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Abstract

Immunohistochemical (IHC) assessment in cancer research is important for under-

standing the distribution and localisation of biomarkers at the cellular level. However

currently IHC analyses are predominantly performed manually, increasing workloads

and introducing inter- and intra-observer variability. Automation shows great potential

in clinical research to reduce pathologists’ workloads and speed up cancer research in

large clinical studies. Whilst recent advancements in digital pathology have enabled

IHC measurements to be performed automatically, the acquisition of manual anno-

tations of tumours in scanned digital slides is still a limiting factor. In this thesis, an

automated solution to tumour localisation is explored with the aim of replacing manual

annotations. As an exemplar, human breast tissue microarrays stained with estrogen

receptor are considered.

Methods for automated tumour localisation are described with a focus on capturing

structural information in tissue by adopting superpixel properties in a rotation invariant

manner, suitable for histopathology images. To incorporate essential contextual infor-

mation, methods which utilise posterior tumour probabilities in an iterative manner are

proposed. Results showed pixel-level agreements between automated and manual tu-

mour segmentation masks (κ = 0.811) approach inter-rater agreement between expert

pathologists (κ = 0.908). A large proportion of disagreements between automated

and manual segmentations were shown to correlate to minor discrepancies, incon-

sequential for IHC assessment. IHC scores extracted from automated and manual tu-

mour segmentation masks showed strong agreements (Allred: κ̂ = 0.911; Quickscore:

κ̂ = 0.922), demonstrating the potential of automation in clinical practice across large

clinical trials.
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Glossary

Adenocarcinoma - An invasive epithelial
malignant neoplasm that has a glandular
origin.

Allred - Scoring system which stratifies
a breast cancer patient’s estrogen recep-
tor status into cancers that are likely to re-
spond to hormone therapy [5].

Antibody - A large Y-shape protein pro-
duced by plasma cells that is used by the
immune system to identify and neutralise
pathogens such as bacteria and viruses.

Antigens - Any substance that causes
the immune system to produce antibodies
against it. An antigen may be a foreign
substance from the environment, such as
chemicals, bacteria, viruses, or pollen.

Benign - A condition, tumour, or growth
that is not cancerous and therefore cannot
spread to other body sites.

Biomarker - Measureable indicator of a
biological state or condition.

Carcinoma - Cancer which originates in
epithelial cell linings of organs like the
breast.

Counterstain - A second stain added to a
previously stained tissue sample to make
cellular details more distinct.

Epithelial cells - Cells bound together in
sheets of tissue called epithelia; epithelia
line the cavities in the body.

Gleason - Grading system used to help
evaluate the prognosis of men with
prostate cancer.

Grading - A measure of cell appearance
in benign or malignant tumours.

Histology - Brand of biology that deals
with the microscopic examination of tis-
sue.

Immunohistochemistry - The process of
detecting antigens (i.e. proteins) in cells
of a tissue section by exploiting the prin-
ciple of antibodies binding specifically to
antigens in biological tissue.

Immunopositive - A positive result ob-
served on immunostaining for the target
substance.

Immunonegative - A negative result (i.e.
no staining) observed on immunostaining
for the target substance.

In-situ - Cancerous cells which have not
invaded through the basement membrane
where the tumour is initially formed.

Intra-observer variability - Variation
one observer experiences when observing
the same material more than once.

Inter-observer variability - Variation be-
tween results obtained by two or more ob-
servers examining the same material.

xv



Invasive - Cancerous behaviour in which
malignant tumour has spread from its site
of origin to other tissues.

Lymphatic vessels - Carry a clear fluid,
lymph, away from the breast. Lymph con-
tains tissue fluid and waste products, as
well as immune system cells.

Lymphocyte - White blood cell that de-
termine the specificity of the immune re-
sponse to infectious microorganisms.

Malignant - Has the potential to grow
and invade the surrounding tissue, caus-
ing harm to the patient.

Metastasise - To spread to another part of
the body, e.g. via blood vessels, lymph
channels etc.

Microtome - An instrument for cutting
thin sections for microscopic study.

Neoplasia - The presence or formation of
new, abnormal growth of tissue. e.g. fi-
broadenoma.

Organelles - Organised or specialised
structures within a living cell.

Pathology - Study of disease, typically a
branch of medicine that deals with the lab-
oratory examination of samples from the
body for diagnostic or forensic purposes.

Quickscore - Immunohistochemical scor-
ing system (see Allred).

Sarcoma - Malignancy that starts in con-
nective tissues such as muscle tissue, fat
tissue, or blood vessels.

Stroma - The supportive tissue of an ep-
ithelial organ, tumour etc. consisting of
connective tissues and blood vessels.

Tissue arrayer - Equipment for creation
of tissue microarray blocks.

Tissue bank - Repository for human tis-
sue intended for clinical or research pur-
poses.

Tissue microarray - Consists of a paraf-
fin block in which up to 1000 separate tis-
sue cores are assembled in array fashion
to allow multiplex histological analysis.

Tissue microarray spots - Circular cores
of tissue, typically measuring 0.6mm, ex-
tracted and sliced from a tissue block.
Represents a sample of the original tissue
block.

Whole mount slide - A slice extracted
from a tissue block undergone tissue
preparation and placed on a glass slide for
analysis. Represents a complete surface
representation of the tissue within a tissue
block.
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List of Abbreviations

AUC Area Under ROC Curve

BoS Bag-of-Superpixels

CRISP Contextual RISP

CRF Conditional Random Field

DCIS Ductal Carcinoma In-Situ

DNA DeoxyriboNucleic Acid
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Chapter 1

Introduction

Cancer is a global health challenge. An estimated 14.1 million people were diagnosed

with cancer in 2012, and this number is projected to rise to 26.4 million by 2030 [132].

To improve the treatment of, and survival from, cancer, a growing number of studies

and clinical trials are enabling the collection of tissue samples [120]. In doing so,

molecular analysis of DNA, RNA and protein expression can be performed.

Technological advances in digitisation of tissue slides and big data analysis have eased

the burden of data handling, providing a means for collecting, sharing and storing vast

amounts of data. However, the problem of analysing thousands of tissue samples for

differences in protein expressions hence limiting understanding of cancer subtypes

and individual treatments – persists. Currently, histopathological analysis of tissue

must be performed manually by experts in pathology, thereby increasing pre-existing

workloads. Manual analysis is also subject to inter- and intra-observer variability,

resulting in non-standardised measures.

Digital slides, such as those shown in Figure 1.1, have introduced prospects of using

image analysis techniques to improve manual analysis and increase clinical work-

flow. Advanced techniques in computer vision [58, 124] enable complex histological

patterns to be modelled such that analysis of tissue sections can be performed auto-

matically. In doing so, pathologists’ workloads can be redirected to more difficult
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(a) (b) (c)

FIGURE 1.1: Estrogen receptor stained tissue microarray spot, scanned at x5 (a), x15
(b), and x40 (c) magnifications.

cases and analysis of large datasets in clinical trials can be increased, with potential

for improving clinical workflow and throughput.

1.1 Immunohistochemistry

Immunohistochemistry (IHC), also sometimes referred to as protein expression pro-

filing, is important for understanding the distribution and localisation of biomarkers.

IHC enables observation of antigens in tissue sections by means of a specialised stain

which binds to targeted antigens. In cancer research, IHC can provide prognostic data

and predictive data informing treatment decision making.

Quantification of IHC biomarker presence is a challenging problem which currently

requires expert knowledge to interpret biological material. Figure 1.1 demonstrates

highly complex patterns and textures found in healthy and cancerous tissue at the

microscopic level. Presence of estrogen receptor (ER) is shown in the form of a brown

dye which is expressed in 80% of breast cancers [62]; the strength of the IHC stain

can vary from cell to cell. To analyse multicellular structures e.g. glands, tissue is

manually observed at various magnifications for essential contextual information. Any

automated solution must also be adaptable to these changes.
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(a) (b)

FIGURE 1.2: (a) Tissue microarray spot and (b) annotated tumour regions by expert
pathologist.

1.2 Problem and motivation

In current practice, IHC measurements are acquired manually by visual inspection

of tissue and localisation of tumours. Expert pathologists estimate the presence of

cancer biomarkers in the form of IHC scores, computed from “ordinal scales” [5,

36]. However, this system lacks precision and introduces inter- and intra-observer

variability [140]. An alternative approach is to utilise image analysis techniques which

can potentially improve accuracy [92].

Currently the main bottleneck in histopathological image analysis, specifically IHC

assessment, is the localisation of tumours. There are currently no guidelines in place

for identification of tumours and it remains a challenging problem due to complex

patterns and subjective analysis. Currently, in commercial software [11, 108], tumour

boundaries are identified manually in the form of hand-drawn annotations (Figure

1.2). To move clinical research on a digital platform, annotations of this form must

be acquired for each digital slide to be analysed. However gathering annotations for

thousands of digital slides is time-consuming and not feasible given the practising

pathologist’s workload on a day-to-day basis. As such, an automated solution for

localising tumour would be of great importance.
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As an exemplar, breast tissue microarrays (TMAs) – circular paraffin-embedded sec-

tions of tissue – stained with ER (Figure 1.2(a)) are considered in this thesis. Whilst

methods for automated analysis of TMAs are under development with the aim of

speeding up pathology-based research of clinical materials, progress is slow due to

the complex appearance of human tissue as well as artefacts (i.e. tissue folding, bub-

bles) introduced during TMA preparation. As the purpose of TMAs is to combine

multiple tissue samples in one block, variability between samples is high. Tumour im-

age analysis algorithms, when applied to TMAs, perform poorly due to lack of training

examples.

In this thesis, techniques for modelling complex appearance of tumours are investi-

gated. In the proposed methods, contextual information is captured in a rotation in-

variant manner, suitable for histopathological image analysis. To enable automated

modelling of complex tissue structures, contextual information is explored in two

forms:

1. To determine the extent to which surroundings contribute towards the classifi-

cation of a single point in an image, context is captured from a circular support

window. Properties within the window enable modelling of appearance, texture,

geometry etc.

2. In the computer vision literature, contextual information has also been modelled

in the form of posterior probabilities from learned classification maps [137].

In this thesis, alternative context descriptor representations are explored which

capture the distribution of tumour posterior probabilities in a rotation invariant

manner.

The automated methods described in this thesis are designed to identify cancerous

structures without explicit labelling of tissue types (i.e. stroma, fat, epithelial cells).

Furthermore, these methods can also be applied to nuclear, membrane and cytoplasmic

stains, and therefore would be applicable to a range of biomarker research areas.
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1.3 Contributions

In this thesis, techniques for automatic localisation of tumour in scanned digital slides

are reported. Described methods were evaluated on a dataset of 32 ER-stained breast

TMA spots and are summarised as follows.

Superpixels, compact groups of pixels, were used for the problem of tumour localisa-

tion in histopathology images. The intuition is that superpixels can indirectly model

structure of tissue. For example, fibroblasts found in stromal regions result in more

elongated superpixels than superpixels modelling epithelial cells. In this work, super-

pixel geometric, textural and appearance features were adopted for a novel represen-

tation called the Rotation Invariant Superpixel Pyramid (RISP).

In RISP, extracted superpixel features were quantised into superpixel visual words. To

provide spatial information, annuli were positioned on a circular window, centred on

the superpixel to be classified. Bag-of-superpixels (BoS) histograms were then com-

puted per annulus resulting in a spatial bag-of-superpixels (S-BoS) histogram. It is

shown spatial information in this form is essential for accurate tumour classification

of superpixels. Furthermore to model visual words at multiple scales, the spatial pyra-

mid [83] is extended to provide rotation invariance and incorporate superpixel prop-

erties. The RISP representation is a concatenation of S-BoS histograms in each level

of the adapted pyramid structure. An experiment is reported which compares RISP

with other rotation invariant superpixel representations, including superpixel autocor-

relograms and a method proposed by Gorelick et al. [56] which captures context from

pixel-level features in annuli. In all cases, RISP is shown to model complex patterns

efficiently, resulting in superior performance.

Auto-context is a technique proposed by Tu and Bai [137] which models contextual

information from learned classification maps in an iterative manner. In the past, auto-

context has been successfully applied in the medical domain [68, 101]. Whilst auto-

context has its merits, it is not rotation invariant and therefore not ideal for histopathol-

ogy images. In this thesis an extension to auto-context, called spin-context, is de-

scribed. In spin-context, auto-context is adapted to extract context locations from
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points on equally-spaced circular rings thereby ensuring rotation invariance. To re-

move background interference, a further extension to spin-context is proposed which

discards context locations outwith the region of a TMA spot. The removal of these

context locations increased tumour classification accuracy in reported experiments.

To incorporate superpixels in the auto-context framework, a novel technique called

Contextual RISP (CRISP) is proposed which models contextual information from su-

perpixel posterior probabilities. In CRISP, context-level RISPs are proposed which

model tumour distributions within annuli at multiple scales. An experiment was per-

formed to compare CRISP with spin-context; CRISP was demonstrated to be superior

with similar outcomes to RISP.

In addition to the proposal of image analysis techniques for tumour localisation, through-

out this thesis automated and manual tumour segmentation masks are compared for

clinical assessment. To measure inter-rater agreement between expert pathologists, a

study was designed to compare hand-drawn tumour annotations. Annotations were

gathered from two specialist pathologists and compared and assessed. To determine

if automation can produce clinical measurements to the same standard as experts

in pathology, IHC measurements were computed from automatically and manually-

obtained segmentation masks, and an empirical evaluation was performed. It was

found automation shows potential to replace manual input.

Pixel-level comparison of automated and manual segmentations is unsuitable for the

current problem, as hand-drawn annotations are not accurate at the pixel-level. As

such, an alternative evaluation technique was designed for categorising disagreements

between binary segmentations. Disagreements are categorised into three types – Type

1, Type 2, Type 3 – with the focus being IHC assessment. Type 1 disagreements,

minor discrepancies arising from lack of precision whilst drawing tumour boundaries,

were shown to have little impact on extracted IHC measurements.

To summarise, the main contributions in this thesis are:

1. Extension of spin-context to reduce background interference.
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2. Proposal of a Rotation Invariant Superpixel Pyramid (RISP) representation.

3. Proposal of context-level RISPs in a novel Contextual RISP (CRISP) frame-

work.

4. Evaluation of automated and manual tumour localisation for IHC scoring, in-

cluding a novel evaluation technique for categorising pixel-level disagreements.

1.4 Thesis outline

Chapter 1 Introduction: Description of problem and list of contributions.

Chapter 2 Background: Some background to clinical terms with reference to breast

cancer statistics, histopathology, immunohistochemistry and tissue microarrays. The

structure of breast cancer in histopathology images is discussed.

Chapter 3 Tumour Image Analysis in Digital Histopathology: A review of previous

work in tumour segmentation and classification. Related work in cell classification,

automated grading and, lobule and gland segmentation is explored.

Chapter 4 Manual Tumour Localisation: A study is reported, comparing annotations

retrieved from two trained pathologists. Inter-rater agreement is reported and pixel-

level disagreements are evaluated in more detail.

Chapter 5 An Extension and Evaluation of Spin-Context: A description of auto-context

and spin-context with a review of related work in the medical domain. An extension

of spin-context is described which eliminates background interference. Results are

reported for multiple iterations of spin-context, and a comparison is made between

spin-context and auto-context.

Chapter 6 RISP: Rotation Invariant Superpixel Pyramid: An introduction to super-

pixels and their applications, including a review of related work. The proposed RISP

representation is described and results are reported comparing RISP with other super-

pixel representations. The CRISP framework is described and compared to RISP.
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Chapter 7 Automated Tumour Localisation: Clinical Impact: A study comparing au-

tomated segmentation masks produced by RISP and manually hand-drawn segmenta-

tions. Agreements are reported for pixel-level evaluation, IHC scoring and ER treat-

ment decision-making.

Chapter 8 Discussion and Conclusions: Summary of the main findings in previ-

ous chapters and comparison of the proposed approaches with inter-rater agreements.

Limitations and potential of proposed methods are discussed.

Chapter 9 Recommendations: Outline of future directions for this research.
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Chapter 2

Background

2.1 Breast cancer

Breast cancer is the most common cancer in women in the UK, with 1 in 8 women

at risk of a diagnosis in their lifetime [24]. With medical and scientific advancements

in cancer research, women diagnosed with breast cancer are now twice as likely to

survive the disease for at least ten years when compared with patients diagnosed forty

years ago. Despite this, nearly 12,000 women die every year as a result of breast

cancer in the UK. Latest statistics show over 90% of women diagnosed with breast

cancer at the earliest stage survive their disease for at least five years. Relative survival

in women ranges from 99% (stage 1) to 15% (stage 4) for patients diagnosed between

2002 and 2006 [24].

Various studies have been performed in the last decade to identify breast cancer risks

and prevent development of future cancers. To date, several guidelines have been

developed concurrent with this goal. Women over the age of 50 are more likely to

develop breast cancer than men or young women. Family history and genetics also

influence breast cancer risks. In addition, cancer risks vary considerably between

countries and racial groups [81]. Lifestyle factors have also been shown to influence

the risk of developing breast cancer, particularly intake of alcohol. Women who con-

sume two to five drinks daily have about two times the risk of developing breast cancer
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when compared with women who don’t drink alcohol [9]. Obesity increases risk of

postmenopausal breast cancer by up to 30% [24]. Other lifestyle factors including

physical activity and eating habits further reduce breast cancer risks.

In the early stages of breast cancer, the most common treatment is surgical intervention

however other treatments such as radiotherapy, chemotherapy and hormone therapy

are also used to reduce the chance of recurrence. Each patient diagnosed with breast

cancer undergoes a series of assessments performed by specialists including pathol-

ogists, oncologists, radiographers, surgeons and nurses. The clinico-radiological and

pathological parameters combined with the general health of the individual patient

determines the treatment recommendations.

After diagnosis, 1 in 5 women in the UK have a recurrence of their breast cancer

within 10 years [95]. Given these recurrence rates and the growing number of women

diagnosed with breast cancer, large breast cancer trials are vital to improve future

treatment and often include the need to build tissue banks which facilitate breast cancer

research worldwide. As an example, the Tayside Tissue Bank operating in Ninewells

Hospital, U.K., contains in the region of 100,000 freshly frozen tissue samples from

around 10,000 individual patients.

2.2 Cancer development in the breast

The female breast is mainly composed of lobules, ducts and stroma [109], as shown in

Figure 2.1. Lobules are milk-producing glands which extend from ducts that carry the

milk from the lobules to the nipple-areolar complex. Lobules and ducts are lined with

myoepithelial and epithelial cells as shown in Figure 2.2, which are encased within

stroma, consisting of fatty and connective tissue.

Cancer cells develop as a result of ungoverned growth of cells, and in the breast these

typically originate at epithelial cells in ducts and lobules. When tumour develops

uncontrollably, healthy breast structures are destroyed. If left untreated, cancer cells

can metastasise and spread through lympho-vascular spaces to other parts of the body.
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FIGURE 2.1: Overview of breast structure. Used with permission of American Can-
cer Society.

FIGURE 2.2: Histopathological structure of glands and lobules.
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Types of breast cancers are categorised into two broad subgroups: in-situ and inva-

sive. In-situ breast neoplasia is evident as cancer cells contained within the basement

membrane of the breast ducts or lobules. In-situ types are unable to spread to other

body sites and instead expand the ductal or lobular unit from which they originate.

The most common in-situ breast cancer is ductal carcinoma in-situ (DCIS). Invasive

breast cancer is cancer that spreads outside the basement membrane of the lobule or

duct into the breast tissue. Invasive cancer cells infiltrate the connective tissue in the

breast and can therefore spread via the lymphovascular channels to various structures

including lymph nodes, and beyond. Once cancer spreads beyond the breast to develop

metastasis, it is essentially incurable (though it remains treatable to prolong life).

2.3 Histopathology

In clinical medicine, histopathology refers to the microscopic examination of stained

tissue biopsies in order to study disease. The process of creating stained slides is de-

scribed in Section 2.4. Histopathology is the gold standard for tissue diagnosis and

thereby confirms clinical suspicions enabling treatment to proceed and also provides

data to inform treatment of neoplasic diseases and the patient’s prognosis. Neoplasia

is defined is an “abnormal mass of tissue, the growth of which exceeds and is unco-

ordinated with that of normal tissues, and persists in the same excessive manner after

cessation of the stimuli which evoked the change” (R.A. Willis, British Oncologist).

This type of behavioural growth is termed malignant. In contrast, sometimes tumours

may grow locally and not spread to other areas of the body and are termed benign

[109].

The textural appearance of cancer in stained slides differs depending on the body site

from which it originates and the rate of cancer development. Figure 2.3 shows image

patches extracted from estrogen receptor (ER) and haematoxylin (H) stained breast

tissue slides. Images are shown for stromal, fat, lobular and glandular tissues found

in the breast. Whilst some structures are easily distinguishable such as fat, many of
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the other structures share similar textural and architectural appearances. For example,

lobules have a similar structural appearance to ducts, particularly along the wall lining.

Cancer development within the breast introduces further complexities. In the early

stages of breast cancer, cancer cells appear similar to epithelial cells and become ab-

normal with further development. In low grade DCIS (Figure 2.3(e)), nuclei are uni-

form in size and shape and are considerably smaller than in high grade DCIS (Figure

2.3(f)). However in both cases, cancer cells remain within the walls of the duct base-

ment membrane and are therefore in-situ. Figures 2.3(g) and 2.3(h) show cases of

invasive breast cancer. Notice that cancer cells have spread to the surrounding tissue.

Walls of ducts and lobules are no longer visible, and the appearance and positioning

of cancer cells are more irregular in size and shape than in DCIS.

2.4 Tissue preparation

In order to produce a translucent slice of tissue which can be observed under a light

microscope, a series of preparation phases (fixation, tissue processing, embedding,

sectioning) must be performed [109]. Prior to tissue processing, a biopsy is obtained

from the patient, which is transported to a pathology laboratory in sealed containers to

preserve the tissue. The biopsy then undergoes the following procedures sequentially.

Fixation: In the initial stage, the tissue is preserved in a steady state to undergo

further preparative procedures. Fixation arrests autolysis (cell death) and bacterial

decomposition, and stabilises the cellular and tissue structures. The use of chemical

reagents such as formalin is considered the primary method of fixation.

Tissue processing: To remove water from the tissue, a dehydrating agent such as

methylated spirit is applied. A clearing agent such as xylene acts as a link between

the dehydrating agent and wax. It is common practice to start with a dilute clearing

or dehydrating agent (70%) and gradually increase the concentration, as the use of

absolute alcohol alone affects tissue adversely and results in increased shrinkage of

the tissue.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 2.3: Image patches of estrogen receptor (ER) and haematoxylin (H) stained
histology slides. Images are shown for stroma (a), fat (b) and healthy epithelial cells
(c and d). Cancerous breast tissue is also shown for low (e) and high (f) grade ductal

carcinoma in-situ and invasive breast carcinoma (ER rich (g) and ER poor(h)).
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Embedding: During embedding, the tissue is positioned in a manner such that the

maximum amount of diagnostic information can be obtained from the section. The

most commonly used embedding medium is paraffin wax which has a consistency

similar to that of tissue. To cool the wax, an electrically-controlled chilled area allows

the pathology staff to orientate the tissue manually prior to complete solidification of

the wax on a large refrigerated plate.

Sectioning: The final stage of tissue construction is sectioning, in which the tissue

is cut into thin slices and mounted onto a piece of glass. With breast tissue, staff will

typically slice the tissue to a width of 4 µm using a microtome. The resulting sections

are sufficiently translucent to allow light to easily pass through the tissue. In order

to place a tissue section onto microscope slide, it is then placed into a waterbath at

a temperature just below the melting point of the wax. This allows the section to be

“relaxed” out of the tissue before it is placed onto a microscope slide.

The result is a slice of tissue on a piece of glass which can be preserved for a pro-

longed period of time. The latest advancement of technology also allows pathologists

to scan prepared slides at high resolutions using specialised scanners, thus allowing

slices to be stored in digital form. In addition to ensuring prolonged storage of tissue

samples, digital slides also allow pathologists to collaborate on a national and inter-

national level by sharing content online. The digitisation of slides has also introduced

prospects of automated analysis of tissue to reduce pathologists’ workloads, and po-

tentially improve accuracy and reproducibility of pathologists’ interpretations [124].

It is important to note that the method of preservation described in this section can lead

to artefacts in the tissue introduced at various stages of tissue processing. For example,

bubbles may appear on the slide if any pockets of air are trapped during sectioning.

As such, both digital and physical slides may contain artefacts which can obscure or

alter the true structure of the tissue.
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2.4.1 Stains

After preparation, the tissue slice is almost transparent and therefore requires a dye in

order to be able to observe the structures of the tissue. The most common stain used in

pathology is Haematoxylin and Eosin (H&E) which stains basic structures including

cytoplasm, nucleus, organelles and extra-cellular components. The nuclei of cells

are stained blue (H), and other components in pink/red (E). H&E generally gives an

overview of the tissue. Other specialised stains are used if additional information

is needed to provide a more detailed picture, for example to differentiate between

two morphologically similar cancer types. Some examples of specialised stains for

immunohistochemical tests for breast cancer are described in the following section.

2.5 Immunohistochemistry

Immunohistochemistry (IHC) was first reported in 1941 for detecting antigens in tis-

sue sections by means of specific antibodies [34]. Since then the number of tests have

grown considerably; IHC now has applications in diagnosis, prognosis, therapeutic

decision making and studies of pathogenesis [122]. Within a tissue section subjected

to IHC, cells that express the antigen-antibody reaction are termed immunopositive

and appear stained. Immunonegative cells are not stained as a result of this reaction

and are only visible as a result of the counter-stain e.g. H. The most common IHC

stains used in breast cancer cases are estrogen receptor (ER), progesterone receptor

(PR), HER2 and Ki-67 (Figure 2.4).

The presence of estrogen and progesterone hormone receptors has been shown to be

an important prognostic and predictive biomarker in breast cancer [62]. ER and PR

are nuclear stains and show their presence in the form of a positive signal, typically a

brown stain (Figure 2.4). 80% of breast cancer cases express ER and 67% PR, however

both receptors may also occasionally be found in healthy epithelial cells.
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ER PR HER2 Ki-67

FIGURE 2.4: ER, PR, HER2 and Ki-67 immunohistochemical stained breast tissue.

HER2 is a cell membrane stain and is typically used to assess prognosis and to deter-

mine suitability for trastazumab therapy. An over-expression of HER2 protein in the

breast occurs in 13.3% of invasive breast cancers [120].

Ki-67 is a nuclear protein which is present in all stages of the cell cycle but not in

resting G0 cells [53]. It provides the means to determine the growth fraction of a given

cell population. Studies have shown Ki-67 is present in a wide range (2-80%) of breast

cancer cases [55].

2.5.1 Immunohistochemical scoring

The IHC scoring of a tissue section refers to the process of quantifying cells which

exhibit positive staining for a specific antibody. IHC scoring plays a key role in oncol-

ogy to help characterise tumours and provide prognostic and predictive data [31]. The

usage of IHC scoring for determining treatment is discussed later in this section.

Prior to IHC scoring, tumour regions are identified within the tissue slice so that

healthy regions are discounted from resulting scores. This ensures scores reflect only

abnormal tissue. Various scoring systems are available to pathologists; the type of

scoring system adopted depends on personal preference and laboratory guidelines. In

this thesis, Quickscore [36] and Allred [5] scoring systems are considered. Quickscore

is used in clinical research at Ninewells Hospital, U.K., whereas Allred is a more

widely used scoring system.
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The Quickscore scoring system proposed by Detre et al. [36] was designed to be used

to study the biology of breast cancers in a large number of sections and to determine

the clinical implications of hormone treatment. The additive Quickscore is calculated

by summing the stain intensity score ranging from 0 to 3 (0: negative, 1: weak, 2:

moderate, 3: strong), with the percentage of positively IHC stained cells within tumour

ranging from 1 to 6 (1: 0-4%, 2: 5-19%, 3: 20-39%, 4: 40-59%, 5: 60-79%, 6: 80-

100%). When intensity and proportion scores are summed, this results in a Quickscore

between 1 to 9. When there is negative IHC staining, the Quickscore defaults to 0. The

Allred scoring system [5] adopts a different proportion scale ranging from 1 to 5 (1:

0-1%, 2: 1-10%, 3: 10-33%, 4: 33-66%, 5: 66-100%). The final Allred score is

computed as in Quickscore, resulting in scores ranging from 0 to 8.

The IHC score for a specific biomarker is commonly used to determine whether or

not a patient would benefit from treatment. For example if visual inspection of tissue

shows strong presence of ER, then hormone therapy may benefit the patient by lower-

ing estrogen in the body. The question arises as to what is the “correct” cut-off mark

to determine immunopositivity (+ve) or immunonegativity (-ve). For ER, an Allred

score > 2 (equivalent to USCAP [67] 1% cut-off) is termed ER positive (ER+ve); all

scores ≤ 2 are ER negative (ER-ve) [5]. In Quickscore, a cut-off mark > 3 is com-

monly utilised, where ≥ 3 is ER+ve [36]. It is important to note that the cut-off marks

defined here are not standardised. In the pathology literature, cut-off marks differ

between biomarkers and scoring systems.

A key problem in manual IHC assessment such as scoring is inter- and intra-observer

variability which occurs due to human error and differences in opinion when inter-

preting biological materials. Intra-observer variability refers to the variability of a sin-

gle observer’s score for a particular patient, whereas inter-observer variability is the

variability amongst multiple observers. Intra-observer variability refers to a patholo-

gist’s disagreement with his/her own observation (i.e. made on multiple independent

occasions). Inter-observer variability refers to disagreements between two or more

pathologists. These types of differences effect the reliability of resulting measures in

IHC tests. Typically, in cases whereby scores differ, pathologists either come to an
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FIGURE 2.5: A tissue microarray of estrogen receptor stained breast tissue.

agreement through discussions, or multiple scores are retrieved from pathologists and

an average is calculated.

2.6 Tissue microarrays

Tissue microarrays (TMAs) are constructed by extracting core samples from paraffin-

embedded tissue specimens of multiple patients and transferring them to a single mul-

ticore paraffin block. An example of a TMA is shown in Figure 2.5. A TMA “spot”

refers to a single section extracted from a single core sample; a slide from a TMA

will contain multiple “spots”. TMA spots are small circular sections of tissue, typ-

ically measuring 0.6mm in diameter. The preparation of TMAs is identical to the

process described in Section 2.4 and is therefore subject to the same artefacts. Pri-

marily, TMAs are used in clinical research for high-throughput molecular analysis to

analyse various types of cancers. They enable preservation of tissue in the original

block and maximise research-use of tissue whilst not compromising diagnostic uses

in future. However, there is a strong potential for TMAs to also be used in clinical

practice [134].

The technique for constructing TMAs was first reported in 1986 by Battifora [17] who

described a “sausage-block” method in which he wrapped different tissue around a
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small intestine which was embedded in a paraffin block. Wan et al. described the first

array format for organising TMAs on a block effectively, in 1987 [146]. In order to

separate each tissue slice in the block, Konenen et al. proposed a further method for

rapid and accurate construction of tissue microarrays [78]. Today, hundreds of TMA

spots can be organised on an indexed array block which can be easily referred to at a

later date.

For the extraction of TMAs, a tissue microarrayer is required which has two hollow

needles and a block holder that operates on a manual basis. The tissue microarrayer

cuts TMA cores at designated locations identified by pathologists and places them

into an empty paraffin block called the recipient block. Cores are arranged in a grid-

like pattern in the recipient block. Sections from the recipient block are cut using a

microtome, and are then mounted onto a glass slide for pathological analysis. The

maximum number of 0.6mm spots is about 600 for a standard glass microscope slide.

In breast cancer research, TMAs are primarily used to evaluate prognostic and predic-

tive biomarkers [14], which has become a mandatory step of the research pathology

workflow [125]. TMAs are ideal for these conditions as they guarantee identical exper-

imental conditions [112] and permit rapid assessment of individual molecular markers

on patient cohorts [145]. TMAs also allow the preservation of patients’ archival tissue

for verification of clinical diagnosis and future diagnostic evaluation [97], essential for

clinical research.

One of the main concerns about TMA analysis is that a small tissue core may not rep-

resent an entire tumour region in the donor block. Nevertheless, many studies have

shown the use of TMAs is an economical replacement for whole section analysis of

breast biomarkers [134]. A study validating TMA technology for immunohistochem-

ical assays showed that in 95% of cases, two core sections were comparable to the

results achieved from a whole tissue section [23]. Parker et al [111] similarly showed

96% agreement between whole sections and TMAs for estrogen receptor.

In this thesis, ER-stained breast TMAs are utilised as a clinically relevant exemplar
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for the task of tumour localisation. Methods reported and conclusions drawn in sub-

sequent chapters are also applicable to whole mount slides and are designed to scale

with ease.
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Chapter 3

Tumour Image Analysis in Digital

Histopathology

3.1 Introduction

With the recent advancement and cost-effectiveness of digital scanners, tissue histopathol-

ogy slides can now be scanned and stored in digital form. A digital slide can be

viewed at 40x magnification enabling detailed observations to be performed at the

cellular level. Furthermore, digital slides are not subject to tissue degradation and can

therefore be archived and retrieved easily. Recent sophisticated imaging and analysis

techniques have introduced the prospect of histopathological image analysis to ease

or aid manual analysis of digital slides. By cutting time that is spent diagnosing nor-

mal tissue, pathologists can adjust their workload to more difficult cases [124] and

analysis in large clinical trials can be performed with ease. By ensuring repeatability,

automation diminishes the problem of inter- and intra-observer variability [142].

In histopathology, image analysis algorithms have been applied to the problem of dis-

ease prognostics, disease grading, protein and gene expression, and much more. In
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FIGURE 3.1: Overview of features available in digital pathology applications.

general, automation can be helpful for certain tasks, such as cell annotation, as a hu-

man expert cannot be accurate to the pixel level and can easily overlook cells. How-

ever, in order to solve specific tasks in histopathology, algorithms must be tailored

towards their intended purposes. “If the ultimate objective of the Computer Aided Di-

agnosis algorithm is, for instance, cancer grading, perfect segmentation of histological

structure may not guarantee perfect grade-based classification.” [58]

Currently, algorithms developed for histopathological image analysis indicate positive

outcomes for future uses of such applications in clinical practice. However, they have

yet to reach the accuracy of a human expert. Therefore replacement of current human

expertise in this field is unreasonable in the short- or medium-term [92]. Instead, im-

age analysis methods complement the role of the pathologist and learn from human

expertise. For example, Mercan et al. [96] integrated the pathologist into their system

by learning from both expert navigation behaviour and image features to automati-

cally identify regions of interest in whole mount slides. In terms of future prognosis,

imaging techniques are providing ways to assist the pathologist in making accurate

diagnosis and identifying morphological features related to prognosis.

Digital pathology in the commercial industry has developed considerably in the last

decade with a range of applications from data storage to pattern recognition software.
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Figure 3.1 shows an overview of some of the available features in current commercial

software [10, 35, 84, 85, 108]; however they are by no means limited to these applica-

tions. In terms of TMA-specific operations, many applications offer TMA dearraying

software [10, 66] to automatically extract TMA spot images from scans of TMA array

blocks. In Figure 3.1 image analysis features which have grown and developed over

the last decade are highlighted in blue. These typically stem from slide markups (i.e.

annotations) and trained models from pattern recognition algorithms.

In this chapter, image analysis algorithms in digital histopathology are explored for

the purpose of tumour analysis. This work ranges from cell-level analysis (Section

3.2) to models of intermediate structures incorporating broader context (Section 3.3 -

3.4). Techniques adopted to model tumour are described with reference to work in the

academic and commercial sectors. In particular, IHC assessment using these methods

is discussed.

3.2 Cell segmentation

The detection and segmentation of cells has been widely researched in several fields

including histopathology, cytology and microscopy for many years. By identifying

individual cell nuclei, membrane or cytoplasms, cells can be classified on the basis of

antigens which mark specific cellular features.

Level sets is a common technique used for cell segmentation [63, 127, 135, 152].

The property of closed contours is appropriate for modelling individual cells. Level

set methods are also efficient for modelling topological changes such as merging and

splitting cells. In recent work, Nath et al. [103] studied three level set techniques and

concluded that an optimised version of the N-level set formulation [156] was ideal for

cell segmentation. Qi et al. [121] modified the level set energy function to compare

neighbouring contours, thereby separating overlapping cells. Yu et al. [155] described

a level set technique which propagated faster in regions of brighter image intensities

in flourescence imaging.
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Other methods use prior knowledge about the elliptic shape of cells to improve locali-

sation. Ni et al. [107] developed a voting algorithm in the shape of an ellipse to detect

symmetrical visual patterns in histopathology images. Chomphuwiset et al. [30] used

an ellipse fitting model to detect cell nuclei which were then classified based on mean

colour priors.

The above techniques assume prior knowledge about the shape of cells to be seg-

mented. An alternative approach is to learn cell shape for more accurate segmentation.

In early work, Thiran et al. [133] performed a series of morphological operations to

estimate the shape, size and texture of cells during training. More recently, Arif and

Rajpoot [12] used boundary points from k-means segmented objects in the manifold

learning framework to learn the shape of cells during classification.

In commercial software, several tools are available for quantification of cells which

exhibit positive IHC expression. IHC-MARK [108] by Oncomark automatically seg-

ments IHC positive cells via watershed segmentation [52]. Similarly, Definiens Tissue

Studio provides a built-in tool for IHC cell analysis, applicable to TMAs [21]. Other

software packages including Aperio ImageScope [11] and Indica Halo [65] offer sim-

ilar services for IHC assessment.

3.2.1 Lymphocyte cell segmentation

In addition to cell analysis, lymphocyte infiltration has also been shown to be a strong

indicator of cancer development [3]. In a pattern recognition contest for lympho-

cyte counting in histopathological images [58], Kuse et al. [80] produced promising

results by distinguishing cells via a mean shift based clustering and HSV threshold-

ing technique. Lymphocytes were classified based on textural features extracted from

identified cellular contours.

Chomphuwiset et al. [30] argue that it is difficult to filter lymphocytes from histopatho-

logical images as they share similar properties to epithelial cells. To solve this prob-

lem, Panagiotakis et al. [110] proposed a model for segmenting three classes: stroma,
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cell nuclei and lymphocyte nuclei. The proposed method adopts the maximum like-

lihood principle to classify image sites and an Expectation-Maximisation (EM) algo-

rithm to estimate parameters. Fatakdawala et al. [47] also proposed a model which

uses EM to automatically initialise active contours to segment lymphocytes in HER2+

breast tissue.

Whilst existing models show cell segmentation can be performed accurately with ap-

propriate elliptical or shape models, the main difficulty arises in the classification of

cells. At the cellular level, some properties e.g. cell shape and size, are indicators

of cancer presence however richer contextual properties are only available at the in-

termediate level (i.e. ducts, lobules). In the case of tumour localisation, abnormal

structures are more evident by analysing the relationship between cellular structures.

Beck et al. [18] revealed features extracted from “tumour nests” were more informa-

tive than features extracted from individual cancer cells, highlighting the importance

of contextual information in histopathology.

3.3 Tumour grading

The process of grading histological slides refers to the analysis of pathological prop-

erties of abnormal tissue to categorise cancer development. It provides an efficient

method for summarising cancer risks through widely used scoring systems such as

Gleason [54] or Nottingham [44]. Automation of tumour grading is a large and active

research area which has developed considerably over the years.

The most straightforward approach to automatically categorising tissue into grades is

to treat it as a classification problem using low-level textural features [42, 149]. How-

ever this approach is unsuitable in histopathology as textural properties are highly

variable between histological samples and tissue structures. In a method proposed

by Weyn et al. [149], a preprocessing step was required to limit classification to seg-

mented cells thereby removing complexities involved with remaining tissue.
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FIGURE 3.2: Voronoi (left), Delaunay (middle) and Minimum Spanning Tree (right)
graphs overlaid on H&E stained low grade cancer tissue. Used with permission from

Scott Doyle [39], c© 2008 IEEE.

Graph models such as Voronoi diagrams, Deluanay Triangulation and Minimum Span-

ning Trees are the most common method for estimating tumour grades. The intuition

is the relationship between segmented cell nuclei enable modelling of tissue compo-

nents in a graph structure. Some techniques [15, 40, 102] combine cell segmentation

methods (Section 3.2) with graph-based features to quantify relationships between cell

nuclei. An alternative approach, avoiding cell segmentation, is to apply graph models

directly to the tissue [6, 39, 41]. In doing so, all tissue components are captured in

the final feature representation. In related work by Doyle et al. [39], graph and texture

(grey-level, Haralick, Gabor) features were combined to grade breast tissue. Figure

3.2 shows how tissue structure was captured within graphs, with clustering of nodes

inside ducts containing cancer and fewer nodes in stromal regions. However relation-

ships between nodes in a graph structure can become complex with associated high

computational costs, particularly in high-resolution histology images.

In other graph-based methods, Doyle et al. [40] described a pairwise classification

approach for Gleason grading of prostate cancer. Grades were assigned through a re-

finement process whereby regions were iteratively classified into two groups starting

with cancer vs. non-cancer, to grade 3 and 4 vs. grade 5 (cancer) and epithelial and

atrophy vs. stroma (non-cancer), and so on. Here, the authors took advantage of grade

groups which shared similar appearances. Alternatively, Basavanhally et al. [16] pro-

posed a method for tumour grading in whole mount slides whereby features were

extracted from multiple fields of views, thereby capturing multiscale information.
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FIGURE 3.3: TMA spot images (top) and tumour regions annotated by an expert
pathologist shown in red (bottom).

As TMAs are still at a stage of early usage in clinical research, there are few examples

in the literature exploring grading of TMAs. Recently, Ali et al. [4] proposed a model

for grading TMA prostate cancer images using a hybrid active contour model. Cellular

structures were segmented by initialising an active contour via a watershed algorithm.

As prostate cancer has a relatively rigid structure, active contours can appropriately

trace the outline of tumour regions in these images. In other types of tissue such

as breast and for invasive cancers, tissue structure and tumour boundaries are more

complex.

3.4 Tumour localisation

In this thesis, tumour localisation refers to the identification of regions which encase

cancerous cells. Tumour localisation is important in IHC assessment to measure the

presence of specific biomarkers within cancerous tissue. Tumours which react to spe-

cific antigens can be treated accordingly, to reduce cancer development. Examples of

tumour localisation in the form of hand-drawn annotations are shown in Figure 3.3.

Current methods for automated IHC assessment rely upon manual intervention to lo-

cate tumour in digital slides. For example, in Oncomark [108], the IHC-Mark Nuclear
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algorithm requires manual intervention to highlight tumours for analysis. Specifically,

a pathologist manoeuvres a pen tool at multiple magnifications to mark the outline of

tumour regions. A similar markup technique is adopted in the Aperio IHC Nuclear

algorithm [11]. The localisation of tumour is a challenging problem as there are cur-

rently no guidelines for detecting tumours, and cancer appearances vary considerably

between types and grades. In this section, the literature on tumour segmentation and

classification is reviewed.

Commercially, there are few viable options for automated tumour localisation. In

TissueMark by PathXL, a tumour segmentation algorithm is provided for microdis-

section purposes [114]. As such, identified tumour regions are likely to encompass

healthy structures, not suitable for IHC assessment. Furthermore, this feature is de-

signed for whole mount slides and has not been applied to TMAs. The PathXL TMA

toolbox [113] currently does not offer tumour segmentation for IHC assessment.

In the image processing research literature, there has been recent work in automatic

tumour segmentation and classification. In almost all of these methods contextual

information is captured in either the form of patches [72, 73, 104], multiple scales [26,

27, 42, 49] or reference locations [154]. K-means is a popular approach for clustering

tissue types from RGB values for preprocessing [72, 73]. However, relying upon

colour information in IHC stained samples can lead to errors when healthy epithelial

cells exhibit positive staining. Instead, recently proposed methods extract low-level

features from which codebooks are learned [56, 87, 104]. Learned codes provide

richer representations of whole or partial tissue structures and are therefore suitable

for locating tumour.

To capture wider context beyond a small region or pixel, Chang et al. [26] constructed

spatial pyramids from sparse codes for image classification of whole mount slide im-

ages. Whilst this work has not been applied to tumour segmentation, results reported

in [26] showed spatial pyramids capture large biological variations with few training

samples. In TMAs, Xu et al. [154] used auto-context [137] in a Multiple Instance

Learning (MIL) [38] setup to capture essential contextual information in patches.

Here, cancer types were classified in images of human colon but the method is as
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yet to be applied to breast TMAs. Foran et al. [49] captured pixel neighbourhoods

in breast TMAs by constructing multi-scale texton histograms, where textons were

derived from the Schmid filter bank [126] which also captures filter responses at mul-

tiple scales. In following chapters, Schmid filter banks are revisited (Section 5.3.2) and

methods for capturing context at multiple scales are explored further (Section 6.3).

In other work exploring TMA analysis, Karaçali et al. [73] proposed a method for

detecting regions of interest (ROIs) by modelling proportions of (RGB and k-means)

segmented chromatin-rich, stromal and lumen regions. One of the limitations of this

technique is the exclusion of textural and structural information in the tissue. Wang

et al. [147] proposed a method which separated IHC stains from H prior to processing

to reduce the impact of staining in tumour classification. However this method re-

quires manual markup of regions for four tissue labels (tumour, stroma, lymphoid/in-

flammatory cells/necrosis, background) and this remains demanding in terms of staff

resources needed.

Local image features have also been adopted in some methods [49], however perfor-

mance tends to be poor and segmentations are noisy; texture alone fails to provide

descriptive information of tumour appearance and surrounding tissue. More often

low-level features are used as the basis for contextual representations. For example,

Gorelick et al. [56] extracted RGB histograms in the form of annuli encasing super-

pixels. Khan et al. [75] proposed several high dimensional features extracted from

tumour, hypocellular stromal and hypercellular stromal regions, which were then re-

duced using a modification of random projections [70].

For image-level classification, Li et al. [87] learned codebooks from low-level features

in the form of randomised forest trees. Previously described work by Xu et al. [153]

is also applicable at the image level. Both these methods are unsupervised i.e. expert

opinion is not required during the learning process. Zhang et al. [157] proposed two-

stage Support Vector Machine (SVM) and Multi-layer Perceptron (MLP) ensembles

whereby “straight-forward” breast tissue images were classified using SVMs, leaving
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more difficult cases for stage 2 or human experts (via a rejection option). This tech-

nique is reliant on an expert being available during both training and testing; given

limited pathologist time, this may not be an option.

3.4.1 Tissue classification in digital pathology

In some digital pathology software, pattern recognition techniques have been adopted

to classify different types of tissue. To some extent, this is also a form of tumour

localisation as tumour labels can be assigned during training. In Leica Genie [84] and

Indica Labs TMA software [66], a system can be trained to recognise various types

of tissue (e.g. stroma, epithelial tissue, fat, tumour) by providing labelled data in the

form of annotations. Once trained, the software classifies regions automatically which

can then be used in image analysis algorithms. In Definiens Tissue Studio [35], tissue

is segmented into “objects”, after which each object can be assigned a tissue label.

Similarly, objects are trained for classification of tissue types.

In practice, pathologists and technicians must commit considerable time to provide

accurate and sufficient numbers of labels for pattern recognition software. In a study

reported by Rizzardi et al. [123], altogether 11 hours of pathologist and technician

time was required to train Aperio Genie. Notice that labels must be provided for var-

ious types of tissue in order for the software to be able to isolate tumour. Regular

re-training is required for different laboratories, datasets and stains; this also requires

additional acquisition of training images. Furthermore, when applied to TMAs, clas-

sification is poor due to high variability between samples and lack of training samples.

3.5 Other tumour image analysis models

Quantification of stromal cells has been an important indicator of invasive breast tu-

mours. Beck et al. [18] found stromal morphometric features were a strong indicator

for assessing patient survival, better than epithelial features in the case of grade 2 and 3
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tumours. The authors suggest “tumour stromal” segmentation is important for extrac-

tion of prognostically informative features. Similarly, Linder et al. [91] differentiated

stromal from epithelial cells for the purposes of IHC scoring.

In other work, mitotic cells have become an important indicator for prognosis of breast

cancer. The Assessment of Mitosis Detection Algorithms (AMIDA) 2013 [142] chal-

lenge and MITOS 2013 [32] challenge revealed deep convolutional neural networks

[50] performed favourably for mitosis detection compared to other methods which

adopted hand-crafted features. However these models resulted in high computational

costs and required considerable time to tune parameters without overfitting. More

recently in the MITOS-ATYPIA 2014 challenge, the winning method [74] modelled

mitotic cells within classified breast tumour regions using Gaussian mixture models

[119]. As a preprocessing step, in [74] tumour regions were identified using random

projections [75].

3.5.1 Gland segmentation

Another technique for analysing structural properties of breast, lung, colon and pro-

static tissue is to segment glands and analyse them separately from surrounding tissue.

For example, Nguyen et al. [106] segmented glands in prostate cancer to assign Glea-

son grades 3 and 4. One approach for gland segmentation is to adopt active contours

at glandular boundaries [153]. Nguyen et al. [106] suggest the use of active contours

is not suitable for gland segmentation as a gland does not have a fixed shape or size.

As such, boundary approximations are difficult to acquire for initialisation of snakes.

Instead, Nguyen et al. used the Lab colour space to identify lumen and epithelial nu-

clei which were enlarged and grouped to identify gland boundaries. Other methods

exploit domain-specific knowledge about the structure of glands. In reported stud-

ies [99, 115], region-growing techniques were adopted where lumen in the centre of

glands denoted seed locations. Alternatively, Sirinukunwattana et al. [130] classified

small compact regions called superpixels to build glandular probability maps in colon

images.
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Gland segmentation is appropriate for in-situ cancers. However it is unsuitable for in-

vasive cancers as glands are destroyed by cancer cells invading the surrounding tissue.

The majority of techniques described above perform gland segmentation as a process

of elimination of healthy glands as opposed to tumour detection.

3.6 Summary

From the literature reviewed, it is evident that tumour identification is still a challeng-

ing problem with various approaches adopted in previous work for detecting cancerous

structures. For IHC assessment, it is essential to localise tumour regions to ensure ac-

curate cell quantification. In commercial software, developers have overcome this is-

sue by enabling manual intervention; a fully automated process can potentially provide

many benefits. Automation introduces prospects of removing inter- and intra-observer

variability, increasing throughput, and eliminating laborious manual tasks such as IHC

scoring. Whilst explicit cell segmentation has its merits, classification of cells is poor

due to lack of contextual information. Texture and appearance of tumour regions are

more apparent at an intermediate level where multicellular structures can be captured.

A summary of reviewed tumour segmentation methods which capture context using

different techniques are outlined in Table 3.1.

TMAs are a relatively recent advancement in medicine; as such there has been lit-

tle exploration in terms of automated analysis. However, recent work demonstrates

potential. Difficulties in TMAs primarily arise due to highly variable samples and re-

duced numbers of training samples. In addition, annotations of TMAs are difficult to

acquire at the pixel-level due to high resolution scans and limited availability of expert

pathology input. Any automated solution must be able to operate on few training la-

bels. Previous work in which multiple labels are required for various tissue types are

unsuitable given pathologists’ workloads.

Classification of breast cancers at present are limited perhaps due to the complex tissue

structure. Some described methods model specific structures such as glands. However

33



Study Dataset Tissue Method Accuracy

Beck
et al. [18]

1286
TMAs

Breast

Contextual/relational features
extracted from superpixels;
epithelial/stromal
classification for patient
survival

N/A

Chang
et al. [26]

1380,
2148
images

Brain
(GBM),
kidney
(KIRC)

Morphometric features
extracted from segmented cell
nuclei; image-level
classification using spatial
pyramids

92.91%
(GBM),
98.50%
(KIRC)

Foran
et al. [49]

100
TMAs

Breast
Multi-scale texton histograms;
Adaboost classification

∼90%

Gorelick
et al. [56]

50
WMS Prostate

Colour, morphometric and
SIFT features extracted from
superpixel representation;
trained using SVM

∼85%

Karaçali
et al. [73]

14
WMS

Breast

K-means clustering on
greyscale and Lab color
space; classification using
estimated log-likelihood ratios

N/A

Khan
et al. [75]

35
images

Breast

Extraction of Gabor features
from stain normalised images;
dimensionality reduction via
random projection emsemble

F1 score:
0.89

Li et al. [87]
60
TMAs

Colon
Sparse codes constructed from
partitioning of randomised
trees

AUC: 0.987

Wang
et al. [147]

9 TMAs Lung

Texture features extracted
from blue colour channel;
Markov Random Fields
applied to discrete labels to
optimise tumour labelling

80%

Zhang
et al. [157]

361
images

Breast

Texture features of which
Curvelet Transform were
superior; SVM ensemble for
2-class classification with
rejection criteria

99.25%

TABLE 3.1: Overview of tumour segmentation/classification methods reviewed in
Section 3.4. Details are given for the dataset used in each study (where WMS are
whole mount slides and “images” are sub-images extracted from tissue slides), the
type of tissue investigated, an outline of the method proposed and accuracy rates as

reported in original papers.

34



this approach fails in high grade breast cancers whereby glandular structures are de-

stroyed. A more general-purpose image analysis technique is required, applicable to

cell nuclei, cytoplasm and membrane stains; as well as other tissue structures which

have shown to be important for prognosis i.e. stromal cells.

To classify cells appropriately for IHC assessment, an analysis of the strength of the

antibody stain is required. In histological samples where more than one stain is ap-

plied, stain normalisation can aid isolation of protein expression. Furthermore as tissue

preparation differs between laboratories, stain normalisation also enables standardisa-

tion of stain intensities such that trained image analysis systems can be applied across

multiple datasets. Whilst the author is aware of the literature in stain normalisation

[76, 93, 94], it is not the focus of this thesis. Investigation of the usage of stain nor-

malisation is reserved for future work (Section 9.4).

In this research, image analysis techniques are investigated for the purpose of local-

ising tumour in images of TMAs, with the aim of performing IHC assessment. From

previous work in tumour localisation, contextual information has been shown to suc-

cessfully capture cancerous structures. As such, methods described in the follow-

ing chapters model contextual information in a rotation invariant manner, suitable for

histopathology. Before approaching the task of automated tumour localisation, manual

localisation of tumours is first explored.
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Chapter 4

Manual Tumour Localisation

4.1 Introduction

Inter-rater agreement in clinical medicine refers to the agreement between two or

more specialists when performing tasks such as IHC assessment. By measuring the

inter-observer agreement, we can determine how much clinical measurements con-

cord when performed manually. This knowledge is essential for evaluating the current

“gold standard” amongst pathologists in clinical practice. However, in the computer

vision literature, inter-rater agreement is seldom reported. Often this is due to lack

of resources, and specifically the resources required to acquire annotation labels from

multiple sources which in the medical domain, can be expensive.

The current method for manual IHC assessment, specifically IHC scoring, relies upon

an ordinal scale (Section 2.5.1). A study in 2007 [13] reported inter-rater agreements

for ER and PR Allred scoring in 89 consecutive cases of invasive ductal carcinoma

of the breast (Table 4.1). Whilst percentage of positive cells resulted in “substantial”

agreement, agreements between IHC scores was at best “fair” which can have an ad-

verse effect in research and patient care (i.e. treatment decisions). In IHC analysis,

disagreements arise due to ambiguous scoring cases e.g. distinguishing “weak” and

“moderate” staining strengths. In the case of proportion scores, percentages of positive
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κ

Scores ER PR
Allred scoring

Total 0.340 0.451
Proportion 0.478 0.596
Intensity 0.441 0.493

Percentage of positive cells 0.673 0.725

TABLE 4.1: Evaluation of Fleiss κ inter-rater agreement in 89 cases of invasive breast
cancer. [13]

cells are usually roughly estimated without counting and are therefore highly subjec-

tive [140]. Despite these variations, manual analysis is necessary as expert knowledge

is required to interpret biological materials. Furthermore, the scoring technique is

relatively simple, low cost and enables measurements to be acquired quickly [13].

As described in the previous chapter, image analysis algorithms in digital pathology

can potentially provide more accurate and standardised measures compared to man-

ual analysis. To assess the current benchmark for manual localisation of tumour, a

study was designed to measure the inter-rater agreement between hand-drawn anno-

tations of tumours in TMAs. To the best of the author’s knowledge, this is the first

study which evaluates inter-rater agreement for the purpose of tumour localisation in

histopathology images.

In this chapter, inter-rater agreement is reported between segmentation masks obtained

from two expert pathologists. By measuring how much experts agree with each other,

some insight can be gained into pixel-level accuracy required to maintain current man-

ual IHC assessment. Results reported here will form a benchmark for automated tu-

mour localisation methods reported in subsequent chapters. Furthermore, as hand-

drawn segmentations are unlikely to be accurate to the pixel level, a novel technique

to categorise disagreements between binary segmentation masks is also described.
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4.2 Materials and Methods

4.2.1 Tissue microarray data

Four breast TMAs were generated from primary, previously untreated breast cancers

held under the delegated authority of the Tayside Local Research Ethics Committee

in the Tayside Tissue Bank, Dundee, UK. Briefly, surgically resected primary breast

cancer from otherwise unselected patients was fixed in buffered formalin, paraffin-

embedded and stored at a controlled temperature (18-22◦C) overnight then further

processed to formalin-fixed paraffin-embedded blocks. Whole mount sections stained

with H&E were marked to highlight relevant invasive cancer or normal tissue to allow

TMA generation of up to six 0.6mm cores per cancer. TMAs were then constructed

using a manual tissue arrayer (Beecher Instruments Inc., Sun Prairie, WI, USA). Four-

micron TMA sections were cut, mounted onto poly-L-lysine coated glass slides and

subjected to nuclear staining for ER using a Novocastra antibody. Stained slides were

scanned using an Aperio Scanscope XT (Aperio Technologies CA, USA) on a x20

objective with an optical doubler in place (equivalent to x40 optical objective). Each

slide was then segmented into the individual constituent stained spots; each spot rep-

resents a section from a tissue core.

Thirty-two uncompressed TIFF format images of TMA spots from thirty-two breast

cancers were used. The perimeter of each spot was delineated and pixels exterior to

this perimeter were excluded from subsequent analyses. Each spot image was approx-

imately 3000 pixels in diameter and contained invasive tumour regions.

4.2.2 Manual segmentation of tumour regions

Tumour regions in the TMA spots were manually segmented using Aperio Technolo-

gies’ Spectrum Software with TMA Lab and the webscope interface (Aperio Tech-

nologies, CA, USA). This task was performed on a Wacom Bamboo Fun tablet (model

CTH-461) using a stylus for precision. Segmentation involved manually tracing the
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FIGURE 4.1: Examples of Type 1 (red), Type 2 (green) and Type 3 (blue) disagree-
ments. Annotations drawn by pathologist A (purple) and pathologist B (orange) are

shown on the right overlaid on the original image.

boundaries of invasive tumour regions; the software tool displayed filled regions over-

laid on the TMA spot images as they were annotated. Pathologists were instructed to

interact with Aperio as they would normally to avoid altering the manner with which

“typical” annotations are acquired.

Each spot was annotated independently by two qualified specialist pathologists, Dr.

Lee B. Jordan (LBJ) and Dr. Colin A. Purdie (CAP), resulting in two sets of tumour

masks. Each mask labels each pixel as either tumour (T) or non-tumour (N). In the

remainder of this thesis, LBJ will be referred to as pathologist A, and CAP as patholo-

gist B. Both pathologists have several years of expertise in the field of histopathology

and are currently appointed in the Department of Pathology, Ninewells Hospital, U.K.

4.2.3 Comparing spot segmentations

Each spots’ manual segmentation masks were compared with each other by comparing

pixel-level labels in each of the TMAs. However, there are qualitative differences be-

tween segmented regions that are not well captured by pixel-level analysis. Therefore,

when comparing two segmentation masks, pixels were categorised into three types of

disagreement: Type 1, Type 2 and Type 3. Illustrations of these disagreements are

shown in Figure 4.1.
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To compare two tumour segmentation masks, SA and SB, two binary difference im-

ages, DA−B and DB−A, were produced. 8-connected morphological opening was then

applied to DA−B and DB−A, using a circular structuring element with a radius of 10

pixels, resulting in OA−B and OB−A, respectively. The structuring element approxi-

mates the size of a small epithelial cell. Type 1, Type 2 and Type 3 disagreements are

described as follows.

Type 1 Region boundaries in two segmentation masks are often separated along part

of their lengths by distances of only a few pixels. Such discrepancies may arise

from a lack of precision when using the stylus and/or from the lack of any clear

visual boundary to annotate in the image. As such they are likely to be incon-

sequential for subsequent tasks such as IHC scoring because such small separa-

tions do not allow for the inclusion or exclusion of entire cells.

Definition: Type 1 disagreements are pixels removed during the opening process

i.e. pixels in DA−B which did not appear in OA−B. Similarly, the same compar-

ison was performed between DB−A and OB−A. Pixels that differed before and

after the opening operation were labelled Type 1.

Type 2 Disagreements which are not of Type 1 are large enough to encompass ep-

ithelial cells (Figure 4.1). A pixel disagreement is labelled Type 2, if it is not of

Type 1 and it is in a region labelled as tumour in one mask which overlaps with

a region labelled as tumour in the other mask. Type 2 disagreements can arise

from differences of opinion about the spatial extent of a tumour region.

Definition: Region(s) in OA−B and OB−A, identified via 8-connected component

analysis, which connect with agreed upon tumour region(s) were labelled Type

2.

Type 3 Disagreements that are neither Type 1 nor Type 2 are designated Type 3, re-

flecting differences of opinion about whether or not a group of cells is malignant.

Disagreement types were visualised by computing difference images from pairs of

segmentation masks and then colour-coding pixels for which the segmentations dif-

fered as Type 1 (red), Type 2 (green) or Type 3 (blue).
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Pathologist A
T N

Pathologist B
T 0.270 0.049
N 0.043 0.638

TABLE 4.2: Normalised contingency table comparing segmentation labels in masks
produced by pathologist A and pathologist B.

Only pixels within each TMA spot were analysed; background pixels were ignored.

Background pixels were identified manually in the form of a spot background mask.

4.2.4 IHC scoring

To evaluate the impact of using manually obtained segmentation masks for IHC as-

sessment, IHC scores were computed using the FDA-approved Aperio IHC Nuclear

Version 10 algorithm (Aperio Technologies, CA, USA). Only regions labelled as tu-

mour were passed to the scoring algorithm. The Aperio IHC algorithm identifies nu-

clei automatically and outputs a staining intensity score (ranging from 0 to 3) and an

estimate of the percentage of positively stained cells. From these measurements, IHC

(Allred and Quickscore) scores were computed.

4.3 Results

A comparison of the segmentation masks produced manually by pathologists A and B

is summarised in Table 4.2 in the form of a normalised contingency table. The inter-

rater agreement between the two pathologists was κ = 0.908. Proportions of false

positive and false negative disagreements were close to equal (4−5%).

A set of disagreement visualisations comparing annotations from both pathologists is

shown in Figure 4.2. Image patches showing disagreements in more detail are shown

in Figure 4.3. Visual assessment shows disagreements varied considerably between

TMA spots. In Figure 4.2(d) and Figure 4.2(e), a large proportion of Type 3 disagree-

ments are visible. However in Figure 4.2(a), no Type 3 disagreements are present but
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Type 1 Type 2 Type 3
0.227 (±0.144) 0.593 (±0.218) 0.180 (±0.227)

TABLE 4.3: Proportion of Type 1, Type 2 and Type 3 disagreements between seg-
mentation masks obtained from pathologist A and pathologist B. Standard deviations

are given in brackets.

Scores Allred Quickscore
Total 0.843 0.885
Proportion 0.877 0.921
Intensity 0.944

TABLE 4.4: Evaluation of inter-rater Fleiss κ agreement between intensity, propor-
tion and total (i.e. sum of intensity and proportion) Allred scores and Quickscores.

a large proportion of Type 2 disagreements are. A qualitative comparison between

pathologists’ annotations showed more refined boundaries in pathologist A’s segmen-

tation masks, whereby more pixels were excluded from tumour regions. Figure 4.2(a)

shows one case when this difference was most noticeable. However, in the majority of

segmentation masks, drawn tumour regions were similar between pathologists. Figure

4.2(b) and Figure 4.2(c) show examples of annotations in which few disagreements

between pathologists were identified; here the majority of disagreements correspond

to Type 1 disagreements.

Table 4.3 summarises the distribution of pixels corresponding to Type 1, Type 2 and

Type 3 disagreements over TMA spots in the dataset. Over 20% of disagreements

corresponded to minor misalignment along tumour boundaries. These disagreements

are unlikely to effect IHC scores computed from segmentation masks. Over 59% of

disagreements were of Type 2, corresponding to regions where cells can be present.

The proportion of Type 3 disagreements was considerably lower. However, note the

high standard deviations, which confirm the high variability of disagreement types

between TMA spots.
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(a)

(b)

(c)

(d)

(e)

FIGURE 4.2: TMA spot image (left), manual segmentation masks from two trained
pathologists (pathologist A: centre right, pathologist B: centre left) and colour coded
difference image (right). Regions are labelled according to Type 1 (red), Type 2

(green) and Type 3 (blue) disagreements.

FIGURE 4.3: Image patches (left) and corresponding Type 1, Type 2 and Type 3
disagreements (right) between pathologists.

43



FIGURE 4.4: Bland Altman plot of percentage of positive cells identified in the Ape-
rio software.

4.3.1 IHC scoring

Inter-rater agreements for Allred scores and Quickscores are shown in Table 4.4. The

ordinal scales for computed intensity scores in Allred and Quickscore scoring sys-

tems are identical (Section 2.5.1). Agreement between intensity scores were strong.

Agreement for proportion scores were slightly higher for Quickscore compared to

Allred. When comparing scoring systems, Quickscore allocated six scales for propor-

tion whereas Allred allocated five (Section 2.5.1). Where proportion scores differed

between pathologists, percentage of positive cells were on the boundary of proportion

score ranges; as such proportion scores differed by at most one. A Bland Altman plot

of percentages of positive cells is shown in Figure 4.4 where the standard deviation

was ±9%. For the majority of TMA spots, there were strong agreements between

percentage of positive cells with differences close to zero.

The following experiment was designed to test the hypothesis that Type 1 disagree-

ments are unlikely to effect IHC scores as a cell cannot fit within these regions. Type

1 disagreements were discounted from the segmentation masks (i.e. labelled as non-

tumour and therefore not passed to Aperio). IHC scores were then re-computed from

updated segmentation masks and compared to IHC scores retrieved from original seg-

mentation masks. κ agreements between scores computed with and without Type 1
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Scores Allred Quickscore
Total 0.924 0.962
Proportion 0.960 1.000
Intensity 0.944

TABLE 4.5: Fleiss κ agreement between pathologist A’s segmentation masks with
and without Type 1 disagreements.

Scores Allred Quickscore
Total 0.959 1.000
Proportion 0.958 1.000
Intensity 1.000

TABLE 4.6: Fleiss κ agreement between pathologist B’s segmentation masks with
and without Type 1 disagreements.

disagreements are shown in Table 4.5 (pathologist A) and Table 4.6 (pathologist B).

When Type 1 disagreements were removed, computed Quickscores revealed slightly

higher inter-rater agreements compared to Allred scores, particularly in the case of

pathologist B’s segmentation masks. Table 4.6 shows Quickscores computed from

pathologist B’s segmentation masks were unaffected across all TMA spots. Only one

Allred score differed by one, resulting in κ = 0.959. In the case of pathologist A’s

segmentation masks, Quickscore proportion scores were identical and intensity scores

resulted in high inter-rater agreements (κ = 0.962). Overall, removal of Type 1 dis-

agreements resulted in identical or similar IHC scores.

4.4 Summary

In this chapter, a study was described whereby manually hand-drawn tumour segmen-

tation were compared between two expert pathologists with the aim of measuring the

current benchmark of tumour localisation amongst pathologists. It was shown that

there was a strong agreement between the two experts, resulting in pixel-level agree-

ment of κ = 0.908 (Table 4.2).
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To measure the impact of tumour localisation on IHC scoring, an experiment was

designed to compute IHC scores from manual segmentation masks. Results showed

inter-rater agreements (Allred: κ = 0.843, Quickscore: κ = 0.855), differed by at

most one score. Minor misalignment between manual annotations, termed Type 1

disagreements, had little impact on extracted IHC scores.

Note that conclusions drawn in this chapter reflect segmentation masks generated by

trained specialists employed for the study. It is anticipated agreements between lab-

oratories and annotators may differ. Future work will investigate other factors which

can impact manual IHC scoring.

In subsequent chapters the inter-rater agreement reported in this chapter will be used as

the benchmark performance in the reported dataset. In the following chapters, methods

to automatically localise tumour are explored. The inter-rater agreements described

in this chapter are revisited to compare automated and manual segmentation masks

(Chapter 7).
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Chapter 5

An Extension and Evaluation of

Spin-Context

5.1 Introduction

In this chapter, a technique called spin-context is described which extends the auto-

context method described by Tu and Bai [137]. Here, “context” refers to the posterior

distribution in a local neighbourhood fused with low-level appearance features. To

make this method applicable for histopathology image analysis, context locations cor-

relate to points on circular rings. In spin-context, the problem of locating breast can-

cers in images of TMA spots is formulated as classifying each location on a regular

grid as being tumour (T) or non-tumour (N).

This work was done in collaboration with Dr. Telmo Amaral (Culture Lab, Newcastle

University, UK). Contributions in this thesis are (a) the extension of spin-context to

incorporate TMA spots boundaries (Section 5.5), and (b) evaluation of spin-context,

including a comparison between spin-context and auto-context (Section 5.7).

Before describing spin-context, related work in auto-context is reviewed in Section

5.2. Local image feature adopted in reported experiments are described in Section 5.3.

The original implementation of auto-context is described in Section 5.4.1, followed by
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the spin-context adaptation (Section 5.4.2). Spin-context is then extended to remove

background interference (Section 5.5) and a comprehensive evaluation is performed

(Section 5.7).

5.2 Related work

In computer vision, contextual information has been captured in many forms including

Markov Random Fields (MRFs) and conditional MRFs (CRFs). These models operate

on limited function families in which energy functions are maximised. Alternatively,

shape context [19] captures context in a local neighbourhood from low-level feature

descriptors. However prior information of the shape to be recognised is required.

Whilst shape context can also be learned [69] or approximated [148], auto-context

offers a simple approach to capturing context which seamlessly integrates into the

classification procedure. Context features are extracted from posterior distributions

directly from classification maps, thereby keeping computational costs low.

The auto-context framework described by Tu and Bai [136] extracts and concatenates

posterior probabilities from key context locations resulting in a one-dimensional con-

text descriptor. Context locations which contribute towards the context descriptor are

selected using a star-shaped stencil. A detailed description of auto-context is provided

later in this chapter (Section 5.4.1).

Auto-context has been applied to various applications since its origination in 2008

[136]. Monoz et al. [101] proposed a “stacked hierarchical scene labelling” method

which iteratively partitions an image into refined superpixel parts. Posterior prob-

abilities from superpixels and neighbouring superpixels in parent regions represent

context. In earlier work by Poole [118], pre-dating auto-context, posterior probabili-

ties were used in a similar manner for gathering context using a “9x9 square stencil”.

Here, distributions of classes were estimated from local neighbourhoods and modelled

as a probability tree. More recently, Jampani et al. [68] used a stack of decision tree

classifiers, the input of which consisted of image features and auto-context statistics.
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To avoid overfitting, a stacked generalisation technique was adopted such that auto-

context statistics were computed using different classifiers from the test fold.

In follow-up work by Tu and Bai [137], auto-context was evaluated on 3D brain

MRI imaging, showing the potential of this technique in the medical domain. Since

then, it has been applied in various medical applications. In whole-body CT, Mon-

tillo et al. [100] proposed an extension of decision forest classifiers that incorporated

semantic context in a manner similar to auto-context. Li et al. [88, 90] combined con-

text from regularly acquired treatment images (i.e. CT scans) with a planning image

for prostate segmentation. Only probabilities with high confidences were updated and

selected for context locations. Furthermore, Jurrus et al. [71] detected neuron mem-

branes in electron microscopy directly from image patches (i.e. without feature extrac-

tion) in the auto-context framework. None of the above used distribution-based con-

text descriptors and, appropriately for the applications considered, descriptors were

not invariant under image rotation.

Auto-context has also been applied to 2D histopathology images to improve classifica-

tion of class labels in tissue. Chomphuwiset et al. [30] used Hough transform-based

techniques to detect cell nuclei in liver histopathology images. They also integrated

random forest classification results, obtained from texture features, with context infor-

mation from nearby nuclei and regions. Xu et al. [154] proposed a tumour segmen-

tation, clustering and classification method using Multiple Instance Learning (MIL)

for colon histopathology images. Contextual information was introduced as a prior

for MIL to encourage neighbouring image patches to share similar class labels. How-

ever, to the best of the authors’ knowledge, context has not been applied to breast

histopathology images which is “unanimously considered a highly heterogeneous dis-

ease” [143]. This introduces difficulties when classifying small areas of breast tissue

such as TMAs.
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5.3 Image features

Low-level local image features, specifically spin intensity features [82] and differential

invariants [126], were used in the following implementation of spin-context. Features

were selected to ensure rotation invariance, however spin-context is not limited to

these techniques. Other low-level features such as SIFT or HoG can also be integrated

with ease, making spin-context adaptable to other classification problems.

5.3.1 Spin intensity features

Spin intensity image features were proposed for texture representation by Lazebnik

et al. [82]. A spin feature encodes the distribution of brightness values within a cir-

cular support region centred at a location, h0. Here, pixels within the support region

(stored in a vector h) are indexed by u. The spin feature is encoded in a rotation invari-

ant histogram representation with two dimensions: the distance between each pixel hu

and h0, ||hu−h0||, and the intensity value of hu, I(hu).

As the spin histogram is a “soft histogram”, each pixel contributes to more than one

bin. The contribution of a pixel hu to bin (d, i) is shown in (5.1). α and β are parame-

ters that determine bin sizes, where each bin is indexed by the radial distance interval,

d, and intensity interval, i. cd and ci denote the centre of corresponding distance and

intensity bins, respectively. The resulting spin histogram, H, is a summation over u,

Hdi = ∑u wdi(hu), where

wdi(hu) = exp
(
−(||hu−h0||− cd)

2

2α2 − (I(hu)− ci)
2

2β 2

)
(5.1)

5.3.2 Differential invariants

Differential invariants were computed by convolving image patches with a set of first-

and second-order 2D Gaussian derivative kernels at three scales, using a Gaussian
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pyramid [22]. Resulting convolutions were then combined to obtain four differential

invariants at each pixel location [126]. The vector of differential invariants, vi, for

location i, is defined in (5.2).

vi =



L

LxLx +LyLy

LxxLxLx +2LxyLxLy +LyyLyLy

Lxx +Lyy

LxxLxx +2LxyLyx +LyyLyy


(5.2)

L is the luminance function convolved with a Gaussian, and the indices x and y repre-

sent the derivative with respect to the variables x and y, respectively. The first element

of vi is the zeroth order term.

In reported experiments, Gaussian derivative kernels had standard deviations of 8 pix-

els, and thus effectively 16 and 32 pixels and the second and third scales, respectively.

Standard deviations were selected to incorporate parts of nuclei, whole nuclei and

immediate surroundings. This setup is as described by Amaral et al. in [8].

5.4 Relevant context-based descriptors

5.4.1 Auto-context

Auto-context, described by Tu and Bai [137], is an iterative pixel labelling technique,

in which label probabilities at a given iteration are used as contextual data for the

following iteration. Contextual data are concatenated with local image features to

form input vectors for each iteration. Context locations are chosen by applying a star-

shaped “stencil” to labelled probability maps. An illustration of this framework is

shown in Figure 5.1 and pseudocode is provided in Algorithm 1.
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xn image features
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p(1)
n

g MLP2 ... MLPT

p(T )
n

FIGURE 5.1: Auto-context classification of an image, xn for T iterations. In each
iteration an updated classification map, p(t)

n , is produced from classification of context
descriptors and image features.

Algorithm 1 Auto-context training.
Given a set of N training images, x1. . .xN , together with their label maps, S =

{(xn,yn),n = 1...N}:
For each image xn , construct a probability map p(0)

n containing M grid locations, with

uniform distribution on all the labels.

For iteration t = 1. . .T :

1. Make a training set St =
{
(ymn, fmn,g(p

(t−1)
n ,m)),m = 1. . .M,n = 1. . .N

}
where fmn is the feature representation for xmn and g(p(t−1)

n ,m) is the context

descriptor at iteration t−1.

2. Train a classifier on St .

3. Use the trained classifier to compute new classification maps p(t)
n for each train-

ing image xn.

In Algorithm 1, M is the total number of grid locations in the probability map pn. g

is a function which computes a context descriptor from posterior probability values

by selecting locations centred around location m. In iteration t, posterior probability

values are selected from classification map p(t−1)
n . Figure 5.2(a) shows how context

locations are selected using a star-shaped stencil. The red grid point denotes location

m and blue locations are those at which posterior probabilities contribute to the context

descriptor.

The prior, p(0)
n , is a uniform distribution. Both local image features and probability

values are input into the classifier for training, which is subsequently used to output
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(a) (b)

FIGURE 5.2: (a) Star-shaped stencil and (b) circular stencil for selecting context
locations from label probability maps.

an updated classification map for iteration t. The algorithm iteratively updates T times,

producing a series of T classifiers.

5.4.2 Spin-context

Tu and Bai [137] used a star-shaped stencil (Figure 5.2(a)) to select context loca-

tion points around the pixel being classified. The resulting context features from this

stencil were not invariant under image rotation. Spin-context [7] is an extension to

auto-context which extracts context in a rotation invariant manner. In spin-context,

context features for a given grid location are computed from label probability values

within a circular support region. Spin-context is extracted analogously to intensity

spin features, computing a two-dimensional soft histogram reflecting the distribution

of probabilities within the support region, with rows representing probability intervals

and columns representing radial distance intervals. Figure 5.2(b) shows the circular

mask used to compute spin-context. Each ring corresponds to a radial distance interval

in the resulting spin-context descriptor.

In iteration 1, context is not available from the previous iteration so a uniform constant

descriptor is adopted. Therefore, p(1)
n does not incorporate context. In subsequent

iterations, context features in the form of a soft histogram are computed from p(t−1)
n .
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As in auto-context, context and local features are concatenated in each iteration, t, to

produce an updated classification map, p(t)
n .

Compared to auto-context, spin-context does not capture spatial clustering of similar

structures e.g. clusters of cancer cells in ducts are not distinguishable from scattering

of cancer cells in a larger region. Spatial information captured in the spin-context

context descriptor is relative to a single point i.e. the centre of the stencil. However by

not enforcing specific context points as in auto-context, spin-context offers additional

benefits, described as follows.

5.5 Boundary sensitive spin-context

The spin-context descriptor has a desirable property, whereby context outside the tis-

sue spot’s boundary can be disregarded whilst only considering context within the spot

region. Figure 5.3 illustrates the advantage of using spin-context to produce a more

accurate representation of context information around the boundaries of the spot. Only

blue context locations contribute towards the context histogram; orange points are ig-

nored.

The use of boundary information prior to context extraction allows contributions of

context points outwith the TMA spot to be ignored, when constructing the normalised

two-dimensional spin histogram. In doing so, not only is context information accu-

rate for the current iteration but subsequent iterations also reflect accurate information

extracted from the spot region. The star-shaped stencil context descriptor, not being

distribution-based, does not allow this level of flexibility to be maintained, resulting

in background interference, or conversely the need to handle missing context data.

TMA spot regions take the form of binary segmentations where 1 denotes tissue and 0

are background pixels. During context extraction, each grid in the binary segmentation

centred on the mth location is compared with the circular stencil to identify relevant

grid locations. Resulting context descriptors near the spot boundary therefore reflect

only locations containing tissue.
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FIGURE 5.3: A binary mask is used to ignore the contributions of pixels outside the
spot’s boundary to the spin histogram. Auto-context corresponds to label probability
values at all locations lying on a star-shaped stencil, regardless of spot boundaries.

5.6 Experiments

32 TMA spots containing tumour regions were subjected to nuclear staining for ER.

Spot images were 3600 x 3600 pixels. Manual annotations were retrieved as described

in Chapter 4. Manual labels from pathologist A were used in the following exper-

iments, however a comparison between two expert pathologists (pathologist A and

pathologist B) is provided in Section 5.7.1.

Tumour labelling was evaluated using 8-fold cross-validation on the 32 spots. Each

cross-validation experiment was repeated eight times to measure variability. Multi-

layer percepton (MLP) classifiers were used with five hidden units, a regularisation

constant of 0.1 and scaled conjugate gradient optimisation. MLPs were trained to out-

put class posterior probabilities. Local and context features were computed at points

on a 136 x 136 grid (a grid step of 25 pixels). Differential invariant features were com-

puted at three scales using a Gaussian pyramid and filters with a standard deviation of

8 pixels. Intensity spin local features were computed at two scales with a circular sup-

port region with a radius of 50 pixels. Spin-context used a circular support region with

a radius of 6 grid points, as shown in Figure 5.2(b). To evaluate boundary-sensitive

spin-context, hand-drawn TMA spot segmentations were generated.
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FIGURE 5.4: Precision-recall curves for six spin-context iterations.

Auto-context (non-rotationally invariant context) was also evaluated using a stencil

in which neighbouring grid points within a radius of 6 grid spacings in each of the

8 cardinal and inter-cardinal compass directions were used as context, as shown in

Figure 5.2(a). The auto-context stencil shares the same context window size as the

spin-context stencil; as such both these methods are comparable in reported experi-

ments.

5.7 Results

The precision-recall curves in Figure 5.4 displays the results obtained for six spin-

context iterations. In the first three iterations, a noticeable improvement is shown;

curves converge in subsequent iterations, suggesting three iterations are sufficient to

incorporate contextual information. After this, there is little performance gain. Com-

pared to a standard MLP classifier which incorporated no context (i.e. iteration 1),

spin-context improved the precision-recall curve.
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AUC 95% CI
Spin-context 0.926 (0.924, 0.927)
Auto-context 0.923 (0.920, 0.925)
No context 0.916 (0.914, 0.918)

TABLE 5.1: AUC values for no context and three iterations of spin-context and auto-
context. AUC values are reported as a mean between eight repeated experiments.

Upper and lower confidence intervals (CI) are also reported.

Figure 5.5 shows a subset of results achieved using spin-context. Figure 5.5(a)-5.5(d)

shows successful tumour labelling in which the introduction of spin-context improved

classification performance. In Figure 5.5(a), lower tumour probabilities when no con-

text was incorporated, were (correctly) significantly higher after six iterations. Figure

5.5(e) and 5.5(f) show unsuccessful labelling. In these cases, initial classification

maps were poor which was reflected in subsequent spin-context iterations. In another

auto-context technique described by Jampani et al. [68], similar outcomes were ob-

served between various pixel predictions. The authors argued good pixel prediction is

important in an auto-context framework, even as an intermediate step.

Figure 5.6 compares spin-context with stencil-based auto-context. Standard deviation

bars, generated from eight repeated experiments (each with eight folds), are shown as

dotted lines. Spin-context and auto-context showed similar performance, with spin-

context excelling slightly at lower recall values. Both methods also showed an im-

provement compared to a classifier with no context. AUC values for the same ex-

periments are also reported in Table 5.1. At first glance, mean AUC values suggest

spin-context surpassed auto-context but confidence intervals suggest performance can,

on occasion, be similar.

5.7.1 Comparison with manual annotations

In Chapter 4, an inter-rater agreement of κ = 0.908 was reported between expert breast

pathologists, pathologist A and pathologist B. Any automated solution must be able

to show similar or higher agreements to potentially replace manual input. Table 5.2

and Table 5.3 show normalised contingency tables for three iterations of spin-context
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Original Image Ground Truth No context Spin-context

(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 5.5: Subset of results achieved using spin-context. For each TMA spot,
images are shown for the ground truth annotation, no context and iteration 6 of spin-

context (columns, left to right).
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FIGURE 5.6: Precision-recall curves for auto-context and spin-context (3 iterations),
and no context (i.e. iteration 1) on MLP classifiers.

Pathologist A
T N

Spin-context (A)
T 0.184 0.104
N 0.063 0.649

TABLE 5.2: Normalised contingency table comparing spin-context classification
maps and pathologist A’s segmentation masks.

Pathologist B
T N

Spin-context (B)
T 0.187 0.108
N 0.068 0.637

TABLE 5.3: Normalised contingency table comparing spin-context classification
maps and pathologist B’s segmentation masks.

when trained on pathologist A and pathologist B, respectively. As in Chapter 4, only

grid locations within TMA spot boundaries were evaluated. The inter-rater agreement

for spin-context trained on pathologist A and pathologist B was 0.833 and 0.824,

respectively. On average, agreements between spin-context and manual segmentation

masks were slightly lower than inter-rater agreement between pathologists.
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(a) (b) (c)

FIGURE 5.7: Image patches which were incorrectly classified as healthy in spin-
context.

On average, 62% of disagreements between spin-context and manual segmentations

correspond to false negatives: almost double the number of false positives. In some

TMA spots, this can be explained by lumen encased within tumour regions and can

arguably be labelled as healthy; in the majority of cases, misclassified tumour regions

appear similar to healthy cells. Examples of misclassified tumour image patches are

shown in Figure 5.7. In particular, in Figure 5.7(b), abnormal cell development re-

sulted in small cell nuclei scattered within a single tumour region marked by both

pathologists. Tumour appearances of this kind was only observed once in the dataset.

Therefore it is anticipated more training examples of this kind will improve perfor-

mance.

5.7.2 Boundary sensitive spin-context

A second experiment which evaluated boundary sensitive spin-context (Section 5.5)

is described in this section. F1 measures, the harmonic mean of precision and recall,

computed after the removal of context grid locations outwith TMA spot regions are

shown in Table 5.4. Standard deviation between repeated experiments were on average

0.007 (iteration 1: ±0.006; iteration 2: ±0.006; iteration 3: ±0.008). In all iterations,

boundary sensitive spin-context showed improvement.

To evaluate performance of boundary sensitive spin-context at the spot boundary,

masks were created to isolate ROIs (Figure 5.8). The mask shown in Figure 5.8(b)
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Iteration (t)
1 2 3

BS spin-context 0.655 0.676 0.682
Spin-context - 0.670 0.676

TABLE 5.4: F1 measures of boundary sensitive (BS) spin-context and spin-context.
Iteration 1 does not incorporate spin-context and is therefore identical for both tech-

niques.

(a) (b) (c)

FIGURE 5.8: (a) Spin-context classification map, pt
n, with 136x136 grid locations, (b)

a mask generated to highlight the TMA spot boundary and (c) result after convolution
of mask and classification map.

was generated by dilating and eroding TMA spot segmentations by 75 pixels (i.e. 3

grid locations). A subtraction was performed between the dilated and eroded image,

resulting in an outline of the TMA spot boundary. Resulting masks were convolved

with probability classification maps produced by boundary sensitive spin-context, re-

sulting in tumour probabilities at only the spot boundary (Figure 5.8(c)).

Table 5.5 shows F1 measures computed from ROIs, denoted by the spot boundary

mask. The use of context within TMA spot boundaries after one iteration of boundary-

sensitive spin-context (iteration 2) is comparable to the result achieved after two iter-

ations of the original implementation of spin-context. This suggests the use of TMA

spot boundaries can reduce computational costs associated with spin-context by re-

ducing the number of iterations.
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Iteration (t)
1 2 3

BS spin-context 0.644 0.663 0.671
Spin-context - 0.655 0.664

TABLE 5.5: F1 measures of boundary sensitive (BS) spin-context and spin-context
in TMA spot boundaries.

5.8 Summary

In this chapter an extension to auto-context called spin-context was described, which

captures contextual information from labelled probability maps in a rotation invariant

manner. Spin-context was evaluated for the task of tumour localisation on a dataset

of ER-stained TMAs. Results showed iterative context extraction adopted in spin-

context improved performance, compared to a method which did not incorporate con-

text. Improvement was most noticeable in the first three iterations, after which results

converged. Whilst inter-rater agreement between spin-context and pathology experts

(κ = 0.829) were not as high as inter-rater agreement between experts, results are

promising. Compared to auto-context, spin-context showed similar outcomes with

slightly higher performance at lower recall values.

Spin-context was extended to reduce background interference, by eliminating context

locations outwith TMA spot boundaries during training. Results showed that the tech-

nique of boundary sensitive spin-context improved performance in all iterations. In

particular, boundary sensitive spin-context showed some improvement at the TMA

spot boundary, matching performance observed in the previous iteration with the orig-

inal spin-context implementation.
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Chapter 6

RISP: Rotation Invariant Superpixel

Pyramid

In the previous chapter, a method which utilised pixel-level image features for tu-

mour segmentation was described. Whilst pixel-level features capture detailed textu-

ral information, they fail to capture essential structural information in the tissue. In

this chapter a superpixel classification method is described which retains information

about visual structures such as cellular compartments, connective tissue, lumen and

fatty tissue.

Superpixels are described in more detail in Section 6.2 followed by a review of related

work. A description of the proposed feature representation called Rotation Invariant

Superpixel Pyramid (RISP) is given in Section 6.3. In RISP, a multiscale representa-

tion of the tissue is captured which encompasses superpixel geometric, photometric

and second-order features (Section 6.3.1). To incorporate information from surround-

ing superpixels, annuli are adopted to capture frequency and spatial positioning of

superpixel visual words (Section 6.3.2, Section 6.3.3).

In Section 6.4, a novel framework called Contextual RISP (CRISP) is described in

which image-level and context-level RISPs are combined. Structural and contextual

information is captured in an iterative manner, similar to spin-context. Results are
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FIGURE 6.1: Superpixel images generated using SLIC code available from
http://ivrl.epfl.ch/research/superpixels.

reported in Section 6.7, including comparisons of RISP with related superpixel classi-

fication algorithms and manually-obtained tumour segmentation masks.

6.1 Superpixels

A superpixel can be described as a “perceptually meaningful atomic region” of pixels

[1]. The characteristics of a superpixel may refer to colour, texture and/or shape de-

pending on the algorithm used to generate superpixels. In the literature, a superpixel

image is often referred to as an over-segmentation of an image. Figure 6.1 shows su-

perpixel images generated using SLIC [1] where each superpixel is outlined in black.

For each example, different numbers of superpixels have been generated. When com-

paring superpixels directly, they are compact and roughly the same size, however can

freely adapt to nearby boundaries. Within regions which are uniform in colour and/or

texture, superpixels adopt a grid-like state.

In a study reported by Neubert and Protzel [105] various properties of state-of-the-art

superpixel generation algorithms were compared. The most common technique for

generating superpixels is growing from an initial set [1, 86, 139, 141, 144]. Earlier

work using the watershed approach [144] performed gradient ascent starting from
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local minima to produce watersheds, lines that separate “catchment basins”. More

recently, in SEEDS [139], superpixels were iteratively produced by performing block-

level and pixel-level updates. Block level updates performed a coarse but fast over-

segmentation and pixel-level updates refined superpixel boundaries thereby providing

a quick but representative superpixel image.

An alternative is to use a graph-based approach. Normalised Cuts by Shi and Malik

[128] recursively partition a graph of pixels using contour and textural properties.

Felzenszwalb and Huttenlocher [48] proposed a pairwise region comparison algorithm

which clustered pixels at each node of a graph; each node was the minimum spanning

tree of constituent pixels and was then representative of a superpixel.

In this thesis, Simple Linear Iterative Clustering (SLIC) [1] was used to generate su-

perpixels. SLIC is based on an iterative k-means clustering algorithm which uses the

Lab colour space and distance between cluster centres to iteratively generate super-

pixels. Due to its simplicity, SLIC is computationally efficient. However, any of the

superpixel generation methods described above could be substituted for SLIC in re-

ported methods.

6.1.1 Motivation

One of the main benefits of using superpixels in image or video analysis is that millions

of pixels can be reduced to only a few hundred superpixels thus improving computa-

tional complexity. For analysis of high resolution images, which is often the case in

digital pathology, this is a desirable property.

However superpixels also provide additional structural properties which are important

when modelling tissue. In histopathology, tissue structure is complex, and as shown in

the previous chapter, is difficult to model from low-level pixel features. Superpixels,

on the other hand, can adapt to surrounding tissue thereby providing rich, descriptive

features. Figure 6.2 shows superpixels generated in breast histology images. Note that

the tissue structure is indirectly captured without explicit semantic segmentation. For
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FIGURE 6.2: Image patch of breast tissue stained with Haematoxylin and ER (left),
its corresponding SLIC superpixel image (middle), and a magnification of superpix-

els, some of which encase cells (left).

example, superpixels elongate to fit to lymphocytes and fibroblasts in stromal regions

but remain compact in regions containing lumen.

To select a suitable value for the number of superpixels per image, Z, an experiment

was designed to explore the properties of the superpixel image when this parame-

ter was varied. In Figure 6.3 each superpixel is replaced by the average RGB colour

value of all pixels contained within that superpixel. When Z is low, intermediate tissue

structure (e.g. lobules) are retained however smaller cellular components are lost, par-

ticularly clustered epithelial cells and fibroblasts in connective stromal tissue. Larger

structures such as fat are still retained, however the boundaries are somewhat less re-

fined. When Z is high, the superpixel image closely resembles the original image and

very little information is lost between the pixel-level and superpixel-level representa-

tions. An expert pathologist considered Z = 50,000 to retain tissue structure so that

tumour regions were clearly distinguishable. At this setting, two or more superpixels

were often used to represent epithelial nuclei.

6.2 Related work

Recently, the usage of superpixels in the computer vision literature has grown so that

they are not only used to reduce computational costs, but also provide descriptive

information in addition to or instead of pixel-level features.
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Original Image Z = 10,000 Z = 25,000

Z = 50,000 Z = 100,000

FIGURE 6.3: SLIC superpixel representation when number of superpixels, Z, is var-
ied. Each superpixel is rendered with the average RGB value of pixels it contains.

A popular use of superpixels is to map them onto a Conditional Random Field (CRF)

model thereby retaining the structure of the superpixel image in relation to neighbour-

ing superpixels. Fulkerson et al. [51] showed the benefits of using a CRF model with

a SIFT bag-of-words algorithm for object localisation. Similarly, Li and Sahbi [89]

constructed CRFs by analysing superpixels generated at multiple resolutions in which

the pairwise term took into account neighbouring superpixels in four directions. Hao

et al. [60] segmented tumours in ultrasound images using a combination of nested

classifiers and CRFs. In the above examples, CRFs were used as a refinement process

to obtain precise boundaries after extraction of superpixel appearance, shape and/or

morphometric features. CRFs are not used in this thesis but it would be interesting to

explore their use in future work to capture context from learned classification maps

(Section 9.2).
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In recent work, superpixels have been used to capture context in various innova-

tive forms. Gould et al. [57] proposed a relative location prior based on an un-

derlying superpixel representation, which provided a general class probability map

thereby encoding surrounding objects. Dickinson et al. [37] adopted a perceptual

growing approach by analysing superpixel graphs at multiple scales, wherein, at each

scale, graphs were compared for symmetrical parts. Similarly, Kumar and Hebert

[79] used a multi-scale approach to model interactions between superpixels and “sub-

superpixels", where sub-superpixels are superpixels generated from a single super-

pixel in the preceding layer. Techniques for grouping or splitting superpixels at various

scales have also been employed in other methods [77, 86]. Previous work has shown

that context in the form of relationships between superpixels, whether at a single scale

or multiple scales, is important for capturing descriptive feature representations. Later

in this chapter, context from surrounding superpixels is explored further with the aim

of capturing complex tumour patterns.

In histopathology, Gorelick et al. [56] extracted textural and appearance features from

superpixel images of prostate cancer and trained them using Adaboost. Pixel-level

features were then incorporated in a rotation invariant manner to provide contextual

information. A similar technique is adopted in this chapter. However, instead of pixel-

level features, superpixels are adopted to capture context with the aim of providing

a richer context descriptor. In other work, Beck et al. [18] built an explicit stroma

versus epithelial superpixel classifier to identify cell nuclei in breast tissue. In [18],

several relational and morphological features were extracted from cell nuclei and stro-

mal regions to predict survival. It was shown that features extracted from stromal cells

were better predictors of patient survival than features extracted from epithelial cells,

contradictory to the current approach for manual analysis of histopathology images.
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6.3 Method

In the following sections, a series of representations for modelling superpixels in a

rotation invariant manner is described: Bag-of-Superpixels (BoS), Spatial Bag-of-

Superpixels (S-BoS) and RISP. Before doing so, superpixel features used to construct

visual words are defined.

6.3.1 Definition of superpixel features

As mentioned previously, SLIC [1] was used to construct superpixels. Here, super-

pixels are denoted as s = [s1, ...,sZ] where Z is the total number of superpixels. The

number of superpixels was assigned so that the area of a single superpixel rarely ex-

ceeded the area of a cell nucleus. The average area of the extracted superpixels was

221 pixels with a standard deviation of 34 pixels. Whilst subcellular superpixels may

not capture rich textural properties, geometric properties extracted from these super-

pixels indirectly model cell shape, size etc. without explicit cell segmentation.

For each superpixel, a set of features was obtained to describe its appearance and ge-

ometric properties. To capture additional textural information within each superpixel,

Haralick [61] features were adopted. Compared to differential invariants utilised in

Chapter 5, Haralick features can be computed quickly for thousands of superpixels.

Second-order features, including the number of superpixel neighbours and variance

between neighbouring arc lengths, were also included in the feature representation.

Here, the variance between neighbouring arc lengths is a measure of the proportion of

the superpixel perimeter shared between neighbouring superpixels. For example, an

elongated neighbouring superpixel is more likely to share a larger proportion of the

shared perimeter compared to a more compact neighbouring superpixel. Superpixel

features are outlined in Table 6.1. The resulting superpixel features were normalised

and concatenated to form a descriptor, fz, per superpixel.
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Appearance Mean red, green and blue values of containing pixels
Mean and variance of greyscale values of containing pixels
13 Haralick texture features ( f1 − f13); angular second moment,
contrast, correlation, variance, inverse difference moment, sum aver-
age, sum variance, sum entropy, entropy, difference variance, difference
entropy, information measures of correlation

Geometry Compactness of superpixel contour
Eccentricity of superpixel contour
Area of superpixel i.e. number of containing pixels
Perimeter i.e arc length of superpixel contour

Neighbours Number of immediate superpixel neighbours
Variance between neighbouring arc lengths

TABLE 6.1: List of features extracted from each superpixel.

6.3.2 Bags-of-Superpixels

To perform superpixel classification, one approach is to use the superpixel features

outlined in Table 6.1 directly. However this produces poor results due to lack of con-

text. As discussed in Section 6.2, capturing neighbouring superpixels is important for

essential contextual information. As such, extracted superpixel features were used in

the bag-of-words framework. Superpixel descriptors were quantized using a K-means

dictionary, C, to produce a set of visual words. A circular window with radius R was

then positioned at the centre point of the superpixel to be classified. Visual words

of superpixels within the circular window were histogrammed, resulting in a Bag-of-

Superpixels (BoS). The BoS representation described here shares similarities to the

colour and spatial superpixel-based BoW representation proposed by Shu et al. [129].

6.3.3 Spatial Bags-of-Superpixels

Whilst BoS is a simple yet powerful representation, its main drawback is lack of spa-

tial information. In breast cancer, spatial information of cell nuclei is an important

property for modelling breast cancer. For example in later stages of DCIS, cancer

cells are tightly packed within a duct whereas in a healthy duct epithelial cells are

arranged in a ring-like pattern.
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Algorithm 2 Spatial Bag-of-Superpixels (S-BoS)
Input: Image xn, radius R (pixels), number of annuli Q, superpixel codebook C,

number of superpixels Z

Run SLIC on xn to generate superpixels, s = [s1...sZ]

Extract superpixel features, F = {f1...fZ}
for each superpixel, sz, in s do

Identify superpixels indexed by t within circular window with radius, R, centred

at c(sz)

Initialise S-BoS histogram, Hz

for each superpixel, ty, in t do
Lookup codeword, vy for fty in C

Compute d = ||c(ty)− c(sz)||, c returns the centre point of a superpixel

Increment Hz(vy,
⌊

Qd
R

⌋
)

end

Normalize Hz

end

To capture this information, the spatial distribution of each visual word is modelled in

a spatial Bag-of-Superpixels (S-BoS) histogram. Spatial information is captured in the

form of equally spaced annuli within the circular window utilised in BoS. The method

for constructing S-BoS histograms is outlined in Algorithm 2. Hz,z ∈ 1...Z, denotes

a S-BoS histogram incorporating Q annuli. d is the distance between two superpixel

centre points returned from function c(·).

This approach has some similarities to [56]. However, in this work, neighbouring su-

perpixels are analysed from their visual words instead of pixel-level RGB values. In

doing so, important structural information from the underlying superpixel representa-

tion is retained.

6.3.4 Rotation Invariant Superpixel Pyramid

Spatial pyramids, originally proposed by Lazebnik et al. [83], partition an image re-

peatedly to compute a bag-of-words histogram per cell or sub-region. In [83], sub-

regions consisted of square grids and, appropriately for the intended application, the
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FIGURE 6.4: Levels 0, 1 and 2 of RISP. The BoS representation is level 0 after which
partitions are applied iteratively according to A.

representation was not rotation invariant. Here, a novel Rotation Invariant Superpixel

Pyramid (RISP) is proposed in which S-BoS histograms are computed per level (Fig-

ure 6.4). The number of annuli grows exponentially with A, a growth factor, in each

level. In reported experiments, A = 2; therefore each annulus in level L, is replaced

by two annuli in L+ 1. By utilising circular annuli, histograms computed from each

annulus are rotation invariant. The final RISP context descriptor is the concatenation

of S-BoS histograms for each level to form a multiscale representation. To provide

complementary local features, the superpixel descriptor for the centre superpixel is

concatenated with each RISP.

Previous work by Wiliem et al. [150] used a technique similar to this for cell classi-

fication. However, here a general-purpose approach is adopted, applicable to other

computer vision tasks. In RISP, spatial information is extracted implicitly without the

need for explicit cell segmentation as in [150].

6.4 Contextual RISP

Whilst RISPs can be classified directly, in this section an alternative framework called

Contextual RISP (CRISP) is proposed. CRISP is an adaptation of spin-context de-

scribed in Chapter 5, whereby posterior probabilities from superpixel classification

maps are captured in an iterative manner. In CRISP, image features take the form
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of image-level RISPs. Image-level RISPs are equivalent to the RISP representation

described earlier (Section 6.3) concatenated with superpixel features for the central

superpixel. To capture contextual information, context-level RISPs are proposed.

Context-level RISPs reflect posterior probabilities within superpixel classification maps.

Before describing CRISP, context-level RISPs are defined.

6.4.1 Context-level RISP

A context-level RISP takes a similar form to the image-level RISP. However instead of

superpixel visual words, frequencies of superpixels’ posterior probabilities generated

in iteration t−1 in the form of a learned superpixel classification map, are encoded. An

illustrative comparison of image-level and context-level RISPs is shown in Figure 6.5.

Whilst the RISP structure is identical, the baseline representation from which RISPs

are constructed is altered. In the context-level RISP, tumour probabilities assigned to

superpixels during testing are modelled in a rotation invariant manner.

As in RISP, a circular support with radius Rc is centred on the superpixel to be classi-

fied. Posterior tumour probabilities from classified superpixels within the circular win-

dow contribute towards the context-level RISP representation. In each pyramid level,

S-BoS histograms are constructed where each row denotes an annulus and columns

represent probability distributions. Frequencies of posterior probabilities are captured

in B equally-spaced bins. S-BoS histograms from each pyramid level are concatenated

to form the final context-level RISP representation.

To retain information about the central superpixel, the tumour posterior probability

assigned to the central superpixel in iteration t− 1 is also appended to each context-

level RISP.

An overview of the CRISP framework is shown in Figure 6.6, where p(t)
n is the super-

pixel classification map produced in iteration t, for image xn.
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Original Image Image-level RISP Context-level RISP

FIGURE 6.5: Illustrative comparison of image-level and context-level RISP. Image-
level RISPs are constructed from superpixel visual words, illustrated by their average
RGB values, whereas context-level RISPs are constructed from posterior probabili-

ties.

FIGURE 6.6: Overview of Contextual RISP.

For each iteration t, image-level RISPs are concatenated with context-level RISPs

constructed from the classification map generated in the previous iteration, p(t−1)
n .

The output for iteration t is an updated superpixel classification map, p(t)
n . As a result,

a series of T superpixel classification maps are produced per image. As there is no

context available in iteration 1, context descriptors consist of a uniform prior.

By utilising both image-level and context-level RISPs, structural information from

the original image is retained and complements contextual information extracted from

classified superpixels. Compared to spin-context, context-level RISPs give a richer
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representation of context within the context window at multiple scales. Additionally,

the context-level RISP is a general-purpose model that can be tailored to various com-

puter vision tasks with ease.

6.5 Nested cross-validation

During training, it is essential that training and test data are kept separate throughout

the CRISP framework (i.e. across multiple context iterations). To ensure separa-

tion of training and test data, a stacked generalisation approach described by Jampani

et al. [68] was adopted. In [68], the training set was partitioned to construct auto-

context descriptors across multiple context iterations without compromising a held-

out test set. This work is an extension of the stacked generalisation technique [151].

The traditional cross-validation framework is adapted to partition training folds, as de-

scribed in [68]. This is referred to as a nested cross-validation setup. Here, a training

set refers to a subset of the dataset used to train a classifier. A validation set refers to

a subset of the dataset used to validate a trained model.

Let S denote a set of labelled data. In a traditional U-fold cross-validation setup,

S =
U⋃

u=1
Su, where sampling data associated with each fold is indexed by u. In fold u,

Su is reserved for validation whilst the remaining set, shown in (6.1), is used to train a

model.

S̄u =



U−1⋃
i=1

Si, if u =U

(
u−1⋃
i=1

Si)
⋃
(

U⋃
j=u+1

S j), otherwise

(6.1)

In the nested cross-validation framework, S̄u is further split into V sub-folds, where

sampling data associated with each sub-fold is denoted by Gv,
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FIGURE 6.7: Split of train and validation data in a nested cross-validation setup
(U = 4, V = 2). Predictions, P, are obtained from trained models produced in each

sub-fold.

S̄u =
V⋃

v=1

Gv (6.2)

The validation set in each sub-fold is Gv. Remaining data in S̄u is reserved for training.

Figure 6.7 shows a nested cross-validation setup where U = 4 and V = 2. Sub-folds

are assigned randomly and are shown in red (G1) and blue (G2). Predictions generated

in each sub-fold are used to construct context descriptors for the following context

iteration.

To produce predictions on the test fold, i.e. Su, one model is trained using set S̄u.

In iteration t, context descriptors generated in sub-folds (together with image-level

RISPs) form the input to the classifier. This produces a trained model from set S̄u.

Posterior probabilities for set Su are then retrieved from the trained model. Su has no

influence during construction of the trained model and is therefore representative of a

hidden test set. The above process is repeated for U folds.
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6.6 Experiments

Tumour localisation was evaluated using 8-fold cross-validation on a dataset of 32 ER-

stained TMAs (Chapter 4). In CRISP, nested cross-validation experiments are reported

with U = 8 and V = 2. In reported experiments, labels retrieved from pathologist A

were used for evaluation purposes. A balanced training set was used with identical

numbers of positive and negative samples, randomly sampled. A linear SVM classifier

was implemented in the LIBLINEAR [45] framework. Posterior probabilities were

obtained using Platt’s method [117] which maps SVM outputs between 0 and 1 by

fitting to a sigmoid function with two trade-off parameters. Parameters are calibrated

using maximum likelihood estimation. To avoid overfitting, Platt’s method uses a 5-

fold cross-validation setup. A grid search was performed to obtain an optimal cost

parameter. 50,000 SLIC superpixels were extracted from each TMA spot image. For

a 3600 x 3600 pixel image, 50,000 SLIC superpixels can be computed in 29 seconds

on an Intel i5-2410M 2.3GHz processor.

Image-level RISPs were constructed using a circular window with radius, R = 100

pixels. For context-level RISPs, Rc was varied to determine the impact of the size of

the context window. RISP level parameters (L = 3, A = 2) were identical for image-

level and context-level RISPs.

TMA spots were segmented manually to reduce background interference. Superpixels

with centre points within spot boundaries were classified in reported experiments.

6.7 Results

6.7.1 RISP

Figure 6.8 shows ROC curves for the following implementations,

• The proposed RISP representation.
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• Iteration 3 of spin-context as described in Chapter 5 using SVM classifiers.

• Spatial Bags-of-Superpixels, S-BoS, for 2 and 4 annuli.

• Bags-of-Superpixels, BoS.

• An implementation of a superpixel classification method described by Gorelick

et al. [56] which uses pixel-level features to incorporate context information.

• Superpixel autocorrelograms as described in Appendix A which model spatial

distributions between pairs of superpixels.

• Superpixel features with no context.

There was a small improvement in classification performance between BoS and S-

BoS with 2 annuli, showing the benefits of incorporating spatial information. 3-level

RISP which incorporated 7 (1+2+4) annuli also showed a noticeable improvement

compared to S-BoS; however increasing the number of annuli in S-BoS resulted in

minor improvement. Compared to Gorelick’s implementation [56] and superpixel au-

tocorrelograms, RISP was superior. Superpixel features alone with no contextual in-

formation showed the worst performance, enforcing the importance of incorporating

contextual information from surrounding superpixels.

ROC curves shown in Figure 6.8 might suggest spin-context is superior to RISP (al-

though it does not dominate). In order to compare classification performances from

ROC representations, an alternative analysis metric called the cost curve [43] is used

which enables classification performance (i.e. normalised expected cost) to be ob-

served with respect to class distributions. Each slope in the cost space directly corre-

sponds to a single point in the ROC space, whereby a slope is the line from (0,FP) to

(1,1−T P). The resulting cost curve is the lower envelope of those lines in the cost

space. Equal costs were adopted for positive and negative training samples therefore

the y-axis in reported curves denotes error rate. The x-axis shows a full range of tu-

mour distributions where x = 1 means all examples are tumour and x = 0 means all

examples are non-tumour.

78



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1−Specificity

S
en

si
ti

v
it

y

 

 

Spin−context

RISP

S−BoS (Q=4)

S−BoS (Q=2)

BoS

Gorelick

Autocorrelograms

Features

FIGURE 6.8: ROC curves for spin-context, RISP, BoS, S-BoS, superpixel features
(Features), method as described in [56] (Gorelick) and superpixel autocorrelograms

(autocorrelograms) with 200 codewords.
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FIGURE 6.9: Cost curves for RISP, and iterations 1 and 3 of spin-context.
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Number of Codewords
25 50 100 200

BoS 0.623 0.662 0.680 0.688

RISP
2 levels {0,1} 0.650 0.679 0.671 0.700

3 levels {0,1,2} 0.648 0.681 0.692 0.703

TABLE 6.2: F1 measures for BoS, S-BoS and RISP.

The cost curves for RISP and spin-context are shown in Figure 6.9. From reported

cost curves, RISP showed lower error rates than spin-context across lower tumour

distributions, with similar performance at higher tumour distributions. Specifically,

when considering the proportion of positive samples in the evaluation dataset (31%),

RISP yields an error rate of ∼17.8%. At this point on the x-axis of the cost curve,

RISP surpassed three iterations of spin-context and showed considerable improvement

to pixel-level features – spin intensity features [82] and differential invariants [126] –

adopted in Chapter 5.

Table 6.2 shows F1 measures for RISP for various numbers of codewords. As the num-

ber of codewords increased and as more levels were incorporated in RISP, the accuracy

continued to increase; differences between 100 and 200 codewords were marginal. At

lower dictionary sizes, RISP was more effective at lower levels. Compared to BoS

(i.e. RISP level 0), RISP showed improvement for the majority of reported dictionary

sizes.

Table 6.3 shows AUC and F1 measures when the compactness of generated superpix-

els was varied. A low compactness value (i.e. very compact superpixels) gave the

worst performance as superpixels were less distinguishable between regions contain-

ing different tissue types. However at the other extreme, generated superpixels had

noisy boundaries; the complex textural appearance in the pixel-level image resulted

in highly variable superpixels of different shapes and sizes. A balance between these

two properties resulted in best performance.
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Compactness
1 2 5 10

AUC 0.836 0.847 0.859 0.851
F1 0.675 0.684 0.703 0.694

TABLE 6.3: AUC and F1 measures achieved when superpixel compactness was var-
ied in SLIC.

6.7.2 CRISP

A second experiment was designed to evaluate CRISP. Image-level RISP parameters

were fixed to determine the impact of varying context in terms of the context support

window size.

A comparison between CRISP, RISP and spin-context is shown in Figure 6.10 in the

form of cost curves [43]. Here, the size of the context-level RISP window was 100

pixels. CRISP showed a strong performance gain compared to spin-context across all

tumour distributions. Compared to RISP, error rates were similar performing slightly

better at higher tumour distributions (0.50-0.75) and slightly worse at lower tumour

distributions (0.25-0.45).

A visual representation of superpixel classification maps produced in CRISP is shown

in Figure 6.12. Results varied between TMA spots. In Figure 6.12(a) tumour proba-

bility values dropped within annotated tumour regions after iteration 2, suggesting fur-

ther context was detrimental to classification performance. However in Figure 6.12(b)

tumour classification improved with additional context information. Figure 6.12(c)

shows one of the worst cases in the reported dataset. Note that initial classification

was poor in this case as cancer cells were negatively stained and appeared similar to

healthy epithelial cells. Figure 6.12(d) - Figure 6.12(f) show cases in which CRISP

slightly improved tumour localisation. In these cases initial classification was strong.

As such it may be that RISP already incorporated sufficient context and therefore any

additional context had minor impact on overall performance. Future work will explore

CRISP further (Section 9.1).
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FIGURE 6.10: Cost curves for two iterations of CRISP and spin-context, and RISP.

Figure 6.12 shows ROC curves when the radius of the context window, Rc, was varied.

Error rates were similar regardless of the window size suggesting the size of the con-

text window does not greatly impact performance. The cost curves shown in Figure

6.13 demonstrate a larger window size would slightly improve classification accuracy

when tumour distributions are high but have the opposite effect if tumour distributions

are low.

6.8 Summary

In this chapter, a novel rotation invariant superpixel representation, RISP, was pro-

posed which uses a compact superpixel representation to capture structural informa-

tion in histopathology images. To incorporate spatial information at multiple scales, a

pyramid representation was adopted. At each pyramid level, spatial configuration of

superpixel visual words was modelled. Results showed RISP performed favourably

compared to related superpixel classification algorithms.
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Image Annotation
CRISP

Iteration 1 Iteration 2 Iteration 3

(a)

(b)

(c)
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(e)

(f)

FIGURE 6.11: Histopathology images, manually annotated tumour regions and su-
perpixel classification outputs for iterations 1, 2 and 3 of CRISP (ordered left to

right).
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FIGURE 6.12: ROC curves for different sizes of context windows after two iterations
of CRISP.
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FIGURE 6.13: Cost curves for different sizes of context windows after two iterations
of CRISP.
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Cost curves, proposed by Drummond and Holte [43], were used as an alternative

evaluation metric to the ROC curve. RISP and spin-context cost curves (Figure 6.9)

showed error rates were lower using RISP, particularly when tumour distributions were

low, as in the current dataset. RISP also showed comparable performance to boundary

sensitive spin-context proposed in Chapter 5.

An iterative context framework called Contextual RISP (CRISP) was proposed, in

which image-level and context-level RISPs were fused together. Superpixel classifi-

cation maps produced in each iteration were used to model contextual information in

subsequent iterations. A nested cross-validation experiment (Section 6.5) was adopted

which ensured separation of training and validation data. Results showed context-level

RISPs did not improve results in the reported dataset. Visual interpretation of super-

pixel classification maps suggests image-level RISPs already encompassed sufficient

contextual information and therefore any additional context had minor impact on re-

sulting performance.
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Chapter 7

Automated Tumour Localisation:

Clinical Impact

In Chapter 4, inter-rater agreements were reported between expert pathologists to gain

some insight into the current “gold standard” for manual tumour localisation. How-

ever, accepting that expert specialist breast pathologist review is the gold standard for

interpretation of biomarkers such as ER, any automated approach needs to be compa-

rable to and consistent with such expert assessment.

In previous chapters, automated solutions to tumour localisation were explored using

ER staining of breast TMAs as a clinically relevant exemplar. In this chapter, manual

and automated segmentation masks are compared in an attempt to measure the current

performance of automation for clinical assessment. In the reported study, manual

segmentations replicated the current manner with which pathologists interacted with

a widely used FDA-approved IHC scoring algorithm. Manual input of this form was

compared with automated annotations generated by RISP. Specifically, IHC Allred

scores [5] and Quickscores [36] extracted from segmentation masks were compared.

Furthermore, to measure the impact of IHC in treatment decision-making, cut-offs

were applied to extracted IHC scores to label TMAs are either ER+ve or ER-ve.
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7.1 Introduction

In previous studies comparing automated and manual IHC scores [46, 123], evalu-

ations were performed based on measurements retrieved after cell analysis was per-

formed at the pixel-level. However the challenge in current digital pathology applica-

tions lies in distinguishing healthy from cancerous tissue [58, 116]. In a study reported

by Rizzardi et al. [123], a pattern recognition system was adopted to localise tumours;

however no analysis was reported of the accuracy of automatically-generated tumour

boundaries. Cass et al. [25] adopted a semi-automated scoring system and concluded

accuracy strongly depended on a priori identification from experts for training. De-

spite this, clinical studies show automatically obtained IHC scores concord closely

with manual assessment. In a study of 3,484 TMAs reported by Turbin et al. [138],

agreements between automated IHC scores aligned closely with inter-rater agreement

between experts. Note no tumour localisation was performed in this study; full TMA

spots were automatically analysed.

Benefits of automation include standardisation of IHC measurements, which enable

IHC scoring that is objective and reproducible. In HER2 assessment of breast TMAs,

Gustavson et al. [59] demonstrated an automated system yielded 94.8% concordance,

standardised across laboratories and operators, concurrent with recommendations sub-

mitted by The American Society of Clinical Oncology and the College of American

Pathologists. Furthermore, with improvements in processing power and digital stor-

age over the years, machines can analyse digital slides in less time than it would take

to manually analyse them, thus showing potential to refocus pathologist expertise to

more difficult cases where disease is difficult to identify [92]. Currently statistics show

prostate pathologists are spending 80% of their time sieving through benign tissue

[58]. This time can be better spent analysing malignant or suspicious cases.

The main advantage of automation is in quantitative analysis of digital slides as mea-

surements can be acquired with greater precision compared to manual analysis. For

example, in the case of IHC scoring, manual analysis is performed on an ordinal scale

whereby proportion of cells are estimated into five or six categories (Section 2.5.1).
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As a machine can scan and analyse digital slides quickly, cell counting is a trivial task

which can be performed with greater precision, in most applications down to a single

cell. It is important to note, that accuracy of cell counting software relies upon the

image analysis algorithm used. Whilst some systems may produce precise measure-

ments, this does not necessarily indicate accurate measurements.

In this chapter, a study is reported which measured agreements between manual and

automated segmentations of tumour regions. Unlike in previous studies, various stages

including annotation of tumour regions, extraction of cell measurements (percentage

of positive cells, intensity scores) and computation of IHC scores is evaluated. In do-

ing so, a deeper understanding of the impact of pixel-level disagreements in annotated

tumour regions is provided.

7.2 Methods

7.2.1 Automated spot segmentations

Automated segmentation masks consisted of superpixel classification maps produced

by RISP, described in Chapter 6. 3-level RISPs were adopted with a growth factor,

A, of 2 and a circular support window with a radius of 100 pixels. 200 codewords

were used to encode superpixel features. Linear SVM classifiers were adopted, with

balanced numbers of positive and negative training examples.

Each of the 32 TMA spots in the dataset were automatically segmented twice: once

trained on pathologist A’s segmentation mask and once trained on pathologist B’s

segmentation mask.
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7.2.2 ER scoring of segmented spots

The FDA-approved Aperio IHC Nuclear Version 10 algorithm (Aperio Technologies,

CA, USA) was used to estimate ER scores based on the automated and manual seg-

mentation masks obtained. Only pixels labelled as tumour were passed to the scoring

algorithm. Masks were created by convolving the original image with binary seg-

mentations. Automated binary segmentations were created by thresholding superpixel

classification maps at 0.5.

The Aperio IHC algorithm identifies nuclei automatically and outputs a staining in-

tensity score (ranging from 0 to 3) and an estimate of the percentage of positively

stained cells. From these measurements, IHC scores (Allred score and Quickscore)

were computed for manually and automatically obtained segmentation masks. Com-

parisons are reported to assess the extent to which differences in these segmentations

affected scoring.

7.3 Results

7.3.1 Segmentation comparison

In pixel-level comparison of manually hand-drawn segmentation masks, pathologists

differed in their labelling of 9% of pixels (Section 4.3). Comparisons of each pathol-

ogist’s manual segmentations with those produced automatically are shown in Table

7.1 and Table 7.2, respectively. On average agreements between automated and man-

ual segmentation masks was κ = 0.811. Despite this being lower than inter-rater κ

agreements, results are promising. With further training examples and advancements

in image analysis, automation shows potential to replace manual input in clinical trials

in the near future.

Distributions of disagreement types (Type 1, Type 2, Type 3) are shown in Table 7.3.

A visual interpretation of agreements and disagreement types is shown in Figure 7.1.
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Pathologist A
T N

RISP (A)
T 0.221 0.097
N 0.092 0.591

TABLE 7.1: Normalised contingency table comparing RISP and pathologist A’s seg-
mentation masks.

Pathologist B
T N

RISP (B)
T 0.216 0.095
N 0.097 0.593

TABLE 7.2: Normalised contingency table comparing RISP and pathologist B’s seg-
mentation masks.

Comparison Type 1 Type 2 Type 3
RISP (A), Pathologist A 0.291 (±0.097) 0.604 (±0.161) 0.107 (±0.117)
RISP (B), Pathologist B 0.305 (±0.119) 0.572 (±0.202) 0.123 (±0.122)
Pathologist A, Pathologist B 0.227 (±0.144) 0.593 (±0.218) 0.180 (±0.227)
RISP (A), Pathologist B 0.297 (±0.107) 0.563 (±0.200) 0.141 (±0.140)
RISP (B), Pathologist A 0.294 (±0.107) 0.617 (±0.153) 0.089 (±0.099)

TABLE 7.3: Proportions of Type 1, Type 2 and Type 3 disagreements between RISP
and manually-obtained segmentation masks.

Automated segmentation masks resulted in a higher proportion of Type 1 disagree-

ments which were previously reported to have minor impact on IHC scores (Section

4.3.1). This suggests a large proportion of disagreements can be disregarded as minor

discrepancies with little or no impact on IHC assessment. As shown in Figure 7.1,

a higher proportion of Type 2 disagreements were observed between manual and au-

tomated segmentation masks. Proportion of remaining Type 3 disagreements closely

aligned with Type 3 disagreements between pathologists.

Examples of disagreement images for one TMA spot are shown in Figure 7.2. Here,

disagreements between manual segmentation masks appear to be less noisy than dis-

agreements between automated and manual segmentation masks. As manual anno-

tations are not accurate to the pixel level and automated analysis is performed on a

superpixel by superpixel basis, this result is not surprising. In the example shown
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FIGURE 7.1: Pie charts showing distribution of agreements, and Type 1, Type 2 and
Type 3 disagreements between manual and RISP segmentations.

in Figure 7.2, pathologist B’s segmentation mask was more coarse than pathologist

A’s segmentation mask. As a result, a higher proportion of Type 2 disagreements are

noticeable between RISP and pathologist B’s segmentation mask. However in most

examples, hand-drawn annotations showed strong agreements and therefore disagree-

ment images were similar regardless of who was used to train the system. When

comparisons were reversed such that automated segmentations were compared with

manual segmentations from the pathologist not used to train the system (Table 7.3),

proportion of disagreement types were similar as were κ agreements at the pixel level:

agreements between RISP (A) and pathologist B were κ = 0.807, and between RISP

(B) and pathologist A were κ = 0.808.

7.3.2 IHC scoring

Intensity scores and percentage of positive cells were measured by the Aperio IHC

Nuclear algorithm when provided with segmented tumour regions. A Bland Altman

plot of percentage of positive ER cells is shown in Figure 7.3. Standard deviations

were around 20% with most TMAs showing strong agreements between positive cells

identified in automated and manual segmentations. Large disagreements are notice-

able on the left hand-side of the Bland Altman plot. Here, cells were underestimated

in TMAs where there were higher proportions of positive cells.
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Image RISP (A), Pathologist A

RISP (B), Pathologist B Pathologist A, Pathologist B

FIGURE 7.2: Original image (left) and disagreement images comparing automated
and manual segmentation masks from two pathologists (pathologist A, pathologist

B). Disagreements are shown for Type 1 (red), Type 2 (green) and Type 3 (blue).

Agreements between scores calculated in Aperio were reported separately for inten-

sity, and Allred and Quickscore proportion scores in terms of a two-rater weighted

Kappa-squared statistic, κ̂ [33] (Table 7.4). Inter-pathologist agreement was 0.957 for

intensity scores, and 0.969 and 0.987 for proportion scores for Allred and Quickscore,

respectively. In comparison, automated segmentations on average produced agree-

ments of 0.893 for intensity scores, and 0.848 (Allred) and 0.877 (Quickscores) for

proportion scores. Intensity scores revealed strong agreements between automated

and manual segmentation masks, approaching inter-rater agreements between experts.

Furthermore, intensity scores were consistent regardless of who trained the system.
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FIGURE 7.3: Bland Altman plot of percentage of positive cells identified in Aperio.
TMA spots are shown by black dots (pathologist A) and blue diamonds (pathologist

B).

Agreements between proportion scores were slightly lower, suggesting more work

can be done to improve precision of cell boundaries.

Agreement for total Allred scores and Quickscores were computed by summing inten-

sity and proportion scores (Table 7.5). Comparisons between automated and manual

segmentation masks resulted in average κ̂ agreements of 0.911 (Allred) and 0.922

(Quickscore). Reported agreements approach inter-rater agreements of 0.980 and

0.989 and show the potential of using automation to generate IHC measurements,

achieving similar IHC scores retrieved from manual tumour segementation masks.

IHC scores for all 32 TMAs are shown in Figure 7.4 in the form of a histogram plot.
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Intensity Proportion
Allred Quickscore

Manual
(A)

Manual
(B)

Manual
(A)

Manual
(B)

Manual
(A)

Manual
(B)

RISP (A) 0.915 0.871 0.848 0.858 0.872 0.868
RISP (B) 0.915 0.871 0.839 0.848 0.885 0.881
Manual (A) - 0.957 - 0.969 - 0.987

TABLE 7.4: κ̂ agreements for intensity and proportion scores computed from mea-
surements obtained from the Aperio IHC algorithm.

Allred Quickscore
Manual (A) Manual (B) Manual (A) Manual (B)

RISP (A) 0.913 0.913 0.921 0.916
RISP (B) 0.908 0.909 0.929 0.923
Manual (A) - 0.980 - 0.989

TABLE 7.5: κ̂ agreements for computed Allred scores and Quickscores.
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FIGURE 7.4: Histogram plot of Allred scores and Quickscores extracted from manual
and automated segmentation masks.
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7.3.3 ER treatment

The dichotomy of tumour into ER+ve and ER-ve is essential for treatment decisions

for endocrine therapy in clinical practice. To determine the impact of computed IHC

score for such treatment decision-making, TMA spots were labelled as ER+ve or ER-

ve using commonly used cut-offs implemented in clinical practice.

The Allred cut-off mark (> 2) [5], resulted in almost complete agreement between all

reported segmentations, with the exception of a single TMA spot which was labelled

ER-ve using automated segmentation masks; as such this would have resulted in no

treatment for the patient. Using Quickscores (cut-off > 3) [36], two TMA spots were

labelled as ER+ve from automated segmentations and the same spots labelled ER-ve

from manually obtained segmentations. The remaining 30 spots, 20 ER+ve and 10

ER-ve, were in complete agreement across all segmentations.

Whilst overall there was strong agreement in treatment decisions, results varied be-

tween scoring systems and non-standardised cut-offs. These discrepancies suggest

more work may be required before automation can be used unreservedly for treat-

ment decisions as suggested for studies comparing visual and automated assessment

of Ki-67 markers in breast cancers [46, 98].

7.4 Summary

In this chapter, automated segmentation masks were compared to manually annotated

tumour regions for the purpose of IHC scoring. Clinical evaluation of automated tu-

mour localisation revealed on average around 30% of pixel disagreements in segmen-

tation masks relate to minor misalignment of drawn tumour boundaries, termed Type

1 disagreements. Tumour classification differences between automated and manual

segmentation masks rarely resulted in a change of IHC score (Allred: κ̂ = 0.911;

Quickscore: κ̂ = 0.922). Using the exemplar of nuclear ER staining, the use of au-

tomation proposed in this thesis hold promise for reducing the expert pathology time
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required and speeding up analysis of IHC stained TMAs from large data sets drawn

from clinical trials. The potential usage of automation in clinical practice is discussed

further in the following chapter.
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Chapter 8

Discussion and Conclusions

With the latest advancements in digital pathology, enabling rapid collection of digital

slides, image analysis plays a key role in the day-to-day role of a pathologist. In cancer

research, protein expression analysis enables understanding about the diagnosis, treat-

ment and development of tumours at the cellular level. However integrating expert

pathology knowledge in an automated system is a challenging task due to complex

cellular structures and patterns, and high variability within tissue samples.

Immunohistochemistry (IHC) is important for understanding the distribution of biomark-

ers such as ER thus supporting new discoveries for diagnosis, prognosis and treatment

of cancer. The main hurdle in IHC assessment in digital pathology is the localisa-

tion of tumours which is currently performed by manually tracing tumour boundaries.

An automated solution can significantly improve throughput and potentially refocus

pathologists’ workloads.

In the past, tumour localisation has been approached as a pixel-level segmentation

problem (Chapter 3). However when observed manually, texture of tissue at the micro-

scopic level is (a) arbitrarily oriented and therefore unsuitable for some state-of-the-

art texture features, (b) comprises of complex structural information at multiple scales

i.e. close inspection of tissue shows detail at the cellular level whereas ductal/lobular
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structures are better observed at lower magnifications, and (c) contains within it com-

plex relationships between tissue structures which are important for distinguishing

healthy from abnormal tissue.

8.1 Rotation Invariant Superpixel Pyramid

To capture important structural information in histopathology images, superpixels

were adopted (Chapter 6). Superpixels provide rich descriptive information about

cellular structures in histopathology. For example, stromal regions tend to encompass

elongated superpixels whereas in regions containing lumen and fat, more compact su-

perpixels are generated. In a novel technique called the Rotation Invariant Superpixel

Pyramid (RISP), superpixel properties were encoded in superpixel visual words. A ro-

tation invariant pyramid representation was adopted to incorporate information about

spatial configuration of superpixels.

RISP showed considerable improvement compared to a similar method reported by

Gorelick et al. [56] which also incorporated superpixels in a rotation invariant man-

ner. However, instead of using pixel-level features to encode surroundings, superpixels

were adopted, which were shown to be more effective for tumour localisation. Results

also showed that classification of superpixel features without context was not as ef-

fective as pixel-level classification (Figure 6.8), suggesting that spatial information

captured from surrounding superpixels is key for localising tumour. Without this in-

formation performance was poor. Furthermore, increasing the number of annuli at a

single scale resulted in minor improvement. Moreover, further gain in performance

was achieved by capturing superpixels at multiple scales.

A theoretical comparison of image features adopted in spin-context and RISP reveals

time complexity was significantly reduced by adopting a superpixel representation.

The complexity of 3600 x 3600 pixels was reduced to 50,000 superpixels in RISP;

reduction by a factor of ∼250. To combat high computational costs associated with

spin-context, classification was performed on a regular grid (as opposed to per pixel)
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whereas in RISP the baseline superpixel representation was retained. The trade-off

of the RISP representation is space complexity. Space complexities associated with

image features adopted in spin-context and RISP are summarised as follows:

Spin-context: M
(

2NDNI + 3NH

)
, where ND and NI are the number of distance and

intensity bins, respectively, and NH is the number of differential invariants (in-

cluding the zeroth order term). Spin intensity features were computed for 2

scales and differential invariants for 3 scales.

RISP: Z
(

K
(
AL−1

)
+24

)
; where K is the number of codewords. 24 is the number

of superpixel features which were appended to the RISP representation.

In reported experiments lengths of feature descriptors for spin-context image features

and RISP were 215M and 1424Z, respectively; where Z is the number of superpixels

and M is the number of grid points, or pixels, in an image.

In terms of clinical usage, RISP shows potential for various applications. As there are

no restrictions to the underlying image representation, RISP is applicable to IHC mem-

brane and cytoplasmic stains, and other cancer types (e.g. lung, prostate). Whilst non-

nuclear stains were not considered in this thesis, theoretically RISP can be adapted to

other IHC markers, or indeed in a multi-class framework.

As well as being instrumental for clinical research, RISP shows potential to further

recent research in 3D reconstruction of histopathology digital slides [20], whereby

acquiring manual annotations for serially sectioned tissue is a time-consuming task.

Here, RISP can potentially provide large volumes of labelled tumour regions to pro-

vide further insight in breast cancer development. In addition, RISP can be extended

for 3D application by simply substituting annuli with spherical shells.

Whilst RISP captured essential structural information enabling accurate tumour clas-

sification, in practice superpixels were shown to capture additional complex properties

in tissue.
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FIGURE 8.1: Image patches in which tumour cells with various IHC staining
strengths were correctly classified.

IHC staining: One of the challenges of tumour localisation in ER-stained tissue is

distinguishing ER+ve cell nuclei from cancer cell nuclei. Whilst in 80% of

breast cancer cases, cancer cells will express ER, it is not always the case. Fur-

thermore, ER+ve cell nuclei which are indeed cancerous, vary in appearance

and texture between different staining strengths. Remaining ER-ve cancerous

cell nuclei appear similar to healthy epithelial cells and are therefore difficult to

distinguish.

This level of complexity at the cellular level was modelled successfully in RISP.

As more than one superpixel was used to model cell nuclei, classification of

RISPs showed healthy cells were distinguished from cancer cells, regardless of

IHC staining strength. Figure 8.1 shows some image patches in which RISP

showed successful labelling of cancer cells. Regardless of the staining strength,

tumour localisation was strong.

Tissue folding: Artefacts in digital slides come in many forms and are introduced

through the various stages involved in preparation of tissue. Most isolated arte-

facts (bubbles, dirt) posed few problems in the RISP representation, as extra-

neous superpixels were insignificant in the overall distribution of visual words

captured within the circular support window. In level 0 of RISP, noisy super-

pixels had little impact in the BoS representation whilst at higher levels, spatial

information within annuli was still retained.

Tissue folding introduced unexpected complexities in the reported dataset, since

in some cases tumour regions were encased within these artefacts (Figure 8.2(a)).
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(a) (b)

FIGURE 8.2: Image patches containing folded tissue (left) and superpixel classifica-
tion maps produced by RISP (right).

When tissue folding occurs, the true nature of the tissue is somewhat altered,

commonly referred to as “core loss” [116]. In some cases cell nuclei are still

visible. As shown in Figure 8.2(a), in the case of ER+ve stained cells, RISP

successfully located cancer cells amongst folded tissue. However misclassifi-

cation occurred in regions where ER-ve cell nuclei were observed. In Figure

8.2(b), healthy epithelial tissue was incorrectly classified as cancerous due to

the irregular structure surrounding ER-ve cell nuclei. Here, superpixels were

assigned high tumour probabilities. It is expected that with more examples of

artefacts during training, classification can be improved in these areas. Alterna-

tively, there is scope to remove folded tissue as a pre-processing step in RISP.

The FDA-approved Aperio software [11] used to extract IHC scores in Chapter

7, embeds a tool for eliminating folded tissue prior to computing cell measure-

ments.

Healthy structures (fat, stroma, lumen): Classification of fat and lumen exhibited

few problems in the reported dataset, as these structures are clearly distinguish-

able from (healthy or cancerous) cell nuclei; furthermore the texture in these

areas is uniform. By utilising surrounding superpixels, classification was rela-

tively straightforward.

Identification of stromal regions is a more difficult problem as complex struc-

tures such as fibroblasts are encased within stroma. Furthermore, in invasive

cancers when stroma combines with cancer cells, tumour is less distinguish-

able. Figure 8.3(a) shows one of the most difficult cases in the reported dataset.
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(a) (b) (c) (d)

FIGURE 8.3: A misclassified stromal region (a) and stromal regions correctly classi-
fied as non-tumour ((b)–(d)).

Here, RISP incorrectly labelled stroma as tumour. However there was consider-

ably large regions of tumour surrounding this image patch and therefore tumour

proximity, as well as appearance, resulted in poor performance. In cases where

stroma did not incorporate other tissue components, classification was better

(Figure 8.3(b) - Figure 8.3(d)). In Figure 8.3(d), where there was a high propor-

tion of stromal cells, classification of healthy structures was still accurate.

Encased lumen: An interesting observation in the dataset was the encasement of lu-

men within tumour regions, as shown in Figure 8.4(a). When presented with this

image patch, RISP labelled lumen regions with low tumour probabilities (Fig-

ure 8.4(d)). Manual labels acquired from expert pathologists indicated these re-

gions were cancerous (8.4(b), 8.4(c)). Arguably, lumen regions can be labelled

as healthy structures captured within tumour regions. As pathologists were not

given direction for annotating such regions, both experts instinctively encased

lumen within tumour contours. Note, this may be a result of using digital an-

notation software, as it was not obvious how to draw embedded contours and

furthermore this requires additional effort from the operator.

In related work by Chomphuwiset et al. [29], lumen encasement was exploited

to segment bile ducts in liver tissue. It is therefore debatable as to how manual

labels of this kind should be treated during evaluation. Furthermore, there is

potential to optimise the annotation procedure to retrieve more accurate labels
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(a) (b) (c) (d)

FIGURE 8.4: Image patch containing lumen encased within tumour (a); annotations
by expert pathologists (pathologist A (b); pathologist B (c)); and superpixel proba-
bilities generated by RISP (d), where white indicates tumour and black non-tumour.

(see Section 9.3). In the case of IHC scoring, lumen has little impact on result-

ing scores. However, for other measures such as tumour burden where area of

tumour is measured, lumen encasement can be problematic.

To summarise, the usage of superpixels showed a range of benefits for modelling com-

plex patterns and structures in histopathology images. Contextual information from

surrounding superpixels in the circular support window was shown to have significant

impact on performance, revealing the importance of contextual superpixel surround-

ings.

8.2 Capturing context from posterior probabilities

Whilst contextual information can refer to a window from which neighbouring tex-

tures and patterns are modelled, in this thesis, context extracted from posterior proba-

bility maps was also explored. In Chapter 5, tumour probabilities from learned classi-

fication maps were captured in the form of a context descriptor. The intuition was that

classification of tumour for a particular location is dependent on context from its sur-

roundings. For example, a pixel/superpixel surrounded by tumour labels is also highly

likely to incorporate tumour. In Chapter 5, a method for incorporating context was de-

scribed, called spin-context. This work is an extension of auto-context by Tu and Bai
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FIGURE 8.5: ROC curves for two iterations of CRISP and boundary sensitive spin-
context, and 3-level RISP.

[137] and was modified to provide rotation invariance. Results showed incorporation

of context in this manner improved performance.

To extract context information from superpixel classification maps, in Chapter 6, an

alternative framework called Contextual RISP (CRISP) was proposed. In CRISP, the

RISP representation was altered to model posterior probabilities at multiple scales.

Figure 8.5 shows a comparison of CRISP with the boundary sensitive spin-context

method proposed in Section 5.5. There was a noticeable improvement between RISP

and spin-context at lower sensitivities. However there was little performance gain

between RISP (i.e. one iteration of CRISP) and two iterations of CRISP. Results

suggested that image-level RISPs already captured contextual information. However

there are additional parameters to be explored in the CRISP setup, which is reserved

for future work (Section 9.1).

To prevent over-fitting in CRISP, an experimental setup called nested cross-validation

(Section 6.5) was proposed to ensure separation of training and validation data across
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Inter-rater
Automated

Spin-context RISP
κ 0.908 0.829 0.811

TABLE 8.1: κ agreements between manually and automatically-obtained segmen-
tation masks. Automated κ agreements are reported as an average of agreements
between each automated method trained on pathologist A and pathologist B, and

manual segmentation masks.

multiple folds. To achieve this, in each fold the dataset was partitioned into V sub-

folds. Due to the small dataset used in reported experiments, there are some concerns

about whether there was sufficient training data available to represent highly variable

breast TMAs. In reported CRISP experiments, only a few training samples were made

available in each sub-fold. In a dataset containing a total of 32 TMA spots, only 14,
N(U−1)

UV , spots were assigned for training in each sub-fold when U = 8 and V = 2. As

such it is anticipated a larger dataset would give a more representative training set,

appropriate for nested cross-validation.

8.3 Clinical impact of automated tumour localisation

In the computer vision literature, tumour image analysis is often evaluated at the pixel-

level without evaluating the clinical implications of using automation in practice. To

provide some insight into the effects of using automated tumour localisation for IHC

assessment, IHC scores were computed and compared between manually-obtained and

automatic segmentation masks (Chapter 7). In reported studies, manual segmentations

were hand-drawn tumour contours drawn by expert pathologists. To measure inter-

rater agreement, manual segmentations were acquired from two pathologists, patholo-

gist A and pathologist B. Pixel-level κ agreements between manual and (spin-context,

RISP) automated segmentation masks are shown in Table 8.1. Agreements between

computed IHC scores (Allred and Quickscore), and intensity and proportion scores,

are reported in Table 8.2. Agreements are shown as an average over pathologist A and

pathologist B.
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Manual Automated
Intensity 0.957 0.893
Allred

Proportion 0.848 0.848
Total 0.980 0.911

Quickscore
Proportion 0.877 0.877
Total 0.989 0.922

TABLE 8.2: Overview of κ̂ agreements for Allred scores and Quickscores computed
from automated (RISP) and manual segmentation masks.

Pixel-level inter-rater agreements between expert pathologists revealed strong agree-

ments (κ = 0.908). As both pathologists recruited for these studies are fully trained

with several years of experience, it is anticipated that agreements will differ between

laboratories and different levels of expertise. Regardless, by training automated sys-

tems proposed in this thesis on labels provided by clinical pathologists, RISP showed

good agreements with manual segmentation masks. With further advancements in

medical image analysis, agreements between automated and manual tumour segmen-

tation show potential to increase further.

When pixel-level agreements between pathologists were analysed in more detail, it

was found that 23% of disagreements correlated to minor disagreements, termed Type

1 (Section 4.3). When automated segmentation masks were analysed in a similar man-

ner, higher proportions of disagreements were found to be of Type 1 (around 30%) sug-

gesting a large proportion of disagreements in automated segmentations are inconse-

quential for IHC scoring. It is questionable whether pixel-level analysis is appropriate

for image analysis systems intended for clinical usage. Instead, the author suggests a

deeper understanding of the intended use of the system is required, as hypothesised by

Gurcan et al. [58]. In this thesis, disagreements were categorised to distinguish minor

misalignment of hand-drawn tumour boundaries from disagreements which impacted

extracted IHC scores. For other applications, such as tumour grading, an alternative

method of categorising disagreements are best considered.
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FIGURE 8.6: Bland Altman plots comparing negatively (a), weakly (b), moderately
(c) and strongly (d) stained cell nuclei extracted from manual and automated segmen-

tation masks.
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Despite lower inter-rater agreements between automated and manually-obtained seg-

mentation masks at the pixel-level, computed IHC scores from automated segmenta-

tion masks were in strong agreement with scores computed from manual segmentation

masks (Allred; κ̂ = 0.911, Quickscore; κ̂ = 0.922). When agreements were evaluated

between intensity and proportion scores, automation approached inter-rater agree-

ments between experts. However agreements between proportion scores extracted

from automated and manual segmentation masks were noticeably higher. Standard

deviations indicated that there were ±20% disagreements between manual and au-

tomated segmentation masks, regardless of who was used to train the system. Fig-

ure 8.6 shows Bland Altman plots comparing percentage of negatively (0+), weakly

(1+), moderately (2+) and strongly (3+) stained cell nuclei that were identified in the

Aperio IHC Nuclear software. Large disagreements occurred amongst cell counts of

negatively stained nuclei as shown in Figure 8.6(a). When considering the average

percentage of negatively stained cells between manual and automated segmentation

masks, percentages were over-estimated when there were fewer negatively stained

cells and under-estimated when there were more. Notice the average proportion of

negatively stained cell nuclei were rarely close to zero, unlike proportion of positively

stained cells. In the majority of TMA spots, percentage of positively (i.e. weakly,

moderately and strongly) stained cells rarely exceeded 30%.

Despite lacking agreements between proportion scores, this had little effect on overall

IHC scores (i.e. summation of intensity and proportion scores) as shown in Table 8.2.

Allred scores and Quickscores extracted from automated segmentation masks closely

aligned with inter-rater agreements between scores extracted from manual segmenta-

tion masks. Given this outcome, it is anticipated that with a larger number of tumour

samples, application of automated annotations will conclude similar outcomes to more

labour intensive manual annotations. Thus, the benefits of automation extend beyond

the reproducibility of IHC scores to include changing the focus of research patholo-

gists’ workloads.
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Using the exemplar of nuclear ER staining, methods of automated tumour image anal-

ysis employed in this thesis hold promise for reducing the expert pathology time re-

quired and speeding up analysis of IHC stained TMAs from large data sets drawn from

clinical trials. Automation produced positive outcomes, approaching inter-rater agree-

ments between experts in pathology. For the time being automation may not be used

unreservedly for treatment decision-making (Section 7.3.3), but may be applicable to

large clinical studies where availability of manual skilled pathologists is lacking.

8.4 Contributions

The work presented in this thesis shows automated tumour localisation can be per-

formed reliably and accurately, when compared to benchmark performance measured

between expert pathologists. The main contributions in this thesis are summarised as

follows.

1. A method called spin-context was described in which context information was

extracted from learned classification maps which was shown to improve perfor-

mance in an iterative framework. Results showed spin-context surpassed auto-

context at lower sensitivities, matching performance at higher sensitivities. An

extension to spin-context was proposed to remove background interference by

excluding context locations outwith TMA spot boundaries. Results showed this

approach, boundary-sensitive spin-context, improved performance in all spin-

context iterations.

2. To capture essential structural information in tissue, a Rotation Invariant Su-

perpixel Pyramid (RISP) representation was proposed. In RISP, frequencies of

superpixel visual words and spatial configuration of superpixels were captured

at multiple scales in a pyramid structure. In each pyramid level of RISP, a spatial

Bag-of-Superpixels (S-BoS) was proposed to capture spatial information in the
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form of equally-spaced annuli. An experiment was performed to compare Bag-

of-Superpixels (BoS), Spatial Bag-of-Superpixels (S-BoS) and RISP, of which

RISP was superior.

3. Spin-context was adapted to incorporate classified superpixels. Context-level

RISPs were proposed in which posterior probabilities were modelled in a RISP

form. In each level of the context-level RISP, tumour distributions were cap-

tured within equally-spaced annuli. Image-level and context-level RISPs were

combined in a novel framework called Contextual RISP (CRISP). In CRISP,

superpixel classification maps were iteratively updated and used to construct

context-level RISPs. Compared to the original RISP representation, CRISP

showed comparable performance.

4. Tumour localisation was reviewed and evaluated for clinical assessment, specif-

ically IHC scoring. A study was designed to measure the impact of utilising

automated RISP tumour segmentations to compute IHC scores from ER-stained

TMAs. Inter-rater agreements of κ = 0.908 were found between manual tumour

segmentations drawn by two expert pathologists. A comparison between auto-

mated and manual segmentation masks revealed automation now approaches

inter-rater agreements (on average κ = 0.811). Extracted IHC scores were

then compared between manual and automated segmentation masks. Results

showed IHC scores computed from automated segmentations revealed strong

agreements with scores extracted from manual segmentation masks (Allred:

κ̂ = 0.911; Quickscore: κ̂ = 0.922), approaching inter-rater agreements be-

tween experts (Allred: κ̂ = 0.980; Quickscore: κ̂ = 0.989).

Pixel-level disagreements between tumour segmentation masks were categorised

into three types: Type 1, Type 2 and Type 3 disagreements. Type 1 disagree-

ments were found to correlate to minor discrepancies between hand-drawn tu-

mour boundaries with little effect on extracted IHC scores.

To conclude, automated IHC assessment shows potential to further molecular analysis

of protein expression in cancer research. Methods for automated tumour localisation
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described in this thesis showed similar outcomes to experts in pathology and thus hold

promise for improving clinical workflow.

111



Chapter 9

Recommendations

The following recommendations are offered for future directions in this research.

9.1 Exploring CRISP parameters

Evaluation of CRISP (Section 6.4) revealed that the framework offered little gain in

tumour classification accuracy compared to RISP. However there are a range of pa-

rameters that are yet to be explored, some of which are:

• The number of levels, L, in context-level RISPs.

• The number of bins, B, used to model posterior tumour distributions in context-

level RISPs.

• Varying widths of annuli in the circular support window, such that numbers of

superpixels are equally distributed between each row of the context-level RISP.

• Alternatively, incorporating an energy function to place higher/lower emphasis

on superpixel nearby or further away from the central superpixel in the circular

context support window.
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Future work will investigate the impact of varying these properties. It is anticipated an

alternative setup in CRISP will improve upon performance achieved using image-level

RISPs alone.

To evaluate CRISP, a nested cross-validation setup (Section 6.5) was adopted which

partitions folds to ensure separation of training and validation sets. Repeatedly parti-

tioning the dataset meant fewer samples were made available for training in sub-folds.

Given that the dataset used in reported experiments was lacking in annotated data,

expanding the dataset will be beneficial for future research. In addition to gathering

more data, future work will investigate how the number of training samples in each

sub-fold in nested cross-validation, impact overall performance. This will help deter-

mine the optimal number of annotated TMA spots required to ensure a representative

training set.

9.2 Contextual superpixel factor graph

In context-level RISPs, direct relationships between neighbouring superpixels are not

well captured. Given that a superpixel representation is a non-uniform structure, accu-

rate information about relative distances and relationships between superpixels can be

important for modelling complex patterns. To encompass this information a graphical

representation shows potential benefits, whereby superpixel posterior probabilities are

represented as nodes.

Factor graphs enable probability distributions to be derived from graphical models.

In computer vision, a common usage of factor graphs is “message passing” which

enables inference to be performed as a joint likelihood across a patch or image. Fu-

ture work will investigate application of factor graphs to superpixel representations

whereby posterior probabilities can be captured across an entire TMA spot, with

higher emphasis placed on direct superpixel neighbours. Unlike in CRISP and spin-

context, this will enable context to be captured globally which can potentially com-

plement information captured in context-level RISPs. Chen et al. [28] proposed an
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FIGURE 9.1: TMA spot (left) and annotation (right) drawn by an expert pathologist.
Annotation labels are shown for invasive tumour (red) and encased healthy structures

(blue).

efficient manner for performing inference in a graph structure by employing decom-

posable k-way potentials. This method was developed to model relationships between

cellular structures but may also be applicable to a superpixel representation in which

the number of neighbours can vary per superpixel. Furthermore superpixel properties

can be encoded within the potential function to enable appropriate weight assignments

based on superpixel shape, appearance, geometry and location.

9.3 Gathering manual annotations

Figure 9.1 shows a manual annotation of invasive tumour regions (red) which were

annotated in a similar manner to segmentation masks reported in this thesis. Whilst

annotating this TMA spot, the pathologist also highlighted regions which are not can-

cerous but are encased within tumour, shown in blue. In this thesis, encased healthy

structures such as lumen were not explicitly labelled to ease the annotation procedure.

However, the effort to produce additional class labels could potentially provide a more

accurate learning system by refining classification function boundaries. By explicitly

locating healthy structures encased within “tumour” regions, the quality of collected
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annotations can potentially outweigh the benefits of providing large volumes of coarse

annotations. This is yet to be investigated.

Acquisition of additional labels, particularly examples which were considered infre-

quent in the reported dataset (i.e. tissue folding) will also be reserved for future work.

It is anticipated with a more representative training set reflecting large variations in

the dataset, classification accuracy can be improved further.

9.4 Standardisation across laboratories

Between laboratories, tissue preparative phases e.g. staining conditions, are likely

to differ thus introducing differences between tissue sections. Furthermore, as tissue

degrades over time, the timeframe between tissue preparation and digital scanning

can introduce further complexities. Even scanner specifications (manufacturer, focus-

ing, white balancing etc.) can cause variations to occur between datasets [2]. Whilst

in this thesis, histopathology images were drawn from multiple TMAs, images pre-

pared across laboratories is yet to be explored. In future work, comparisons will be

performed between tissue samples acquired from multiple laboratories to assess how

variations resulting from tissue preparation and acquisition can effect IHC analysis.

Similar to evaluation techniques described in this thesis, the impact of automation in

clinical practice will be assessed for standardisation.

Related work in stain normalisation has also shown to be beneficial for standardisation

across datasets and laboratories [58]. Khan et al. [76] showed improvement in tumour

segmentation accuracy by using stain normalisation as a preprocessing step. In future

work, integration of stain normalisation with methods described in this thesis will be

explored, with the potential to improve tumour localisation further.
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Appendix A

Superpixel Autocorrelogram

Bag-of-Words (BoW) was originally proposed for information retrieval as a means of

representing text (i.e. a sentence) as a bag of individual words. Later it was adopted

in the computer vision literature to capture frequency of learned visual words in the

form of a one-dimensional histogram [131]. In BoW, visual words are learned using a

feature encoding technique such as K-means clustering.

Whilst BoW is a simple yet powerful representation, its main drawback is lack of

spatial information. An alternative approach is the codebook correlogram, proposed

by Zheng et al. [158], which retains spatial information by including the distance

distribution of the position of visual words within a codebook dictionary. Zheng

et al. described a histogram representation with three dimensions: two dimensions

indexed visual words and the third equally-spaced spatial distributions. Spatial dis-

tributions of “neighbouring” codewords were incorporating in the correlogram, such

that a pair of codewords (vi,v j) positioned di j from each other contributed towards the

bin (vi,v j,di j) in the three-dimensional correlogram. Figure A.1 illustrates how the

codebook correlogram differs from traditional BoW.

However one of the main drawbacks of the correlogram is that it requires O(D2Q)

space, where Q is the number of rings at the current level and D is the dictionary size.

In order to improve computational costs by reducing the dimensionality of the correlo-

gram, Huang et al. [64] proposed the colour autocorrelogram. In the autocorrelogram
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FIGURE A.1: Illustrative comparison of BoW, correlogram and autocorrelogram,
given the support window shown on the left.

FIGURE A.2: Two-dimensional superpixel autocorrelogram, indexed by visual words
and spatial distribution (denoted by shaded regions of the circular support window).

only identical visual words are recorded in the two-dimensional histogram thereby

eliminating one dimension from the correlogram. This reduces space complexity to

O(DQ) whilst time complexity remains as O(D2Q). Zheng et al. [158] also propose a

similar extension to the codebook correlogram, called the self-correlogram.

In the work reported, a superpixel autocorrelogram is proposed which captures spatial

information between pairs of superpixels. Unlike in the method proposed by Zheng

et al. , distance is measured in the image space rather than the feature space, thereby

encoding relative positioning of superpixel pairs. Similarly to [64], only identical

pairs of codewords are counted. However in the superpixel autocorrelogram, circular

windows are used instead of a regular grid to retain rotation invariance. As in RISP

(Chapter 6), rings are equally-spaced apart and centred on a superpixel to be classified.

The distance distribution between all superpixel centre points which lie within each

ring is captured, resulting in a two-dimensional superpixel autocorrelogram (Figure

A.2). In reported experiments (Chapter 6), five equally-spaced annuli were used in the

circular support window with 200 superpixel visual words.
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