180W Pro 180 0.11 0.11 0.21 0.35

UltraSun i7 V Sunfit XL3 R180W Pro 180 0.12 0.13 0.25 0.41
Sunquest H Sunquest SQR 160 0.34 0.18 0.52 0.90
Sunquest V Sunstream 200 0.06 0.41 0.47 0.77
Sunquest V Sunstream 200 0.05 0.44 0.49 0.76

Ergoline Classic 500 H Ergoline XXl 160SR Magic Power 160 0.69 0.26 0.95 1.81
face Ultra VIT 2.3 500 0.08 0.20 0.27 0.39

shoulder Ergoline SD Power 25 0.15 0.10 0.25 0.46
Ergoline V Tan 365 225 0.62 0.22 0.83 1.60
Ergoline V Tan 365 225 0.56 0.19 0.75 1.43

Luxura by Harpo V7 V V7 48 XL Intensiv 180 0.38 0.19 0.58 1.03
Soltron M55 Wave Turbo H Ergoline XXl 160SR Magic Power 160 0.57 0.23 0.80 1.49

face Soltron 500 0.17 0.11 0.28 0.54
shoulder soltron 25 0.34 0.15 0.49 0.85

Soltron M55 Wave Turbo H Ergoline XXl 160SR Magic Power 160 0.53 0.25 0.79 1.44
face Soltron 500 0.12 0.10 0.22 0.42

shoulder soltron 25 0.37 0.16 0.53 0.93
Ergoline Sunlounge V Ergoline PurePower 180 0.24 0.16 0.40 0.66

Ergoline Advantage 400 TurboPower H Ergo 160 0.13 0.15 0.28 0.43
face Ultra Vit 2.4 520 0.20 0.16 0.35 0.67

Ergoline Sunlounge V Cosmedico Cosmofit 180 0.13 0.16 0.29 0.45
Ergoline Sunlounge V Ergoline Max Tan V Turbo Power 180 0.25 0.15 0.39 0.65
Sunvision V180XXl V Fusion Power 180 R 180 0.21 0.12 0.33 0.59

Sunquest H Sunquest SQR 180/200W 200 0.36 0.18 0.53 0.92
Sunquest H Sunquest SQR 180/200W 200 0.50 0.21 0.71 1.31

UltraSun Power Tower i8 V Sunfit XXL3 200 0.11 0.14 0.25 0.41
Ergoline 500 H Ergoline XXL 160SR Magic Power 160 0.70 0.33 1.03 1.90

face ultra VIT 2.3 500 0.11 0.25 0.36 0.50
shoulder Ergoline SD 25 0.45 0.21 0.66 1.15

Ergoline 500 H Bermuda Gold Supernova 160W SR+ 160 0.37 0.22 0.59 1.02
face ultra VIT 2.3 500 0.08 0.24 0.31 0.46

shoulder Ergoline SD 25 0.30 0.15 0.45 0.85
Megasun Ultra Power 4000 by KBL H Discover UVA/UVB Longlife 2.4 160W 160 0.76 0.27 1.03 1.97

face 400 0.19 0.20 0.39 0.70
Garda Sunshine 8000 V Sunfit 180 XL Pro 180 0.33 0.20 0.53 0.91

Ultrasun 3500 H Cosmedico Cosmolux 120W XT 1.9M 120 0.24 0.13 0.37 0.63
Ergoline 500 H B’Xtreme Powerlight 160-200W 200 0.53 0.28 0.81 1.40

face Ultra VIT 2.3 500 0.11 0.36 0.47 0.68
shoulder Heraeus 25 0.11 0.06 0.17 0.28

Sunvision by Alisun v200XXl X-Classic V Fusion Power 200W 200 0.37 0.17 0.54 0.98
Sunvision by Alisun 500XXl H Fusion Power 200W 200 0.35 0.17 0.52 0.93

face 500 0.09 0.15 0.24 0.39
Gardasun V Sunfit XL Pro 180 0.24 0.12 0.36 0.66
Gardasun V Sunfit XL Pro 180 0.27 0.13 0.40 0.73

Sun Angel S52 H Sonnen Angel 80-200W type N 80-200 0.08 0.14 0.22 0.37
face Sonnen Angel type -B 420 0.02 0.14 0.17 0.26

Sunvision by Alisun V Fusion Power 250R 2.6 1.9XX 250 0.32 0.15 0.47 0.87
Sunquest Aurora V Sunquest SQR 180/200W 200 0.29 0.18 0.47 0.80
Sunquest Aurora V Sunquest SQR 180/200W 200 0.42 0.23 0.65 1.12

Table F.5: London Borough of Newham

Type Type Lmp Watt Effective UVB Effective UVA Total Erythemal Weighting SCUP-H

Ergroline Soltron X50 turbo H Pure Sylvina 160 0.36 0.15 0.51 0.95
face 400 0.19 0.14 0.33 0.64

Ultrasun Power Tower V Cosmedico Cosmolux 220 0.29 0.15 0.44 0.75
Tansun Symphony V Philips TL 225W Max-R Cleo Cage Advantage XPT 225 0.68 0.21 0.89 1.75
Tansun Symphony V Pure Power Sylvina 200 0.46 0.17 0.63 1.17

Ergoline 600 H Tan 365 160-225W R Extreme 200 0.38 0.13 0.51 0.98
face Ultra VIT 2.3 500 0.06 0.12 0.18 0.27

Heraeus 25 0.14 0.07 0.21 0.36
UWE XTT H UWE Breeze Tec Funatic Newcolors 160 0.34 0.13 0.47 0.86

face 400 0.10 0.10 0.20 0.35
Tan Cabin Unknown V UVA Speed HRR-S 200 0.37 0.17 0.54 0.96
Harpo Lumina 3603 H New Technology Independent Extreme 200 0.38 0.21 0.59 1.03

face 400 0.03 0.08 0.12 0.18
Malibu Tanning Sola V New Technology Independent Extreme 200 0.50 0.27 0.77 1.35

Tansun Viva V Power Max High Intensiv 200 0.24 0.13 0.38 0.65
Garda Sunshine 7000 V Sunfit XL 180 0.19 0.10 0.29 0.53

Topaz by Sunquest V Discover 225-250W 225 0.64 0.27 0.91 1.68
Topaz by Sunquest V Discover 225-250W 225 0.52 0.22 0.74 1.38

Megasun Space 2000 by KBL V New Technology 200 0.63 0.31 0.94 1.66
Megasun Space 2000 by KBL V New Technology 200 0.67 0.32 0.99 1.76

Sunvision V200XXL by Alisun V New Technology 200 0.47 0.21 0.69 1.28
Sunvision V200XXL by Alisun V New Technology 200 0.49 0.22 0.71 1.32

Contour Suntan Express V UHP-R 200 0.22 0.15 0.37 0.63
Q-Med High Performance Q50-180 V Ergoline 200W R 200 0.58 0.29 0.87 1.54

Soltron Charming Cherry L-65 Dynamic Power AVS. H Ergoline SR 100-200W 200 0.51 0.23 0.75 1.34
face 500 0.17 0.23 0.40 0.67
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Table F.6: London Borough of Sutton

Type Type Lamp Watt Effective UVB Effective UVA Total Erythemal Weighting SCUP-H

UVAscan V Turbo Power TVR200 FR2MT12 , ERGOLINE 180 0.38 0.17 0.56 1.01
Ergoline 600 Avantgarde H Ergo XXL 160 SR Magic Power 160 0.53 0.20 0.73 1.37

face Ultra VIT 2.3 500 0.12 0.29 0.41 0.58
shoulder Ergo SD 25 0.13 0.06 0.19 0.33

Ergoline 600 Avantgarde H Cosmedico Cosmolux 160 0.31 0.16 0.47 0.79
face ultra VIT 2.3 500 0.10 0.33 0.43 0.59

shoulder Cosmedico 25 0.09 0.04 0.13 0.22
Ergoline 800 Excellence H Cosmedico Cosmolux 160 0.28 0.14 0.43 0.72

face Ultra VIT 2.4 520 0.11 0.23 0.34 0.55
shoulder Ergoline SD 25 0.16 0.08 0.24 0.40

Tansun Symphony unknown 180 0.39 0.20 0.59 1.01
Ergoline Lounge H Ergoline SR VXL 180W 180 0.33 0.15 0.48 0.84

Ergoline Excellence 700 H Ergoline SR 100-200W Dynamic Power 100-200 0.35 0.19 0.54 0.95
face Ulta VIT 2.4 520 0.12 0.19 0.31 0.51

Tansun Viva V Powermax 200 High Intensiv 200 0.34 0.17 0.51 0.89
Ultrasun Power Tower 8000 V Sunfit Pro 200W XXl 200 0.29 0.15 0.45 0.81

Ultrasun Sunrise 3500 H Sunfit Pro XL+ 120 0.24 0.12 0.36 0.63
GardaSun Sunshine 7000 V Sunfit Pro XL3 180 0.08 0.12 0.20 0.32

SolArt by ACN system H New Technology Extreme B 160 0.47 0.19 0.67 1.25
face 400 0.10 0.13 0.23 0.39

New Technology TX SR 25 0.12 0.06 0.17 0.29
Ergoline Soltron X50 Turbo Plus H Philips TL 225W Cleo Active XPT 225 0.52 0.18 0.69 1.32

face 400 0.21 0.15 0.36 0.70
Tansun Aurora V C-Xtreme Duet Plus 180-220W 220 0.42 0.17 0.59 1.00
Tansun Aurora V Philips 250-R XPT/TS 250 0.65 0.22 0.87 1.65
Tansun Aurora V Power Max Hi Intensiv 200W 200 0.38 0.17 0.55 1.01

Sunvision V200XXL by Alisun V Cosmedico Cosmostar 200-225W 225 0.50 0.25 0.75 1.28
Harpo Lumina 3603 H Philips Cleo Swift TL160W-R 160 0.34 0.17 0.51 0.87

face 400 0.04 0.09 0.14 0.21
Ergoline Excellence 800 H Pure Power Sylvania PPB 160W 2.5 RLL 160 0.47 0.20 0.67 1.26

face Ultra VIT 2.4 520 0.31 0.33 0.65 1.18
shoulder Pure Bronze 25 0.31 0.14 0.45 0.77

Ergoline 500 H Pure Power Sylvania PPB 160W 2.5 RLL 160 0.42 0.17 0.59 1.12
face Ultra VIT 2.4 520 0.11 0.35 0.46 0.64

shoulder Pure Bronze 25 0.41 0.19 0.59 1.02
Ergoline 600 Avantgarde H Pure Power Sylvania PPB 160W 2.5 RLL 160 0.45 0.18 0.63 1.19

face Ultra VIT 2.3 500 0.11 0.33 0.44 0.59
shoulder Pure Bronze 25 0.17 0.08 0.25 0.43

Ergoline 300 H Cosmedico Gold Arium SR 100W 100 0.19 0.12 0.31 0.57
face 400 0.04 0.06 0.10 0.16

Ergoline 500 H Pure Power Sylvania PPB 160W 3.32LL; Bermuda Gold Supernova 160W SR Plus 160 0.42 0.16 0.58 1.13
face ultra VIT 2.3 500 0.06 0.21 0.26 0.36

shoulder MA10500 ? 0.04 0.03 0.07 0.12
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Table F.7: North Tyneside Newcastle Upon Tyne

Type Type Lamp Watt Effective UVB Effective UVA Total Erythemal Weighting SCUP-H

Tansun Serenity 3040 SRL H Powerplus Hi Intensity Longlife 225 0.57 0.31 0.88 1.58
Tansun Symphony V Cosmedcio Cosmolux VHR 180-200 200 0.37 0.20 0.57 0.95
Tansun Symphony V Cosmedcio Cosmolux VHR 180-200 200 0.33 0.19 0.52 0.86
Tansun Symphony V Cosmedcio Cosmolux VHR 180-200 200 0.39 0.21 0.59 0.98

Unknown Tanning Booth V Powerlight Inferno 11R 160 0.34 0.18 0.52 0.88
Unknown Tanning Booth V Powerlight Inferno 11R 160 0.37 0.19 0.56 0.94

Ultra Tan Booth V Cosmedcio Cosmolux 180-200 200 0.36 0.24 0.60 0.98
Ultra Tan Booth V Cosmedcio Cosmolux 180-200 200 0.46 0.28 0.74 1.24
Ultra Tan Booth V Philips Cleo 200W-R 200 0.38 0.21 0.59 1.00

Sunvision by Alisun 400 series XXl H Fusion Power 200R 2.3 200xx 200 0.61 0.22 0.83 1.58
Sunvision by Alisun V200 series XXl V Fusion Power 200R 2.3 200xx 200 0.55 0.24 0.79 1.46
Sunvision by Alisun V200 series XXl V Fusion Power 200R 2.3 200xx 200 0.57 0.25 0.81 1.52

Tansun VT2000 V SFX UV Extreme Performance Duo 225 0.77 0.26 1.03 1.90
Unknown Tanning Booth V Epcot C T T-R /Philips 160WR 160 0.44 0.20 0.64 1.16
Unknown Tanning Booth V Epcot C T T-R/Platinum 160 0.43 0.19 0.62 1.10

Ultrasun Sunburst 400 H Sunfit Pro. VX3 180W/ Sunfit Pro. XXlL 200W 180 0.14 0.14 0.28 0.46
Ergoline Classic 450 H Platinum 200W 200 0.38 0.19 0.58 1.02

F ULTRA VIT 2.3 400 0.04 0.15 0.20 0.28
Harpo Lumina 3603 H Cosmedico Cosmolux 160 0.35 0.17 0.52 0.94

F Harpo Halide 400 0.14 0.18 0.32 0.55
Unknown Tanning Booth V Exteme B. Xtreme R 250W 250 0.63 0.22 0.85 1.54
Unknown Tanning Booth V Exteme B. Xtreme R 250W 250 0.57 0.24 0.81 1.39
Unknown Tanning Booth V Exteme B. Xtreme R 250W 250 0.45 0.18 0.63 1.10

Sunvision by Alisun V180 series XXl V Cosmolux VHR 200 W ; Philips Cleo Swift XPT TL 200WR (Dutch) 200 0.45 0.24 0.69 1.18
Elegence Pro Sunbed H Sunquest SQR 225W/ Bellarium X’treme 225W 225 0.41 0.21 0.62 1.08

Sunquest V Sunquest SQR 225W 225 0.64 0.28 0.93 1.62
Sunquest V Sunquest SQR 225W 225 0.65 0.29 0.94 1.68

Unknown Tanning Booth V Philips 250 R XPT/TS 250 1.06 0.37 1.43 2.70
Unknown Tanning Booth V Cosmedico Cosmolux 200-225W 225 0.45 0.21 0.66 1.13

Delta Luxura 500 Intensiv. V Fusion Power Trio XXX 180/250 250 0.49 0.21 0.70 1.29
Delta Luxura 500 Intensiv. V Fusion Power Trio XXX 180/251 250 0.54 0.23 0.76 1.42
Delta Luxura 500 Intensiv. V Fusion Power Trio XXX 180/252 250 0.55 0.23 0.79 1.46

UVA Scan VL8: Suntube V Cosmedico Cosmolux VHR 160W + SunJunkie Supreme 15W 160 0.28 0.16 0.43 0.73
Sunquest Aurora V Cosmedcio Cosmolux VHR 180-200 200 0.44 0.26 0.70 1.17
Sunquest Aurora V Cosmedcio Cosmolux VHR 180-200 200 0.45 0.25 0.70 1.17
Sunquest Aurora V Cosmedcio Cosmolux VHR 180-200 200 0.48 0.26 0.73 1.22
Sunquest Zenith H Powerlight Inferno II R + Beauty Sun S (Wolf System) 25W 160 0.41 0.19 0.60 1.03

SuperShuttle VHR H Philips 160 W Sunlamp Solarium Super Pro. Hightech 160 0.26 0.14 0.40 0.68
EPCOT Carousle Revolution V Platimun Max 200 160 0.48 0.22 0.70 1.26
EPCOT Carousle Revolution V Platimun Max 200 200 0.55 0.23 0.77 1.39
EPCOT Carousle Revolution V Platimun Max 200 200 0.51 0.22 0.73 1.32
EPCOT Carousle Revolution V Platimun Max 200 200 0.56 0.22 0.78 1.40
EPCOT Carousle Revolution V Platimun Max 200 200 0.49 0.21 0.70 1.28

EPCOT H EPCOT Revolution 160 0.50 0.22 0.72 1.32
EPCOT H EPCOT Revolution 160 0.58 0.21 0.79 1.45

Tansun Serenity 3040 XXL H Cosmedico Cosmolux 200VHR 200 0.53 0.24 0.77 1.38
BodyTan V Cosmedico Cosmolux 200VHR 200 0.39 0.21 0.60 0.99
BodyTan V Cosmedico Cosmolux 200VHR 200 0.36 0.19 0.54 0.90
BodyTan V Cosmedico Cosmolux 200VHR 200 0.38 0.21 0.59 0.99
BodyTan V Cosmedico Cosmolux 200VHR 200 0.34 0.19 0.54 0.89
BodyTan V Cosmedico Cosmolux 200VHR 200 0.42 0.22 0.63 1.05

Sontegra Tri Tan H Tan 365 R Extreme 250 0.66 0.25 0.91 1.70
Sonte Raysun H Tan 365 R Extreme 250 0.69 0.23 0.92 1.77

V Cosmosun 28R 225 0.78 0.36 1.14 2.00
V Tan 365 R Extreme 225 0.81 0.25 1.06 2.08

Unknown Tanning Booth V Tan 365 R Extreme 225 0.87 0.29 1.16 2.25
Ergoline avantgarde 600 UTP H Heraeus 160R 160 0.68 0.32 1.00 1.82

F Ultra VIT 2.4 520 0.17 0.42 0.59 0.85
Sontegra H Cosmolux 160 0.21 0.21 0.41 0.72

F sontegra 300 0.19 0.13 0.32 0.36
Unknown Tanning Booth V Heraeus MagicSun 200 0.81 0.30 1.11 2.14

Sun Vitale 400 Series H Titan 180 0.62 0.35 0.97 1.62
Unknown Tanning Booth V Titan Stamina 235 0.55 0.33 0.88 1.51
Unknown Tanning Booth V Titan Stamina 235 0.81 0.34 1.15 2.00
Ergoline 300 Superpower H Titan Stamina VHR 160 0.60 0.25 0.85 1.47

F Ultra VIT 2.3 300 0.09 0.08 0.17 0.26
Tansun Serenity H Wolff Bellarium B’ Xtreme R 250W 250 0.52 0.30 0.82 1.39
Tansun Serenity H Wolff Bellarium B’ Xtreme R 250W 225 0.38 0.21 0.58 1.00

Tansun Desire V Wolff Bellarium B’ Xtreme R 250W 250 1.06 0.35 1.41 2.72
Tansun Symphony V Cosmedico Cosmolux 225W 225 0.53 0.29 0.82 1.39
Tansun Symphony V Cosmedico Cosmolux 225W 225 0.56 0.29 0.86 1.45
Tansun Symphony V Cosmedico Cosmolux 225W 225 0.55 0.28 0.83 1.41
Tansun Symphony V Cosmedico Cosmolux 225W 225 0.50 0.26 0.75 1.27
Tansun Symphony V Cosmedico Cosmolux 225W 225 0.49 0.25 0.75 1.26
Tansun Symphony V Cosmedico Cosmolux 225W 225 0.50 0.25 0.75 1.27

Tansun Desire V Wolff Bellarium B’ Xtreme R 250W 225 0.50 0.24 0.74 1.24
Tansun Vitesse V Wolff Bellarium B’ Xtreme R 250W 250 0.98 0.26 1.25 2.46
Tansun Vitesse V Wolff Bellarium B’ Xtreme R 250W 250 0.75 0.25 1.00 1.93
Tansun Vitesse V Wolff Bellarium B’ Xtreme R 250W 250 0.71 0.24 0.95 1.84
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Table F.8: Nottinghamshire Derbyshire

Manufacturer Type Lamp Watt Effective UVB Effective UVA Total Erythemal Weighting SCUP-H

Tansun Symphony V Pure Power 250 0.404 0.147 0.551 1.05
Tansun Symphony V Cosmedico 225 0.36 0.22 0.58 0.968
Tansun Symphony V Pure Power 2.3 R 200 0.444 0.203 0.647 1.176
Tansun Symphony V Cosmedico 225 0.341 0.214 0.555 0.924

Sol 50 V Intersun/Philips 160W ; Bodysoft 220VR 220 0.348 0.173 0.52 0.923
Tansun Symphony V Cosmedico Cosmolux 200 0.434 0.226 0.66 1.118

Ergoline 600 Avantgarde H Cosmedico 160 0.421 0.162 0.583 1.066
face Ultra Vit 2.3 400 0.13 0.417 0.547 0.81

shoulder Philips 25 0.078 0.05 0.128 0.232
Unknown Booth V Wolff Bellarium B’ Xtreme 250 0.427 0.19 0.617 1.064
Unknown Booth V Wolff Bellarium B’ Xtreme 250 0.376 0.166 0.542 0.938
Tansun VT2000 V Intersun 160 0.425 0.151 0.575 1.005

Ergoline 600 Avantgarde H Fusion Power 180XX /160R , BX’Treme 160-200W Powerlight 180 0.461 0.232 0.693 1.26
face Ultra Vit 2.3 400 0.06 0.254 0.314 0.464

shoulder Discover 25 0.155 0.096 0.251 0.438
Ergoline 600 Avantgarde H Bronze PBO 160W 2.5R, Powerlight Inferno 11R (Wolf system), Heraesus Magic 25 160W 160 0.352 0.17 0.522 0.96

face Ultra Vit 2.3 520 0.087 0.336 0.423 0.575
shoulder Ergo SD 25

Unknown Booth V New Technology Perfect LUX 200 0.321 0.137 0.458 0.823
Unknown Booth V Light Tech Combi r 180W Intensiv 180 0.354 0.196 0.55 0.944

Zenith by Sunquest H Sunquest SQR 250 0.677 0.177 0.854 1.661
Zenith by Sunquest H Wolff Bellarium B’ Xtreme 225 0.497 0.259 0.756 1.308

Aurora SE by Sunquest V Cosmolux 180-200W 180 0.483 0.233 0.716 1.228
Aurora SE by Sunquest V Cosmolux 180-200W 180 0.544 0.258 0.802 1.379

Smart tech: UVA Intensiv X6 HP High Pressure Metal Halide E400 400 0.271 0.142 0.412 0.814
Tansun Symphony V Wolff Bellarium B’ Xtreme 250 0.439 0.17 0.609 1.061

Sontegra Limited Edition H Solarium XLR 160W/ Sontegra 225W 225 0.751 0.287 1.037 1.928
face sontegra 400 0.137 0.081 0.218 0.414

Tansun Symphony 250 Extreme V Sun-Xtreme Plus Mx 250W 250 0.704 0.255 0.959 1.795
Tansun Symphony 250 Extreme V Sun-Xtreme Plus Mx 250W 250 0.826 0.278 1.104 2.102

Ergoline Advantage 400 turbo power H Cosmedico Cosmofit 160 0.135 0.199 0.334 0.5
face Ultra VIT 2.4 520 0.125 0.189 0.314 0.533

Ergoline Lounge V Cosmedico Cosmosun 28R 200-240W 200 0.558 0.214 0.772 1.425
Eclipse LE by Sunquest V Sunquest SQR 200W 200 0.461 0.233 0.694 1.221

Tansun VT2000 V Power Max 160W Intensiv XLL 160 0.47 0.171 0.64 1.191
Tansun Symphony V Wolff Bellarium B’ Xtreme 225 0.346 0.184 0.53 0.887
Tansun Symphony V Wolff Bellarium B’ Xtreme 225 0.386 0.221 0.607 1.008
Tansun Symphony V Wolff Bellarium B’ Xtreme 225 0.337 0.203 0.54 0.903

Ergoline 300 Classic H Bermuda Star Gold R 100 0.132 0.139 0.271 0.427
face VIT 2.3 400 0.072 0.143 0.214 0.34

Tansun Symphony V Pure Power PPB 200W RII 200 0.384 0.165 0.549 0.996
Zenith by Sunquest H Heraeus New Colors Speedster 160 0.331 0.15 0.481 0.891
Eclipse by Sunquest V Fusion Power 200 XXX 200 0.502 0.21 0.712 1.309

Sontegra H Cosmolux VHO 160 0.271 0.134 0.405 0.682
Ergoline 450 Classic H Fusion Power 180xx 160R 26 180 0.484 0.214 0.698 1.3

face Ultra VIT 2.3 400 0.104 0.324 0.428 0.589
Eclipse by Sunquest V Pure Power PPB 160W 2.5 RII 160 0.54 0.195 0.736 1.388

Tansun Symphony V Cosmedico Cosmostar 180R 180 0.448 0.21 0.659 1.133
Tansun Symphony V Cosmedico Cosmostar 180R 180 0.467 0.221 0.688 1.183
Unknown Sunbed H Cosmedico Cosmostar 180R 180 0.423 0.199 0.622 1.063

Eclipse by Sunquest V Pure Power PPB 200W 2.3 RII 200 0.429 0.213 0.642 1.155
Eclipse by Sunquest V Pure Power PPB 200W 2.3 RII 200 0.39 0.193 0.582 1.045

Sunrise 8000 by Gardasun V Sunfit XXL3 200W 200 0.098 0.137 0.235 0.386
Elcipse by Sunquest V Independence New technology 160 0.469 0.202 0.671 1.228

Ergoline Prestige 990 Dynamic Power H Ergo Extreme SR 100-200W 80-200 0.537 0.234 0.771 1.423
face VIT 2.4 520 0.256 0.285 0.542 0.972

shoulder Ergo HD 240 0.475 0.499 0.974 1.75
Bodywave Q-med V Bermuda Gold Supernova 200 180 0.499 0.285 0.784 1.346

Sunvision V200XXL by Alisun V Cosmosun 28 R 225 0.191 0.119 0.31 0.52
Elcipse LE by Sunquest V Cosmedico Cosmolux 200 0.388 0.146 0.535 0.996
Elcipse LE by Sunquest V Heraeus 180 0.348 0.144 0.493 0.897
Sunvision 466 by Alisun H Cosmedico Cosmolux 160 0.404 0.155 0.559 1.087

face Alisun 400 0.04 0.105 0.145 0.229
Tansun Serenity 3036 XXL H Cosmedico Cosmolux 180 0.285 0.16 0.446 0.75

Tansun Symphony V Power Max 200 200 0.286 0.144 0.43 0.749
Tansun Symphony V Cosmedico Cosmolux 180 0.257 0.133 0.39 0.682
Tansun Symphony V Pure Power Sylvania PPB 250W 3.3Rll 250 0.609 0.22 0.828 1.601

Sunrise 7000 by Gardasun V Cosmolux VHR 160 0.179 0.114 0.293 0.484
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Table F.9: Cheltenham, Coleford Newton Abbot

Manufacturer Type Lamp Watt Effective UVB Effective UVA Total Erythemal Weighting SCUP-h

GardaSun Sunrise 7000 V Sunfit VRXT Pro. 160 0.425 0.201 0.626 1.067
GardaSun Power Tower V Sunfit XXL Pro. 180 0.362 0.202 0.564 0.976
Ergoline Excellence 700 H Bodysoft 180 0.13 0.134 0.264 0.43

face Ultra VIT 2.4 520 0.106 0.103 0.208 0.384
shoulder bodysoft 25 0.146 0.072 0.217 0.377

Ergoline Excellence 700 H Bodysoft 180 0.146 0.204 0.35 0.525
MegaSun by KBL T200, Pure Energy CPL with VibraNano V unknown 180 0.09 0.121 0.211 0.337

Ergoline Excellence 700 H Bodysoft 180 0.137 0.147 0.284 0.464
face Ultra VIT 2.4 520 0.134 0.197 0.332 0.549

shoulder Bodysoft 25 0.157 0.071 0.229 0.397
Ergoline Classic 600 Turbo H Body Soft CE 410B LongLife 140-160W 13% Max 0.5 Reflector 140 0.12 0.135 0.255 0.413

face Ultra VIT 2.4 520 0.154 0.202 0.356 0.642
shoulder Bodysoft 25 0.141 0.07 0.211 0.369

Ergoline Excellence 700 H Bodysoft 180 0.147 0.152 0.298 0.485
H Ultra VIT 2.4 520 0.141 0.149 0.29 0.525

shoulder Bodysoft 25 0.161 0.079 0.24 0.413
Ergoline Excellence 700 H Bodysoft 180 0.15 0.155 0.305 0.494

face Ultra VIT 2.4 520 0.075 0.092 0.167 0.295
shoulder Bodysoft 25 0.155 0.074 0.229 0.397

Ergoline Classic 600 Turbo H BodySoft 140-160W 13%Max 0.5 Reflector 140 0.14 0.111 0.251 0.359
Sunquest Aurora V Cosmedcio VHR 200 200 0.59 0.319 0.909 1.536
Sunquest Aurora V Cosmedcio VHR 200 200 0.583 0.31 0.893 1.506
Sunquest Aurora V Cosmedcio VHR 200 200 0.634 0.344 0.978 1.647

Zenith by Sunquest H Cosmedcio VHR 200 200 0.475 0.301 0.776 1.302
Ergoline Lounge V Cosmosun 28R 180 0.679 0.238 0.917 1.773
Ergoline Lounge V Cosmosun 28R 180 0.613 0.259 0.872 1.589

Club Tan by UWE H New Technology/ Discover UVA /UVB 2.4 Longlife 100 0.437 0.194 0.631 1.132
SolArt50 by ACN Systems H New Technology Independence B SR Plus 160 0.58 0.333 0.914 1.598

Starflight by UWE H New Technology 100 0.218 0.136 0.354 0.603
Starflight by UWE H New Technology 100 0.27 0.128 0.398 0.696

GardaSun V Sunfit XXL Pro. 200 0.228 0.104 0.332 0.617
Sunquest V Cosmedico Cosmolux 200 0.277 0.177 0.455 0.743

GardaSun Power Tower V Sunfit XXL Pro. 200 0.236 0.117 0.353 0.651
Eclipse by Sunquest V B.Xtreme R 180 0.23 0.217 0.448 0.708
Eclipse by Sunquest V C-xtreme Duet plus 225 0.558 0.225 0.783 1.353
Eclipse by Sunquest V Sunquest SQR 200W 200 0.485 0.216 0.701 1.247

Ultrasun Sunburst 4000 H Sunfit Pro. VX3 160 0.179 0.149 0.328 0.546
Sunvision by Alisun V180 series XXl V Cosmedico Cosmolux 180 0.29 0.185 0.474 0.778

Crouzet Solarium V Solarium Super Profi R 160 W / Philips Swift XPT 160W-R 160 0.28 0.132 0.413 0.737
Eclipse by Sunquest V Cosmolux 200 0.522 0.239 0.761 1.32

Sunvision by Alisun V180 series XXl V Cosmolux Reflector 180 0.444 0.21 0.654 1.183
Eclipse by Sunquest V Cosmedico Cosmosun 28R 160 0.483 0.194 0.677 1.239
Ergoline Esprit 700 H Ergoline Trend R E6 80-200W 160 0.183 0.281 0.464 0.689

face Ultra VIT 2.4 520 0.148 0.213 0.361 0.661
Ergoline Excellence 700 H Bodysoft 410B G3 Longlife 140-160W 13 % Max 0,5 Reflector 160 0.158 0.167 0.326 0.531

shoulder Bodysoft 25 0.175 0.082 0.256 0.442
face Ultra VIT 2.4 520 0.19 0.242 0.432 0.779

MegaSun by KBL T200, Pure Energy CPL with VibraNano V Unknown 180 0.096 0.109 0.205 0.33
Sunvision by Alisun 500 Series H Sunvision XTR 200S 120W ; Cosmolux VLR 2M 120W 120 0.321 0.155 0.476 0.831

Sunvision V200 XXL by Alisun V Cosmolux VHR +Cosmolux UVA plus 15W + Philips Cleo 15W SR 160 0.218 0.143 0.361 0.596

Sunshine 7000 by GardaSun V Sunfit Pro XL3 180 0.107 0.144 0.252 0.419
Sunvision Vcompact XL by Alisun V Sunvision XTR 190 Intensiv 120 0.153 0.082 0.235 0.414

Unknown Tanning Booth V New Technology 200 0.826 0.348 1.174 2.204
Unknown Tanning Booth V New Technology 200 0.756 0.305 1.061 2.005
Unknown Tanning Booth V New Technology 200 0.736 0.31 1.047 1.969

Tansun Symphony V LightTech II R-UVA 180W XLL intensiv 180 0.152 0.128 0.28 0.46
Sunvision V200 XXL by Alisun V Fusion 200 0.506 0.258 0.764 1.359

Tansun Symphony V PowerMax 200 0.379 0.185 0.564 0.995
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