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Abstract

Invasion of the surrounding tissue is one of the hallmarks of cancer. Solid tumours

have a reciprocal relationship with the surrounding microenvironment, a complex

tissue composed of extracellular matrix and other multiple distinct cell types. Prote-

olytic degradation and remodelling of the extracellular matrix is essential for cancer

cells to be able to invade. Important matrix degrading enzymes include the matrix

metalloproteases (MMP) and the urokinase plasminogen activator (uPA).

This thesis has investigated the complex process of cancer growth and spread that

occur across several different spatial scales, in order to gain a better understanding

of the key processes involved during invasion. At first, we tested our modelling

concept by applying a level-set method to a moving boundary problem. Later,

a multi-scale mathematical model of cancer invasion was developed by coupling

the urokinase plasminogen activation (uPA) system with a two-scale computational

modelling technique. This approach allows us to investigate cancer invasion not

only at the macroscopic tissue level, but also at the microscopic cellular level. Our

computational simulation results demonstrate a range of heterogeneous dynamics

which are qualitatively similar to the invasive growth patterns observed in a number

of different types of cancer known as tumour infiltrative growth patterns (INF).

viii



Chapter 1

Introduction

Cancer cells are defined by two heritable properties: (1) they break the rules of nor-

mal cell growth and division with uncontrolled reproduction; (2) invade and colonise

territories in other tissues (Alberts et al., 2008). Invasion of the surrounding tissue

transforms a localised solid tumour (benign) into a systemic, metastatic and fatal

disease (malignant). Solid tumours have a reciprocal relationship with the surround-

ing microenvironment, a complex tissue composed of extracellular matrix and other

multiple distinct cell types. The extracellular matrix especially not only plays the

role of a scaffold for tissues and cells and a physical barrier during cell migration, but

also involves in biological signalling pathways that create distinct cellular microenvi-

ronments. This microenvironment locally regulates cell migration, proliferation and

differentiation. Thus, proteolytic degradation and remodelling of the extracellular

matrix is essential for cancer cells to be able to invade. Important matrix degrading

enzymes include the matrix metalloproteases (MMP) and the urokinase plasminogen

activator (uPA).

This thesis seeks to investigate the complex process of cancer growth and spread

that occur across several different spatial scales, in order to gain a better understand-
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ing of the key processes involved during invasion. Chapter 2 provides brief biological

background of cancer cell invasion and migration. Chapter 3 reviews some of the

key mathematical models that contribute to the understanding of the processes of

cancer growth and invasion, which also contribute to the development of modelling

techniques.

Chapter 4 examines the modelling concept that PDE systems with heterogeneous

solutions are used to describe the dynamics of the tumour cell community, and couple

a level-set method (Macklin and Lowengrub, 2008) to calculate the position of the

moving boundary of the tumour. In the previous models of tumour growth that in-

volves level-set technique (Macklin and Lowengrub, 2005, 2006, 2007, 2008), linear

and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent

boundary conditions were used to model the dynamics (e.g. nutrients transport,

membrane pressure of the tumour boundary) in the tumour microenvironment. In

order to extend and develop the previous models, we investigate PDE systems that

model the interactions in and around the tumour region, in which we intend to ap-

proach the modelling of cancer invasion from different aspects, such as proteolytic

activities, interactions between cancer cells and surrounding tissue. We first test

our modelling concept without biological relevance by coupling a two-PDE equation

system, i.e. Schnakenberg system, with level-set method. Then we used an enzy-

matic system, i.e. the urokinase plasminogen activation (uPA) system, to model

the interactions between cancer cells, the extracellular matrix (ECM), the uroki-

nase plasminogen activator (uPA), uPA inhibitors, and the ECM degrading enzyme

plasmin. In this model, we introduced more details of the dynamics in the tumour

microenvironment than the previous models. Also, the movement of the tumour

boundary depend only on the dynamics of the distribution of plasmin (the ECM

degrading enzyme), not the curvature of the boundary. In this way, our model focus
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more on the mutual effects between cancer cells and ECM, biological signalling, and

proteolytic activities. Since we are modelling a collective mode of cancer cells, unlike

single cell mode in which there is a well-defined and continuous cell membrane, we

believe it is more biologically relevant to consider all those cellular and molecular in-

teractions mentioned above than the modelling methods in which the deformations

of tumour boundary is curvature-driven.

Chapter 5 and 6 extend a two-scale model of cancer invasion by coupling the

urokinase plasminogen activation (uPA) system (Chaplain and Lolas, 2005; Andasari

et al., 2011) with a computational modelling technique introduced in Trucu et al.

(2013). The modelling technique allows us to investigate the protease-dependent

cancer invasion on the macroscopic (tissue) level and on the microscopic (cellular)

level. In this model, we not only include more details of the dynamics at the tissue

level in the tumour microenvironment by applying the uPA system mentioned in

Chapter 4, but also more details are provided at the cellular level around the tumour

boundary by using the two-scale modelling technique, in which proper amount of

microdomains around the tumour boundary are formed to obtain more information

of the molecular interactions in uPA system and the determinants of movements of

cells on the moving boundary. Our computational simulation results demonstrate

a range of heterogeneous dynamics which are qualitatively similar to the invasive

growth patterns observed in a number of different types of cancer known as tumour

infiltrative growth patterns (INF).

Finally, chapter 7 discusses the findings and conclusions of the thesis. A few

directions of future work are also included in the chapter.
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Chapter 2

Cancer cell invasion and migration

2.1 Introduction

Cancer is a generic term used to describe a group of diseases sharing common cel-

lular hallmarks, such as sustaining proliferative signalling, evading growth suppres-

sors, activating invasion and metastasis, enabling replicative immortality, inducing

angiogenesis and resisting cell death (Hanahan and Weinberg, 2000). Due to the

growing knowledge of the disease in last decade, more revelations have been added

to this picture, i.e., avoiding destruction by the immune system, tumour-promoting

inflammation, genome instability and mutation and deregulating cellular energetics

(Hanahan and Weinberg, 2011). As one of the hallmarks of cancer, cancer invasion

and metastasis are landmark events that transform a locally growing tumour into a

systemic, metastatic and fatal disease. Therefore, a lot of effort has been made by

researchers to get a better understanding of the processes during cancer invasion in

order to obtain effective therapies.

There is more and more evidence supporting the observation that a malignant

tumour is not just a collection of relatively homogeneous cancer cells but a complex
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tissue composed of extracellular matrix and multiple distinct cell types, e.g. fibrob-

lasts, endothelial cells and macrophages. The recruited normal cells are not “in-

nocent bystanders”, they actively participate in carcinogenesis by forming tumour-

associated stroma. Furthermore, it is increasingly apparent that crosstalk between

cancer cells and cells in the peritumoural stroma is involved during cancer invasion

(Hanahan and Weinberg, 2011; Mikala et al., 2010; Qian and Pollard, 2010; Joyce

and Pollard, 2009; Kalluri and Zeisberg, 2006) (Figure 2.1).

Figure 2.1: Evolutions of cancer cells and its microenvironment during tumour
progression: (A) evolutions in overall tissue composition in different progression
stages. (B) evolutions in extracellular matrix in different progression stages. Copy-
right permission requested. Mikala et al. (2010)

From image (A) in Figure 2.1 we can see that with tumour progression, the

architecture of carcinoma cells bears less and less resemblance to the architecture of

the tissue from which it was derived. The stromal tissue also changes. For example,

the stromal tissue used to be dominated by fatty cells, however, as the tumour

progression proceeds, it becomes more and more dominated by extracellular matrix,
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fibroblasts, and immune cells. Image (B) shows that fibrillar collagen accumulates

at the invasive edge of the tumour and surrounding nests of cancer cells, and it also

indicates that the collagen fibres must be degraded to allow the tumour to occupy

more space inside the tissue.

Thus, knowledge of how the reactive tumour microenvironment influences cancer

invasion is indispensable. When developing mathematical models of cancer invasion,

we must take into consideration the determinants that stem from the peritumoural

extracellular matrix composition and structure, protease activities, cell-cell and cell-

matrix adhesion and so on.

2.2 The Extracellular Matrix (ECM)

The extracellular space between cells inside tissues is occupied by extracellular ma-

trix and it has been recognised that there is a reciprocal relationship between cells

and the extracellular matrix: cells make extracellular matrix, organise it and de-

grade it and the matrix in turn exerts powerful influences on the cells, no matter if

the cells are normal or neoplastic (Wolf et al., 2013; Wolf and Friedl, 2011; Papini

et al., 2007). Therefore, ECM not only plays the role as a scaffold for the tissues and

physical barriers during cell migration but also provides signals that, together with

soluble factors, may create distinct cellular microenvironments that locally regulate

cell migration, proliferation and differentiation.

The ECM renders an amazing diversity of materials in different tissues. The

variations do not come from the classes of macromolecules constituting the ECM

but from the relative amounts of these molecules and the ways in which they are

organised. These various components of ECM play different roles to meet the re-

quirement of a particular tissue, and we can classify them into two main categories:

(1) glycosaminoglycan polysaccharide chains; (2) and fibrous proteins (Alberts et al.,
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2008).

Glycosaminoglycans (GAGs) Glycosaminoglycans (GAG) polysaccharide chains

are unbranched polysaccharide chains which are too stiff to fold up and also strongly

hydrophilic. Thus, GAGs are usually large relative to their mass as they tend to

adopt highly extended conformations, and they can form gel even at very low con-

centrations. The porous hydrated gels they form is negatively charged. Therefore,

GAGs not only fill most of the extracellular space but also help to attract cations,

especially sodium (Na+), leading to water moving into the matrix. The swelling

pressure created by this process enables the matrix to withstand compressive forces.

On the other hand, these gels can change pore size and charge density, so GAGs are

very likely to regulate the traffic of molecules and cells according to their size and

charge.

Most GAGs are covalently attached to proteins as proteoglycans, and they can

regulate the activities of secreted proteins so that they play an important part in

chemical signalling between cells. For example, proteoglycans can bind to fibroblast

growth factors (FGFs) that stimulate many kinds of cell types to proliferate. They

also bind and regulate the activities of proteolytic enzymes and protease inhibitors,

which are essential components controlling both the assembly and the degradation

of the ECM (Alberts et al., 2008).

Fibrous proteins Fibrous proteins are also very important since they give the

matrix strength and resilience, and also form structures that cells can be anchored

to.

Collagen The collagen family contains the major proteins of the ECM and it

includes many types of collagens. For instance, fibrillar collagens type I, II,III,V and
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XI are rope-like, triple-stranded helical molecules that aggregate into long fibrils

which provide tensile strength and act as barriers to cell migrations and cancer

invasion; collagen type IX and XII are fibril-associated collagens, since they link

fibrils to one another and to other components of ECM, and these fibrils decorate

the surface of the fibril-associated collagens (Alberts et al., 2008).

Elastin Elastin is the main component of elastic fibres that gives tissues their

elasticity, such as skin, blood vessels, and lungs. It is the dominant protein in

arteries (Alberts et al., 2008).

Fibronectin Fibronectin is an extracellular protein that helps cells attach to

the matrix through their multiple binding sites for integrins on the cell surface

(Alberts et al., 2008).

Laminin Laminin is another extracellular protein that has similar functions

to fibronectin and it is mainly found in basal lamina (Alberts et al., 2008).

The ECM renders different morphologies in different tissues. For example, there

are tight calcified collagens in bones and teeth, and in perimuscular stroma there are

wide gaps and trails with parallel interfaces, and so on. In the following subsections

we introduce two main types of ECM: basal lamina (2D) and the ECM of animal

connective tissues (3D).

2.2.1 The basal lamina

The basal lamina, also called basement membrane, is a thin tough sheet of extracel-

lular matrix that closely underlies epithelia in all multicellular animals and its key

components are laminin, type IV collagen, nidogen and the proteoglycan perlecan

(Alberts et al., 2008). Besides these components, fibronectin and other collagens,
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e.g. collagen XVIII, can be found in the basal lamina as well. Schematic and ex-

perimental pictures can be found in Figure 2.2 showing the structure of the basal

lamina and its main components.

Figure 2.2: The basal lamina: (1) on the left is a model of the molecular structure
of a basal lamina; (2) on the right shows the basal lamina in the cornea of a chick
embryo. Copyright permission requested Alberts et al. (2008).

The basal lamina provides mechanical support for epithelia and forms the inter-

face and the attachment between epithelia and connective tissue. It also has the

functions of the other types of ECM in general that are mentioned above.

2.2.2 The ECM of animal connective tissue

Unlike the basal lamina, which is a sheet-like mesh formed by fibril proteins and

proteoglycan, i.e., a two-dimensional structure, the ECM in connective tissue is a

three-dimensional structure. It contains various protein fibres (e.g. collagen fibres

and elastic fibres), interwoven in a hydrated gel composed of a network of gly-

cosaminoglycan (GAG) chains. Figure 2.3 shows schematically the components of

the matrix in connective tissue and also an experimental image is presented giving

us a better idea as to what the matrix looks like in vivo. The most abundant and
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important component of the matrix in connective tissue is collagen type I, which

is the principal collagen of skin and bone. Collagen type I molecules secreted into

the extracellular space usually assemble into higher-order polymers called collagen

fibrils. Moreover, these collagen fibrils often aggregate into larger cable-like bundles

that can be easily observed with a light microscope (Figure 2.3) (Alberts et al.,

2008).

Figure 2.3: On the left: a schematic picture of the connective tissue underlying the
epithelium, which contains a variety of cells and extracellular matrix components.
The predominant cell type that secretes abundant extracellular matrix is fibroblast.
On the right: a scanning electron micrograph shows tissue from the cornea of a rat.
The cells in the graph are fibroblasts and the surrounding extracellular matrix is
composed largely of collagen fibrils. Copyright permission requested Alberts et al.
(2008).

2.3 Modes of cell migration

Cell migration, a multi-step process that requires the integration of complex bio-

chemical and biophysical cell functions, is fundamental to cell and tissue dynamics

in morphogenesis, the immune defence, wound healing as well as cancer invasion
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and metastasis. There are two major ways for normal or neoplastic cells to migrate

– individually or collectively – according to the cell type and tissue environment,

e.g. whether cell-cell adhesion is strong enough or not.(Friedl and Alexander, 2011;

Friedl and Wolf, 2009, 2008) (Figure 2.4). On the other hand, if we consider the

pericellular proteolytic activities, we can classify cell migration into another two

modes: proteolytic or non-proteolytic cell migration. However, migration of cells

does not always use one mode. For example, if the cell-cell adhesion, or traction

force generated via integrins and the cytoskeleton, is modified by changing ECM

composition and density, cells can shift from highly adhesive to low adhesive migra-

tion (e.g. epithelia-mesenchymal transition), or from proteolytic to non-proteolytic

migration (e.g. mesenchymal-amoeboid transition) and so on. Such adaptation re-

sponses is known as the plasticity of cell migration (Friedl and Alexander, 2011;

Friedl and Wolf, 2010; Friedl and Gilmour, 2009; Friedl and Wolf, 2003).

Single-cell migration The cyclic process of single-cell migration mainly involves

five steps that change the cell shape, its position and the surrounding tissue structure

(Friedl and Alexander, 2011; Sheetz et al., 1999; Lauffenburger and Horwitz, 1996)

(Figure 2.4A). They are: (1) actin polymerisation-dependent pseudopod protrusion

at the leading edge (Ridley et al., 2003); (2) integrin-mediated adhesion to ECM;

(3) pericellular proteolytic ECM cleavage and remodelling; (4) small GTPase Rho

activation of myosin II, and contraction mediated by actomyosin, which generates

tension inside the cell; (5) contraction and translocation of the cell body (Wolf et al.,

2013; Friedl and Alexander, 2011; Poincloux et al., 2011; Estecha et al., 2009; Friedl

and Wolf, 2009; Ridley et al., 2003; Friedl et al., 1997).

Amoeboid migration Amoeboid migration usually refers to the the move-

ment of rounded or ellipsoid cells with low adhesion force or high actomyosin-
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Figure 2.4: Schematic il-
lustration showing the cell
migration processes: (A)
five steps of single-cell mi-
gration that change the cell
shape, its position, and
the tissue structure; (B)
there are two major zones
in the process of collec-
tive cell migration: in zone
1, a “leader cell” gener-
ates a proteolytic micro-
track at the front of the mi-
grating group, and in zone
2 the subsequent cells then
widen this micro-track to
form a larger macro-track.
Copyright permission re-
quested (Friedl and Alexan-
der, 2011). (C)an exper-
imental image showing in-
dividual and collective inva-
sion from three-dimensional
spheroid cultured within a
three-dimensional collagen
lattice. Copyright permis-
sion requested (Friedl and
Wolf, 2008).
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mediated contractility. The characteristics of amoeboid migration are well estab-

lished through studies of the single-cell amoeba, Dictyostelium discoideum (Friedl

et al., 2001; Firtel and Meili, 2000; Devreotes and Zigmond, 1988), including rounded

morphology with membrane blebbing, proteolysis-independent or low matrix met-

alloproteinases (MMPs) activity, high Rho-Rock activity, high cellular contractility

and cortical tension, weak attachment to ECM.

Mesenchymal migration Mesenchymal cells move via the five-step migra-

tion cycle mentioned earlier, and is predominantly found in cells from connective

tissues. Its characteristics are quite different from those of amoeboid migration,

i.e., proteolysis-dependent or high MMPs activity, low Rho-Rock activity, elongated

morphology with lamellipodial protrusions and strong attachment to ECM via focal

adhesions.

Collective migration Collective migration is essential in building, shaping and

remodelling complex tissues and tissue compartments, such as epithelia, ducts,

glands, and vessels, but also contributes to cancer progression by local invasion

(Friedl and Wolf, 2010). During collective migration, cell-cell adhesion and mul-

ticellular coordination are required and cells move as sheets, strands, clusters or

ducts rather than individually (Friedl and Gilmour, 2009) (Figure 2.4B). There are

mainly two types of collective migration: (1) one or several leader cells with mes-

enchymal characteristics form the tip of multicellular strands and generate forward

traction and pericellular proteolysis toward the tissue structure (Figure 2.4c); (2) a

blunt bud-like tip protrudes along the tissue space consisting of multiple cells that

variably change position, lacking defined leader cells (Figure 2.5).
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Figure 2.5: An experimental image of borderline cystadenofibroma showing infil-
trative growth patterns (INF). Copyright permission requested (The digital atlas of
gynecologic pathology by Meenakshi Singh, MD on the internet).

2.4 Determinants of cancer cell invasion and mi-

gration

Cancer cell invasion is now regarded as a heterogeneous and adaptive process, and

physical, cellular, and molecular determinants adapt and react altogether for this

process throughout the progression of the disease. The plasticity in cell adhesion,

cytoskeletal dynamics and mechanotransduction tunes and perpetuates migration

under diverse structural, molecular and even adverse microenvironmental conditions

(Friedl and Alexander, 2011; Sanz-Moreno and Marshall, 2010; Friedl and Wolf,

2010; Sahai, 2007).
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2.4.1 ECM determinants of cell migration

The extracellular matrix has a big influence on cell migration modes by its diverse

macromolecular and structural organisation, such as dimension, density, stiffness

and orientation.

Dimension Extracellular tissue structures encountered by moving cells are either

flat 2D sheets (e.g., the basal lamina in Figure 2.2) or 3D tissue networks (e.g., the

matrix in connective tissue in Figure 2.3). 2D surfaces almost allow cells a barrier-

free migration as long as they have stable-enough but transient attachment to the

substrate, and the cells usually adopt a flattened, spread-out morphology guided by

a leading lamellipodia. However, in 3D structures, cells have a spindle-like shape

when travelling through the network of interwoven collagen fibres. Also, instead of

lamellipodia formation as in 2D, cells form thin tip-like cylindrical pseudopodia at

the leading edges that orient in three dimensions. Moreover, the cell either deforms

its shape to accommodate small tissue gaps or remodels the ECM structure by

pericellular proteolysis (Friedl and Alexander, 2011; Wolf and Friedl, 2011; Friedl

and Wolf, 2010). In vivo, most 2D surfaces are encountered in a 3D scaffold.

Density and gap size In 3D matrix structures, the density and gap size deter-

mine whether there is enough spaces between ECM fibres or within the filter pore

that can accommodate the migrating cell body. Large pore sizes favour cell round-

ing, allowing non-proteolytic amoeboid migration, whereas the confinement of the

ECM makes moving cells stretch into a spindle-like shape to reduce their cell diam-

eter, and most of the time, pericellular proteolysis is required to create more space.

Here, we might also need to consider the deformability of nucleus of the moving cells

in response to space constraints (Wolf et al., 2013).
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Stiffness ECM stiffness depends on molecular properties of the tissue and cells

detect matrix rigidity via integrin-mediated adhesions and downstream protein sig-

nalling. Similar to chemotaxis, cells tend to migrate toward substrate of greater

stiffness, a process called durotaxis (Friedl and Wolf, 2010).

Orientation Connective tissues could have loose and random structures and also

highly aligned ones, and cells tend to align in parallel along oriented structural dis-

continuities. The aligned fibre orientation in collagen-rich ECM might not influence

cell shape, but it helps multicellular streaming in chainlike patterns in 3D tissue and

migration of 2D cell sheets along tissue clefts (Friedl and Wolf, 2010).

Thus, the extracellular matrix provides different conditions that modulate cell ad-

hesion and cytoskeletal organisation, which in turn impacts cell shape and modes

of migration. However, the matrix does not complete the modulation process alone.

There are other physical and molecular determinants that cooperate with it, which

will be introduced in the next subsection.

2.4.2 Physical and molecular determinants of cell migration

Integrins (cell-matrix adhesion) Cell-matrix adhesion is one of the important

factors that determine which cell shapes and forces are generated during migration.

This is predominantly generated by integrins, which function as transmembrane

linkers between the extracellular matrix and the cytoskeletal proteins inside the cell

(Friedl and Wolf, 2010; Weaver, 2006; Alberts et al., 2008; Ridley et al., 2003).

High integrin expression levels tend to result in slow and mesenchymal-type cell

migration because of the high attachment forces and slow turnover of the adhesion

sites, which promote cell contractility and formation of elongated or spindle-shaped
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morphologies in various cell types, such as fibroblasts, smooth muscle cells and

neoplastic cells. Whereas, if the integrin-talin axis, focal adhesions and stress fibres

do not form or do not reach full maturation, cell adhesion strength is moderate

or low. The cells then generate relatively smaller lamellipodia and pseudopodia

compared with the large deformations observed while the attachment force is strong

(such as lymphocytes and neutrophils whose adhesion to the ECM exists but no

focal adhesions or stress fibres are formed). Furthermore, if cell adhesion strength is

very low, cells cannot form unilateral attachments to two-dimensional ECM so that

no lamellipodia will be formed and the cells will not move. However, in 3D, cells

can move using the amoeboid blebbing mode of migration.

Cadherins (cell-cell adhesion) Cadherins are the main mediators for cell-cell

adhesion (a key determinant of whether cells move either individually or collectively),

including E-cadherin in epithelial cells, VE-cadherin in endothelial cells and N-

cadherin in stromal cells (Friedl and Wolf, 2010; Friedl and Gilmour, 2009; Vitorino

and Meyer, 2008; Ewald et al., 2008). Collective migration requires the presence

of cell-cell junctions and coordinated cycles of protrusion and rear retraction of the

leading cells as well as of cells inside the group, and the absence of cell-cell adhesion

causes cells to move independently. Thus, whether or not the cell-cell adhesion exists

and how stable are the cell-cell junctions determines whether collective translocation,

cell streaming or single-cell migration will be generated.

Rac activity and Rho/ROCK signalling (cell protrusion and rounding)

The Rho family of small GTPases are key regulators of both cell adhesion and the

cytoskeleton. The best studied members of the Rho GTPases family are Cdc42,

Rac1 and RhoA. Rac1 can promote the formation of large membrane protrusions

(lamellipodia) so that Rac activity also plays an important role in the morphologies
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of migrating cells and the migration mode. High Rac activity leads to leading edge

extension, elongated morphology and focal integrin engagement. Whereas active

RhoA and RhoC can recruit the ROCK (or Rho kinase) family that phosphorylate

cytoskeletal proteins, which promotes the formation of actin stress fibres and the

generation of contractile force. Active Rho/ROCK signalling in the presence of

little or no RAC activity promotes rounded cell shapes and amoeboid migration.

Moreover, Rac activity and Rho/ROCK signalling forms a negative feedback loop,

counterbalancing each other (Friedl and Wolf, 2010; Sanz-Moreno et al., 2008; Sahai

and Marshall, 2003).

Actin polymerisation-driven propulsion and actomyosin-based contractil-

ity (force generation) The forces for cells to move are mainly generated by two

physical mechanisms: actin polymerisation-driven propulsion that push the cell body

forward and the pulling force exerted on ECM substrate generated by actomyosin-

based contractility at the rear of the cell. Almost all types of cell migration will

involve actin polymerisation-driven propulsion at the leading edges. However, the

pulling force is dependent on the cell-matrix adhesion strength, meaning that in

some migration modes, for instance, amoeboid migration, we might expect little or

no actomyosin-based contractility and adhesive pulling of the ECM.

Proteases (proteolysis and extracellular matrix degradation) Another molec-

ular determinant of cell migration is pericellular proteolysis activity executed by pro-

tease systems, which include MMPs (matrix metalloproteases), ADAMs (a disinte-

grin and metalloproteases), cathepsins, uPA (urokinase plasminogen activator) and

its receptor uPAR (urokinase plasminogen activator receptor), etc. These proteases

are usually produced by cancer cells and cells in the tumour microenvironment,

such as fibroblasts, lymphocytes, macrophages, pericytes and neutrophils (Mason
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and Joyce, 2011) (Figure 2.6).

Figure 2.6: Proteolytic contributions from different stromal cells in the tumour
microenvironment. Copyright permission requested Mason and Joyce (2011).

uPA (urokinase plasminogen activator) system The urokinase plasmino-

gen activator occupies a prominent location in the proteolytic network with its abil-

ity to convert plasminogen into plasmin. After the binding of uPA or pro-uPA to

their receptor uPAR, there is a positive feedback loop between uPA and plasmin. Al-

though it is believed that, during cell trafficking, plasmin might not directly degrade

the fibrous proteins in the ECM which acts as physical barriers to cells’ movement

(Rowe and Weiss, 2009), plasmin still plays an important role in the degradation of

other proteins in the matrix, such as fibronectin, laminin, vitronectin and throm-

bospondin. In addition, the uPA system is involved in the activation of MMP2 via

a mechanism dependent on contributions from stromal fibroblasts and also over-

expression of uPA and uPAR in the basal epidermis and hair follicles. This leads

to increased activation of MMP2 and MMP9 (Mason and Joyce, 2011), and thus
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the uPA system indirectly promotes the pericellular proteolysis and degradation of

ECM.

Figure 2.7: Experimental images showing that the formation of collagenolytic track
stops if the inhibitor of MT1-MMP is present. Then the cells change the modes of
migration from collective invasion (the first image) to individual invasion (the second
image). The third and fourth images show that track width and the number of cells
will reduce after knockdown of MT1-MMP. Copyright permission requested (Wolf
et al., 2007).

MMPs (matrix metalloproteases) The over-expression of MMPs is fre-

quently observed in many types of cancers due to their ability to degrade various

components of ECM, which makes them the most extensively studied proteases in

cancer biology. As a large family of proteases, multiple and distinct mechanisms

exist for the activation of different MMPs (Mason and Joyce, 2011), even single one
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MMP might have more than one pathway for its activation. During cancer cell inva-

sion and migration, several MMPs are involved in proteolysis activity and degrade

ECM components, such as MMP1, 2, 8, 9 (Inaba et al., 2014; Ordoñez et al., 2014;

Akgu et al., 2005), MT1-MMP/MMP14 and so on.

In particular, MT1-MMP, a membrane-anchored metalloproteases, is thought to

be an absolute requirement for cancer invasion in 3D (Sabeh et al., 2009) and more

and more evidence demonstrate that the inhibition of MT1-MMP almost completely

prevent collagen type I (the main fibrous protein of the matrix in 3D) degradation

(Wolf et al., 2013; Rowe and Weiss, 2009; Sabeh et al., 2009; Wolf et al., 2007).

Moreover, it is believed to be further involved in the remodelling of already existing

trails to even larger “macro-tracks” in collagen-rich interstitial tissue, which then

accommodate the collective invasion of multicellular strands. Blocking fibre cleavage

by protease inhibitors causes cell squeezing (Wolf et al., 2007). Therefore, inhibition

of MT1-MMP will force the cells to stop the collective migration and they then might

adopt the non-proteolytic individual migration mode (Figure 2.7).

2.5 Plasticity of cancer cell invasion and migra-

tion

As described above, cancer cell invasion is a plastic and adaptive process. The di-

vergent degree of ECM remodelling capability, molecular receptors and cytoskeletal

regulators for cell-cell and cell-matrix adhesion, various protease systems, together

form an “orchestra” that plays the “symphony” of cancer cell invasion and migration.

Moreover, these processes control the cell migration mode and efficiency not in a dis-

crete “on” and “off” manner but a continuous one. Thus, they “tune” cell behaviours

during migration by increasing or decreasing their input (Friedl and Alexander, 2011;
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Friedl and Wolf, 2010, 2003) (Figure 2.8). Therefore, some modes of cell migration

have known as transition modes, such as the epithelial-to-mesenchymal transition,

the collective-to-individual cell transition and the mesenchymal-to-amoeboid tran-

sition.

Figure 2.8: Schematic illustration of plasticity of cell-matrix Interaction, inva-
sion, and tissue remodelling. Copyright permission requested (Friedl and Alexander,
2011).

Epithelial-to-mesenchymal transition (EMT) The EMT is a central pro-

gramme enhancing tumour invasion in response to the changes of the peritumoural

environment, and it can arise in the epithelial cancers of breast, colon, lung and

prostate tissue. The transition occurs when cells start losing their cell-cell junc-

tions (E-cadherin expression is diminished) via some mechanisms triggered by local

Rac1 engagement. Cells then will be allowed to detach from the epithelium and

acquire a mobile mesenchymal phenotype. However, cells also undergo the reverse

mesenchymal-to-epithelial transition when they lose the local upstream signalling
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after metastatic seeding in a secondary organ (Figure 2.8B).

Collective-to-individual cell transition The process of collective-to-individual

cell transition is similar to that of EMT, i.e. collective migrating cells gain the ability

of detachment by losing cell-cell adhesion triggered by Rac activity. A difference

between the two is not only that the mesenchymal migration of single cells can

happen, but also β1-integrin-independent amoeboid migration can occur after the

disruption of cell-cell links, the mode of low integrin-mediated (cell and matrix)

adhesion and high Rho-mediated cortical actomyosin contractility (Figure 2.8C).

Mesenchymal-to-amoeboid transition Under certain circumstances, cancer

cells can undergo conversion from mesenchymal migration to amoeboid migration,

via a decrease in Rac activity and activation of Rho-mediated actomyosin contractil-

ity. Also, the inhibition of MMPs can promote amoeboid migration as it can prompt

the cells to change to a non-proteolytic mode to bypass narrow ECM barriers with-

out the pericellular activities executed by MMPs. Likewise, amoeboid migration can

convert back to mesenchymal migration when the environment provides high Rac

activity, increasing cell-matrix adhesion and in the presence of proteolytic activities

(Figure 2.8D).
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Chapter 3

Mathematical modelling of

tumour growth and invasion

3.1 Overview

Cancer is a complex disease that involves genetic mutations, dynamical interactions

among the cancer cells, and also, between the cells and the microenvironment in

the vicinity of the tumour. Its initiation and development mainly includes avas-

cular growth, tumour-induced angiogenesis, and invasive growth and metastasis.

Although experimental and clinical observations have been the main methods used

to study the disease, mathematical modelling at multiple temporal and spatial scales

can also contribute to a greater understanding of the prevention, diagnosis and treat-

ment of cancer.

The first attempts of using mathematical models to help cancer research can be

dated back as early as the 1950s, when informative descriptions of in vitro avascular

growth of a human lung cancer were provided by a mathematical model proposed

by Thomlinson and Gray (1955). In this earliest stage, tumour growth is considered
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to be regulated by direct diffusion of nutrients (e.g. oxygen) from the surround-

ing tissue and limited by the finite nutrient supply. Two decades later, inspired

by the work of Thomlinson and Gray (1955) and Burton (1966), Greenspan (1976)

proposed a continuum model on the growth and stability of cell cultures and solid

tumour in which the tumour was treated as an incompressible fluid. Not only cell

death and birth and nutrient supply were taken into consideration, but also condi-

tions were established in the model for the unstable development of a colony when

internal pressure overcomes surface tension and adhesion. Since then, an increas-

ing number of mathematical models describing solid tumour growth have appeared

(Adam, 1986, 1987a,b; Chaplain et al., 1994; Byrne and Chaplain, 1995a, 1997,

1998; Chaplain et al., 2001, 2006a), each starting from a different aspect of tumour

growth and examining various biomechanical and chemical factors (e.g. cell move-

ment through diffusion, convection, chemotaxis and haptotaxis; cell proliferation

and apoptosis; cell-cell adhesion; growth factors and inhibitors, etc.), resulting in a

more comprehensive understanding of the subject.

Due to the limitations of experimental and numerical techniques, the major-

ity of early mathematical models focus on the early stage growth of an avascular

tumour or multicellular spheroid. However, as knowledge of both cancer biology

and computational techniques has increased rapidly in last two decades, mathe-

matical models that described angiogenesis and vascular tumour growth have also

been developed(Chaplain and Stuart, 1993; Byrne and Chaplain, 1995b; Orme and

Chaplain, 1996; Chaplain and Anderson, 1996; Anderson et al., 2000; Chaplain et al.,

2006c). In the paper by Chaplain (1996), mathematical models of spherical tumour

growth through the stages of avascular growth, angiogenesis, and vascularisation

were presented. In the early 2000s, based on classic tumour models, Cristini et al.

(2003) broke through the limitation of mathematical linear analyses and spherical
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geometries, which not only enabled the nonlinear modelling of complex tumour mor-

phologies but also predicted the conditions that separate noninvasive growth from

invasive progression. Therefore, it was suggested that the morphology of a tumour

plays an important role in cancer invasion.

As one of the hallmarks of cancer, invasion of the surrounding tissue is a landmark

event that transforms a localised solid tumour into a systemic, metastatic and fatal

disease. Therefore, investigation of cancer invasion is very meaningful and necessary,

and as a useful tool, mathematical modelling also contributes to the understanding

of the process. In the following sections, we will introduce and discuss mathematical

models of cancer invasion that use different modelling techniques: continuum mod-

els, discrete models and hybrid (discrete-continuum or continuum-discrete) models,

all of which describe the invasion process on different spatial and temporal scales.

3.2 Models of cancer invasion

One of the first attempts to describe cancer invasion was the model proposed by

Gatenby and Gawlinski (1996). This model uses a reaction-diffusion system to

model the interaction between malignant and normal cells, and excess H+ ion con-

centration, based on the hypothesis that tumour-induced alteration of microenvi-

ronmental pH may provide a mechanism for cancer invasion. The model consists of

three coupled reaction-diffusion equations describing the spatial distribution in spa-

tial domain W and temporal evolution t ∈ [0, T ] of three variables, the dimensionless

form of which were written as,
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∂η1

∂t
= η1(1− η1)− δ1Λη1, x ∈ W, (3.1)

∂η2

∂t
= ρ2η2(1− η2) +∇ · (∆2(1− η1)∇η2), x ∈ W, (3.2)

∂Λ

∂t
= δ3(η2 − Λ) +∇2Λ, x ∈ W, (3.3)

where η1, η2 and Λ are the dimensionless variables representing the density of normal

tissue, the density of neoplastic tissue and the excess concentration of H+ ions

respectively.

Simulation results shows that a very crucial parameter of the system is δ1 in

equation (3.1): when δ1 > 1, an appreciable hypocellular interstitial gap develops

between the advancing tumour edge and the retreating heathy tissue, which is con-

sistent with clinical observations; whereas, for δ1 < 1 the healthy tissue profile is

coincident with the tumour edge. Since the dimensionless δ1 is determined by the

carrying capacity of the tumour population, the production rate of acid by the tu-

mour and the reabsorption rate of acid, the model demonstrates and predicts: (1)

the transition from benign to malignant growth of a tumour could be controlled by

parameters such as the acquisition of angiogenesis; (2) transformation-induced re-

version to glycolytic metabolism provides a mechanism for invasive tumour growth;

(3) the normal cells, instead of the tumour cells, are intolerant of acidic interstitial

pH in the range typically found within the acidic pH gradient extending into the

peritumoural normal tissue. Finally, another prediction is that a tumour-host inter-

face that is infiltrative indicates a better prognosis than one having a well-defined,

sharp interface (i.e., a hypocellular interstitial gap between normal tissue and tu-

mour cells can be found in some malignancies). These conclusions drawn from this

model are well-supported by clinical studies and other aspects of cancer biology.
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The model was later on extended and developed in Gatenby and Gawlinski (2003)

and Gatenby et al. (2006).

In the same year, Perumpanani et al. (1996) first introduced haptotaxis into the

modelling of cancer cell migration. The model is a reaction-diffusion-taxis system

that consists of six PDE equations. The six components of the system are: the

invasive cancer cells u(x, t), noninvasive cancer cells m(x, t), generic ECM proteins

c(x, t) (fixed to the surrounding tissue), soluble ECM molecules s(x, t) (the resultant

product of proteolytic digestion of the ECM protein) and the proteases p(x, t). The

invasive cancer cells are modelled by the equation in the spatial domain W and

temporal domain [0, T ]:

∂u

∂t
= uf2(n,m, u)︸ ︷︷ ︸

production

+∇ ·
[
Θ(c)

(
Γu(n,m, u)∇u︸ ︷︷ ︸

diffusion

−uχ(c)∇c︸ ︷︷ ︸
haptotaxis

−uψ(s)∇s︸ ︷︷ ︸
chemotaxis

)]
, (3.4)

where x ∈ W, t ∈ [0, T ] and Θ(c) is a decreasing ramp function that models the

effects of accumulating ECM retarding the movement of cells, Γu(n,m, u) models

changes in the chemokinesis and cell-cell adhesion, and coefficients for responsiveness

to fixed gradients (haptotaxis) and soluble gradients (chemotaxis) are modulated by

χ(c) and ψ(s) respectively.

Five other differential reaction-diffusion equations for the other components in
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the system complete the model:

∂n

∂t
= nf1(n,m, u) +∇ ·

[
Θ(c)

(
Γn(u,m, n)∇n

)]
, (3.5)

∂m

∂t
= mf2(n,m, u) +∇ ·

[
Θ(c)

(
Γn(u,m, n)∇m

)]
, (3.6)

∂c

∂t
= g(p, c) +∇ ·K

[
cΘ(c)

(
Γn(∇u+∇m) + Γu(n,m, u)∇u

− uχ(c)∇c− uψ(s)∇s
)]
, (3.7)

∂s

∂t
= h(p, c) +Ds∇2s, (3.8)

∂p

∂t
= l1(u, c)− l2(u, p, c) +Dp∇2p, (3.9)

where x ∈ W, t ∈ [0, T ]. The model gave results (i.e. invading travelling waves of

cancer cells) suggesting that movement of cells under the simultaneous effects of a

haptotactic gradient and a concomitantly created chemotactic gradient is oscillatory

with respect to both the speed of invasion and the wave profile of the invasive cells.

Cell-matrix adhesion also plays an important role in the process. Later on, this work

inspired many modellers to study the effects of haptotactic gradients resulting from

proteolysis of the extracellular matrix as part of the mechanism of cell migration

(Perumpanani et al., 1998; Byrne et al., 2001).

Cell-cell and cell-matrix adhesion which facilitate the movements of cells by the

binding and unbinding of cell surface molecules to other cells and components in

extracellular matrix (ECM) respectively are also important. In Byrne and Chaplain

(1996), the role of cell-cell adhesion in the growth and development of carcinomas

was modelled by using the Gibbs-Thomson relation which relates the change in

nutrient concentration across the tumour boundary to the local curvature (this the-

oretically and analytically developed the previous work by Greenspan (1976)). The

evolution of nutrient concentration at a point inside the tumour, c(r, t), is described
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by a reaction-diffusion equation, i.e.,

0 = ∇2c− λ(c), inside Γ(r, t) = 0, (3.10)

where the outer surface of the tumour colony is denoted by the free boundary

Γ(r, t) = 0, i.e.,

Γ(r, t) = r−R(θ, φ, t). (3.11)

The tumour here is regarded as an incompressible fluid, and it was assumed that

the motion of neighbouring cells is induced by the birth and death of cells. Thus,

applying mass conservation, the cell velocity denoted by u(r, t) and the net pro-

liferation rate S(c) (expressed in terms of the nutrient concentration) satisfy the

equation:

∇ · u = S(c), on Γ(r, t) = 0. (3.12)

The equation of motion of a point on the boundary Γ(r, t) = 0 is given by,

n̂ · dr
dt

= u · n̂, (3.13)

where n̂ is an outward unit normal.

Based on the assumption that u is related to the internal pressure p via Darcy’s

Law, i.e., u = −µ∇p (µ denotes the motility of the tumour cells), the cell velocity u

can be eliminated from the system. Thus, the system introduced above that defines

the evolution of the nutrient concentration inside the tumour boundary, the cell
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velocity at the outer tumour boundary, can be reformulated as:

0 = ∇2c− λ(c), inside Γ(r, t) = 0, (3.14)

µ∇2p = −S(c), on Γ(r, t) = 0 (3.15)

n̂ · dr
dt

= −µ∇p · n̂, on Γ(r, t) = 0 (3.16)

The boundary and initial conditions imposed on the system were as follows:

∂c

∂t
= 0, at r = 0, (3.17)

∂p

∂t
= 0, at r = 0, (3.18)

c = c∞(1− 2γκ), on Γ(r, t) = 0, (3.19)

p = p∞, on Γ(r, t) = 0, (3.20)

where t ∈ [0, T ] and c∞ is the constant nutrient concentration on the tumour

boundary, p∞ is value that matches continuously with the external pressure field, κ

is the mean curvature, and γ is the surface tension coefficient. In particular, via the

second term (i.e., 2c∞γκ) in (3.19), cell-cell adhesion was for the first time incor-

porated using the Gibbs-Thomson relation, accounting for the energy consumed by

cells on the periphery to preserve the tumour’s compactness. Solutions of the model

under conditions of spherical symmetry supported the conclusion that if cell-cell

adhesion is sufficiently strong, then the tumour is likely to disappear. By contrast,

if the bonds between the cells are weak, then the tumour will persist and eventu-

ally develop into a highly structured entity, with distinct regions of necrosis and

quiescence.

By studying how small asymmetric perturbations from a radically symmetry so-

lution evolve over time, the analysis shows that in the absence of cell-cell adhesion,
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all asymmetric modes grow in time. However, only a finite number of these asym-

metric modes will be excited when cell-cell adhesion is included, and this number

depends upon the relative strengths of the restraining cell-cell adhesion force and the

expansive cell proliferation force. These predictions of the instability of the asym-

metric perturbations might give a clue as to how the shape of the tumour changes

and gives rise to configurations which are reminiscent of invasive carcinomas. There-

fore, the model demonstrated the important role of cell-cell adhesion in estimating

a tumour’s ability to invade.

With the further development of modelling techniques, hybrid models that com-

bine both continuum and discrete descriptions of cancer invasion appeared. These

models investigated the processes not only at the tumour tissue level but also at

the individual cell level and in most of the cases, tumours or parts of a tumour are

represented as the sum total of discrete individual cells while the cell substrates (e.g.

nutrients, growth factors, matrix degrading enzymes, etc.) and ECM are described

by continuum variables (Anderson et al., 2000; Anderson, 2005; Kim et al., 2007;

Stolarska et al., 2009; Kim and Othmer, 2013). In Anderson et al. (2000), two types

of models were presented: a continuum, deterministic model and a discrete, quasi-

stochastic model. The continuum model focused on three key variables in cancer

invasion, namely, tumour cells (denoted by n(x, t)), extracellular matrix (denoted

by f(x, t)) and matrix degrading enzymes (denoted by m(x, t)). The full system

was calculated on some spatial domain Ω (a region of tissue) and temporal domain
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T , which consists of three nonlinear PDEs as follows:

∂n

∂t
= Dn∇2n︸ ︷︷ ︸

random motility

− χ∇ · (n∇f)︸ ︷︷ ︸
cell-matrix adhesion

, x ∈ Ω, (3.21)

∂f

∂t
= −δmf︸ ︷︷ ︸

degradation

, x ∈ Ω, (3.22)

∂m

∂t
= Dm∇2m︸ ︷︷ ︸

diffusion

+ µn︸︷︷︸
production

− λm︸︷︷︸
decay

, x ∈ Ω, (3.23)

where t ∈ T . Travelling wave solutions of the system in one-dimension and two-

dimensions indicate the importance of haptotaxis as a mechanism of invasion, which

in turn emphasises the importance of ECM gradients caused by proteolytic activ-

ities. In addition, one dimensional results also indicate that the initial cluster of

tumour cells may be able to break into two separate clusters. In two dimensions,

ECM heterogeneity appears as another factor governing the final tumour cell density

distribution. These results are in qualitative agreement with clinical observations

that small clusters can invade further probably leading to metastasis when breaking

away from the central mass of the tumour.

The discrete modelling part of the paper involves discretising the partial differ-

ential equations (3.21)-(3.23), and a biased random walk governing the motion of a

single tumour cell was derived where cell movement was modelled in response to a

chemical stimulus. For example, the discrete equation for tumour cell can be written

in the form:

nq+1
i,j = nqi,jP0 + nqi+1,jP1 + nqi−1,jP2 + nqi,j+1P3 + nqi,j−1P4, (3.24)

where i, j, q are positive parameters that specify the location on the grid and the

time step. The coefficients P0 to P4 are considered as being proportional to the
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probabilities of the tumour cell being stationary (P0) or moving left (P1), right

(P2), up (P3) or down (P4), and each of the coefficients P1 to P4 consists of two

components:

Pn = Random movement + Haptotaxis, n = 1, 2, 3, 4. (3.25)

Cell proliferation was accounted for in the discrete model under the assumption

that each individual cell is able to produce two daughter cells on the conditions: (1)

the parent cell has reached maturity and (2) there is sufficient space for the new

cells to move into. The results of the discrete model confirm the predictions of the

continuum model that haptotaxis is important for both invasion and metastasis.

Later on, the continuum-discrete model mentioned above was further extended and

developed in Anderson (2005), in which the dynamics of the nutrients (i.e. oxygen)

was modelled in addition to tumour cell density, ECM proteins and matrix degrading

enzymes.

Although a lot of models of cancer invasion used continuum or hybrid approaches,

there are also discrete models to describe the behaviour of individual cells during

malignant invasion (Ramis-Conde et al., 2008a; Turner and Sherratt, 2002; Drasdo,

2003; Araujo and Mcelwain, 2004; Ramis-Conde et al., 2008b; Lowengrub et al.,

2010; Schluter et al., 2012; Scianna and Preziosi, 2012). In Turner and Sherratt

(2002), a cellular Potts model is used to simulate a population of malignant cells

including interactions due to both homotypic and heterotypic adhesion, proteolytic

activities and a haptotactic gradient. The cellular Potts model has a regular lattice

comprised of pixels with each cell, and cells are not regarded as single points but

as spatial objects that allow for a change in shape and size. Each lattice site is

represented by a vector of integers (i, j). In the model, a collection of biological

cells was represented by being attached to each lattice pixel (i, j) of a square lattice
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labelled σij. The simulation progresses through a series of Monte Carlo steps (MCS)

by attempts of generalised cells to extend their boundaris in an effort to minimise the

effective energy. In this model of Turner and Sherratt (2002), the effective energy

term that includes surface energy and mechanical deformations was written as:

H =
∑
ij

∑
i′j′

Jτ(σi,j),τ(σi′j′ )
{1− δσi,j ,σi′j′}

+
∑
σ

λ(νσ − VT )2, (3.26)

where Jσi,j ,σi′j′ are the constants that quantifies the strength of the interaction be-

tween adjacent lattice pixels and VT is the “target” volume of the cell. Energy is

required if the cell is expanded or compressed above or below the “target” volume.

At each MCS, attempts are made to transform the neighbouring pixels at the bound-

ary of each cell to increase its volume. A Monte Carlo Step (MCS) is completed

when every lattice site has made an index-copy attempt. To start an index-copy

attempt, a pixel (i, j) is randomly selected, and then one of its nearest neighbour

site is chosen to be a source pixel (i′, j′). if they are in the same cell, no calculation is

needed and another index-copy attempt will carry out; if the selected site (i, j) and

its neighbour (i′, j′) are in different cells, the probability of a successful index-copy

attempt that changes σij to σi′j′ is:

p(σij → σi′j′) =

 1, if ∆H ≤ 0,

e−∆H/β, if ∆H > 0,
(3.27)

where ∆H is the change in effective energy that consists of three parts, i.e.,

∆H = ∆H1 + ∆H2 + ∆H3. (3.28)
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Here ∆H1, ∆H2 and ∆H3 are the energy changes associated with alterations in

cell-cell adhesion, mechanical deformation and haptotaxis respectively. Thus, ∆H1

represents the change of the first term in equation (3.26) and ∆H2 represents the

change of the second term in equation (3.26). Haptotaxis (cell movement along ECM

gradients) was considered in the model by attaching a parameter fij to lattice pixel

(i, j) that represents local ECM concentration, so that the change of the effective

energy that is associated with ECM gradients was described as ∆H3 = kH(fi′j′−fij),

and kH influences the strength of haptotaxis.

The simulation results of this discrete model showed that the morphology of the

invading front is influenced by changes in the adhesiveness, and cell-matrix adhesion

has a greater impact on the cancer invasion compared with cell-cell adhesion. Also,

when proliferation is present in the model, it was seen that the tumour grow further

into the tissue but reduce the ability to produce fingered patterns. In addition,

increases both proteolytic enzyme secretion rate and haptotaxis strength promote

cancer invasion.

From the models mentioned so far (Perumpanani et al., 1996, 1998; Anderson

et al., 2000; Turner and Sherratt, 2002), we see that proteolytic activities are highly

involved in tumour acidity. Webb et al. (1999) proposed a model suggesting a crit-

ical role for proteinase activities in tumour invasive behaviour. However, in most

of models the protease dynamics were modelled either by a simple term in discrete

models or in the continuum approach by a reaction-diffusion equation that includes

random motility, production and decay terms. However, Chaplain and Lolas (2005)

investigated the role of a protease system, namely the urokinase plasminogen ac-

tivation (uPA ) system, by a system of reaction-diffusion-taxis partial differential

equations. uPA secreted by cancer cells initiates the activation of an enzymatic

cascade that primarily involves the activation of plasminogen which then is turned
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into the matrix degrading protein, plasmin. Therefore, the model mainly described

interactions between cancer cells, urokinase plasminogen activator (uPA), uPA in-

hibitors, plasmin and the host tissue. The dimensionless model is calculated on

some spacial domain Y and temporal domain T , which is written as follows:

∂c

∂t
= Dc∆c︸ ︷︷ ︸

diffusion

−∇ · [ χuc∇u︸ ︷︷ ︸
uPA-chemo

+ χpc∇p︸ ︷︷ ︸
PAI-1-chemo

+χvc∇v︸ ︷︷ ︸
VN-hapo

] + µ1c(1− c)︸ ︷︷ ︸
profieration

, x ∈ Y, (3.29)

∂v

∂t
= − δvm︸︷︷︸

degradation

+ φ21up︸ ︷︷ ︸
uPA/PAI-1

− φ22vp︸ ︷︷ ︸
PAI-1/VN

+µ2v(1− v)︸ ︷︷ ︸
proliferation

, x ∈ Y, (3.30)

∂u

∂t
= Du∆u︸ ︷︷ ︸

diffusion

− φ31pu︸ ︷︷ ︸
uPA/PAI-1

− φ33cu︸ ︷︷ ︸
uPA/uPAR

+ α31c︸︷︷︸
production

, x ∈ Y, (3.31)

∂p

∂t
= Dp∆p︸ ︷︷ ︸

diffusion

− φ41pu︸ ︷︷ ︸
uPA/PAI-1

− φ42pv︸ ︷︷ ︸
PAI-1/VN

+ α41m︸ ︷︷ ︸
production

, x ∈ Y, (3.32)

∂m

∂t
= Dm∆m︸ ︷︷ ︸

diffusion

+ φ52pv︸ ︷︷ ︸
PAI-1/VN

+ φ53cu︸ ︷︷ ︸
uPA/uPAR

− φ54m︸ ︷︷ ︸
degradation

, x ∈ Y, (3.33)

where t ∈ T and we denote cancer cell density by c, the extracellular matrix (ECM,

vitronectin) substrate density by v, urokinase plasminogen activator (uPA) con-

centration by u, plasminogen activator inhibitor (PAI-1) concentration by p and

plasmin concentration by m. The simulation results of the model exhibit a very

rich dynamic behaviour, and show that the spatio-temporal heterogeneities in the

distributions of cancer cells can arise from the interactions between proliferative

effects (i.e., cancer cell proliferation and matrix remodelling) and gradient driven

migration. The results are in line with experimental results that in the presence

of malignant breast cells, plasmin is activated on the membrane of cancer cells and

the morphology of the tumour is changed from sheet-like structures to multicellular

heterogeneous masses.

There are some recent mathematical models that also emphasise the role of
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proteolytic activities of some hydrolytic enzymes such as urokinase plasminogen ac-

tivator (uPA) and matrix metalloproteinases (MMPs) in tumour invasive behaviour

(Andasari et al., 2011; Deakin and Chaplain, 2013). Each of these models adopted

a continuum approach, using systems of partial differential equations (PDE) of a

generic chemotaxis/haptotaxis nature.

Since capturing features of the growth of a tumour can be considered as a moving

boundary problem, certain numerical techniques facilitate the modelling of cancer

invasion. In a series of papers by Zheng et al. (2005); Frieboes et al. (2006); Macklin

and Lowengrub (2005, 2006, 2007), a level-set method was used to study solid tu-

mour morphology changes in homogeneous and heterogeneous microenvironments.

In the paper of Macklin and Lowengrub (2007), previous tumour growth models

(Greenspan, 1976; Byrne and Chaplain, 1996; Cristini et al., 2003; Macklin and

Lowengrub, 2005; Zheng et al., 2005) were extended by including more details of the

microenvironment, i.e., allowing variability in the nutrient (denoted by σ) availabil-

ity and the response to proliferation-induced mechanical pressure (denoted by p) in

the peri-tumourous tissue. The dimensionless equations for nutrient concentration σ

in different regions of the domain (i.e., tumour region Ω that is composed of a viable

region ΩV and a necrotic region ΩN , healthy tissue region ΩH , and the boundary of

tumour and its necrotic core Σ and ΣN accordingly) are written as:



D∇2σ = 0, x ∈ ΩH ,

∇2σ = σ, x ∈ Ω,

[σ] = 0, x ∈ Σ,

D∇σ|Ω · n = D∇σ|ΩH · n, x ∈ Σ,

σ ≡ 1, x ∈ ∂(Ω ∪ ΩH).

(3.34)

Here, D = DH/DT (where, DH and DT are the nutrient diffusion rates in heathy
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tissue and tumour respectively) provides a measure of the nutrient richness of the

tumour microenvironment relative the tumour. Once the nutrient concentration

profile is known by solving equations (3.34), the radius of the necrotic core RN at

time t is defined, since the value of RN(t) is completely determined by the known

radius of the tumour R at the current time and a parameter N that gives the critical

nutrient concentration level for tumour cell necrosis.

The pressure in the different regions of the domain satisfies the following system

of equations: 

µ∇2p = 0, x ∈ ΩH ,

−µ∇2p = G(σ − A), x ∈ ΩV ,

−µ∇2p = −GGN , x ∈ ΩN ,

[p] = κ, x ∈ Σ,

µ∇p|Ω · n = µ∇p|ΩH · n, x ∈ Σ,

σ ≡ 1, x ∈ ∂(Ω ∪ ΩH).

(3.35)

Similarly, the diffusion coefficient µ = µH/µT is a measure of the relative ability

of the external tissue to respond to the pressure compared to the biomechanical

response of the tumour; G measures the tumour aggressiveness; A measures the sus-

ceptibility of tumour cells to apoptosis; and GN measures the enzymatic breakdown

of necrotic tumour cells. The normal velocity functions F is defined as:

F =


−µ∇p|ΩH · n, x on ΣN ,

−µ∇p|Ω · n, x on Σ,

0, otherwise.

(3.36)

Solving equations (3.35) gives us the spatial distribution of p, so that we can cal-

culate the normal velocity on the necrotic core boundary and tumour boundary by

equations (3.36). This normal velocity F is used to update the tumour boundary
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position by solving the PDE for the level set function ϕ, which is written as:

∂ϕ

∂t
+ F̃ |∇ϕ| = 0, x ∈ Ω ∪ ΩH , (3.37)

where F̃ (x, t) is an extension of F off the tumour boundary Σ (see section 4.2.4 for

details about the velocity extension).

The simulation results show that the qualitative features of tumour morphologies

are mainly determined by the microenvironmental parameters, i.e., D and µ. Quan-

titive aspects of the tumour progression (size, the amount of invasive cells, growth

rate,morphological instability degree) are generally affected by the parameters that

characterise the tumour genetics, i.e., G, GN , N , and A. Also, it was found that the

internal structure of the tumours depends primarily upon D, GN and N , and very

little upon µ and G. Moreover, these volume fractions tend toward constant values

even during growth, which is in contrast to the case of tumour spheroids where the

volume fraction is only stabilised once a global steady state is established.

In addition, three distinct morphologies were observed through the model: frag-

menting, invasive/fingering, and compact/hollow growth. If the microenvironment

is nutrient poor, tumours tend to break into small fragments regardless of cellular

mobility; the invasive fingering morphology can be found in the microenvironment

of nutrient-rich and low mobility; and tumours growing into nutrient-rich, high-

mobility tissues develop compact/hollow morphologies. These results have impor-

tant implications for therapy and treatment for various types of cancer.

A new ghost cell/level set method was later developed in Macklin and Lowengrub

(2008) which was applied to models of tumour invasive growth in complex, hetero-

geneous tissues. The model consists of a nonlinear nutrient equation and a pressure

equation with geometry-dependent jump boundary conditions. This model was then

further extended into an improved model of vascular tumour invasion including the
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process of tumour-induced angiogenesis (Macklin et al., 2009).

Multiphase mixture models are also used to investigate tumour growth problems.

(Byrne and Preziosi, 2003; Chaplain et al., 2006b; Preziosi and Tosin, 2009; Wise

et al., 2011), where the tumour tissue is regarded as a system consisting of different

phases (e.g. cellular phase, liquid phase, etc) and the development of a solid tumour

is modelled by exploring the mass and momentum balances alongside constitutive

laws that distinguish the phases in the system. The diffuse interface method is

another successful technique used to study tumour invasive behaviour (Wise et al.,

2008; Frieboes et al., 2010).

Another continuum approach for cancer invasion was proposed by Gerisch and

Chaplain (2008) which explicitly incorporates the important biological processes of

cell-cell and cell-matrix adhesion through the inclusion of nonlocal terms in a system

of PDEs. It introduced a sensing radius R for cells to detect their environment.

The system held on some spacial domain Ω and temporal domain T takes the

form:

∂c

∂t
= ∇ · [D1∇c− cA {u(t, ·)}] + µ1c(1− c− v), x ∈ Ω, (3.38)

∂v

∂t
= −γmv + µ2(1− c− v), x ∈ Ω, (3.39)

∂m

∂t
= ∇ · [D3∇m] + αc− λm, x ∈ Ω, (3.40)

where t ∈ T and c(x, t), v(x, t) and m(x, t) represent the concentration of cancer

cells, extracellular matrix and matrix degradation enzymes respectively. In the

cancer cell equation there is a non-local flux term that models cell-cell and cell-matrix

adhesion. The random motility and haptotaxis are included as the mechanisms that

drive cancer cell migration as in Anderson et al. (2000). However, the haptotaxis
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term in equation (3.38) is not local, and takes the form in 1D as:

A {u(t, ·)}(x) =
1

R

∫ R

0

1∑
k=0

η(k) · Ω(r)g(u(t, x+ rη(k)))dr, (3.41)

with right and let unit outer normal vector η(k) = (−1)k, k = 0, 1. For 2D, the

non-local term is written as:

A {u(t, ·)}(x) =
1

R

∫ R

0

r

∫ 2π

0

1∑
k=0

η(θ) · Ω(r)g(u(t, x+ rη(θ)))dθdr, (3.42)

with η(θ) = (cos(θ), sin(θ))T denoting the unit outer normal vector corresponding

to angle θ. In the nonlocal terms (3.41) and (3.42), R > 0 is the sensing radius;

Ω(r) is referred to as the radial dependency function; and g(u(t, x+ rη)) represents

the velocity of the cancer cells at time t and spatial point x due to their adhesion

to themselves and the ECM sampled over the sensing region at x. It was proved

that in the limit as R → 0 the nonlocal model converges to a related local system

of reaction-diffusion-taxis equations, which is written as:

∂c

∂t
= ∇ · [D1∇c− χ12(1− c− v)c∇v] + µ1c(1− c− v), x ∈ Ω, (3.43)

∂v

∂t
= −γmv + µ2(1− c− v), x ∈ Ω, (3.44)

∂m

∂t
= ∇ · [D3∇m] + αc− λm, x ∈ Ω. (3.45)

In order to solve the equations computationally, an efficient numerical technique was

developed in Gerisch (2010), which implemented a fast evaluation of the quadra-

ture rule to deal with the nonlocal terms in the equations allowing for 2D simula-

tions to be carried out with high spatial accuracy within a reasonable computation

time. In certain circumstances, solutions of the local and nonlocal models were
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travelling-wave like in nature, and for some parameter sets, cancer cells split into

two subpopulations, with one subpopulation actively invading the tissue and the

other remaining close to the origin. However, a key difference of the nonlocal model

is that it is able to generate spatially heterogeneous steady-state solutions where

cell-cell and cell-matrix adhesion reach a balance. The results of the nonlocal model

also demonstrated that the nonlocal term that models the differential adhesion in

mixtures of different cell types (Armstrong et al., 2006) is suitable for application

in a more general context. In Chaplain et al. (2011), a system of reaction-diffusion

partial integro-differential equations was presented to describe interactions between

cancer cells, ECM and matrix degradation enzymes, which also emphasised the im-

portance of cell-cell and cell-matrix adhesion in cancer invasion and provided some

rigorous results on the existence, regularity and uniqueness of solutions. This model

was later further extended in Domschke et al. (2014) to explore the dynamics during

the processes cancer invasion where cell-cell and cell-matrix adhesion is accounted

for through non-local interaction terms in a system of partial integro-differential

equations. The model investigated the change of adhesion properties during cancer

growth and development through time-dependent adhesion characteristics within

the cell population as well as those between the cells and the components of the

extracellular matrix. The simulation results demonstrate a range of heterogeneous

dynamics which are qualitatively similar to the invasive growth patterns observed

in a number of different types of cancer, such as tumour infiltrative growth patterns

(INF).

3.3 Multiscale cancer invasion modelling

As described in the previous chapter, the key factors of cancer growth and inva-

sion are genetic mutations, molecular properties, dynamical interactions among the
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cancer cells, and also mutual effects between the tumour and its microenvironment.

Thus, mathematical models built at a single biological scale are insufficient to un-

cover the multiscale mechanisms that exist. In order to investigate the behaviour of

the complex system as a whole, efforts must be made to develop models that span

different biological scales (Preziosi, 2006).

3.3.1 The concept of spatial and temporal scales in biologi-

cal systems and associated modelling methods

Figure 3.1: Schematic illustration of the biological scales including atomic, molec-
ular, microscopic (tissue/multicellular), and macroscopic (organ) scales. Copyright
permission requested (Deisboeck et al., 2011).

In the following discussions, we mainly focus on three important biological spatial

scales: molecular, microscopic and macroscopic (Deisboeck et al., 2011) (Figure 3.1).
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Molecular scale The molecular scale is used to study cell signalling mechanisms

and intracellular regulations of biological systems. At this scale, molecular dynamics

of individual proteins are not presented. Instead, an average of the properties of a

population of proteins are used. The length scales at this level vary from nanometers

to micrometers and time scales are on the order of microseconds to seconds. Ordi-

nary differential equations (ODEs) are often used to represent biochemical reactions

in such signalling pathways. For example, a system that represents a biological net-

work of n species (enzymes, proteins, complex, etc.) can be described by a set of

ODEs of the form:

ẋ = f(x,p), (3.46)

where x = (x1, x2, ...xn) is the state vector, x1, x2...xn denotes the evolution of

concentrations of the species in the system, and p = (p1, p2, ..., pn) is the parameter

vector (Donze et al., 2011).

Microscopic scale The microscopic scale is also called the multicellular scale, by

the definition in Deisboeck et al. (2011). It includes the cellular scale, i.e., single-

cell behaviours and properties. Models at this scale usually describe the process of

carcinogenesis of cells, cell-cell and cell-matrix interactions and the heterogeneity of

the tumour and its surrounding microenvironment, dealing with length scales from

micrometers to millimetres and time scales from minutes to hours. Partial differ-

ential equations (PDEs) are usually used in the models at the microscopic scale,

e.g. the reaction-diffusion system in Gatenby and Gawlinski (1996) and the contin-

uum model proposed in Anderson et al. (2000), and the individual-based models in

Turner and Sherratt (2002), Ramis-Conde et al. (2008b) and Schluter et al. (2012).

Macroscopic scale The macroscopic scale concerns the dynamics of the gross

tumour behaviour, e.g., morphology, extent of vascularisation and invasion. Models
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at the macroscopic scale deal with length scales from millimetres to centimetres and

time scales from days to years. Since the number of cells in the model is sufficiently

large, it is necessary to treat some or all of the cells as a single continuum, which

allows for cell and substrate transport to be modelled with conservation laws for

spatio-temporally varying densities, i.e. PDEs, and individual cell activities are not

required to be tracked (Byrne and Chaplain, 1996; Anderson, 2005; Gerisch and

Chaplain, 2008; Trucu et al., 2013).

Since lower-level processes are much faster, a lot of mathematical models of

cancer invasion mentioned above reasonably assume that these processes are in

quasi-steady-state, being included in the slower, higher-level through constitutive

equations or force fields (Sloot and Hoekstra, 2009). This assumption facilitates the

simplicity of the modelling by eliminating one of the differential equations from the

system, and this type of multiscale modelling that couples lower-level and higher-

level processes has dominated the methods used in current cancer research. How-

ever, the complexity of the disease requires more realistic and predictive multiscale

models of cancer invasion. Thus, one of the motivations in this thesis is to build

multiscale models that describe processes spanning different spatial and temporal

scales without eliminating differential equations for the lower-level processes from

the integrated system.

The majority of the models we mentioned above were formulated at single scale

or eliminated differential equations that govern the dynamics at lower scales based

on the assumption that lower-level processes are much faster, i.e., they are not in

an integrated multiscale system. However, in the work of Trucu et al. (2013), a

novel multiscale model was introduced that models the biological processes at both

cellular (micoscopic) and tissue/organ (macroscopic) level with suitable numerical

spatial and temporal lengths respectively. This model consists of three parts: (1)
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partial differential equations modelling the dynamics of cancer cells and ECM at

the macroscopic scale; (2) at the microscopic scale, the dynamics of molecular dis-

tributions of matrix degrading enzymes (which are confined around the invasive

boundary of the tumour) are governed by a reaction-diffusion equation; (3) regula-

tion mechanics of the tumour boundary acts as a link between the two scales. The

details of the numerical technique (macro-microscopic technique) will be presented

in the following chapter.

Other key papers in this thesis are Chaplain and Lolas (2005) and Andasari et al.

(2011), which investigate the roles of the urokinase plasminogen activation (uPA)

system during cancer invasion by a system of PDEs. In the following chapters of

this thesis, we adapt with the macro-microscopic technique of Trucu et al. (2013) to

study the phenomenon of cancer invasion at the cellular and tissue level.
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Chapter 4

Mathematical modelling of cancer

invasion: application of a level-set

method to a moving boundary

problem

4.1 Introduction

In this chapter, we use a level-set method to develop models that are motivated

by our interests in modelling cancer invasion and the morphological response of a

solid tumour to its microenvironment and tissue heterogeneity. As a useful and

convenient tool to deal with moving boundary problems, the level-set method has

been used to model tumour growth over the last ten years in the series of papers:

Zheng et al. (2005), Frieboes et al. (2006), Macklin and Lowengrub (2005, 2006, 2007,

2008) and Macklin et al. (2009). Here the level-set method was used to study solid

tumour morphology changes in homogeneous and heterogeneous microenvironments.
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These models developed the modelling techniques of solid tumour growth that help

describe the processes of different stages of tumour growth. Also they contribute to

the development of the level-set method in the wider area of numerical techniques.

In this chapter, we mainly use the algorithms concerning a level-set technique

introduced by Macklin and Lowengrub (2008). However, instead of using linear

and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent

boundary conditions to model the dynamics in the tumour microenvironment, we

investigate PDE systems that model the interactions in and around the tumour re-

gion and couple them with the level-set technique to describe the deformations of the

tumour during invasion. The structure of the chapter is as follows: in Section 2 we

introduce the numerical techniques that are applied in the level-set method; Section

3 contains the first model that we studied as a test model, including the Schnaken-

berg kinetics system as the description of peritumour interactions and a level-set

method that involves a curvature-dependent velocity function; in Section 4, we cou-

ple the level-set method with the uPA system (Chaplain and Lolas, 2005; Andasari

et al., 2011) describes the pericellular proteolysis activities and ECM degradation

and remodelling during cancer invasion. A brief discussion section is given at the

end.

4.2 The level-set method

Level-set methods were first developed by Osher and Sethian (1988) and have been

used to study the evolution of moving surfaces that experience frequent topology

changes (e.g., the merging of regions and fragmentation), particularly in the context

of fluid mechanics and computer graphics (Sethian, 1999; Osher and Fedkiw, 2003;

Osher and Sethian, 1988; Sethian and Smereka, 2003). The main concept of the

method is that we trace the moving interface Σ implicitly by introducing a level set
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function φ defined on a rectangular domain D ⊃ (Ω ∪ Σ), where Ω is the moving

domain that the cell is in, i.e.,

φ(x)


< 0 if x ∈ Ω,

= 0 if x ∈ Σ,

> 0 otherwise,

and |∇φ| ≡ 1. (4.1)

In this framework, we call Ω the interior region, Ωo = D/(Σ ∪ Ω) the exterior

region, and Σ the interface between the regions. Instead of capturing the position

of the interface Σ explicitly and manually handling topology changes, we trace the

moving boundary implicitly by updating the level set function in time. We solve

a PDE equation of the type (4.2) to accomplish the updating, which automatically

accounts for the interface motion and all topology changes, i.e.,

φt + F̃ |∇φ| = 0, (4.2)

where F̃ is an extension of F around the interface and F is the outward normal

velocity of the interface (see section 4.2.4 for details about the velocity extension).

Since numerical error might be introduced into the level set function by solving

equation (4.2) (which perturbs it away from being a signed distance function, even

for simple and special choices of F̃ ), we apply reinitialisation to the level set function

at regular intervals in order to maintain it as a signed distance function. Thus, to

maintain φ as a signed distance function, we solve the PDE below to steady state:

φτ = sign(φ0)(1− |∇φ|), (4.3)
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where τ is the so-called pseudo-time, and φ0 is the original level-set function prior

to the reinitialisation.

When solving equations (4.2) and (4.3), we discretise the spatial operator |∇φ|

by a fifth-order weighted essentially non-oscillatory (WENO) method (Jiang and

Peng, 2000), and we use the third order total variation-diminishing Runge-Kutta

method (Gottlieb and Shu, 1997) to discretise the pseudo-time. These algorithms

will be introduced in detail in the following sections.

Also, to improve computational efficiency, we adopted the narrow band/local

level-set updating scheme introduced in Malladi et al. (1996). This means that we

propagate the front by updating φ at points that lie in a narrow band in the vicinity

of the interface. Since the primary purpose of a level-set function is to track the

position of the interface Σ over time, its accuracy is most important on and close to

the interface. In the level-set context, the narrow band can be identified by

{x : |φ(x)| ≤ R} , (4.4)

where R > 0 is a fixed constant that is chosen to suit the problem (e.g. R = 10∆x).

4.2.1 Discretisation of geometric quantities

In the level-set method, all the geometric information is encoded, which is one of

advantages of this method. In particular, the outward unit normal vector n is given

by,

n =
∇φ
|∇φ|

, (4.5)

and the mean curvature can be calculated as:

κ = ∇ · n = ∇ ·
(
∇φ
|∇φ|

)
. (4.6)
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Numerically, we use a 9-point stencil with centred differences for all the partial

derivatives as following:

φx =
φi+1,j − φi−1,j

2∆x
, φy =

φi,j+1 − φi,j−1

2∆y
,

φxx =
φi−1,j − 2φi, j + φi+!,j

∆x2
, φxx =

φi,j−1 − 2φi, j + φi,j+1

∆y2
,

φxy =
φi+1,j+1 − φi−1,j+1 − φi+1,j−1 + φi+1,j−1

4∆x∆y
,

(4.7)

and the discretisations for the standard normal vector and curvature are:

n =
1√

φ2
x + φ2

y + ε
(φx, φy),

κ =
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3
2

.

(4.8)

However, in many cases, the level-set function is not sufficiently smooth to use

the conventional discretisation mentioned above for the normal vector and curvature.

Also, when the two interfaces are very close, the discretisation of derivatives of φ

becomes inaccurate. In order to detect and deal with this situation accurately, we

use a geometry-aware curvature discretisation introduced in Macklin and Lowengrub

(2006, 2008). Firstly, we define a level-set quality function by:

Q(x) =
∣∣1− |∇φ(x)|

∣∣, (4.9)

and use this function to detect singularities of φ whenever Q ≥ η for some threshold

η > 0 (η = 0.001 in our work).

If Q < η at each point of the nine grid points in {(xi+k, yj+l)|−1 ≤ k, l ≥ 1}, then

the level set function is considered as smooth enough to calculate the curvature κi,j
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and standard normal vector ni,j using the conventional method in equations (4.7)

and (4.8). If Q > η at any of the points of the nine grid points, we construct an

accurate approximation of the interface γ(s) = (x(s), y(s)) with proper orientation,

where s is arc length.

In order to obtain this local approximation at an arbitrary point xi,j, first of all

we need to locate five points: x1,x2,x3,x4,x5 (Figure 4.1). We set xi,j be the point

in the middle x3, and let s3 = 0 such that γ(0) = x3. x2 and x4 are the points where

the zero level-set (or the interface Γ) intersects the mesh immediately surrounding

x3. In order to maintain the stability of the approximation, we need to make sure

that x2 and x4 are at least 1
10

∆x away from x3. Similarly, from the neighbourhood

of x2 and x4 we choose x1 and x5 that intersect on the interface and at least 1
10

∆x

away from x2 and x4 accordingly.

Figure 4.1: Schematic diagram showing the choice of four points close to x3

After choosing the points, we approximate the arc lengths si by using the linear

distances between the points. That is, when moving backward along the curve from
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x3 = γ(s3), s3 = 0, s2 = −|x3 − x2|, and s1 = s2 − |x2 − x1|; when moving forward

along the curve from x3, s4 = |x4 − x3| and s5 = s4 + |x5 − x4|. Then let x(s) and

y(s) be the least squares quadratic curves fitted to {(si, xi)}5
i=1 and {(si, yi)}5

i=1,

then we obtain an approximate curve of the interface. The next step is to use this

approximation of the boundary to construct a local level-set function near x3 = (x, y)

on the 3 × 3 grid X̂ × Ŷ where X̂ = {x − δ, x, x + δ}, Ŷ = {y − δ, y, y + δ} and

δ is a positive constant (here we choose δ = 1
1000

∆x). Using this constructed local

level-set function we effectively remove the influence of the nearby irregularity, and

safely apply the 9-point stencil discretisation to calculate the curvature and normal

vector.

4.2.2 The WENO algorithm in 2D

In this section we introduce the fifth-order weighted essentially non-oscillatory (WENO)

scheme in 2D proposed by Jiang and Peng (2000) to approximate the spatial oper-

ator in the PDE for the level-set method which is a Hamilton-Jacobi equation.

Let xi, yj be the (i, j) node of a 2D grid with uniform spacing ∆x in x-direction

and ∆y in y-direction. We introduce the notations:

φi,j = φ(xi, yj), ∆+
x = φi+1,j − φi,j, ∆+

y = φi,j+1 − φi,j. (4.10)

Here, φ±x,i,j are WENO approximations to
∂φ

∂x
(xi, yj), i.e.,

φ±x,i,j =
1

12

(
−∆+

x φi−2,j

∆x
+ 7

∆+
x φi−1,j

∆x
+ 7

∆+
x φi,j
∆x

− ∆+
x φi+1,j

∆x

)
± ΦWENO

(
∆−x ∆+

x φi±2,j

∆x
,
∆−x ∆+

x φi±1,j

∆x
,
∆−x ∆+

x φi,j
∆x

,
∆−x ∆+

x φi∓1,j

∆x

)
. (4.11)
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Similarly, φ±y,i,j are WENO approximations to
∂φ

∂y
(xi, yj), given by,

φ±y,i,j =
1

12

(
−

∆+
y φi,j−2

∆y
+ 7

∆+
y φi,j−1

∆y
+ 7

∆+
y φi,j

∆y
−

∆+
y φi,j−1

∆y

)
± ΦWENO

(
∆−y ∆+

y φi,j±2

∆y
,
∆−y ∆+

y φi,j±1

∆y
,
∆−y ∆+

y φi,j

∆y
,
∆−y ∆+

y φi,j∓1

∆y

)
, (4.12)

where

ΦWENO(a, b, c, d) =
1

3
ω0(a− 2b+ c) +

1

6

(
ω2 −

1

2

)
(b− 2c+ d), (4.13)

and the weights ω0, ω2 are defined as

ω0 =
α0

α0 + α1 + α2

, ω2 =
α2

α0 + α1 + α2

.

α0 =
1

(ε+ IS0)2
, α1 =

6

(ε+ IS1)2
, α0 =

3

(ε+ IS2)2
.

IS0 = 13(a− b)2 + 3(a− 3b)2,

IS1 = 13(b− c)2 + 3(b+ c)2,

IS2 = 13(c− d)2 + 3(3c− d)2.

In this dissertation we use the WENO scheme to discretise the spatial operator

|∇φ|. In order to guarantee that our approximations of
∂φ

∂x
(xi, yj) and

∂φ

∂y
(xi, yj)
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are from an upwind scheme, we let,

|∇φi,j| =



√
max(φ−x,i,j, 0)2 +min(φ+

x,i,j, 0)2 +max(φ−y,i,j, 0)2 +min(φ+
y,i,j, 0)2

if F (i, j) > 0,

√
min(φ−x,i,j, 0)2 +max(φ+

x,i,j, 0)2 +min(φ−y,i,j, 0)2 +max(φ+
y,i,j, 0)2

if F (i, j) < 0.

(4.14)

4.2.3 A Third-Order TVD–Runge-Kutta Method

The time discretisation of equation (4.2) will be implemented by a third order TVD

Runge-Kutta method as used in Gottlieb and Shu (1997) and Gottlieb et al. (2001)

to solve the ordinary differential equation

du

dt
= L(u), (4.15)

where L(u) is a discretisation of the spatial operator, the third-order TVD Runge-

Kutta given by:

u1 = un + ∆tL(un),

u2 =
3

4
un +

1

4
u1 +

1

4
∆tL(u1), (4.16)

un+1 =
1

3
un +

2

3
u2 +

2

3
∆tL(u2).
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4.2.4 Velocity Extension

Recall that the basic idea of the level-set method, is that an interface propagating

with speed F is embedded as the zero level set of the higher-dimensional level-set

function φ, satisfying

φt + F |∇φ| = 0. (4.17)

There is an implicit assumption that the normal velocity F is assumed to have

been defined for all the level-sets and not just the zero level-set corresponding to

the interface. Therefore, both the interface and the speed F are embedded in a

higher-dimensional function. To be more accurate, we should write:

φt + F̃ |∇φ| = 0, (4.18)

where

F̃ = F at points (x, y), where φ = 0.

This new velocity field F̃ is called the “extension velocity”.

The extension velocity F̃ should yield the speed F of the zero level set in the

limit,

lim
x→a

F̃ (x) = F (a), (4.19)

where a is a point on the interface.

a) Identifying the closest point on the interface

Here we use the information provided by the level-set function φ to make a

simple, efficient operation, where no search is required. At any point x, the

outward normal vector n(x) points away from the interface, and |φ(x)| gives

the distance to the interface. Therefore, the point is given explicitly by,
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xΣ = x− φ(x)n(x), (4.20)

where xΣ is the closest point on the interface Σ to point x (Figure 4.2).

Figure 4.2: Schematic diagram showing how to identify the closest point on the
interface using the outward normal vector and signed distance function

b) Orthogonal velocity extension

We now apply an extension routine within a band around the interface Σ to

guarantee that ∇F̃ · n = 0, which is based on a bilinear interpolation of the
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velocity near the interface that has been shown to be more accurate and less

computationally expensive than PDE-based techniques (Malladi et al., 1996).

Firstly, by using the technique mentioned above, we obtain the closest point

xΣ to a given point x on the interface. The next step is locating (xi, yj) such

that x is contained in the box [xi, xi+1] × [yj, yj+1] and calculate F (xΣ) with

a bilinear interpolation of F at the corners of the box (Figure 4.2). Finally,

we define F̃ (x) = F (xΣ) to obtain the extended velocity, since F̃ is constant

along the normal vector, i.e.,

∂F̃

∂n
≡ 0 (4.21)

4.2.5 Gaussian Smoothing

When the problem to be solved is sensitive to variations in the curvature, the speed

can become noisy even if small perturbations in the level set function are present.

Also, grid effects such as mesh-induced anisotropies can act as sources of numerical

perturbations. Although the high frequency perturbations in the speed and interface

position can be damped away provided a CFL condition is satisfied, it requires

a high-order time-step constraint. One way to remove the high-order time-step

constraint is to use numerical diffusion to remove small, high frequency perturbations

before they disturb the numerical solution. The advantage of this is that it is

computationally inexpensive, and it does not degrade the accuracy of the numerical

solution if done carefully. It is found that adapting a Gaussian filter (from image

processing applications) to smooth the normal velocity within a certain band around

the interface provides an efficient means of controlling the noise without affecting

the accuracy. Additionally, Gaussian smoothing removes grid anisotropies (Macklin

and Lowengrub, 2006, 2008).
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In one dimension, a Gaussian filter is applied to a function f as follows:

f̂l =
1

σ
√

2π

∑
i

fl−iexp

(
−(i∆x)2

2σ2

)
∆x, (4.22)

where σ is the standard deviation of the filter. Typically, σ = M∆x for some integer

M . For |i∆x| ≥ 3σ, the exponential function in the convolution is very small, and

consequently, we can truncate the sum above to

f̂l =
1

S

1

M
√

2π

3M∑
i=−3M

fl−iexp

(
−1

2

(
i

M

)2
)
, (4.23)

where S is the value of the sum for f ≡ 1. In order to smooth a two-dimensional

data array, we use equation (4.23) first in the x-direction, and then use it again in

the y-direction.

4.2.6 Convergence and Testing Results

We now present convergence results for the numerical method above. If ph is a

numerical solution of equation (4.2) computed on a computational grid with mesh

length h and time step ∆t = 1
2
∆x2, and if the exact solution p of equation (4.2) is

known, then we define,

experimental oder of convergence =
log( ||ph1−p||∞

||ph2−p||∞ )

log(h1

h2
)

. (4.24)

If the exact solution is unknown, we then solve on meshes with mesh lengths h1 = h,

h1 = 1
2
h, h1 = 1

4
h and define

experimental oder of convergence =
log( ||ph−ph2||∞

||ph2−ph3||∞ )

log(2)
, (4.25)
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where each norm is computed on the common grid points. In our method, we use

the discrete maximum `∞ for all convergence testing.

Order of convergence of the overall algorithm

In order to test the order of convergence of the overall algorithm, first, we test it by

a simple perfect unit circle with low, moderate and high resolution. Set the initial

level-set function as follows:

φ =
√
X2 + Y 2 − r. (4.26)

where r is the radius of the zero contour plot of the circles and then solve the

equation (4.2) with the velocity function defined as,

F = κ− 1

r
(4.27)

where κ is the curvature.

1) r = 1

Now we use the unit circle with r = 1 in (4.26) and velocity function F = κ−1,

to test the stability of the entire algorithm. A reasonable expectation is that

the unit circle stays the same shape as it evolves, since the geometry of the

interface is symmetric, meaning that the curvature κ = 1
r

and zero contour

plot of the circles gives us r = 1, so the speed function F should be zero, which

results in a stationary circle. As can be seen from Figure 4.3 our simulation

results are as expected.

From the data we obtained, we cannot draw conclusions on the order of con-

vergence of the method using equation (4.24) (see Table 4.1). This is probably
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Figure 4.3: Contour plots of tests using circle with radius r = 1 and speed function
F = κ− 1. The bold blue curve is the initial position of the interface at t = 0, while
the bold red curve represents the final position at t = 3.

due to relatively large mesh sizes used; smaller mesh sizes could be more ap-

propriate and this is something requiring further investigation.

dx e∞ order of accuracy
0.2 1.19e−02

0.1 1.6725e−04 6.1561
0.05 2.2201e−05 2.9133

Table 4.1: Data showing the order of accuracy for the unit circle test with low,
moderate and high resolution

2) r = 2

Figure 4.4 shows the results of another test by using a circle with radius r = 2

and the velocity function F = κ − 1
2
. Similarly, we set the radius of the test

circle and the speed function in a way that the interface should remain still,

and once again the results are as expected.

The order of convergence given by this test is shown in Table 4.2. Again we

cannot draw any precise conclusions on the order of convergence of the algorithm

and this issue requires further investigation.
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Figure 4.4: Contour plots of tests using circle with radius r = 2 and speed function
F = κ− 1

2
. The bold blue curve is the initial position of the interface at t = 0, while

the bold red curve represents the final position at t = 3.

dx e∞ order of accuracy
0.2 2.7588e−04

0.1 6.2663e−05 2.1383
0.05 2.0263e−06 1.6284

Table 4.2: Data showing the order of accuracy for the test with low, moderate and
high resolution

4.3 Case study 1: A test model

We first introduce a test model that includes a reaction-diffusion system (the Schnaken-

berg system) to model the dynamics in a hypothetical peritumoural environment,

and use the distribution of the determinant factor that controls the movement of

cancer cells to regulate the velocity of migrating cancer cells. Using a level-set

method we calculate and keep track of the precise position of the tumour boundary

when the interface of the tumour deforms.
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4.3.1 Analysis of the Schnakenberg system

The dimensionless Schnakenberg model, with zero-flux boundary condition is:

du

dt
= γf(u, v) +∇2u, (4.28)

dv

dt
= γg(u, v) + d∇2v, (4.29)

(n · ∇)

 u

v

 = 0, x on ∂B, (4.30)

where,

f(u, v) = a− u+ u2v, (4.31)

g(u, v) = b− u2v, (4.32)

and ∂B is the closed boundary of the domain B and n is the unit outward normal

to ∂B. Thus, the relevant homogeneous steady state is:

u0 = a+ b v0 =
b

(a+ b)2
with b > 0, a+ b > 0. (4.33)

It is well known (Murray, 2003) that this reaction diffusion system exhibits

diffusion-driven instability (or Turing instability), i.e., the homogeneous steady state

is stable to small perturbations in the absence of diffusion but unstable when diffu-

sion is present. We derive here the necessary and sufficient conditions for diffusion-

driven instability of the steady state. Consider the full system and linearise about

the steady state, i.e., we set,

w =

 u− u0

v − v0


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where |w| is small. Then we have:

wt = γAw +D∇2w, (4.34)

where A is the stability or Jacobian matrix,

A =

fu fv

gu gv


u0,v0

and D =

1 0

0 d

 .

We then define W(r) to be the time-independent solution of the spatial eigen-

value problem defined by:

∇2W + k2W = 0, (n · ∇)W = 0 for r on ∂B, (4.35)

where k is the eigenvalue or wavenumber. Let Wk(r) ∝ cos(nπx/a) be the eigen-

function corresponding to the wavenumber k. Each eigenfunction Wk(r) satisfies

the zero-flux boundary conditions. Since the problem is linear, now we look for

solutions w(r, t) of (4.34) in the form:

w(r, t) =
∑
k

cke
λtWk(r). (4.36)

Substituting this into (4.34) and cancelling eλt, for each k, we obtain,

λWk = γAWk −Dk2Wk. (4.37)

Since we require nontrivial solutions for Wk, the eigenvalues are determined by the

roots of the characteristic polynomial

|λI − γA+Dk2| = 0.
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Evaluating the determinant with A and D, we obtain the equation:

λ2 + λ[k2(1 + d)− γ(fu + gv)] + h(k2), (4.38)

where,

h(k2) = dk4 − γ(dfu + gv)k
2 + γ2|A|. (4.39)

The steady state (u0, v0) is linearly stable if both solutions of (4.38) and (4.38)

have Re(λ) < 0. In absence of any spatial effects, i.e., k2 = 0, then (4.38) becomes:

λ2 − γ(fu + gv)λ+ γ2(fugv − fvgu) = 0.

Thus linear stability is guaranteed if

trA = fu + gv < 0, |A| = fugv − fvgu > 0.

Meanwhile, for the steady state to be unstable to spatial disturbances we require

Reλ(k) > 0, which can be satisfied if either the coefficient of λ in (4.38) is negative

or if h(k2) < 0 for some k 6= 0. However, since we already require (fugv − fvgu) < 0

to guarantee stability in absence of spatial perturbations and k2(1 + d) > 0 for all

k 6= 0, the coefficient of λ is always positive, namely,

[k2(1 + d)− γ(fu + gv)] > 0.

Therefore, the only way to make Reλ(k2) > 0 is when h(k2) < 0 for some k. Since we

already have |A| > 0, it is possible for h(k2) to be negative in (4.38) if dfu + gv > 0.

Also, (fu + gv) < 0 implies that d 6= 1 and fu and gv must have opposite signs.

Furthermore, the minimum hmin must be negative to ensure that h(k2) is negative
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for some nonzero k. From (4.39), we have,

h(k2) = d

(
k2 − γ dfu + gv

2d

)2

+ γ2

[
|A| − (dfu + gv)

2

4d

]
,

which gives us:

hmin = γ2

[
|A| − (dfu + gv)

2

4d

]
, k2 = k2

m = γ
dfu + gv

2d
. (4.40)

Thus, the condition that h(k2) < 0 for some k2 6= 0 is:

|A| < (dfu + gv)
2

4d
. (4.41)

At the bifurcation point, when hmin = 0 and for fixed kinetics parameters, we

define a critical diffusion coefficient ratio dc > 1 as the appropriate root of

d2
cf

2
u + 2(2fvgu − fugv)dc + g2

v = 0. (4.42)

In this case, we obtain an expression for dc in terms of the parameters a and b by

substituting fu and gv as below:

dc =
(a+ b)2[a2 + 32 + 4ab+ 2(a+ b)

√
3b2 − a+ 3b]

(b− a)2
. (4.43)

We obtain the parameter γ from the equation:

γ ≈ 2dck
2
m

dcfu + gv
. (4.44)

From Figure 4.5, we see that there is a wavenumber range k2
1 < k2 < k2

2 with

h(k2) < 0 and Reλ > 0, and it can be obtained from solutions k2
1 and k2

2 of h(k2) = 0
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Figure 4.5: a). Plot of h(k2) defined by (4.39) when the diffusion coefficient ratio
d < dc, d = dc and d > dc. b).Plot of the largest of the eigenvalues λ(k2) from (4.38)
as a function of k2.

(equation (4.39)), i.e.,

k2
1 =

γ
[
(dfu + gv)−

√
(dfu + gv)2 − 4d|A|

]
2d

< k2

<
γ
[
(dfu + gv) +

√
(dfu + gv)2 − 4d|A|

]
2d

= k2
2. (4.45)

For finite domain eigenvalue problems, the wavenumbers are discrete and so only

certain k in the range are relevant. Figure 4.5 b) plots a typical λ(k2) against k2 and

the expression λ = λ(k2) is called dispersion relation. An analysis of the dispersion

relation is crucial in order to get the information of which eigenfunctions (i.e. which

spatial patterns) are linearly unstable and grow exponentially with time.

Now we consider the solution w(r, t) given by equation (4.36). Those modes for

which Reλ(k2) > 0 make the dominant contributions as time t increases since all

other modes tend to zero exponentially. Thus, we can write:
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w(r, t) '
k2∑
k1

Cke
λ(k2)tWk(r) for large t, (4.46)

with the range of wavenumbers k2
1 < k2 < k2

2 from equation (4.45) where h(k2) < 0

and hence Reλ > 0. Since we have Wk(r) ∝ cos(nπx/a) from equation (4.35), in

a one dimensional domain x ∈ (0, p), the spatially heterogeneous solution which

emerges is the sum of the unstable modes, i.e.,

w(r, t) '
n2∑
n1

Cn exp

[
λ

(
n2π2

p2

)
t

]
cos

(
nπx

p

)
, (4.47)

where λ is given by the positive solution of equation (4.38), n1 is the smallest

integer no less than pk1/π, n2 the largest integer no greater than pk2/π and Cn are

the constants which are determined by the initial conditions.

Figure 4.6 shows a range of one-dimensional patterns with modes from n = 1 to

n = 9 for the Schnakenberg system.

69



(a) n = 1 (b) n = 2 (c) n = 3

(d) n = 4 (e) n = 5 (f) n = 6

(g) n = 7 (h) n = 8 (i) n = 9

Figure 4.6: Plots of one-dimensional patterns with modes from n = 1 to n = 9 for
the Schnakenberg system. The blue curve represents the level of species u and red
represents the level of species v. Parameter values are: a = 0.7, b = 3, d = dc + ε,
where ε = 10−6; values of dc and γ are obtained from equation (4.43) and (4.44).
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Similarly, in a two-dimensional domain x ∈ [0, p] × [0, q], the eigenfunctions of

the spatial eigenvalue problem in equation (4.35) are:

Wp,q(x, y) = Cm,n cos

(
nπx

p

)
cos

(
mπy

q

)
, (4.48)

with the corresponding spatial eigenvalues,

k2 = π2

(
n2

p2
+
m2

q2

)
, (4.49)

where m and n are integers. These modes Wk(x, y) are linearly unstable with the

wavenumber k lying within the unstable range. To guarantee that at least one

possible mode is included in the range, we assume d is sufficiently large, or we let γ

satisfy the condition in equation (4.44) and the diffusion coefficient ratio d satisfy

equation (4.43). Now the unstable spatially patterned solution becomes:

w(r, t) '
∑
m,n

Cm,ne
λ(k2)t cos

(
nπx

p

)
cos

(
mπy

q

)
, (4.50)

within the range of unstable wavenumbers.

Figure 4.7 shows the plots of different two-dimensional patterns formed by vary-

ing the values of n and m in a way that the wavenumbers remain in the unstable

range.
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Figure 4.7: Plots of different two-dimensional patterns generated by the Schnaken-
berg system by varying the values of n and m in a way that the wavenumbers remain
in the unstable range with dx = dy = 0.02
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4.3.2 Regulation of deformations of the boundary

In this case study, we test the modelling idea that interactions between cancer cells

and their microenvironment are modelled using reaction-diffusion equations, such

as Schnakenberg kinetics that forms dynamic patterns of the distribution of species

in the system, while the tumour boundary deformations are modelled as a moving

boundary whose precise location will be calculated using the level-set method. We

transform the front motion into an initial value problem as follows:

φt + F |∇φ| = 0, (4.51)

given φ(x, t = 0).

We assume that the velocity function F is determined by the local geometric

character, i.e., curvature, and also by the local concentration of the species u in the

Schnakenberg kinetics. If the local concentration of the species u at a point x ∈ ∂B

on the boundary is above some threshold value u0, and the amount beyond the

threshold is large enough to overcome the surface tension (which is proportional to

the curvature at the point), then the velocity at that point is positive. Otherwise,

the velocity at a point on the boundary can be zero, (when the force produced by

u counterbalances the surface tension); or if the surface tension is larger than the

force produced by the population of u at the point on the interface, then the velocity

accordingly is negative. The equation of the velocity function at a point x ∈ ∂B at

time t is written as:

F (x, t) = α(u(x, t)− u0)− τκ(x, t). (4.52)

where u0 is a threshold value that determines if the present concentration of u can

overcome the pressure on the boundary and push it outward, and κ represents the
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curvature of the interface. To calculate the curvature on the interface, we applied

the method introduced in section 4.2.1.

4.3.3 Computational simulations

We solve the model in a rectangular region Y := [0, 4]× [0, 4] and assume that the

cancer initially occupies a region Ω(0) within Y , taken to be a disc centred at (2, 2).

The mesh size is ∆x = ∆y = 0.01325. The initial conditions in two dimension for

the Schnakenberg system are:

u(x, y, 0) = u0 + 0.01 cos(100x) cos(100y), (4.53)

v(x, y, 0) = v0 + 0.01 cos(100x) cos(100y), (4.54)

where (u0, v0) is the homogeneous steady states of the system.

Figure 4.8 shows us the simulation results of the evolution of the boundary

deformations. We can see that coupling a reaction-diffusion system (whose solutions

are spatially heterogeneous when the parameter setting satisfies the condition of

diffusion-driven instability of the steady state) and the level-set method can help

us to describe the boundary deformations. However, in this case, we have assumed

that the surface tension of the tumour is curvature-dependent. In other words, the

heterogeneity of the dynamics that models the interactions between the tumour

and its microenvironment is not the main reason that triggers the deformations of

the boundary. In the next study case, we will remove the effect of the curvature-

dependent boundary condition.
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(a) t=0.0 (b) t=1.0 (c) t=2.0

(d) t = 3.0 (e) t=4.0 (f) t = 5.0

(g) t=6.0 (h) t=7.0

Figure 4.8: Plots of the deformations of the interface from time t = 1.0 to t =
6.0 coupling the Schnakenberg reaction diffusion system with level-set method. The
parameter values are: a = 0.1, b = 1, n = 8, m = 4, p = q = 1, d = 13.0766,
γ = 2176.2; in the velocity function for level set method, α = 2,u0 = 0.5 and τ = 1.
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4.4 Case study 2: The level-set method coupled

with a uPA system

This case study will examine an invading cancer by coupling an urokinase plas-

minogen activation (uPA) system with a moving boundary that is calculated by the

level-set method.

4.4.1 Components of the uPA system and their functions

Proteolytic degradation and remodelling of the extracellular matrix is essential for

cancer cell invasion. It enables cancer cells to proliferate and migrate through sur-

rounding tissue. Therefore, one of the first steps of invasion is the production and se-

cretion of proteolytic enzymes, i.e., urokinase plasminogen activator (uPA) and ma-

trix metalloproteinases (MMPs) by cancer cells. These enzymes regulate turnover of

ECM macromolecules and pave the way for cancer invasion. The enzymatic system

mainly consists of the urokinase receptor (uPAR), urokinase plasminogen activa-

tor (uPA), the matrix-like protein vitronectin (VN), plasminogen activator inhibitor

type1 (PAI-1) and plasmin (a matrix degrading enzyme).

Urokinase plasminogen activator (uPA) uPA is an extracellular serine pro-

tease produced from cells. Two major functional domains of the uPA molecule are

the protease domain and the growth factor domain. The protease part activates

plasminogen and turns it into plasmin, which is able to digest basement membrane

and extracellular matrix proteins. The growth factor domain has no protease ac-

tivity but can bind a specific high affinity cell-surface receptor, uPAR. uPA has a

zymogen form, pro-uPA, which can also bind to uPAR. pro-uPA can be activated

by plasmin (Chaplain and Lolas, 2005; Andasari et al., 2011).
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Urokinase plasminogen activator receptor (uPAR) uPAR is a high affin-

ity cell-surface receptor of uPA (and its zymogen form pro-uPA) and by binding it

localises uPA and pro-uPA to the cell surface. Importantly, uPAR contains another

binding site for vitronectin, and since the vitronectin and uPA binding sites are dis-

tinct, uPAR can simultaneously bind both ligands, allowing coordinated regulation

of proteolysis, cell adhesion and signalling.

uPAR expression during ECM remodelling is well controlled under normal condi-

tions, for example, in gestational tissues during embryo implantation and placental

development and in keratinocytes during epidermal would healing. uPAR is also

expressed in many human cancers. It indicates poor prognosis and in some cases

is predictive of invasion and metastasis. Importantly, uPAR expression in tumours

can occur in tumour cells and/or tumour-associated stromal cells, such as fibroblasts

and macrophages. Moreover, there is crosstalk between ligands-binding of uPA to

uPAR enhances vitronectin binding by uPAR (Smith and Marshall, 2010).

Vitronectin (VN) VN is an abundant versatile glycoprotein found in serum

and the extracellular matrix and promotes cell adhesion and spreading. Vitronectin

binds strongly to glass surfaces, as the name indicates (vitro = glass), and it has

binding sites for several ligands, including heparin, urokinase plasminogen activator

receptor (uPAR), plasminogen activator inhibitor type-1(PAI-1), and integrins, such

as αvβ3. When vitronectin binds to uPAR, it is thought to bring PAI-1 closer to uPA,

thereby promoting inhibition and clearance of uPA from the receptor (Chaplain and

Lolas, 2005; Andasari et al., 2011).

Urokinase plasminogen activator Inhibitor-1(PAI-1) One of the inhibitors

of urokinase plasminogen activator, PAI-1, belongs to the serpin (serine protein in-

hibitors) family and it is believed to be the most abundant, fast-acting inhibitor of
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uPA in vivo. It can specifically bind to soluble and membrane-bound uPA to inhibit

plasminogen activation. When PAI-1 binds to the uPA/uPAR complex, it triggers

the internalisation of the uPA/uPAR/PAI-1 complex by receptor-mediated endo-

cytosis, meaning that the complex will be dissociated and PAI-1 and uPA will be

digested, but the receptor will be recycled to the cell surface. This process helps with

the clearance of PAI-1 from the vicinity of the cell surface. Additionally, as a major

binding protein of VN, PAI-1 competes with uPAR for binding to VN (Chaplain

and Lolas, 2005; Andasari et al., 2011).

Plasmin Plasmin is a widespread enzyme that cleaves many extracellular matrix

proteins, such as fibronectin, laminin, vitronectin and thrombospondin. In addition,

plasmin can also activate many matrix metalloproteinases (MMPs), enhancing even

more the degradation of extracellular matrix. It can also influence the composition

of the extracellular environment by affecting the activity of cytokines and growth

factors, for example, TGF-beta (Chaplain and Lolas, 2005; Andasari et al., 2011).

Figure 4.9 shows a schematic diagram of the uPA system, which gives a clearer

picture of the whole system. The effects of the plasminogen activation system in

cell migration may be due to proteolytic as well as non-proteolytic mechanisms.

Proteolytic mechanisms help to break physical barriers and promote detachment

of the trailing edge of cells from matrix proteins by generating plasmin at focal

adhesion sites, catalysed by uPAR-bound uPA. It is possible that a non-proteolytic

mechanism works simultaneously in migrating cells, and in this mechanism, uPA is

thought to promote cell migration by enhancing adhesion at the leading edge. The

reason of this assumption is that binding of uPA to uPAR enhances VN binding by

uPAR, as mentioned before.
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Figure 4.9: A schematic diagram of the uPA system showing the components of
the system and their functions. Copyright permission required (Smith and Marshall,
2010).

4.4.2 Mathematical multiscale modelling of cancer invasion

incorporating the uPA system

In the following descriptions, we denote the cancer cell density by c, the extracel-

lular matrix (ECM, vitronectin) substrate density by v, the urokinase plasminogen

activator (uPA) concentration by u, the plasminogen activator inhibitor (PAI-1) con-

centration by p and the plasmin concentration by m. There is no explicit modelling

of uPAR since we assume a fixed average number of uPARs located on each cancer

cell’s surface. Therefore, the concentration of uPAR is proportional to the cancer

cell density. Another important assumption is that the supply of plasminogen is un-

limited in this model. Additionally, as well as the biological facts mentioned in the

previous section, the following assumptions are made, upon which the mathematical

model is built (Chaplain and Lolas, 2005; Andasari et al., 2011):
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The cancer cells dynamics It is assumed that cancer cell migration is mainly

governed by diffusion, chemotaxis due to uPA and PAI-1 and haptotaxis due to VN

and other ECM components. Additionally, a logistic growth law is used to model

cancer cell proliferation. Thus, the mathematical equation for cancer cell density is:

∂c

∂t
= Dc∆c︸ ︷︷ ︸

diffusion

−∇ · [ χuc∇u︸ ︷︷ ︸
uPA-chemo

+ χpc∇p︸ ︷︷ ︸
PAI-1-chemo

+χvc∇v︸ ︷︷ ︸
VN-hapo

] + µ1c(1−
c

c0

)︸ ︷︷ ︸
profieration

, (4.55)

where Dc is the diffusion coefficient of cancer cells, χu and χp are chemotaxis coef-

ficients relevant to uPA and PAI-1 respectively, VN-mediated haptotaxis rate is χv,

cancer cell proliferation rate is µ1, and c0 is the maximum capacity for cancer cells.

The ECM/VN dynamics Since ECM does not move, we rule out any migration

terms from the equation. The degradation of ECM or VN by plasmin upon contact

is modelled by the term −δvm with a degradation rate δ. This is based on the widely

accepted fact that plasmin catalyses the breakdown of VN and other ECM molecules

after plasminogen has been activated by the activator, uPA. However, when PAI-1

binds to uPA, it inhibits the activation of plasminogen, in such a way that VN and

other ECM molecules are protected and indirectly contributes to their proliferation.

This process is modelled by term φ21up with binding rate φ21. Moreover, PAI-1

also binds to VN, leading to less binding to cell-surface receptors, e.g., uPAR, and

then inhibits VN production through the regulation of cell-matrix-associated signal

transduction pathways, so we include term −φ22vp in the equation and φ21 is the

binding rate of PAI-1 and VN. Finally, a logistic growth term describes remodelling

of ECM by the cells in the tissue. We therefore have the equation as below:
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∂v

∂t
= − δvm︸︷︷︸

degradation

+ φ21up︸ ︷︷ ︸
uPA/PAI-1

− φ22vp︸ ︷︷ ︸
PAI-1/VN

+µ2v(1− v

v0

)︸ ︷︷ ︸
proliferation

. (4.56)

The uPA dynamics The evolution of uPA concentration is more straightforward

than that of ECM, and consists of diffusion, a source term from production by the

cancer cells, removal from the system due to binding with PAI-1 and uPAR, which

yields,

∂u

∂t
= Du∆u︸ ︷︷ ︸

diffusion

− φ31pu︸ ︷︷ ︸
uPA/PAI-1

− φ33cu︸ ︷︷ ︸
uPA/uPAR

+ α31c︸︷︷︸
production

, (4.57)

where Du is the diffusion coefficient, φ31 and φ33 are binding rates of uPA/PAI-1

and uPA/uPAR accordingly and α31 the rate of production by cancer cells.

The uPA-1 dynamics Similarly, the equation for PAI-1 simply includes a dif-

fusion term with coefficient Dp, removal caused by binding to uPA and VN with

binding rates φ41 and φ42 respectively, and production as a result of plasmin forma-

tion with coefficient α41. Thus, these assumptions give us:

∂p

∂t
= Dp∆p︸ ︷︷ ︸

diffusion

− φ41pu︸ ︷︷ ︸
uPA/PAI-1

− φ42pv︸ ︷︷ ︸
PAI-1/VN

+ α41m︸ ︷︷ ︸
production

. (4.58)

The plasmin dynamics For the evolution of plasmin concentration, we first

assume that it diffuses. We also assume that binding of uPA to uPAR provides

an opportunity for pericellular proteolytic activity through plasminogen activation

leading to plasmin formation. Additionally, binding of PAI-1 to VN indirectly en-

hances the binding of uPA to uPAR and therefore helps plasmin formation as well.

Finally, we include a decay term. Thus, all the assumptions yield,
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∂m

∂t
= Dm∆m︸ ︷︷ ︸

diffusion

+ φ52pv︸ ︷︷ ︸
PAI-1/VN

+ φ53cu︸ ︷︷ ︸
uPA/uPAR

− φ54m︸ ︷︷ ︸
degradation

, (4.59)

where Dm is the diffusion coefficient, φ52 and φ53 are the binding rates of PAI-1/VN

and uPAR/uPA accordingly, and φ54 is the decay rate of plasmin

To sum up, the dimensionless mathematical model of the uPA system held on

spacial domain Y and temporal domain T is presented in (4.60) – (4.64) (more

details about nondimensionalisation process can be found in Chaplain and Lolas

(2005)):

∂c

∂t
= Dc∆c︸ ︷︷ ︸

diffusion

−∇ · [ χuc∇u︸ ︷︷ ︸
uPA-chemo

+ χpc∇p︸ ︷︷ ︸
PAI-1-chemo

+χvc∇v︸ ︷︷ ︸
VN-hapo

] + µ1c(1− c)︸ ︷︷ ︸
profieration

, x ∈ Y, (4.60)

∂v

∂t
= − δvm︸︷︷︸

degradation

+ φ21up︸ ︷︷ ︸
uPA/PAI-1

− φ22vp︸ ︷︷ ︸
PAI-1/VN

+µ2v(1− v)︸ ︷︷ ︸
proliferation

, x ∈ Y, (4.61)

∂u

∂t
= Du∆u︸ ︷︷ ︸

diffusion

− φ31pu︸ ︷︷ ︸
uPA/PAI-1

− φ33cu︸ ︷︷ ︸
uPA/uPAR

+ α31c︸︷︷︸
production

, x ∈ Y, (4.62)

∂p

∂t
= Dp∆p︸ ︷︷ ︸

diffusion

− φ41pu︸ ︷︷ ︸
uPA/PAI-1

− φ42pv︸ ︷︷ ︸
PAI-1/VN

+ α41m︸ ︷︷ ︸
production

, x ∈ Y, (4.63)

∂m

∂t
= Dm∆m︸ ︷︷ ︸

diffusion

+ φ52pv︸ ︷︷ ︸
PAI-1/VN

+ φ53cu︸ ︷︷ ︸
uPA/uPAR

− φ54m︸ ︷︷ ︸
degradation

, x ∈ Y,. (4.64)

where t ∈ T .

Solutions of the uPA system model in 1D and 2D

In order to investigate the behaviours of our macroscopic dynamics, we solve the

mathematical model numerically in both one-dimension and two-dimensions (using

the finite element package COMSOL ). For the one-dimensional domain, we take

x ∈ [0, 10], and the time interval is [0,500]. The initial conditions we use are the
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same as those in Chaplain and Lolas (2005), i.e.,

c(x, 0) = exp

(
−x2

ε

)
, x ∈ [0, 10] and ε > 0,

v(x, 0) = 1− 1

2
exp

(
−x2

ε

)
, x ∈ [0, 10] and ε > 0,

u(x, 0) =
1

2
exp

(
−x2

ε

)
, x ∈ [0, 10] and ε > 0, (4.65)

p(x, 0) =
1

20
exp

(
−x2

ε

)
, x ∈ [0, 10] and ε > 0,

m(x, 0) = 0, x ∈ [0, 10],

where ε = 0.01.

By imposing the initial conditions in this way, we assume that there is a cluster

of cancer cells at the beginning and that they have penetrated a short distance

into the extracellular matrix while the remaining space is occupied by ECM alone.

In addition, we also assume that uPA protease and PAI-1 initial concentrations are

proportional to the initial tumour density. The plasmin protease is not yet produced

by the cancer cells.

In Figure 4.10, we show the plots of the spatio-temporal evolution of cancer

cells invading EMC along with the other components of the model: uPA protease

concentration, PAI-1 concentration and plasmin concentration at t = 0, t = 75,
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t = 150, t = 500 and use the parameter set P for the system below:

Dn = 3.5 · 10−4, χu = 3.05 · 10−2, χp = 3.75 · 10−2, χv = 2.85 · 10−2,

µ1 = 0.25, δ = 8.15, φ21 = 0.75, φ22 = 0.55,

µ2 = 0.15, Du = 2.5 · 10−3, φ31 = 0.75, φ33 = 0.3,

α31 = 0.215, Dp = 3.5 · 10−3, φ41 = 0.75, φ42 = 0.55,

α41 = 0.5, Dm = 4.91 · 10−3, φ52 = 0.11, φ53 = 0.75,

φ54 = 0.5. (4.66)

These plots shows us the spread of the cancer cells into the surrounding tissue

in a “wave-like” manner. Since the diffusion coefficient of cancer cells that we are

applying is small, so that chemotaxis and haptotaxis are the dominant mechanisms

that drive the cancer cells to move. This leads to heterogeneous solutions of the

uPA system. However, if we increase the diffusion rate of cancer cells the profiles

to the extend that diffusion becomes dominant cell movement mechanism, then the

solution of the system will lose heterogeneity.

In the two-dimensional situations, we choose three different shapes for the do-

main Ω: rectangular, round and “astroid”. The initial conditions we use are:

n(0, x, y) =
1

2
+

1

2
tanh(10(y − 0.8)), (x, y) ∈ Ω,

v(0, x, y) =
1

2
− 1

2
tanh(10(y − 0.8)), (x, y) ∈ Ω,

u(0, x, y) =
1

4
+

1

4
tanh(10(y − 0.8)), (x, y) ∈ Ω, (4.67)

p(0, x, y) =
1

40
− 1

40
tanh(10(y − 0.8)), (x, y) ∈ Ω,

m(0, x, y) = 0, (x, y) ∈ Ω.
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Figure 4.10: Plots of the spatio-temporal evolution of cancer cell c (solid line)
invading EMC v (dotted line) along with the other components of the model: uPA
protease concentration u (thin dash-dotted line), PAI-1 concentration p (dashed line)
and plasmin concentration m (dash-dotted line) with parameter set mentioned above
at t = 0, t = 75, t = 150, t = 500 respectively.
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Figure 4.11: Plots of the distribution of the cancer call n and ECM density v
in in different shapes of the domain at time t = 200. The parameter settings are
mentioned above, parameter set P.
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We use the same parameter set as that for the one-dimensional domain. Fig-

ure 4.11 shows the two-dimensional spatio-temporal solutions of the cancer cells and

ECM distribution, which renders heterogeneous patterns as we expected.

4.4.3 Incorporating a boundary boundary

In order to define the velocity of cancer cells at the invasion front, we form a group

∂B that includes all the points in the vicinity of the tumour boundary, i.e., ∂B :=

{x : |φ(x)| ≤ R}, where R = 10∆x is the width of the narrow band around the

interface. We assume that if the amount of plasmin m(x, y) at a boundary point

(x, y) ∈ ∂B is above the mean value (denoted by m̄) of plasmin concentration at

all the points in ∂B, then the cancer cells at this point will invade the surrounding

tissues. Whereas, if the local amount of plasmin m(x, y) is no greater than the mean

value, the velocity of the cancer cells at that point is zero. Therefore, we model the

velocity function on point (x, y) ∈ ∂B at time t as bellow:

F (x, y, t) =


α(m(x, y, t)− m̄)/(max(x,y)∈∂Bm(x, y, t)), if m(x, y, t) > m̄,

0, if m(x, y, t) ≤ m̄.

(4.68)

where m̄ is the mean value of plasmin concentration in the vicinity of the boundary

and α is a positive constant.

4.4.4 Computational simulations

We solve the model in a rectangular region Y := [0, 4]× [0, 4] and assume that the

cancer initially occupies a region Ω(0) within Y , taken to be a disc centred at (2, 2)

with radius r = 0.5. The mesh size is ∆x = ∆y = 0.01325. The initial conditions
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for the uPA system are:

c(x, 0) =
exp
(
− ||x−(2,2)||22√

∆x∆y

)
− exp(− (1−∆x)(1−∆y)√

∆x∆y
)

2
, x ∈ Ω(0)

v(x, 0) =
1 + 0.3 sin (4π||x||2) + sin (4π||(4, 0)− x||2)

2
, x ∈ Y

u(x, 0) = 1− 1

2
c(x, 0), x ∈ Y (4.69)

p(x, 0) =
1

2
c(x, 0), x ∈ Y

m(x, 0) =
1

20
c(x, 0), x ∈ Y

Figure 4.12 shows the initial distribution of cancer cells and ECM of the uPA system.

Figure 4.12: Initial distributions of cancer cells (left column) and ECM (right
column) and the invasive boundary of the tumour (white line).

We use the first order of CFL condition for this two-dimensional case to calculate
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the time step ∆t for the next stage, i.e.,

∆t =
∆x∆y

max (F )∆x+ max (F )∆y
,

where F is the velocity function in equation (4.68). We can simplify the expression of

∆t and write it as ∆t = ∆x/2 max (F ) when ∆x = ∆y. In order to obtain solutions

of the uPA system we apply a finite difference scheme presented in Appendix 8.1.

The value of α in equation (4.68) controls the velocity of the boundary. For the

following simulation results we use α = 5 and α = 10. Since in the normal velocity

function (4.68) we do not include curvature-dependent terms, there is no need to

use Gaussian smoothing to remove the small perturbations in the level-set function

here.

Figures 4.13 to 4.18 show the simulation results of the evolution of the invasive

boundary of the tumour, and distributions of cancer cells and ECM from time stages

t = 10 to t = 120 with α = 5. Figures 4.19 to 4.22 show the simulation results of

the evolution of the invasive boundary of the tumour, and distributions of cancer

cells and ECM from time stages t = 10 to t = 80 with α = 10.

From these simulation results, we can see that the heterogeneity of the uPA

system and the formulation of the velocity function presented above work very well

together to model the interactions between cancer cells and the surrounding tissue

and the deformations of the invasive tumour boundary. The parameter α intro-

duced in (4.68) not only influences the speed of cancer cell migration but also the

morphology of the tumour during its invasion and spread.
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Figure 4.13: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
time stages: Stage 10, 20. Parameter settings are as in (5.49), α = 5 in (4.68).
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Figure 4.14: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
time stages: Stage 30,40.Parameter settings are as in (5.49), α = 5 in (4.68).
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Figure 4.15: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
time stages: Stage 50, 60. Parameter settings are as in (5.49), α = 5 in (4.68).
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Figure 4.16: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
time stages: Stage 70, 80. Parameter settings are as in (5.49), α = 5 in (4.68).
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Figure 4.17: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
time stages: Stage 90, 100. Parameter settings are as in (5.49), α = 5 in (4.68).
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Figure 4.18: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
time stages: Stage 110, 120. Parameter settings are as in (5.49), α = 5 in (4.68).
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Figure 4.19: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
time stages: Stage 10, 20.Parameter settings are as in (5.49), α = 10 in (4.68).
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Figure 4.20: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
time stages: Stage 30,40.Parameter settings are as in (5.49), α = 10 in (4.68).
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Figure 4.21: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
time stages: Stage 50, 60. Parameter settings are as in (5.49), α = 10 in (4.68).
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Figure 4.22: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
time stages: Stage 70, 80.Parameter settings are as in (5.49), α = 10 in (4.68).
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4.5 Discussion

In this chapter, we studied and used a level-set method coupled with two PDE

systems. The modelling concept is that we use the heterogeneous patterns of the

solutions of PDE systems to describe the dynamics of tumour cells, and apply the

level-set method to calculate the position of the moving boundary of the tumour.

The first PDE system we used as a test was a reaction-diffusion system called

the Schnakenberg system. In order to obtain a heterogeneous pattern formation, we

analysed the linear stability of the steady state of the system and derived the condi-

tions for diffusion-driven instability. Then we formulated a velocity function under

the assumption that if the force generated by the growing population of one species

in the system overcomes the surface tension of the boundary (which is proportional

to the curvature of the interface), then the boundary of the tumour deforms. How-

ever, in this case, the curvature-dependent term is the main reason for the instability

of the interface. We re-iterate that this is a test model, and we do not consider the

biological relevance in this model. In the second PDE system, the uPA system, we

model the interactions between cancer cells, ECM, the urokinase plasminogen acti-

vator (uPA), uPA inhibitors, and the ECM degrading enzyme plasmin. The system

models the pericellular proteolytic activities which determine cancer cell migration

and invasion. The formulation of the velocity function applied in the level-set tech-

nique only depended on the dynamics of the distribution of plasmin (the ECM

degrading enzyme), and not on the curvature of the boundary.

Comparing the simulation results of the two test models, we conclude that a

model of cancer invasion does not necessarily have to include a curvature-dependent

term in the level-set method in order to model the deformations of the boundary.

The heterogeneous dynamics of the uPA system alone can drive the deformations

of the tumour boundary, which can exhibit a more fingering morphology seen in
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pathological cases, and from experimental data.
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Chapter 5

Multiscale modelling of cancer

invasion: a moving boundary

macro-microscopic technique

5.1 Introduction

In this chapter we study and extend a novel multiscale moving boundary modelling

technique and method proposed by Trucu et al. (2013), which is very helpful and

robust for multiscale mathematical PDE systems with a moving boundary. We call it

a macro-microscopic technique according to its ability to deal with problems at both

a macro-level and a micro-level. The formulation of the method was motivated by the

complicated multiscale biological phenomenon: cancer invasion of tissue. Therefore

we present and introduce the method with a general two-scale mathematical model of

cancer invasion. Moreover, we extend the numerical technique by coupling the two-

scale method with an enzymatic system, i.e. the urokinase plasminogen activation

(uPA) system (Chaplain and Lolas, 2005; Andasari et al., 2011). This also helps us
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investigate the properties of the two-scale technique.

In the following sections, first of all, some important notations and considerations

will be presented in order to describe this multiscale technique. Then in the third

section, we introduce the macro-microscopic method and its application to a basic

cancer invasion model. In Section 5.5 we focus on computational schemes where an

overall algorithm flow will be found as well. Section 5.4 will introduce the extension

of the macro-microscopic technique and the properties of the two-scale method will

be examined using the uPA system as a specific example. The chapter concludes

with a discussion section.

5.2 Notation

In order to present the technique clearly with all the details (Trucu et al., 2013),

in this section, before giving a full description of the numerical methods used at

the micro- and macro-scale and the link between these two, we introduce first the

necessary notations that will be referred to in the following sections (and chapters),

as well as the relevant considerations and explanations.

It is assumed that the domain within which the cancer and extracellular matrix

exists is a maximal reference spatial cube Y ⊂ RN(N = 2, 3) with its centre at the

origin. Given a fixed ε representing a negative power of 2 (i.e., 0 < ε < 1), the initial

Y is uniformly decomposed ε-size cubes, εY , whose union will be referred to as an ε-

resolution of Y . For any εY from the decomposition, the “half-way shifted” cubes in

the direction iē1+jē2+kē3 given by any triplet (i, j, k) ∈ {(i, j, k)|i, j, k ∈ {−1, 0, 1}}

are defined as

εY i
2
, j
2
, k
2

= εY +
ε(iē1 + jē2 + kē3)

2
, (5.1)
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where,

ē1 : = e1, ē2 : = e2, and, ē3 : =

 e3 for N = 3,

0 for N = 2,
(5.2)

and {e1, e2, e3} is the standard Euclidean basis of R3. The family of all these ε−cubes

is denoted by F , i.e.,

F :=
⋃

i,j,k∈{−1,0,1}

{
εY i

2
, j
2
, k
2

∣∣εY is in the ε-resolution of Y
}
. (5.3)

Figure 5.1: Schematic diagram showing the cubic region Y centred at the origin
∈ R3. The dashed blue lines represent the Euclidean directions {e1, e2, e3}, the pink
region illustrates the cancer cluster Ω(t0), and the solid blue line represents the family
of microscopic cubic domains εY placed at the boundary ∂Ω(t0).

For any fixed time t0, we denote the cancer affected region within Y by Ω(t0).

Therefore the cancer cell and extracellular matrix distributions can be written as

cΩ(t0)(x, t) and vΩ(t0)(x, t) respectively. For simplicity, we will just use c(x, t) and
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v(x, t) in the following context. In Figure 5.1, the notations mentioned so far are

illustrated schematically.

In order to capture mathematically the microdynamics that occur in a cell-scale

neighbourhood of the tumour boundary ∂Ω(t0), out of the initial family F , we will

focus our attention of the subfamily denoted by FΩ(t0) which consists of only the

ε−cubes that cross the interface ∂Ω(t0) and have exactly one face included in the

interior of Ω(t0), namely

FΩ(t0) := {εY ∈ F|εY ∩ (Y \Ω(t0)) 6= ∅,

and εY has only one face included in int(Ω(t0))}, (5.4)

where int(Ω(t0)) is the topological interior of Ω(t0) with respect to the natural

topology on RN . In this context, for each εY ∈ FΩ(t0), we have the following face-

notations:

ΓintεY denotes the face of εY that is included in int(Ω(t0)),

Γj,⊥εY , j = 1, ..., 2N−1, denote the faces of εY that are perpendicular to ΓintεY

Γ
‖
εY denotes the face of εY that is parallel to ΓintεY .

(5.5)

These are illustrated schematically in Figure 5.2.

Furthermore, for each εY ∈ FΩ(t0), the topological closure of the only connected

component of Ω(t0) ∩ εY that is confined between [∂Ω(t0)]εY and ΓintεY is denoted

by [Ω(t0)]εY . Moreover, denoting by [∂Ω(t0)]εY the connected component part of
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Figure 5.2: Schematic diagram illustrating the notations introduced in (5.5), (5.9).
For the arbitrary microdomain εY ∈ Pε, we indicate with a black arrow the features:
ΓintεY , Γj1,⊥εY , and Γj2,⊥εY , j1, j2 ∈ {1, ..., 2N−1}, Γ

‖
εY , xcεY , µεY , and x∗εY . The

arbitrary cube εY ∈ P∗ε is shown in green, while the corresponding half-way shifted
εY sign

i
2

∈ Pεthat are not chosen in P∗ε are shown in the blue dashed line.

∂Ω(t0) ∩ εY with the property that

[∂Ω(t0)]εY ∩ Γj,⊥εY 6= ∅ for any j = 1, 2, ..., 2N−1, (5.6)

we can observe that [∂Ω(t0)]εY represents the part of ∂Ω(t0) ∩ εY that corresponds

to [Ω(t0)]εY , and is actually the only connected component of this intersection that

has property (5.6). Finally, using this observation, for the currently fixed ε, the

subfamily denoted by Pε consisting of all those ε−cubes that have [Ω(t0)]εY not

touching Γ
‖
εY is selected as follows:

Pε := {εY ∈ FΩ(t0)| [Ω(t0)]εY ⊂ εY and [∂Ω(t0)]εY ∩ Γ
‖
εY = ∅}. (5.7)
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Leaving now ε to take all the negative powers of 2, the union

⋃
ε∈{2−k | k∈N}

Pε

provides an infinite covering of ∂Ω(t0). Since ∂Ω(t0) is compact, using standard

compactness arguments, a finite complete sub-covering of ∂Ω(t0) that consist only

of small cubes an equal size ε∗ is denoted by P∗ε , i.e.,

∂Ω(t0) ⊂
⋃

εY ∈P∗ε

εY. (5.8)

Together with this finite complete covering P∗ε of the tumour interface ∂Ω(t0), at

each time of the tumour evolution we obtain also the size of the micro-scale ε∗ (Trucu

et al., 2013). For simplicity, for the rest of the thesis, the size of the cell-scale ε∗

will still be denoted by ε. Finally, for each εY ∈ P∗ε , we distinguish the following

topological details:



xcεY denotes the centre of the face ΓintεY ,

µεY , is the line that passes through xcεY and is perpendicular to ΓintεY

x∗εY ∈ [∂Ω(t0)]εY which will be referred to as the “midpoint” of [∂Ω(t0)]εY ,

represents the point from the intersection µεY ∩ [∂Ω(t0)]εY that is located

at the smallest distance with respect to xcεY .

(5.9)

The well-posedness of these topological features is discussed in Trucu et al. (2013),

and these are illustrated in Figure 5.2.
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5.3 The multiscale moving boundary method and

its application to a basic cancer invasion model

In order to introduce and discuss the multiscale moving boundary modelling method

and numerical technique proposed in Trucu et al. (2013), in this section we will

present a simple multiscale model, which is based on the key biological fact that

during invasion cancer cells secrete various matrix degrading enzymes, e.g. MMPs

(matrix metalloproteinases), and these enzymes can destroy the surrounding tissue

or extracellular matrix (ECM), thus paving the way for further invasion. The con-

cept together with the full details of this macro-micro technique will be introduced

along with the description of this two-scale model (Figure 5.3).

Figure 5.3: Schematic diagram of the two-scale technique that consists of a macro
domain and micro domains that covers the boundary, and the macro-dynamics and
micro-dynamics link with each other through the formulation of the moving boundary.
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5.3.1 The macroscopic dynamics

At an arbitrarily chosen time t0, in the macro domain Y, the macro dynamics of

c(x, t) and v(x, t) occurring over the time interval [t0, t0 + ∆t] are governed by the

following reaction-diffusion system:

∂c

∂t
= D∆c− η∇ · (c∇v) + g(c, v), x ∈ Y, (5.10)

∂v

∂t
= −α(t)cv + f(c, v), x ∈ Y , (5.11)

where t ∈ [t0, t0 + ∆t].

In the first equation of the system, the rate of change of the cancer cell population

is governed by a diffusion term as well as a haptotaxis term modelling the haptotactic

movement of cancer cells to ECM, along with a proliferation term. Then, the second

equation that governs the rate of change of the ECM density consists of a degradation

term in the presence of the cancer cells along with a general remodelling term, where

α(t) in the degradation term is a homogeneous time-dependent degradation factor.

The initial conditions of this macroprocess are:

c(x, t0) =: c0(x), x ∈ Ω(t0), (5.12)

v(x, t0) =: v0(x), x ∈ Y. (5.13)

The boundary conditions of the model in the macro-domain are zero-flux Neu-

mann and micro-scale moving boundary conditions that are imposed by the micro-

scopic dynamics that are described in the next subsection.
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5.3.2 The microscopic dynamics

As mentioned earlier, cancer invasion is a multiscale process, including not only

phenomena at the tissue level (macrodynamics) but also reactions at the molecu-

lar level (microdynamics). Between molecules around tumour boundary, we assume

that some matrix degrading enzymes, i.e., MDEs secreted by cancer cells are respon-

sible for destroying the tissue and enable the cancer cells to invade. Mathematically,

this means that the macro-scale process defined by equations (5.10) - (5.11) is driven

by micro-scale dynamics that cause the boundary of Ω(t0) to advance further in the

surrounding healthy tissue, namely in Y \Ω(t0).

Therefore, over the time interval [t0, t0 + ∆t], the macroscopic domain Ω(t0)

evolves to a new domain Ω(t0 +∆t) in Y through an integrated multiscale dynamics

that at cell-scale is given by the microscopic dynamics involving MDEs which arises

on the micro bundle P∗ε that is covering the boundary ∂Ω(t0). In the way we define

this ε-bundle, it is sufficient to describe the governing model for the micro-process

that occurs on an arbitrary ε-cube εY ∈ P∗ε , which we will refer to generically as

the micro-domain.

In each εY ∈ P∗ε , we denote by m(y, t) the MDE density on this microdomain.

As the MDEs are secreted locally by the cancer cells from within Ω(t0), the source

term for the MDEs within εY ∩Ω(t0) can be considered to be the local mean-value

of the cancer cells’ spatial distribution c(·, t0 + τ) for any micro-time τ ∈ [0,∆t].

Thus, on each microdomain and for any τ ∈ [0,∆t], we can write the source function

fεY (·, ·) : εY → R+ as the following :

fεY (y, τ) =


1

λ(B(y,2ε)∩Ω(t0))

∫
B(y,2ε)∩Ω(t0)

c (x, t0 + τ) dx, y ∈ εY ∩ Ω(t0),

0, outside cancer,

(5.14)

110



where λ(·) is the standard Lebesgue measure on RN and B(y, 2ε) := {x ∈ Y |||y −

x||∞ ≤ 2ε}.

We assume that the micro dynamics on εY is governed by the equation (5.15), in

which the change rate of the MDE distribution is determined by diffusion of MDE

and its production in the presence of the source (5.14),

∂m

∂τ
= ∆m+ fεY (y, τ), y ∈ εY, τ ∈ [0,∆t]. (5.15)

On each micro domain εY , we impose zero Neumann boundary condition.

5.3.3 Regulation of the process of boundary relocation

In the following, we will explain how the set of midpoints {x∗εY }εY ∈P∗ε defined on

the boundary of the tumour at the current time evolves to a set of new spatial

positions {x̃∗εY }εY ∈P∗ε to form the new boundary at the very next time, by describing

the movement of one such midpoint x∗εY ∈ [∂Ω(t0)]εY for any εY ∈ P∗ε .

Based on biological observations that, on any micro domain εY , provided that

a sufficient amount of MDE has been produced across the invading edge and it is

the pattern of the front of the advancing spatial distribution of MDEs that char-

acterised ECM degradation, therefore it is assumed that each boundary midpoint

x∗εY ∈ [∂Ω(t0)]εY will be potentially relocated in a movement direction and by a cer-

tain displacement magnitude dictated by the spatial distribution of MDEs obtained

via the micro process on εY at the final micro-time τf := ∆t, namely, m(·, τf ). In

the following, we explain how the movement direction and displacement magnitude

are defined for each x∗εY ∈ [∂Ω(t0)]εY .

For any given threshold δ > 0 and any fixed εY ∈ P∗ε , the regularity property of

Lebesgue measure (Halmos, 1974) is used to select the first dyadic decomposition

111



{Dj}j∈Jδ of εY such that

λ

(
[εY \Ω(t0)] \

⋃
{j∈Jδ |Dj⊂εY \Ω(t0)}

Dj
)
≤ δ. (5.16)

which simply means that εY \Ω(t0) is approximated with accuracy δ by the union of

all the dyadic cubes that this includes. Once this dyadic decomposition is selected,

we denote by yj the barycenters of Dj, for all j ∈ Jδ. As discussed in Trucu et al.

(2013) for all εY ∈ P∗ε , this provides a resolution at which we read the further away

part of the level set 1
λ(εY \Ω(t0))

∫
εY \Ω(t0)

m(y, ·)dy in the distribution of the advanc-

ing degrading enzymes m(·, ·) outside Ω(t0) in radial direction with respect to the

midpoint x∗εY . Therefore, this enable us to locate dyadic pixels Dl that support the

peaks at the tip of the MDE front with significant contribution in degrading the

ECM. Therefore, at the final microscopic time τf , the pixels supporting these peaks

are therefore selected as

Iδ :=


l ∈ Jδ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃r ∈ S1 such that, if the index i ∈ Jδ has the properties:

1)Di ∩ {x ∈ Rn |x = x∗εY + αr, α ∈ R} 6= ∅,

2)Di ⊂ εY \Ω(t0),

3) 1
λ(Di)

∫
Dim(y, τf )dy ≥ 1

λ(εY \Ω(t0))

∫
εY \Ω(t0)

m(y, τf )dy,

then

l = argmax{d(x∗εY , yi) | i ∈ Jδ satisfies:1), 2), and3)}


,

(5.17)

where S1 ⊂ Rn represents the unit sphere, and d(·, ·) is the Euclidean distance on

Rn.

Thus, cumulating the driving ECM degradation forces spanned by each front

peak of MDEs given by the dyadic pixels Dl with l ∈ Iδ in the direction of the po-

sition vectors
−−−→
x∗εY , yl and appropriately representing the amount of MDEs that each
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Dl supports, the revolving direction of movement ηεY for the potential displacement

of x∗εY is given by:

ηεY = x∗εY + ν
∑
l∈Iδ

(∫
Dl
m(y, τf )dy

)
(y − x∗εY ), ν ∈ [0,∞]. (5.18)

Further, the displacement magnitude of the point x∗εY is defined as:

ξεY :=
∑
l∈Iδ

∫
Dl
m(y, τf )dy∑

l∈Iδ

∫
Dl
m(y, τf )dy

∣∣−−−→x∗εY yl
∣∣. (5.19)

Finally, as debated in Trucu et al. (2013), although a displacement magnitude and

a moving direction is derived for each x∗εY , this will only exercise the movement if

and only if the ECM degradation war of a certain local strength. The strength of

ECM degradation within εY is explored by the transitional probability

q∗ :
∑ ⋃

εY ∈P∗ε

εY

→ R+

defined as

q∗(G) :=
1∫

G
m(y, τf )dy

∫
G\Ω(t0)

m(y, τf )dy, for all G ∈
∑ ⋃

εY ∈P∗ε

εY


(5.20)

where
∑( ⋃

εY ∈P∗ε
εY

)
represents the Borel σ−algebra of

⋃
εY ∈P∗ε

εY .

Locally, in each εY , equation (5.20) is in fact a quantification of the amount of

MDEs in εY \Ω(t0) relative to the total amount of MDE concentration in εY . In

conjunction with the local tissue conditions, this characterises whether the point

x∗εY is likely to relocate to the new spatial position x̃∗εY or not.

Now, by assuming that the point x∗εY is moved to the position x̃∗εY if and only
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if q(x∗εY ) exceeds a certain threshold ωεY ∈ (0, 1), we find that the new boundary

∂Ω(t0 + ∆t) will be the interpolation of the following set of points:

{x∗εY |εY ∈ P∗εY such that q(x∗εY ) < ωεY } ∪ {x̃∗εY |εY ∈ P
∗
εY such that q(x∗εY ) ≥ ωεY }

(5.21)

Finally before moving to the next time-step of the whole macro-micro two scale

system, we replace the initial conditions of the macroscopic dynamics with the so-

lution at the final time of the previous invasion step as follows:

cΩ(t0+∆t)(x, t0) := c(x, t0 + ∆t)(χ
Ω(t0)\

⋃
εY ∈P∗ε

εY
∗ ψγ),

vΩ(t0+∆t)(x, t0) := v(x, t0 + ∆t)χ
Y \

⋃
εY ∈P∗ε

εY
∗ ψγ). (5.22)

Here χ
Ω(t0)\

⋃
εY ∈P∗ε

εY
and χ

Y \
⋃

εY ∈P∗ε
εY

are the characteristic functions corresponding

to the sets Ω(t0)\
⋃

εY ∈P∗ε
εY and Y \

⋃
εY ∈P∗ε

εY , and choosing γ � ε
3
, ψγ : RN → R+ is

constructed as a smooth compact support function with sup(ψγ) = {z ∈ RN |||z||2 ≤

γ}. This is defined by the standard mollifier ψ : RN → R+, namely,

ψγ(x) :=
1

γN
ψ(
x

γ
), (5.23)

and,

ψ(x) :=


exp( 1

x2−1
)∫

{z∈RN |||z||2≤γ}
exp( 1

z2−1
)dz

if ||x||2 < 1,

0 if ||x||2 ≥ 1,

(5.24)

Then, the invasion process will continue on the new expanded domain Ω(t0 +∆t)

with the macroscopic system and the new initial conditions in (5.22) at the macro-

level followed by MDEs micro-processes around its boundary, which again governs
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the movement of the boundary of the next time stage.

5.4 Extension of the macro-microscopic technique

In this section, we adapt the macro-microscopic technique mentioned above to a two-

scale model which simulates the urokinase plasminogen activation (uPA) system at

both the macro- and micro-scale. In addition, we investigate the properties of the

numerical technique by exploring the fusing of the two solvers (i.e. macro-solver and

micro-solver).

5.4.1 The macroscopic dynamics

In order to couple the uPA system with the two-scale technique, we firstly replace

the equations in (5.10) and (5.11) with the five-PDE system as the macroscopic

dynamics to describe the macrodynamics of cancer cells, the extracellular matrix

(ECM, vitronectin), urokinase plasminogen activator (uPA), uPA inhibitor PAI-1,

and matrix degrading enzyme plasmin. We recall that the equations of the dimen-

sionless uPA system held on spacial domain Y and temporal domain T are:
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∂c

∂t
= Dc∆c︸ ︷︷ ︸

diffusion

−∇ · [ χuc∇u︸ ︷︷ ︸
uPA-chemo

+ χpc∇p︸ ︷︷ ︸
PAI-1-chemo

+χvc∇v︸ ︷︷ ︸
VN-hapo

] + µ1c(1− c)︸ ︷︷ ︸
profieration

, x ∈ Y, (5.25)

∂v

∂t
= − δvm︸︷︷︸

degradation

+ φ21up︸ ︷︷ ︸
uPA/PAI-1

− φ22vp︸ ︷︷ ︸
PAI-1/VN

+µ2v(1− v)︸ ︷︷ ︸
proliferation

, x ∈ Y, (5.26)

∂u

∂t
= Du∆u︸ ︷︷ ︸

diffusion

− φ31pu︸ ︷︷ ︸
uPA/PAI-1

− φ33cu︸ ︷︷ ︸
uPA/uPAR

+ α31c︸︷︷︸
production

, x ∈ Y, (5.27)

∂p

∂t
= Dp∆p︸ ︷︷ ︸

diffusion

− φ41pu︸ ︷︷ ︸
uPA/PAI-1

− φ42pv︸ ︷︷ ︸
PAI-1/VN

+ α41m︸ ︷︷ ︸
production

, x ∈ Y, (5.28)

∂m

∂t
= Dm∆m︸ ︷︷ ︸

diffusion

+ φ52pv︸ ︷︷ ︸
PAI-1/VN

+ φ53cu︸ ︷︷ ︸
uPA/uPAR

− φ54m︸ ︷︷ ︸
degradation

, x ∈ Y, (5.29)

where t ∈ T and we denote cancer cell density by c, ECM density by v, uPA

concentration by u, PAI-1 concentration by p and plasmin concentration by m.

5.4.2 The microscopic dynamics

Secondly, for the microscopic dynamics, we use three PDE equations for uPA, PAI-1

and plasmin that describe the microdynamics of the plasminogen activation system

which take place around the boundary of the tumour. The reasons that we only

look into micro dynamics close to the tumour boundary are: 1) the urokinase plas-

minogen activator (uPA) is required to bind to the cancer surface receptor uPAR to

activate plasminogen, leading to degradation of pericellular ECM through a series

of proteolytic activities; and 2) membrane-bound MMPs (e.g., MT1-MMP), which

play a very important role in cancer invasion, are secreted from within the tumour

cell population distributed on the outer proliferating rim along the entire tumour

periphery. Their region of proteolytic activities is therefore restricted around the

tumour interface (Sabeh et al., 2009; Deakin and Chaplain, 2013). Thus, in the fol-
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lowing, we will focus on the coupled boundary microdynamics exhibited as follows:

The uPA microdynamics. In each micro region εY the dynamics of uPA molec-

ular population is governed by a diffusion process whose source is induced from the

tumour cell macro-dynamics. At each point y ∈ εY , a source of uPA arises as a

collective contribution of the tumour cells distributed within a certain neighbouring

area within the tumour’s outer proliferating rim. Therefore, per unit time, under

the presence of this source, denoted by fεY (·, ·) : εY → R+ and defined as:

f εY1 (y, τ) =


1

λ(B(y,2ε)∩Ω(t0))

∫
B(y,2ε)∩Ω(t0)

c (x, t0 + τ) dx, y ∈ εY ∩ Ω(t0),

0, outside cancer.

(5.30)

The uPA is locally diffusing, and is binding both PAI-1 and uPAR (uPA receptor)

that are uniformly expressed on the cell surface of various cell types in the tumour,

and so the equation of uPA can be formally written as:

∂u

∂τ
= Du∆u︸ ︷︷ ︸

diffusion

− φ31pu︸ ︷︷ ︸
uPA/PAI-1

+ ( α31︸︷︷︸
production

− φ33u︸︷︷︸
uPA/uPAR

)f εY1 (y, τ). (5.31)

The PAI-1 microdynamics. The equation for PAI-1 consists of diffusive mo-

tion, production due to plasmin activation and loss due to binding with uPA and

VN. Specifically, we use the local mean-value of ECM distribution within the whole

micro-domain εY to describe the binding between PAI-1 and VN, meaning we con-

sider it as a collective effect of ECM distribution in εY . In a similar fashion to the

source term above, we define,

f εY2 (y, τ) =
1

λ(B(y, 2ε))

∫
B(y,2ε)

v (x, t0 + τ) dx, y ∈ εY. (5.32)
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Therefore, the equation can be written as:

∂p

∂τ
= Dp∆p︸ ︷︷ ︸

diffusion

− φ41pu︸ ︷︷ ︸
uPA/PAI-1

−φ42p f
εY
2 (y, τ)︸ ︷︷ ︸

PAI-1/VN

+ α41m︸ ︷︷ ︸
production

. (5.33)

The plasmin microdynamics. Similarly, motion of plasmin is also through

diffusion. Since it has been claimed that binding of uPA to uPAR is required to

provide the cell surface with a potential proteolytic activity, therefore the binding

uPA/uPAR contributes to the increase of plasmin concentration. Furthermore, since

PAI-1 competes with uPAR for binding to VN, the binding of PAI-1 to VN would

give more opportunities to uPAR to bind with uPA, which indirectly results in more

plasmin formation (Note: here we deal with binding of PAI-1/VN and uPA/uPAR in

a ‘collective-effect’ fashion introduced in equation (6.9) and (6.10) ). Also, plasmin

can be deactivated either by degradation or by the action of the plasmin inhibitor

α2-antiplasmin. The equation describing these biological interactions is:

∂m

∂τ
= Dm∆m︸ ︷︷ ︸

diffusion

+φ52p f
εY
2 (y, τ)︸ ︷︷ ︸

PAI-1/VN

+φ53u f
εY
1 (y, τ)︸ ︷︷ ︸

uPA/uPAR

− φ53m︸ ︷︷ ︸
degradation

(5.34)

In summary, the whole system of microdynamics on each microdomain in time

interval [0, τf ] is given as:

∂u

∂τ
= Du∆u︸ ︷︷ ︸

diffusion

− φ31pu︸ ︷︷ ︸
uPA/PAI-1

+ ( α31︸︷︷︸
production

− φ33u︸︷︷︸
uPA/uPAR

)f εY1 (y, τ), x ∈ εY , (5.35)

∂p

∂τ
= Dp∆p︸ ︷︷ ︸

diffusion

− φ41pu︸ ︷︷ ︸
uPA/PAI-1

−φ42p f
εY
2 (y, τ)︸ ︷︷ ︸

PAI-1/VN

+ α41m︸ ︷︷ ︸
production

, x ∈ εY , (5.36)

∂m

∂τ
= Dm∆m︸ ︷︷ ︸

diffusion

+φ52p f
εY
2 (y, τ)︸ ︷︷ ︸

PAI-1/VN

+φ53u f
εY
1 (y, τ)︸ ︷︷ ︸

uPA/uPAR

− φ54m︸ ︷︷ ︸
degradation

, x ∈ εY . (5.37)

On each micro domain εY , we impose zero Neumann boundary condition. The
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initial conditions on εY are defined by the interpolation of the solutions of u, p and

m on macro mesh.

5.4.3 Regulation of the tumour boundary relocation

Now we present the functions that we use to simulate the process of the boundary

relocation. In order to describe how the set of points {x∗εY } on the boundary of

tumour at the current time moves towards a set of new spatial positions {x̃∗εY }

to form the new boundary at the next time stage, we need a local transitional

probability (or we could call it ‘invading strength’) to check if the circumstances in

the microenvironment are suitable for cell movement. When this invading strength

is above some threshold value, we need the direction in which the cells will move

and the magnitude of the movement as well.

Similarly as stated in section 5.3.3, on any micro-domain εY , provided that a

sufficient amount of plasmin has been produced across the invading edge, it is the

pattern of the front of the advancing spatial distribution of plasmin that charac-

terises ECM degradation. Therefore we need to obtain the spatial distribution of

plasmin m(·, τf ) at the final micro-time τf which is obtained though the uPA mi-

croscopic dynamics, in order to define the movement direction and displacement

magnitude of the invading part of the cancer interface. Then we use a weighted

contribution to describe the characters of the invasive movement from all the peaks

(denoted by y∗l ) located at the front of advancing plasmin that are above the mean

value of the entire mass of plasmin produced on εY \Ω(t0). These selected plasmin

peaks at the front of its distribution m(·, τf ) are located at the furthest possible

Euclidean distance with respect to x∗εY . Based on these conditions and assumptions,

the moving direction ηεY is given by:
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ηεY = x∗εY + ν
∑
l∈Iδ

(∫
Dl
m(y, τf )dy

)
(yl − x∗εY ), ν ∈ [0,∞]. (5.38)

The total displacement magnitude of the point x∗εY is defined as:

ξεY :=
∑
l∈Iδ

∫
Dl
m(y, τf )dy∑

l∈Iδ

∫
Dl
m(y, τf )dy

∣∣−−−→x∗εY yl
∣∣. (5.39)

Lastly, the cumulative distribution function q∗ :
∑

(εY )→ R+ acts as the invad-

ing strength function that is written as:

q∗(A) :=
1∫

A
m(y, τf )dy

∫
A\Ω(t0)

m(y, τf )dy,A ∈ Σ(εY ), (5.40)

which is in fact a quantification of the amount of plasmin in εY \Ω(t0) relative to the

total amount of plasmin concentration in εY . Moreover, we assume that the point

x∗εY is moved to the position x̃∗εY if and only if q(x∗εY ) exceeds a certain threshold

ω(β, εY ) ∈ (0, 1).

5.5 Two-dimensional multiscale numerical

technique for the uPA system

Building on the general implementation idea outlined in Trucu et al. (2013), in two-

dimensions, we compute and solve the multiscale model by using a finite difference

scheme for the macro-dynamics (as described in Appendix 8.1) and for the micro-

dynamics around the boundary a finite element scheme is employed. In the following

context we will introduce the computational microscopic scheme and its relation to

the macroscopic level.

We describe our computational scheme for the micro scale dynamics occurring
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on each micro-domain εY ∈ P∗ε , which are cubes of size ε located at the boundary

∂Ω(t0), as described in section 5.2. We have each microdomain εY centred at a

boundary point from the macroscopic mesh, with the neighbouring ε-cubes starting

from the centre of the current one (i.e. they are appropriately “half-way shifted”

copies of εY ∈ P∗ε ), due to the purposely chosen macroscopic mesh size h = ε
2

and

the properties of the family P∗εY . Moreover, the centre point of the microdomains

are coincidentally the midpoint induced by εY on [∂Ω(t0)]εY , i.e. x∗εY .

Figure 5.4: Plots showing the macro- and microdomains used in the numerical
scheme. The left figure shows the central part of the uniformly discretised domain
Y = [0, 4] × [0, 4], which contains the initial cancer region Ω(t0) (red circles). One
boundary microdomain εY is shown in green, and a detailed view of this is given in
the right-hand figure.

.

In order to compute the integrals in the source terms in equation (5.30) and (5.32),

a midpoint rule is proposed and the constitutive details are given below. Assuming

that K denotes a generic element domain in a finite element subdivision with either

triangular or square elements of a given region A ⊂ R2, this “midpoint rule” con-
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sists of approximating the integral of a function g over K as the product between

the value of g at the centre of mass of K, Kcentre, and the Lebesgue measure of K

(Trucu et al., 2013), namely,

∫
K

g = g(Kcentre)λ(K). (5.41)

For an arbitrarily chosen εY ∈ P∗ε , we consider a finite element approach involv-

ing triangular elements on a uniform micro-mesh, which is maintained with identical

structure for all the microdomains. In order to calculate the source terms f εY1 and

f εY2 , we consider time-constant approximations f̃ εY1 of f εY1 and f̃ εY2 of f εY2 on the

time interval [0,∆t]. We use the computed final-time values of c(·, t0 + ∆t) and

v(·, t0 + ∆t) accordingly at the macro-mesh points that are included on the current

microdomain, x1, x2, ..., xPεY ∈ εY ∩ Ω(t0), we can write:

f̃ εY1 (xs) =
1

λ(B(xs, 2ε) ∩ Ω(t0))

∫
B(xs,2ε)∩Ω(t0)

c (xs, t0 + ∆t) dx, (5.42)

and

f̃ εY2 (xs) =
1

λ(B(xs, 2ε)

∫
B(xs,2ε)

v (xs, t0 + ∆t) dx, (5.43)

where s = 1, ..., PεY and the integrals are computed via the midpoint rule.

For the rest of the points y on the micro-mesh, the value of f̃ εY1 is obtained in

terms of the set of finite element basis functions considered at the contact points,

i.e. , {φxs|s = 1, ..., PεY }. We note that for any micro mesh point y ∈ εY we have

two possibilities:

• Case 1: If there exists three overlapping points xi1 , xi2 , xi3 ∈ {x1, x2, ..., xPεY }

which belong to the same connected component of εY ∩ Ω(t0) and y belongs
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to the convex closure of the set, i.e. y ∈ Conv{xi1 , xi2 , xi3}, then we have:

f̃ εY1 (y) = f̃ εY1 (xi1)φxi1 (y) + f̃ εY1 (xi2)φxi2 (y) + f̃ εY1 (xi3)φxi3 (y). (5.44)

• Case 2: If y does not satisfy the conditions in Case 1, then we have,

f̃ εY1 (y) = 0. (5.45)

Since the source f εY2 is produced by ECM on the entire micro-mesh εY , we only

need to consider one case to calculate f̃ εY1 at any micro mesh point y ∈ εY , i.e.,

f̃ εY2 (y) = f̃ εY2 (xi1)φxi1 (y) + f̃ εY2 (xi2)φxi2 (y) + f̃ εY2 (xi3)φxi3 (y), (5.46)

where xi1 , xi2 , xi3 are three overlapping points in the set {x1, x2, ..., xPεY } on the

micro-mesh and y satisfies y ∈ Conv{xi1 , xi2 , xi3}.

From the descriptions above, now we can calculate the source terms f̃ εY1 and

f̃ εY2 on each microdomain εY . In order to solve the reaction-diffusion system (5.35)

- (5.37), we impose Neumann boundary conditions for these equations on the bound-

ary of each microdomain εY , and the initial conditions are determined by the so-

lutions of u, p and m in the macroscopic dynamics. Then we use the finite ele-

ment method to solve the microscopic dynamic system on εY over the time interval

[0, t0+∆t]. Then, using bilinear elements on a square mesh, the numerical scheme for

the micro-processes occurring on each εY is finally obtained by using a trapezoidal

predictor-corrector method for the time integration.

After we obtain the distribution of plasmin at the final micro-time m(·, τf ) on

microdomain εY , we then use the midpoint rule to compute the transitional prob-

ability described in (5.40). For simplicity, now the numerical implementation of
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the multiscale model for cancer invasion proposed above is slightly simplified in

the following way: provided that the transitional probability exceeds an associated

threshold ωεY ∈ (0, 1), the boundary mesh-point x∗εY will move in direction ηεY to

the macro-mesh point from ∂εY \[Ω(t0)]εY that is closest (in Euclidean distance) to

x∗εY . If the threshold is not satisfied, then x∗εY remains at the same spatial location.

Therefore, the new boundary ∂Ω(t0 + ∆t) is now obtained by the interpolation of

the set of points given in (5.21), and the computational process is continued on the

new domain Ω(t0 + ∆t) by imposing a new initial condition for the macroscopic

dynamics, i.e.,

c(xi,j, t0 + ∆t) =


cki,j, xi,j ∈ Ω(t0),

1
4
(cki−1,j + cki+1,j + cki,j−1 + cki,j+1), xi,j ∈ B(Ω(t0), h)\Ω(t0),

0, xi,j /∈ B(Ω(t0), h),

v(xi,j, t0 + ∆t) = vki,j,

u(xi,j, t0 + ∆t) = uki,j,

p(xi,j, t0 + ∆t) = pki,j,

m(xi,j, t0 + ∆t) = mk
i,j, (5.47)

where {xi,j|i, j = 1, ..., q} is the macroscopic mesh in Y, Ω(t0) is the topological

closure of Ω(t0), and B(Ω(t0), h) represents the topological closure of the h-bundle

of Ω(t0)., i.e., B(Ω(t0), h) := {x ∈ Y |∃zx ∈ Ω(t0) such that ||x− zx||2 ≤ h}.
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5.6 Computational simulation results

The complete multiscale model of cancer invasion was numerically solved in a rectan-

gular region Y := [0, 4]× [0, 4] and it was assumed that the cancer initially occupies

a region Ω(0) within Y , taken to be a disc centred at (2, 2) with radius r = 0.5. We

use the discretisation of the entire domain Y that applies the uniform spatial mesh

size h = 0.03125 and ε = 2h = 0.0625, which gives us a mesh of Y with 64 × 64

elements and each element is a microdomain εY . All the effort in assessing the

microdynamics is aimed at ultimately describing the potential spatial movement of

this midpoint x∗εY . The initial conditions for the macroscopic uPA system are:

c(x, 0) =
exp
(
− ||x−(2,2)||22√

∆x∆y

)
− exp(− (1−∆x)(1−∆y)√

∆x∆y
)

2
, x ∈ Ω(0),

v(x, 0) =
1 + 0.3 sin (4π||x||2) + sin (4π||(4, 0)− x||2)

2
, x ∈ Y,

u(x, 0) = 1− 1

2
c(x, 0), x ∈ Y, (5.48)

p(x, 0) =
1

2
c(x, 0), x ∈ Y,

m(x, 0) =
1

20
c(x, 0), x ∈ Y.

Meanwhile, the parameters of the uPA system are given below and these are used

in all the simulation results presented in this section (unless stated otherwise):
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Dn = 4.25 · 10−3, χu = 3.05 · 10−2, χp = 3.75 · 10−2, χv = 2.85 · 10−2,

µ1 = 0.25, δ = 8.15, φ21 = 0.75, φ22 = 0.55,

µ2 = 0.15, Du = 2.5 · 10−3, φ31 = 0.75, φ33 = 0.3,

α31 = 0.215, Dp = 3.5 · 10−3, φ41 = 0.75, φ42 = 0.55,

α41 = 0.5, Dm = 4.91 · 10−3, φ52 = 0.11, φ53 = 0.75,

φ54 = 0.5. (5.49)

Since the threshold, which controls whether or not a point on the boundary can

move, depends on the local composition of the ECM, thus we define our threshold

function ω(β, εY ) as follows:

ω(β, εY ) :=


sin

(
π
2

(
1− 1

β

vω(t0)(x
∗
εY ,t0+∆t)

sup
ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+∆t)

))
, if

vω(t0)(x
∗
εY ,t0+∆t)

sup
ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+∆t)
≤ β,

sin

(
π

2(1−β)

(
vω(t0)(x

∗
εY ,t0+∆t)

sup
ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+∆t)
− β

))
, if

vω(t0)(x
∗
εY ,t0+∆t)

sup
ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+∆t)
> β,

(5.50)

where β ∈ (0, 1) is a parameter that controls the “optimal level” of EMC density

and consider this as being the indicator of the most favourable invasion conditions

at the level of tumour and tissue microenvironment.

The following figures show the simulation results of the evolving cancer cell and

ECM spatial distributions and of the invasive tumour boundary at time stages 0,

20, 40, 60. For micro-solver, we set the length of runtime is 0.1 (i.e., we solve the

microscopic dynamics on the microdomain in the time interval [0, 0.1] and τf = 0.1)

and the time step ∆τ = 10−9. In order to investigate the effect that macro-solver

runtime has on the simulation results and choose the best timing, we use four groups

of values for the macro-time step ∆t and the total iteration number N (thus the
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runtime of the macro-solver is N∆t). They are: 1) ∆t = 0.001, N = 100; 2)

∆t = 0.0025, N = 250; 3) ∆t = 0.005, N = 500; 4) ∆t = 0.01, N = 1000.

Figure 5.5: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Macro-solver: ∆t = 0.001, N = 100.

From Figures 5.5 - 5.6, Figures 5.7 - 5.8, Figures 5.9 - 5.10, Figures 5.11 - 5.12,

we see that the longer we allow the macro-solver to run, the higher is the degree of

heterogeneity of the cancer cell distribution inside the tumour. It make sense that
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Figure 5.6: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Macro-solver: ∆t = 0.001, N = 100.
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Figure 5.7: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Macro-solver: ∆t = 0.0025, N = 250.
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Figure 5.8: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Macro-solver: ∆t = 0.0025, N = 250.
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Figure 5.9: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Macro-solver: ∆t = 0.005, N = 500.
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Figure 5.10: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Macro-solver: ∆t = 0.005, N = 500.
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Figure 5.11: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 1. Macro-solver: ∆t = 0.01, N = 1000.
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Figure 5.12: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 3,5. Macro-solver: ∆t = 0.01, N = 1000.
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when the runtime of macro-solver is short the uPA system does not have enough

time to form heterogeneous patterns (Figures 5.5 - 5.6). However, we cannot allow

the macro-solver to run for too long either. Otherwise, the cancer cells will diffuse

much faster than the velocity of the boundary, which will lead to a disconnection

between the macro-solver and the micro-solver (Figures 5.11 - 5.12). Therefore, it

is very important to choose a proper length of the runtime of the macro-solver.

From our computational experiment results, we choose ∆t = 0.005, N = 500 in our

model.

5.7 Discussion

In this chapter, we have introduced and extended a sophisticated numerical method

proposed in Trucu et al. (2013), which is referred to as the macro-microscopic tech-

nique. It has proven to be a robust and powerful tool to investigate multiscale PDE

systems at both macro- and micro-level involved with a moving boundary problem.

As stated in the introduction, this technique was motivated by modelling the

phenomenon of cancer invasion of tissue. A basic model of cancer invasion pre-

sented firstly (Trucu et al., 2013) consists of three main parts: 1) the macroscopic

dynamics of the spatio-temporal distributions of cancer cells and ECM taking place

on a macroscopic domain Ω(t0); 2) the microdynamics of matrix degrading enzymes

developed on the microscopic scale in the vicinity of the cancer interface ∂Ω(t0),

based on the biological background that cancer cells secrete various matrix degrad-

ing enzymes, e.g. MMPs (matrix metalloproteinases), and these enzymes helps pave

the way for cancer invasion by destroying the surrounding tissue or extracellular ma-

trix (ECM); 3) the regulation of the process of boundary relocation, governed by

the microscopic dynamics and which determine the new initial conditions for the

macroscopic dynamics at the next time step, which links the two scales together.
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Furthermore, we extended the basic model by coupling the two-scale technique

with a cancer invasion model introduced in Chaplain and Lolas (2005) and Andasari

et al. (2011). It also consists of three main parts: the macroscopic dynamics, the mi-

croscopic dynamics, and the regulation of boundary relocation. However, instead of

using a two-equation reaction diffusion system shown in equations (5.10) and (5.11),

we applied a five PDE reaction-diffusion-taxis system shown in equations (5.25) to

(5.29), the uPA system, as our macroscopic dynamics. Also, we replaced the simple

reaction diffusion equation (equation (5.15)) with a system of three equations (5.35)

to (5.37) in order to model the interactions and movement of the molecules involved

in the proteolytic activities around the tumour boundary. This uPA system helps

us simulate regulations and interactions between cancer cells, ECM molecules and

cancer associated matrix degrading enzymes and describes more diverse dynamics at

both the macroscopic and the microscopic scale, which is more biologically relevant

and realistic. Through the simulation results, we confirm that the macro-microscopic

technique has the ability to model tumour infiltrative growth patterns when coupled

with proper macrodynamics and the microdynamics system.

In addition, we also discovered that this two-scale model has the property that

changing the runtime of the macro-solver would affect not only the degree of het-

erogeneity of cancer cell distribution inside the tumour but also the deformations

of the tumour boundary. In order to model the integrated process of cancer inva-

sion at the tissue level and cellular level properly, we should be careful in choosing

the right length of the total runtime and the time step of the macro-solver. For

the specific problem we are trying to solve in this chapter (i.e. using uPA system

to model the macroscopic dynamics and the microdynamics around the boundary,

and link these two solvers by the regulation of the boundary movement), we set

∆t = 0.005, N = 500 as an appropriate choice based on the computational experi-
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ments we obtained so far.

Apart from the modelling point of view, another aspect of this technique is

that we apply different numerical schemes on domains at different levels: a finite-

difference scheme for the macrodynamics (macro-solver) and for the microdomain

around the boundary a finite element scheme is employed (micro-solver). In this way,

we could maintain the simplicity at the macro-level, and also the difficulty of dealing

with a deformed geometry is overcome by computing functions element-by-element

of the microdomains around the irregular interface.
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Chapter 6

Modelling of cancer cell invasion:

using the uPA system coupled

with the macro-microscopic

technique

6.1 Introduction

In the previous chapter, a two-scale mathematical model of cancer invasion was in-

troduced which used the uPA system (i.e. urokinase plasminogen activation system)

of Chaplain and Lolas (2005) and Andasari et al. (2011). We applied the extended

macro-microscopic technique to investigate the protease-dependent invasion not only

at the macroscopic level, but also at the microscopic level, simulating the two-scale

model on both a macro-mesh and a micro-mesh in close proximity to the cancer

interface. A very important discovery of the two-scale technique is that we need

to choose the right timing to weld the macro-solver and micro-solver to model the
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multiscale process of cancer invasion properly. In order to continue to explore this

two-scale model, in this chapter we will focus on the effects that other parameters in

the system have on the dynamics at both scales and the morphology of the tumour

boundary.

In the following sections, we will first recall the two-scale model that coupled

the uPA system with the macro-microscopic technique, presented without either

the technical details, or explained notations, but with the key modelling concepts

to give us a complete picture of the whole model. In Section 6.3, the adapted

overall algorithm flow for the model will be given. Section 6.4 will show us the

computational simulations that help us to analyse the effect of each variable, namely,

ECM initial condition, the cancer cell diffusion coefficient, the threshold coefficient,

and ECM proliferation & degradation rates. Finally, there is a discussion section.

6.2 The two-scale model of cancer invasion

As introduced in the previous chapter, the two-scale model consists mainly of three

parts: the macroscopic dynamics, the microscopic dynamics, and the regulation of

the boundary relocation as a link between the macrodynamics and microdynamics.

The uPA macrodynamics We recall that the dimensionless form of the equa-

tions of the uPA system held on spacial domain Y and temporal domain T are:
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∂c

∂t
= Dc∆c︸ ︷︷ ︸

diffusion

−∇ · [ χuc∇u︸ ︷︷ ︸
uPA-chemo

+ χpc∇p︸ ︷︷ ︸
PAI-1-chemo

+χvc∇v︸ ︷︷ ︸
VN-hapo

] + µ1c(1− c)︸ ︷︷ ︸
profieration

, x ∈ Y, (6.1)

∂v

∂t
= − δvm︸︷︷︸

degradation

+ φ21up︸ ︷︷ ︸
uPA/PAI-1

− φ22vp︸ ︷︷ ︸
PAI-1/VN

+µ2v(1− v)︸ ︷︷ ︸
proliferation

, x ∈ Y, (6.2)

∂u

∂t
= Du∆u︸ ︷︷ ︸

diffusion

− φ31pu︸ ︷︷ ︸
uPA/PAI-1

− φ33cu︸ ︷︷ ︸
uPA/uPAR

+ α31c︸︷︷︸
production

, x ∈ Y, (6.3)

∂p

∂t
= Dp∆p︸ ︷︷ ︸

diffusion

− φ41pu︸ ︷︷ ︸
uPA/PAI-1

− φ42pv︸ ︷︷ ︸
PAI-1/VN

+ α41m︸ ︷︷ ︸
production

, x ∈ Y, (6.4)

∂m

∂t
= Dm∆m︸ ︷︷ ︸

diffusion

+ φ52pv︸ ︷︷ ︸
PAI-1/VN

+ φ53cu︸ ︷︷ ︸
uPA/uPAR

− φ54m︸ ︷︷ ︸
degradation

, x ∈ Y, (6.5)

where t ∈ T and we denote cancer cell density by c, ECM density by v, uPA

concentration by u, PAI-1 concentration by p and plasmin concentration by m. This

reaction-diffusion-taxis system helps us to capture the main characteristic effects of

the system in cancer progression and invasion by coupling the cancer cell migration

with interactions of the components of the uPA system. The movements of the

cancer cells are governed by diffusion, chemotaxis due to the presence of uPA (u)

and the PAI-1(p) and haptotaxis due to vitronectin and other ECM components

(v).

The uPA microdynamics Along the boundary of the tumour, we define a certain

number of micro-domains that cover all the points on the interface. In order to

investigate the process of cancer invasion at the cellular level, in each micro-domain

εY on time interval τ ∈ [0, τf ], we use a system of three reaction-diffusion equations

to model the interactions between the plasminogen activator uPA, the uPA inhibitor
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PAI-1, and the proteolytic enzyme plasmin, namely,

∂u

∂τ
= Du∆u︸ ︷︷ ︸

diffusion

− φ31pu︸ ︷︷ ︸
uPA/PAI-1

+ ( α31︸︷︷︸
production

− φ33u︸︷︷︸
uPA/uPAR

)f εY1 (y, τ), x ∈ εY , (6.6)

∂p

∂τ
= Dp∆p︸ ︷︷ ︸

diffusion

− φ41pu︸ ︷︷ ︸
uPA/PAI-1

−φ42p f
εY
2 (y, τ)︸ ︷︷ ︸

PAI-1/VN

+ α41m︸ ︷︷ ︸
production

, x ∈ εY , (6.7)

∂m

∂τ
= Dm∆m︸ ︷︷ ︸

diffusion

+φ52p f
εY
2 (y, τ)︸ ︷︷ ︸

PAI-1/VN

+φ53u f
εY
1 (y, τ)︸ ︷︷ ︸

uPA/uPAR

− φ54m︸ ︷︷ ︸
degradation

, x ∈ εY , (6.8)

where,

f εY1 (y, τ) =


1

λ(B(y,2ε)∩Ω(t0))

∫
B(y,2ε)∩Ω(t0)

c (x, t0 + τ) dx, y ∈ εY ∩ Ω(t0)

0, outside the cancer

(6.9)

and,

f εY2 (y, τ) =
1

λ(B(y, 2ε))

∫
B(y,2ε)

v (x, t0 + τ) dx, y ∈ εY. (6.10)

In the source terms above, B(y, 2ε) := {x ∈ Y |||y− x||∞ ≤ 2ε} and λ(·) is the stan-

dard Lebesgue measure on RN . At this microscopic scale, the macroscopic dynamics

of the cancer cells and ECM components were involved in the definition of source

terms f εY1 and f εY2 . In these source terms, we model the collective contribution of

the cancer cells and ECM components distributed close to the boundary.

Regulation of the moving boundary There are three aspects of the process

of the boundary relocation we consider in this model: 1) whether the microenvi-

ronment around the tumour boundary is suitable for cancer cells to migrate; 2) at

the points on the boundary that certain conditions are satisfied for cell migration,
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which direction they will move in; 3) and what is the magnitude of the velocity of

the movement.

In order to determine whether a point in the set of boundary points {x∗εY } will

migrate or not, we define a local invading strength function as below:

q∗(A) :=
1∫

εY
m(y, τf )dy

∫
A

m(y, τf )dy, A ∈ Σ(εY ) , (6.11)

where m(·, τf ) represents the spatial distribution of plasmin at the final micro time

τf after solving the microscopic uPA system (6.6)-(6.8). Actually q∗(A) is a quantifi-

cation of the amount of the matrix degrading enzyme plasmin in εY \Ω(t0) relative

to the total amount of plasmin concentration in εY . When this invading strength

q∗(A) at a point x∗εY is below some threshold value ω(β, εY ) ∈ (0, 1), then the point

does not move. If q∗(A) > ω at a certain point x∗εY , we need the direction in which

the cells would move and the magnitude of the movement as well.

Following the same line of arguments as the ones described in section 5.3.3, the

formulation of the moving direction ηεY and the total displacement magnitude of

the point x∗εY are defined accordingly as:

ηεY = x∗εY + ν
∑
l∈Iδ

(∫
Dl
m(y, τf )dy

)
(y∗l − x∗εY ), ν ∈ [0,∞] , (6.12)

and,

ξεY :=
∑
l∈Iδ

∫
Dl
m(y, τf )dy∑

l∈Iδ

∫
Dl
m(y, τf )dy

∣∣−−−→x∗εY yl
∣∣ , (6.13)

where yl denotes the front peaks of plasmin distribution at the final micro-time

τf which is obtained though the uPA microscopic dynamics.These selected plasmin

peaks at the front of its distribution m(·, τf ) are located at the furthest possible

Euclidean distance with respect to x∗εY and the concentration of plasmin at peak
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points is above the mean value of the entire mass of plasmin produced on εY \Ω(t0).

6.3 The overall computational algorithm

• Step 1. At the initial time t0, first of all, we discretise the macrodomain

[a, b]× [c, d] by

a = x0, . . . , xi = a+ i∆x, . . . , xm = a+m∆x = b,

c = y0, . . . , yj = c+ j∆y, . . . , yn = c+ n∆y = d.

where ∆x = ∆y = h, ε = 2h and let a = c = 0, c = d = 4. Also, we number

each point on the macrodomain, record their coordinates all sorts of data of

the domain that might be used later.

• Step 2. Define initial conditions for components in the uPA system on the

macro-domain including cancer cells c, ECM and its components v, the plas-

minogen activator u, the uPA inhibitor p and plasmin m, namely,

c(x, t0) =: c0(x), x ∈ Ω(t0),

v(x, t0) =: v0(x), x ∈ Y,

u(x, t0) =: v0(x), x ∈ Y,

p(x, t0) =: v0(x), x ∈ Y

m(x, t0) =: v0(x), x ∈ Y,

• Step 3. Start the main time loop (from time stage 1 to certain time stage
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N), and at the current time stage,

a) Run the macro-solver, which applies the finite difference scheme as in

Appendix 8.1, to solve the equations (6.1) to (6.5) of uPA system by

using the values at the current time cni,j, v
n
i,j, u

n
i,j, p

n
i,j and mn

i,j, where

i, j = 1, ...q to obtain the solution of the system at the next time step

cn+1
i,j , vn+1

i,j , un+1
i,j , pn+1

i,j , and mn+1
i,j , where i, j = 1, ...q. The choices of

the runtime length of the macro-solver and the size of the time step is

important, in this model, we choose ∆t = 0.005, N = 500.

b) Run the micro-solver, in which we loop over each point that is on the

boundary of the tumour at the previous time, and at an arbitrary bound-

ary point,

i. Define the micro-domain εY centring at the current point on the

boundary, which consists of nine points on macrodomain. For sim-

plicity, we first construct the domain on [0, ε] × [0, ε] and we uni-

formly decompose the domain into sixty-four square elements con-

sists of eighty-one points in total. On this micro-domain we compute

the source terms f εY1 and f εY2 values for the points that are also on

macro mesh first, and then by interpolation, we obtain the source

term values and the spatial distributions of u, p and m in the uPA

system on a finer mesh. (See Figure 6.1).

ii. On the microdomain εY , apply the finite element method to solve

the microscopic dynamics equations (6.6) to (6.8), to obtain the spa-

tial distribution of the matrix degrading enzyme plasmin at the fi-

nal microtime m(·, τf ) (involving a proposed midpoint rule formula

for the integral source terms, and for time integration a trapezoidal

predictor-corrector) , which will be used later in the regulation func-
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Figure 6.1: Plots showing the mi-
crodomain εY used in the numerical
scheme and each microdomian con-
tains eighty-one points in total and
gives us sixty-four square elements.
The red points are the nine points
that are also on macrodomain, the
solutions of the macrodynamics are
known on these points by running
macro-solver. We calculate the spa-
cial distribution of components in
uPA system on other points in this
microdomain by interpolation.

tions of cancer cells’ movement. For micro-solver, we set the length

of runtime is 0.1 (i.e., we solve the microscopic dynamics on the mi-

crodomain in the time interval [0, 0.1] and τf = 0.1) and the time

step ∆τ = 10−9.

iii. Translocate the coordinates of this microdomain [0, ε]× [0, ε] back to

where the micro spatial position was before.

iv. Compute the probability function q(x∗εY ) introduced in equation (6.11),

which is crucial for determining the relocation of the new boundary.

v. Check if the microenvironment induced probability q∗(x∗εY ) is greater

than some threshold value ωεY ∈ (0, 1), we furthermore compute the

direction ηεY and magnitude ξεY of the movement as mentioned in

equation (6.12) and (6.13) if needed.

c) After running both the macro-solver and micro-solver at the current time

stage, we obtain a new macroscopic distribution for uPA system com-

ponents, cn+1
i,j , vn+1

i,j , un+1
i,j , pn+1

i,j , and mn+1
i,j , where i, j = 1, ...q. Also

for each midpoint x∗εY on the tumour boundary, we have the possibility

q∗(x∗εY ), direction ηεY and magnitude ξεY of their movement, therefore we
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could use all these information to determine the new position x̃∗εY and

the points remain where they were on the cancer interface ∂Ω(t0 + ∆t).

This is schematically shown in Figure 6.2.

Figure 6.2: Plot shows the relocation of one point on the boundary moves to a new
spatial position in the microdomain εY .

d) Finally, by using the approximations below, replace the initial values of

cancer and ECM distribution in macroscopic dynamics with the solutions

cn+1
i,j , vn+1

i,j , un+1
i,j , pn+1

i,j , and mn+1
i,j , where i, j = 1, ...q.

c(xi,j, t0 + ∆t) =


cn+1
i,j , xi,j ∈ Ω(t0),

1
4
(cn+1
i−1,j + cn+1

i+1,j + cn+1
i,j−1 + cn+1

i,j+1), xi,j ∈ B(Ω(t0), h)\Ω(t0),

0, xi,j /∈ B(Ω(t0), h),
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v(xi,j, t0 + ∆t) = vn+1
i,j ,

u(xi,j, t0 + ∆t) = un+1
i,j , (6.14)

p(xi,j, t0 + ∆t) = pn+1
i,j ,

m(xi,j, t0 + ∆t) = mn+1
i,j ,

• Step 4. Using the new initial conditions for macroscopic dynamics, continue

the invasion process by coupling the new macroprocess on the expand domain

Ω(t0 + ∆t) with the corresponding of MDEs micro processes occurring on its

boundary, which means repeating the Step 3 above with new initial conditions

for macroscopic dynamics and new boundary of cancer.

6.4 Computational simulation results

The complete multiscale model of cancer invasion is numerically solved in a rectan-

gular region Y := [0, 4]× [0, 4] and it was assumed that the cancer initially occupied

a region Ω(0) within Y , taken to be a disc centred at (2, 2) with the radius r = 0.5.

We use the discretisation of the entire domain Y that applies the uniform spatial

mesh size h = 0.03125 and ε = 2h = 0.0625, which gives us a mesh of Y with 64×64

elements and each element is a microdomain εY . Figure (6.3) shows the central part

of the domain Y, containing the cancer region Ω(0), and the macroscopic uniformly

discretised mesh on domain Y. One of the overlapping microdomains εY along the

boundary is shown in green, in the right-hand side of the figure. All the effort in

assessing the microdynamics is aimed at ultimately describing the potential spatial

movement of this midpoint x∗εY .
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Figure 6.3: Plots showing the macro- and microdomains used in the numerical
scheme. The left figure shows the central part of the uniformly discretised domain
Y = [0, 4] × [0, 4], which contains the initial cancer region Ω(0) (red circle). One
boundary micro-domain εY is shown in green, and a detailed view of this is given in
the right-hand figure. This is adapted from the original paper Trucu et al. (2013).

The initial conditions for the macroscopic uPA system are:

c(x, 0) =
exp
(
− ||x−(2,2)||22√

∆x∆y

)
− exp(− (1−∆x)(1−∆y)√

∆x∆y
)

2
, x ∈Ω(0),

u(x, 0) = 1− 1

2
c(x, 0), x ∈ Y, (6.15)

p(x, 0) =
1

2
c(x, 0), x ∈ Y,

m(x, 0) =
1

20
c(x, 0), x ∈ Y.

We applied two types (i.e., homogeneous and heterogeneous) of initial condition of
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ECM in our model as following,

Homogeneous: (6.16)

v(x, 0) = 1− c(x, 0), x ∈ Y.

Heterogeneous: (6.17)

v(x, 0) =
1 + 0.3 sin (4π||x||2) + sin (4π||(4, 0)− x||2)

2
, x ∈ Y.

Since the threshold, which controls whether or not a point on the boundary can

move, depends on the local composition of the ECM, thus we define our threshold

function ω(β, εY ) as follows:

ω(β, εY ) :=


sin

(
π
2

(
1− 1

β

vω(t0)(x
∗
εY ,t0+∆t)

sup
ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+∆t)

))
, if

vω(t0)(x
∗
εY ,t0+∆t)

sup
ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+∆t)
≤ β,

sin

(
π

2(1−β)

(
vω(t0)(x

∗
εY ,t0+∆t)

sup
ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+∆t)
− β

))
, if

vω(t0)(x
∗
εY ,t0+∆t)

sup
ξ∈∂Ω(t0)

vΩ(t0)(ξ,t0+∆t)
> β,

(6.18)

where β ∈ (0, 1) is a parameter that controls the ‘optimal level’ of EMC density

and consider this as being the indicator of the most favourable invasion conditions

at the level of tumour and tissue microenvironment. For a homogeneous ECM

initial condition, when the ratio between local ECM density at midpoint x∗εY and

the maximum level of ECM is larger than parameter β, then we reduce by 60% of

the threshold function presented in equation (6.18).

The following figures show the simulation results of the evolving cancer cell and

ECM spatial distributions and of the invasive tumour boundary at time stages 0,

20, 40, 60. The images are presented in two columns: the left columns are for

the cancer cell distribution and the right ones for that of ECM, but all of them

include the tumour boundary. The parameter set in the uPA system we are using

is the same one mentioned previously, parameter set P (see (5.49)). However we
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do change the diffusion coefficient of cancer cells Dn, ECM proliferation rate µ2 and

ECM degradation rate δ which give us different deformation dynamics. Also, we use

several values of β, the parameter that controls the ‘optimal level’ of ECM density,

to regulate the conditions of cancer invasion imposed on the microenvironment. We

will split the results into four groups to analyse the effect of each variable, namely,

ECM initial condition, cancer cell diffusion coefficient, threshold coefficient, and

ECM proliferation & degradation rates.

ECM initial condition. In order to investigate what effect different ECM initial

conditions have on the dynamics of the model, we apply the same reduced threshold

function for both homogeneous and heterogeneous ECM scenario. From the results

in Figures 6.4 - 6.5 and Figures 6.6 - 6.7, we can see that the heterogeneous ECM

initial condition leads to a more ‘fingered’ spreading of the tumour compared with

what we have in the homogeneous ECM.

Cancer cell diffusion coefficient Dc. As was demonstrated in Hillen and

Painter (2013) and Painter and Hillen (2011), the chemotaxis terms in the cancer

cell equation (4.60) are the main causes of the occurrence of heterogeneous pat-

terns. Therefore, if the cancer cell diffusion coefficient Dc is increased to one order

magnitude larger than the chemotaxis coefficients (χu and χp), which becomes the

dominant mechanism of cell movement, then no heterogeneous dynamics will occur

inside the tumour as shown in Figures 6.8 - 6.9. In Figures 6.10 - 6.11, the chemo-

taxis coefficients are one order of magnitude larger than the diffusion coefficient,

and we obtain a heterogeneous pattern formation of cancer cells, which leads to a

more dynamic boundary deformation of the tumour.
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Figure 6.4: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 4.3 × 10−3, β = 0.775, µ2 = 0.01
and δ = 1.5.

Threshold coefficient β. Figure 6.12 to Figure 6.21 shows us the results of

varying the threshold coefficient β ∈ (0.75, 0.8) accordingly. Since β controls the

‘optimal level’ of EMC density for cancer cells to migrate, its variation gives us

different invasion morphologies as expected. The comparison between Figures 6.12
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Figure 6.5: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 4.3 × 10−3, β = 0.775, µ2 = 0.01
and δ = 1.5.

- 6.13, Figures 6.16 - 6.17, Figures 6.18 - 6.19 and Figures 6.20 - 6.21 give us a

clue that an increase in β very likely reduces the number of ‘roads’ that cancer

cells will invade into. However, this is not always the case. Figures 6.14 - 6.15 and

Figures 6.16 - 6.17 show us that although β is larger, it is still possible that more
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Figure 6.6: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 4.3 × 10−3, β = 0.775, µ2 = 0.01
and δ = 1.5.
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Figure 6.7: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 4.3 × 10−3, β = 0.775, µ2 = 0.01
and δ = 1.5.
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Figure 6.8: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 1.4 × 10−2, β = 0.775, µ2 = 0 and
δ = 0.75.
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Figure 6.9: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 1.4× 10−2, β = 0.775, µ2 = 0 and
δ = 0.75.
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Figure 6.10: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 4.3 × 10−3, β = 0.775, µ2 = 0 and
δ = 0.75.
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Figure 6.11: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 4.3× 10−3, β = 0.775, µ2 = 0 and
δ = 0.75.
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‘fingers’ will occur during the boundary deformation.
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Figure 6.12: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 4.3× 10−3, β = 0.75, µ2 = 0.01 and
δ = 1.5.
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Figure 6.13: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 4.3 × 10−3, β = 0.75, µ2 = 0.01
and δ = 1.5.
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Figure 6.14: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 4.3 × 10−3, β = 0.7625, µ2 = 0.01
and δ = 1.5.
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Figure 6.15: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 4.3× 10−3, β = 0.7625, µ2 = 0.01
and δ = 1.5.
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Figure 6.16: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 4.3 × 10−3, β = 0.775, µ2 = 0.01
and δ = 1.5.
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Figure 6.17: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 4.3 × 10−3, β = 0.775, µ2 = 0.01
and δ = 1.5.
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Figure 6.18: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 4.3 × 10−3, β = 0.7875, µ2 = 0.01
and δ = 1.5.
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Figure 6.19: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 4.3× 10−3, β = 0.7875, µ2 = 0.01
and δ = 1.5.
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Figure 6.20: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 4.3× 10−3, β = 0.8, µ2 = 0.01 and
δ = 1.5.
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Figure 6.21: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 4.3× 10−3, β = 0.8, µ2 = 0.01 and
δ = 1.5.
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ECM proliferation rate µ2 & degradation rate δ. From all the simulation

results, we conclude that the degradation of ECM facilitates cancer invasion. How-

ever, the invasion process will stop where ECM is degraded a lot. This captures

the biological scenario in 2D that when cell-matrix adhesion is too low, no focal

adhesions or stress fibres are formed, and the cells do not move (Friedl and Wolf,

2010; Weaver, 2006; Alberts et al., 2008; Ridley et al., 2003). In order to investigate

the effect of ECM proliferation and degradation on the invasion process, we compare

two groups of parameters: 1) µ2 = 0.01, δ = 1.5 (non-zero proliferation rate with

relatively large degradation rate, Figures 6.22 - 6.23); 2) µ2 = 0, δ = 0.75 (no prolif-

eration with relatively small degradation rate, Figures 6.24 - 6.25). From these two

groups of images, we observe that when proliferation is present and the degradation

rate is relatively large, deformations of the boundary is not as dynamic as that when

the proliferation term is absent with a relatively small degradation rate. The reason

could be that the proliferation term will reduce the degree of heterogeneity of the

distribution of ECM, which leads to a less fingered spreading of the cancer cells.

6.5 Discussion

In this chapter we introduced a further extension of the two-scale mathematical

model of cancer invasion that was based on the previous works in Chaplain and Lo-

las (2005), Andasari et al. (2011) and Trucu et al. (2013), which originally simulates

the process of cancer invasion by investigating the link between the macroscopic

dynamics of the spatio-temporal distribution of cancer cells and ECM taking place

on a macroscopic domain, and the microdynamics of the matrix degrading enzymes

developed on the microscopic domains that are in close proximity to tumour bound-

ary.

We already extended the two-scale technique in Trucu et al. (2013) in the pre-

170



Figure 6.22: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 4.3 × 10−3, β = 0.7625, µ2 = 0.01
and δ = 1.5.

vious chapter that coupled a well-established model of the uPA system and cancer

invasion from Chaplain and Lolas (2005) and Andasari et al. (2011) with the macro-

microscopic technique. This consists of a system of five reaction-diffusion-taxis par-

tial differential equations. Also, we discovered that we need to choose the right

timing to weld the macro-solver and micro-solver to model the multiscale process of
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Figure 6.23: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 4.3× 10−3, β = 0.7625, µ2 = 0.01
and δ = 1.5.
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Figure 6.24: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 0, 20. Dc = 4.3× 10−3, β = 0.7625, µ2 = 0 and
δ = 0.75.
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Figure 6.25: Simulation results showing distributions of cancer cells (left column)
and ECM (right column) and the invasive boundary of the tumour (white line) at
various macro-micro stages: Stage 40, 60. Dc = 4.3×10−3, β = 0.7625, µ2 = 0 and
δ = 0.75.
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cancer invasion properly. In this chapter, we explored how the other parameters in

the system influence the solution of the two-scale model.

From the computational simulation results of our model, we can see that the

extended two-scale technique coupled with the uPA system and more specific mod-

elling of the pericellular proteolytic activities, gives more adverse dynamics in the

invading cancer. Settings of ECM initial condition, cancer cell diffusion coefficient,

threshold coefficient, and ECM proliferation & degradation rates all have an impact

on the deformations of the tumour boundary. The conclusions which can be made

from the results are: 1) the heterogeneous ECM initial condition leads to more

fingered spreading of the tumour compared with the homogeneous ECM initial con-

dition; 2) in order to obtain heterogeneous patterns of cancer cells inside the tumour

region, chemotaxis must be dominant to drive the cells migration; 3) the changes

of threshold coefficient will definitely affect the boundary deformations, and there

is a tendency that the increase of β reduces the number of ‘fingers’ of the interface.

However, there may be exceptions; 4) without a proliferation term of ECM coupled

with a relatively small degradation rate, deformations of the boundary show more

fingering.

The two-scale modelling technique is a useful tool to capture processes at differ-

ent levels during cancer invasion. However, we need further details to explain the

dynamics and interactions of the tumour cell community at the macro-level and the

micro-level. We could also extend our model by exploring other ways to determine

the movement of cancer cells (for example, change the definition of the threshold

function ω) or a new method to link the macro-solver and the micro-solver together.
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Chapter 7

Conclusion and future directions

The aim of this thesis was to develop multiscale mathematical models of cancer cell

migration and invasion in order to gain a better understanding of the processes of

cancer growth and invasion, thereby helping to facilitate cancer research and strate-

gies of treatment. As mentioned in the biological background chapter, invasion of

the surrounding tissue is one of the hallmarks of cancer, and also a landmark event

that transforms a localised solid tumour into a systemic, metastatic and fatal disease

(Hanahan and Weinberg, 2011, 2000). Solid tumours have a reciprocal relationship

with the surrounding microenvironment, a complex tissue composed of extracellular

matrix and other multiple distinct cell types. The extracellular matrix especially

not only plays the role of a scaffold for tissues and cells and acts as a physical bar-

rier during cell migration, but also provides biological signals that, together with

soluble factors, may create distinct cellular micro-environments that locally regulate

cell migration, proliferation and differentiation (Wolf et al., 2013; Wolf and Friedl,

2011; Papini et al., 2007). Thus, proteolytic degradation and remodelling of the ex-

tracellular matrix is essential for cancer cells to be able to invade. Important matrix

degrading enzymes include the matrix metalloproteases (MMP) and the urokinase
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plasminogen activation system (uPA).

Chapter 4 studied and extended a level-set method (Macklin and Lowengrub,

2008) which was used to calculate the position of the moving boundary of the tu-

mour, and to describe the dynamics of the tumour cell community we used PDE

systems that have heterogeneous solutions. The first PDE system we used as a test

model was a reaction-diffusion system called the Schnakenberg system. In order to

obtain the heterogeneous pattern formation, we analysed the linear stability of the

steady state of the system and derived conditions for diffusion-driven instability.

Then we formulated a velocity function under the assumption that if the force gen-

erated by the growing population of one species in the system overcomes the surface

tension of the boundary, which is proportional to the curvature of the interface,

then the boundary of the tumour deforms. However, in this case, the curvature-

dependent term was the dominant cause that drives the instability of the interface.

The second PDE system test model, the urokinase plasminogen activation (uPA)

system, modelled the interactions between cancer cells, ECM, the urokinase plas-

minogen activator (uPA), uPA inhibitors, and the ECM degrading enzyme plasmin

(Chaplain and Lolas, 2005; Andasari et al., 2011). The system modelled pericellular

proteolysis activities which determines cancer cell migration and invasion. The for-

mulation of the velocity function which was applied in the level-set technique only

depended on the dynamics of distribution of plasmin, the ECM degrading enzyme,

and not on the curvature of the boundary. Comparing the simulation results of the

two models, we concluded that it does not necessarily have to include a curvature-

dependent term in the level-set method to model the deformations of the boundary.

The heterogeneous dynamics of the uPA system alone can drive the deformations of

the tumour boundary, which can render more fingering morphology when compared

with the first test model.
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Chapter 5 presented a multi-scale mathematical model of cancer invasion by

coupling the urokinase plasminogen activation (uPA) system with the two-scale

computational modelling technique recently introduced in Trucu et al. (2013). In

this model, we investigated the protease-dependent cancer invasion not only on the

macroscopic (tissue) level, but also on the microscopic (cellular) level, simulating the

two-scale model on both a macro-mesh and a micro-mesh in close proximity to the

cancer interface. It consisted of three main parts: the macroscopic uPA dynamics,

the microscopic uPA dynamics, and the regulation of boundary relocation. The

uPA system helped simulate regulations and interactions between cancer cells, ECM

molecules and cancer associated matrix degrading enzymes and describe a more

diverse dynamics at both the macroscopic and microscopic scale. Our computational

simulation results (see Figure 7.1) demonstrated a range of heterogeneous dynamics

which were qualitatively similar to the invasive growth patterns observed in a number

of different types of cancer known as tumour infiltrative growth patterns (INF) (see

Figure 2.5).

From our simulation results we also discovered that this two-scale model has a

property that changing the total runtime of the macro-solver affects not only the

degree of heterogeneity of the cancer cell distribution inside the tumour but also

the deformations of the tumour boundary. In order to model the integrated process

of cancer invasion at tissue level and cellular level properly, we must be careful

in choosing the right timing to weld the macro-solver and micro- solver together.

Apart from the modelling point of view, another aspect of this technique is that we

apply different numerical schemes on domains at different levels: a finite-difference

scheme for the macrodynamics (macro-solver) and for the microdomain around the

boundary a finite-element scheme is employed (micro-solver). In this way, we were

able to maintain the simplicity at the macro-level, and also the difficulty of dealing
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Figure 7.1: Simulation results showing distributions of cancer cells and the inva-
sive boundary of the tumour (white line) at macro-micro stage 60 using different
parameter settings.
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with a deformed geometry was overcome by computing functions element-by-element

of the microdomains around the irregular interface.

Chapter 6 showed an extension to the work of the two-scale model in Chapter

5, which focused on the effects that some key parameters in the system have on

the dynamics at both scales and the morphology of the tumour boundary. From

the computational simulation results of our model, we observed that the extended

two-scale technique coupled with the uPA system and a more detailed modelling of

pericellular proteolytic activities, the deformations of tumour rendered diverse dy-

namics. Settings of ECM initial condition, cancer cell diffusion coefficient, threshold

coefficient, and ECM proliferation & degradation rates had an impact on the defor-

mations of the tumour cell community. The conclusions that can be made from the

results are: 1) a heterogeneous ECM initial condition leads to more fingered spread-

ing of the tumour compared with that in the homogeneous ECM; 2) in order to

obtain heterogeneous patterns of cancer cells inside the tumour region, chemotaxis

must be dominant to drive cell migration; 3) the changes of threshold coefficient

will definitely affect the boundary deformations, and there is a tendency that the

increase of β reduces the number of ‘fingers’ of the interface. However, there might

be exceptions; 4) without the proliferation term of ECM coupled with a relatively

small degradation rate, deformations of the cancer boundary show more fingering.

The two-scale modelling technique is a useful tool to capture processes at differ-

ent levels during cancer invasion. However, we need further details to explain the

dynamics and interactions of the tumour cell community at both the macro-level

and the micro-level. We could improve our model by exploring other ways to deter-

mine the movement of cancer cells. For instance, we could change the definition of

the threshold function which determines whether the microenvironment is suitable
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for cells to move; we could explore new methods to link the macro-solver and micro-

solver together; and take into account other physical and molecular determinants of

cell migration in the model, for example, Rac activity and Rho/ROCK signalling

and actin polymerisation-driven propulsion and actomyosin-based contractility, etc.

Another direction to extend the current model is that we could include other bio-

logical scales, such as the genetic and the molecular scale. We also could extend the

2D multiscale model to a 3D model, in order to describe the processes of cancer cell

invasion in the human body more realistically.

Although we have focused on the collective migration of cancer cells, we could

also use the macro-microscopic modelling technique or level-set method to model

single cell migration. It is known that the actin cytoskeleton plays an essential role

in eukaryotic cell motility and the regulation of the actin cytoskeleton dynamics

is mainly conducted by the actin nucleating complex, Arp2/3, and the small G-

proteins: Cdc42, Rac and Rho. Therefore, we could develop a mathematical model

of the dynamics of crosstalk between the Rho-family GTPases, then couple it with

the two-scale technique or level-set method to simulate the deformations of a cell

membrane. For example, in Maree et al. (2006), a mathematical model was proposed

to describe the interactions between the key proteins in the Rho-family GTPases as

follows:
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∂C

∂t
=

IC
1 + (ρ/βρ)n

(Ci/Ctotal)− dCC +Dm∆C, (7.1)

∂R

∂t
= (IR + αCC)(Ri/Rtotal)− dRR +Dm∆R, (7.2)

∂ρ

∂t
=

(Iρ + αRR)

1 + (C/βC)n
(ρi/ρtotal)− dρρ+Dm∆ρ, (7.3)

∂Ci
∂t

= − IC
1 + (ρ/βρ)n

(Ci/Ctotal) + dCC +Dc∆Ci, (7.4)

∂Ri

∂t
= −(IR + αCC)(Ri/Rtotal) + dRR +Dc∆Ri, (7.5)

∂ρi
∂t

= − (Iρ + αRR)

1 + (C/βC)n
(ρi/ρtotal) + dρρ+Dc∆ρi, (7.6)

where C, R, ρ represents concentration of active Cdc42, Rac, Rho, and Ci,Ri,ρi are

their inactive forms of the G-proteins accordingly. n is a Hill coefficient. Some of

the simulation results in 1D and 2D of the whole system are shown in Figure 7.2

and 7.3.

(a) n=3 (b) n=4

Figure 7.2: Plots of the equilibrium distribution of active and inactive Cdc42, Rac
and Rho in 1D. Solid lines represents active forms of Cdc42 (blue), Rac (green)
and Rho (red) and dash lines are the inactive forms respectively. (a) Hill coefficient
n = 3 (b) Hill coefficient n = 4.
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(a) Cdc42 (b) Rac (c) Rho

Figure 7.3: Distribution of the active forms of small G-proteins in 2D. (a) Cdc42,
(b) Rac, (c) Rho, showing the relative concentrations inside the cell from low(dark)
to high(light) concentration values. Hill coefficient here is n = 4.

Once we obtain the distribution of active forms of the key small G-proteins that

regulates the signalling pathways controlling cell migration, such as active Cdc42

(which is able to simulate actin polymerisation by activating Arp2/3 complex), then

we could formulate a velocity function that is governed by the distribution of the

key proteins, and use the level-set method to calculate the changing positions of the

cell membrane.

Also, we could apply the macro-microscopic technique to model single cell mi-

gration and the three parts of the model could be: 1) the macroscopic dynamics

modelling the system of the Rho-family GTPases; 2) the microscopic dynamics de-

scribing the actin polymerisation and depolymerisation close to the cell membrane;

3) regulation of the deformations of the cell membrane which is governed by the

distribution of actin filaments.

In conclusion, the work presented in this thesis has sought to study the process

of cancer growth and invasion through mathematical modelling. More efforts are

needed to make these models more biologically relevant in order to fully validate the

results. Since the model concepts and modelling techniques are at an early stage

of development, there is a lot of potential for the current work to be improved and
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extended. Thus, we believe that the work in this thesis will open more doors for

researchers to investigate cancer invasion in the future.
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Chapter 8

Appendix

8.1 A Finite-difference method applied to solve

uPA system

Assume that uPA system dynamics are taking place in the cube Y , we discretise the

entire Y by considering a uniform spatial mesh of size h := ε
2
, i.e., ∆x = ∆y = h.

And, the time interval [t0, t0 + ∆t] split by the uniform time step δτ := ∆t
k

. The

temporal discretisation of the reaction-diffusion system that we used here is a first-

order scheme, while the diffusion term and haptotactic terms are approximated

with a second-order midpoint rule. The notations for the midpoint approximations

in equation (4.60) and (4.61) are:



cn
i,j+ 1

2

:=
cni,j+c

n
i,j+1

2
,

cn
i,j− 1

2

:=
cni,j+c

n
i,j−1

2
,

cn
i+ 1

2
,j

:=
cni,j+c

n
i+1,j

2
,

cn
i− 1

2
,j

:=
cni,j+c

n
i−1,j

2
,

and those for the central difference are:
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

(cy)
n
i,j+ 1

2

:=
cni,j+1−cni,j

∆y
,

(cy)
n
i,j− 1

2

:=
cni,j−cni,j−1

∆y
,

(cx)
n
i+ 1

2
,j

:=
cni+1,j−cni,j

∆x
,

(cx)
n
i− 1

2
,j

:=
cni,j−cni−1,j

∆x
,

, and



(vy)
n
i,j+ 1

2

:=
vni,j+1−vni,j

∆y
,

(vy)
n
i,j− 1

2

:=
vni,j−vni,j−1

∆y
,

(vx)
n
i+ 1

2
,j

:=
vni+1,j−vni,j

∆x
,

(vx)
n
i− 1

2
,j

:=
vni,j−vni−1,j

∆x
,

Using the approximation notations mentioned so far, the approximation for ∇ ·

(∇c)ni,j and ∇ · (c∇v)ni,j are constructed as follows:

∇ · (∇c)ni,j = div(∇c)ni,j

'
(cx)

n
i+ 1

2
,j
− (cx)

n
i− 1

2
,j

∆x
+

(cy)
n
i,j+ 1

2

− (cy)
n
i,j− 1

2

∆y

and,

∇ · (c∇v)ni,j = div(c∇v)ni,j

='
cn
i+ 1

2
,j

(vx)
n
i+ 1

2
,j
− cn

i− 1
2
,j

(vx)
n
i− 1

2
,j

∆x
+
cn
i,j+ 1

2

(vy)
n
i,j+ 1

2

− cn
i,j− 1

2

vy)
n
i,j− 1

2

∆y

Note that n = 0, 1, ..., k are index of time step, and (i, j) are spatial nodes where

i = 1, ...q are the indices for the x-direction and j = 1, ...q are the indices for the

y-direction. The diffusion terms in equations (4.62) -(4.64) are approximated in the

same way as it is in equation (4.60).
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