
University of Dundee

MASTER OF PHILOSOPHY

The Project Community Framework

Towards Bridging the Gap between User Centred Design and Academic Scientific
Software Development

Loynton, Scott

Award date:
2015

Awarding institution:
School of Computing

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Feb. 2017

http://discovery.dundee.ac.uk/portal/en/theses/the-project-community-framework(9f20461c-9d8a-4057-b964-43984262f282).html

	

The Project Community Framework:
Towards Bridging the Gap between User
Centred Design and Academic Scientific

Software Development

Scott Loynton
University of Dundee

MPhil

i	
	

	
	

ii	
	

	
	

Table of Contents

Table of Contents .. ii
List of Figures .. vii
List of Tables and Boxes .. ix
List of Abbreviations .. x
Acknowledgements .. xi
Declaration by the candidate ... xii
Declaration by the supervisor ... xiii
Abstract ... xiv
Associated Publications ... xvi

Chapter 1: Introduction ... 1
1.1 Motivation ... 1
1.2 Research aims ... 5
1.3 Research objectives .. 5
1.4 Methodology .. 5
1.5 Audiences ... 6
1.6 Structure of thesis ... 6

Chapter 2: Literature Review .. 7	
2.1 Introduction .. 7
2.2 Background to software engineering and user centred design 7
2.2.1 Software engineering .. 8
2.2.2 The role of UCD .. 11
2.2.3 Human computer interaction .. 14
2.3 Usability engineering .. 17
2.3.1 Usability engineering methodologies .. 19
a) Usability engineering lifecycle ... 19
b) Contextual design ... 21
c) Usage-centered design .. 24
d) The scenario-based engineering process .. 26
e) Star lifecycle ... 27
f) Discount usability engineering .. 29
2.4 Where user centred design and software engineering meet 30
2.5 UCD and software engineering in a commercial context 36
2.6 Established integration challenges .. 37

 1) Separation between user interface and system functionality 37

iii	
	

	
	

 2) Cultural gap between UCD roles and engineers .. 38
 3) UCD has to be adopted throughout the organization .. 39
 4) Usability of UCD methods ... 40
 5) Lack of support tools ... 41
 6) A collection of best practices is missing ... 42
 7) Education gap ... 42

2.7 SSD Environment ... 43
2.7.1 Scientific software developers ... 43
2.7.2 Funding and exploratory scientific research .. 48
2.7.3 Community dependencies .. 49
2.8 Integration of UCD and SSD ... 50
2.9 Summary ... 59

Chapter 3: The Teams and Challenges ... 62
3.1 Introduction .. 62
3.2 Background to the OME project ... 63
3.3 The Academic Environment for OME ... 64
3.4 Background to the OMERO Software Team ... 65
3.5 The Academic Research Software Development Environment in OMERO .. 68
3.6 Background to the Usable Image Project ... 73
3.7 The Methods of the Usable Image Team .. 76
3.8 Summary ... 80

Chapter 4: Methodology .. 81
4.1 Context of the fieldwork .. 81
4.2 My role within the Usable Image team ... 81
4.3 My role within the OMERO software development team 84
4.4 Strategy of inquiry .. 85
4.5 Ethnographic fieldwork and the construction of the methodology 87
4.5.1 Data collection ... 89
4.5.2 The process of analysis process ... 91
4.5.3 The coding and categorisation of the data ... 96
4.5.4 Memos ... 97
4.5.5 Validation of the ethnographic approach .. 99
4.6 Secondary Analysis ... 101
4.6.1 Challenges of secondary analysis .. 103
4.7 Summary ... 105

Chapter 5: Usable Image Fieldwork ... 106
5.1 Ethnographic analysis .. 106
5.1.1 Working life ... 106
5.1.2 Microscopy .. 109
5.1.3 Tools .. 112

iv	
	

	
	

5.1.4 Practices ... 115
5.1.5 Workflow ... 119
5.2 Existing scientific laboratory studies .. 123
5.3 Supplementary fieldwork .. 127
5.3.1 Co-location benefits ... 127
5.3.2 The contribution of UCD to the Usable Image project 135
5.4 Summary ... 138

Chapter 6: Scientific Software Fieldwork 140
6.1 Repositioned role of the research .. 140
6.2 The OMERO working week .. 142
6.3 Ethnographic analysis .. 146
6.3.1 UI development ... 146
6.3.2 New techniques ... 148
6.3.3 OMERO components .. 150
6.3.4 Community .. 152
6.3.5 Current working practice ... 155
6.3.6 Development tools ... 158
6.4 Additional activities: Community use .. 160
6.5 Summary of the OMERO fieldwork analysis .. 162
6.6 Discussion .. 164

Chapter 7: Forming a Framework .. 167
7.1 The move towards the Project Community Framework 167
7.2 How to build the Project Community Framework ... 172
7.3 Step I: The capture and characterisation of the Project Community 174
7.3.1 Defining the Project Team ... 175
7.3.2 Project Team Example .. 177
7.3.3 Project Team Variable Conditions .. 178
7.3.4 Project Team Outcomes .. 178
7.3.5 Defining the Project Community ... 179
7.3.6 The Project Community Example ... 180
7.3.7 The Project Community variable conditions ... 184
7.3.8 Project Community Mediating Role .. 184
7.3.9 The Project Team and Project Community Limitations 186
7.3.10 The Project Community Outcomes ... 186
7.3.11 Tools of the PCF .. 187
7.3.12 PCF Tools Variable Conditions ... 187
7.3.13 PCF Tools’ Limitations ... 188
7.4 Step II: The storage of the Project Community information 188
7.4.1 Step II Example ... 189
7.4.2 Step II Variable Conditions ... 189
7.4.3 Step II Limitations ... 189

v	
	

	
	

7.5 Step III: The process of UCD .. 190
7.5.1 UCD for SSD ... 190
7.5.2 Variable Conditions of UCD ... 191
7.5.3 Limitations of UCD ... 191
7.6 Step IV: The Project Community action and reflection 192
7.6.1 Phase One: Reflection-in-Action ... 193
7.6.2 Phase Two: Reflection-on-Action ... 193
7.6.3 Step IV Example .. 195
7.6.4 Step IV Variable Conditions ... 198
7.6.5 Step IV Limitations ... 198
7.7 Summary ... 199

Chapter 8: The Evaluation of the Project Community Framework
 8.1 Evaluation strategy ... 201

8.2 Re-examination of studies .. 203
8.3 Review 1: High Content Screening (HCS) .. 205
8.3.1 Background .. 205
8.3.2 HCS fieldwork ... 205
8.3.3 The timeline of the HCS fieldwork ... 206
8.3.4 The HCS developer review discussion .. 212
8.3.5 Summary of HCS fieldwork .. 213
8.3.6 Summary of the HCS fieldwork against the Project Community Framework .. 214
8.4 Review 2: New Community Fluorescence Lifetime Imaging Microscopy 215
8.4.1 Background .. 215
8.4.2 Central elements .. 216
8.4.3 The timeline of the FLIM fieldwork ... 216
8.4.4 Clarification and communication within the Project Team 221
8.4.5 Exploration of an external FLIM based Institution ... 224
8.4.6 Information outcomes for the project visit .. 226
8.4.7 FLIM developer discussion ... 227
8.4.8 Summary of FLIM fieldwork .. 231
8.4.9 Summary of the FLIM review against the Project Community Framework 232
8.5 Discussion of the reviews .. 233
8.6 The Project Community Framework Manifesto ... 236
8.7 Summary ... 238

Chapter 9: Conclusion .. 242
9.1 Summary of the research ... 242
9.2 Summary of contributions ... 244
9.3 Further Testing ... 245
9.4 Limitations of the research .. 247
9.5 Future research work ... 249
9.6 Closing words .. 252

vi	
	

	
	

References .. 251

Appendixes (on a separate disk)
Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5
Appendix 6
Appendix 7
Appendix 8
Appendix 9
Appendix 10
Appendix 11
Appendix 12

vii	
	

	
	

List of Figures

Chapter 2: Literature Review
Figure 2.1 Usability Engineering Lifecycle (Mayhew, 1998) ... 20
Figure 2.2 The Contextual Design Process (Holtzblatt & Beyer, 2013) 22
Figure 2.3 Process of usage-centered design (Constantine & Lockwood, 1999) 25
Figure 2.4 The star lifecycle (Hix & Hartson, 1993) .. 28
Figure 2.5 Practice bridge (Seffah & Metzker, 2004) ... 31
Figure 2.6 Institute for Systems Biology informatics context (Killcoyne & Boyle, 2009) 46
Figure 2.7 A model of scientific end-user software development (Segal & Morris, 2011) 53

Chapter 3: The Teams and Challenges
Figure 3.1 The OMERO Architecture ... 64
Figure 3.2 OMERO Team Diagram over Time ... 66
Figure 3.3 The Location of the Projects .. 73

Chapter 4: Methodology
Figure 4.1 My Roles during the Research ... 81
Figure 4.2 Scope of UCD Led Techniques used by the Usable Image team 82
Figure 4.3 Weekly Evaluation Cycle (Adopted from Macaulay et al., 2009) 83
Figure 4.4 System perspectives (Seffah et al., 2005a) .. 84
Figure 4.5 The data analysis process (Seidel, 1998) ... 93
Figure 4.6 Analysing qualitative data (Seidel & Friese, 1994 cited in Seidel, 1998) 95

Chapter 5: Usable Image Fieldwork
Figure 5.1 ImageJ Main Menu .. 114
Figure 5.2a Worflow theme .. 119
Figure 5.2b Revised worflow theme .. 123
Figure 5.3a Cycle of Credibility (adapted from Latour, 1979) .. 125
Figure 5.3b Cycle of Credibility with OMERO workflow (adapted from Latour, 1979) 126
Figure 5.4 Timeline of Co-localisation through OMERO ... 129

Chapter 6: Scientific Software Fieldwork
Figure 6.1 The move to observe the OMERO team .. 140
Figure 6.2 Perspective through the Projects .. 141
Figure 6.3 Example screenshot of a Gantt chart (Burel, unpublished) 143
Figure 6.4 Communities built around common interests .. 161
Figure 6.5 The culmination of perspectives gained in the research 165

Chapter 7: Forming a Framework
Figure 7.1 The three systems perspective of SSD ... 171

viii	
	

	
	

Figure 7.2 The scope of domains of a Project Team ... 175
Figure 7.3 The scope of a role in a Project Team .. 176
Figure 7.4 Role Duties ... 177
Figure 7.5 Separate communities (Adapted from Fong et al., 2007) 181
Figure 7.6 The Onion Model of the Project Community .. 182
Figure 7.7 New community growth (Schön, 1973) ... 183
Figure 7.8 The Role of the Project Community Mediator ... 185
Figure 7.9 The Reflection-in-Action cycle within the Project Team 193
Figure 7.10 The Reflection-on-Action cycle within the Project Team 194
Figure 7.11 The Reflection-in-Action as a continued learning process 196
Figure 7.12 The Reflection-in-Action as a Balanced Process .. 197
Figure 7.13 The Reflection-in-Action as a Conversing Process .. 197

Chapter 8: The Evaluation of the Project Community Framework
Figure 8.1 The approach for the PCF evaluation .. 200
Figure 8.2 Key timeline of development events for HCS ... 206
Figure 8.3 The infrastructure and functionality development conflict 211
Figure 8.4 OMERO scientific software development view of HCS 212
Figure 8.5 Key timeline of development events for FLIM ... 216
Figure 8.6 Roles in the FLIM work ... 219
Figure 8.7 Overview of the Mull institution .. 225
Figure 8.8 A software development view of FLIM ... 228

ix	
	

	
	

List of Tables and Boxes

Chapter 2: Literature Review
Table 2.1 Categories of scientific software developers ... 44

Chapter 3: The Teams and Challenges
Table 3.1 Background of the full-time developers in the OMERO Team 68
Table 3.2 OMERO Team Meetings ... 70
Table 3.3 Comparison between Academic Software Research and Industrial Software
Projects against the OMERO project (modified Liu et al., 2008) .. 72
Table 3.4 Roles in the Usable Image and Background to the Usable Image Team 74
Table 3.5 Usable Image Methods .. 76

Chapter 4: Methodology
Table 4.1 Example code study one .. 97
Table 4.2 Memos extracted from study one .. 98
Table 4.3 Memos extracted from study two .. 99
Table 4.4 Types of secondary analysis (Heaton, 1998) ... 102

Chapter 5: Usable Image Fieldwork
Table 5.1 Summary of Use of Usable Image Methods ... 136

Chapter 6: Scientific Software Fieldwork
Table 6.1 Summary of the software tools used by the OMERO team 143

Chapter 7: Forming a Framework
Table 7.1 Early roles identified for the potential application of the Project Community 174
Table 7.2 Core tools .. 187
Table 7.3 Scope of the Techniques to Enable Reflection-on-Action 195

Box 7.1 Project Community Terminology .. 173
Box 7.2 Defining Reflection Practice .. 192

Chapter 8: The Evaluation of the Project Community Framework
Table 8.1 Infrastructure and functionality identified for HCS development 212
Table 8.2 Project Community Framework evaluation review ... 235
Table 8.3 Manifesto summary ... 237

Chapter 9: Conclusion
Table 9.1 Scope of Possible Variables for Further Testing ………………………………246

x	
	 	

	
	

List of abbreviations

ACM: Association for Computer and Machinery
BBRSC: Biotechnology and Biological Sciences Research Council
CLI: Command Line Interface
CSCW: Computer-Supported Cooperative Work
DB: Database
DV: DeltaVision
EPRSC: Engineering and Physical Sciences Research Council
FLIM: Fluorescence lifetime imaging microscopy
FRET Fluorescence Resonance Energy Transfer
FS: File System
GOMS: Goals Operators Methods Selection
GRE: Gene Regulation and Expression
HCD: Human Centred Design
HCI: Human Computer Interaction
HCS: High Content Screening
IM: Instant Messenger
IxDA: Interaction Design Association
JISC: Joint Information Systems Committee
MMI: Man-Machine Interaction
MUSE: Method for Usability Engineering
NDIM: N-Dimensions
OME: Open Microscopy Environment
OMERO: Open Microscopy Environment Remote Objects
OMII-UK Open Middleware Infrastructure Institute
OOSE: Object-Ordinated Software Engineering
OS: Open Source
PCF: Project Community Framework
PD: Participatory Design
PI: Principal Investigator
RCUK: Research Councils UK
RITE: Rapid Iterative Testing and Evaluation
ROI: Region Of Interest
SEP: Scenario-based Engineering Process
SPW: Screen Plate Well
SSD: Scientific Software Development
TIRF: Total Internal Reflection Fluorescence
UCD: User Centred Design
UI: Usable Image
UML: Unified Modelling Language
UPA: Usability Professionals’ Association
WCS: Worm Community System

xi	
	

	
	

Acknowledgements

The thesis itself really has been such a life changing experience and one, which has really has given

me the itch for asking more and more questions. My first thanks is to my supervisor Dr Catriona

Macaulay for her support, including giving me the chance to get hooked on so many different ideas,

concepts and most importantly the opportunity to do this work.

A big thanks is for all those that I have approached with just a quick question during the research.

When I really have known there really is no ‘quick question’. Those particularly targeted; namely

Alex Carmichael, Mark Rice, Wendy Moncur, David Sloan, Paul Gault, Andrew and anyone who I

may have missed. Their insights and views have all had a profound effect impact on me through this

work. A special thanks goes to Xinyi who also showed me the social insights to making this research

work. A big thank you for all the conversations and explanations that make people so interesting.

A big thanks goes to Jason, and all the members of the OME team. They took me under their wing

and really gave me some real world problems with OMERO. And a very gracious thanks goes out to

the scientists who been directly and indirectly involved through the research and who have been

subject to me at times learning on the job. A special thanks goes to all those involved at the Platform

in Pasteur, especially Bernd. I must thank my Aunty Dink for ferrying me round when needed it has

always been much appreciated. A real thank you and a very large IOU to my Dad whose support

really has gotten me here. To every car journey here there and everywhere and time and who’s

influence has only been a positive one – well maybe. The thesis too is dedicated to both my Mom and

Gran who both helped install into me that a bit of hard work never killed anyone – they were right.

Their influence is everlasting on me.

Ευχαριστίες µου προς Έλληνα συνεργάτη Νταντί Γκίκας-Μαλάκια στο έγκληµα, του οποίου

η λέξη της σοφίας, συζητήσεις και αστεία έχει πάρει µε σαφήνειαµέσα από τα

σκαµπανεβάσµατα και διασκέδαση που είναι η έρευνα. Και µου έδωσε µια Γκίκας δια

βίου φίλος.

Mes derniers remerciements ne peuvent pas être dans une autre langue, et peut-être que la thèse elle-

même aurait dû être rédigée en français. Le temps que m’a consacré Jean-Marie, son soutien et ses

conseils m'ont donné tant d'enthousiasme pour ce travail. Et merci à Alexia, ma scientifique

métamorphosée en designer d'interaction, qui m’a aidé à traverser la délicate période de fin de thèse,

et tout le reste. Mais sans son support de tous les jours, je n'aurais pas pu en atteindre le bout, donc

cette dernière phrase est pour toi...

xii	
	

	
	

Declaration by the candidate

I declare that I am the author of this thesis; that, unless otherwise stated in the text, all

references cited have been consulted by me; that, except for those parts of work which are

declared in this thesis to be based upon joint research, the work which this thesis records is

mine; and that it has not been previously presented or accepted for a higher degree.

 Scott Loynton

 May 10th 2013

xiii	
	

	
	

Declaration by the supervisor

I declare that Scott Loynton has satisfied all the terms and conditions of the regulations made

under Ordinances 12 and 39; and has completed the required 9 terms of research to qualify in

submitting this thesis in application for the degree of Doctor of Philosophy.

 Dr Catriona Macaulay

 May 10th 2013

xiv	
	

	
	

Abstract

Information technology has brought new ideas and ways to explore data in multiple

fields of science such as biology, chemistry, and physics; they all have benefited through the

opportunity new technologies afford for the development of new scientific techniques. This

has brought major public investment in academic SSD projects, with £250 million invested in

the UK e-science program between 2001 and 2006 alone. However, there is major underlying

problem: scientific software and the process of academic Scientific Software Development

(academic SSD) suffers with a lack of User Centred Design (UCD). Typically, their focus is

largely on the scientific software development itself.

This research investigates the gap between UCD and SSD, so that UCD may be more

widely applied to the scientific software development process. The research explores how

UCD may become more closely integrated into the development of scientific software, so that

scientific software may have a stronger UCD focus and improved user experience for the

scientists that use the software. Addressing the challenge of bridging this gap, this thesis

presents insights into why this gap exists and how it might be bridged, based on a three-year

field study undertaken within the context of two existing research projects – the OMERO

Open Source academic SSD project (a software development team building tools for

managing and analysing microscopy data in life sciences), and the Usable Image project,

which was formed to investigate methods for introducing UCD into the OMERO software

and to improve usability of this academic software.

The research was constructed in three phases. The first phase of the work attempted to

understand the UCD-SSD gap from the point of view of UCD, via an embedded perspective

developed within the Usable Image project. The second phase of the project was designed to

understand the scientific software developer perspective on the gap and was undertaken from

within the OMERO developer team itself. The analysis of the outcomes of these first two

phases reveals the imbalance of academic SSD. The fieldwork emphasises working between

the cultural gap between UCD and SSD. The third phase attempts to tackle that challenge by

proposing a framework and manifesto for moving towards a more balanced approach to bring

UCD and academic SSD together.

The insights arising from the deep observational fieldwork led to the development of

a set of steps for SSD – the Project Community Framework. This Framework aims to support

an awareness of an academic SSD’s wider ecology – and it encourages teams to develop a

xv	
	

	
	

balanced and cognisant view of the SSD, UCD, and SSD project community, with the

integration among them. The Project Community Framework was evaluated against two areas

of functionality in the OMERO software from the perspective of the SSD project team, to

question how the Project Community Framework as a concept may function against real SSD

practice. The thesis supports the growing calls for more strongly UCD-oriented integration in

SSD projects. In doing so, it proposes the Project Community Framework manifesto as a way

to instil a new philosophy for academic SSD and to capture and integrate the core principles

of the research of SSD, UCD, and the community of the project.

This research places the foundations for a new, pragmatic, approach to helping

academic SSD teams to bridge the gap – the Project Community Framework Manifesto. It

also advocates that future work explores and develops the Project Community Framework

within other complex software development environments where UCD project management

is critical, such as the medical context.

xvi	
	

	
	

Associated Publications

Scott Loynton, David Sloan, Jean-Marie Burel, Catriona Macaulay. (2009). Towards a

Project Community Approach to Academic Scientific Software Development e-Science, Users

& Usability Workshop 2009.

Scott Loynton, Jean Marie Burel, David Sloan, Catriona Macaulay. (2009). The Project

Community Approach to Academic Scientific Software Development, UK e-Science All

Hands Meeting 2009.

Scott Loynton. (2009). Towards a Usable Image: Methodology for the Design of Image

Informatics Software, Doctoral Colloquium, 2009 European Conference on Computer

Supported Collaborative Work (ECSCW'09), Vienna, Sep 7-11.

Catriona Macaulay, David Sloan, Xinyi Jiang, Paula Forbes, Scott Loynton, Jason R.

Swedlow and Peter Gregor. (2009). Usability and user-centered design in scientific software

development, IEEE Software, 26(1), IEEE, pp.96-102.

David Sloan, Catriona Macaulay, Paula Forbes, and Scott Loynton. (2009). User research in

a scientific software development project, In Proceedings of the 23rd British HCI Group

Annual Conference on People and Computers: Celebrating People and Technology (BCS-

HCI '09), British Computer Society, Swinton, UK, UK, 423-429.

Chris Allan, Jean-Marie Burel, Josh Moore, Colin Blackburn, Melissa Linkert, Scott

Loynton, Donald MacDonald, William J. Moore, Carlos Neves, Andrew Patterson, Michael

Porter, Aleksandra Tarkowska, Brian Loranger, Jerome Avondo, Ingvar Lagerstedt, Luca

Lianas, Simone Leo, Katherine Hands, Ron T. Hay, Ardan Patwardhan, Christoph Best,

Gerard J. Kleywegt, Gianluigi Zanetti, and Jason R. Swedlow. (2012). OME Remote Objects

(OMERO): a flexible, model-driven data management system for experimental biology,

Nature Methods, 9, 245–253.

1

Chapter 1: Introduction

1.1 Motivation

This research examines the gap of User Centred Design (UCD) and academic Scientific

Software Development (SSD1). This gap is a major problem for the e-Science2

community – the computationally intensive scientific community that builds and uses

highly distributed network environments and applications – and the communities of

scientists who use them. The range of uses of scientific software is of course diverse,

including, for example, the analysis of genomic data, viewing chemical data, and image

processing. What unites them is the richness of the data and the complexity of the

scientific work practices that the data is generated through and used for. For scientific

communities, scientific software has become integrated into their everyday work

practice, increasing the need for such software to be usable. Furthermore, SSD must be

able to account for the needs of its future user communities – whose demands for ever-

challenging data management, analysis, and computation will only grow exponentially.

The need for SSD is evidenced by the huge investment being made in it. For example,

the UK Governments, invested £250 million in it’s UK e-Science programme between

2001 and 2006, while the National Science Foundation in the USA has made $5 million

available for the cyberinfrastructure training, education, advancement, and mentoring

for its 21st century workforce programme (NSF 2011).

Software design in general has to meet a number of accepted challenges in relation to

highly complex SSD technology-driven environments. Norman (2010) discusses

complexity can provide multiple experiences and opportunities for engagement for

users. The challenge for software developers is to provide users with an experience

where complexity can be exposed and managed. Norman (2010) recognises that to meet

this challenge, developers must take the time and make the effort to learn the structure

and the power of the design process, to reflect more deeply on how they develop

software.

1 Throughout this work, the term “SSD” means “academic SSD” unless otherwise stated.
2 e-Science is computationally intensive science that is carried out in highly distributed network environments, or
science that uses immense data sets that require grid computing. In 1999 John Taylor, the Director General of the
United Kingdom’s Office of Science and Technology, first used the term. Jim Gray say’s that “e-Science is where IT
meets scientists” (Bell et al., 2009). For more information, see http://www.e-science.stfc.ac.uk/.

2

The concept of UCD in the development of usable software has been widely

acknowledged for a long time. UCD emerged during the 70s and 80s. Grudin (1991)

highlights how during this time participatory design emerged throughout Europe, which

involves users to collaborate in the design process as full development team members.

The term UCD was coined in the work by Norman and Draper (1986) in their work on

user centred system design. Since then it has been through the progression and adoption

of technology in the workplace, in the home and with ubiquitous mobile devices that an

understanding of the user environment has presented much greater challenges in user

interaction and the need for user involvement in software design has become a

necessity.

Despite the role of UCD and its contribution to the usability of software, its integration

into the software development process still presents many challenges. Existing research

has specifically investigated the integration gap between software engineering and UCD

(Seffah et al., 2005; Seffah et al., 2009). These collections of approaches to UCD and

software engineering integration differ greatly. Techniques vary from models of

evaluation (Hvannberg, 2009; Tarpin-Bernard et al., 2009) alternative approaches have

taken the step to cross over UCD into the established software engineering lifecycle

(Hix & Hartson, 1993). Other example proposals for integration have offered more ad-

hoc styles (Anderson et al., 2001; Radle & Young, 2001). Throughout this research

there is no single best approach for UCD identified for the variety of software

development projects.

Aikio (2006) also shows how finding a generic solution for the integration between

UCD and software engineering is difficult because of the variable factors for any given

integration case in an organisation (Aikio, 2006). What she acknowledges from her

work is the need for further background research and empirical evidence about the issue

of UCD integration.

Academic scientific software is situated where accepting the “doing” of science is a

growing more costly. The objectives of national UK scientific organisations, such as the

Wellcome Trust, the research councils, and charities like Cancer Research UK, are

important to society – they address complex research questions about how the brain

works, they combat infectious diseases, they investigate ageing and chronic diseases,

and they help to understand how cancer starts and develops. The Wellcome Trust alone

in 2010 funded £530 million in the combined areas of science (£436 million),

3

technology transfer (£59 million), and medical humanities and engagement (£39

million) (Wellcome Trust Annual Report and Financial Statements 2010). The cost

allocated by the Wellcome Trust to technology transfer is an indication and

recognition by the Wellcome Trust of the increasingly vital role technology plays in

science. Similarly, the EPSRC has made significant investment in the UK e-Science

programme, funding 100 projects worth more than £250 million since the programmes

inception in 2001 (EPSRC 2011).

The role technology plays in everyday scientific investigation and practice is critical for

scientific research ranging from data analysis, to managing workflows (Howison &

Herbsleb, 2011). Poorly designed technology can and will frustrate these ambitions. The

scientific environment today is a fast-moving cutting-edge world where the technology

must look to constantly match the same pace. SSD is, in the proverbial phase, a moving

target. It must evolve continually to respond sufficiently to the questions science asks.

The scientific communities expect and require SSD to meet these needs. This contrasts

starkly with other complex software such as that used in back-office work, where

despite the underlying complexity of the operational practices, it rarely evolves too

quickly, and when upgrades arrive they are integrated into existing processes.

Usability and the associated challenges facing the scientific software community are

gaining an awareness. Such work by the UK e-Science Usability Task Force (e-Science

Usability Task Force 2011) has been involved in investigating the development and

effective deployment of e-Science systems. The challenges they have identified cover

four areas:

• Global communities. How do we maximise the use of e-Science technologies

and applications to support new forms of scientific community?

• Trust and ethics. How do we handle the ethical and policy issues to emerge

from the e-Science infrastructure?

• Knowledge production. How do we exploit an e-Science infrastructure and e-

Science techniques to support scientists’ expertise, new research methods and

new forms of knowledge production?

4

• Design, assessment and management. How can we best assess e-Science

technologies and applications, and use this assessment to guide the design and

management of these Systems?

(e-Science Usability Task Force 2011)

I would argued that many of these questions raised by the e-Science Usability Task

Force (2011) can be aided by providing more usable scientific software. Various

researches have investigated the role of UCD in scientific projects (Letondal, 2005;

Macaulay et al., 2009; Thew et al., 2009; De Roure & Goble, 2009). Existing work has

also acknowledged that UCD can contribute to the design and development of scientific

software (Javahery et al., 2004; Schraefel et al., 2004). Yet, despite this, usability issues

are still often overlooked in SSD (Letondal 2005; Macaulay et al., 2009; Thew et al.,

2009; De Roure & Goble, 2009).

Consequently, the requirement for understanding the UCD and software-development

integration process in this context is just as significant. The existing UCD research in

the SSD context, the question of integration of UCD in SSD has largely gone

unaddressed. This may be due to the varied nature of the development of scientific

software projects. The work by Segal (2008) identifies three levels of scientific software

development contexts: scientists developing software for their own laboratory, software

engineers developing software in partnership with scientists, or more experienced

scientists developing software but without the expertise and understanding of software

engineering practices.

Subsequently, this underlines the current permutations of SSD and furthers still the

potential for variation for the integration between UCD and the scientific software

development process. The requirement for scientific software is the ability to adapt to a

rapidly changing world that includes increasingly complex datasets and analysis. This

research therefore places the need, for UCD to be examined from the perspective of

understanding the issues of integrating UCD into SSD.

With all this in mind, this research raises the question: how can we migrate the existing

and well-established practices of UCD into the development of scientific software in

order to help support the challenges of SSD? This research aims to understand the

5

landscape of scientific software and understand the UCD process from operating within

a UCD project for SSD. It is therefore this issue that underpins the goal of this thesis.

1.2 Research aims

This research aims to explore and address the gap between UCD and academic SSD.

Building on this understanding, it proposes a framework for integrating UCD more

closely into the development of scientific software. The research questions are as

follows:

1. Why is so much of academic SSD still unusable and/or poorly accepted by

scientists?

2. How is SSD undertaken in academic contexts (investigating SSD in commercial

contexts is deemed outside the scope of this work)?

3. How can the uptake of User Centred Design philosophies, methods and thinking

in the application of academic SSD be improved?

1.3 Research objectives

The objectives of this work are to develop a clear understanding of how academic SSD

happens, to illustrate where UCD does and does not drive academic SSD, and to

operationalise my findings in the form of tools for bridging the gap between UCD and

academic SSD.

1.4 Methodology

The researcher adopts an ethnographic approach that comes from being situated within

both the Usable Image project and the Open Microscopy Environment Remote Objects

(OMERO) software project in the University of Dundee. This approach has been chosen

to allow for flexibility for the research work between the two projects. The research

work has used ethnography for conducting a primary and secondary qualitative analysis

of the fieldwork from within the Usable Image project and the OMERO project. The

6

methodology of the research is detailed in chapter 4 and the analysis of the research data

is documented in chapters 5 and 6.

1.5 Audiences

The primary audience for this research is the academic community involved in SSD –

developers, designers, UCD specialists. However, it is hoped that the insights and ideas

discussed and developed here will be of interest to colleagues involved indirectly in

SSD, the scientists themselves and the bodies that traditionally fund such research.

1.6 Structure of thesis

The motivation, overview and questions for the thesis have been presented here in

Chapter 1. Chapter 2 investigates extensively the background of the thesis in the form of

a literature review. This literature review covers previous work on software engineering

and its relationship with UCD. The established integration challenges are then examined

to understand about the UCD and software engineering gap, the subsequent context of

SSD and challenge this brings for integrating UCD and SSD are finally explored.

Chapter 3 provides the environment and context in which the research is being

conducted, with the background to the two projects that this research was embedded in

– the OMERO scientific software development project and the Usable Image project (a

project to introduce UCD into OMERO). Chapter 4 presents the ethnographic

methodology of the thesis and the steps of the analysis for the fieldwork carried out in

Chapters 5 and 6. Chapter 5 provides the analysis and initial findings of the Usable

Image fieldwork, while Chapter 6 presents the analysis and subsequent findings carried

out in the OMERO fieldwork and then concludes with the findings and implications

from both perspectives of the fieldwork. Chapter 7 takes the findings and proposes a

new way of approaching SSD with the view of UCD; the Project Community

Framework. Chapter 8 explores applying the concept of the Project Community

Framework and the development of a manifesto for academic SSD. Finally, Chapter 9

reflects on the contributions of the thesis to the research community and the

implications of these for future work on bridging the gap between academic SSD and

UCD.

7

Chapter 2: Literature Review	

2.1 Introduction

This literature review will examine the broader context and background of the gap

between UCD and software engineering. The review considers both of the fields and the

challenges of integrating them. The existing literature is examined in relation to the

established challenges of working integrating UCD and software engineering. The range

of techniques and approaches used to bridge the gap between UCD and software

engineering are reviewed to underline the variety of approaches from usability

engineering from the usability engineering cycle (Mayhew, 1996) to discount usability

engineering (Nielsen, 1993b). A discussion then presents the more specific challenges

to UCD and software engineering in the context of the SSD environment. The review

concludes that UCD has been acknowledged in SSD. However, the application of UCD

to SSD does come with the challenges that exist between UCD and software

engineering integration, and in addition ones from working within a complex scientific

domain. The literature review concludes by discussing the increasing acknowledgement

of the gap between UCD and SSD. This literature review will be restricted to the

position of integration of UCD and software engineering and the focus on the gap

between UCD and SSD. Consequently, the use and purpose of UCD will be presented

within this context.

2.2 Background to software engineering and user centred design

Software engineering and UCD stem from very different foundations and consequently

form different perspectives of the software development process. Historically, software

engineering as a field emerged first and precedes any UCD work by several years. This

has allowed software engineering to mature and become much better practiced, whereas

UCD has not yet reached this level of saturation. Subsequently, software engineering is

relatively well established, whereas UCD is still working towards a similar level. The

first section of this review gives an overview to the history of both these fields; in this,

the role of Human Computer Interaction (HCI) and usability engineering are both

explored because of their relationship to the integration of UCD and software

engineering.

8

2.2.1 Software engineering

The term ‘software engineering’ was introduced in 1968/69 as a model for the field of

software development (Naur & Randell, 1969). The term was selected for the reason “to

imply the need for software manufacture to be based on the types of theoretical

foundations and practical disciplines that are traditional in the established branches of

engineering” (Naur & Randell, 1969, p. 8). The original document that documents the

formation of software engineering, presents many interesting insights into the early

challenges software engineers faced. The following extract has been taken from the

Software Engineering report (Naur & Randell, 1969) to highlight the difficulties in the

preliminary software development process. The extract has been chosen because it

stresses the investment being made in software development and the repeated mistakes

that software engineers were making once a software project has been completed,

because nothing is learned. It is out of this that a call for more careful consideration for

software development is made:

Graham: Today we tend to go on for years, with tremendous investments to find that
the system, which was not well understood to start with, does not work as
anticipated. We build systems like the Wright brothers built airplanes.

1) Build the whole thing, push it off the cliff, let it crash, and start over again.
2) Of course, any new field has its growing pains:

Gillette: We are in many ways in an analogous position to the aircraft industry,
which also has problems producing systems on schedule and to specification. We
perhaps have more examples of bad large systems than good, but we are a young
industry and are learning how to do better. Many people agreed that one of the
main problems was the pressure to produce even bigger and more sophisticated
systems.

Gill: It is of the utmost importance that all those responsible for large projects
involving computers should take care to avoid making demands on software that go
far beyond the present state of technology unless the very considerable risks
involved can be tolerated.

(Naur & Randell, 1969)

9

In the early period of software development, there was very little division of labour or

specialisation in the software development industry (Mayhew, 2008). A programmer

could cover all aspects of software development from functional analysis and project

management to software testing, user interface design, and user support. Since the early

days of software engineering, the software industry has evolved in many ways. Reed

(2005) highlights how software is now part of the process when we fly or drive, so in

many ways our lives rest on safe and reliable software. But for many contemporary

projects, parts of these original statements of the challenges faced in 1968 still hold true.

“To paraphrase the rag trade joke, we may have gone from cottage industry to

cottage industry in three generations!”

(Reed, 2005)

The acclaimed work by Brooks (1995) comments on software development in that there

is no single development, either in technology or in the management that on its own can

provide any magnitude of improvement in productivity, in reliability, in simplicity.

Brooks (1995) identifies four irreducible elements of software systems: complexity,

conformity, changeability, and invisibility. Because of these factors, he implies that

developing software will always be a major challenge.

The traditional software development methodologies that have emerged for managing

these complexities fall into two distinct categories: either more modern lightweight

approaches or more planned heavyweight approaches. The following methodologies are

considered to be more heavyweight methodologies, following a more conventional

hierarchical approach where the challenges are defined up front and problems can be

further refined and addressed in succession. These methodologies range from Waterfall

(Royce, 1970), Spiral Model (Boehm, 1986), Unified Process (Bergstrom & Raberg,

2004), Cleanroom (Prowell et al., 1999), Rapid Application Development (Kerr &

Hunter, 1993), V-Model (Pressman, 2005), and Test Driven Development (Beck, 2003).

Software development methodologies have evolved to take on more reactive

approaches. These methodologies have few principles with the aim to provide more

flexible techniques for software development. Such techniques include Rational Unified

Process (Kruchten, 1998), Lean (Poppendieck & Poppendieck, 2003), Iterative (Larman

& Basili, 2003), and Agile (Beck et al., 2004). There are also more formal mathematical

10

software development models including B-Methods (ClearSy, 2011), Petri Nets (Desel

& Juhás, 2001), and Finite State Machines (Wagner et al., 2006). Formal methodologies

are traditionally used in areas where the software is safety critical, such as DO178B (a

standard on Software Considerations in Airborne Systems and Equipment Certification)

that requires formal methods to ensure safety checks).

There has been some growth in SSD in the area of Agile software development

techniques (Ackroyd et al., 2008; Kane et al., 2006; Wood & Kleb, 2003). This has

reflected the growth in the adoption of Agile throughout the entire software

development community. The questions of suitability of the Agile methodology for

SSD has nevertheless been raised in work by Crabtree et al., (2009). The work by

Crabtree et al., (2009) questions how to successfully understand and evaluate the

various interpretations of the Agile methodology in scientific projects and recognise it

as being a very difficult one. Crabtree et al., (2009) also emphasise that SSD inherits the

common problems of software development in terms of the project goals, size, and

culture playing an important role in adopting certain methodologies and practices in

SSD.

These general problems of the selection of a software development methodology can be

traced back to the evolution of methodologies. The emergence of many methodologies

has come from work within specific domains. Such an example is the Waterfall model,

which emerged through large-scale systems development, and the Spiral model, which

emerged through the software defence industry (Boehm, 1988).

The work by Yourdon (2007) cites how Barry Boehm found that while working with

Win Royce the Waterfall software methodology worked well within the domains of

aerospace and military systems. The was due to how the user’s requirements were

clearly defined with military and aerospace systems and the requirements could be made

up front. However, Barry Boehm acknowledges how the ability to have the

requirements clearly defined has slowly diminished. The work by Vessey (1997)

describes the problem of software engineering methodologies problem further and

highlights how they were never characterised. Consequently, it affected both the

academic and the software engineering field. Vessey (1997) adds that this computing

philosophy occurred during the late 1960s when computer science and software

engineering required the ability for domain-independent techniques, methods, and

11

paradigms to be taken seriously. This led to the demand for a broad application of

computing and software techniques, methods, and paradigms.

Kelly (2007) discusses the effect of the range of distinctive development practices in

software engineering that allows scientific software developers to take many different

approaches in developing scientific software. She also underlines the growing need for

more adaptable techniques for software development in the scientific context.

The problem of a lack of specification from the emergence of software engineering

methodologies has caused many different approaches to be taken instead of questioning

what approach may work best. The context of SSD is a further example of this problem.

By highlighting the history of software engineering, SSD serves to demonstrate the

underlying challenges for software development and how these are applicable for SSD.

In addition, the evolution of software development methodologies has allowed software

developers to take multiple paths for software development.

2.2.2 The role of UCD

The first use of UCD was in the work “The Design of Everyday Things” by Norman

(1986).

“User centred design emphasizes that the purpose of the system is to serve the

user, not to use a specific technology, not to be an elegant piece of

programming. The needs of the users should dominate the design of the

interface, and the needs of the interface should dominate the design of the rest of

the system.”

(Norman, 1986)

In this aspect the UCD term by Norman (1986) aimed to expose that in any software

development context the requirements of the interface are central to the design of the

system. The work by Gould and Lewis (1985) is also cited as a central reference to the

formation of UCD principles. These include the principles of early and continual

contact with users, quantitative usability criteria, evaluations, and iterative design

(Keinonen, 2008). Other work by Katz-Haas (1998) defines UCD both as a philosophy

and a process. This point is also argued by Karat (1996): UCD is a philosophy that

12

underlines the commitment to the users. However, he further raises the concern that as

an abstracted philosophy it provides a vast amount of tools and techniques and can lead

to many misinterpretations. There are more recent principles of UCD outlined in the

work by Gulliksen et al., (2003) and Maguire (2001):

• An appropriate allocation of function between user and system

• Active involvement of users

• Iterations of design solutions

• Multidisciplinary design teams

The range of factors and the established principles around UCD are set out in the

framework by Gulliksen et al., (2003). This framework outlines a prototypical UCD

approach, utilising the UCD methods presented.

1. User focus (Gould et al., 1997; ISO 13407 1999)

2. Active user involvement (Nielsen, 1993; Gould et al., 1997; ISO 13407 1999)

3. Evolutionary systems development - the systems development should be both

iterative and incremental (Boehm, 1988; Gould et al., 1997)

4. Simple design representations (Kyng, 1995)

5. Prototyping (Nielsen, 1993; Gould et al., 1997)

6. Evaluate use in context (Nielsen, 1993; Gould et al., 1997)

7. Explicit and conscious design activities (Cooper, 1999)

8. A professional attitude (ISO 13407 1999)

9. Usability champion - usability experts should be involved early and

continuously throughout the development lifecycle (Kapor, 1996)

10. Holistic design - all aspects that influence the future use situation should be

developed in parallel (Gould et al., 1997)

11. Processes customisation - the UCSD process must be specified, adapted,

and/or implemented locally in each organisation

12. A user-centred attitude should always be established

(Gulliksen et al., 2003)

The introduction of the term ‘UCD’ has benefited the design of information technology

and interactive systems, helping to introduce a user awareness and consideration to the

design process. As a practice, it has gained UCD industry acceptance and uptake (Mao

& Vredenburgh, 2005). The adoption of UCD in industry has in turn created several

13

professional usability organisations - e.g. The Usability Professionals’ Association

(UPA) and Interaction Design Association (IxDA) as industry has further developed the

term UCD. The UPA defines UCD as “an approach to design that grounds the process

in information about the people who will use the product” (UPA 2010).

Despite the broad scope of UCD definitions, some similarities exist for the term. This

was a problem also reflected in the field of HCI and is discussed in the following

section (2.2.3). However, despite this the work by Karat (1997, p.38) summarises a key

point for moving forward with the term UCD:

 “I suggest we consider UCD an adequate label under which to continue to

gather our knowledge of how to develop usable systems. It captures a

commitment the usability community supports - that you must involve users in

system design - while leaving fairly open how this is accomplished.”

Iivari and Iivari (2006) further state how the concept of UCD is still unclear. They note

that UCD has picked up ideas from many different sources such as prototyping,

evolutionary delivery, socio-technical design, user participation, participatory design,

and usability engineering. From this, UCD has taken on more meaning. This broader

interpretation of the term UCD has led to some criticism, as this general and non-

specific definition, in practice, ends up being a concept with no real meaning (Kujala,

2003; Gulliksen et al., 2003).

The term UCD is used throughout this thesis and acknowledges that UCD shall continue

to evolve. This recognizes a similar position to Karat (1997), who accepts that you must

involve users in the systems design process but yet be open to how this may be

accomplished.

For this thesis, UCD shall be fundamentally regarded as a philosophy throughout the

entire systems development process. The term from this perspective represents the

holistic view for the goals of this research. I have actively chosen UCD to represent a

holistic view, knowing that it must operate and evolve in this context.

Given this interpretation, the following two sections focus and expand on the fields of

HCI and usability engineering. These two fields significantly contribute to UCD and

14

software engineering integration, so several of the techniques and methods from the two

fields and their relevance to UCD are explored.

2.2.3 Human computer interaction

Human Computer Interaction (HCI) is an interdisciplinary field that joins computer

science, social, cognitive, and behavioural science, and human factors engineering. It is

a field that serves to integrate the technical development with planning and assessing

impact of the development process. The Association for Computer and Machinery

(ACM) gives a definition for HCI “Human Computer Interaction is a discipline

concerned with the design, evaluation, and implementation of interactive computer

systems for human use and with the major phenomena surrounding them” (ACM 2009).

In the definition by ACM it reveals three key components of design, evaluation, and

implementation and covers how HCI extends to the context surrounding the systems.

Dix et al., (1993) defines HCI as “the study of people, computer technology, and the

ways these influence each other. We study HCI to determine how we can make this

computer technology usable by people.” The definition by Dix et al., (1993) captures

the goal of HCI of making computer technology usable through the study of between

people and computer technology.

The growing challenges of software engineering in the 1970s led to the

acknowledgement that the way forward for computing was a better understanding of

users. It was this that HCI rose to meet with its convergence of several disciplines. In

providing the necessary support for the systems development process, HCI comprises

methods, models and various usability evaluation approaches and tools. The principles

set out from UCD are embodied in HCI and enabled through the methods and

techniques that have subsequently been formed in the HCI field. Myers (1998) has

reviewed the history of HCI from a technological perspective and he discusses how HCI

began with research in direct manipulation in academia as early as 1960. He also points

out that the research work in the commercial context for HCI did not begin until 1970,

and the introduction of HCI in commercial products was not realised until 1980.

The work by Carroll (2009), a major contributor to the field of HCI, has documented the

rapid evolution of HCI and how the field continues to diversify and outgrow all

15

boundaries. The field has expanded to encompass visualisation, information systems,

collaborative systems, system development process, and many areas of design. As a

result of the development of HCI, it is now less focused with respect to core concepts

and methods, problem areas, and assumptions about infrastructures, applications, and

types of users (Carroll, 2009). The expansion of HCI from its focus on individual

behaviour and singular work applications to a much wider emphasis on social and

emotional behaviour and ubiquitous context-aware settings, applications covering

games, e-learning, and e-commerce. This is also a reflection of the growing

interdisciplinary nature of HCI. While historically the domain was one involving

computer scientists with one or two more fields such as human factors or psychology,

there has been continued growth into new fields such as information science, art, and

design (Grudin, 2006). These new disciplines that continue to drive the HCI agenda

have opened up new research approaches. Further still with the research questions

presented and scope of the variables involved, the older reductionist methods based in

the laboratory provide only a limited insight into the problem (Shneiderman, 2008).

In a similar situation to UCD, HCI has suffered with a lack of consistent development

(Diaper & Sanger, 2006). Diaper and Sanger (2006) say this is because of a general lack

of agreement as to 1) what HCI should be, 2) what HCI can do, 3) how HCI can do it,

and 4) how HCI can be allowed to do it. They argue that the first of these four points

has almost been completely ignored. Consequently, HCI has developed by

concentrating on the last three points. This has led to HCI being developed away from

real problems or new technologies. They also consider how significant design decisions

are made before the HCI issues. They point out that the division between systems

development and HCI derives from the historical issue of software engineering and HCI

developing separately.

The HCI methods and techniques can be compared against the principles of UCD.

These principles were outlined by Gould and Lewis (1985) as mentioned in the previous

UCD section (see section 2.2.2). An early method developed was task analysis (Diaper,

1989; Kirwan & Ainsworth, 1992; Preece, 1994). Task analysis observes and

understands the work to be done by the users in order to inform the design process and

to help provide an early focus on the users and gain their involvement. Other early

methods attempted to provide interface guidelines. An example was the research by

Shneiderman (1987), who formed the ‘Eight Golden Rules of Interface Design’, and

16

later the work by Molich and Nielsen (1990), who formed the heuristic evaluation

approach. The specific work by Nielsen (1993) formed 10 rules called the usability

heuristics that simplified and explained common problems in interface design. Nielsen

(1993) recommends that interface designers should respect the following set of usability

heuristics:

1. Simple and natural dialogue

2. Speak the user’s language

3. Minimise the user’s memory load

4. Consistency

5. Feedback

6. Clearly marked exits

7. Shortcuts

8. Good error messages

9. Prevent errors

10. Help and documentation

 (Nielsen, 1993)

These early methods – task analysis and a heuristic checklist – were formed in HCI

were due to its early roots in cognitive science. Work by Norman (1981) and

Rasmussen (1986) produced early theories that were based on understanding and

categorising human error.

In the growth of HCI and the wider application of technology to the workplace, HCI

turned to other disciplines. The use of ethnography in the HCI design process is an

example of the turn to sociology led methods to provide more detailed accounts of the

user. The use of ethnography and its roots in anthropology help to provide HCI into

understand complex human practices and contexts. A core belief in ethnography is that

to gain the necessary understanding of the world you know little about, you must

emerge within it firsthand (Blomberg et al., 2007). Dourish (2006) cites that the

adoption of ethnography within HCI is down to two trends: first, the emergence of

Computer-Supported Cooperative Work (CSCW) as an area of inquiry. This placed an

increasing emphasis on questioning the social organisation of activity, so it required

methodological approaches that could understand social organisation. The second trend

was the rise of the Participatory Design (PD) movement. Especially popular in

Scandinavia where it has its roots, this movement has gone on to have a global

17

influence in HCI. Consequently, through CSCW and PD, the use of ethnographic

methods became more familiar to the HCI field. Existing studies have shown the value

of ethnography in various domains from homes (Crabtree & Rodden, 2004), workplaces

(Newman & Landay, 2000), and education (Wyeth, 2006). The work by Suchman

(1987) is influential in its example of the advantage of ethnography in HCI. Her work

provides insight into the communication breakdown and task failures between a user’s

constructed model and the expert model of a photocopier machine.

The work by Anderson (1994) suggests that ethnography can challenge and reveal the

taken-for-granted assumptions of a problem framework. Critically, what Anderson

identifies as an ethnographic representation is that it “seeks to tell a story which plays

through these antinomies and in so doing, synthesises them” (Anderson, 1994).

However, various research documents the problems for the system design process as it

struggles to fully use such rich material that ethnographic work provides (Hughes et al.,

1995; Dourish, 2006). The work by Dourish (2006) highlights this debate and discusses

that the implications for design are not always a necessity for the use of ethnography in

HCI, despite the recognition that design practice has been both successful in design

terms with such work by Hughes et al., (1993) and Bentley et al., (1992). Dourish

(2006) says that if such an approach is taken, then it can restrict the requirement’s

capture. His argument for this is the work of the ethnographer is more than a collection

and that the ethnographic process is an interpretive and analytic practice. In addition,

ethnography’s emphasis is on social facts so any implications for design can

inappropriately emphasise technology over practice. Critically, the contribution of

ethnography to HCI is as a method to provide further understanding of what it says

happens, and ideas for thinking about social life. This attitude is embodied in the

ethnographic outlook as argued by Randall et al., (1995), who themselves note that

ethnography provides a view of seeing the social world from the point of view of

participants.

2.3 Usability engineering

Usability engineering emerged partly in response to the need to integrate UCD concepts

and techniques with software engineering (Faulkner, 2000). This was a direct result of

the lack of usability in software development. The work by Reiterer (2000) underlines

18

usability engineering as a philosophy that incorporates HCI into software engineering.

The level of closer integration between the two fields of UCD and software engineering

is also discussed by Karat and Dayton (1995) to the extent that they view usability

engineering not as a field separate from the base engineering activity, but a “special

perspective on that activity”. Seffah and Metzker (2008) notes that a large proportion of

development release costs occur because current software engineering methodologies

lack attention to user needs and usability requirements, testing and requirements

validation, design prototypes, and functional systems with end-users before, during and

after development.

Seffah and Metzker (2009) highlight how the term usability engineering is

inconsistently defined throughout the literature. They cite this to be down to the

changeability and ambiguity of the terms ‘usability engineering’, ‘user interface design

and development’, ‘UCD’, and ‘user interaction design’. These terms are described

here: Faulkner (2000) defines usability engineering as “an approach to the development

of software and systems which involves user participation from the outset and

guarantees the efficacy of the product through the use of a usability specification and

metrics”. Hix and Hartson (1993) define it as “a process through which usability

characteristics are specified, quantitatively and early in the development process, and

measured throughout the process”. Nielsen (1993) emphasizes this aspect when

defining usability engineering as a set of activities that take place throughout the

lifecycle of the product. The significant step of defining activities for the software occur

at early stages before the user interface has even been designed.	 Preece et al., (1994, p.

722) describe it as “an approach to system design in which levels of usability are

specified and defined quantitatively in advance, and the system is engineered towards

these measures, which are known as metrics”.

These collections of terms cover activities that can be emphasised at various points of a

lifecycle and emphasize metrics in different ways. The changeability and ambiguity of

the terms in usability engineering again underlines how it suffers in a similar way to

both UCD and HCI in terms of the clarity of the term. This is significant for this

research and the literature review as the information will be reviewed later on in section

2.4.

19

2.3.1 Usability engineering methodologies

The goals of usability engineering to support systems design provides a wide range of

methods to support the integration of UCD with the software development process.

Therefore, the following section examines the principles of usability engineering

methodologies and reviews them. Again, like the inconsistency of the terminology for

usability engineering, usability engineering methods and techniques are also cited as

being inter-changeable (Seffah & Metzker, 2009). For this reason I have adopted the

same approach taken by Seffah and Metzker (2009) and used the terminology set out by

the IEEE standard glossary of software engineering (ISO Std.610.12, 1990).

1. An integrated set of policies, procedures, rules, standards, techniques, tools,

languages, and other methodologies for analysing, designing, implementing, and

testing software.

2. A set of rules for selecting the correct method and underlying process and tools.

Example usability engineering methodologies include the following: (a) usability

engineering lifecycle (Mayhew, 1996); (b) contextual design (Beyer & Holtzblatt,

1998); (c) Usage-Centered Design (Constantine & Lockwood, 1999): (d) Scenario-

Based Engineering process (SEP); (e) star lifecycle (Hix & Hartson, 1993); and (f)

discount usability engineering (Nielsen, 1993). Other example methods not reviewed in

this thesis are the Rapid Iterative Testing and Evaluation (RITE) method (Medlock et

al., 2005), the method for usability engineering (MUSE) (Lim & Long, 1994), and

InterMod (Losada et al., 2012). While a broad scope of methodologies and variation is

acknowledged, reviewing them in detail goes beyond the scope of this thesis. I have

chosen to review the aforementioned six methodologies ((a) to (f)). I will also question

the approach for managing the integration of UCD and software engineering.

a) Usability engineering lifecycle

The usability engineering lifecycle forms a comprehensive guide to a set of tasks for a

development process that integrates usability tasks into the software development

(Mayhew, 1996). Her work identifies its position in relation to object-ordinated

Software Engineering (OOSE), which was formed by Jacobson et al., (1992). She

recognises that although OOSE has a UCD-led philosophy, it has several shortcomings

in not addressing well-defined usability goals and techniques. Based on this the

usability engineering lifecycle identifies four phases that make up the lifecycle these

20

are: scoping, requirements definition and design, development, and installation. These

four steps are shown in Figure 2.1. This figure 2.1 shows how the middle stage of

design testing and development is the largest and involves many subtasks. Mayhew

recognises that people will not require the entire structure and she suggests that steps

can be omitted if they are not necessary. Figure 2.1 also shows the significant position

of the style guide. The style guide is used to provide information on the standards that

will be applied across the software. It is formed from the early goals in the requirements

phase. The subsequent guide may then be used to support the further usability goals of

the project (Preece et al., 2002).

Figure 2.1:Usability Engineering Lifecycle (Mayhew 1998)

21

The methodology provides a detailed step-by-step approach for the integration of UCD

and software engineering. In managing the integration of UCD and software

engineering, the methodology serves to align the usability tasks against the traditional

software development tasks. This methodology is significant in our context as the work

by Mayhew identifies several successful projects where it has been applied. However,

this is not without concern by Mayhew as re-designing the software development

process around UCD issues can frequently pose problems to the organisation culture of

software engineering organisations. Software development teams are frequently lacking

the knowledge to conduct UCD activities, so this lack of UCD expertise further

exacerbates the problem.

b) Contextual design

The contextual design process was formed by Beyer and Holtzblatt (1998). It is a

structured design process that provides methods to collect data about users in the field,

interpret and to consolidate that data in a structured way. It then uses the data to create

prototypes and iteratively test and refine the design concepts with the users. Contextual

design empathises the behavioural aspects of the system design process. The core

principle behind contextual design states that any technology, product or system must

support and extend its users' work practice. Holtzblatt gives a definition of contextual

design: “A set of techniques to be used in a customer centred design process with design

teams. It is also a set of practices that help people engage in creative and productive

design thinking with customer data and it helps them co-operate and design together.”

(Preece et al., 2002, pg, 313)

The eight steps of contextual design are illustrated in Figure 2.2 and explained below

with reference to the work by Holtzblatt and Beyer (2013).

22

Figure 2.2: The Contextual Design Process (Holtzblatt & Beyer 2013)

The first step is contextual inquiry. This has the goal of understanding who the users

really are. Contextual inquiry involves the designer carrying out interviews, but the

interviews take place at the users’ workplace to create a deeper understanding of their

actions and motivations. The second step is interpretation sessions. This brings the

design team together to listen to the interviews from the contextual inquiry so that they

can capture insights from these and understand their relevance to the design problem.

Through the discussion the entire team can learn about the data and bring their own

perspective. The third step is flow models and affinity diagramming. The flow model

is made up of a series of models to capture the work of individuals and organisations in

diagrams. Five different diagrams provide the contextual designers with several

different viewpoints on how the work is carried out. These diagrams can be summarised

as follows:

1. The flow model – This model aims to communication and coordinate between

people to accomplish their work.

2. The cultural model – This model captures the policies that restrict how work is

done and how users form workarounds to these problems.

3. The sequence model – This model details the task required to complete the

work. It can help uncover the different strategies users can take to complete a

task.

23

4. The physical model – This model highlights how the physical environment

supports or obstructs the work, as well as how the users organise their

environment.

5. The artifact model – This model demonstrates the outcome of artifacts that are

created from the work. The artifacts are how users think about the work, the

concepts they use, and how they are organised to complete the work.

The affinity diagram is another method to visualise the scope of user problems and is

where each observation from the contextual inquiry is written down on a post-it note

then placed on a wall. The observations can then be grouped together based on their

relationships. The fourth step is visioning. This step documents a story of how the users

will carry out the new work with the new system. The vision is made up of the system,

its delivery, and system support structures to make the new work practice successful.
Storyboarding is the next step. It defines the details for the function, behaviour, and

structure of the proposed system. The storyboards demonstrate the new steps a user will

take through the system. The sixth step is the user-environment design. This step

captures the plan of the new system showing how each part of the system and how it

supports the users’ work. It also highlights how the user gets to and from other parts of

the system without securing the structure to any particular user interface. The

penultimate step is paper prototyping. This step develops rough mockups of the

system using notes and hand-drawn paper to represent the system interface. The final

step is interaction and visual design. This process allows the design team to develop

and test the interaction options with users.

The work by Rockwell (1999) provides an account of the development of a new

software product, Ignite-UX, at Hewlett-Packard. This work describes how the

contextual design process can provide integration into the software development

process. Rockwell discusses each step from the contextual design process and he also

adapts the prototyping step using remote prototype testing instead of the paper

prototyping as outlined in contextual design. He does not cite the use of two work

models (artifact models and culture model), the affinity diagram, storyboarding, and the

user environment design. So Rockwell does demonstrate adaptation of the contextual

design technique for his own use.

24

One problem of the integration work for contextual design has been addressed by the

revised version of rapid contextual design (Holtzblatt et al., 2005). For many projects a

central criticism of contextual design was that it proved to be labour intensive for many

software development projects. Rapid contextual design has attempted to address this

by being more practically driven and flexible in its use. It has also addressed ways to

provide synchronisation with the growing uptake of the Agile software development

methodology. The Agile methodology in this aspect has been proactive in its own

evolution against the progression of the software development methodologies.

Contextual design has been criticised for its fieldwork process, mainly for the way it can

take a superficial look at work practice and develop new systems based on this. This

limitation is placed on field interviews that are restricted to a few hours only. In

comparison, ethnography is able to afford much more time. This does not fully allow

contextual designers to become fully integrated members of a user group, so the

ethnographic dimension of contextual design is a ‘ticket’ as opposed to a thorough

ethnographic engagement (Hartswood et al., 2002).

c) Usage Centered Design

Usage-centered design is a systematic, model-driven approach to improving product

usability (Constantine & Lockwood, 1999). The technique was created by Constantine,

who has refined it for further variations of usability work such as web design

(Constantine & Lockwood, 2002) and Agile development (Constantine, 2002). The

usage-centered design technique is made up of three models: a role model, a task model,

and a content model. The role model captures the roles that users play to the system; the

task model provides the structure to the users’ work; and the content model

characterises the contents and organisation of the interface (Constantine & Lockwood,

2002). The three core components of usage-centered design are developed in relation to

each other and can be extended to integrate with other models such as business rules

and data models. The process itself is model driven and is documented in Figure 2.3

where, starting from the left-hand side the system actors and human actors are

separated. This is shown in Figure 2.3 as user roles and system actors. Moving right

through the process involves task cases and abstract prototyping before finishing with

the step of visual and interaction design.

25

Figure 2.3: Process of Usage-Centered Design
(Constantine & Lockwood, 1999)

Constantine and Windl (2003) highlight how although the core models are connected in

a logical sequence, practitioners will develop them in parallel, moving from model to

model as information and insight develops. The first phase of the user role model is

made up of descriptions of the roles played by direct users. The role of actors in usage-

centered design distinguishes system actors as non-humans and user roles as humans.

The role model describes the context, the criteria of the context, and characteristics of

each role. A map is also used to document the interrelationships among user roles.

The task model details the task cases that model user intentions; the task case is a more

detailed perspective of users in roles this is different from the traditional software use

case models (Constantine et al., 2003). The advantage of the higher level of detail for a

task case over the more traditional design process is that it helps to uncover reusable

tasks and it helps to identify relationships between tasks.

Finally, the content model is used to provide a clearer picture of the organisation of the

interface and its components. The content model is made up of a collection of abstract

prototypes representing the interface and a navigation map representing the connection

between them. The abstract prototype is a way to explore the solutions of the contents

and organisation of the interface without having to specify all the details. A more

comprehensive documentation of the process can be found in the work of Constantine

and Lockwood (1999).

26

Although other research has applied usage-centered design (Patton, 2003; Kubicki &

Halin, 2010), Constantine and Lockwood (1999) acknowledge problems associated with

introducing UCD into an existing software development process. These constraints

force them towards new practices, processes, and tools to be introduced into an

organisation. The potential solution suggested for this by Constantine and Lockwood

(1999) is the use of training courses for the participants involved in the UCD activities.

However, this does come at some cost in time and unless the UCD activities are

managed internally by the organisation it can mean a lack of organisational learning for

the UCD design methods. Constantine and Lockwood (1999) look at this aspect as the

responsibility of organisations for building up an internal body of information for the

use of UCD methods. This way the best practices can be adapted to the specific needs of

the organisation.

d) The scenario-based engineering process

In scenario-based design, descriptions of how people complete tasks are used as a

design representation. They serve to maintain a focus on situations and successive

actions from people’s activities. It allows learning about the dynamics of the domain

and it allows seeing the situation from different perspectives (Carroll, 2000). Scenarios

are stories about people and their activities. The other key elements of scenarios are the

setting and starting point for the description, the relative positions of the relevant

aspects of the given scenario, and the role of the person or people as the actors. Each

actor will have his or her own goal and will vary depending on the status in the

scenario. A simple example is documented below by Carroll (2000) where he describes

the following scenario:

“An accountant wishes to open a folder on the system desktop in order to access

a memo on budgets. However, the folder is covered up by a budget spreadsheet

that the accountant wishes to refer to while reading the memo. The spreadsheet

is so large that it nearly fills the display. The accountant pauses for several

seconds, resizes the spreadsheet, moves it partially out of the display, opens the

folder, opens the memo, resizes and repositions the memo, and continues

working.”

In this example, the accountant plays the central actor. The goal in the scenario is to

view the memo on the budgets. Potts (1995) identifies the characteristic that scenarios

27

have in a setting by identifying the person and objects in relation to them. Every

scenario will also include at least one actor or actors and a minimum of one goal. In the

above example, the further setting described is the situation of the accountant’s desktop

and the further task required for the account to reach the goal of opening a folder on the

system desktop.

The nature of the integration of scenarios between UCD and software engineering is

explored in the work by Benner et al., (1993), where they claim scenarios are pervasive

techniques throughout the software development process. Underlining their importance

for design in any system situated in a complex environment, they present four areas

where scenarios can be integrated into the software development process:

• Describing and clarifying the relevant properties of the application domain

• Uncovering system requirements

• Evaluating design alternatives

• Validating designs

More recent work by Sutcliffe (2011) highlights how scenarios share a common link

between software engineering and HCI. They both use scenarios for design, although

the form and function in each field differs. The use of the term "scenario" has taken on

various permutations between the HCI and software engineering literature so a large

number of definitions exist (Rolland et al., 1998).

The key difference between the two fields is that in the context of software engineering,

the use of scenarios favours a systematic process so more formalised processes are kept

to elicit, analyse, specify, and validate requirements. However, in HCI iterative cycles

refine the process suitable to users needs. The amount of formal analysis for checking or

testing the design has been minimised (Sutcliffe, 2011).

e) Star lifecycle

Hix and Hartson (1993) formed the star lifecycle (see Figure 2.4). The central

component is the evaluation. The other five components of the star lifecycle are made

up of:

• Conceptual/Formal design

28

• Rapid prototyping

• Implementation

• System/task/functional/user analysis

• Requirements/usability specifications

Figure 2.4: The star lifecycle (Hix & Hartson, 1993)

A significant advantage provided by the star lifecycle method is the ability to take a

bottom-up approach. This is in stark contrast to the more traditional software

development methodology of the Waterfall approach, which is a top-down approach. As

the lifecycle allows the design to gradually evolve through each step, any of the five

components could be used as the starting point. This allows the design process to

become more clearly defined with each step of the evaluation. This iterative aspect of

the lifecycle is shown with bidirectional links in Figure 2.4 As an example a full

lifecycle could play out in the following way: Requirements/Usability specifications >

Evaluation > Conceptual/Formal design > Evaluation > Rapid prototyping > Evaluation

> Implementation > Evaluation > User analysis > Evaluation.

The role of integration between the star lifecycle and the software development process

is discussed by Metzker and Offergeld (2001), who highlight how the star lifecycle

specifically separates the development of the user interface from the development of the

software system. The only connection between the two is via the systems analysis and

testing/evaluation, where these authors acknowledge that the star lifecycle has a

29

weakness is in terms of complex process surrounding the communication of the

lifecycle. This aspect of the work requires further research work to how this can be

further supported. The work by Metzker and Offergeld (2001) also underlines that the

star lifecycle addresses only the interactive parts of a software system, leaving questions

on how to best integrate it with general software development methodology, which by

default encompasses the full software development cycle.

f) Discount usability engineering

Discount usability engineering is a method developed and promoted by Jakob Nielsen

(Nielsen, 1990; Nielsen, 1993; Nielsen, 2003). The technique grew from the recognition

that people rarely made use of the recommended usability engineering methods

(Nielsen, 1993; Whiteside et al., 1988). Nielsen recognised that in practice usability

engineering was not used because of its cost in terms of time and in terms of money for

employing a UCD expert. The discount usability engineering method was consequently

formed around the following three simple techniques:

• Scenarios

• Simplified thinking aloud

• Heuristic evaluation

The techniques are based on they are not complex to use, so they should have an

increased chance of adoption. These three simplified techniques can be briefly described

as follows:

• Scenarios are a variation of prototyping that allow a designer to reduce the

complexity of the whole system. The types of prototyping that can be carried are

either horizontal or vertical. Horizontal prototyping allows for a broad view of

the system with limited functionality, while vertical prototyping allows for the

full function of the system to be demonstrated.

• Traditionally, trained experts would carry out the studies by videotaping the

subjects and conducting a detailed analysis. The simplified thinking aloud

technique attempts to replicate this by using users, providing them with test

tasks and asking them to talk out loud as they carry out the task.

30

• Finally, given the length of interface standards and collections of usability

guidelines being formed at the time,	 Nielsen proposed a heuristic evaluation

with ten core principles. These “rule of thumb” guidelines were again made to

be more accessible for developers. The uptake and success of the heuristic

evaluation, Nielsen has then revised the heuristics in the work usability

inspection methods (Nielsen, 1994b). The use of discount usability engineering

has also further evolved and been adapted for the software development process

of Agile development (Kane, 2003a).

The role discount usability engineering plays in the integration between UCD and

software engineering is in lowering the actual accessibility of UCD methods. UCD-led

techniques have become more practical for use by software developers and non-UCD

experts. However, discount usability has come under particular criticism because of this

but also because of its wide adoption. Wixon (2011) identifies that the technique has

become widely used, going from a few usability labs in the 1980s to hundreds of labs

and thousand and thousands of tests conducted each year. This has been due to the

recognised commercial and monetary implications in having usable software.

Nevertheless, Wixon (2011) states that a clear low-cost process to work from was a key

factor in such a wide adoption. The significant advantage and disadvantage of the

method is revealed in its name, a ‘discount’ method. The integration of discount

usability engineering and more modern software-development methodologies such as

the Agile methodology can mean a lack of early influence at early stage of the design

process. In this sense, Wixon (2011) cites the lack of championing measurable goals.

Therefore the role of usability engineering is limited to the scope of usability testing at

the very end of a process where the role of UCD is constrained much more to

incremental improvements.

2.4 Where user centred design and software engineering meet

The problem of integration between the two fields of UCD and software engineering is

widely established from both sides of the community. For example, the IFIP working

group 2.7/13.4 on User Interface Engineering, which was established in 1974, has

intentionally investigated the migration between software engineering and UCD (ifip

2011). The significance of the problem has been recognised more recently in various

31

ways: multiple workshops such as ICSE 2003 (Kazman et al., 2003), INTERACT 2003

(Harning & Vanderdonckt, 2003), and a Computer-Human Interaction (CHI) workshop

2004 (John et al., 2004); special sessions at conferences such as HCI International 2003

(Görasson et al., 2003); and special issues of journals such as Software Process:

Improvement and Practice (Kazman & Bass, 2003). The existing literature has asked

different questions on how best to integrate the two different fields. Seffah (2004)

highlights how during the past fifteen years the UCD community has formed various

methods for the integration of UCD and software engineering. The purpose of the

methods has been to promote usability, accessibility, and acceptability for interactive

systems. However, the methods are still underused and difficult to apply for software

development teams. Questions remain about how to efficiently and smoothly integrate

UCD methods into established software development processes (Mayhew, 1999).

Figure 2.5 presents a summary of the core conflicts and discrepancies of UCD against

software engineering and subsequent areas, which in turn highlights the gap between the

two fields.

Figure 2.5: Practice bridge (IBM 2004 cited in Seffah and Metzker 2004)

There has been acknowledgement that the formation of a generalised template solution

is likely to be challenging because each integration case is unique in its own right

(Battle, 2005; Radle, 2001). The work by Battle (2005) addresses this challenge by the

introduction of patterns of integration and subsequently divides the generic lifecycle

into three phases of early, middle, and late. In any of these phases different situations

and activities are applicable. For a given pattern, best practices are suggested with the

32

outcomes used through the development cycle. The four example patterns described by

Battle (2005) cover 1) foot in the door for a internal usability group, 2) foot in the door

for external consultants, 3) UCD focus on early definition and design, and 4) UCD in

every phase. The range of different patterns has distinctive deliverables based on their

area of focus. These generic phases are early, middle or late. Battle (2005) describes

how the early phase deliverables are the aspects to target for foot in the door for internal

usability group. The range of deliverables is a low-fidelity prototype, a requirement

document, or a specification document. In contrast, Battle (2005) highlights how the

pattern for a foot in the door for external consultants targets the latter phase of the UCD

cycle so for UCD to make an impact the deliverables change to making

recommendations for improvement and sometimes facilitating a usability test. The

contrast between the two foot-in-the-door groups of internal and external usability

means that the internal usability group can be in a better position to focus on adding

value to an early design deliverable. Significantly Battle (2005) also offers best

practices for UCD practitioners based on which pattern they use, this includes stop

“telling people that their baby is ugly”. This is a practice concerned with preventing

UCD specialists of giving bad news before a release. Another practice covers how

working collaboratively with multidisciplinary teams can help highlight the importance

of meeting with developers so as to have insight into the technical constraints and

opportunities. The work by Radle and Young (2001) has presented a study across three

different organisations. They have formed key lessons for addressing usability for

organisations: first, forming excellent interpersonal skills are crucial to forming

relationships with development teams; secondly, understanding that most resistance to

UCD comes from other pressures (such as schedules) and a lack of information; finally,

observing user interactions should be done first hand. Work by Billingsley (1995) has

also identified five factors for launching a corporate usability programme and

maintaining its success: (1) preliminary strategic planning; (2) a high-level champion;

(3) an experienced usability professional leading the corporate effort; (4) a careful

selection and sequencing of initial usability activities; and (5) support and incentive for

developer involvement. Work by Schaffer (2004) has also outlined the integration of

usability from a corporate perspective. He suggests that the process for designing

interfaces has been driven by technology. He proposes that the reverse happens, he

argues that user design should occur first and the technical solutions fit the interface.

This work formed the Schaffer Methodology, which is based on 10 steps to

33

institutionalise usability assurance. Schaffer (2004) also acknowledges and identifies

the fundamental shift required for organisations to adapt usability. His explanation of

this is one as deep changes because it involves changing the thinking and values of

people in the organisation. Based on this, Schaffer (2004) calls for a deep philosophical

change that must take place in the move towards UCD. This requires a change in the

approach of the design and development process. The issues raised from the proposals

of key lessons and templates are important for UCD although they have been formed

within a different context. They do help to raise the questions to how the relationships

and communication within each project are developed, the role of the usability

activities, and support and incentive for developer involvement. These question all

underline the types of challenges of working within a multi-disciplinary team that this

research is part of.

Göransson et al., (2003) argue that the integration of usability into software

development requires a process perspective and that the usability roles must be deeply

involved throughout the entire development process. They highlight particular

weaknesses of usability engineering, particularly how it is made up of a large range of

techniques from analysing users and specifying usability goals to evaluating designs,

although it does not address the whole development process. The techniques are still

rarely defined with the UCD practitioner being accountable for the usability activity.
Göransson et al., (2003) perceive such techniques to be problematic as they are bolted

on to the software-development process as singular activity. They do not see that there

is anything fundamentally wrong with usability engineering techniques. However, they

argue that the integration of UCD with software development must be a natural process.

Thus, according to Göransson et al., (2003) integrating UCD into the process

and allowing for a stronger focus on the design phase within a framework of UCD

software development is an essential step that still needs to be accomplished.

Faulkner and Culwin (2000) also echo this call in their own analogy to the integration of

UCD in the software development process. Faulkner and Culwin (2000) state “if in the

past we have made cakes with cherries on, we now need to change our approach and

make cherry cake”. They stress that it is only by employing UCD throughout the whole

process that we can then ensure that user needs are addressed from the very start. Siegel

and Dray (2003) further underline this point, stating that the integration and

responsibility for UCD roles need a shift in focus from a sole focus on doing studies and

34

operating on the peripheral to generating designs and products and directly affecting the

process.

A significant contribution and a collection of integration factors has been made in the

books by Seffah et al., (2005) and Seffah et al., (2009). Seffah et al., (2005a) present a

collection of work for integrating HCI and usability engineering techniques into the

established software engineering lifecycles. This aims to understand and question the

principles, myths and challenges behind the integration between UCD and software

engineering. Several specific chapters from these two books are explored below.

The work by Seffah et al., (2005b) analyses the range of relevant frameworks to

understand how far they go towards the role of integrating UCD-led methods with

software engineering. The work questions how the software engineering lifecycle can be

re-designed so that end-users and usability engineers can participate actively. They

highlight that this remains an open question as it is problematic to fully understand the

adaptation of such frameworks and how much influence they have on software

development and management processes. Critically, they also look at the role of

artefacts in the integration between UCD and software engineering. They qualify

artefacts as the elements that characterise a software engineering methodology. They

question how usability techniques and activities will be gathered and they specify

relevant usability artefacts as well as how they will be presented for the software

development process. The techniques of patterns and use cases are highlighted to be

beneficial for this level of cross-pollination between UCD and software engineering.

Pyla et al., (2005) question the association of the role of UCD, to function under Agile

processes. They have formed a methodology called Ripple, which is a database, which

supports a shared design representation framework. Through the use of the system

Ripple can identify the connections and dependencies within each lifecycle. The

framework provides artefacts generated at each stage between the two development

lifecycles, which are then filtered and messaged into the appropriate UCD or software

development lifecycle. Critically, Ripple does not merge the UCD and software

engineering development processes into a single lifecycle. The alternative approach

taken is to co-ordinate each lifecycle separately using a shared representation. This way,

the Ripple system is acting as a translation tool for communication and co-ordination

between the two processes.

35

Further work by Seffah et al., (2009) has since highlighted the converse side of these

issues and the lack of well-established software engineering lifecycles that are missing

the UCD quality required for the development of highly interactive systems. This is

where a development process may be dominated by UCD concerns and there is a failure

to integrate software engineering methods into it. These subsequent issues question and

examine software engineering models, methods, and tools for challenging UCD issues

such as adaptability, universal usability, and accessibility; re-engineering models and

techniques (formal specifications methods and notations; software for supporting the UI

development lifecycle: requirements, analysis, design, implementation, evaluation and

traceability, and maintenance).

Hvannberg (2009) and Tarpin-Bernard et al., (2009) provide such examples of research.

Hvannberg (2009) created a finer model of evaluation that may be used alongside the

design process. The goal of the work was then to question and learn how an evaluation

model can help further support the understanding between cause and effect in user

interface development. The purpose was to improve the understanding of the interaction

between design and evaluation.

The approach by Hvannberg (2009) involves specifying different work products and

asking questions about the implications of work to design, and the subsequent cause and

effect from this. The resulting evaluation model is then informed to describe the design

decisions and consequences the work models have on the design. The model also

records the implications for the association between the design and problem domain.

The work by Tarpin-Bernard et al., (2009) outlines an architectural model-based

approach for adapting interactive applications to various contexts. Their architectural

model is called AMF and looks to utilise task, concept, platform, and user models as

well as an interaction model. Their own work demonstrates the use of Unified

Modelling Language (UML) models and a UCD approach of task analysis. In taking

such an approach they are able to designate a software process that builds the

application and safeguards the correct behaviour.

36

2.5 UCD and software engineering in a commercial context

The problem of integration between UCD and software engineering is also widely

recognised in the commercial context. The work by Jerome and Kazman (2005), Boivie

et al., (2006), Verdenburg et al., (2002), Gulliksen et al., (2004), and Bygstad et al.,

(2008) have all identified the difficulties of such integration. Again these studies

identify common challenges from the separated environments between UCD and

software engineering, pointing out a lack of guidance for using UCD and a general lack

of awareness of UCD. The survey work by Jerome and Kazman (2005) identifies that

despite the growing development towards the migration of software engineering and

UCD activities, most industry professionals are still to follow the proposals from the

academic and industrial research communities. They also recognise that in part many

software engineers and UCD practitioners continue to work separately. The required

crossover between the two fields disciplines happens infrequently and not early enough

in terms of the software development process. The survey also underlines some

misperceptions and miscommunications between the two fields.

Other exemplary work has been carried out by Rideout et al., (1989) and IBM (2012).

The work by Rideout et al., (1989) highlights the work carried out at Hewlett-Packard.

They cite how their own integration between UCD and software engineering has come

from working within interdisciplinary software development teams. This meant they

were able to take a system orientation as being a significant reason to allow for the

migration between UCD and software engineering. The implications from working in

an organisation the size of Hewlett-Packard can mean working across several teams.

The usability engineers in this instance can significantly improve their effectiveness by

transferring knowledge and skills to make others more effective. Critically, they also

identify the role of good teamwork as a key component to build the bridge between user

information and software design. More recently IBM has proposed strategies for

adopting UCD practices within an organisation as well as strategies for persuading an

organisation for UCD adoption, and staying committed to UCD. The aspect of

integration between UCD and software engineering is significant to my own research as

I am working between the Usable Image and OMERO projects. So questioning the

approach of how the crossover is managed between the projects for my research is

critical for preventing the separation of isolated working between the Usable Image and

OMERO projects.

37

The work by Seffah et al., (2005a) indicates that usability integration is limited to large

organisations. However, the work by Fellenz (1997) and Aikio (2007) do investigate the

role of UCD in smaller organisations. Both have explored how they have employed a

UCD department for conducting usability activities. Further work by Bloomer et al.,

(1997) and Venturi et al., (2006) has also explored the tactics for adaptation in a

commercial context. The work by Bloomer et al., (1997) states that UCD could be

integrated into an organisation by the development of a UCD strategy to support the

organisational objectives. The findings by Venturi et al., (2006) underline the

organisational factors that play an important role in adopting UCD. They recommend

that UCD should be part of the organisational strategy and should be endorsed by

management. Further still, when designing a bestspoke system the system should be

clearly defined with the user. The subsequent outcomes of the practice of UCD should

then be communicated internally and externally to the organisation.

The challenge of examining the role of UCD in smaller organisations is pertinent issue

in my own research as I am working with a small software development team. So the

extent to how the organisational factors of the SSD context play a role in adopting UCD

to how UCD is communicated internally and externally for the projects is meaningful

for my own research questions.

2.6 Established integration challenges

The following seven points cited in Seffah and Metzker’s (2008) research synthesize the

well-established challenges in the UCD software engineering integration literature. The

issues cover and recognise the central obstacles to the integration of software

engineering and UCD. Where necessary I have explained these aspects with related

work.

 1) Separation between user interface and system functionality

The first issue can be traced back to the very different perspectives that each particular

field adopts. UCD makes it drastically different from the way system design is

approached in software engineering. Software applications have been developed so that

the interface is separated from the underlying software system. This is defined by

Seffah and Metzker (2008) as the thin layer that operates on top of the software in the

38

term “user interface”. The work by Mayhew (1999) also highlights another common

misunderstanding, which is that usability engineering tasks do not arise until the more

detailed phase of a development and the belief they can be done right first time. The

limitation of applying only software engineering methodologies is further reinforced in

the work by Hix and Hartson (1993), in which they recognise that user interface

development is made up of both software development and UCD. If software

engineering overlooks the fact that user interface development is made up of both

software engineering process and UCD, it will continue to fall short. This can leave

both processes of software engineering and UCD to evolve separately. This

shortcoming has not only been acknowledged by the UCD community work. Bass et al.,

(2001) has recognised this issue from a software architecture perspective and how

usability scenarios affect the design of the software architecture.

It can be argued that this integration gap is compounded by how the two fields of

software engineering and UCD have developed into two separate bodies of knowledge,

making it difficult for the individual software engineer to acquire extensive knowledge

within usability and for the usability professional to become a skilled software engineer

(Göransson, et al., 2003). What is deducted from this that it seems more difficult for

software engineers and UCD practitioners to prevent their own misconceptions of each

other’s process. This point is relevant to the discussion of the field being educated,

which is discussed further in point 7.

 2) Cultural gap between UCD roles and engineers

There is a significant gap between UCD and software engineering roles because of the

different culture. The misconception between the two disciplines covers different

terminology and a technology centric view in software engineering to the contrast of a

user focused and way of working in UCD (See Figure 2.5).

Seffah and Metzker (2008) describe that software engineers must interpret UCD for

their own cultural context. Also, UCD specialists must understand how and why the

technical choices influence the end-design. Work by Seffah and Metzker (2004) has

also proposed key skills for software engineers to develop better interfaces. These key

skills cover an appreciation of the UCD lifecycle and the benefit of usability to the

quality of the software. They point out that software engineers should be aware of the

design decisions for dialogue types and input/output devices; that they should value the

39

benefit of using prototypes to evaluate the system; and finally that they should be aware

of their own limitations in their knowledge and not be afraid to ask UCD specialists for

advice.

 3) UCD has to be adopted throughout the organisation

The significant role that the organisation plays in UCD integration is reported by Seffah

et al., (2005). They highlight how both the work in the Usability Engineering Lifecycle

(Mayhew, 1999) and usage-centered design (Constantine & Lockwood, 1999) are

affected by organisational barriers. Despite this there is still a general lack of empirical

studies on the effects and acceptance of UCD in organisations (Glass, 1995; Basili et

al., 1999).

Such UCD organisational surveys are viewed to be a key requirement to help support

organisational learning. However, the work is difficult to conduct (Seffah & Metzker,

2008) as it would be required to compare the use of a UCD method in a project against

a different project that is not using a UCD method. In addition, the ability to control

factors such as skill, motivation, and the software engineering approach would also

have to be managed. This underlines the potential variables, time, and costs that would

be involved in carrying out such survey work. Mayhew (1999) says that the role of

understanding and what motivates organisations and causes them to change are key

factors. Mayhew (1999) argues that whether your role in the organisation is as a

usability practitioner or not, critically you have to recognise yourself as a “change

agent”. The existence of change agents has also been discussed in other research, each

of which has its own slight variation for their given context as the following

demonstrate:

“A high-level champion for usability can help to establish organizational
commitment, provide resources, and create opportunities for process change.”

(Battle, 2005)

“Throughout its evolution, the software usability initiative has been championed
by Lynden Tennison, Union Pacific’s Assistant Vice President of Information
Technology, with the full support of Joyce Wrenn, The CIO”.

(Billingsley, 1995)

Schaffer’s (2004) interpretation of a change agent is embodied by an Executive

Champion. The Executive Champion is a leader who has the power to provide direction,

support, and political management for corporate change. This representation is

40

significant as it represents a management role. The implementation of UCD has been

identified as one of the more far-reaching challenges of integrating UCD throughout an

organisation. Significantly, the implementation of UCD must come from the very top

and be based on a clear vision and set of goals. For the individuals within a project

team, the critical factor lies in the integration between the UCD and software.

 4) Usability of UCD methods

The UCD and software development communities have questioned the usability of

UCD methods. Gunther et al., (2001) and Vredenburg et al., (2002) have both raised

concerns regarding the complexity and usability of UCD methods. Such concerns are

with the benefit of identifying the perceived key advantages and weaknesses of UCD

methods could be useful for the adoption and promotion by UCD practitioners of any

given method. Another factor is the cost-benefit tradeoffs that play a major role in the

adoption of UCD methods. This can mean that heuristic evaluations are more heavily

used because they are relatively easy and less costly.

Work by Rosenbaum et al., (2002) has demonstrated the factors that UCD methods

need to accommodate in order to be established in the software development process.

He first identifies the core principles of UCD need to be clearly communicated to the

entire team. The requirements of the UCD methods subsequently have to be seen to be

beneficial. Rosenbaum et al., (2002) further discusses how usability testing will

typically have to be adapted to the context to be more useful. The work by Vredenburg

and Butler (1996) and Mao and Vredenburg (2001) underline this problem in the

context of industry. In this there is a general lack of adoption of UCD techniques and

consequently an absence of UCD methods that are effective in their use. This even

covers more basic practices of UCD such as iterative design and prototyping failing to

be used. Further calls have been made in the work by Thimbley (2000) for the

development of more theoretical methods that are more readily accessible. The research

by Gulliksen et al., (1999) has called for the development of a UCD framework or

principles on how to perform UCD in practice. The lack of adoption of UCD techniques

was the principle reason for the creation of the method of discount usability as

previously discussed in section -. Based on this the challenge, the usability of UCD

methods and how they must accommodate in order to be integrated into the software

development process openly calls for new methods and frameworks of integration.

41

 5) Lack of support tools

Much literature (Nielsen, 1993; Mayhew, 1999; Rosenbaum et al., 1999; Reiterer,

2000) reinforces the underlying problem of inadequate support for UCD processes. The

requirements for process support tools should allow project teams to deploy UCD

methods efficiently through an organisation without having a set of techniques forced

on them. This is especially significant for the varied nature of software development

methodologies. Any UCD tools presented should allow for the integration and

flexibility into a given organisational software development process. Work by Metzker

and Offergeld (2001) underlines the importance of any UCD software tools introduced

being aware of existing UCD practices yet also allowing for the organisation to evolve

and tailor their approach.

Existing work that has documented such best practices has been addressed by

Rosenbaum et al., (2000), Metzker and Offergeld (2001) and Spencer (2000).

Rosenbaum et al., (2000) conducted a survey on UCD practitioners at multiple CHI

conferences. The findings demonstrate the diversity of problems ranging from

resistance to UCD and lack of understanding of UCD to a lack of ability to

communicate the cost-benefit and impact of usability results. The authors state that

UCD professionals must look at ways to combat them. A recommendation they propose

is to aid and develop business cases so that they may ‘learn to speak the business

language’ of their working associates. Spencer (2000) has developed a streamlined

cognitive walkthrough method specialised for use in a large software development

company. However, this type of research is limited in software engineering (Basili et

al., 2004). This is a significant drawback for the UCD and software engineering

community because if tailored methods are kept internal or retained to a given

individual in an organisation, then the information can be easily lost if not published by

companies or the scientific community (Metzker & Offergeld, 2001).

Metzker and Offergeld (2001) have also recognised such shortcomings and proposed

the experience-based Human Centred Design (HCD) lifecycle. The lifecycle includes

process models, tools, and organisational measures. The development of their prototype

HCD tool, the MMI (Man-Machine Interaction) hyperbase, has been formed to support

software developers. The tool provides this support by allow a user to perform various

HCD activities and to organise the outputs of iterative design processes.

42

 6) A collection of best practices is missing

Studies have shown that even highly interactive systems are developed without

guidance or involvement from UCD specialists (Metzker & Offergeld, 2001). For this

reason, Mayhew (1999) highlights that little knowledge is available within development

teams. Seffah and Metzker (2008) discusses that development organisations who are

inexperienced with usability can be overwhelmed by the process of UCD models and

that they also lack an commonly understanding of basic project constraints (context of

the domain, team size, and experience level of the team). So although many UCD

methods exist, there remains a lack of available empirical evidence to guide meaningful

adaption for software engineering (Seffah & Metzker, 2008). This critical question of

how systematic tailoring of methodologies can be achieved has not yet been fully

addressed for UCD. As previously outlined by Mayhew (1999), this will be left out

when schedules are tight, until UCD is widely recognised as a critical component to

software development.

 7) Education gap

There are recognised communication difficulties between software engineering and

UCD derives from an educational gap (Faulkner & Culwin, 2000; Pyla et al., 2004;

Chan et al., 2003; Phillips & Kemp, 1996). The particular work by Faulkner & Culwin

(2000) capture the cause of this problem, highlighting how UCD can traditionally be

taught in a master’s degree course and are delivered to people with diverse

backgrounds. These students can have minimal or no software engineering training, so

they may have little experience when they work alongside a commercial software

developer once they graduate. However, at the opposite end, software developers

leaving educational institutions have only a very basic introduction to UCD. This can

and does leave the education gap for each field in a perpetual cycle. UCD students can

be limited to how they would actually design systems in a real environment. Software

engineers can be too busy in building the software and consequently forget that there

will be real people who will have to use the software. Seffah and Metzker (2008) point

out the two central areas of improvement for UCD and software engineering students.

For the education of UCD students, it is fundamental that their technical awareness is

increased. When educating software engineering students, it is critical that their

awareness of the UCD process and in relation to software engineering is improved. This

is essential for the mediation between the fields and consequent closer integration

between the practitioners.

43

What these seven points conclude are a wide collection of the established challenges in

the UCD and software engineering, from separate working practices between UCD and

software engineering to critical gaps in the education practices of the two fields. There

cannot be a single solution to all of these problems. The following section now goes on

to discuss the specific context of the scientific software environment and its role to

understand the integration gap with UCD.

2.7 SSD Environment

The work discussed and highlighted in the previous section acknowledges the

established gap between UCD and software engineering, underlining that this is not by

any means a new challenge specific to SSD. However, as covered in the work by Seffah

et al., (2005), that is central to understanding the UCD software integration gap is an

understanding of the organisation and context (Point 3 in section 2.3). Because of this,

before I specifically examine the UCD SSD gap I will present the organisational and

contextual factors of SSD, to ensure that the reader is sufficiently aware of the existing

research and familiar with the organisational factors of SSD. Throughout this section I

will question the roles the people, development process, funding, and community have

regarding the impact SSD.

2.7.1 Scientific software developers

The following types of categories have been identified for academic scientific software

developers from the SSD literature to structure the review against the characteristics of

scientific software developers. Table 2.1 captures the various categories that describe

the role of the software developer in the SSD projects.

The important categories outlined in Table 2.1 highlight the levels of problems for SSD

work from the literature. From the perspective of this research, the categories are

significant for understanding the UCD SSD gap. This is because of the different levels

of experience and problems identified at each of the three levels that a scientific

software developer might occupy. So any proposal for UCD SSD integration is open to

44

these different challenges depending on the type of scientific software developers

targeted.

Table 2.1: Categories of scientific software developers

Category Description Example Literature

Reference
Isolated scientists turned
software developer

A scientist with no prior
software engineering
training.

Kane et al., (2006); Kelly
and Smith (2009)

Post graduate student
developer

A scientist who has both
an extensive knowledge in
their technical domain and
a higher comfort level in
writing code.

Pitt-Francis et al., (2008),
Segal (2004).

Specialised software
development team

A software developer role
with prior software
engineering training and
software engineering
expertise.

Killcoyne & Boyle (2009);
Basili et al., (2008);
Ackroyd et al., (2008)

The first category of “Isolated scientist turned software developer” describes the

scientist who develops software for his or her scientific domain. In this category, the

software developer will have little or no prior software engineering experience or

training. They will be self-taught to program code so can be unaware of software

engineering practices that would support them in their work.

The research by Sanders and Kelly (2008) explores this. In their survey, they

interviewed 16 scientific software developers from a range of domains, and they found

that 75% had not undergone any formal training in software engineering. In a separate

survey by Hannay et al., (2009) 58% of scientists reported that they did development on

their own, 17% worked with one other person, and 18% worked in teams of three to

five people, while only 9% worked in larger groups. Their work also identifies how the

ability to develop scientific software is learnt via peers and through self-study.

However, this category can mean that the nature of the problems and mistakes that

occur is critical. Kelly and Smith (2009) highlight an instance where a molecular

biologist had to retract three papers from prestigious journals. This was because the

software turned over a column of figures and so produced a mirror image of the actual

protein molecule that was being designed. They also cite the work of Kelly and Smith

45

(2009 cite Hatton, 1997), where scientific software was studied from nine different

seismic analysis software packages using the same algorithms. The output was different

from each version. This variation is often affected by one-off errors but is again a major

concern for scientific results (Kelly & Smith, 2009). The recognition of this

shortcoming for scientist turned software developer has led to work by Wilson (2006)

and his software carpentry project. Wilson (2006) has recognised the lack of software

engineering tools that are used by scientists and advocated the requirement to educate

scientists of software engineering practice for their benefit.

The second category of ‘Post graduate student developers’ is where the development

process can be most affected by the turnaround of the academic workforce. This causes

critical reliance on good software engineering practices for the shelf life of the software.

Such a scenario is outlined in the work by Pitt-Francis et al., (2008) which gives the

implications for the software development. They explain how in larger and longer-

running projects that can require post graduate and post-doctoral researchers over

periods of several years. The maintenance of the code can be neglected by either poor

development practice or minimal documentation. This can lead to future problems with

the development of further functionality or with the software development

infrastructure. It is also in this category that the existing term of ‘professional end-user

developer’ is most appropriate. The extensive research work by Segal (2001; 2005;

2007) defines this term as “people who do not consider themselves primarily as

scientific software developers, but work in complex and technical, knowledge-rich

fields and have the requirement to develop software in order to advance their own

professional goals”. Segal (2004) has identified scientists as “professional” end-user

developers, pointing out that they have extensive knowledge in a technical domain and

a higher comfort level in writing code. Typically, there is a greater chance of this

occurring at a higher academic level, as a scientist would have spent a longer time

learning how to code.

The final category specified in Table 2.1 is a specialised software development team,

but in this category more established and well-practiced software engineering methods

and practices are used. Baxter et al., (2006), who describe themselves as veterans of

large scientific software development projects, propose the following set of best

practices. These points are a guide to how the scientific software development teams

should operate for the benefit of the software development process.

46

• Design the project up front

• Document programs and key processes

• Use a quality control process

• Apply data standards where possible

• Incorporate project management

This list, as explained by Baxter et al., (2006), is in response to maintaining the

software development practices as would be done accordingly in a scientific

experiment. Killcoyne and Boyle (2009) have formed a specific research informatics

team to meet the challenges of software development within the life sciences. The ten-

man team is involved with many projects across the institute as shown in Figure 2.6.

The figure shows how the informatics team covers many different laboratories and

projects, and how they have adapted a process to support:

• Good communication across the team

• Rapid development and delivery

• Project management to coordinate development and manage dependencies

Figure 2.6: The Institute for Systems Biology informatics context (Killcoyne & Boyle 2009)

These steps were met by the adoption and refinement of the Agile software

development methodology by the team, with the following key Agile practices to

maintain communication within the team such as daily stand-up meetings, iteration

planning meetings, and pair programming. The work by Killcoyne and Boyle (2009)

47

also underlines the continual communication of the ideas and work communication

process required for working within the scientific domain. This contrasts with other

development domains where this is not typical until a management role is occupied. The

SSD process requires every developer to be able to suggest, present, and write about the

software to fellow developers and scientists. This presents very different problems in

contrast to the first category of a professional end-user developer.

The range of scientific roles that have been highlighted in Table 2.1 also re-enforces the

role of science and how it should not be perceived as a single type of activity (Kling &

McKim, 2000). They also say that even in similar fields scientists can have very

different research styles, communication patterns and information needs. The

implication can be for a scientific software developer to unknowingly move from the

developer-centred “I-methodology” (Akrich, 1995; Oudshoorn & Pinch, 2003) as in the

instance of isolated scientists becoming software developers, to a ‘We-methodology’

(Fry & Thelwall, 2003), which more closely describes the role of a scientific software

developer in a specialised SSD team. How UCD must subsequently integrate and evolve

through such a process in SSD is a pertinent question for the success of the software.

The software development environment in SSD also has an impact on the context. Work

by Sanders and Kelly (2008) recognises that long development-cycles can be common

in scientific software projects. The software in this instance is the result of a combined

effort performed by several scientists over several years. Carver et al., (2007) outlines

that this is due to the software development characteristic where modules are

individually added to an application. The work by Sanders (2008) reviews projects that

have taken an iterative approach rather than a plan-oriented approach to software

development. The variety of Agile based SSD in the literature is also further evidence of

this (Easterbrook & Johns, 2009; Crabtree et al., 2009; Kane et al., 2006; Mugridge,

2003; Pitt-Francis et al., 2008; Segal, 2005; Wood & Kleb, 2003; Kane, 2003b; Blom,

2010).

In terms of questioning the benefit of Agile practices, the work by Sletholt et al., (2011)

shows that the Agile approach can be valuable to scientific software development,

especially for smaller-sized teams and projects. However, further work by Sletholt et

al., (2012) examines that scientific software development projects can embrace the

Agile methodology in their focus on flexibility and communication, but otherwise are

48

selective in using the Agile methodology according to the book. The work by Segal and

Morris (2011) also recognises that from their own experience developers mirror a

typical scientific end-user development model, which is an iterative feedback approach.

So what they say and what they do frequently does not match. However, they do

recognise such exceptions to this, such as in the work by Ackroyd et al., (2008) and

Pitt-Francis et al., (2008), who both tailor the Agile method of extreme programming

practices to their context of use.

2.7.2 Funding and exploratory scientific research

The academic environment, directed by the objectives set out by the research funding

bodies, guides the software outcomes. A consequence of working within the academic

domain of science is that the “Development of any long-term view is difficult to justify

and even harder to realize” (Killcoyne & Boyle 2009). Further to this, work by Carver

et al., (2007) highlights the significant difference between traditional commercial IT

software, and a academic project where funding for a academic project is often from a

governmental source, and the users and wider community of the software may or may

not be part of that same funding source. The success for an academic project team can

mean meeting the desires/targets of the funding bodies and the user community. This

measure of success can be problematic if a user community if the actual community

may not be representative of the true community, as discussed by Segal (2009). She

explains that a community may only come together for the purpose of funding, so the

community has no previous collaboration and holds a false perception that the outcomes

will be helpful for all involved.

Pitt-Francis et al., (2008) also investigates how, in the academic context, the software

development process can suffer from the high turnover of staff. The renewal rate of

research staff is high because of short-term funding contracts. Pitt-Francis et al., (2008)

therefore, emphasised the necessity of good development practices and a suitable level

of documentation in SSD projects.

Along with the academic funding and context of SSD comes the pressure of writing and

publishing papers. However, as explained by Nuin (2008) where there is published

work it has come under some criticism because many SSD applications are developed

49

towards a publication, so there can be little documentation, errors and bugs, difficult to

use, and not portable. So frequently the publication of the SSD project is as a by-

product of the central publication of the scientific project. Killcoyne and Boyle (2009)

also recognise the importance of this point, noting that in addition to any software

development process used within a scientific environment the SSD process must be

aware that any success is measured by the metrics of scientific advancement. There are

implications that any process within the academic context requires various ways to

present information through a range of academic channels. This covers such things as

scientific seminars and conferences and writing academic papers for science

journals/conferences, and it extends to writing funding grants to obtain sponsorship and

ensure the SSD project team sustainability.

An additional consequence of operating within the scientific academic domain for SSD

is that the nature of the academic research based work is exploratory. The activity of

science uses a trial and error approach to discover and eliminate ideas among a

spectrum of thoughts to explore (Kane et al., 2006). The work by Segal and Morris

(2008) has studied this aspect of working with scientists to be particularly challenging

for scientific software developers. Scientific software developers are following

traditional software engineering practices and want the software requirements up-front;

however, to scientists this is a very difficult and unfamiliar practice. The reason for this,

as described by Segal (2008), is that traditional working practice for scientists allows

the requirements to emerge. So the scientists expect to work to their own requirements

for software in a similar way.

2.7.3 Community dependencies

The role of the scientific community can also play a large part in the success of the

software. The work by Hine (2006) thus discusses the effect of the deployment of the

scientific software. This deployment and subsequent success may rest upon a key

individual scientist, a laboratory or an institution. This is referred to as a tragedy of the

commons by Segal (2009) as these issues impact on the requirements both in

agreements and priorities. In addition to this, the user community in turn will not have a

single voice so this sets out further complications for a SSD project i.e. a laboratory

may want features A, B, and C yet a scientist in another laboratory may request features

50

X, Y, and Z and make the most noise about directing the software project towards their

own scientific agenda, and so the software is not entirely representative of the wider

scientific community.

In addition to dealing with the funding and the context of the scientific community, SSD

also has to work within a difficult and continually evolving environment with the

underlying cultural obstacle of computational science (Wilson, 2006). This is

exemplified in Microsoft Research’s report Towards 2020 Science where they quote:

“Software engineering for science has to address three fundamental issues: (i)

dealing with datasets that are large in size, number, and variations; (ii)

constructing new algorithms to perform novel analyses and syntheses; and (iii)

sharing of assets across wide and diverse communities.”

(Emmott et al., 2006)

Wilson (2006) highlights how “getting the right answer” does not make the list as it is

not part of the computational science culture. This is a notable problem for any

scientific software developer working in such an environment. From the perspective of

my own research and literature review I would add, that making the software usable

is another aspect that is similarly overlooked.

2.8 Integration of UCD and SSD

The existing literature directly addressing the gap between UCD and SSD is currently

limited (Mohammad, 2009). This sparsity in the literature exists because scientific

software development currently lacks a clear defined curriculum. SSD is unlike much

more established fields such as project management or software engineering.

Consequently, existing research documenting the decisions and process for the scientific

software development is limited (Mohammad, 2009). From a software engineering

perspective, the work by Hannay et al., (2009) supports this by citing how few

publications in software engineering focus solely on the development of scientific

software. The re-enforces the previous work by Nuin (2008) and Killcoyne and Boyle

(2009) who also discuss that the published work of a SSD project is often a by-product

to the central publication of the scientific project.

51

Research within the scientific community has begun to recognise the shortcomings of

usability in scientific software and the role usability engineering has to play in it

(Carpenter et al., 2012; Pavelin et al., 2012; Bolchini et al., 2009). However, there is a

limited application of specific UCD roles in such projects. The work by Pavelin et al.,

(2012) has spoken of the lack of UCD in bio-informatics (a field where SSD is

undertaken). Pavelin et al., (2012) cite several reasons for this, from the complex

interfaces that are presented to the lack of incentive for publishing the UCD work, but

also the cost for UCD for academic organisations, which lack a traditional business

model. Pavelin et al., (2012) own work underlines the gains that can be obtained from

applying UCD practices in user research interviews, one-to-one usability testing

sessions, and workshops that provide them with positive user responses for the work

they have carried out.

Emphasising this problem further, several funding bodies have acknowledged the lack

of UCD practice. The review e-Science 2009 by the Research Councils UK (RCUK)

made up of an expert review panel to globally benchmark and assess the strength of the

UK e-Science research. The report also highlights gaps and missed opportunities in e-

Science. It was noted in the RCUK report how there was a lack of emphasis on usability

and UCD. Another report highlighted the deficiency in understanding social obstacles to

new technology (EPSRC 2010). The point below, taken from the EPSRC report to

underline this issue, was made by one of the panel members about the lack of UCD (the

term used in the extract is HCI) for SSD. The panel members also note that there are

traditional practices of simply building the software or hardware within the context of e-

Science without any consultation or involvement with the user community. This point

of concern for the panel is shown in the extract below with their suggestion to move

towards a more “human centred approach”.

“Several of the panel felt that there wasn’t enough systematic analysis of the

software from a usability perspective and I guess I added the HCI because I

associate that with the community and that maybe there needs to be more

emphasis on a more human centred approach or a more participatory design

process between the user communities. It’s quite common for example in the

HPC (High Process Content) arena for the people to go out, that run those

machines to go out and buy those machines without necessarily asking the user

52

community whether the architecture meets their needs or not. I think that in the

case of the UK that’s one of the reasons that HPC here largely means modelling

and simulation, it doesn’t include data, but it shouldn’t be that way and there’s

much more nuance versions of what I’m talking about.”

 (EPSRC 2010)

The Joint Information Systems Committee (JISC), a charity that works on behalf of UK

higher education to champion the use of digital technologies, carried out a human

factors audit. Their audit of a selection of e-Science projects critically underlined the

lack of UCD practices in SSD and they made a call for e-science projects:

“START WITH THE SCIENTISTS not the technology - what are the

problems that they want solved.”

(Kalawsky et al., 2006)

However, despite this growing recognition for UCD in SSD, there has been little

exploration of the application of the actual integration of UCD in the scientific software

development context.

The UCD literature does acknowledge the lack of and need for UCD practices in SSD

(Javahery et al., 2004; Schraefel et al., 2004; de la Flor et al., 2010; Warr et al., 2007;

Procter et al., 2006). Based on this, it would be expected that the research into this area

of integration between them would be moving forward. However, this is not the case, as

explained by Segal and Morris (2011), who note that the problem of integration is

fundamentally ill defined because of the nature and influence of the end-user.

The role of scientific end-user development is documented in the scientific contexts of

financial mathematicians (Segal, 2001), earth and planetary scientists (Segal, 2005) and

structural biologists (Segal, 2009). Despite the differences between the domains, the

model illustrated in Figure 2.7 shows a common scientific end-user software model of

development practice. Segal and Morris (2011) explain that with the scientific end-user

software model, both software design and usability become a smaller issue. Software

design is neglected because the software is relatively small and can frequently be

disregarded once the scientific answer is obtained. The usability of the software and

testing and the requirements of the software is not a major issue. Additionally, the end-

53

user is the developer of the software and the software can have a limited exposure to a

wider audience. This perspective does aid my own research as it provides begins to

reveal a view of one model of SSD. This model explains a limitation that end-user

development has placed on SSD that has limited the approach of applying established

software engineering practices and importantly for my research question limited the use

of UCD.

Figure 2.7: A model of scientific end-user software development (Segal & Morris 2011)

However, the scientific end-user software model of software development is not

applicable to all levels of SSD. Table 2.1 (page 44) categorises the types of scientific

software developers and identifies the work by Killcoyne and Boyle (2009), who are

working within a specialised software development team. They are a team with software

developer professionals with prior software engineering training and software

engineering expertise. Their solution included a set of software processes and design

principles for their life sciences research environment. They have a specialist ten-man

SSD team to develop the software. This helps to promote a discussion of ideas about the

projects developed by the team so identifying the project dependencies within the

context in the life sciences research environment. What this means is that they can

operate more with practices common to a software development team (Killcoyne &

Boyle, 2009).

54

The reasons there is a need for more specialised scientific software developers

practicing the established software engineering process and methods is underlined in the

growing complexity of scientific software. The added advantage for scientists in this

process is that it allows them to deal with their own scientific questions without needing

to make the crossover into understanding the software development process. However,

with this the difficultly of UCD and its integration into the scientific software

development context is significant, as are the challenges that Killcoyne and Boyle

(2009) emphasise regardless of what industry is of dealing with a rapidly evolving

domain:

• Skill gaps among team members, with a growing number of developers who

have no formal training

• Poor specifications resulting from conflicting use cases and a lack of

requirements

• No overall project vision, leading to feature creep or outright failure

• Software developers being expected to play too many roles, including hardware

experts and IT support

• Managing the complexity of required technologies and standards

Other relevant UCD work has captured the best practices for SSD (De Roure &

Goble, 2009; Letondal and Mackay, 2004; Baxter et al., 2006). De Roure and

Goble (2009) discuss the two software systems of myExperiement and Taverna. These

two tools are designed for increasingly data-intensive scientific practices. The

myExperiment software facilitates the discovery and sharing of scientific digital objects

and is comparable to Facebook for scientists but the focus is on scientists’ specific

requirements, such as the need to attribute work, and link with distributed data

collections. Taverna is complementary to myExperiment; it is a software tool that

provides automation of scientific data processing tasks, making them systematic and

repeatable.

De Roure and Goble (2009) attribute the growth of these tools to six design principles

for SSD. The first principle is “fit in don't force change”, and this is summarised in the

myExperiement motto of “bring myExperiment to the user” rather than force the user to

come to myExperiment. What this means is that scientists already using websites and

55

wikis would find it easy to bring the functionality offered by myExperiment to their

existing interfaces.

The second principle is “jam today and more jam tomorrow”. This principle

acknowledged the time taken by scientists to use their software. In recognising this

aspect, De Roure and Goble (2009) adopted an incremental development approach to

give incremental content. This is so that the scientists get core functionality and the

software has quicker user uptake of the software. The third principle is “just in time and

just enough”. This principle is based on solving the problems defined by the

myExperiment project and trying not to be too smart by attempting to build the

complete solution. This is to ensure that problems users know they have are solved so

they do not have to wait for solutions to a problem they might never have. The fourth

principle is “act locally, think globally”. The approach was to target a community the

myExperiement team already knew. More specifically, they targeted local pioneers who

are stereotypical examples of a class of scientists with a certain type of problems, and

they built their system for them. Their findings were that when their local scientists

were happy, so were those scientists had not worked with before.

The fifth principle is “let user add value”. This principle recognises that the project does

not need to create software extensions but rather provide support and training for others

to do so. This principle was applied with the myExperiment team through the software

development process with maximal reuse and reusability of the software code. The

myExperiment software also supported lightweight programming models for the ease of

integration of loosely coupled systems. This principle nevertheless depends on scientists

having the skill to develop software or have access to developers in their own

laboratory. The final principle is “design for network effects”. This principle involves

working with numerous researchers conducting routine processes on a daily basis,

hence harnessing this long tail to enable network effects and provide community

intelligence. In myExperiment, it was critical to find easy workflows so sharing and

adding them to other scientific assets should be straightforward.

The work by Letondal and Mackay (2004) have examined scientific software design

within a participatory design context, focusing on the collaborative development of the

scientific software called Biok, which explicitly supports end-user programming. Biok

allows biologists to manipulate DNA strings and protein sequences, and to visualise

56

their features. The tool is designed to be programmable by biologists. In working with

participatory design in this context Letondal and Mackay define participatory

programming as a natural extension of participatory design, in which users participate in

the creation of software tools they can ultimately tailor and programme themselves. It is

their belief that the design of a tool, not solely its structure but also the process by

which it has been designed, plays a significant role in how well it can be adapted to

user‘s needs.

Based on this, the selection of core features for the Biok software and the ability to

tailor are dual concerns regarding design. Consequently, the better adapted to users

needs it is the less tailoring will be required. But at the same time, the easier it is to

customise, the more likely it can be adapted as users needs change. Their design process

has discussed the following four steps. First, designing for flexibility, this principle was

based on the work by Letondal and Mackay (2004 cite Stiemerling et al., 1997) who

calls for the identification of potential dimensions for evolution and creating an

interface for modifying tools. Secondly, the practice of finding potential dimensions for

evolution examined then how these features may evolve. Letondal and Mackay (2004)

identified the stable parts of the system that would not require any programming,

whereas variable parts must be subject to tailoring. Such an example of this in the Biok

software was with the visual alignment tool. The observations showed that they were

typically inflexible. What biologists preferred was spreadsheets or text editors so they

could manually tailor specific sections. This functionality requires explicit tailoring

support.

The third principle of design of meta-techniques was based on Letondal and Mackay’s

(2004) use of scenarios and workshops about designing meta-level features. Their

example describes how scenarios sometimes reveal programming areas as side issues.

Their goal, however, is not to describe the programming activity per se, but instead to

create an analogy between the task and how to perform it, to expose the relevant

programming techniques. Because of this, Letondal and Mackay identified different

types of end-user programming scenarios with examples, scripting, and command

history to use for the design of the Biok software. Finally, the fourth principle is setting

the context for tailoring situations. Letondal and Mackay’s (2004) observations of

biologists showed that most programming situations correspond with breakdowns. This

caused the scientists to reflect on their activities and trigger a switch to programming to

57

find a solution. It was significant for the work by Letondal and Mackay (2004) to

acknowledge this last point, as this is a means of fixing a problem. Therefore, the

scenarios they developed played an important role in identifying first when the

breakdowns occur and then how scientists would like to work around them.

Baxter et al., (2006) recognise the lack of development practices in scientific software.

They also acknowledge that scientific software development brings together different

cultures of scientific and software engineering. Critically, their work goals are that

specialists and generalists can work effectively on scientific software projects, so they

can benefit with the options to increase project efficiency, software longevity, user

community acceptance, and translational impact.

They have gone on to suggest a set of five recommendations as a set of guidelines for

practitioner’s peer reviewers, and project leaders of small (single-lab) to medium

(collaborative, academic projects) sized projects for successful scientific software

development. The five points that they have drawn on are from working in large

scientific software development in business, non-profit, government, and academic

settings. These points are subsequently explained below.

The first point is design the project up-front. This describes how software projects

should be proactively and thoughtfully designed. This means answering the two key

questions of “what will the software do?” and “how will the results produced by the

program be verified?” A clear design document should include the software inputs,

outputs, and how the program(s), will transform those inputs.

Baxter et al., (2006) describes how the design phase should also account for the

usability requirements. If only the programmer uses the software, then the usability of

the software might not be a major concern. However, sustainable software academic

funding requires a software project to disseminate the work, share tools, and use

statistics to help justify renewal of funding. For this reason, usability should be a much

higher priority in scientific software development. The second step is documenting

programs and key processes. The best practices include that programs should be well

documented, modular, and easy to read by users who did not write the program. Such

documentation might also include a user guide. The third step addresses the quality

58

control of the software. The level of quality control requires three aspects: software

testing, version control and bug tracking.

The fourth recommendation concerns applying data standards when possible. This

recommendation is based on the need to disseminate and share research results with the

community to aid scientific progress. The goal is that inputs, outputs, and the results of

scientific software are available in standard formats.

Finally, the fifth recommendation is to incorporate project management. In software

development projects, a project manager ensures that the software meets a defined set of

procedures. Principal investigators in science who will traditionally have no prior

background in software engineering may find themselves filling a software project

manager role because they supervise people in their laboratory who write software. A

project management role in this instance for a principal investigator can be a minor role

for a small project involving one or two programmers, although it would require

involvement for the full range of tasks including informal design and code reviews,

regular meetings to track progress against an established timeline, and reviews (and

sign-offs) of testing results. However, this role can easily become more complex for

larger projects. A common approach suggested by Baxter et al., (2006) is to break the

tasks into manageable subprojects, with a series of release cycles interleaved with user

or stakeholder feedback.

In my review of the research by De Roure and Goble (2009), Letondal and Mackay

(2004), and Baxter et al., (2006) there is limited application and discussion of such

usability engineering techniques as previously described usability engineering methods

in section 2.3.1. The importance of the requirement of UCD for user feedback is shown

through all three pieces of work.

Letondal and Mackay (2004) describe participatory design and their development of

scenarios for tailoring their design and development. The scenarios are integrated for

the benefit of end-user development. This use of scenarios in the work draws on

existing practices of scenario-based engineering (see Chapter 2 section 2.3.1d).

Although not directly discussed in the work by Letondal and Mackay (2004), it can be

deducted from their work that the scenarios have supported the description and clarified

the relevant properties of the application domain but also help uncover system

59

requirements. This was demonstrated in how Letondal and Mackay (2004) drew

prototyping themes from the scenarios, which were based on interviews and

observations of scientists at their own institution. Letondal and Mackay (2004) also

discuss the result of three end-user programming scenarios that they formed:

programming with examples, scripting, and command history. However, there are no

other recognised connections between the range of usability engineering techniques

reviewed and the pieces of work examining the best practices for UCD and software

development.

With the aim to further understand and explain this, De Roure and Goble (2009) note

that the principles ‘jam today and more jam tomorrow’ and ‘Just in time and Just

Enough’ led them to adopt a perpetual beta software development methodology. This

was in part due to the challenge that De Roure and Goble (2009) were facing. De Roure

and Goble (2009) expand on this by citing how they have developed systems in the past

that were good examples of well-designed software. However, they were still neglected

by their intended users. Again this aims to emphasize that scientists have challenging

and changeable applications that they might understand but that are hard to

communicate or stabilise. It is the nature of these aspects and question that my own

research picks up. In the specific context of an expert software development team, I will

examine how UCD may be integrated with SSD. I shall do this by utilising my access to

the Usable Image project and SSD project of OMERO in my research work.

2.9 Summary

Throughout this literature review, the integration UCD and software engineering has

proved to be a difficult problem, as the two fields were formed at different periods of

time. Usability engineering later emerged in response to the need to integrate UCD

concepts and techniques with software engineering. It has subsequently allowed for the

problems to develop; this is exemplified in the discrepancies of terminology that has

formed between UCD and software engineering in addition to usability engineering.

However, given these problems, there is a well-established area of research that has

specifically investigated the integration between software engineering and UCD. The

work by Seffah et al., (2005a) and Seffah et al., (2009) consider the collection of

approaches that so far have been taken for integration. The range of these approaches

60

covers software engineering models, formal specification methods, and

notation software for supporting the UI development lifecycle. In addition usability

engineering has to integrate UCD techniques into established software engineering

lifecycles.

Within SSD there is wide recognition of the requirement for UCD (De Roure &

Goble 2009; Letondal & Mackay, 2004; Baxter et al., 2006; Javahery et al., 2004;

Schraefel et al., 2004). However, as explored in the work by Segal and Morris (2011),

there is the recognition that integration between UCD and SSD is fundamentally ill

defined because of the nature and influence of the end-user. This problem comes with

the further issues of a lack of a structured curriculum for SSD (Mohammad 2009) and a

limited focus on the development of scientific software, as the focus on the

development of scientific is still be considered a by-product of the central publication of

the scientific project (Hannay et al., 2009).

This is not to say that the integration of UCD in SSD has a completely unique context.

The seven points summarised in section 2.6 synthesise the established challenges of

integration with UCD and software engineering. However, the significance of the SSD

context cannot be emphasised enough. The work by Iivari (2006) discusses the

contextual issue for UCD with software development by questioning the organisational

cultural context and with it brings its unique problems. Further still, in trying to solve

the variety of contextual problems and effort to find a generic solution for UCD and

software engineering integration is likely to be difficult because of the amount of

variable factors for any given integration case (Aikio, 2006). The range of contextual

factors identified in the SSD literature has covered the nature of the role and categories

of scientific software developers to the influence of funding, exploratory nature of

scientific research, and wider community dependencies. This point stresses a call for a

more specific solution for UCD and SSD integration against a proposal for a more

generic solution for UCD and software engineering integration.

The requirement for understanding the UCD development process is necessary and this

would further support the literature in the general identification for further background

research and empirical evidence to be undertaken about the issue of UCD integration

with software development (Aikio, 2006). The direction of this thesis supports this call

61

as well as taking the specific step of investigating the question from within the SSD

context.

Existing work has captured best practices for SSD (Baxter et al., 2006; Letondal,

2006; De Roure and Goble 2009), yet much of this work highlights the role of SSD

where the scientists themselves are more directly involved in the SSD work. However,

this work also included end-users in the SSD process. My own research question and

goals are distinctly different from such existing work as it investigates an alternative

scenario, where there is a dedicated expert scientific software developer team as well as

a dedicated expert UCD team. This distinguishes the work from the previously

identified work in Table 2.1.

This lack of research documenting the SSD UCD gap has given me the scope to explore

the following three research questions:

1. Why is so much of academic scientific software still unusable and/or poorly

accepted by scientists?

2. How is scientific software development undertaken in academic contexts?

3. How can the uptake of user centred design philosophies, methods and thinking

in the application of academic scientific software development be improved?

62

Chapter 3: The Teams and Challenges

	

3.1 Introduction

	
Technological advancements in the area of imaging, molecular biology and genomics

have fuelled a transformation in cell biology. Through this revolution it has quickly

become the norm to visualise and measure molecular and structural processes of the cell

(Swedlow & Eliceiri, 2009). The research by Swedlow & Eliceiri (2009) also underlines

how this transformation has been driven by technology and the specific advancements

in computational tools for the acquisition, visualisation, analysis and distribution of the

image datasets. This has fuelled the growth in various forms of scientific microscope

image processing software in order to manage the acquisition, visualisation, analysis

and distribution of the image datasets. The introduction of the OMERO platform is

significant in the context of scientific microscope image processing software, as it is an

indication of how the image processing software is required to move past image

analysis and be able to provide image management.

The OMERO software project is a step towards an image management system for the

bio-informatics community by presenting an enterprise level solution software system.

This is software that is designed for a particular type of organisation and controls many

aspects of the business (Macmillan Publishers Limited 2013). The level of software

development complexity for OMERO can be characterised against table 2.1 (Chapter 2

section 2.7.1) and the categories of scientific software developers – the scientific

software developers that make up the OMERO project would be categorised as a

specialised software development team. This is where the complexity of scientific

software development increases beyond scientist programmers (or professional end-

users). This shift is representative within the context of the OMERO project as the

software is a data management tool for scientific images, so as scientific software

moves beyond an individual scientific problem and requires the expertise of software

engineers to develop software for the scientific community.

The following details about the developers of the OMERO project, the Usable Image

project, and the fieldwork data in chapters 5 and 6 covering the scientists and

developers have had the names changed to pseudonyms, expect my own.

63

3.2 Background to the OME project

	
The Open Microscopy Environment (OME) consortium was created in 2000 by Sergey

a principal investigator (PI), Miles a second PI and Larry, a Post Doc working under

Sergey at the Massachusetts Institute of Technology, who all recognised that the growth

in biological imaging data was occurring and was only going to increase further

(Eisenstein, 2006). The complexity and increase in size of image files along with the

demand for supporting metadata3 are becoming standard requirements for scientific

software in order for the bio-image informatics software to provide an enhanced

capability for scientists. The OME consortium is developing a standard suite of tools for

microscopy image file formats to aid scientific discovery. In addition to this the OME

consortium identified a key component was the creation of a universal file format – the

OME data model says that one of the major problems in microscopy is the proliferation

of proprietary file formats (Eisenstein, 2006). The OME data model continually evolves

in order to support changes of existing formats and to support emerging techniques.

The impact on the scientists is that it leaves them tied to work at specific workstations

that are compatible with the proprietary file format only. The OME consortium

introduced a file format, OME-XML, that both contain the image pixel data and the

experimental metadata in a readable XML-based file. Further development to the OME

consortium was introduced by the creation of the OMERO software (initial steps June

2006). Since the first two members of the development team joined in 2003 (see Figure

3.2 for the Project Timeline), the software development has been led by Miles, the PI in

a biology laboratory based in the Wellcome Trust Centre in Dundee. This role, the

OMERO software developers and the project have been an integrated part of the

biological scientists “wet-lab team” (led by Miles). The OMERO software has been

created to support predominantly biologists working with microscopy images by

allowing them to import, organise, view, analyse and output their images and therefore

take on the challenges of bio-image informatics software. The OME consortium has

centrally been led by the OMERO project, with the OMERO project incorporating the

OMERO software and the bio-formats project. The OMERO project setup is presented

in Figure 3.1. The discussion of the different components of the software and the

3 According to Eisenstein (2006), metadata is the data describing experimental information and the
acquisition system, links between images, any processed versions of an image, and any analytical results
generated about that image.

64

screenshots show the OMERO.insight view of image data, image analysis, and data

manager are shown in Appendix 1.

Figure 3.1: The OMERO Architecture. (Courtesy of J Swedlow)

The project goals for OMERO are focused on interpretability, the image metadata and

interfaces. Figure 3.1 provides the overview to the OMERO server, which provides the

storage, data management, visualisation and quantitative analysis for images. Figure 3.1

also includes the coding languages that the OMERO server has interoperability with.

The top level of Figure 3.1 shows OMERO.insight, OMERO.web, web scripts, and the

OMERO.command line interface (CLI). These are various ways that allow the users to

connect to the OMERO server and access the image data. For this research the interest

and focus is with the OMERO.insight and OMERO.web clients, which was the

scientific software, developed by the OMERO team to allow the scientists to manage

their scientific data.

3.3 The Academic Environment for OME

The OMERO software development process operates within the scientific academic

environment of the Wellcome Trust Centre for Gene Regulation and Expression at the

University of Dundee. As discussed in Chapter 2, the implication of operating in the

academic environment impacts on the development process in terms of how the project

is funded. The academic environment guides the software outcomes, directed by the

65

objectives set out by the research funding bodies. The central funding for the OMERO

project is provided by several sources:

• The Wellcome Trust

• Biotechnology and Biological Sciences Research Council (BBSRC)

• Engineering and Physical Sciences Research Council (EPRSC)

The funding environment shapes the development of the OMERO project and how it

provides scientists a software tool. The OMERO funding environment does not remain

static given that academic funding is typically between 1 and 3 years. Therefore, the

working practice of the software development requires the ability to embrace and act on

the needs of the wider scientific community and the many voices making up that

funding body and scientific community.

3.4 Background to the OMERO Software Team

The OMERO software team is composed of 15 developers, 8 being based in Scotland,

(Yvan, Jack, Bob, Steve, Levi, Anthony, Kurt and Cathy) and the remaining 4

contributions to the OMERO project are distributed between Germany (Luis), Portugal

(Alain), and the USA (Terry and Eli). A more detailed background to the OMERO

developers based in Scotland is discussed in Table 3.1 and Figure 3.2 documents the

evolution of the development team throughout the period of the research. In Table 3.1

and Figure 3.2 they document the 8 developers based in Scotland, as these were the

developers that were central to my own research interactions. The evolution of the

OMERO development team is a reflection of how academic SSD is affected by funding

and this can directly influences the team’s growth. Figure 3.2 also shows the parallel

commercial running project of Glencoe software. This was a company set up in late

2005 to provide commercial support for OMERO server customisation, client

customisation, and consulting and support contracts. This, as discussed by Ambati and

Kishore (2004), is a frequent model in academic software development as the software

has a commercial value. My research work does acknowledge the commercial role of

Glencoe Software but for the purpose and the context of this research the commercial

aspect has intentionally not been considered. This was because it goes beyond the remit

of my research questions.

66

Figure 3.2: OMERO Team Diagram over Time

The project is an Open Source project adopting some Agile development practices.

Further details of the development team who are based in Dundee, Scotland are

available in Table 3.1 The OMERO project has been built on allowing the software

development team to work with the scientists for the purpose and benefit of managing

image data within the laboratory and context of the University of Dundee, as well as the

recognition that this is a major challenge for the rest of the academic scientific

microscopy community. For the time of the project, the development team responsible

for OMERO software applications are all co-located in Dundee, with the scientists. The

OMERO server and bio-formats data model output do not directly interact with the

scientists themselves, so there is no strong requirement for the developers to be co-

located. Nevertheless, all of the external developers typically meet with the rest of the

members of the Dundee team every 2–3 months, depending on the software

development schedule of planning and release.

The advantage of the context of the OMERO project being led by Miles, a light

microscopy expert and laboratory PI, is that the historical and current context of the on-

going software development work has allowed the core software development team to

be co-located alongside the scientists. Although this is not exclusive to all those

involved in the project, the core team based in Dundee is able to benefit from this

through certain activities:

67

• The division Monday morning coffee meetings where the biologist and

software development teams talk over coffee.

• The OMERO developers have been involved in several lab retreats together

with biologists as a team led by Miles, the PI.

• During the OMERO project, several of the software developers have spent a

period of time sharing offices with biologists.

• Many of the software developers attend biology seminars.

• Software developers and scientists regularly meet in the cafeteria over lunch.

• A scientist (Bob) has moved across to take a full-time role in the OMERO

software development team.

These factors have all helped to enrich the SSD environment, and they help to forge a

scientist-software developer relationship. In the software development process, with the

software developers being embedded in the scientist’s environment, they have been able

to comprehend why and where the requirements are requested. This close relationship

has helped to gain an understanding of the local users of the software, thus aiding in the

provision of strong insights into the nature of the scientific work that scientists are

involved in. This context holds similarities to the work by De Roure and Goble (2009),

who describe how their own scientific software developers were working closely with

onsite customers. The insight gained from being embedded in the environment for up to

7 years for several of the software developers in the OMERO team has led to a very

strong understanding of the scientific context.

However, despite this embedded context of the OMERO team working alongside the

scientists and with feedback from the funding body for the OMERO project, the

OMERO team recognised that there was a need to supplement the team’s domain and

technical expertise with additional UCD input.

Consequently, the Usable Image project, a multi-disciplinary group including design

ethnographers and interaction design specialists, was formed to support the OMERO

development team but also investigate novel approaches to UCD in a complex

environment (Sloan et al., 2009).

68

3.5 The Academic Research Software Development Environment in

OMERO

The OMERO project employs 8 full-time scientific software developers based in

Dundee (Jack, Yvan, Steve, Levi, Bob, Anthony, Cathy, and Kurt), with a range of

diverse experience and background expertise (for a detailed description of the full-time

developers in Dundee see Table 3.1). Outside of Dundee are the four software

developers, who work in direct collaboration with OMERO: Luis, a software developer

working at home, who works on the OMERO Server based in Germany; Alain, a

developer working at home (in Portugal), who works on the commercial web

development of the project; then there is the Bio-formats team of Terry and Eli (based

in the USA), who are software developers working at LOCI, a biophotonics

instrumentation laboratory.

Table 3.1: Background of the full-time developers in the OMERO Team

Name Description
Jack Jack is a software developer and systems administrator from Vancouver,

British Columbia. He joined the Swedlow laboratory in early 2003 and is
one of the well-established members of the team. His early contributions
were the initial implementation of mass-storage infrastructure and
network groundwork to support the University of Dundee's Light
Microscopy Facility (LMF), but he now spends most of his time working
on the OMERO.server project. One of Jack’s phrases which he recalls
from the early days of working on the project, was that he would not
become involved in the programming; these were his famous last words,
as he puts it, as his role now covers some of the software development of
OMERO and systems administration, managing the releases and packages
of the OMERO software, and involvement with the OME file formats.
Jack gained most of his systems administration and software development
expertise as a Vancouver high-school student working in the commercial
sector doing security, systems, and network consulting for local
companies and as a contractor/employee in the GT Trust high-security
solutions team of the Group Telecom Services (now a division of Bell
Canada). His interests lie in the area of distributed computing, secure
programming practices, and encryption. When not with his head down in
Java, C++ or Applied Cryptography, he can be seen playing for Team Fife
in Scottish Volleyball Division 2. Jack’s partner is a PI who is also based
in Dundee; she gives Jack that extra insight into the life and troubles of
running a laboratory as well as a stronger background to the scientific
work in which she is involved.

Yvan Yvan joined the staff of the Miles laboratory in 2003 along with Jack; he
is one of the longest serving members on the team. Yvan’s background
and area of expertise is in mathematics; he received his PhD in

69

mathematics from the University of Brest in 2000. His research focus was
in the area of harmonic maps. After completing his PhD, he went to work
in a private company as a software engineer and later took up a post-
doctoral research position with the Geometry Group at Lund University,
Sweden.
Yvan’s role in the project is as the developer of OMERO.insight. Outside
of the OMERO project, Yvan enjoys refereeing the rugby pitches of
Scotland, since after retiring from playing several years ago he took up
refereeing.

Steve Steve joined the Dundee team in early 2006 and is currently developing
the various import tools used by OME. Originally an aeronautical
engineering student, he migrated to software development in the early 90s
and has been programming ever since. He spent most of his early
programming days working in the private sector, primarily in the
telecommunications industry. As a Canadian, when he is not working on
OME he enjoys cycling, hiking, snowboarding (when he can find a snow-
covered slope) and playing social video games.

Levi Levi started work as a developer on the OME project in January 2006. He
received his PhD in Computer Science from the University of Paisley. His
research background is in Statistical Natural Language processing, Data
Visualization and Image Classification, specifically Remote Sensing
images. Levi has worked in the academic context both as a researcher and
lecturer; he has also worked in the commercial software development
context. Outside of work, Levi enjoys the outdoors and can be seen
cycling or walking through the Scottish countryside on most weekends.
He also enjoys making the most of the Scottish mountains for skiing
during the winter.

Anthony Anthony joined the OME project in 2007 to manage the data model and
project documentation. Anthony also has the responsibilities of managing
the OMERO project promotion and marketing work of the project. His
role ranges from the organisation and planning of the project posters and
leaflets that are presented at the conferences to the organisation of travel
details. His promotional role is possible because the OMERO data model
is on a different release schedule to that of the OMERO.Client.
During his background in software development, he worked on games, e-
learning, and personal development applications. In his spare time his
interests include historic re-enactment and costuming, and he is very
handy with a sewing machine. He has typeset and published an illustrated
book on armour making. He studied at the University of Dundee and the
University of St Andrews, and he has lived in Fife since 1989.

Cathy Cathy joined the OME project in 2007 as a software developer. Her role
in the project is the development of the OMERO.web client. Before
joining the team, Cathy studied at the Universite d'Artois in France at UE
Socrates-Erasmus student and the Technical University of Lodz where she
received her Master degree in Computer Science, Engineer. Her
specialisation is in internet technologies. After graduation she has worked
on e-learning, enterprise, and personal development web applications in
the commercial market. In her free time, she relaxes her body and mind:
riding a bike, windsurfing, skiing and mountaineering. She also enjoys
watching F1.

Bob Bob started in Dundee as a cell biologist to do his PhD and then joined

70

Miles' lab as a Post-Doc in 2003. Bob’s role in the team is unique. As a
result of being interested in the OME project from a user's point of view,
he decided on a change of scene and left the lab to do an MSc in Applied
Computing at Dundee University. He then returned to Miles’ lab for his
MSc project. His goal was to make it easier for biologists to record their
experimental metadata in a digital form. This was the start of the
OMERO.editor development, which continued when he joined the
OMERO team as a developer in October 2007. Bob is a father of two girls
and when he has free time, his other interests include mountaineering,
sailing, and motor biking.

Kurt Kurt is the newest member of the team, joining the OMERO project in
late 2007 as a Python developer. Originally graduating in physics, and
then computational physics, he has worked in psychology, physiology,
and astronomy as a developer of scientific software. In his work in
astronomy, where he was involved in developing software for telescopes,
Kurt even spent some time working with the telescopes in Hawaii, which
he talks about regularly, and makes everyone very jealous. His role in the
OMERO project has focused on the OMERO server and the development
of the OMERO.FS DropBox that allows for automated import of files into
OMERO.
Kurt has fitted in particularly well in the OMERO team; his active
lifestyle and interests include cross-country skiing meetings, orienteering,
fell running, and the occasional mountain marathon.

Miles, the PI, leads the OMERO development team. He plays a very active role in the

project and is renowned by the microscopy community through his active participation

in conferences and meetings around the world. His background and experience in the

multidisciplinary field of biophysics allows a bridge into the understanding of the

software development process. This experience is valuable when conducting technical

communications with the software development team. The scheduled communication

among the team covers a range of meetings; the following table provides an overview of

the scheduled meetings and occasional meetings that take place in the OMERO

software project (Table 3.2).

Table 3.2: OMERO Team Meetings

Description Details
UI client Meeting Wednesday 10 am each week. This is attended by

the OMERO software development team and the
Usable Image team. This involves the people
present in Dundee and the remote members of the
project connecting into the meeting via Skype/
TeamSpeex.

Developer Conference Call Friday 2pm each week – held via TeamSpeex

71

conference software or Skype tools to allow
discussion with remote members. The focus of this
meeting is specifically led with the ongoing
technical developments of the project, as well as any
outstanding project organisation issues.

OMERO Team Meeting Face-to-face meeting with OMERO team based in
Dundee Scotland.

Developers Dundee Meeting Face-to-face meeting with the discussion of the
current and future developments of OMERO.

European User Meeting A regular yearly meeting at the Institut Pasteur in
Paris to discuss the software with current and
potential new users.

American Society for Cell
Biology (ASCB) Conference

This is an external meeting once a year other
academic and commercial meetings.

Meetings with External
Scientific Institutions/
Laboratories

Infrequent meeting may be planned with interested
laboratories through the arrangement by the PI.

Through my participation in the Usable Image and OMERO project I attended and was

involved in all but one of the meetings described in Table 3.2 (the American Society for

Cell Biology meeting). It was from this involvement in the range of communications

that I was able to select the second round of fieldwork for the research (the full details

of this decision are documented in Chapter 4. What was significant in my involvement

for me as the researcher was that it helped lay a foundation for a broad understanding of

the project. From client meetings, which were more focused on user feedback, to

developer meetings, which were very much focused on technically. Meetings with

external institutions focused on a mix of technical and user perspectives.

Table 3.3 provides a comparison of the OMERO project with the traditional features of

academic software research and commercial software projects. The particular

distinguishing features of the OMERO project are evident in its purpose: it aims to

serve primarily as a practical tool for data management in the scientific community.

However, in working in the academic context it also enables the development of the

work to have some scope and contribution to the research context. Table 3.3 also

highlights a further characteristic of how the OMERO team of programmers are a step

away from the traditional characteristic of SSD project where novice student

programmers are used (Ambati & Kishore, 2004; Liu et al., 2008). The OMERO team

is made up of a combination of experienced software developers with a variety of

technical expertise. Consequently, the OMERO team’s approach to the software process

72

and products is distinctly similar to a commercial approach than an academic approach.

What distinguishes OMERO is that because of the experience of the software

developers in the project, the development process involves group meetings, code

management, testing, documentation, and a project management schedule. These are all

aspects of scientific software development that do not apply to the previously described

model of scientific end-user software development (Segal & Morris, 2011) (see Chapter

2 section 2.7). In making this comparison I aim to further distinguish the position of this

research and the type of SSD project that the OMERO is.

Table 3.3: Comparison between Academic Software Research and Industrial Software

Projects against the OMERO project (modified Liu et al., 2008)

Project Academic
Research
Software Projects

Industrial
Software
Projects

OMERO Project

Purpose Purpose Research oriented,
sometimes even no
practical benefits

Practical benefits Primarily practical
benefits, does serve some
research goals through
research papers

Scientific
Contribution

Often research deep
exploratory question,
new idea with
scientific contribution

Often no scientific
contribution

Has a contribution with an
OS setup of a client-server
management technology
in the domain.
Contributes to new
algorithms for image
analysis techniques

People Programmer
Expertise

Novice Middle expert Middle/high-level expert

Team
Management

Very flat Loose co-operation
Hierarchy

Very flat

Programmer turn
over

Normal predictable
turn over

Unpredictable turn
over

Normal predictable turn
over

Designer Professor does not
join the actual design

Software designer Professor does join the
actual design plus the
addition of the Usable
Image Research Team

Process Development
Process

Agile most likely Various: waterfall,
Agile

Agile practice

Group Meeting Scarce or as needed Regular Regular twice a week
Code
Management

Depending on
individuals, often not
used

 A system often used A system used

Budget Little budget needed,
a big issue

A big issue A continuing big issue

Testing No systematic testing Special testing team
testing

Systematic testing with a
special period, performed
by whole OMERO team.

Schedule No strict even no
defined schedule

 Defined deadline Defined schedule with 2
major releases a year.

Products Character of
Software

Single facet Often multi-facets. Multi-facets.

Size and
Complexity of
Software

Small to big;
algorithms can be
complex

Medium to large;
both design and
implementation can

Medium to large; both
design and
implementation can be

73

be very complex very complex
Interface Not much attention to

the interface design
More requirements
on the interface

Working with a specific
user experience team

Documentation Little Complete often Little to middle, strongly
connected to funding with
what resources maybe
available

Open Source Traditionally Open
Source

Traditionally
propriety/licensed
software

Open Source

3.6 Background to the Usable Image Project

The Usable Image (UI) project was also situated in the academic context of the School

of Computing at the University of Dundee. The UI project was a separately funded 3-

year academic research project, supported by the EPRSC and began in September 2006.

The two project teams in Dundee were operating between the School of Computing and

the Wellcome Trust building. This is shown below in Figure 3.3.

Figure 3.3: The Locations of the Projects

The members of the UI team are described in table 3.4. The team is composed of 5

members with skills ranging from design ethnography to usability (Table 3.4).

74

Table 3.4: Roles in the Usable Image and Background to the Usable Image Team

(Usable Image 2010)

Name Background
Hester

Hester is the co-investigator and research manager for the Usable
Image team. Her expertise is as a design ethnographer. Hester’s
educational background covers a BA in Communication Studies, an
MSc in Information Systems and a PhD in Computing. She has also
spent time working in broadcast news analysis, community work of
various kinds, and international emergency relief.
Hester has led the set-up of the Interactive Media Design degree
programme at Dundee University; this programme crosses the
School of Computing and the School of Design. In her spare time
she has outside of looking after her two young boys, she enjoys
photography, writing and sailing around Scotland's beautiful coast.

Ernest Ernest is the interaction designer for the Usable Image Project and is
responsible for translating user needs into practical information that
can inform the development of OMERO.
Ernest originally trained as a cartographer, graduating with a BSc
(Hons) in Topographic Science from Glasgow University and
working for four years with mapmakers before coming to work in
Dundee. Outside of work, Ernest feeds his addiction to maps
through the sport of orienteering; he also enjoys curling and football
as well as supporting his beloved Aberdeen. Other interests include
spending time with his family, cooking, listening to music, and
drinking nice wine, ideally all at the same time.
He is also project lead of the Digital Media Access Group, a
research and consultancy unit based in the University of Dundee's
School of Computing, which provides advice on accessibility and
inclusive web and software design for commercial clients. He
currently co-ordinates the University of Dundee Web Accessibility
service, and he completed his PhD in 2006. His PhD was in
investigating the effectiveness of web accessibility audits for
inclusive web design.

Leo As the Usable Image team’s design ethnographer, Leo explores life
scientists’ environments using qualitative approaches in order to
understand what they do and why. This has allowed Leo to do what
she enjoys in simply listening and talking with the scientists. Leo’s
background is interdisciplinary: humanities, cultural studies, and
social sciences. She has a BA (Hons) (Nanjing University) and MA
(Fudan University) in English Literature and a PhD in media and
cultural studies (Cardiff University).
Leo’s has previously worked as a researcher with the Health
Protection Agency (London), Cardiff University, Nottingham Trent
University, and as a lecturer at Fudan University (Shanghai). Her
role has covered discourse analysis of literature, risk migration, and
community and health. Outside of work, when she has time, she
enjoys visiting the local independent cinema as well as reading a
variety of literature. She also enjoys travelling and particularly likes
to spend time life drawing.

Danielle

Danielle is a part-time Usability Expert in the project. Danielle has
an academic background in science. She originally studied Applied

75

Biology at the University of Hull, followed by an MSc at the
University of Aberdeen. She then went on to complete her PhD at
the University of Edinburgh where her work focused on the effect of
climate change on plant/fungal root interactions.
She has been working part time at the School of Computing at
Dundee University for the past 2 and a half years, initially on a
project looking at how to improve computing for older people. This
prompted an interest in Human Computer Interaction, which led to
her undertaking a part-time MSc in Applied Computing while still
working within the department. The opportunity to work in the
Usable Image project has enabled her to combine her interests of
computing and biology. In her free time she enjoys skiing, painting
and drawing, and growing things in her garden that she can eat. She
also spends quite a few weekends in cold muddy fields either
watching her son compete at motocross or her daughter riding.

Scott My Role in the project is as the PhD student on the Usable Image
team. My own background is in Computer Science with my
undergraduate degree in Computer Science and MSc in Computing
and Software Technology. I also have work experience in
Information Technology support and in a commercial software
development environment. This background has exposed me to a
range of different programming languages and development
techniques, as well as given him/me an insight into software
development culture. My interest in interaction design came through
the observational and investigation work into the re-design of a
medical syringe pump device. This opportunity led to the enjoyment
and fascination of questioning the context for designing technology.
Through my role in the Usable Image project, I have been
implicated in the investigation of the gap between UCD and
academic scientific software development. In my free time I love to
travel and experience new cultures, and I am attempting to learn
French.

The methods used by the UI project are discussed later in this section (see Table 3.5).

Being in the academic context, the UI team was able to benefit from the exploratory

nature of the academic research work, but was also constrained by the funding model of

academic research, similar to the constraints that the OMERO project is operating

under.

As identified and discussed in Chapter 2, the application of UCD within scientific

software is still being established. The Usable Image team has promoted user-centred

design in the OMERO project through a range of methods (for more details, see

Macaulay et al., 2009). Traditionally, the adopted usability engineering methods include

user evaluations and heuristic evaluations (Nielsen & Mack, 1994), which have

76

typically been applied at strategic points of the development cycle. Beyond the role of

advising on the usability of the software under development, we also adopted

techniques that were less focused on the interface and more on the users – current users

and potential users. This was driven by the need to better understand the diversity of the

user community targeted by the software developers who, while situated in a life

science research institution of some 700 employees and being managed by a professor

who also leads a team of scientists, had a relatively restricted view of the scientists for

whom they were developing. While there was awareness among developers regarding

the range of technical requirements and scientific practices across the institution, it was

acknowledged that the day-to-day coding demands meant they did not always have the

resources to extend this awareness beyond mining existing relationships they had with

scientists (for example colleagues they met for coffee or had dialogue with via email).

The issue here then was one of resources and tools, as within the team there was already

a significantly user-oriented mindset.

3.7 The Methods of the Usable Image Team

The background of the fieldwork contribution was made accessible through the

background work conducted within the UI team. The range of methods conducted by

the Usable Image team is listed in Table 3.5.

Table 3.5: Usable Image Methods

Name of UCD
Method/Technique

Description Reason of use

Ethnographic
Observations/ User
Observation

A qualitative data report
both written and some
visual data. The
ethnographic observations
may be task focused or
involve background
information about
scientists.

The ethnographic work is
conducted whenever an
opportunity occurs to provide a
rich account of scientists’ work
practice or when a specific area
of investigation arises for which
we would like more information
from scientists.

Usability Test The interface is evaluated
against the following
formal interface review
methods:
Heuristic evaluation
(Nielsen’s 10 usability
heuristics);
Accessibility guideline
check (IBM Software

The methods provide insight
into the general usability of the
software interfaces.

77

Accessibility checklist);
Interface consistency check
(icons, menus, tooltips,
labels, language);
Keyboard operation check.

Group Taster
Session

An informal demonstration
of OMERO functionality

Provides a preview of the
software to a group of scientists
for feedback that can be
collected by the UI team.

Individual Getting
Started Session for
a Scientist

An individual walkthrough
with a scientist that covers
the process of installing
and getting started with
OMERO.

This is used when a scientist
expresses enough interest to
want to start using OMERO.

Focus Group A structured discussion
around topic of enquiry.

The central purpose is to explore
specific issues that have been
identified from other Usable
Image activities or question any
conceptual issues from the
OMERO team. Such an example
was the understanding of the
scientific workflow through the
software.

Design Workshop Structured discussion
around a specified design
topic.

A further technique used when a
more specific interface or
presentational issue has been
identified from other UI activity.

Requirement
Gathering Meeting

A structured discussion
around the requirements in
question.

This is conducted when an
understanding of a specific
requirement is needed.

Other Discussion
with Scientists

This activity covers any
unstructured discussion
held between Usable Image
researchers and current or
potential users.

The technique can be used to
help support requirements for
future development.

Discussion with
Developers

Informal discussion with
OMERO developers.

A conversation with the
OMERO developers would
happen when the developers
require further information about
the scientists. Alternatively, a
discussion may happen when the
Usable Image team need to share
findings with the OMERO
development team.

Survey Survey to find out working
practices of scientists.

The survey has been used to aid
the scope of the background
information of the Usable Image
project. The benefit for the use
of the survey allowed access for
a wider set of scientists and

78

different scientific institutions.
Interface Review The work will examine

examples of existing
software/web interfaces as
inspiration for how others
have solved the problem
facing OMERO.

This is conducted when an
interface issue requires research
into other relevant software
interfaces.

Requirements
Definition Meeting

The Usable Image team
contribute feedback from
the range of Usable Image
activities.

This is used to aid the definition
of requirements in advance of a
new development cycle.

Software Outreach
and Promotion

The Usable Image team
along with the OMERO
team participated at local
and external academic
events to promote the use
of the software.

This was directly used to
increase the uptake of the
software and where possible
allow for further usability
feedback.

Usable Image user research has included employing an ethnographer Leo, who

produced, over an 18-month period, a collection of ethnographic stories mainly focusing

on the scientists and their day-to-day work activities. Example stories included working

through a particular experiment, using a complex microscope for the first time and the

role of the lab-book in work group discussions on attitudes to sharing data. This work

provided a rich source of information on which to base future user research activities,

and it established connections with the scientists beyond the lab, most of which were

directly associated with the development project. Another activity in which the Usable

Image team played a lead role has been in outreach and “marketing” of the software,

extending the uptake of the software to people who could become local “Champions” of

the software. This was working in a similar way to the principal described by De Roure

and Goble (2009) of “act locally think globally” (see Chapter 2 section 2.8). It was

realised that while there was some awareness within the institution of the OMERO

project, this was not guaranteed among the scientists who were potential users; of those

who were aware of the project, there were sometimes misassumptions and

underestimations about the usage potential beyond the laboratory in which it was being

developed. Additionally, beyond the host research institution, we had contacts with

other organisations which we knew little about, other than that they were potentially

valuable sources of new users.

79

The interactions of the Usable Image team were led by the UCD methods of the project.

The work was directed by two aspects 1) the ethnographic observations and 2) the

continuing requirements for to aid the design of the OMERO software. The second

aspect was accounted for by the other methods employed by the Usable Image project,

as well as the ethnographic observations supporting systems design process. The output

of the work by the ethnographer was the user observations. The information gathered

through this work was presented as stories. The value of the existing ethnographic work

provided an initial foundation for insights of scientific working practices. The

ethnographic observations were also reviewed and discussed by the entire Usable Image

team during key phases of requirements gathering. The analysis of the ethnographic

work carried out by the UI ethnographer is examined in Chapter 5. The Usable Image

team was also in part involved in the promotional led work for the OMERO software.

This corresponds to the role and aim of the Usable Image project in the optimisation of

the usability of the software, but it also aims to provide for evolving requirements based

on the user research, to increase OMERO’s marketability to new users (Sloan et al.,

2009).

The survey work carried out by the Usable Image project had the aim of questioning

how life scientists approach the task of capturing, storing, and analysing biological

images (Sloan et al., 2009). Three web-based surveys were created: two were

constrained to specific research institutions (the first institution was where the OMERO

project was based and the second was a major research institution in Europe) and the

third was open to all respondents using a microscopy email list.

The survey work was directly aimed at supporting the information for the OMERO

development process. This was evident in how surveys one and two were examined for

key trends, and in feedback that the OMERO developers lacked sufficient detail. This

subsequently helped define questions (along with the other Usable Image activities) for

survey three of areas of investigation that required further information.

The range of usability testing carried out by the Usable Image project in Table 3.5 cover

the techniques of “individual getting started” session for a scientist, “design workshop”,

and ‘usability testing’. The “individual getting started” session for a scientist was a

technique to observe the users of the OMERO software and understand where in the

interface the problems are. This was complementary to the long-term method of

80

ethnography work carried out in the Usable Image project. During the usability testing

the Usable Image team was able to work with the pre-released beta OMERO software.

The type of usability testing was determined by the way in which the Usable Image

project was acting as an external usability consultant to the OMERO project. This links

back to the work previously outlined by Battle (2005) and the pattern he described of a

foot in the door for external consultants (see Chapter 2 section 2.3). With this particular

pattern the usability is limited to targeting the latter phase of the UCD cycle. This is

reflected in many of the usability techniques used by the Usable Image project.

Of the usability engineering methods reviewed in Chapter 2 section 2.3, the Usable

Image project did not directly consider these techniques. Though the Usable Image

project did with the use of the heuristic evaluation draw on the discount engineering

method.

3.8 Summary

In discussing the background to the OMERO project and the Usable Image team,

Chapter 3 has presented the environment and context in which the research is being

conducted. The position for the research is to investigate of the role of UCD in SSD

through the participation of the Usable Image team and OMERO team. Chapter 3 has

discussed the application of the Usable Image methods and techniques used within the

project.

The critical set of challenges identified through the OMERO project lie within the

integration between the Usable Image work and the OMERO team. This integration lies

in supporting the OMERO team through the SSD process embedded in a scientific

environment. The setup of the OMERO project, in contrast to existing projects, is

significantly different from the role of traditional academic SSD projects, with a team of

dedicated developers co-located within the same building as scientists. This presents the

challenges of UCD working with expert users in the scientific context and expert users

for the scientific development process of such complex software. Finally, in being

situated within the scientific domain the research must also take into account the level

of scientific credibility and responsibility to the scientific community of the software.

Chapter 4 now goes on to present the methodology of this research work.

81

Chapter 4: Methodology

4.1 Context of the fieldwork

This chapter describes the research methodology. The first part outlines the research

perspective formed from within the Usable Image project and particularly examines the

secondary analysis of the ethnographic work the Usable Image team undertook. The

remaining parts reviews the methodological choice made during this work and details

the approach taken for data analysis.

Many of the methodological choices made were driven by the fact that I occupied

various roles and had several perspectives during this work. As illustrated in Figure 4.1

below, I viewed the research question from the perspectives as an individual PhD

student, a member of the Usable Image team, and later a member of the OMERO team.

Although occupying multiple perspectives was challenging, it proved a fascinating

opportunity to view the research problem from many points of view that helped to

provide a platform for cross analysis.

Figure 4.1: My roles during the research

4.2 My role within the Usable Image team

My role within the Usable Image team was in the participation of the support and

development of OMERO software: I provided expertise in a range of user centred

design techniques, each aimed at understanding more about the users and usage

environment of the software. In this role, I participated in diverse UCD activities:

82

design workshops, interface reviews, requirement specifications, design and technology

research, user insights, usability studies, and software taster sessions. However, I was

not directly involved in the ethnographic observations and user interviews either

internal or external to the University of Dundee where the main part of this research

took place. These ethnographic activities will form the secondary analysis and produce

the first part of this research (study one). Although I did not directly participate in the

collection of this data, I did conduct the analysis described in the analysis for this this

research methodology. All the activities undertook for the Usable Image project are

illustrated in Figure 4.2 and the description of these methods is documented in Chapter

3 (section 3.6).

Figure 4.2: Scope of UCD led techniques used by the Usable Image team

As Figure 4.2 shows, the methods listed on the left hand side between the scientists and

Usable Image project were used by the UI team to interact with the scientists. The

methods on the right hand side between the scientific software developers and Usable

Image project were used by the UI team to interact with the scientific software

developers (see Chapter 3, section 3.7 for details of these methods). Indeed, the direct

participation of the Usable Image team with both the scientists and the OMERO

software development team helped build a corpus of insights for the development of the

83

OMERO software. More specifically, the Usable Image project team worked with the

OMERO team within a weekly user evaluation cycle (as shown in Figure 4.3). This

contact is illustrated in Figure 4.3 between the Usable Image team and OMERO team

(and indeed between both teams and the end-users). The exchange and discussion of

user feedback was done during a weekly meeting of the two teams. An example of such

feedback is presented in Appendix 2, where there is a selection of points made during

user-feedback sessions on the software.

Figure 4.3: Weekly evaluation cycle (Adapted from Macaulay et al., 2009)

This interaction between the Usable Image project and the OMERO scientific software

development team, as illustrated in figure 4.3, aided an understanding UCD for the

OMERO project. This ‘relationship building’ was important as what was becoming

more apparent to me in my embedded role within the Usable Image team, which has

been previously argued by Seffah et al., (2005a), is that UCD and software engineering

are indeed very different perspectives. These different perspectives are shown in Figure

4.4. In the 'System 1' perspective, the focus is on the interface and the application of the

software; in the 'System 2' perspective, the vision is more global and aims for an

integration between the users and the interface/application. The OMERO team, broadly

speaking, adopted a 'System 1' perspective, whereas the Usable Image team (equally

broadly speaking) adopted a 'System 2' perspective. These differences were not just

philosophical: they had a significant impact on how the software development project

management was defined, the activities that were conducted, the selection of tools used,

and the staffing of each team.

84

Figure 4.4: System perspectives (Seffah et al., 2005a)

For the fieldwork and the analysis, the data comprises two sources of data. The first part

(study one) has been taken from the ethnographic observations of the scientists from the

Usable Image project and the OMERO project meetings the second part of this research.

Both studies are discussed later, in Chapter 4 section 4.5.1.

4.3 My role within the OMERO software development team

During the usability work within the Usable Image project, I moved to work alongside

the OMERO software development team. While I was still able to participate in the

usability activities of the Usable Image project it also meant I shifted my own

perspective, from the focus of the Usable Image team to the OMERO team. The major

change meant a change of location, as I moved to the Wellcome Trust building, where

both scientists and OMERO software developers were located (see figure 3.3. in

Chapter 3 for the location map). This transition to the OMERO software development

team was aided by my previous contact with the work in Usable Image project, so I was

working more closely with people who already knew me. Thus, my integration into the

group was less intimidating and the team knew I was there to work and support their

work from my existing work in the Usable Image project. My integration into and

relationship building within the OMERO team was also facilitated by following the

usual routine of working in the OMERO team (see Chapter 6 section 6.2) for a

summary of working week within the team). This way was significant, as it allowed me

to have an insight into the regular practices of the group. The importance of embedding

in a team was also underlined by Agar (1980, cited in Lazar et al., 2010). These insights

into SSD work practices were crucial as they allowed me to form a complementary dual

85

perspective with my time in the Usable Image project. The full implications of this

double perspective for my research are discussed in Chapter 6 section 6.6.

4.4 Strategy of inquiry

The philosophy of UCD, as described throughout Chapter 2, incorporates a broad

history of multiple disciplines. All these have influenced the direction UCD has taken

and what it is today, and such a scope is relevant to the methodology used for this

research. I will therefore provide a short overview of significant milestones for UCD.

As UCD has its origins in HCI and its history follows a related path from HCI and

software development. This context influenced the motivation of this work, because in

software development the focus should be on the integration of tools and methods

(Carroll, 2003). This has perhaps emerged from previous difficulties. For example, the

problems experienced during the 1970s where there was little or no learning about the

mistakes in the software development process and was known as the software crisis

(Naur & Randell, 1969). This challenge of the software crisis led to the study of

computer programming as an activity, where the first studies from the viewpoint of HCI

were of those programming computers (Carroll, 2002). This marked the early work in

HCI with the introduction of an influx theories and methods for systems development.

The first wave of HCI borrowed from cognitive and psychology approaches.

One of the key methods formed in this period derived from work by Card et al., (1983)

and their Goals Operators Methods Selection (GOMS). The method provided a

prediction based on the various factors of GOMS to anticipate the actual task. The

GOMS model is made up of methods that are used to achieve goals. A method is made

up a successive list of operations that a user performs and sub goals that must be

completed.

In light of these changes that brought theoretical developments into HCI, the second

major milestone stemmed from the disciplines of anthropology and sociology.

Examples of second wave HCI and frameworks that emerged during this period are

ethnomethodology (Suchman, 1987), phenomenology (Winograd & Flores, 1987;

Dourish, 2001), activity theory (Bødker, 1991; Nardi, 1996), distributed cognition

86

(Hutchins, 1995), and grounded theory (Fitzgerald, 1998). This second wave saw a shift

from the fields of human factor's research and cognitive science and it has been

characterised by Bannon (1991) as being “from human factors to human actors”.

Because of the criticism of HCI and call to recognise users as humans rather than

cognitive machines, this should be echoed in the concepts and theories used (Kuutti,

2001). Bødker (2006) says that this second wave of work focused on understanding

group working. She further highlights that theory focused on work settings and

interaction within well-established communities of practice. The range of theories that

emerged through this second wave was a reflection of this; one of the first was outlined

by Suchman (1987) in her book Plans and Situated Actions. She discussed the

observation of a photocopier and its use, and the usability problems associated with its

interface. The outcomes from the study helped form the concept of situated action

(defined as a term to account for every aspect of action, dependent on its material and

social circumstances).

The 2000’s brought the more recent wave of theoretical development that sought to

address the challenges caused by technology moving out of the work place and into

different domains and contexts. Bødker (2006) notes “conceptually and theoretically,

the third wave HCI focuses on the cultural level”. This covers a variety of different

emergent techniques including the move to the pragmatic focus on experience

(McCarthy & Wright, 2004), aesthetic interaction (Petersen et al., 2004), empathy, and

emotional design (Norman, 2004). The move into the third wave provides a stark

contrast to the second wave of challenges with the more recent third wave having

attributes of being non-work related, non-purposeful, and non-rational (Bødker, 2006).

As my first two research questions concern why so much academic SSD is still

unusable and/or poorly accepted by scientists and how SSD is undertaken in academic

contexts, I have chosen ethnography and a qualitative method for analysis. This draws

on the second major theoretical milestone that stemmed from the disciplinary fields of

anthropology and sociology. Ethnography is based on the notion that true understanding

of complex human practices and context requires in-depth and engaged study (Lazar et

al., 2010). For my own research, this presents a suitable approach for answering these

two particular research questions stated above because of the role of understanding the

complexity of scientific and scientific software development practices. Furthermore,

using ethnography means that opportunities from contextual situations can be built on,

87

instead of avoided (Harvey & Myers, 2002). So for my own research this can mean

utilising the experiences gained from the research. The choice for an ethnographic

approach was also informed and influenced by my role in the Usable Image project,

where like Sloan et al., (2009) the project was already using ethnography to inform the

systems design process. I also considered my research position when deciding on this

approach, as it required a technique that would not conflict with the projects I was

working within. Ethnography therefore allowed me to utilise my role within the Usable

Image project and the OMERO project. My experiences within the Usable Image

project where I had participated in various usability testing activities (see section 4.2)

also had also benefited and encouraged the selection of ethnography. It provided an

introduction to the context of the OMERO software and scientific context. The use of

ethnography was also relevant as it provided a different level of focus from the usability

testing activities I had been involved in with the Usable Image project (see section 4.2),

particularly as I had been involved with user testing. Siegel and Dray (2005) describe

the difference between ethnography and usability testing is that usability testing focuses

on evaluating solutions whereas ethnography focuses on understanding problems. The

application of ethnography in my research therefore aims to allow me to provide an

understanding of the SSD context by being emerged within it first-hand. This also helps

to situate the research for questioning the social organisation of activity within SSD.

This further helps to support my particular research question of understanding how SSD

is undertaken in academic contexts. The section below will describe the ethnographic

fieldwork and subsequent analysis of the fieldwork for the research.

4.5 Ethnographic fieldwork and the construction of the methodology

Ethnography is a research technique adopted from sociology and anthropology; it has

been used to observe human interactions in their actual social setting. The work by

Burke and Kirk (2001) distinguishes the different goals of sociological ethnography and

ethnography for systems design. The goal of sociological ethnography is to understand

an individual's or a group's interactions within the culture. The goal of ethnography for

systems design is to understand and improve a system in the context. In my own

research, the aspect of understanding and improving a system in the context was being

applied while working within the Usable Image project, as we were actively using

ethnography to support the systems design process for the OMERO software. However,

88

my own ethnographic and research goals are centred on my own research questions.

Therefore, my individual research goals were not solely focused on the system design

process of the OMERO software.

In both areas of my research, the use of ethnography has grown. Since such work by

Suchman (1987), ethnography within the field of HCI has become widespread, with

applications in a broad spectrum of contexts from understanding email management

(Bellotti et al., 2003), collaborating and sharing photographs (Crabtree et al., 2004), and

organising systems in family life (Taylor & Swan, 2005) to controlling air-traffic

systems (Bentley et al., 1992).

As discussed by Potts (1998), the application of ethnographic studies to software

engineering has also become more widely recognised. Perry et al., (2000) discuss a

general growth of empirical-based studies of software development over the last 10–20

years. This has covered various areas of the software development process from

software testing (Denaro & Pezze, 2002) and bug tracking (Zimmermann et al., 2007)

to the adoption and evolution of software quality management systems (Sharp et al.,

2004). The viability and benefit of empirically based studies of software development

are also recognised by major commercial software vendors (Bird et al., 2011; Basili et

al., 1994). Work by Kitchenham et al., (2001) formed preliminary guidelines for

empirical research in software engineering. These guidelines have been created of

supporting researchers, reviewers, and meta-analysts in designing, conducting, and

evaluating empirical studies.

Empirical software studies have not been without their criticism. Weyuker (2011) cites

one aspect that is significant for this study. She recognises the earlier limitations placed

on software researchers and how they had little representation of real-world software

practice to use in empirical studies. Empirical studies frequently used university

students for their research so representation in these was regularly questioned. Now,

with the wider development of open-source software, this limitation is no longer the

constraint it once was. Nowadays, software researchers have full access to a range of

different open source projects, which allows for a much wider view of the open source

development process (Paulson et al., 2004; Xie et al., 2009). This is significant to my

own research method as the OME project is open source. Consequently, my research

benefits from open public access of the OME project material; it also has the benefit of

89

working alongside professional scientific software developers from within a UCD team.

My methodology can utilize the OME project material with its open and online access.

The following section now outlines the purpose of the original study of the Usable

Image project and the process of the original work. Chapter 3 previously noted that the

Usable Image team’s role within the OME project was to support the development of

OMERO by providing expertise in a range of user-centred design techniques, and by

pointing out how the software may support users’ needs. The role of the Usable Image

project is also further described in the work by Sloan et al., (2009). The ethnographic

fieldwork therefore informed the design process about a more holistic understanding of

a system’s current and potential users, and its usage environment and context. The

observations were anonymously written up into short stories, and they were shared with

the rest of the Usable Image team. The stories were published on the Usable Image

project wiki and made available to the OMERO development team. The OMERO team

were then encouraged to read and react to the stories. The points arising from the

analysis were discussed between the Usable Image and the OMERO team. It is

important to note that these guidelines from the Usable Image project form a

prerequisite to the secondary analysis (for details on the secondary analysis, see section

4.6).

4.5.1 Data collection

This thesis has used two resources of fieldwork data for the analysis. The first used the

existing work of the Usable Image project. The goal of this was to create a holistic view

of scientists and their work. (See Appendix 3 for the full timeline of ethnographic

fieldwork data analysed for this research). The Usable Image ethnographer gathered this

fieldwork and I have analysed it for this thesis. The first ethnographic story analysed

was dated 27.02.2007 and the last 20.06.2008; a total of 11 ethnographic stories were

analysed. The analysis examined each ethnographic story by the date acquired. Please

note throughout the remainder of this thesis that the fieldwork carried out by the Usable

Image ethnographer is referred to as fieldwork study one.

The second fieldwork resource used was the meeting notes of the OMERO team. This

data documented/recorded decisions throughout the project. (See Appendix 4 for all the

90

fieldwork data analysed for this research). The first meeting notes analysed were dated

27.10.09 and the last 23.03.10, with 27 meetings being analysed. Again, the analysis

studied each meeting notes by the date they were acquired. Please note throughout the

remainder of this thesis that the fieldwork conducted from within the OMERO team is

referred to as fieldwork study two.

The decision to use the existing material created in the OMERO software project drew

on Norman’s (2007) work where she utilised the material of the project, from emails to

meeting notes. As the OMERO developer meeting notes used for study two are an

archival data source and the data is static and impersonal. The benefit to this as

explained by Lazar et al., (2010) is that as a researcher you are able to take your time

reading the data and it can help avoid asking inappropriate questions. An advantage was

that all members of the OMERO team were based in Dundee. I was also aided by

multiple takes on the meeting data, as I was attending the meetings in person but was

then able to go over the data and further digest information. The implication for my own

research work was that this did allow me to ask follow up questions and clarify aspects

of information from the meetings. However, I had to account for the drawback of such a

resource that Angrosino (2007) mentions: these materials can be error prone,

incorporate a bias, or be incomplete. The choice was also based on a two-week review

of the material in the OMERO project and what information would be accessible for

me, the researcher, from working more directly within the project. I was aware of some

existing tools of the OMERO development from my work within the Usable Image

project, but the time spent working in the same office and seeing the work and tools

used by the OMERO developers gave additional insights into what information would

be most appropriate for my research questions. The two candidates at the end of this

two-week period were the team’s group instant messenger tool and the meeting notes.

The meeting notes were eventually chosen because of their more formalised summary,

insights into the project, and contributions from the entire team. In contrast, the group

messenger tool was used to communicate more specific technical issues, which for the

purpose of this work would miss the wider holistic picture that the meeting notes

offered. The meeting data was also openly available for public access through the

project’s website as part of its open source philosophy (see

http://www.openmicroscopy.org/site/community/minutes/conference-calls). This

availability of the data presented no ethical problems regarding its use as the

information was already in an open domain. In contrast, the messenger tool would have

91

had ethical implications for the project, as the information was not openly available.

Moreover, the feasibility of analysing both sets of data was considered but was deemed

impractical because of the amount of data created each day through the messenger tool.

Hall (2004) makes a significant point about using meeting notes for an analysis. For

example, the originators of the documents (in the case of this research, the OME team)

do not anticipate their use for academic research purposes so is that the meeting notes

analysed have been created for the purpose of the OME project rather than for my

research. Hall (2004) describes that the meeting notes have greater authenticity and

credibility as a data source. In that sense, the meeting notes used in this research are not

biased toward the final goal of this research and were created in complete objectivity.

The main disadvantage Hall (2004) reported is that identifying the meeting documents

that give important insights is an extremely labour-intensive process. However, I

overcome this in my research by analysing the meeting data I was present for, which

covered about 4 months (October 2009 to March 2010) so 27 meetings were analysed,

which is not as extreme as Hall suggested. In using the two data sources in my research

analysis a clarification has been made for using primary and secondary data analysis.

Identifying each data analysis as either primary or secondary involved consulting work

by Jary and Jary (2000, cited in Smith, 2008). In this, Smith defines secondary analysis

as ‘any inquiry based on the re-analysis of previously analysed research data’. This may

or may not be by a creator of the data. Primary analysis concerns data collected first

hand and analysed directly. For my own research the primary data source corresponds

to the OME meeting data. I was not the creator of this data but was present during all of

the recorded OME meeting data. Smith (2008) nevertheless acknowledges a lack of

consensus regarding the secondary analysis definition but some points are applicable to

the present work. Here, as I was present for all the material collected in study two but

NOT study one, I therefore identified study one as a secondary data analysis and study

two as a primary data analysis.

4.5.2 The process of analysis process

As noted in the previous section, the ethnographic material was sourced from two

different resources (the Usable Image project for study one and the OMERO project

92

meeting notes for study two). Before discussing the role of the secondary analysis, I

shall first explain the global analysis process used for study one and study two.

When selecting the analysis method, I have considered the work by Dourish (2012).

Within the role of ethnography and design, Dourish (2012) states that there is no single

answer to understand ethnography in the design process. Instead, ethnographic work at

the conceptual level may work best, not by providing answers but by raising questions,

challenging existing understandings, and creating new conceptual understandings.

Dourish states that this can be explained by the way ethnographic work can be used

based on solely looking at the implications for design. This point is explored in the

work by Dourish (2006) and has been discussed in Chapter 2 section 2.2.3. The

significance of this debate discusses that the implications for design are not always a

necessity for the use in ethnography.

In the recognition of this work described by Dourish (2012), the application of

ethnography in the research has been applied in light of accepting how ethnography is

evolving to be used within design process. As described by Dourish (2007),

ethnographic research may inspire design practice, but the value that it offers is in an

encounter with design rather than in its own terms. Such is that the implications for

design lie not within the ethnographic text itself but rather in the way in which it

reframes the contexts and questions of design.

This has had the effect in my own application of the ethnographic method as a way to

reframe the context of SSD for questioning the role of UCD. Considering the work by

Dourish, as a trainee in qualitative research, I also opted to apply this recognised use of

ethnography as a design process and use a generic qualitative analysis based on two

points. First, the selection of my analysis approach was based on allowing the concepts

to emerge from the raw data. This way, they can be categorised using a coding process.

This will provide a descriptive, multi-dimensional, and framework for my later analysis.

Secondly, knowing the emphasis of my own research work, I avoided diversions, for

example with the broad scope of analysis models my research could employ. As an

inexperienced researcher in sociology methods, these techniques aided my research and

such example work by Dey (2003) and Seidel (1998) served as useful guides,

particularly as I sought to draw on a collective set of principles to analyse qualitative

data.

93

The process used in the present work for the analysis of fieldwork data was taken from

Seidel (1998). This work provided a simple foundation for the complex and rigorous

practice of qualitative data analysis and has been used as a guideline for this work. This

complexity of data analysis is also recognised by Seidel (1998) who also acknowledges

the variety of methods for qualitative data analysis but it is the three principles of

collecting things, noticing things, and thinking about things. Figure 4.5 captures the

process Seidel (1998) describes based on these three points.

Figure 4.5: The data analysis process (Seidel, 1998)

The core set of principles is captured in three steps: collecting things, noticing things,

and thinking about things. These steps are not carried out in a linear fashion but instead

have three processes: 1) an iterative and progressive process spiral because it is a cycle

that keeps repeating; 2) a recursive process as it has the ability to iterate back to the

previous part, and 3) a process that is holographic as each step in the process contains

the entire process. This final step is connected to the other steps because even when you

first notice things, you may be mentally collecting and thinking about those things. The

step of noticing things is principally involves taking notes of the context so you have a

record e.g. making observations, field notes, interviews etc. Seidel (1998) identifies the

steps of the production of the data, the reading the data, and the noticing of things in the

data, following these steps allows for the data to be coded.

In the context of this research, once I had decided on the data to be analysed, I carried

out an initial coding cycle (see section 4.5.3); in addition, memos were also recorded to

support the coding process (see section 4.5.4). For the second step of the process, the

94

collection and sorting of the codes utilised the HyperResearch software, which is

described on page 97 below. This particular step involves the separation of the data into

elements. With this breakdown of information into more manageable elements, the

information can be sorted and searched for types, classes, sequences, processes,

patterns, or wholes. The goal of this process is to reconstruct the data in a meaningful

way (Jorgensen, 1989 cited in Seidel, 1998). The third and final step of the process has

three key goals: 1) making sense out of each collection; 2) looking for patterns and

relationships both within and across collection(s); and 3) making general discoveries

about the phenomena being researched. This process is illustrated in Figure 4.6 below

where the key points of collect, notice, and think are shown. Additionally, the figure

illustrates the aspects that emphasis the iterative nature of the process shown in arrows

that move around the labels of think about things, reading of the case files from the

coding of the data files and then the discoveries.

Figure 4.6: Analysing qualitative data (Seidel & Friese, 1994, cited in Seidel, 1998)

Seidel’s work (1998) was formed around the development and use of the Ethnograph

software. As I did not have access to the Ethnograph software but did have access to

HyperRESEARCH (ResearchWare, Inc), the research therefore used HyperRESEARCH

to analyse studies one and two. The HyperRESEARCH software was also more modern

95

and so also had more general benefits from the ways of inputting data to viewing the

analysed data. The use of the HyperRESEARCH software replicates the use a computer-

supported software tool developed specifically for the process of qualitative analysis.

Stern’s work (2007) highlights how computer-supported tools can help in the

management of data. However, Glaser (2005, cited in Stern, 2007) also notes that

creativity is required in the coding process and that sorting the codes by hand releases

the necessary creativity to help draw out the memos, and it helps for the comparison

between codes carried out during the coding process. Therefore, as well as working with

HyperRESEARCH I used a pen, paper, and post-it notes but also a diagramming process

to develop the core categories (see Appendix 5). The data analysis was done by building

the typologies of the codes (see Appendixes 6 and 7). Throughout this process, the

typologies allowed continual questioning of the data to identify gaps in the data after

each cycle.

The particular challenge presented in the process of ‘thinking about things’ is in

organising the work to minimize negative effects. The problem is that by breaking down

data through the coding process, it can actually misrepresent the data and mislead the

analyst. This can be overcome by working with two copies of the data: a whole and a

broken-up version (Wiseman 1979 cited in Seidel 1998). For my own research, the

HyperRESEARCH software tool enabled me to readily overcome this problem as it

allows multiple views of the data, both in its entirety or as a specific set of codes.

4.5.3 The coding and categorisation of the data

A code sets up the relationship between the data and the people being studied (Star,

2007). The coding of data involves defining what the data actually is. For my own

research, I have considered the following set of coding styles of line-by-line, incident-

by-incident, word-by-word, and focused coding. For my own coding process, I selected

for the first pass through the data to use the incident-by-incident and word-by-word

coding approaches. The further iterations of the coding process took the approach of

focused coding. The coding styles are explained below.

The initial incident-by-incident coding process, as described by Charmaz (2006), means

that codes formed during earlier incidents are compared to those that have already been

coded. The technique to code on an incident-by-incident approach was chosen over the

alternative of line-by-line because although the latter gives insights regarding what data

96

to collect next and prevents immersion in the respondent's perspectives, it is best

applied on rich and more descriptive data such as interviews (Charmaz, 2006). The

ethnographic stories and meeting notes that this research was dealing with worked like

observational notes, where line-by-line coding did not fit well. This applied to study one

and study two. An example extract from the incident-by-incident coding process is

shown in Table 4.1 (for the full transcripts of study one and two, please see Appendix

8). The first pass through the data also used the word-by-word coding approach, this

allowed me to attend to the complex terminology in the analysis and to make sense of

the various scientific and software development terms.

Table 4.1: Example code study one

Code Source Material:
Technology
trouble shooting

070719EthnoObs_Graeme.txt Graeme summarised several
problems with the software. It didn’t
allow the user to customise the
information and save the settings.
Every time when Graeme opened a
new image, he had to click and
choose again.

Further iterations of coding were in the form of focused coding. This process filtered

out the most significant and frequent codes that had occurred during the coding process.

Both fieldwork studies moved through an iterative analysis of the coding process; this

gave the focused coding rich and well-defined codes from the analysed text. The coding

tool HyperRESEARCH directly supported the focused coding process as it presented the

analytics of the codes; therefore, viewing the most frequently used codes of the two

separate analyses of fieldwork was easy (see Appendix 9 for a print out of the statistics).

On this basis, the three most frequent codes were chosen for each theme and were

explored in Chapter 5 and Chapter 6. The decision to analyse the three major codes was

based on the fact that they give a better reflection of the fieldwork. Every code could

not be explored in detail in my analysis in Chapter 5 and Chapter 6, as this was a total

of 64 codes for study one and 58 codes for study two.

97

4.5.4 Memos

Memos were used to support the coding process. Glaser (1998) says memos give the

researcher the opportunity to reflect on the codes created. The creation of memos for my

own research was built on this principle, to allow for the introspective thinking for the

generation of my own codes and analysis. The role of memos is further described by

McCann and Clark (2003) where they discuss a memos ability to reflect a researcher’s

internal discourse at a point in time. The relevance of the memos to my own research

work was with the purpose to help to guide me towards my analysis but also given my

relative inexperience with dealing with qualitative data as a way to ensure that my

thinking of the codes were externalized. The techniques of how to write memos is

explained by Charmaz (2006) and in this work she suggested that memos are written in

a manner that works for the individual. For my own research, I have adopted this

approach based on the guidelines provided. Moreover, she also states that for creating a

memo a researcher can do various things:

• Define each code or category

• Spell out and detail processes subsumed by the codes or categories

• Make comparisons between data and data, data and codes, codes and codes, codes

and categories, and categories and categories

• Bring raw data into the memo

• Provide sufficient empirical evidence to support the definitions of the category

and analytical claims about it

• Offer conjectures to check in the field setting

• Identify gaps in the analysis

• Interrogate a code or category by asking questions of it

(Charmaz, 2006)

A sample from the memos formed in the analysis of study one is shown in Table 4.2;

the same for study two is in Table 4.3. The full memo tables are shown in Appendix 10.

Table 4.2: Memos extracted from study one
Description Personal notes and extracts from the text

98

Long hour culture
(Documenting the long
working hours that
scientists work – point
made experiments
repeated 3 times as one
source of this.

Critical in having insight
into work – helps in
having a role of empathy
for their scientific work.

Rachel usually does one experiment three times to make sure the
consistence of the cell behaviour.

St Kilda2
This system, while aiming to encourage outstanding
performance, also adds on the pressure – as Joseph described,
‘People are working like slaves.’ Indeed, long hours are
common: it is not unusual for people to spend a good 10-12
hours on a workday and extra visits to office during weekends.
But this doesn’t seem unusual

Table 4.3: Memos extracted from study two
Description Personal notes and extracts from the text
Current work practice - This
describes how the team is
currently working capturing
both the tools that are being
used and their own
identification of where the
breakdowns are.

Needed to define how
working with new tools

2010-01-19 Tuesday meeting
- practices
- coding, style, docs, etc.
- not breaking trunk, etc.
- refactoring
- training
- planning
- more than ticket writing
- we could formalize with "weak" / "strong" reqs
- have done it before with planning poker, but didn't for 4.2
- we don't schedule at all
- going back to iterations! with demo.
- tools
- simple: shouldn't bog down the process
- visible to the community
- planning/scheduling/prediction
- visualizing what's in the system and not just as tickets
- prioritizing: we've basically ignored this
- provided list were the most sophisticated
- Luis: adjusting our existing tools has a non-trivial cost
- Levi: we still haven't defined a process

4.5.5 Validation of the ethnographic approach

99

Ethnographic research results are frequently unreliable and lack validity (LeCompte &

Goetz, 1982; Seaman, 1999) so such issues need considering for this research. Seaman

(1999) discusses how triangulation is an important tool for confirming validity of the

data. Data triangulation is where different types of methods and data (quantitative and

qualitative) are used to validate the findings of the analysis. The types of triangulation

considered were method triangulation and data triangulation. The former uses

alternative methods to support the existing method such as survey or experimental

methods.

Data triangulation assesses validity when multiple data sources are used in a single

study. Thus, the data is supported by multiple sources from multiple perspectives,

different people, and multiple locations (Guion et al., 2011). For my research, data

triangulation was implemented in study one, but not in study two as the focus of the

SSD work was in Dundee. The data used in study one had access to different roles of

scientists. The variety of roles covered PhD students, technicians, post-docs, and PIs.

Study one also observed scientists from two separate institutions (Skye and StKilda).

The option considered for study two was searching for a second SSD project but I

decided against this, as it would introduce more variable factors beyond my control. The

possible variables identified were the different levels of experience of the scientific

software developers in any project and the very different project aims and goals of any

given SSD project.

Internal validity of the ethnographic method is described by LeCompte and Goetz

(1982) as “the extent to which scientific observations and measurements are authentic

representations of some reality” (LeCompte & Goetz, 1982). It is supported for various

reasons. Firstly, the informant interviewing is formed more closely to the empirical

categories of the participants. Secondly, observing the participants in their natural

settings provides a reflection and insight into the actual working experiences than any

contrived setting. Finally, the ethnographic analysis process exposes the research to

repeated questioning and re-evaluation. Altogether, it allows for the repeated integration

of the research data. Although I have not interviewed the participants for the data I have

analysed, I have applied the last two points in the method, which has allowed for the

continual questioning of the research data and insight into actual working laboratory

practices.

100

External validity is reported by LeCompte and Goetz (1982) as having five major

issues: researcher status position, informant choices, social situations and conditions,

analytic constructs and premises, and methods of data collection and analysis. A

researcher status questions research members of the studied groups and what positions

and access they hold in the field of observation. This emphasises that those who have

little access to the fieldwork site would have entirely different results from those who

have a role on the inside of the fieldwork site with plenty of close connections. The

second point of asking who the informants are is significant as it questions what types

of people are represented and what different groups of people are observed in the

fieldwork. This particular problem for my own research was handled in such a way that

my informants were beyond my full control for my research as the data from study one

and the secondary data were taken from the Usable Image project. The role of the

informants for study two was not questioned as the full representation of the OMERO

SSD team is documented in the meeting notes. The third element recognises the social

context in which they are gathered. This accounts for what information can be

appropriately revealed. I was able to account for this in study one as Leo accounted for

feedback and correction from those interviewed. The OMERO team has an open review

of the meeting data, so I did not consider this aspect any further for my research. The

fourth step of analytic constructs and premises plays a key role in reconstructing a

study. The work included in this covers all the codes and themes constructed for the

research are in the Appendixes 6 to 8; the steps carried out for the coding process are

documented in this Chapter section 4.5.3. Finally, related to point four is the method of

data collection and analysis. This point is associated with principle of presenting the

details of the research method and has been described in this Chapter so that fellow

researchers may follow the research. The reliability and validity of the analysis will be

revisited in Chapter 9 to address the possible further improvements (see Chapter 9

section 9.3).

4.6 Secondary Analysis

This section describes the background to the secondary analysis, which was the

approach used to direct the secondary analysis of the ethnographic observations from

the Usable Image project. This was the fieldwork data I did not collect myself but have

analysed in study one.

101

Secondary analysis, as data generated by other researchers or even in other projects, has

a long history in the social sciences. Early work by Glaser (1963) notes that secondary

analysis carried out by an independent researcher could offer new insights into social

knowledge. Since then, various authors have addressed the scope and discussed the role

of secondary analysis. For example, Hinds et al., (1997) comments on its application in

the exploration of interests distinct from those of the original analysis, as well as for the

analysis of an extract of a sub set of cases for a more focus study. Heaton (1998)

describes the use of secondary analysis to apply a new perspective to or give a new

conceptual focus on the original research issues. This factor is reflected in my own

research as the data used in study one provided a new conceptual focus for the data. The

original focus for the data was for the UCD work to inform the systems design process

in the Usable Image project. In using the data in my research, I have clearly asked

different questions both in how is SSD undertaken in academic contexts and further still

how can the uptake of UCD philosophies, methods and thinking in the application of

academic SSD be improved. Further related work that has been used to help in the

categorisation of my secondary analysis is discussed by Heaton (1998). The work

categorises types of secondary analysis summarised in Table 4.4 below. This singles out

three types of analysis against three permutations of data sets that have been reviewed

against the data for my own research. The first analysis identified is additional in-depth

analysis shown through cells 1a, 1b, and 1c in Table 4.4. Heaton (1998) cites work by

Bull and Kane (1996) and Kirschbaum and Knafl (1996), showing how their studies

investigate in detail problems encountered from original data. Both these existing

studies fall into 1b, in regards to table 4.4.

Table 4.4: Types of secondary analysis (Heaton 1998)

Main Focus of
Analysis

Single
Qualitative
Data Set

Multiple
Qualitative
Data Sets

Mixed Qualitative
& Quantitative
Data Set

Additional in-
Depth Analysis

1a 1b 1c

Additional Sub-
Set Analysis

2a 2b 2c

New Perspective
Conceptual
Focus

3a 3b 3c

The second category is the analysis of an additional sub-set from the original study (or

studies). The variations of this are covered through cells 2a, 2b, and 2c in Table 4.4.

102

Such an example cited by Heaton (1998) is the work by McLaughlin and Ritchie (1994)

who use multiple qualitative data sets in their secondary analysis about claimants of

Invalid Care Allowance where the focus of the original research issue was on ex-carers.

The third and final category is a new perspective and retrospective analysis of the whole

or part of a data set. This type of secondary analysis involves examining concepts,

which were not central to the original research. The variations of this type of study are

covered through cells 3a, 3b, and 3c in Table 4.4.

The type of secondary analysis that has been used for this research is the category of

new perspective/conceptual focus. I have taken this strategy in my research as my goal

of understanding how SSD is undertaken in academic contexts contrasts with the

original overarching goals of the Usable Image project which are to provide expertise in

a range of UCD techniques and to understand how the software may support user needs

and be further developed to meet user needs (see Chapter 3 section 3.6 for a full

overview of the Usable Image study).

4.6.1 Challenges of secondary analysis

Hinds et al., (1997) identified two key challenges in utilising secondary analysis: 1) to

what degree the available data is amenable to a secondary analysis, and 2) how far the

purpose of the secondary analysis can differ from that of the primary study without

invalidating the effort and findings. Hinds et al., (1997) go on to explain a range of

further issues that must be considered when adopting secondary analysis as a method:

• Consent of those involved

• Completeness and quality of the research data.

• Sensitivity of the research to the context

• Care of the researchers involved

• Currency of the data set

The discussion and background experiences described in Chapter 3 highlights how I

came to the secondary analysis with various experiences including working with the

scientists to record usability feedback and alongside the OMERO developers during

meetings about the Usable Image project. This helped me to understand how I could

103

address the issues Hinds et al., (1997) raised. In my position as the researcher based

within the Usable Image project conducting the secondary analysis of the ethnographic

observations, I had a greater insight into the data creation and more confidence with the

data, since my own research interests were very close to those driving the Usable Image

ethnographic work. The following points now address each issue raised by Hinds et al.,

(1997) in turn.

• Consent of those involved

In working under and within the context of the Usable Image project, the appropriate

consent to use the ethnographic material was acquired, as I was part of the project team

entitled to access the data generated. The consent form used in the project is available in

Appendix 11.

• Completeness and quality of the research data

This aspect, as explained by Hinds et al., (1997), can be managed by an individual

collecting the material. With the role I occupied while working in the Usable Image

project, I was in a position to assess the quality of the data, as I was gathering the

secondary data. The material was assessed based on the qualitative research experience

of Leo carrying out qualitative research, the ethnographer, who was gathering the

fieldwork (as previously discussed in Chapter 3 table 3.4). Her background and

previous training is within social sciences as well as cultural and media studies; she also

has several years of experience as an ethnographic researcher and a lecturer. Therefore,

the ethnographic work collected was of high quality. The observations carried out by

Leo took place over a period of 18 months and ranged from 30 minutes to full days of

observations. They were primarily focused on individual scientists, but also, on

occasion, group activities, such as lab meetings or more informal social gatherings away

from the lab (Sloan et al., 2009). The quality of the data was judged on the depth and

breadth of its value to the study. The data was collected through an open interviewing

method and avoided any methods that would provide a limited or narrow response such

as yes no answers (as highlighted in Hinds et al., 1997). The completeness of the data

was based on the following: condition of the data set, accuracy of transcription,

comprehensibility of the data, and interpretability of the data (Hinds et al., 1997). These

factors were adopted for this research to assess the data. I conducted this work using the

information and experience gained from working within the Usable Image project.

Again, this helped me address many issues. The assessment was informed by the

104

reviews of the ethnographic work described in Chapter 3 section 3.7 that were carried

out by the entire Usable Image team, including myself. When carrying out the

secondary analysis, I could refer to Leo when I needed clarification of any points raised

in the data, and I could also refer to the other two researchers of the Usable Image

project. Because of this process, no pilot study was conducted to assess the data as

reviewing the data and participating in the Usable Image project was deemed sufficient.

• Sensitivity of the research to the context

This is related to the validity of the study. In my role of being the researcher for this

thesis, I was able to gain an understanding and suitable control. This understanding

came from being situated in both projects (see Chapter 4 sections 4.2 and 4.3). This

work provided access to the scientists and scientific software developers, so it implies

that my own research role and work were not separated from the data I was analysing. It

was critical that I participated the range of Usable Image activities (shown in Figure

4.2), as this would give me a stronger sense of the research context.

• Care of the researchers involved

The care of the researcher is most relevant when the subject of the research is sensitive

e.g. This is where the data holds personal information or delicate information such as

can be found when working with medical data. This is explained to be important

because where in secondary analysis the researcher analysing the data will have not

been involved in directly collecting the data. This consequently can leave a researcher

with a disconnection to the research context and consequently a lack of sensitivity with

the data. There is a recognised limitation to how a researcher may react or be affected

by the data. This aspect for my own research was not problematic for two reasons as the

data was not sensitive and for my research and I was not isolated from the process of the

primary data collection.

• Currency of the data set

This helps to address the phenomena and processes that interact and consequently

change over time (Hinds et al., 1992). The question this raised, for the secondary study,

is whether the analysis should be done after or parallel to the primary study. This was

not feasible as my own analysis as it was running at a later schedule to the work carried

out in the Usable Image project. Therefore, I ran my secondary analysis after the

primary study. The issue of the currency of the data set was beyond the control of this

105

work so was not accounted for in this thesis. This is, however, a factor identified to

further improve the quality and understanding of the work and it will be discussed in

Chapter 9 section 9.3.

4.7 Summary

Chapter 4 has covered the scope and details of the methodology, for which I have used

ethnography to collect and analyse my data. The methodology suits my research work

in my individual role, and as a member of the Usable Image project and the OME

project. This has a bearing on the analysis of the research, as the fieldwork analysed

through Chapters 5 and 6 use the fieldwork to situate the perspectives of these projects.

The core components for this research work derive from work by Seidel (1998) and his

three principles of qualitative data analysis: collecting things, noticing things, and

thinking about things. This chapter also documents the factors reviewed and considered

for carrying out a secondary analysis of the Usable Image project data. Chapters 5 and 6

will now apply the method that has been described in this chapter. Chapter 5 covers the

first phase of the analysis of the Usable Image ethnographic fieldwork (study one).

 106

Chapter 5: Usable Image Fieldwork

This chapter analyses the ethnographic stories carried out by Leo, the ethnographer in

the Usable Image project (The full details of and background to the fieldwork are

described in Chapter 4; all the ethnographic work presented in Chapter 4 and

subsequent coding analysis for the fieldwork is available in Appendix 8). Seven key

themes have emerged from this ethnographic work (How they were constructed from

the analysis is shown in the visual diagrams in Appendix 6). The seven themes are as

follows:

• Working life

• Microscopy

• Tools

• Practices

• Workflow

• Collaboration

• Roles

From these seven themes, I have chosen to explain the first five because these are the

ones that have most influenced the analysis. This point is expanded on in the summary

of the Usable Image fieldwork analysis in section 5.4.

5.1 Ethnographic analysis

5.1.1 Working life

The theme of ‘working life’ emerged from the observation and collection of codes of

‘dedication’, ‘alternative career’, and ‘long hour culture’. Importantly, from the

perspective of the fieldwork, this theme generated a sense of empathy to me of the work

that the scientists carry out. The empathy for the scientists was represented in the

analysis by the codes of the dedication scientists have for their work and in the long

hour culture that is part of the working life of a scientist. Extract 1 has been taken from

the fieldwork that I feel best exemplifies this position.

 107

Joseph described, 'People are working like slaves.' Indeed, long hours are

common: it is not unusual for people to spend a good 10-12 hours on a workday

and extra visits to office during weekends. But this doesn’t seem unusual – I was

told scientists around the globe tend to work long hours. PI like Gottfried and

senior staff like Karl also set an example themselves, as Ralf put it: 'Look at

Gottfried or Karl – they come early and leave very late and they always come to

work during the weekend. So we have nothing to complain about.'

Extract 1 - 070831EthnoObs_StKilda-2

Extract 1 first captures the response of Joseph to Leo about the long working hours

scientists put in during the week and how they also visit the office during the weekend.

The perspective added at the end of the extract by Ralf indicates how Gottfried and Karl

(the laboratory PIs) set an example of working long hours, so the laboratory cannot

moan. This reinforced the acceptance of the hard-working culture as Gottfried and Karl

are successful PIs, so they are examples to follow.

The ‘long hour culture’ code was also observed in the two different institutions the

ethnography work was carried out in. Extract 2 below is taken from Skye. It captures

how a scientist had her plans changed and was working all Saturday afternoon and

evening until 10pm. The scientist, Sasha, had to work late because of technical

troubleshooting with the microscope. The final implications of Extract 2 meant that

Sasha would also be working on Sunday morning to catch up further with her work

because of these technical problems with the microscope.

Instead of leaving the building at seven as planned, it was not until after 10pm

that we left the building. Sasha would have an early start the next morning –

8am on a Sunday morning. Extract 2 - 080620EthnoObs_microscope

A further associated code connected to the theme of working life was the ‘dedication’

code. Extract 3 describes Lisa, a post-doc in Gottfried laboratory who is working part-

time at StKilda. The extract describes the support of Lisa’s boss (Gottfried), which she

needs as she has a young baby daughter. The extract explains that because of the

dedication required in the world of science, it would not be possible for Lisa to take a

break. This time away from science would also affect Lisa’s career choice as she hoped

to become a PI and run her own laboratory. Extract 3 implies that the world of science

 108

is so demanding that it makes it extremely difficult for people in it to have a balanced

family life away from the world of science, given the level of dedication it requires.

Extract 3 concludes with the view of Leo, which has been included because of her

underlining point about the required dedication of scientists. This aspect of the extract

has helped to develop the connection for the theme of working life, as concluded in

Extract 3 that as a scientist you need a passion and love of science in order to work the

‘long hour culture’ that science can frequently demand.

To get Gottfried's support to keep a part-time job was also essential for her to

'stay' in the world of science. If she became a full-time housewife for a few

years, it wouldn’t be possible for her to come back – she would be 'out of touch'.

She felt it was almost impossible for her to be so dedicated to her work for

aiming at the professor's position if she wanted to stay long in the university.

This pressure confronts all the academic staff. I believe it is passion and love of

science that makes people dedicated to pure scientific researchers.

Extract 3 - 070831EthnoObs_StKilda-2

The analysis of this theme also benefited from the ethnographic work that was carried

out between two separate institutions. The codes of ‘dedication’ and ‘long hour culture’

observed in both institutions gave insights into the wider scientific culture beyond the

institution in the UK where the main research was being carried out. In this respect,

these two codes became a way to generalise about wider and general scientific culture

practices.

5.1.2 Microscopy

A second key theme to emerge was microscopy. The insight into the scientists’

background work with a microscope aided understanding of the OMERO software as it

revealed the work scientists are involved in with acquiring scientific images. This theme

comprised the following codes: ‘data storage’, ‘microscope setup’, ‘metadata

acquisition’, ‘metadata creation’, ‘microscope training’, ‘learning curve’, ‘microscope

maintenance’, and ‘microscopy’.

This theme also helped to reveal the challenges of working with microscopes e.g. the

 109

procedures required to be followed for setting up a microscope and the regular training

required for microscopes to ensure that the correct procedures are followed. These

challenges were particularly prominent in the 'microscope setup', ‘learning curve’, and

‘microscope training’ codes.

Extract 4 below shows the 'microscope setup' code. The 'microscope setup' code

explored the details and, in many cases, the difficulties they experienced when working

with a microscope. The extract details the laboratory meeting and explains that for

particular DV microscopes, the upgrade of a new chamber allows it to heat up quicker

for the benefit of scientists carrying out live experiments. After the upgrade, the users of

this system will have to be aware of this modification, will have to adapt to it, and

might require brief extra training to understand how to use this new chamber. This

already indicates that the 'microscope setup' code is closely linked to the ‘microscope

training’ code, as will be discussed later in this section. From a personal perspective, the

code also gave me awareness of the work carried out before the image data was

imported into OMERO. This would benefit me later when I worked more closely with

the OMERO team. An instance of this involved understanding the term ‘DV’. The term

‘DV’ means ‘DeltaVision’, which is a particular type of ‘widefield’ microscope. The

DeltaVision microscope produces DV image file formats. The DV file format can be

imported into the OMERO software. Although OMERO supports many other image file

formats, the basic example of the DV file helped me to learn about the scientific image

file formats process that could then be used in understanding the role of OMERO. In

this example I had picked up the particular terms of DV, DeltaVision, and widefield

microscope. This significantly built up a background of scientific terminology of the

domain, and it became rapidly clear that the whole Usability Image/OMERO project

needed to understand the terminology for the scientific context. This aspect of scientific

terminology is discussed in detail in the ‘practices’ code in section 5.1.4.

For some DV microscopes, a new chamber will be introduced to improve

carrying out live experiments (it took long for some old machines, for example,

to switch among different temperatures like heating up to 37'C from a much

lower degree).

Extract 4 - 080620EthnoObs_Microscope

The ‘microscope training’ code again served to capture and underline the technical

 110

difficulties of working with a microscope. Extract 5 provides an account of the

microscope training code. The context of the discussion is with Bruno – a scientist who

has recently had the training for the newly upgraded hardware for the microscope.

Extract 5 shows that even though Bruno is a regular user of the microscope that has

been upgraded, he still requires the training to ensure he works correctly with it. A

reason for this is that 'certain things are done differently'. Extract 5 concludes with

Bruno acknowledging the need for the training. The questions of what how the

‘microscope training’ code is connected with the ‘microscope setup’ code is explored in

detail in Extract 6. This relationship between the two codes is to do with setting up the

microscope, where switching on the microscope in the correct order is crucial. A similar

conclusion has been made here: when a microscope is upgraded, which is the context of

extract 5, a scientist must be aware of any changes to the microscope setup.

Although Bruno was one of the regular users of this machine, it was still crucial

for him to have the training as 'certain things are done differently'. Besides,

Bruno knew about the upgrading and was aware of the necessary training.

Extract 5 – 080620EthnoObs_microscope

A ‘microscope setup’ code that demonstrates the overarching problem and difficulties

experienced for the ‘microscope setup’ is shown in the extract below. The extract is a

discussion between Sasha (a scientist working with the microscope on a Saturday

afternoon) and Leo. However, there is a problem with the microscope’s camera. The

statement by Leo underlines how turning the switches on in the correct order are

crucial. It is this that puts pressure on Sasha to ensure the methodical and correct setup

of the microscope. Although the excerpt mentions that the computer next to the

microscope and the monitor are turned on, Sasha was unable to turn the microscope

camera on based on the places she knew would turn on the microscope. This final

sentence in the extract highlights the unspoken aspect and the need for microscopy

experience and training. This is given the complexity of working with microscopes, the

scientists are challenged if problems arise.

However, it turned out that Sasha couldn't get the camera turned on. There is a

small cabinet beneath the worktop where all the switches are held. And when we

arrived at the microscope room, all were switched off and Sasha was not sure

that they were supposed to be off. To switch them on in the right order seemed to

 111

be crucial. It took Sasha a while to have the screen of the computer on, although

she couldn't get the camera on after trying several times to switch things off and

on again. Sasha checked all the places over the machine that she could think of.

Extract 6 - 080620EthnoObs_microscope

The ‘microscope setup’ code does indirectly explore the aspect of microscopy

experience and training. This is because a scientist’s ability to carry out the necessary

microscope setup is dependent on the experience and training they have received. It is

critical to allow a scientist to solve the problems that arise. This observation led to the

emergence of the related ‘learning curve’ code, as in the analysis I questioned the

difficulties of working with a microscope. Extract 7 underlines this connection and

highlights the principle of the ‘learning curve’ code. The extract is taken from a

discussion between Leo and Helen – a scientist who works infrequently with

microscopes. Leo characterises this as Helen emphasises the difficulty of working with

the microscope system and the learning curve. Given the barrier of the learning curve,

the discussion between Leo and Helen later in the 080620EthnoObs_microscope (see

Appendix 4) highlights how it would be a good idea to pull together the microscope

documentation to help provide a centralised resource to overcome this issue. For the

‘learning curve’ code this point seems even more valid, given the difficulties that a

scientist may encounter. For my analysis, this is linked to the ‘microscope setup’ code

and the problems documented in Extract 6 for turning the microscope cameras on.

It is a very complicated system and once you know how to work from inside out,

it is fine. But it is a steep learning curve to reach that point'

Extract 7 - 080620EthnoObs_microscope

A further example of the microscope theme is shown in Extract 8, which was tagged

with the ‘data storage’ code. Extract 8 simply describes the setup Rachel has for saving

her scientific image data: what image data is saved and where she saves her image data.

In this extract, the terminology used to describe the image data (the ‘raw image’) is

significant for understanding the background to the microscopy work, as this is the

original microscopy image data. It is critical to store the raw image data safely for

scientists’ research work. The ‘deconvolved images’ are images that have undergone

the ‘deconvolution’ process. This process is a computational method used to reduce out-

of-focus fluorescence in three-dimensional microscope image (McNally et al., 1999).

 112

The image data (raw and deconvolved images, her Excel spreadsheets) are

stored in Zeus, hard drive, DVD.

Extract 8 - 080226EthnoObs_Rachel

The insights into the microscopy process were important for the research for building a

more complete view of the microscopy imaging process. These insights have ranged

from identifying the challenges for setting up a microscope to the necessary microscope

training to challenges that helps one to overcome the difficulties of working with a

microscope. This deeper insight and iteration through the data helped to form and to

identify the workflow theme discussed in detail in section 5.1.5.

5.1.3 Tools

A third key theme to emerge was ‘tools’, which covered the range of tools used by the

scientists. The range of tools covers both scientific software and physical scientific

tools. The theme comprised of the following codes: ‘Volocity’ (21), ‘ImageJ’ (10),

‘non-scientific software’ (9), ‘complicated software’ (6), ‘Excel’ (6), ‘PubMed’ (4), ‘lab

book’ (4), and ‘workstation’ (2). The three most frequent codes of the theme ‘Volocity’,

‘ImageJ’, and ‘non-scientific software’ are explored below. The two codes of Volocity

and ImageJ emerged as a part of the coding process that allowed for the breakdown of

the ‘image analysis’ and ‘scientific software’ code. The breakdown of the ‘image

analysis’ and ‘scientific software’ codes are illustrated in Appendix 6. Both these codes

were originally part of the tools theme in the initial analysis. Through my experience

with the OMERO development team, my familiarity and understanding of other

scientific software and image analysis tools developed so I was able to break these

original codes down to describe the software tools. A full discussion of how I arrived at

the cross comparison between the two field studies is explained in Chapter 6 section

6.6.

The ‘Volocity’ code captures the use of the Volocity tool. Three scientists in the

observations (Ivan, Graeme and Rachel) used the Volocity software. The principal

extract of the ‘Volocity’ code captures how the software was used to measure the image

data and subsequently export it as text into Excel. Extract 9 captures this and clarifies

 113

how Ivan uses Volocity for counting his cells (The wider background to Extract 9 is that

the ethnographic observation also describes how Volocity supports Ivan’s results by

allowing him to also count the cells manually). With the results Ivan can then use a

separation application of Excel to work with the data.

Ivan uses Volocity for the counting. This data can be exported from Volocity as

text and then be opened in Excel where he does his numbers to get graphs.

Extract 9 – 20080306EthnoObs_Ivan

The ‘ImageJ’ code describes the use of the ImageJ tool. In the ethnographic piece

070831EthnoObs_StKilda, Leo describes the feedback for ImageJ across an institution.

She describes the role of ImageJ for scientific work in Extract 10 below. This covered

image viewing, image manipulation, and drawing regions of interest (ROI) on an image

to make measurements.

ImageJ is used mostly for initial viewing, basic manipulation such as changing

the contrast, cropping, merging the images among several channels (to detect

co-localisation), and using ROI tools for getting data for, e.g. fluorescence

intensity.

Extract 10 - 070831EthnoObs_StKilda

However, as I worked within the OMERO team I gained a wider picture of the ImageJ

project. This was about both the project and the software. The ImageJ project shared

similarities with the OMERO project as it was also an open source academic research

project. The project was formed in 1997 (Collins, 2007) and has a large online

community that has subsequently extended the functionality of ImageJ because the

ImageJ software supports plugins. Collins (2007) mentions that there are over 400

plugins and that this figure is continually growing. A screenshot of the basic ImageJ

toolbar is displayed in Figure 5.1. The screenshot covers the menu options of image,

process, analyse, and plugins. The plugins label is the option where once installed you

may access the additional functionality that has been added to ImageJ. The range of

plugins for ImageJ can cover tools for basic viewing options to more in-depth

microscopy analyses such as ‘colocalisation’.

Below, the menu options are the icons that represent the various drawing and image

 114

manipulation tools available in ImageJ.

Figure 5.1 ImageJ Main Menu (http://rsbweb.nih.gov/ij/features.html)

Finally for the tools theme, the ‘non-scientific software’ code has been used to capture

the supporting software that was not designed to support the context of science. This

code emerged to raise and highlight further questions about what existing software was

being used and what the positive and negative experiences of it were made. This aspect

is explored in Extract 11 and Extract 12. Extract 11 discusses the Journler software used

by Ivan to organise his scientific folders. The benefit Ivan receives from using this setup

is in the creation of smart folders, which allows a user to group entries according to

inherent properties such as title, category or date. As concluded in Extract 11, Journler

will automatically update the contents of the folder if an entry’s properties or a smart

folder’s criteria is changed.

Journler’ software for a comprehensive organisation. Whenever one changes an

entry's properties or a smart folder’s criteria, Journler automatically updates

the content of the folder to reflect those changes.

Extract 11 – 20080306EthnoObs_Ivan

Extract 12 further captures the positive and negative experiences of using Journler.

Extract 12 explains that the positive feature of the software is its ability to link folders

as it allows Ivan to pin related information together. Ivan does this by clicking on the

folder links to view the image movie that is associated with the microscopy notes. The

drawback of the software though is that it does not support the ability to link to other

applications. This problem is explained from Ivan’s view in Extract 12 as he is required

to import his Excel files into Journler to create a link. What is missing for Ivan in the

Journler software is the ability to open applications without having to import the file.

This would allow Journler to become a more central platform where the data can be

stored which will consequently allow a user (in this case Ivan) to work with their data

easily with another application.

 115

One useful feature of this software is that the entries among folders can be

linked together. For example, one of Ivan’s notes of microscopy data is linked to

a time-lapsed movie. Clicking this link will bring out the conditions that he

noted in another folder. But the software only supports links among it, NOT with

any outside link. As a result, he has to import his, for example, Excel files, into

the system to make a link.

Extract 12 – 20080306EthnoObs_Ivan

An additional outcome for the ‘non-scientific software’ code was that helped for the

design of OMERO in terms of making appropriate recommendations. The example

shown in Extract 12 of promoting the ease of integration with other scientific

applications for OMERO was a prime example of this design recommendation.

5.1.4 Practices

A fourth key theme to emerge was ‘practices’. This theme covered a wide spectrum of

codes, which led to a further iteration of analysis and breakdown of the theme during

the analysis. Subsequently, the ‘workflow’ theme emerged, and this will be described

later in section 5.1.5. The codes under the ‘practices’ theme, with their associated

occurrences, are as follows: file management (20), image analysis (14), practice (12),

deconvolution (3), file naming (8), scientific discovery (1), visual organisation of data

(2), health and safety (2), techniques (3), lab book (4), image centric (3), image viewing

(7), new ideas (1), experiment (9), presentation (1), protocols (1), and publication. The

three most frequent codes in the ‘practices’ theme of file management, image analysis,

and practice are discussed below.

The code of ‘file management’ was frequently observed throughout all the ethnographic

data. The understanding taken from the code and its frequency was a sense of how

difficult a challenge it is for scientists to manage their data files. The overarching point

of the code is the organisation of a scientist’s data. Extracts 13 and 14 below provide an

account of the actions a scientist takes for file management. This code highlighted how

a scientist struggles with the amount of data but it also showed how a scientist manages

these files.

 116

Extract 13 is a conversation between Leo and Ivan; the latter explains that he uses a

structured folder system. When Leo probes further about how well the software

available to Ivan helps in terms of managing his data, his response includes ‘ok but not

so good’. The extract also underlines Ivan’s problems and his mood during this with his

final remark of ‘Always complicated, always’.

Leo: How do you organise your data?

Ivan: Make a folder.

(Ivan creates multi-layer folder system to keep his data – many of them are well

over ten layers.)

Leo asked how does various software that Ivan uses help with his work,

Ivan answered: ‘It is ok, but not so good.... Always complicated, always...’

Extract 13 – 20080306EthnoObs_Ivan

An insight into the type of complications Ivan experienced is given in Extract 14. Leo

follows up with a comment of the naming structure of Ivan’s files and folders. Ivan says

that there is no standard procedure for this that he is aware of and, as the extract

explains, file naming is typically being done based on what works for an individual

scientist. However, despite this individual file naming, Ivan highlights the problems he

is still experiencing with finding his data and indicates that even searching for his data

can be difficult because he often forgets how the data he needs to find was named.

Leo noticed Ivan’s naming system of his files and folders. Ivan said: ‘I don’t

know what is the standard way. I always name them in the suitable way for

me...’ However, it is still not easy to find what he needs. Ivan said, ‘Sometimes I

feel like using the “searching” box to search for my data.’

Leo: Does it work?

Ivan: Only if I remember how I named them but I don’t always do....

Extract 14 – 20080306EthnoObs_Ivan

The implication of the ‘file management’ code was especially useful for both the

OMERO software and the OMERO development team. This was because the

ethnographic observations helped to show how the scientists currently managed their

image files and to reveal where there were critical problems (e.g. Extract 14 highlights a

 117

problem with remembering a term a scientist can search for). This could help inform the

system design for OMERO because the file management and associated tasks are the

core functionality of the OMERO software.

The ‘image analysis’ code emerged as the code to identify the step after the microscope

images were acquired and a scientist was examining the data. The code was also

identified to be relevant for the development of the OMERO software because the

‘image analysis’ code was a feature that was due to be supported in the software. This

point is shown in Extract 15 where Levi is explaining to Leo that the OMERO software

will support the ability to draw the regions of interest on an image. Levi describes the

regions of interest as the ability to draw shapes on an image. Scientists can then use this

function to carry out basic image analysis. This aspect of the analysis is discussed in

further detail in Chapter 6 section 6.6 in the cross analysis between the two different

fieldworks.

Levi explained to me that in future, maybe with 18 months, OMERO will be able

to have pretty sophisticated functions to draw different shapes and measure

them.

Extract 15 - 070316EthnoObs_Calum

Extract 16 below provides a general account of the role of the ‘image analysis’ code.

The extract describes Ivan making a measurement from two parts of a cell, namely the

chromosome and the spindle. The context of the extract is a situation where Ivan is

talking about his images with Leo and explaining his steps of working with them. The

extract reveals what the ‘image analysis’ code represents as a particular phase of work

for all scientists. A further point of Extract 16 is the use of particular scientific

terminology to describe the measurement for the image analysis. The scientific

terminology is discussed in the specific ‘practice’ code and described below. However,

for this extract, it is a further example of how, when working in the scientific research

domain, the terminology used can be overwhelming. In this instance, the terminology of

‘chromosome to the spindle’ refers to two parts of a cell, when the cell is dividing.

One of the measurements that Ivan does, for example, is when does this happen,

what’s the distance from this chromosome to the spindle.

Extract 16 - 20080306EthnoObs_Ivan

 118

The initial perspective of my analysis had focused on the aspects relevant to the Usable

Image project and OMERO work (e.g. frequent codes were ‘file management’ and

‘image analysis’ – see Appendix 6 for the illustration of the first pass). This first

perspective was missing the specific details describing a scientist’s work. When looking

back over the data, it was always challenging to understand and read, given the type and

amount of details in the scientific practice described. To account for this difficulty in

the analysis, the ‘practice’ code was formed to capture the scientific terminology and

the details of a scientist’s work. Extract 17 below describes the background of the

imaging work that Ivan carries out.

The purpose of the extract is to underline the range of complex scientific terminology

related to a scientist everyday’s work that was found in the ethnography work and that

covered the ‘practice’ code. The key terms used in extract 17 are chromosomes,

metaphase, and spindles. The scientific terms are not easily understood without having a

scientific background. However, the ethnographic work covered scientific work that

was carried out by scientists with a PhD or a qualification at a post-doc level, so their

level of biological scientific expertise was vast in comparison to my own. A full

understanding of the research work that was being carried out was a challenge but it

was one that could not be overlooked in my analysis.

Ivan images live yeast cells to observe the transport behaviour of chromosomes.

To take one of his images as an example, in this case Ivan creates an artificial

condition during the cell metaphase so that one of the chromosomes will stay

somewhere distant from the spindle. Usually the chromosomes congregate

around the elongated spindle.

Extract 17 - (20080306EthnoObs_Ivan)

To conclude, this ‘practice’ code emerged because of the scientific context and served

to account for the complexity of the environment. As already stated, a general

understanding of the scientist’s work was important, even if not complete because of

my own lack of expertise in microscopy and biology. This point is exemplified in the

work by Chilana et al., (2010), who underline the problems of working in complex

domains and the challenge of domain-specific terminology in terms of how it is difficult

for UCD work. This challenge was met in my research in three ways: 1) the support of

 119

the range of methods used by the Usable Image project (see Chapter 3 section 3.6) that I

was involved in helped inform and build an awareness of the key concepts; 2) the

regular contact with the scientists allowed for the formation of a general understanding

of the scientific terminology and gave a general overview explanations of the scientific

research work; and 3) continually coming back to the fieldwork analysis of the work

over a period of time helped to overcome the difficulty of the complex environment.

These set of practices were also applicable to when I moved over to the OMERO

project, which is examined in Chapter 6.

5.1.5 Workflow

The ‘workflow’ theme emerged as a combination of several codes and observations of

the work the scientists carried out. After the initial analysis of the Usable Image

fieldwork shown in Appendix 3, further questioning went on to break down the larger

theme of ‘practices’. Through the analysis, phases of work were recognised to be

central to a scientist’s workflow for image acquisition and image analysis process. This

awareness was taken from the ‘image analysis’ code (see section 5.1.4) and the

‘workflow’ theme was constructed around this code. The codes that emerged which

subsequently formed the workflow theme are shown in Figure 5.2a. The linear layout of

the codes from left to right represents the steps of work and the order of the process the

scientists are involved in. The codes are protocols, experiment, microscope,

deconvolution, image viewing, image analysis, Excel, and publication. The theme has

been constructed based on the observations taken from the analysis and not the

frequency of the individual code. All the codes included in the workflow have formed a

broad representation of the imaging process to help understand the workflow of the

scientists who work with microscopy. This theme has provided a wider picture of a

scientist’s work practice, with the added benefit of understanding where OMERO fits in

to this process. OMERO is illustrated in Figure 5.2a by the red rectangle that

encompasses the two codes of image viewing and image analysis.

Figure 5.2a Workflow theme

 120

The first two codes ‘protocols’ and ‘experiment’ represent the actual scientific

laboratory bench work. Extract 18 presents an example of the ‘experiment’ code. The

role of this code was to capture the steps and explanations provided in the analysis of a

scientist’s experiment work. In the extract below, Leo has described the goal of Ivan’s

experiment and notes that the multiple experiments Ivan is carrying out help to form the

answers for his wider research question.

The purpose of such experiments is to see the percentage of chromosome loss in

normal (called ‘wild type’) vs mutant cells. The cells used here are just for this

experiment and won’t be imaged under DV microscope. To say in another way,

this is another assay for the research question that Ivan is interested in – the

phenotypes of mutant and wild type cells. In general, the mutant cells don’t lose

chromosomes as wild type cells do.

Extract 18 - 20080306EthnoObs_Ivan

The third code in the ‘workflow’ theme is ‘microscopy’. This theme was discussed in

section 5.1.2 and was placed in the ‘workflow’ theme because it captures the central

tool for imaging and the associated codes that emerged within the ‘microscopy’ theme.

Section 5.1.2 documents several of the codes from the microscopy theme.

The fourth code of ‘deconvolution’ was a specific term learnt during the analysis

process, which documents the use of a computational method to reduce out-of-focus

fluorescence in three-dimensional microscope images (see Extract 8 in section 5.1.2).

Extract 19 provides further context to the deconvolution process. It is taken from a

discussion between Leo and Rachel, a scientist who explains that her laboratory has

their own deconvolution software (Volocity). It is taking a very long time to deconvolve

her images, so with their own version of the Volocity software her laboratory is not

dependant on using the shared workstations where it means sharing Volocity with

multiple laboratories in the institution.

Newland's lab bought three packages of Volocity: Deconvolution, Visualisation,

and Measurement. To have their own licensed Deconvolution will save them

time for using the workstations downstairs, which need to be booked in advance

– this is especially time-constraining and consuming for Rachel, for example, as

 121

she images movies and they sometimes need a long time to get deconvolved.

Extract 19 – 080226EthnoObs_Rachel

The fifth code of ‘image viewing’ covers the software that was used to visualise the

images. Extracts 20 and 21 below show Volocity as the visualisation tool for Rachel

and Adobe Photoshop as the one for Frank. Extract 20 shows how Rachel uses the X

and Y axis in the image viewer to pick up on the spots on the cell. Extract 21 shows the

alternative non-scientific software to the Volocity software.

For Rachel, she mainly uses Volocity's visualisation to view her images. And the

ability to use X and Y axis to view her images is important as, ultimately, Rachel

is looking for the fluorescent spots (nascent RNA) and sometimes they are very

weak and therefore viewing them from a different angle will help her to spot

them better.

Extract 20 – 080226EthnoObs_Rachel

Frank was viewing his images. He used Adobe Photoshop and on his shelf were

a few reference books about Photoshop.

Extract 21 – 270207EthnoObs_Frank

The sixth code of image analysis represents the phase of work where a scientist would

carry out an analysis of their image data. The activity of image analysis can cover

drawing regions of interest on an image in order to quantify the intensity of a structure

in the cell for example.

For the details of the code please see Extract 16 section 5.1.4.

The seventh code, ‘Excel’, is used to capture the scientist’s use of Excel. It was placed

in the workflow theme as the code captured a general tool used in the later stages of a

scientist’s work. Extract 22 documents how Arthur uses Excel in his presentations.

Extract 23 also presents the link of the ‘Excel’ code to the image analysis stage. Rachel,

the scientist, has tracked down the spots in her image; she has marked down a ‘1’ in an

Excel spreadsheet and has then added them to another spreadsheet to calculate how

many cells are expressing a specific marker at each time point. What was gained from

this particular extract was the value of the image analysis software and how closely they

need to work with further analysis tools such as Excel, which allows a scientist to do

 122

further analysis. The ‘Excel’ code highlights that scientists need to perform further

image analysis on their data (i.e. for quantifications that are often needed for their

publications). This was a very important fact that gave me greater awareness for

OMERO on how to integrate image analysis tools and what output file format to use.

Arthur uses Excel for his numbers and graphs and Illustration for presentation

which works well to handle graphs.

Extract 22 - 080306EthnoObs_Arthur

After all the counting is done, she will input this information to an Excel file.

Extract 23 - 080226EthnoObs_Rachel

A weakness of the ‘workflow’ theme is that it represents an abstracted view of the

ethnography work so the rich picture built through the fieldwork is lost. It is difficult

and problematic to convey the move through each of the codes in the workflow without

having been fully immersed in the data. Because of this, I have reviewed the existing

literature to seek similar concepts and principles, to both situate the theme against

prevalent concepts and examine my own proposal of the theme for my analysis.

Being aware of this, I went back to one of the scientists interviewed in the ethnography

study to question how my interpretation of their work holds up. I spoke with Sasha and

explained that I wished to have her opinion on the workflow theme. I presented my

coding process and the full list of codes created from the analysis (as shown in the

diagrams in Appendix 6). I conveyed how I had arrived at the code terms and then

selected the codes that I felt worked to capture the image acquisition and image analysis

process. Here are her comments:

“The different steps in the workflow diagram seem correct to me. All the

scientists using microscopy for an experiment will have to go through those

steps, except in some cases the deconvolution step. This step is a bit more

specialised. But I would still leave it in your workflow diagram. For the Excel

step, I think this one is part of the Image Analysis step. And as a general thing, I

would actually change the layout of the diagram from this rectangle box to an

arrow shape, so it shows the progression in the workflow.”

Extract 24 - Sasha 2010

 123

The revised figure that has accounted for the comments made in Extract 24 is illustrated

in Figure 5.2b.

 Figure 5.2b Revised workflow theme

Before going on to discuss the summary of the analysis I shall examine two final

sections of work for the Usable Image fieldwork. First, a short examination of existing

scientific ethnographic work to help further validate my own analysis. Secondly, the

findings from my time working within the Usable Image project. The final summary of

the Usable Image analysis is in section 5.6.

5.2 Existing scientific laboratory studies

Latour and Woolgar (1979) and Latour (1987) have analysed various science-based

studies. The work by Latour (1987) examined how science and technology must be

studied "in action". Because of the difficulties of understanding science and technology,

it is argued that it must be studied where the discoveries are made. With reference to my

own research, this reinforces the use of ethnography for the research. Latour (1987) also

discusses how scientists work in a ‘black box’. This is a metaphor created by Latour to

define how a scientist draws a black box around parts of their day-to-day complex work

such as the methods and techniques that they use. The inner details of the complexities

of the black box are then not required to be remembered by the scientist. The question

of complexity for the scientist is reduced to how the work needs to be done and how it

is used in their everyday activities. In the context of my own research, this can be linked

with how the development of digital microscopy imaging has evolved to make the

image acquisition easier so that scientists don’t have to know all the theoretical

principles of optics to use a microscope.

The earlier work by Latour and Woolgar in the book Laboratory Life (Latour &

 124

Woolgar, 1986) examines the scientific practice of neuro-endocrinology at the Salk

Institute. The work constructs a picture of interconnected practices that form part of

laboratory life. A model constructed in the work is the cycle of credibility, shown in

Figure 5.3. The cycle of credibility demonstrates the continual cycle in which a scientist

works. The beginning of the cycle highlights the need to work to find a grant. After

receiving money, the time comes to buy the scientific equipment, to acquire the data, to

form a scientific argument, to publish articles, and to gain scientific credibility. Then,

the cycle starts over again. By this aspect of credibility, Latour (1979) underlines

scientists’ motivation. The cycle of credibility represents the conversation between the

capital required for scientists to progress within the scientific field with the benefits of

the information. Latour and Woolgar (1986) highlight “The cost-benefit analysis applies

to the type of inscription devices to be employed, the career of scientists concerned, the

decisions taken by funding agencies, as well as to the nature of the data, the form of

paper, the type of journal and to the readers possible objections.” (Latour & Woolgar,

1986, p. 238). The cycle of credibility is a key point for the Usable Image ethnographic

work. The work presented by Latour (1979) is critical for two aspects of:

1) In combination with the fieldwork analysis, it has helped in developing a level of

empathy for understanding scientific practices (the role of empathy is discussed in

further detail in section 5.3.2).

2) The diagram (shown in Figure 5.3a) has helped to further ground my own

understanding of the analysis of the scientific work and the principal goal of

credibility within the scientific community that drives them. The cycle of

credibility also supports the ability to put the ethnographic work into perspective as

it can take place over a period of years, depending on the length of funding

received for the scientific work. The publication is the culmination of the work’s

central results, which a scientist will be working towards over a certain period –

omitting a large portion of the data amassed throughout this period.

 125

Figure 5.3a Cycle of Credibility (adapted from Latour, 1979)

This understanding from the cycle of credibility was used in combination with the

workflow theme (as discussed in section 4.1.5) to build up a further level of

understanding of scientific practice. My own ‘workflow’ theme was emerging from my

data as I sought to explain the steps scientist take when working with image acquisition

and image analysis process. The cycle of credibility could situate the scientific working

process on a more generic scale, as the cycle of credibility provides a wider over

overview of the steps of the scientific process. From the start (funding) to the end

(publishing), a scientist needs academic credibility. From my own analysis, although

with a much smaller scale of data and linear set of actions, the ‘workflow’ theme could

be positioned within the cycle of credibility as is shown in Figure 5.3b. The ‘workflow’

theme was formed/focused on the actions of scientists who work with a microscope.

Thus, any further comparison to the wider context of the cycle of credibility has been

limited.

 126

Figure 5.3b Cycle of Credibility with OMERO workflow

(Steps of the workflow: 1, Protocols; 2, Experiment; 3, Microscope; 4, Deconvolution; 5,

Image viewing; 6, Image analysis; 7, Publication. Adapted from Latour, 1979)

More recent work by Shankar (2004; 2006) has examined an academic animal

neuroscience laboratory. Shankar (2006) focuses on the requirement for re-thinking the

area of scientific knowledge management. This work investigates the future

development of technologies for scientific work involving the creation, sharing, and

managing of scientific data so that it may be more purposeful. The ethnographic

contribution of the work is in the awareness of record keeping for scientific work.

One particularly significant aspect described in Shankar’s (2006) work was that she had

previously studied and worked in a laboratory environment (Shankar, 2004) and that

she came into the ethnographic work with an undergraduate degree in molecular

biology along with the first part of a graduate degree in biophysics. Therefore, she

explains that the scientists could explain certain concepts with her being able to

understand without extensive explanation. This point was picked up on and seen to be

relevant to my own analysis as the ‘practice’ theme identified aspects of the

ethnography where reading and understanding the scientific terminology was

challenging for me as a researcher without any scientific background. This point was

significant for my research as my own analysis encountered the challenge of scientific

terminology in the ‘practice’ code (see section 5.1.4). So contrasting my work with

Shankar (2004), she had the vantage point of an understanding of the complex

 127

terminology within the scientific domain. This allowed her to enter the field as a

research closer to the position of a native scientist, whereas my own basic learning of

the scientific terminology happened over a longer period of time. Therefore, the work

by Shankar (2004) contrasts with my own research as the basics of the scientific domain

and terminology were acquired through time in the OMERO project.

Star and Ruhleder’s (1996) work studies a dispersed virtual laboratory system, the Worm

Community System (WCS), to link the work of over 1400 biologists. It was both unique

and complex because the WCS was able to function in three different ways for different

groups: 1) as a set of digital publishing tools; 2) as a tool for problem solving and

information sharing; and 3) as already established infrastructural laboratory tools. The work

by Star and Ruhleder (1996) was important for my own research as it covered the

permutations of how the scientific software functioned in several different ways for the

three groups. The relevance for my research is described in Chapter 6 section – where

the OMERO scientific software development moves between the development focus of

functionality and infrastructure of the OMERO software. The similarities made have

been in how a scientific software development team may manage moving between

different areas and groups for the scientific software development process.

5.3 Supplementary fieldwork

Along with my analysis of the fieldwork, my work and experiences within the OMERO

project and the Usable Image project also provided additional insights for the research.

The supplementary information has been categorised into two aspects: 1) the co-

location benefits examines the advantages of working alongside the OMERO SSD

team; 2) the implementation of UCD in OMERO project via the Usable Image project.

1. Co-location benefits

2. Contribution of UCD in the Usable Image project

5.3.1 Co-location benefits

In the OMERO team, several of the Dundee-based software developers have been

working in a scientific context from the very beginning of the project. I questioned this

specific issue of SSD embedded working in the OMERO project because of the

 128

previously examined work by De Roure and Goble (2009), and the six principles of

designing for adoption which had emerged from the observation of their own team for

the myExperiment project (See Chapter 2 section 2.7). The project run by De Roure and

Goble (2009) operated with two core developers, with a larger team around them

providing occasional support for specific research communities.

The co-location for the OMERO project gave the OMERO developers an insight into

the microscopy and scientific work. This developed over a long period throughout the

OMERO project. It has also helped to support the relationship between the OMERO

software developers and the scientists. The co-location was brought about because of

the OMERO scientific software developers being in the same building and, in some

instances, the same office as the scientists. The co-location has also brought about a

social aspect that has been discussed in Chapter 3, which included coffee breaks and

attendance at science talks and outreach events. This has ultimately meant that the

OMERO development team were not cut off from the end users of the software.

There was, over time, variation in the developer co-location with the scientists in the

Wellcome Trust building. This was a reflection of the OMERO project’s growth and,

also, the acknowledgement of the requirement to accommodate further disciplines

within a scientific institution. Figure 5.4 below highlights the levels of co-location over

time that the OMERO development team have been exposed to. The front view of the

Wellcome Trust building highlights the scientists’ offices in orange and the software

developers’ offices in green. The left panel of the figure shows the initial office co-

localisation (the offices having both scientists and developers are orange with a

surrounding green box), and later on, the building co-localisation (right panel).

 129

Figure 5.4 Timeline of Co-location through OMERO

Co-location can have a significant benefit for the work between the scientific software

developer and scientist. One of the developers (Levi) was based in an office with three

other scientists to conduct the early development work of the OMERO analysis tool.

However, in discussions with the OMERO team, it emerged that a significant scale and

period of the software developers being directly embedded may bring unwanted

consequences to the software project itself. Although there are potential immediate

starting benefits of beginning the development process embedded with the user

community, the OMERO team highlighted that, with a period of sustained co-location,

the software development can go astray with the requests of the local scientists and so

lose sight of the wider scientific community. A consequence from this observation is the

proposal of simply moving the developers to be embedded with the scientist in the way

highlighted by De Roure and Goble (2009), who propose embedding developers with

users and users with developers side by side for long periods of time. Otherwise, there

could be negative side effects from this, which could cause a level of divergence within

an SSD project. In extract 25, Yvan confirmed that:

“The early development of the feature was benefiting from the fact that the

scientists and developer were co-located. However, over a longer period, it did

 130

begin to have a negative effect on the development of the feature. In part this

was due to some of the technical foundations as well as the influence of the co-

located scientists on the developer and the ability to request improvements only

targeting their needs. This can be noticed in the current status of the feature and

is part of the underlying requirement and need to re-develop the feature.”

Extract 25 - Yvan 2010

The value of having the developers co-located in the same building and having access to

the scientists was observed through fieldwork. A further advantage for developer-

scientist interactions is the immediate feedback on small bugs/requirements. The extract

below discusses suggestions from Callum, a scientist, about his problems with the

OMERO measurement tool. Extract 26 deals with how he expects to view the image in

OMERO, which is as they were captured from the microscope. Callum emphasises his

point by his final statement: ‘Stop fiddling with images before we have a chance to see

them!’ In Extract 27, Steve and Yvan had direct communication with Becky (another

scientist). Like Callum, she tries to explain to the developers that the settings used on

the microscopy to capture the images should not be changed when being imported to

OMERO. It is this direct feedback from working in a co-located environment that has

exposed the OMERO developers to the scientific views and challenges of the users of

the OMERO software. This would reflect the advantage described by De Roure and

Goble (2009) of the benefits of the first-hand experience of working in the scientific

work environment.

Callum requested to stop the default scaling. When images are imported, Yvan

put on a default scaling intensity, ‘which is far too high’. Both thought ‘it should

come as it is’, and ‘images should not come as upside down’ (flipped on the

horizontal axis). Images should be the way that they were captured in the DV.

This principle should apply to flipping images and intensity. Images should be

imported as they were in DV. ‘Stop fiddling with images before we have a

chance to see them!’

Extract 26 – 070605-1UserObs notes

Scientists want their raw images in the original formats. The things that Steve

and Yvan apply might make sense to them, but not to scientists. They mentioned

that they told Miles about this before. Becky argued that they had a reason to

 131

make the setting on the microscopy to capture the images and they shouldn’t be

messed around after being imported to OMERO. The fiddling decision should

be in the hands of scientists. Extract 27 - 070605-1UserObs notes

The interactions between scientists and software developers may only be a small portion

of the potential scientists’ user base for the OMERO software, but the interaction of the

OMERO software development team has supported the understanding of the

development of the OMERO software. Through the teams interactions and

communication with scientists, the developers have been provided with real-life work

practice examples to draw on. The physical co-location between the scientists and the

scientific software developers gave instantaneous feedback to the scientific software

developers and it helped them to gain direct insight into the scientists’ perspective.

Through the range of channels for user feedback, either face to face or the UCD

methods of the UI project, the OMERO team could understand why the software did not

fit the workflow or function as expected. Extract 28 below is an example of this where

Levi and Yvan are working with Becky, a scientist who has lost information in the

measurement tool provided by the OMERO software. She explains the situation to those

who are trying to help diagnose her problem.

Becky lost her lines while fiddling with things. Levi suggested to close and

reopen measurement tools and the lines didn’t come back. Becky defended that

this couldn’t be her machine as she shut almost everything from the screen and

she admitted she was responsible in the past as sometimes she had 100 windows

open. Levi and Yvan reckoned this had something to do with ‘zoom to fit the

window’.

Extract 28 - 070605-1UserObs notes

A further example of the advantage of co-location and working collaboration was in the

additional expertise and help a developer provided. Extract 29 below explains the

context of how Levi the OMERO developer ended up working alongside Callum – the

scientist in the same office. This extract was taken from my analysis under the code of

‘scientist developer co-location’.

There was a reason for Levi, one of the developers, to sit with Callum, a

scientist, apart from the limited space within the two small developers' offices

 132

upstairs. When Anthony joined the team to take over some of Yvan's duties, it

seemed a good idea for him and Yvan to sit together and Levi to come to the lab.

Extract 29 - 070316EthnoObs_Callum

The observation goes on to explain that Levi was also helping Callum in his work in

terms of using the existing image analysis tool called CellProfiler. This is described in

Extract 30. It was this expertise regarding the CellProfiler tool that allowed Callum to

do simple programming.

Levi had been helping Callum with imaging measurement using the software

package 'CellProfiler'. Levi's role in the team was developing the analysis

(measurement) ability of OMERO. With Levi's help, Callum was able to have a

go with ‘CellProfiler’ – the parts that were useful for him. He could do some

simple programming.

Extract 30 - 070316EthnoObs_Callum

The benefits of co-location and working collaboration for UCD have been the positive

feedback that the user observations have provided for the UI design. The outcomes of

UCD aid the continued evolution of the design, the development of the user interface

and the establishment of a clear workflow through the system.

However, along with the advantages of being co-located with the scientists, the co-

location can also bring unfavourable consequences for the context of the SSD

environment. With co-location comes raised expectations of local users – as highlighted

by De Roure and Goble (2009) (see Chapter 2 section 2.7) the provision of “favours

will favour you” may help the project development team but also bring about

compromises for the development of the software. This recommendation is met with

some trepidation because of the nature of SSD projects and the scope of permutations

this has on how the users may or may not be managed. The design principle of

managing favours through the time and growth of a project can pose more questions if

not carefully managed against the evolving size and scale of the project.

As previously outlined by Hine (2006) in Chapter 2, the success of the software can be

made more complex in the deployment of the software, as a successful deployment can

depend on an individual scientist, a laboratory, or a project. It is this ‘tragedy of the

 133

commons’ as referred to by Segal (2009) that impacts on the requirements of the

software both in agreements and priorities. Because of these implications of the

deployment and uptake of the software, the value of being co-located for the research

offered a unique insight into the scope of the issues such as in the additional expertise

and help a scientific software developer may provide and benefit for scientists. In

contrast to this, there is a recognised disadvantage, as the user community will not have

a single voice, so this sets out further complications for an academic SSD project (i.e.

one laboratory may want features A, B, and C, yet scientists in another laboratory may

request features X, Y, and Z and complain the most about directing a project towards

their own scientific agenda).

In creating a co-located environment for software developers, extensive consideration of

the local influences that may direct the project team must be given. There is a

fundamental requirement to balance the information gained from the local context with

the information of the wider community. This was demonstrated through a prolonged

co-location between the scientists and software developer within the office level, as

previously shown in Figure 5.4. The development of the analysis features for the

OMERO software throughout this period highlighted the wider implications of this.

Through the co-location of the software developer and scientists in an office within a

laboratory, the scientific software developer benefited from easy access from the initial

proof of concept phase of development. In my discussions with the OMERO software

developers directly involved in the development process, it became clear that the

development work and process in question was built upon a proof of concept that grew

without a suitable technical foundation. This was, due to the co-location of the

developers and the scientists. However as depicted in Extract 25, problems were also

experienced by the local users, who themselves became ‘local community champions’

(a term coined by De Roure and Goble (2009)) of the OMERO software. These are the

local advocates and day-to-day users of the software. Through the prolonged exposure

of the OMERO software and involvement in UCD activities scientists can begin to

expect the software to be of benefit to their own scientific practice. With this

understanding, it reinforces the requirement for understanding users when making

software changes, as highlighted by Kensing and Blomberg (1998).

This work practice of scientists may be referenced back to the concept of the ‘black

box’ working as defined by Latour (1987) and as highlighted earlier in this Chapter

 134

section 5.2. This is not a personal criticism of scientists as the majority appreciate

scientific software developers’ time constraints. However, scientists’ concerns do not

always consider the bigger picture of the software development project or the priorities

and deadlines; instead, they focus on their own scientific work and deadlines.

The potential problem this presents for an SSD project is an expectation to always help

fix scientists’ problems with the software. This may then translate to scientists’ refusal

to participate in any potential further involvement in the software development project.

This issue is also significant when the UCD-led work is separate from the software

development team. The direct contact with the scientists, through the range of usability

studies I as the researcher have been involved in, provides an ideal opportunity to

communicate on behalf of and for the benefit of the software developer.

The two-way relationship between the project team and its scientific users requires a

high level of trust to be built and continually consolidated for the project’s growth. This,

in turn, can affect and provide a misrepresentation of the SSD project as a whole, which

has to consider and satisfy both local users and the wider scientific community. Further

longer-term questions are considered in relation to the way incremental development

and incremental content provide an immediate return for those providing the feedback.

The approach and practices of incremental development in the SSD context has

previously been discussed by De Roure and Goble (2009) in Chapter 2 section 2.8. One

of the practices they outline promotes incremental development to establish incremental

content. This practice was so that the scientists get core functionality and the software

has quicker user uptake of the software. Further work by De Roure et al., (2010)

describes their type of scientific software development to be for an Agile web site so the

project may afford this type of software development approach.

The longer-term evolution and sustainability of a type of project like OMERO (an

enterprise level, academic SSD project) may be more problematic. It would need to be

able to meet the demands of the software development team regarding the sustainability

for this type of process. A specific concern that has arisen from the fieldwork in the

OMERO project is the distinction in the development between the software features and

infrastructure. The OMERO software is dependent on a client-server setup, and,

consequently, a sufficient level of development work must cover enough for the

technical infrastructure. This can present a major challenge in presenting periods of

 135

time where end users of the software can be at a lower level of priority in the software

development process. The nature of incremental development and incremental content

does not lend itself to infrastructure development as the end users are not seeing an

obvious benefit or return on the work for themselves. Because of this the software

development process requires a level of flexibility to allow for shifts in priorities, when

necessary. The questions being asked of the UCD process in this context require a

similar degree of flexibility and adaptability to the questions that may arise from the

needs of the software development process. There exists a key balance between keeping

local users contented yet ensuring that they do not take away the project’s focus for the

community goals and the uptake of the software. This can be critical for the success of

an academic SSD project. This process of working between the software features and

infrastructure has been identified to be dependent upon managing the constraints

through the uptake of the software with local users, against the management for the

wider uptake of the software in the community. The central problem that was

appreciated through this work was to ensure that the scientific software does not

become a best spoke solution for the local users.

5.3.2 The contribution of UCD to the Usable Image project

Applying UCD to the scientific context has demonstrated immediate and short-term

problems that scientists encounter with their workflow when using the OMERO

software. The effects and value of user involvement in this work correspond to other

work by De Roure and Goble (2009), Thew et al., (2009), Letondal (2005) (See Chapter

2 section 2.9 for the wider discussion of these). The following extract, taken from a user

observations conducted within the Usable Image project, demonstrates the type of

insight gained from the UCD work. Extract 31 discusses the feedback from Jody, a

scientist working with OMERO, and it shows the frustration she has when the OMERO

login screens covered up her screen space.

Jody was annoyed at the modality of the Importer and Insight login and splash

screen windows, which stayed on top of all other windows.

Extract 31 - OMERO USETEST 160507

The OMERO usability testing (as shown in Chapter 4 Figure 4.1) created a feedback

 136

loop for the OMERO development team in the form of the Usable Image weekly

evaluation cycle steps of: scientists’ observations of the software, and a short turn

around on issues/feedback gained from scientists’ use of the software. This has

demonstrated isolated usability problems at the Mesoscopic level. But as argued by

Spinuzzi (2003), when design focuses on problems on a particular level, the problems

on the outstanding levels of Macroscopic and Microscope are related to the layer under

investigation. Thus, if the focus for UCD falls on a level that does not take into account

the outstanding levels, the design cannot appreciate the full scale of the problem. This

issue also relates with the previously examined work in Chapter 2 by Battle (2005) and

the pattern he describes of a ‘foot in the door for an external usability group’. The

pattern describes how UCD is introduced into a software development group via an

external UCD consultant role. His work recognises the limitation of this pattern because

UCD is only used in the latter phase of the software development cycle.

A brief assessment of the UCD-led methods applied within the context of the Usable

Image project is presented in Table 5.1. The range of methods used in the ethnographic

work has mostly helped to inform the research work and to raise user awareness about

OMERO. However, as highlighted in my embedded work within the Usable Image

project, one of the central problems with Leo’s ethnographic observations was with the

translation of the ethnographic observations into the OMERO development process.

This problem of the implications of design for ethnographic work has already been cited

as a challenge of ethnographic work in systems design (Hughes et al., 1995).

Table 5.1 Summary of Use of Usable Image Methods

Name of UCD
Method/Technique

Experience Practical
Positive Use

Experience Practical
Drawbacks

Ethnographic
Observations/User
Observation

Insights and understanding were
gained from the everyday practice
of the scientists.

Bridging the findings into the
software development process
was a fundamental challenge.

Usability Test Helped to support the release
testing, helped to remove any
major recognised usability issues.

Was unable to directly affect
usability early on in the design
process.

Group Taster Session Helped to expose a larger group
of users to the software and
helped to encourage questions.

Required a substantial amount
of organisation.

Individual Getting
Started Session for a
Scientist

Provided a further opportunity to
obtain individual insight into how
scientists used the software.

Highlighted the demand on
resources away from UCD-led
work and on promotional-led
activities.

Focus Group Helped to provide a diverse set of Required a substantial amount

 137

feedback in one session about
OMERO and produced a lot of
information to analyse.

of organisation with scientists.

Design Workshop Provided a platform to generate
different and other possible ideas
for the design and development
process from within the Usable
Image Project.

Practically it was not easy to
make the transition of
information from the design
workshop into the development
process.

Requirement
Gathering Meeting

Helped to form and gain a
stronger insight into the project
goals.

Highlighted the gaps between
the technical context of the
SSD project and UCD.

Other Discussion
with Scientists

Helped in gaining insights from
outside of the local immediate
community.

Information and findings from
such discussions were not
always applicable to the
context of development for the
project.

Discussion with
Developers

Allowed direct communication
with the OMERO developers.

Presence of an underlying
language barrier, which was
overcome over time.

Survey Helped to reach a wider audience
and to provide insight into
different scientific institutions.

Required intensive planning
with the available resources.

Interface Review Helped to identify major issues
before the software was put in
front of scientists.

Was not able to directly affect
the design process early on.

The methods of the Group Taster Session and Individual Getting Started Session for a

Scientist demonstrated the value and necessity of promoting the uptake of the software.

The work by Sloan et al., (2009) documents the Usable Image survey as a method for

promoting the OMERO software. The survey provided a way of forming potential

contacts to introduce OMERO to new research institutions. This was critical to the

Usable Image project as the promotion of the software is a key element for further

uptake of it. For the Usable Image project, this was significant in terms of how the

academic context recognises the requirement for promoting the academic software. The

recently formed group The Software Sustainability Institute (Software Sustainability

Institute 2011 is such an example of this. This group provides information on the

technicalities of scientific software development and the role of managing open source

software.

 138

5.4 Summary

This section will review the insights from the analysis of the ethnographic work and

from the supplementary fieldwork in the Usable Image project. From my own analysis,

the three key aspects to be taken from the work are as follows:

1) The construction of a ‘workflow’ theme

2) The emergence of an understanding and empathy for a scientist’s research work

3) The influence of my analysis on the system design process

The first point relates to the significance of the ‘workflow theme’. This was uncovered

in the work when compared with existing scientific ethnographic work and is discussed

in conjunction with what was learnt from my own analysis. The second point from the

analysis concerns the role of empathy towards the scientists. As discussed by Wright

and McCarthy (2008), ethnographic studies have shown the emergence of empathy

towards those observed in the ethnographic work. A couple of themes helped to form

this empathic view: ‘working life’ and ‘microscopy’. These two themes complemented

each other as on the one hand they uncovered how the scientific culture demands that

scientists work long hours and are dedicated to their work (see section 5.1.1 for the

codes and extracts that cover this). On the other hand, it also revealed the complex

nature of the scientific work, particularly how working with such technology as

microscopes did not always go according to plan and that the complexities of the

microscopes can make scientists’ work complex (see section 5.1.2 for the code and

extracts that cover this). The third point was that the analysis was influenced by the

goals through the system design process for the Usable Image project. This was because

I was so embedded within the Usable Image project, my analysis was influenced by the

implications of design in the software. Such an example where this was present in my

analysis was in the emergence of the themes ‘tools’ and ‘workflow’, and the particular

frequency of the code ‘file management’, which was used 20 times (see sections 5.1.3,

5.1.5, and 5.1.4 respectively). This code was relevant for the OMERO software as it is
an image file management tool (please refer back to extracts 13 and 14 for an

explanation of the code). The emergence of the ‘workflow’ theme served as a direct

way for me, the researcher, to understand where OMERO fitted into a scientist’s

workflow. When examining my analysis against the existing ethnographic studies, the

work by Latour (1979) and his cycle of credibility provided the strongest guidance. The

 139

cycle of credibility provided an overview of a general model of the scientific process,

from the steps of scientific funding to the publication of the scientific research, where I

was able to position the 7 steps my own ‘workflow’ theme (see figure 5.3b).

The fieldwork analysis further benefited from the supplementary fieldwork contribution

of in the Usable Image Project. The observation of the co-location between the

scientists and OMERO software developers created insight into the context. This ranged

from developing an understanding of the use of the OMERO software and

understanding where the UCD problems lie. In terms of the research, this helped to

elevate the understanding further to hold a level of empathy with the scientists and also

increase the awareness of a UCD process. It was the combination of these aspects and

asking then what was missing from the analysis of the Usable Image fieldwork that led

me to identify that the missing point of my analysis was the working practices of the

OMERO software developers.

The next step for my research involves taking an embedded role within the OMERO

team. This requires the research to shift perspectives from a sole UCD perspective

within the Usable Image Team to the scientific software development team of OMERO.

This is to obtain a more holistic understanding of the challenges that UCD is associated

with. Such a transition of work between UCD teams to software development teams has

not been widely seen in the existing literature. The research acknowledges the existing

work by Boivie et al., (2006), which evaluates the single role of a usability designer in

two professional systems development organisations. The similarity observed was their

project aim of bringing improvements to the systems development process with an

increase focus of UCD. However, the research by Boivie et al.,(2006) as a direct

comparison to this research does not examine the type of transition of the usability

designer from within a usability team to the inside of a software-development team.

To conclude, the fieldwork and analysis from Chapter 5 has raised further questions

regarding the contribution and insight that may be gained from the scientific software

development process. Chapter 6 now moves on to discuss this shifting account from the

perspective of an embedded member of the OMERO software development team and it

analyses the OMERO development fieldwork data.

140

Chapter 6: Scientific Software Fieldwork

As mentioned in Chapter 4, this research adopted different perspectives: Chapter 5

presented the UI perspective and Chapter 6 will now present the OMERO perspective.

Chapter 6 covers five parts. The first part explores the repositioned role of the research.

The second part gives the background of a typical OMERO week of work, while the

third part discusses the analysis of the OMERO fieldwork. The fourth part then

discusses the findings from the analysis of the OMERO fieldwork. Finally, the fifth part

concludes with a discussion of the proposal for a change and shifts for integrating UCD

into the SSD process.

6.1 Repositioned role of the research

In the exposure to and the deconstruction of the scientific practice, this research work

has begun to reposition the role of UCD in the software development process. Figure

6.1 presents my move to obtain a more holistic view of the research.

Figure 6.1: The move to observe the OMERO team

The insights from the analysis of the Usable Image ethnography work have highlighted

two key issues. First, within the context of the OMERO project, the Usable Image UCD

work questions the work culture of scientific practice. It also creates a frame for a level

of empathy with and rapport for the scientists’ work. This, in turn, for the Usable Image

research, opened a channel to support specific system requirements between the

scientists and the OMERO developers, which is something that is further explored in

the work by Macaulay et al., (2009).

141

Secondly, it has helped to provide an understanding of why the sole perspective of UCD

only completes part of the picture for the development process. Early on I

acknowledged the established problems of integrating ethnographic work into the

systems development process (Schmidt, 2000, p. 141). This also applies to the

previously established list of integration challenges discussed in Chapter 2 section 2.6,

but all these have helped me to interrogate my own research questions because of how

they have exposed the core and established challenges of integrating UCD and software

development. This revealed that I had little understanding of the actual SSD process in

relation to the UCD work that was being carried out in the scientific software

development process. This led me to identify the area that is not questioned in my

research work: the examination of how SSD is undertaken in academic contexts. Figure

6.2 illustrates this, identifying the shift of focus to the new perspective from the Usable

Image project. Based on this gap of understanding of the SSD process, for the next

phase of the research, the focus shall turn to the SSD practices of the OMERO team. I

shall use the opportunity of being embedded within the software development team to

understand the functioning practices of a SSD team. The following section now

analyses this second perspective of a SSD team and its development process.

Figure 6.2: Perspectives through the Projects

6.2 The OMERO working week

The OMERO team’s week traditionally begins with coffee and cakes on Monday

morning at 10:30am. This event was originally organised by Miles through the GRE

Wellcome Trust and brings together nine of the laboratories within the Wellcome Trust

142

building. PhD students, postdoctoral researchers, and PIs from the laboratories all attend

when possible. The OMERO team chats informally while drinking coffee, and its

member’s generally find out what each other have been up to over the weekend. This

can be anything from Levi’s long walks through the Scottish countryside to the rugby

matches Yvan has refereed over the weekend. The OMERO team interacts with many

of the scientists that attend; the team is particularly friendly and know many of the

scientists from Miles laboratory. The OMERO team therefore chats about diverse

subjects with the scientists; these range from new movie releases to computer games.

Outside the Monday coffee-morning meetings, the OMERO team has coffee breaks

regularly at around 10:30am and 3:30pm during the week. Jack, Steve, Levi, Cathy,

Kurt, and Bob all regularly go up to the Wellcome Trust cafeteria with several of the

scientists such as Sasha, Callum, and Finn from Miles laboratory. There is always lots

of laughter and humour among them during these breaks. One topic getting a regular

laugh is the range of cultural differences between the team members, from how words

are being pronounced by Steve in his Canadian accent, to how Sasha understands

English with her French background.

The day-to-day working practice of the OMERO team is dominated by the use of the

Instant Messenger (IM) dev chat tool. I was able to experience and truly become part of

the OMERO team through the use of this tool. Socially, the IM dev chat tool has been

used to alert the team about one of the team’s members becoming a father and of

children being unwell, and it is used for sharing jokes. The IM dev chat tool, on

reflection, has played a critical role of information that is exchanged within the

OMERO team, but also in helping me to become an integrated member of the OMERO

team. Having the opportunity to use the IM tool opened up a further channel for support

and insight for me from the OMERO developers. It helped to create a bigger picture of

the what, why, and how of the UCD process in relation to the scientific software

development work. This was made possible through the supporting information that is

available – through such things as the IM tool or Skype. Table 6.1 summarises the range

of tools that I used with the OMERO team on a daily and weekly basis.

143

Table 6.1: Summary of the software tools used by the OMERO team

Tool Purpose /Activities
Devteam (IM Chat) Used on a daily basis for conversation between

members of the development team.
Email List
 Private list Used to message all of the involved members on the

OMERO project.
 Public list Used to provide support to the OMERO community, to

answer technical questions and notify users of updates
and releases.

Forum Created to support the public list for OMERO support.
Teamspeak Used to allow for remote group conversation.
Skype Used to allow for remote group conversation.
Trac Software bug tracking system.
Hudson Extensible continuous integration server.
Plone Project web site.
OmniGraffle Visual diagram tool used for visualising development

sprints.

A more recently adopted tool is OmniGraffle. This tool was used to manage the weekly

cycles of development work on the project. The tool itself is an ad-hoc Gantt chart

displaying each phase of the development process for the project (shown in Figure 6.3).

This tool was the responsibility of Yvan who ensured that each member of the team had

made his or her updates in the progress of work on a week-to-week basis. The Gantt

chart would then be reviewed at every Friday meeting where more technical issues of

the project were discussed within the team and consequently addressed.

Figure 6.3: Example screenshot of a Gantt chart (Burel, unpublished)

144

A key part of the OMERO development week is the meetings that take place on

Tuesday and Friday. The Tuesday meetings are focused on issues between the UI team

and the OMERO team, and the Friday meetings are focused on internal issues of the

OMERO project with just the OMERO team members in attendance. The general

structure of the Tuesday meeting follows the presentation and/or discussion of the

usability-led work conducted over the week. In the meeting, the results must be distilled

down to the key points that may be relevant for the development work. The presentation

and the discussion of the usability work helps to draw out more specific questions about

Yvan's software development work with the OMERO.client, which was the central user

interface of the OMERO software. The meeting will then address the general issues of

the OMERO team. These issues will reflect the phase of the development process that

the team is going through. If the OMERO team becomes involved in an in-depth

technical discussion, the meeting can go on for a much longer period. Any outstanding

issues, such as any promotional-led activities, visits to new potential scientists within

Dundee, possible visits to external institutions, or funding-led activities in which the

project is involved, will conclude the meeting.

The general structure of the Friday meeting follows the agenda set by the team during

the week and is emailed out to everyone by Anthony. The typical structure of the

OMERO team meetings, of course, can vary depending on the nature of the issues that

need to be discussed. Unlike the Tuesday meetings, the general focus of Friday

meetings is on the in-house workings of the OMERO team. The OMERO meetings can,

on occasion, become a quite heated debate, this from the understanding gained from the

embedded work within the OMERO team. This is more a reflection of the multiple sets

of challenges and the potential perspectives to the solutions that the OMERO team have

to deal with. But, of course, each member of the team does like to ensure that they

express their own view. This, in part, is also part of the OMERO project challenge to

meet and deal with the wider issues of the scientific community, alongside the technical

development challenges. Because of this, OMERO meetings have a tendency to

overrun. Yvan does take the responsibility for alerting us about this so he raises the

point when meetings have gone over the one mark hour (the meetings could go on for

some time if they are not managed appropriately). It has become a recognised

accomplishment for the OMERO team and by Yvan particularly if the meetings are

under the hour mark. Because of the work within the OMERO meetings and through the

145

time spent in the OMERO development office during visits, I could observe the

involvement and contributions of Miles, the PI, to the project. Miles’ scientific insight,

in many ways, acts as a scientific portal for the OMERO team. During the meetings,

Miles brought information of new and on-going developments from the scientific

community. In many ways, he is the eyes and ears of the project in terms of

understanding how and where future scientific developments lie scientifically. This was

vital for the OMERO development team. Specifically, when Miles returns from

conferences and events, he spends time discussing the key points that might be relevant

for the team by sitting in the developer office while having a coffee and sharing his

thoughts, experiences, learning etc. Bob, with his biology background, is always

particularly keen to hear the details from Miles. In his contribution to the OMERO

team, Miles does utilise the expertise available in the OMERO team to support the

scientific work in his own laboratory, when necessary. The expertise of the OMERO

team, ranging from mathematics, image analysis, and technical expertise, has been

utilised and valued by Miles for each person’s ability to make a scientific contribution.

In addition to the day-to-day practices, there are various external activities throughout

the year that the software developers are involved in, such as promoting and

demonstrating the software to both scientists and fellow scientific software developers.

• OMERO Software Demonstrations at various events within Dundee. This

includes a lab and institutional retreats, and various poster sessions throughout

the year.

• OMERO Software Demonstrations at various academic and commercial events.

This presents the OMERO team with multiple opportunities to present and meet

various types of existing user types and potential new users.

This has helped to expose the OMERO team and allowed them to receive instant

feedback on the software as well as gaining an outside perspective. This aspect of the

work strongly reflects the academic context in which the project finds itself, as it is

critical for the project to promote its use through appropriate academic activities. The

subsequent section now analyses the OMERO meeting notes (study 2) that I attended

between the period of 27/10/2009 and 23/03/2010.The full details of my analysis are

described in Chapter 4.

146

6.3 Ethnographic analysis

The full details of and background to the method used in the fieldwork are described in

Chapter 4. All the fieldwork presented in Chapter 6 is available in Appendix 8. The

analysis of the OMERO fieldwork revealed nine themes (see below). How they were

constructed from the analysis is shown in the visual diagrams, which are available in

Appendix 7. The nine themes are as follows:

• UI development

• New techniques

• OMERO components

• Community

• Current working practice

• Development tools

• Administration

• Project management

• Software collaboration

Similarly to the UI fieldwork analysis (see Chapter 5), I have chosen to explain the first

six themes as these were the major ones that have influenced the analysis. This point is

expanded in the summary of the OMERO fieldwork analysis in section 6.5.

6.3.1 UI development

The first key theme is ‘UI development’. This theme was comprised of the following

codes: ‘own influence’ (13), ‘UI review’ (3), and ‘UI feedback’ (3). All three codes of

the theme are explored below. Importantly, for the perspective of my fieldwork, this

theme gave a view of the UCD work that emerged from the OMERO meeting notes.

The code of ‘own influence’ was used to cover my impact in the OMERO meetings.

Such an example is shown in extracts 1 and 2. Extract 1 describes the action assigned to

me to observe the uptake of a new software project management tool called Agilo.

Extract 2 then presents the feedback from Yvan after a one-month trial of Agilo. The

147

main benefit Yvan noticed was that the tool helped to replace the OmniGraffle tool (see

Figure 6.3) and the visual representation of the information in Agilo was much easier to

monitor and update.

Scott will try to monitor everyone's usage of Agilo

* Likes/dislikes

Extract 1 – 2010-02-23 Tuesday meeting

Scott: any problems with Agilo?

* Yvan: easy to see what other people have planned

Extract 2 – 2010-03-23 Tuesday meeting

The ‘UI review’ code aims to cover the discussions of the OMERO software interface

in the OMERO meetings. An example is shown in Extract 3. Extract 3 is a discussion of

how the OMERO.web client has been changed to provide a more consistent interface

between the OMERO.web client and the OMERO.insight client. The meeting provided

an opportunity to review the new three-panel layout with the entire team and for all of

the OMERO team to discuss the details of the features that are covered in this change.

Web presentation

 * now more insight-like with 3 panels

 * two different views of the middle data panel (thumbnail and table view)

 * default view: 2 panels (left+center) till dataset clicked (then 3 panels)

 * metadata panel shows: full image preview, comments, global metadata,

 acquisition data, tags, annotations (each on separate tabs)

Extract 3 – 2010-03-23 Tuesday meeting

The three instances of the ‘user feedback’ code were made up of two types of user

feedback that can be distinguished. The first type is shown in Extract 4, where user

feedback has been brought back into the OMERO meeting. This extract itself is

commenting on the use of the ImageJ software that is compatible with the

OMERO.insight software. Because of a lack of documentation, this ImageJ software is

very difficult to use. This conclusion was discussed in the meeting, and to avoid the

same type of criticism for the OMERO software, the necessary action was taken to

improve the information in the OMERO documentation.

148

Scott

 * user comment: documentation on ImageJ install (postdoc)

 * first time ImageJ user

 * docs are poor; assume previous knowledge

 * movie & feature list? (one for usage but not installation)

Extract 4 - 2009-10-29 Thursday meeting

Extract 5 covers the second type of user feedback where the OMERO team requested

user feedback.

We need to go out to the community and find out what their use cases are.

 Extract 5 – 2010-02-23 Tuesday Meeting

The OMERO developers requested user feedback from the community as described in

Extract 5 because they more information on how OMERO can implement structured

annotation and OMERO.tables. Based on their previous experience, the OMERO

developers know that a “one fit for all” solution will not always work, so user feedback

is critical for further implementation.

On reflection both types of the ‘user feedback’ code supported the view of the project.

The first type of user feedback shown in Extract 4 gave me instances of use of the

OMERO software and feedback to the OMERO developers, with the advantage that the

entire team may hear the problem. In some way, I also felt that this was similar to the

role of Miles when he gave information back to the team from when he had visited

various scientific conferences, whereas the second type of user feedback supported a

different view where more technical information was needed for the development of the

software.

6.3.2 New techniques

A second theme to emerge was ‘new techniques’. This theme was meaningful as it

captured the growth of scientific development against the progress of how the OMERO

software could or would adapt to these new methods. The theme was made up of the

following codes: ‘SPW’ (8), ‘NDIM’ (8), ‘HCS’ (3), ‘EM’ (2), and ‘OMX’ (1). The

149

three most frequent codes of the theme are explored below.

The two codes of ‘HCS’ and ‘SPW’ will be discussed together as they are connected.

The ‘HCS’ code represents the high content screening (HCS)4 technique that the

OMERO software supports. The related code of ‘SPW’, that means screen plate well

(SPW)5, represents a level of the image processing for the HCS technique. Extract 6 is a

simple example of the ‘HCS’ code where the necessary bug fixing for the HCS data is

explained for an OMERO release.

* 4.1 bug fixing

 * 4.1.1 release

* insertions of HCS data has been reworked (collapsing settings, logical

 channels, etc.)

Extract 6 - 2009-11-12 Thursday meeting

Extract 7 documents the actual initial implementation of HCS in OMERO. The term

then used to discuss the details of the HCS technique is the code ‘SPW’ because this

best described the setup of viewing the images in OMERO.

* SPW in insight

 * looks great: field view, heatmap thing, strip of fields, ...

 * see email from Yvan

Extract 7 - 2009-10-29 Thursday meeting

The conclusion was that although in some instances the terminology was used

interchangeably, I could make the distinction between the reference to HCS as an

4 High content screening (HCS) is a method that is used in biology and drug discovery to
identify substances that alter the phenotype of a cell in a desired manner. The influence of the
tested substances is measured by automated image analysis. This type of experiment generates a
massive amount of data that OMERO needs to be able to deal with (for display as thumbnails
for example).
5 The Screen Plate Well (SPW) model is designed to support High Content Screening. It is
aimed at providing a flexible framework to organise the images that result from such a screen
and link to external systems that contain full information about the components and products
used. More information on this model can be found at
http://www.openmicroscopy.org/site/support/file-formats/working-with-ome-xml/screen-plate-
well/screen-plate-well-2010-04.

150

imaging method and the actual details for the imaging process the code ‘SPW’

represented.

The ‘NDIM’ code represents an area of work for expanding the amount of dimensional

information stored in an image. The standard dimensions are spatial (XYZ), temporal

(T), and for the different channels (C). This ‘NDIM’ code itself represents the effort of

the OMERO team to support the new microscopy techniques that utilise more image

information (e.g. angle, tile, and phases that can be important in some experiments).

Extract 8 documents the steady progression of the decisions that need to be made and

the need for user data.

ndim

 * getting the timing right with the rest of the software community (ImageJ, ...)

 * our experiences with SPW, doing things slowly and right, and the half-way

 houses

 * several uses cases, real data.

 * will keep thinking about it.

 * keeping legacy API in place

Extract 8 - 2009-11-12 Thursday Meeting

The central point taken from the ‘new techniques’ theme has helped to provide an

insight into the growth of scientific methods from the perspective of the SSD process.

This was evident from the codes in the theme. The following section now goes on to

examine the range of parts that make up the areas of development in the OMERO team.

6.3.3 OMERO components

A third key theme to emerge was ‘OMERO components’. This theme was meaningful

to my analysis as it represented the areas of development in the OMERO team. The

theme was comprised of the following codes: ‘FS’ (10), ‘ROI’ (7), ‘Bio-Formats’ (6),

‘Data Model’ (6), ‘Web’ (3), ‘File formats’ (2), ‘Insight’ (2), and ‘Dropbox’ (1). The

three most frequent codes of the theme are explored below. I have also chosen to

discuss the ‘file formats’ code as it specifically relates to a previously discussed issue in

Chapter 5 section 5.1.2.

151

The ‘FS’ code represents a specific area of development for the OMERO project called

‘file system’. Through the meetings I participated in, I learned that this was a change to

the way the OMERO software imports the image data to improve efficiency, especially

with larger image data sets. This code is in that sense linked to the ‘HCS’ code, as this

type of experiment can generate large data sets. Given the prominence of the

development of the feature while I was with the OMERO team, the ‘FS’ code has been

used to signify the discussion around this feature. Extract 9 is an example of this work

that is being carried out.

* FS

 * now working on thumbnailing, annotating, ... (standard container)

 * Kurt: commit today a first thumbnailing service (trying it out)

Extract 9 - 2010-02-11 Thursday meeting

The code of ‘ROI’ has allowed me to have a technical background to the Region Of

Interest function in OMERO. The ROI feature allows a scientist to measure the pixel

intensity of their scientific image. Extract 10 covered a discussion on the future

developments of storing the ROI information. The further point that can be made is that

because of the complexity of forming a solution, the OMERO team proposed an

investigation. With my involvement in the OMERO meeting, it provided a direct link to

having a wider scope of the development process and its implications. Both the ‘FS’

and ‘ROI’ code are examples of this. However, in the ‘ROI’ code, there is an additional

benefit of having further information about the ROI feature that may be used when

discussing the feature with scientists.

* ROI evolution

 * primary problem/discussion, still on-going: storage & measurements

 * currently: some in DB, some in HDF

 * now need investigation

 * it adds another bullet point on roadmap with 10–20 hours

 * it's a blocker

 * will need to re-prioritize other tasks

 * Jack: just letting people do the investigations

 * Levi: also getting a list of suggestions for other investigation

Extract 10 - 2010-01-28 Thursday Meeting

152

The ‘Bio-Formats’ code was especially significant for my background understanding of

the other key aspects that work with the OMERO software. This was the principle

reason why it was established under the OMERO components theme. Extract 11

documents regular updates on the development of Bio-Formats. This was important for

the OMERO team because it ensures that the updates for the OMERO software and

Bio-Formats can be released at the same time.

* Bio-Formats

 * tests for read/write of IO system

 * better testing (parallel)

 * integration with build system now

Extract 11 - 2010-01-28 Thursday Meeting

The ‘Bio-Formats’ code was associated with the ‘file formats’ code as the Bio-Formats

development provided new image file formats. Extract 12 describes three more file

formats of incell, lei, and slidebook (three image file formats from three different

microscopy companies), which were covered by the ‘file formats’ code. This was

particularly relevant to my previous analysis in study 1 and the principles behind the

DV file format (see Chapter 5 section 5.1.2)

* file format issues

 * incell fixed potentially

 * lei unfixed

 * slidebook unfixed (need files)

 * ...missed...

 * filing tickets for each

Extract 12 - 2010-01-28 Thursday Meeting

6.3.4 Community

The fourth theme was ‘Community’. This theme was useful for my analysis as it

captured the wider issues of both the development and user community of the OME

project. The theme was made up of the following codes: ‘Community support’ (19),

153

‘Growing community’ (2), ‘External expectations’ (2), ‘Community feedback’ (2), and

‘Being open’ (1). The four most frequent codes of the theme are explored below.

The ‘Community support’ code captured the OMERO team’s responsibilities in

providing setup support for the OMERO software. Extract 13 is an example where in

each meeting the emails that have been sent to the OME email list and forum questions

are ensured to be answered by a member of the OMERO team.

 Emails / forums

 * install issues seem to be up-to-date

 * ome-xml validation: needs to be re-written to understand 2009-09

 * in general, need to discuss support for latest schema in OMERO

Extract 13 - 2009-10-29 Thursday Meeting

An additional aspect of the code involved an extension of this work, where a member of

the team may take the necessary action to respond to the question. An example of this is

shown in Extract 14.

Yvan :

* nd2 issues: Eden emailed, waiting for reply

Extract 14 – 2010-02-11 Thursday Meeting

The ‘Growing community’ code describes the challenges being faced by the team

regarding how to meet the growing uptake of the software when there are already many

challenges to overcome with the software. This is demonstrated in Extract 15 with the

remark by Miles that the user “wants it all”.

* Miles: User wants it all

 * easy, movable, see what I want

 * balancing act: when is an image in OMERO and when isn't it?

 * overriding issue: we've worked through server-fs visible, but data

 duplication isn't solved

Extract 15 – 2010-03-09 Tuesday Meeting

154

The ‘Community feedback’ code acknowledges the OMERO team’s recognition that

they require wider community feedback to develop the software and make the difficult

decisions that are required. Extract 16 was a primary example of this. During a

presentation by Miles, a discussion questioning how analytic results should be stored in

OMERO started and the team realised they needed more community feedback.

* We need to go out to the community and find out what their use cases are.

Extract 16 – 2010-02-23 Tuesday Meeting

From the perspective of my analysis, the code of ‘External expectations’ was closely

connected to the code ‘Growing community’. Given the growing uptake of OMERO,

the speed of the image data must be imported quickly and efficiently as described in

Extract 17. The implication of the ‘External expectations’ code gave me an insight into

the OMERO development team’s expectations of the way they perceive the level of use

of the software.

* Miles: screens have to go in quick

 * have to get people past idea that a single application for all their data

 * should only be high quality which goes in

 * managing expectations

 * Miles:"give me everything I want with complete flexibility and super-fast"

 * penalties for certain usages

Extract 17 – 2009-12-15 Tuesday Meeting

The understanding gained from the fourth theme of ‘Community’ demonstrated the

demands placed on the OMERO development team due to the community and their

related commitments. This was a reflection of the Community theme of that it was not

directly connected to the scientific software development process but had significant

implications for the team. Such examples covered were instances where the OMERO

team had responsibilities for providing setup support for the OMERO software to the

challenges being faced by the team regarding how to meet the growing uptake of the

software.

155

6.3.5 Current working practice

The fifth theme to emerge was ‘Current working practice’. This theme documented the

wider elements observed from working within the OMERO SSD team. It was made up

of the following codes: ‘Technical solutions’ (8), ‘Agile’ (7), ‘Release’ (4), ‘Short term

solution’ (4), ‘Bugs’ (3), ‘Communication’ (3), ‘Demo account’ (3), ‘Nightshade’ (3),

‘QA’ (3), ‘Bottlenecks’ (2), ‘Documentation’ (2), ‘Mini group meetings’ (2), ‘Sprint’

(2), ‘Technical constraints’ (2), ‘Example driven approach’ (1), ‘Investigations’ (1),

‘Software functionality’ (1), and ‘Tickets’ (1). The four most frequent codes of the

theme are explored below.

The ‘Technical solutions’ code reports on the possible solutions to problems in the

development of the OMERO software. The ‘Technical solutions’ code served to

underline the complexity of the development process and the scientific environment.

Two examples are shown in extracts 18 and 19. Extract 18 describes a discussion on

how the information from the ROI solutions could be stored. Extract 19 covers a further

presentation on the NDIM problem and notes the five solutions that have been proposed

for this.

* mongodb & document db is Levi's favourite

 * bigtables-cousins would be great for purely measurements

 * but we want to do more relational work

 * normalization

 * do we actually use it as a relational db (RDB)?

 * at the import stage: objective settings, SPW, ...

 * making our life difficult, since we don't make any use of RDB

Extract 18 – 2010-02-16 Tuesday Meeting

* NDIM

 * 5 solutions

 * adding D won't be used if another NDim solution used

 * re-using C is a proof-of-concept

 * stitching images together at a higher level

 * ndim & subdimensions: adding dimensions at the top or bottom

 * need to define the cost of doing this to know when/if to do it

156

 * NDim seems to be the only viable solution (stitching possibly then on top of

 that)

Extract 19 – 2009-11-10 Tuesday Meeting

The code of ‘Agile’ describes the on-going transition to a more Agile software

development process for the team. Extract 20 captures the initial discussion where the

particular point is that the team is not fully Agile. This would previously re-enforce the

existing work by Segal and Morris (2011) that SSD is selective in using the Agile

methodology according to the book. Extract 21 attempts to explain this point further as

it was discussed by the OMERO team that the Agile process was easier in the past

because the size of the team was smaller.

 * we're not Agile

 * Agile is a principle

 * process is different types of systems around Agile

 * centred around short iterations

Extract 20 - 2010-01-19 Tuesday meeting

 * was previously more Agile (as we were smaller)

Extract 21 - 2010-01-19 Tuesday meeting

Extract 22 highlights the other parts of the Agile scrum process that the OMERO team

is not adopting. Again, this would re-enforce the principle that Agile development

methodology is not being used by the book.

* In some ways we are using a "Broken" scrum

 * No product owner

 * No stand-ups

 * No scrum master

Extract 22 - 2010-02-25 Thursday Meeting

The ‘Release’ code describes the parts of the meetings where there is a planned release

of the software. Extract 23 explains this process for the OMERO 4.1.1 version release

of the software. The range of points cover software bugs that have already been fixed,

changes to the OMERO.importer that have already been accepted for the release,

157

outstanding minor software bugs to be fixed, and an overview of the change made to

HCS data.

 * 4.1.1 release

 * nominally by end of tomorrow (mergings done)

 * Friday/Monday was spent cleaning up some RE mess from release

 * also fixes channel concurrency issues

 * insertions of HCS data has been reworked (collapsing settings, logical

 channels, etc.)

 * Steve merged importer changes into 4.1

 * importer changes: sending log file, setting logging, cli attachments

Extract 23 – 2009-11-12

The ‘Short term solution’ code examines the OMERO team’s proposal to offer a

stopgap to a problem. This code provided an insight into understanding what is

technically feasible for the next release. Extract 24 covers the upcoming release of

version 4.2 and what work should be done for the ROI data storage. The implication of

the code for my own analysis concerns the reasoning in the development decisions that

were made for the software. This was ultimately about recognising the project

constraints for the current release and beyond.

* transitional phase is an issue

 * do we want to work toward a single storage mechanism?

 * do we use the best storage mechanism for a particular type?

 * what's the scope? (4.2?)

 * which project would show the utility?

 * Jack:

 * don't currently utilise the ROI object in db correctly

 * InCell you'd tag every ROI with correct tag (cell/nucleus)

 * ROI as an object is un-utilised

 * getting us (and our users) out of a situation.

 * Levi: currently blocked. Make this decision sooner rather than later.

Extract 24 – 2010-02-16 Tuesday Meeting

158

6.3.6 Development tools

The sixth theme to materialise was ‘Development tools’. This allowed me to account for

and question the range of software tools that were used by the OMERO team. The

theme was made up of the following codes: ‘Graffle’ (18), ‘Trac’ (12), ‘Wiki’ (3), and

‘Hudson’ (1). The three most frequent codes of the theme are explored below. This

theme developed from refining the ‘current working practice’ theme.

The ‘Graffle’ code captures the use of the OmniGraffle software to construct a Gantt

chart. An example of this was shown previously in this chapter in Figure 6.3. The

information captured in the code covers the use of the OmniGraffle software. Extract 25

notes that the current tasks on the Graffle diagram will be moved because of the current

work on the release of the software. The code has also shown the transition to abandon

the use of the tool. Extract 26 shows a point made by Anthony about the Graffle tool

and why it was being phased out.

 * Graffle: most tasks pushed back for work on 4.1.1 (QA started this week)

 Extract 25 – 2009-11-19 Thursday Meeting

 * Anthony: Graffle doesn't show dependencies, useful in Gantt

 Extract 26 – 2009-10-27 Tuesday Meeting

The ‘Trac’ code captures the use of the project management and bug tracking system to

manage the software process and the instances where it was discussed in the meetings.

The ‘Trac’ code was significant for my own analysis as I used it during my stay with

the OMERO team so I did have some first-hand experience of its use. This did influence

my own impressions of the use of the tool as although it provided the project

management and bug tracking for the software project, it was flawed because of the

volume of information held about the project. The code that best describes the use of

‘Trac’ in the project is captured in Extract 27. The significant aspects discussed through

this extract describe how there is a large amount of unscheduled tickets (a ticket is a

actionable task that can carried out by a OMERO software developer). This means that

there is a ‘sea of tickets’ as explained in the meeting that can subsequently lead to

missed tickets and difficulties in managing and visualising the ticket information.

159

 * trac

 * dead pool of tickets sitting in "unscheduled"

 * everything in trac is a sea of tickets

 * lots of tickets we missed

 * no way to visualize all the tickets

 * no scheduling, strictly milestone based

 * Jack: communication component of trac

 * "here Levi, please ..."

 * Yvan: cF. QA also reporting to the user

 * Dev2Dev communication and to user

Extract 27 - 2010-01-19 Tuesday Meeting

The ‘Wiki’ code describes the conversation in the meetings on how the wiki pages for

the project can be utilised for the benefit of project organisation. The wiki was

integrated with the trac project management and bug tracking system to provide the

necessary links. Extract 28 discusses how the proposed new layout and format for the

wiki pages should be created. The particular key point not discussed in the extract is

that a wiki page is being constructed for communicating the software development

process to members of the OMERO community. Extract 28 explains that to do this the

aim of a wiki page is to show how complete a development task is, so that an external

developer/user knows when they can download an update.

* wiki pages

 * took 1 hour to create wiki pages for all roadmap bullets

 * don't need tickets on roadmap page then

 * description at top

 * usage at the top (screenshots at bottom?)

 * looks better from external point of view

 * too many things on a single page?

 *Luis: if I have to create a wiki page per ticket, I won't

 * if something has only one ticket?...

 * what's the purpose of the wiki pages?

 * showing external how done it is

 * knowing when they can download

160

 * status

 * no tables in formatting

 * must-have/good-to-have?

 * lots of discussion

 * Yvan: "good-to-have" has no choice of being done

 * Anthony: related work, good to have it together

 * should only be tickets

 * per milestone? Yes

 * dependencies?

 * estimates?

 * ... we just spent an hour building a tool

 * just treat the must haves?

Extract 28 – 2009-10-21 Thursday Meeting

6.4 Additional activities: Community use

Along with my analysis of the OMERO fieldwork, my further experiences within the

OMERO project also provided additional insights for the research. The supplementary

information has been labelled as ‘Community use’.

There is an immense pressure to present and promote the uptake of the OMERO

software, which involves a range of community led activities. This is primarily dictated

by the requirement for continued funding, so the importance of demonstrating current

use and the uptake of the software is significant, as are demonstrations related to grant

renewal or new funding opportunities. This further re-enforces the reputation of how

scientific software operates within a reputation-based economy that values scientific

publications (Howison & Herbsleb, 2011). This information was significant in

understanding the evolution of the community term in this research. Another benefit

was in understanding the significance for the community within the context of SSD.

Figure 6.4 presents an adaption of the work by Gabriel and Goldman (2002) to show the

communities in OMERO. Unlike the original illustration by Gabriel and Goldman

(2002), there is no natural progression from the scientists to a developer of the software

code. However, this is a feasible model, as previously discussed by Segal (2007) and

the role of scientists as end-user developers could be possible, although this role is not

161

applicable to the context of the OMERO project. For the adapted Figure 6.4, the

community is centred on the circle labelled code and the role of the core OMERO

software development team is to deal directly with the scientific software code. Figure

6.4 also highlights the distinction between UCD and the role of the core software

development team.

Figure 6.4: Communities built around common interests (Adapted from Gabriel & Goldman

2002)

The promotion of the OMERO software for the project is performed through the project

promotion material such as posters and project presentation. The OMERO project

website plays an important role as a first point of contact for community use. The

website serves as the point for downloading the OMERO software and as the source of

information about the project and the software. The website brings a high level of

accountability for the OMERO team in terms of maintaining and managing the

information.

An eternal question raised through the release schedule for the OMERO team is how up

to date to keep the documentation, so various techniques have been used to document

the system. This is key, not just because of its importance but also because of the time

investment required by the team to produce documentation and the limited resources

162

available to the team so it is important to produce effective results within these

constraints. One way the team has tried to remedy this is by creating video tutorials to

provide information on the various features and how to use the system. The concern

regarding documentation is also related to the wider responsibility of the OMERO

project for serving the entire community. In the context of the OMERO application, this

covers the scientists who use the software, the system/technical administrators who

install and run the system, the bio-informaticians, and scientific software developer’s

roles. Therefore, the range of information for OMERO must address the full range of

these users and potential further variations in users.

The small cross section of issues covered through the promotion of community use also

presents a key challenge for the OMERO project. This may be traced back to the

technical nature of the project and its position as an enterprise-level scientific

management software tool. Because of this, the software tool has to be able to consider

and take on a wide scope of users from the front-end scientists that use it to manage and

analyse their image data, to the systems administrators and/or scientific developers that

are required to deploy, modify, or collaborate with the project. This forms a critical

perspective for SSD projects, with the key for their sustainability being to promote use

of the software throughout the scientific community. For such a project this means

earning the scientific academic credibility that the scientific community requires, in

addition to promoting collaborations for software growth into new scientific

communities.

6.5 Summary of the OMERO fieldwork analysis

This section will review the insights gained from the analysis of the OMERO

ethnographic work. From my own analysis, the two key aspects to be taken from the

work are as follows:

1) The combination of the ‘OMERO components’, ‘New techniques’, and

‘Community’.

2) The ‘Development tools’.

The benefits of the ethnographic method with being deeply embedded in the OMERO

163

project has been clearly seen and captured in the themes of ‘OMERO components’,

‘New techniques’, and ‘Community’. The ‘OMERO components’ theme gave an insight

into the core aspects of the project, from the ‘Bio-Formats’ code that supports the

variety of image file formats the OMERO software supports to the more specific aspect

of new development of the OMERO infrastructure and function that the ‘FS’ code

highlighted. The theme of ‘New techniques’ identified a connection between the science

and the SSD process. The ‘NDIM’ code was a primary example of this with the

necessary proposals being made by the OMERO team to handle the development of

new imaging techniques. Finally, the ‘Community’ theme helped to develop a sense of

commitment to provide the necessary software support at a technical level with the code

of ‘Community support’ demonstrating the need to provide on-going maintenance to the

community. In addition to this the aspect of ‘Community feedback’ played a key role in

supporting the difficult decisions the team made. The ‘External expectations’ code

brought a heightened awareness of the wider community prospects and of the broader

requirements that are made by the community.

In addition to what these themes brought individually was an overall understanding of

my own position in the project. This is discussed in the following section (6.6). The

significance of the ‘Development tools’ theme for the work was in how it was first

deducted from the ‘Current work practice’ theme and the problematic codes it presented

such as ‘bugs’, ‘bottlenecks’, and ‘technical constraints’. The problematic aspects of the

development tools were picked up in the ‘Graffle’ and ‘Trac’ codes. The ‘Graffle’ code

was probed as the software tool was being withdrawn from the OMERO team because

of its inability to effectively link information for the benefit of the team. This point is

explained in Extract 26 where Anthony points out that the Graffle code did not show the

dependencies that a typical Gantt chat would provide. The specific ‘Wiki’ code in

Extract 28 explored more closely the changes for documenting the development

process, with the aim to improve the management of the development process. It was

the combination of these themes and the return to my own research questions that led

me to question the roles of the development tools in terms of facilitating the scientific

software developer practices.

6.6 Discussion

164

In this chapter the analysed data from study 1 (the Usable Image fieldwork analysis)

and study 2 (the OMERO fieldwork analysis) were revisited and the findings were

compared. The first similarity observed was that the ethnographic method yielded a

level of empathy for those involved in both studies. In study 1, it helped to form

empathy towards the scientists as described in Chapter 5 section 5.4. When comparing

this data in study 2, a similar insight and empathy towards the SSD process has been

made about the OMERO scientific software developers and the challenges they face in

the SSD process. Such an example code that demonstrated this in study 2 was ‘Growing

community’, which highlighted the challenges the team faced in terms of how to meet

the growing uptake of the software. The code of ‘NDIM’ presented a different

perspective of the SSD challenge with the demands and on-going developments of the

scientific environment. Also, the ‘Graffle’ and ‘Wiki’ codes demonstrated the

challenges with software tools and the ‘Technical solutions’ presented an insight into

the complex decision making made by the OMERO team for the development of the

OMERO software. These codes are the examples of how the empathy for the OMERO

scientific software developers was established based on the SSD work and challenges

that they are involved in.

In further examining study 2, the two themes that could best describe the general

observations issues of the SSD project were the ‘Current work practice’, which related

to the software development process, and the ‘Community’ theme, which related to the

wider issues of the OME project community. The ‘Current work practice’ theme

covered such codes as ‘Agile’, ‘Technical solutions’, and the ‘Development ’tools’. It

encapsulated the many principles of software engineering, which is the focus of the

project. The second theme, ‘Community’, covered the codes of dealing with the

‘Growing community’ and ‘Community support’. The reason this theme was selected is

because it is central to the continued use and uptake of the software. This is because of

the need to support the community in their use of the software and the need to gain

community feedback. The theme ‘New techniques’ holds a close relation to the support

for the community because it highlighted the new and on-going developments in the

scientific community. This was exemplified in the way the OMERO team actively

planned to support advancements in microscope techniques in the ‘NDIM’ code (see

section 6.3.2). These were the major aspects to be taken forward for the purpose of my

final research question. However, what was still missing from these points was the role

of UCD. After iterating between studies 1 and 2 further, the one aspect I had overlooked

165

was my own influence in the analysis particularly in study two. The code ‘own

influence’ existed in study two and along with the presence of the ‘OMERO

components’ theme, the combination gave me an insight into the wider operations of the

OME project and OMERO software as a whole. As I did not only carry an analysis of

the single part of software relevant to the UCD covered in the code ‘insight’ but also

with the ‘OMERO components’ theme, it allowed me to form a more global view of the

related components of the software codes. The ‘Bio-Formats’ and the ‘data model’

codes were examples of this. While it was not critical for the role of UCD to fully

comprehend the full technical details, the view did help to situate my own view between

both projects, which were arguably both a UCD view and an SSD view.

Figure 6.5: The culmination of perspectives gained in the research

The combination of the insight from the analysis of studies 1 and 2 helped to form a

dual perspective, which were both the scientists and scientific software developers.

Because of this, I re-examined the challenges previously examined by Seffah and

Metzker (2008) for integrating UCD and software engineering (See Chapter 2 section

2.7). In my research, obtaining a double perspective between study 1 and 2 incorporated

and supported the particular challenge of the cultural gap between UCD roles and

engineers, as previously described by Seffah and Metzker (2008). The cultural gap

between UCD roles and software engineers is described to be due to the different

culture. The misconception between the two disciplines covers different terminology

and a technology centric view in software engineering to the contrast of a user focused

and way of working in UCD. It also specifies that UCD specialists must understand

how and why the technical choices influence the end design. Through my research I

166

have gained an understanding to the how and why of the technical choices of the

OMERO project. The findings from the analysis indicate that with the recognition of the

‘OMERO components’ theme gave way to an understanding of how and why the

technical choices can influence the end design of the OMERO software. This was the

critical path to working between the cultural gap between UCD Usable Image project

and the SSD project of OMERO scientific software developers. This is not to say that

the misconception between the two disciplines of UCD and SSD can disappear

completely, given the differences in the terminology and where the focus of each lies.

But in returning to my own research question for answering how the uptake of UCD

philosophies, methods, and thinking in the application of academic SSD can be

improved. I required a way to frame the perspectives of the research of the SSD and

UCD without neglecting the wider community that the SSD project is situated. This led

me to examine a way to form a framework that may embrace and build on these

principles.

167

Chapter 7: Forming a Framework

7.1 The move towards the Project Community Framework

This chapter discusses a proposed framework that has emerged from the experiences and

observations in the Usable Image fieldwork and the OMERO fieldwork (see Chapters 5 and

6 respectively). In reflection of these experiences the work has devised a framework that

conveys the requirement for the re-thinking of academic SSD. Chapter 7 now covers my

own personal response to the fieldwork and subsequent rational that has emerged from my

position in the field.

The research was conducted with a wide range of design constraints operating in the

environment within an SSD project. The observations from the Usable Image fieldwork

analysis uncovered the main question for investigating the SSD context. The subsequent

analysis of the fieldwork has cited the three aspects of SSD, UCD, and community as being

significant to forming a more holistic view of the SSD process – so not only benefiting the

integration of UCD with SSD but also for the position of the SSD project.

What has been learnt through the research is that a lack of UCD in SSD can be caused by

the model of scientific end-user development, as the scientific software is small and can be

disregarded once the scientific answer is obtained. As previously explained by Segal and

Morris (2011) with their scientific end-user software model, both software design and

usability become a smaller issue (see chapter 2 section 2.9) when the end-user is the

developer of the software and the software can have a limited exposure to a wider audience.

The research has also emphasised how several funding bodies have acknowledged a lack of

UCD practice in SSD (see Chapter 2 section 2.7.2), which has meant a limited application

of UCD practice in SSD. The research has also reviewed how the practices of scientific

software developers can cause conflicts with interacting with scientists, as scientific

software developers can follow conventional software engineering practices such as getting

the software requirements up front (Segal and Morris 2008; Segal, 2008). Combining the

already recognised practices of SSD from the existing research with the fieldwork analysis

of the SSD practices of the OMERO project and questioning how SSD is undertaken in

academic contexts led me to identify key factors of the scientific software developers’

practices, but it also made me aware of the importance of the community.

168

Based on these findings, this research proposes that a more context-specific proposition for

SSD is made. Although several existing usability engineering methodologies that have been

reviewed in Chapter 2 section 2.4.1 have demonstrated the management of integrating UCD

and software engineering, I would argue that my research does echo the earlier point made

by Aikio (2006) who states that trying to find a generic solution for the integration between

UCD and software engineering is difficult because of the variable factors for any given

integration case. Such an example is the observation of the cultural difference of science

and the scientific software development process. The scientific process uses a trial and error

approach to discover and eliminate ideas among a spectrum of thoughts to explore (Kane et

al., 2006). The work by Segal and Morris (2008) and Segal (2008), has studied this aspect

of working with scientists to be particularly challenging for scientific software developers

who are following traditional software engineering practices and want the software

requirements up-front; however, to scientists this is a very difficult and unfamiliar practice

because they are more familiar with a trial and error approach. So to answer my final

research question of how to improve the uptake of UCD philosophies, methods, and

thinking in the application of an academic SSD, a more individual approach is required.

Because of this what follows concerns the process of how to answer the question for my

research, as the research addresses a different and complex model of scientific software

development in comparison to the professional end user model of development described

by Segal (2004) (See Chapter 2 section 2.8 for a full description of the professional end

user). The higher complexity of the type of scientific software OMERO is requires a

specialised software development team needing both expert scientific software developers

and UCD expertise. Therefore, both the gap and consequent integration between UCD and

SSD is a prominent and significant question for the scientific software development

process.

In making these conclusions, this research is calling for a new philosophy for UCD in SSD

that positions UCD within the complex environment of SSD. The step towards this

proposal is a framework that acknowledges and understands the specific design constraints

of the academic OS context of SSD. The purpose of the framework is to draw out and

communicate the new thinking for UCD in SSD, to enable and encourage the SSD team to

use the SSD, UCD, and the SSD community information held internally and externally to

the advantage of the project. The research creates a framework so that the principles of

169

scientific software development, UCD, and community may be considered in unity and not

just in isolation. This framework aims to explore the insights of this new philosophy. It has

been created as a way not to predict the gaps of SSD but instead to use the information that

is currently available to inform the decision-making process of academic SSD.

The proposal of the use of a framework for the research has drawn upon the process of

frame analysis (Goffman, 1974). This involves the study of the organisation of social

experiences and may be used to analyse how people understand situations and activities.

The direct relationship I see of this with my own research is with the scientific software

development team and their role for understanding the situations and activities of SSD. The

metaphor Goffman uses to illustrate frame analysis is how people structure (frame) the

content (picture) of what they are experiencing (observing) (Treviño, 2003). While frame

analysis is valuable for the purpose of this research, Goffman (1974) notes that perspective

is situational and can be experienced with other individuals, and it may even be distributed

because “retrospective characterisation of the same event of social occasion may differ

very widely” (Goffman, 1974, p.9).

The final question of this research concerns examining how SSD is undertaken in academic

contexts and how the uptake of UCD philosophies, methods, and thinking in the application

of academic SSD can be improved. Based on this question and through the fieldwork

analysis of studies 1 and 2, the perspectives of both the UCD and the SSD have been

investigated and they demonstrate that in the development of scientific software there is a

multiplicity of perspectives (frames) around the process. The two frames of scientific

software development and UCD were presented in Chapter 4 Figure 4.4, which were

adapted from Seffah et al., (2005). The specific applications of the two system perspectives

to the OMERO project were also discussed in Chapter 4 section 4.2. As already mentioned

in Chapter 4, the work by Seffah et al., (2005) highlights how the perspectives differ.

Briefly, the software engineering perspective of System 1 is driven by specifications that

are provided for defining the application, including the interface. The user interface has to

meet the functional and usability requirements, but the requirements are tied to the system,

which corresponds to the application itself. The focus is on the software application and the

interface is one of many components that have to meet certain requirements. The

perspective of System 2 incorporates UCD, with the focus on the priority to ensure that

170

each user may perform the required set of tasks within the application.

The fieldwork of the Usable Image project and the OMERO project led me to agree with

this perspective of Seffah et al., (2005) and the System 2 perspective and the framing of the

challenge for two reasons. The first reason is that the analysis of the Usable Image

fieldwork provided an understanding of the use of the OMERO software and an

understanding of where the UCD problems lie. In terms of the research, this helped to

further hold a level of empathy with the scientists and also to increase the awareness of a

UCD process. The second reason is that from the analysis of the OMERO project

fieldwork, there was an increased awareness of the range of challenges and problems an

SSD team may face, which covered instances of their current working practice of the

scientific software development process and the responsibility of the OME project to the

current and on-going issues of the OME project community. This perspective illustrated

aspects of the System 2 view but not entirely. According to Seffah et al., (2005), when an

application’s degree of interactivity and interface complexity is high, then there is a

recognised an imbalance between the UCD and the SSD and the System 2 perspective

should prevail. This point was being put into effect with the presence of the UI project,

although the question of the SSD and its community remained.

To this end, the research work now puts forward the idea that for complex SSDs, a System

3 perspective should evolve. The evolution of the System 3 perspective is illustrated in

Figure 7.1, where it shows how the frame and perspective of the community span the work

of both the scientific software developers and the UCD roles in a project, and it accounts

for both the SSD and UCD perspective view of the community. The third perspective of

community has been added for the context of the SSD project, as the priority is to ensure

that there is also a higher level of focus for the SSD and UCD process. This is to underline

the responsibility to the community by the SSD project team for the software users and for

the potential future users.

171

Figure 7.1: A System 3 perspective

For the framework the whole SSD process may then share three natural levels of emphasis

on the following:

• The continued development and evolution of the software.

• The process of UCD and its relation to the development of the software.

• The community of the software and project – to maintain sustainability and growth.

It is important to note that UCD and SSD are considered with the same frame with the aim

of working closer together for an SSD project.

The selection of the framework approach has also been created with an awareness of

avoiding the concept of the "ontological drift". This term, as discussed by Robinson and

Bannon (1991), occurs when a design passes between many different professional groups,

each with their own worldview and specialised language. These professional groups are

termed ‘semantic communities’. When a design is passed within and between the semantic

communities, some things are lost and gained; consequently, the design work cannot be

measured in an equal fashion. The significance of this for the research lies in the previously

identified point of both the educational gap and the cultural gap between software

engineering and UCD (see Chapter 2 section 2.6). Both these gaps can result in

communication difficulties between software engineers and those in UCD roles. Within the

context of SSD, the direction of communication can be identified to move between at least

172

three different professional groups (the scientific software developers, UCD roles, and the

scientists), each with their own worldview and specialised language, so any measure that

may help to support this was considered. The research work has therefore actively chosen

not to adopt a model-based approach, because of the very mixed and interdisciplinary

context of academic SSD projects.

7.2 How to build the Project Community Framework

There are four steps required to capture the key elements defining the Project Community

Framework (PCF):

I. The capture and characterisation of the Project Community.

II. The storage of the Project Community information.

III. The process of UCD.

IV. The Project Community action and reflection.

The framework has been created with the purpose of accommodating the design and

development of scientific software. The steps provide a platform to frame, store, and iterate

through the information of a project as well as, explore, collaborate, through the evolution

of the community surrounding the project. The steps of the framework do not require a

comprehensive level of information to be added each time or an extensive amount of time

spent at each step. The purpose is to use the steps as a way to create a collection of sketches

of the Project Team and Community in order to build a detailed picture of the Project Team

and Community over a certain period. Box 7.1 defines the key roles of the PCF that shall be

used throughout this chapter and the remaining research.

173

Box 7.1: Project Community Terminology

It is acknowledged that when using the PCF, one should keep in mind that it is one’s

responsibility to translate the PCF to one’s own unique circumstances. This is a quality of

the PCF – to remain open to the interpretation of the numerous variations of what may

make up a Project Team. The critical contribution of the PCF to the process is to promote

and raise awareness of the integration between the SSD, UCD, and the community of the

SSD project. In recognition of this, the following information in Table 7.1 shows the

various roles that may exist in a Project Team and the steps that may be applicable to them.

Project Team: The Project Team is the people whose main activity is the academic SSD
project. The Project Team comprises the Project Community Mediating members and any
further members that have more specialised functions within the project (e.g. programming).
The Project Community Mediating role(s) is to act as a catalyst for the progression of the
work of the Project Team as a whole.

Project Community: The Project Community is the people outside the Project Team whose
main activity is not the academic SSD project itself. Though indirectly involved or connected
to the project, the Project Community can be used to identify roles that are not contributing to
the Project Team, yet hold interest in the output of the software.

Project Community Mediating Role(s): This role is the key role for adopting, running, and
promoting the Project Community Framework within the Project Team. The responsibility for
this role is for the cross-pollination of ideas between the disciplines in the Project Team. The
occupier of this role may come from many different backgrounds, but the key for it is in the
promotion of interdisciplinary understanding within the Project Team.

Project Leader: The Project Leader is the principal investigator (PI) who directs and
manages the project.

Funding Bodies: The funding bodies have an authoritative role in the Project Community.
They are not part of the Project Community but they do overlook the academic SSD project
and influence the composition, growth, and fate of the Project Community.

Collaborative Contribution: The term used to define the growth of the Project Team.

174
Table 7.1: Early roles identified for the potential

application of the Project Community
Role Steps – Applicable for Possible Use
Software Developer Steps I, II, III, IV
Bio-Informatician Steps I, II, III, IV
User Centred Design Role Steps I, III, IV
PI of SSD Project Steps I, III, IV
Scientists End User
(Scientists developer)

Steps I, II, III, IV

The key role for the use of the PCF lies with the Project Community Mediating role(s); this

role(s) can be comprised by more than one individual who can come from various types of

expertise evident in different background areas of a project (a selection of these is shown in

Table 7.1). A Project Community Mediating role(s) takes on the responsibility of

advocating their own role (e.g. UCD) but critically must be able to draw together and

promote awareness between the different perspectives of the project (the SSD, the UCD,

and the community of the software). This is critically with the intent of integrating the mix

of perspectives. In the next sections, the PCF steps will be detailed.

7.3 Step I: The capture and characterisation of the Project Community

Step I defines the context of the PCF. The motivation for completing Step I is to outline the

people and tools for the project. It is divided into the following:

• Defining the Project Team and Project Community.

• Recommending the project tools.

• Raising points of awareness for specific Project Community Mediating roles within

the project.

The last point is optional but can be valuable for some Project Community Mediating roles

within the Project Team. The construction of the Project Community involves the

identification of the Project Team and, through this process, the identification of the wider

project context. The purpose of an initial view of the Project Team and Community is to

begin establishing the project team’s context.

175

The aim is not to draw an exhaustive picture at the start of the framework, but to make one

that begins to identify who is in some way connected to the project. This, by its very nature,

can be a subjective process, but the intention is that it may continue to be re-evaluated over

time. Step IV describes the iteration of this Step (see section 7.6). The aim is to know and

to recognise who is involved, and what roles are required, which in turn may help to

identify what the missing elements are (e.g. more specific people) (see Box 7.1).

7.3.1 Defining the Project Team

The Project Team is the people whose main activity is the project itself (see Figure 7.2 and

Box 7.1). Figure 7.2 provides an example of the four types of roles in an SSD project. The

figure also illustrates the range of cross-over roles that can occur, such as a system

administrator having a scientific software developer role and a UCD role work between a

scientific one. Figure 7.3 provides an example of a team member role and its related

surrounding role duties. For the academic SSD project, this may range from small-scale

setups, that is 3–4 people covering and working in many different roles (system

administrator, developer, UCD, etc.), to larger teams of 10–12 people that has the ability to

cover a selection of more specialised roles such as bio-informatician, scientists end user,

etc. Smaller projects require members of the team to work between multiple job roles (i.e. a

person will occupy multiple positions within the project).

Figure 7.2: The scope of domains of a Project Team

176

Figure 7.3: The scope of a role in a Project Team

For the Project Team, there are two possibilities for team members as the project grows:

1. Team members may continually reconfigure their activities in response to the

changes that the task demands as the Project Team adapts to take on multiple

roles. This is the antithesis for the position of a Project Community Mediating

role.

2. Team members can bring their individual perspective of the SSD project to help

in the information for coordinating and the organisation of information of the

SSD process with the Project Team.

A Project Team must work to have both types of members. This is illustrated in Figure 7.4.

Point one on Figure 7.4 relates to the issue above regarding the Project Community

Mediating role. It shows how a scientific software developer role has drawn on further roles

of a UCD role, a scientific role, and a system administrator role. Point two on Figure 7.4

encircles the original role and shows the growth of the role as a dotted line. With a limited

177

size team, which is ‘typical’ of academic science projects because of funding constraints,

people are required to take on multiple tasks for the Project Team to operate, which

supports the decision to have a software engineer within an SSD project to take on tasks

outside their job description. This is an assumed and understood part of the job for

academic based research.

Figure 7.4: Role duties

A key responsibility of the Project Team is to ensure that the members are capable of and

willing to accept their roles within the Project Team. This particular point again helps to

emphasise the requirement for an expert UCD role in SSD projects because of the need to

utilise the expertise of UCD role. The PCF has paid particular attention to this aspect as a

core previously acknowledged challenge was with software engineering lacking the

expertise of UCD. This underpins a central element of professionalism for all roles in the

Project Team.

7.3.2 Project Team Example

A Project Team has funding for five years for seven team members; in the second year the

project has an additional set of funding for 3 more people for 3 years. The team comprises 2

UCD roles and 8 scientific software developers.

178

7.3.3 Project Team Variable Conditions

The project team variable condition is the funding of the project, which is the central factor

that can determine project sustainability. It is recognised that funding may come from

alternative sources outside of the general funding councils such as commercial sponsored

grants. This impact and effect it may have on the Project are yet unknown, as they have not

been explored in this research. Because the Project Team is defined as the people whose

main activity is the project itself, the purpose of recording the goals of the Project Team

over time is to record its evolution, so that it may be used to inform current and future

design and development both the Project Team and the Project Community. The goals must

incorporate not only the SSD development goals, but also the UCD goals, and the goals for

supporting the community.

How the Project Team may evolve over time depends on the success of the project’s

funding renewal. The Team may also expand through collaborative work between similar

projects. This requires a Project Team to invest a certain amount of time with any

collaborating project and so can potentially take out the SSD Project Team members from

their core areas of work.

7.3.4 Project Team Outcomes

The outcome of defining the Project Team is the identification of roles and matching these

with people, which is done by drawing attention to certain aspects such as possible issues

when working as a team, missing roles, people. For the project leader, defining the Project

Team aims to promote and support ways to think about funding/grants in a more strategic

way. The identified benefits of the Project Team are as follows:

• To recognise where additional support of people/roles is required (e.g. support for

the system administrator).

• To recognise the need for new roles for the Project Team in the categories of SSD,

UCD, or the uptake of the software in the community (e.g. new technical support).

179

Defining the Project Team may provide awareness of the role of the Project Leader, and

highlight and question the contributions of supporting roles outside the formally defined

funded model of the project.

7.3.5 Defining the Project Community

The Project Community can also be defined as the people outside the Project Team – the

people whose main activity is not the SSD project itself, but are indirectly involved or

connected to the project. The Project Community can identify roles that are not contributing

to the Project Team, yet have benefits of its use through the output of the software.

The Project Community can be defined through the work of Communities of Practice. The

Project Community is formed by the people who engage in a process of collective learning

in a shared domain of human endeavour. There are three crucial elements in distinguishing

a community of practice from other groups and communities (Wenger, 2007).

• The Domain.

It has an identity defined by a shared domain of interest. Membership therefore implies a

commitment to the domain, and therefore a shared competence that distinguishes members

from other people.

• The Community

In pursuing their interest in their domain, members engage in joint activities and

discussions, help each other, and share information. They build relationships that enable

them to learn from each other.

• The Practice

Members of a community of practice are practitioners. They develop a shared repertoire of

resources: experiences, stories, tools, and ways of addressing recurring problems — in

short, a shared practice. This takes time and sustained interaction.

180

7.3.6 The Project Community Example

A simplified example of the communities within the PCF is demonstrated in Figure 7.5.

This figure shows three example types of communities with which an SSD project may

interact. Community A is a scientific software engineering community, community B is an

example of a collaborating project, and communities C and D show two different scientist

end-user communities. These communities might be distinguished by their different use of

the software. In identifying the different roles and communities (e.g. Community A of

scientific software engineering group would use the software differently in comparison to

community B of a collaborating project), the PCF has acknowledged how the theory of

Community of Practice (Wenger et al., 2009) deals with structured organisations. The

Community of Practice recognises that within an organisation the value does not inevitably

lie with the individual members of a community of practice, it also recognises that benefits

to an organisation such as an area of problem solving, an improvement to the quality of

decisions, and more perspectives of a problem that can be accumulated for the organisation

itself. The work by Lesser and Storck (2001) further discusses how communities are a

successful means of managing unstructured problems. They are also an effective way to

share knowledge external to the traditional structural boundaries, and they provide a

channel for developing and maintaining long-term organisational memory. The PCF

intends to attach itself to this concept set out by the Communities of Practice; hence, it

utilises the benefits to aid in the development and evolution of the Project Team, the

software, and the Community. This action is to provide the Project Team with the

necessary feedback in the PCF. This problem is further taken into account in Step IV of the

PCF, where the reflection of the process is reviewed from more than one perspective (See

section 7.6).

181

Figure 7.5: Separate communities (Adapted from Fong et al., 2007)

In defining the Project Community, the depth of the roles continues to be re-evaluated

through the iteration of the Project Community framework over time. An initial suggested

depth of 2–3 levels would be a recommended starting point; this may be altered according

to the use of the framework and requirements. Figure 7.6 illustrates the potential depth of

defining the Project Community and community involvement. The centre of the model

represents the project while each layer outside of this represents a level away from the

active participation in the project. The example of this would be an active member who

may regularly provide feedback or contribute to the project, or a peripheral member who

rarely uses the software or provides feedback to the Project Team. The figure has been

adapted for the purpose of the PCF to place the Project Team at its core. This is so the

principle for understanding the depth of the role can be adjusted accordingly.

182

Figure 7.6: The Onion Model of the Project Community

(Adapted from Antikainen et al., 2007)

The purpose of new community growth is to identify the growth and the evolution of the

community. Figure 7.7 identifies the three major phases of a project, which have applied

three principles from the work by Schön (1973), in which he discusses the role of the

development of innovation. The same principle has consequently been applied to the

information of a Project Team and how it is diffused in the community. The three points

below describe this:

• The information and evolution of a Project Team remain central to the project. This

occurs in the initial phase of the SSD project work. This initial phase is shown in

Figure 7.7.A.

• The second phase for the information and evolution of a Project Team is where

there is a movement of information from the Project Team to its users in the

community. This can be via various points of contact (e.g. the project web site,

documentation). This second phase is shown in Figure 7.7.B.

• The third step shows how there is widely distributed dissemination of information

via a centrally managed process for the Project Team (this identifies the long-term

183

goal and purpose of the PCF). The range of development may cover new sites of

development of SSD, UCD, or community uptake programmes such as new training

sites for the scientific software. This phase is shown in Figure 7.7.C.

The final Figure 7.7.C, as discussed by Schön (1973), retains the centre of what translates

and is represented in this research as the Project Team but adds the role of secondary

centres that are actively engaged in the diffusion of information. These secondary centres

represent the flow of information from the Project Team into the wider community.

Figure 7.7: New community growth (Adapted from Schön, 1973)

184

7.3.7 The Project Community variable conditions

The Project Community can evolve over time, depending on the success of the project and

the sustainability of project funding. The growth of the community, in turn, is central to

uptake of the software.

• How is the Project Community contributing to the scientific community

(application of software to science)?

• Do new communities emerge from the collaborations of the Project Team?

7.3.8 Project Community Mediating Role

The Project Community Mediating role is important for forming a community and

championing the PCF. This requires careful consideration of all the perspectives of the

SSD, the role of UCD, and the uptake of the software and the SSD project. Therefore, this

role is critical to the PCF linking the principles of SSD, UCD, and the SSD community.

The support for these perspectives may come collectively from different types of members

and roles from within the Project Team. Based on this, the PCF has defined the following

set of preliminary questions for a mediating role to aid in supporting the principles. The

preliminary scope of questions to ask is:

• Which users should be targeted first? (This target may be aligned with the Project

goals)

• Is the software for the whole laboratory, collaborating laboratories, or a full

university science division?

• Is it the software use forced or optional?

• What are the barriers to entry in the laboratory, collaborating laboratories, or a full

university science division?

• How can the software be improved to make the early adopters of the software

happy?

185

Figure 7.8 illustrates the nature of the Project Community Mediating role in integrating the

Project Team and the surrounding communities and how it may connect the external users

with the Project Team. The example in Figure 7.8 shows that for each community labelled

A to D, there exists a Project Community Mediator, which is colour-coded to that particular

community in Figure 7.8. In addition to this, there also exists a more central mediating role

(coloured in blue in the diagram) to whom the other Project Community mediators can

provide information. A Project Community Mediator needs to cultivate, develop, and

maintain an environment in which the components of the system can develop, grow, and

evolve. The purpose of working within the PCF is to promote awareness, best practices,

and information from the different perspectives of SSD, UCD, and community, to help to

inform the systems design process. Finally, Figure 7.8 also aims to illustrate that there is no

expectation that the Project Community Mediating role may lie with a single individual; the

role is open to combination of supporting individuals within a Project Team. This is

illustrated in Figure 7.8 where the expertise of the Project Community Mediator has been

spread between four roles that directly interact with the communities of scientist end users,

software engineers, and a collaborating project.

Figure 7.8: The Role of the Project Community Mediator

186

7.3.9 The Project Team and Project Community Limitations

The limitations on the Project Team and Project Community have been purposely

categorised together because they share the common limitation of funding. Because of the

instability of the funding cycle that the Project Team is dependent on, there are questions

concerning how to learn, stabilise, and bring funding to the Project Team continually.

Identified potential avenues to explore for this include joining forces with academic

funding, although this brings unknown dependencies from the perspective of this research

for a Project Team. Alternatively, another possibility involves finding other sources of non-

academic funding.

7.3.10 The Project Community Outcomes

In defining the Project Community, the intention is to assess how the Project Team should

reach out to the community. It is critical to state that the PCF is, firstly, a new way of

thinking about and a philosophy for the creation and development of SSD. This has notably

drawn on the agile philosophy, as well as on the openness that is UCD. Secondly, the

motivation for the implementation of this philosophy is that it allows the PCF to be

applicable to various SSD contexts. This is a key element in providing the desired

flexibility of the framework for those who use it in various SSD project contexts.

In the process of researching out to the community to promote the uptake of the software, it

is also required to take into account the limitation of resources within a project, recognising

that the number of promotional led roles in scientific software projects is negligible, and

recognising that such a promotional role would be considered a luxury in many SSD

projects. Nevertheless, some individuals within a SSD project must take on such

promotional work. This is an example of the responsibilities of software engineers have

taken on board, as they must work beyond their own job description. A suggested list of

practical techniques to promote the uptake of the software through the Project Community

is as follows:

187

• Through web 2.0 tools

• Community events (e.g. conferences)

• Internal visits

• Developer scientist demo days

7.3.11 Tools of the PCF

The aim of setting out project management and software development tools is to provide a

SSD project with the necessary means for managing the Project information. The tools can

also be used for the wider level of information presented to the members of the Project

Community e.g. the project web site. In the context of the Project Community, the

combination of these tools serves the purpose of coupling with the central knowledge

repository identified and discussed in Step II. The initial core tools outlined for this process

are described in Table 7.2:

Table 7.2: Core tools

Tool Description
A version control system Management of changes to documents/source code
A bug tracking system Management of bugs across the source code
A developer mailing
list/forum

Management of community questions/support

A project web site Management of community access

7.3.12 PCF Tools Variable Conditions

The variable conditions that can shape the selection of tools are again related to project

funding. In an academic funding project, tool selection can be constrained by costs. Some

tools cover all of the above (shown in table 7.2) but also provide additional features and

functionality, yet they come at a financial cost, which can be very expensive. However such

tools can be beyond the budget for an academic SSD project. Therefore, OS tools or tools

allowing free use for OS projects are recommended. If more funding is available for an

SSD project, tool selection can be less constrained by costs so there can be more to choose

from and more benefits gained from the tools. In such a scenario, one institute’s technical

188

department may provide and support alternative commercial tools so can offer a more

complete tool solution. Alternative commercial tools would come at an additional cost for

the SSD project, but can provide software support and predefined software development

workflow processes to integrate with other project management and software development

tools.

7.3.13 PCF Tools’ Limitations

The selection of the tools must be able to fit the workflow for the project. This may mean a

trial of a range of possible tools. It must be stressed that this is vital for a Project Team. To

take the first set of tools without the members of the Project Team having used and

experienced it adequately is ill-advised. A tools’ use must be expected to expire through the

growth of the project because it may not be able to cope with increasing demands (i.e. a

tool that manages the SSD of a small group of developers will, over time, acquire more data

as the size of the software grows and if more roles are added to the Project Team). The

selection of the tools must also be made in relation to the resources of the project. A

drawback of taking a set of tools is that a person in the Project Team is required to be

responsible for the management and upkeep of the set of tools.

7.4 Step II: The storage of the Project Community information

The aim of Step II is the creation of a centralised repository for the storage of the Project

Community information but it also aims to provide a way to couple and connect

information about the Project Community. The importance of Step II for the PCF is in

sharing the knowledge acquired throughout the Project Team and to share this information

to help support the wider Project Community.

The proposal for a centralised repository tool is to support the co-ordination of and actions

within the Project Team, and to ensure that the information and knowledge are not isolated

inside various individuals. The knowledge is inter-subjectively shared amongst the

members of the Project Team and, can be where necessary, the wider Project Community.

189

The efficiency of a repository tool is therefore represented by its ability to provide

information for the individuals of the Project Team in order to coordinate activities.

7.4.1 Step II Example

An example tool that may be used to support the needs of an SSD is a Wiki, which will

allow the Project Team to form interconnected pages. The advantage of the chosen tool is

that it works in unison with the set of tools set out in Step I and integrates all of them.

7.4.2 Step II Variable Conditions

The variable conditions of the selection of the software tools of Step I are applicable to the

selection of the tool for Step II.

7.4.3 Step II Limitations

Again, the selection of the repository tool is based on a trial of the range of tools that offers

all the members of the Project Team the opportunity to use and experience the tool that is

ultimately selected. The selection of a centralised repository tool must be able to work in

the workflow of the project, and it must be able to complement the existing set of four core

tools: a version control system, a bug tracking system, a developer mailing list/forum, and a

project web site described for Step I in Table 7.2.

A key issues with any centralised repository tool is that it must be used effectively to

manage the information of the SSD Project, so that the Project Team benefits from having

the information about and knowledge of the Project stored in such a way. This means that

the chosen tool must be correctly managed and supported by the entire Project Team. A

tool requires the full commitment and participation of all of those in the Project Team as

well as a team member to administer the use of the tool.

TIP: The use of the repository tool may expire through the growth of the project. The

selection will also be made in relation to the project resources. The drawback of taking a

tool is that each tool means that a role in the Project Team must be allocated for someone to

be responsible for the management and upkeep of the tool.

190

7.5 Step III: The process of UCD

Step III of the PCF returns to the Project Community Mediating role(s) and specifically the

goals and agenda for UCD. The Project Community needs team member(s) who specialise

in UCD. This is a critical component for any step towards implementing UCD in SSD

practices. While no explicit software development methods are specified in this framework,

no specific UCD methods are specified either as it is the responsibility of the UCD

expert(s) working within SSD projects to make the appropriate decisions on such methods

appropriate to their context and resources. This also underlines the principle described by

Mayhew (1999) on the selection of a UCD approach that can be adopted based on project

constraints. It is the intentional openness of the PCF at this Step with the selection of

methods to allow for the flexibility of the PCF. This decision has also been informed on the

experience from the research with the recognition that the feasibility of using ethnography

due the large investment in time. It is clear to see not all SSD projects will have the

resources to employ such a technique.

Step III provides the information for UCD in SSD to be integrated into the SSD process

and to be applied in the PCF. This step acknowledges the existing role of usability

engineering and the scope of UCD methods available to UCD expert(s), which allow them

to make a selection appropriate to the SSD project in which they are involved.

7.5.1 UCD for SSD

This section is pivotal to this research. The insights obtained from both the fieldworks and

the existing literature underline the perspective that SSD has a limited application of UCD

in scientific software. This is not a criticism of the scientific software developers but rather

an acknowledgement to why Step III for the PCF sets the agenda that scientific software

projects must always work with a specialised UCD role(s) in the project. In an SSD project,

it is recommended by this research that UCD is applied from the very start of the project

and that this is enforced by the SSD project funding bodies. The inclusion of this is to

support the UCD Project Community mediating role. This point has purposefully drawn

from my own experiences in the fieldwork and presence of working alongside the OMERO

191

team, and the existing literature by Mayhew (1999) and Battle (2005) and the description of

the role of a ‘change agent’. In reaction to this recognised problem in how UCD has to be

adopted throughout the organisation (described in Chapter 2 section 2.7), the PCF

recommends that a UCD champion role is employed from the very start to provide a

constant level of commitment to UCD, to be a source of UCD information, and to create

and utilise the opportunities for process change within the PCF. Any UCD champion role

would work closely with the Project Community Mediating role.

7.5.2 Variable Conditions of UCD

A variable condition of the application of UCD methods is with the level of experience in

using and applying the range of them. The range of UCD methods used relies on the

appropriation of how best to integrate the phases through the workflow of the project. A

further variation recognised for the PCF is how the process of UCD can be introduced after

the start of the SSD project. In this scenario, the move to working as close as possible to the

software design decision becomes the central priority for the role of UCD. The UCD

process may then have a stronger influence on and a closer integration with the SSD

process rather than remaining in an external position to the development of the software.

7.5.3 Limitations of UCD

The range of UCD methods can require a UCD specialist to maximise the information that

can be collected and processed for the development process. This highlights the demands

on the project resources that such an approach can make so that it may or may not be

feasible.

192

Reflection-in-Action

Reflection-in-action is ‘thinking on our feet’. It involves looking at the experiences gained
throughout the project and testing out ideas in use. This demands the continual building of
new understandings to inform the actions in the situations that are unfolding through the
Project Team and the Project Community. In order to move towards improvements in
understanding about problems that occur in the Project, Reflection-in-Action calls for testing
out ‘leading ideas’ to allow for the development of further responses and moves.
Significantly, this does not demand strict adherence to established ideas and techniques. The
Project Community recognises that issues with SSD have to be thought through as each case
has its own characteristics.

Reflection-on-Action

This is the outcome of Reflection-in-Action after the event; it is the act of actively thinking
back on what has been done in order to develop insights and discover how Reflection-in-
Action has contributed to the positive or negative outcome (Schön, 1983).

7.6 Step IV: The Project Community action and reflection

Step IV for the PCF is an essential step to allow the evolution of the Project Community

over time. The basis of this step is separated into two phases: the first is Reflecting-in-

Action and the second is Reflecting-on-Action (see Box 7.2).

Box 7.2: Defining reflection practice

Step IV for the PCF aims to maximise and integrate the knowledge from all levels and

fields through the Project Community, with the goal of drawing together an awareness for

the SSD, UCD, and community led challenges. The step concludes with the Project Team

setting out a strategy that may continue to evolve through a learning process involving

skills, experience, and insights gained through the dynamic interplay between formulation,

implementation, and critical reflection. The strategy is based on learning from the context,

conversing from within the Project Team, the Project Community, and being influenced by

the reflections on the actions taken in the situation. The details of Step IV are now

explained in the following sections.

193

7.6.1 Phase One: Reflection-in-Action

The first phase of this step uses the process of Reflection-in-Action (See Box 7.2). The act

of Reflecting-in-Action enables the member(s) of the Project Team to spend time on

understanding the actions of the Project Team by exploring these as they occur in the SSD

project. This process is highlighted in Figure 7.9.

Figure 7.9: The Reflection-in-Action cycle within the Project Team

The Reflection-in-Action process needs to be able to accommodate and to be

communicated between the areas of SSD, the development of the UCD, and the

development of the community for the software.

In order to gain a wider perspective of the experiences gained through the project, the

Reflection-in-Action phase promotes the use of collaborative roles through SSD. This

phase aims to build new understandings and give insights to inform the Project Team about

its goals.

7.6.2 Phase Two: Reflection-on-Action

The Reflection-on-Action phase is central to the efforts in this area for all involved within

the Project Team (see Figure 7.10). This second phase builds on the outcome of the

194

Reflection-in-Action phase of building new understandings and giving insights to inform

the goals of the Project Team, and it aims to enable the members of the Project Team to act

on the information.

Figure 7.10 The Reflection-on-Action cycle within the Project Team

Both the individuals and the Project Team can form a collective learning process from the

context through “conversing” with it and being influenced by their reflections on the

actions taken in the situation (Schön, 1983). A view of this process is presented in Figure

7.10. Enabling an environment for reflective practice in the Project Team can provide a

platform for the creation of a strategy. Conversing and reflecting on the actions taken can

help to form the construction and connection of the strategy. This allows a strategy to be

formed on the range of problems from the aspects of identified related to SSD, UCD, and

the community within the SSD project and the combination of holding a holistic

perspective with these elements.

The underlying aim of Reflection-on-Action distinguishes itself from reflection on the areas

of the SSD, UCD, and the community in regards to the design, development, and uptake of

the software. If the Project Team does not have insights into any of these areas, then for the

purpose of the Reflection-on-Action process it may be valuable for the Project Team to

widen its perspective through this process to allow for the broader scope of discussion and

feedback. For example, a UCD role may be adopting a different UCD method to gain a

195

broader or more specific type of feedback.

Table 7.3 identifies the initial scope of techniques that may be used for the Reflection-on-

Action phase. Further techniques and methods may be identified and applied to the context

of individual projects.

Table 7.3 Scope of Techniques to Enable Reflection-on-Action

SSD Techniques UCD Community Techniques
Development process Active user involvement User-Facing Improvement

Initiatives
Requirements Usability champion User service and support
Design Explicit and conscious

design activities
Marketing Strategy

Re-factoring to improve
design and code

Evolutionary systems
development

Meeting and evolving to
support new scientific
techniques and communities

Testing
Deployment

Constant Communication between Project Core

7.6.3 Step IV Example

An instance where Reflection-in-Action is applied through the software development

process may be in the development of a new software feature. This is where the new feature

scope for the software is relatively unknown for the areas of the SDD, UCD, and the

community implementation. The Reflection-in-Action phase, as explained in Box 7.2, is the

Project Team’s involvement at looking at the experiences gained throughout the project and

the testing of ideas in use to manage this process.

The Reflection-on-Action phase is then used at the end of the development or release cycle,

where the Project Team may actively discuss the implications of the cycle. The focus

covers the interaction between the SDD, UCD, and the community. The core outcome for

the reflection at the development level and through the SSD is consciously undertaken to

learn about the actions taken within the SSD project. This is illustrated in Figure 7.11.

Whereas previously the focus remained on the act and the observation in Reflection-In-

196

Action (Figure 7.10), the new wider focus in Figure 7.11 extends to a more holistic and

reflective view of the actions and observations taken from the Reflection-In-Action. The

goal for this is a continuing learning process from each aspect of the SSD, UCD, and the

community of the SSD project.

Figure 7.11: Reflection-in-Action as a continued learning process

Reflection-on-Action can also highlight many principles and good practices. Then, a

Project Team can adopt and continue to evolve its priorities and strategies for the Project

Team and Project Community based on its learning from the Reflection-on-Action process.

The growth for the development of the strategic thinking that reflective practice presents is

illustrated in the work by Dubberly et al., (2009). This work outlines the interactions in a 1-

to-1 balanced system, as shown in Figure 7.12. This highlights the stability between the

linked entities. Examples could be an internal interaction of the Project Team or an external

interaction between the Project Team and the Project Community.

197

Figure 7.12: Reflection-in-Action as a Balanced Process

This next phase is further enhanced by the move to a fully conversing system, as shown in

Figure 7.13. In this figure, the output of one learning system becomes the input for another

one. This is in the context of either operating internally within the Project Team or in the

interaction between the Project Team and the Project Community. Therefore, the Project

Team continues to learn from the previous iteration of work, and additionally the Project

Team can continue to learn from the feedback iterations from the Project Community. Each

then has the choice to respond to the other or not.

Figure 7.13: Reflection-in-Action as a conversing process

198

7.6.4 Step IV Variable Conditions

The process of Reflection-in-Action is sustained for a variable amount of time. This

variable is based on the complexity of the development task in question. A recognised

variable condition for the application and use of both Reflection-in-Action and Reflection-

on-Action is the degree of how well the Project Team is working together. If the Project

Team is relatively new, then it can take the team some time to establish a team’s

understanding of how other team members work can affect the Project Team and how it

may react to creating and form new ideas. To compensate for this and allow a Project Team

to become more established, the recommendation would be to maximise the use of the

Reflection-on-Action process. This second phase should allow the Project Team to

highlight and discuss what parts of the process of the project is working for them as a team

or what parts of the process are not and need to be changed.

The variation for Reflection-on-Action is subjected to the time the Project Team invests in

the process. The PCF acknowledges the time constraints of working within the SSD

context, but the importance for working through the step of Reflection-on-Action and on

the three key areas of the SSD, the UCD, and community of the SSD project are necessary

for the sustainability of the SSD project.

7.6.5 Step IV Limitations

The limitation of Step IV is that not everyone in the Project Team will be at the same level

of participation for reflection on the project work. The proposal is in that case to encourage

the exploration of alternative techniques by a Project Team that facilitate both Reflection-

in-Action and Reflection-on-Action. Such an example might be through using Project

Team meetings to encourage wider team feedback on the Reflection-in-Action and

Reflection-on-Action processes.

199

7.7 Summary

Chapter 7 has put forward the proposal and definition of the Project Community

Framework (PCF). This is my own personal response to the fieldwork from the two pieces of

fieldwork analysed in chapters 5 and 6. The PCF emerged to address the need for

improving the uptake of UCD philosophies, methods, and thinking in SSD. To help this,

the PCF has proposed and consequently put forward a new way of thinking about SSD.

The PCF has been set out with four steps (Steps I to IV), which were fully described in this

chapter. To briefly summarise, these steps capture the key principles and aims of the PCF

to accommodate for the software development tools used, the role of a UCD, and the

continued reflection and action of information for a SSD project. The combination of these

steps has been constructed to promote a new line of thinking for integrating SSD, UCD,

and the development of the SSD Project Community. Chapter 8 now goes on to evaluate

two existing features of scientific software development with the frame that the PCF has

proposed.

200

Chapter 8: The Evaluation of the Project Community

Framework

The Project Community Framework (PCF) was created from the analysis of two different

fieldworks (studies 1 and 2, presented in Chapter 5 and Chapter 6 respectively). The PCF is

a proposal that has put forward a new way of thinking about SSD. Therefore, because the

PCF is a newly created framework, I will assess it against two evaluation reviews to

understand the SSD practice that this research has been part of, so that the concept of

Project Community can be evaluated against real SSD practice.

Review 1 is about HCS (the high content screening code mentioned in Chapter 6, which is

a method that is used in biology and drug discovery to identify substances that alter the

phenotype of a cell in a desired manner) and Review 2 covers the FLIM technique, which is

a fluorescence microscopy technique used in imaging to map the spatial distribution of

proteins lifetime and interactions. A summary of the evaluation approach used in the

research is illustrated in Figure 8.1.

Figure 8.1: The approach for the PCF evaluation

For this research, because of the ethnographic method was already used (see chapter 4), I

have also made the decision to evaluate the PCF within the ethnographic method. Thus, this

research considers the four techniques discussed by Hughes et al., (1994) for using

ethnography in systems design. These four techniques are quick and dirty ethnography,

concurrent ethnography, evaluative ethnography, and the re-examination of previous

201

studies. These are summarised briefly in the next section (8.1) with the selection for the

evaluation of the PCF also explained in the next section. Section 8.2 of this Chapter

accounts for the evaluation process of the PCF and the two evaluation reviews conducted

for this research. The two reviews of HCS and FLIM for the evaluation are presented in

sections 8.3 and 8.4 respectively. The chapter concludes with a wider discussion of the PCF

and draws out the philosophy of this research in the PCF manifesto.

 8.1 Evaluation strategy

The first technique, quick and dirty ethnography, is created to help designers generate a

picture of the workplace over a short time frame. It aims to highlight the important factors

of the workplace that are relevant to the design (Crabtree, 2003). The findings by Hughes et

al. (1994) demonstrate that this is also suited to large-scale sites, based on their experience

with an air traffic control system (Hughes et al., 1994). This quick and dirty approach may

offer a restricted view but it helps in mapping out the interdependencies and activities of

work, and it can be done in a short period of time, even though it is dependent on the size of

the organisation (Crabtree, 2003).

The second technique, concurrent ethnography, is when ethnography takes place at the

same time as systems development. In this instance, the designer and the ethnographer

exchange the findings via regular communication at each phase of systems design. Hughes

et al., (1994) describes this as a sequential process where the ethnography leads the design

process. Crabtree (2003) also underlines how flexible this process is, as it iterates through

the process of fieldwork > debriefing > prototype iteration > fieldwork, for as many times

as required.

The third technique of evaluative ethnography involves a focused shorter period of time for

the fieldwork. In using a focused period of time, it aims to gather the relevant information

quickly rather than using alternative traditional long-term method. The general aim of the

technique is to establish the practicability of a proposed design system and the process

involves a sanity check of the design proposal. The evaluation is not designed to be

202

exhaustive, but serves to assess the feasibility of the proposal and to draw out any

problematic issues (Crabtree, 2003).

The final technique, the re-examination of previous studies, is where existing studies are

reassessed to inform the initial design thinking. Its goal is to gather existing sources of

information that can be used to help to sensitise designers to the issues of the workplace

(Crabtree, 2003). The work by Crabtree (2003) also recommends the re-examination of

issues as they emerge, to further inform the design. He also states that although the

technique is a satisfying activity in terms of examining existing work, oversights are made

and parts have to be disregarded of the existing work as out of scope.

These four techniques are very much complementary and overlap given the requirements of

the design process. As they do not require prolong periods of contact, these techniques are

rather flexible. However, this conflicts with the ethnography core principle of prolonged

contact, where the goal is to develop awareness in the design over time so it integrates

social science methods in different ways (Crabtree, 2003). This change of principle

regarding ethnography is therefore evident in my own research, where ethnography has

been applied in traditional prolonged contact for the method documented in Chapter 4, yet

for my evaluation this is not required as I am searching to question the practicality of the

PCF in a SSD working context. Thus, there is no need for an extended period of contact in

it.

Hughes et al., (1994) categorises six features of the different types of ethnography in

design. These six factors are the detail of work, type of design information, duration of

study, influence of field site, design/study relation, and form of study. For making my

decision for my evaluation, the points accounted for are the type of design information, the

design/study relation, and to a lesser extent the duration of the study. The selection and

consideration of the factor of design information were focused on motivation and scope of

design in relation to the PCF. The selection of the design/study relation was driven by the

need to outline the design of the PCF in the evaluation review. Based on these two aspects,

and considering that no further fieldwork will need to be performed so meant that there was

no extension to the study, I have decided to use the ethnographic technique of re-

203

assessment of previous studies for the evaluation review, the existing studies which will be

taken from a selection of collected OMERO meetings notes. I have made this decision

based on the ease of access to this material and from my previous experience with the

material in the research with analysis made in Chapter 6.

It is important to note that a wide range of notes were collected throughout this research,

but this new selection of notes were collected before the notes that were used for the

analysis PCF in Chapter 6. The meeting notes for the analysis covered a period from

04.08.2008 to 21.10.2009. I did purposely wish to examine the PCF against the historical

working practices of the OMERO project to gain an insight into the feasibility of the PCF.

Extract 14 (later in this Chapter) is the exception to this time period as additional work for

Study 2 was observed during my embedded time in the OMERO project and I personally

wished to explore this after the analysis presented in Chapter 6. Again, this evaluation

approach aims to review the PCF and check how these meetings notes compare to it even

though they have been carried out independently from the creation of the PCF. The

evaluation work has been formed to review the SSD practice that this research has been

part of, so that the concept of Project Community can be evaluated against real SSD

practice. The following elaborates on the re-assessment of the previous studies for my own

evaluation.

8.2 Re-examination of studies

This section explains how the two evaluation Reviews were selected and how the

evaluation was carried out. My evaluation approach for the re-examination of studies has

drawn on work by Hughes et al., (1993) and Hughes et al., (1994). This approach was

chosen to evaluate the PCF against an applicable domain. As mentioned in section 8.1, I

have selected a different set of OMERO meeting notes to use for my evaluation. This was

because there was a limited amount of ethnographic material for scientific software

development with UCD in the literature (See Chapter 2 section 2.8). So using the OMERO

meeting notes it serves to provide a wider range of SSD information. However, I also faced

the problem of drawing out the ‘implications for design’. Hughes et al., (1994), explains

this problem in how that not all ethnographic studies offer clear design objectives. This

204

comes from the fact that an ethnographic researcher will have his/her own objectives for the

study. A further problem described by Hughes et al., (1994) is that ethnography, as a social

science method, fails to readily produce a body of findings to underpin any application of

information. In accommodating these factors in my own research, I have noted that my own

objectives would concern looking at the implications for design for the PCF based on the

two topics of High Content Screening (HCS) and Fluorescence Lifetime Imaging

Microscopy (FLIM). Because I could not be sure of the outcomes of the analysis of this

new material, if I were to follow the steps of the analysis discussed in Chapter 4.

I have adapted my evaluation process from the method described in Chapter 4 in the

following ways of the selection process and steps taken. These changes were made as my

requirement for the evaluation of the PCF was in sensitising the PCF to a wider set of

practical SSD information. The meeting notes were selected using the keyword terms of

HCS and FLIM. This meant a total number of 14 meeting notes were reviewed. The

selection of these terms is explained in the paragraph below and the entire meeting notes

used in the evaluation are available in Appendix 12.

For each of the two evaluation reviews, I have then directly commented on the actions

taken in the OMERO meeting and used this to expose the PCF against the actions being

taken in the SSD meetings, using my own narrative and, when possible, further discussions

with the OMERO developers to help this evaluation review. The two reviews chosen were

HCS and FLIM. The first, HCS, was selected based on my own experience and on the

output from the analysis in Chapter 6. The HCS code was part of the OMERO components

theme, so it provided me with an area of specific OMERO functionality to take for the

focus of the evaluation for Review one. Yvan, one of the OMERO developers, helped me

with my decision for the second Review topic, which was based on my remaining codes in

the OMERO components theme. The main code under discussion was the ‘FS’ (file

system) code; however, Yvan suggested that given the HCS code and its focus on

functionality throughout the OMERO software, the topic of FLIM would also maximise the

evaluation. I do recognise that introducing the input from Yvan can bring an element of

bias into the evaluation. The full implications of this shall be discussed in Chapter 9 along

with the further scope for improving the evaluation of the PCF (Section 9.4). It is also

205

acknowledged that because of the use of Extract 14 there is conflict of previous analysis

with the OMERO embedded work meetings that I analysed in Chapter 6. Again the

implications of this shall be reviewed in Chapter 9 section 9.4.

8.3 Review 1: High Content Screening (HCS)

8.3.1 Background

HCS is an automated cell biology method drawing on various aspects of optics, chemistry,

biology, and image analysis, allowing biological research and drug discovery. Further

information on HCS and SPW are in the footnotes 4 and 5 in Chapter 6. The HCS

technique was not originally planned in the original development of the OME data model.

With the growth of the drug discovery process as highlighted by Abraham et al., (2004),

HCS has been an approach allowing for easing the bottleneck of drug discovery. However,

the HCS process was unable to predict the challenge of managing the amount of data that

was now possible to acquire with the HCS technique.

8.3.2 HCS fieldwork

The fieldwork has been conducted through the OMERO team meetings and OMERO

conference calls, where the relevant transcripts to the HCS have been used as the main

source of data. The researcher’s own narrative and informal interviews and discussions

with the OMERO developers support this when it is feasible.

206

8.3.3 The timeline of the HCS fieldwork

Figure 8.2: Key timeline of development events for HCS

The timeline for developing the HCS features support was created early on in the OMERO

software development as a priority for the team to support the community (See Figure 8.2).

A major dependency through the HCS work was interaction with the commercial entities

for the HCS file format. This dependency had the ability to block the entire process. The

following Extract 1 highlights the priority for the software development process of creating

a test suite.

Importer

Test suite

This must be top priority!!

Incell Screen-plate-well support

 Need to have the new XML model supported before we can get this done (this is

 coming from Terry)

 Eli can start looking at "the basics" fairly soon on this

 Miles: working on Evotech data and will have it delivered to Eli.

Adding file formats (Ugh!) (We are agreed to slowing down this process, in favour

of getting the testing framework implemented)

207

Miles: HCS file formats (Should we start exercising parts of the SPW data model;

we have an excellent use case here with the Incell 1000 files. Obviously, we won't

support the SPW data in the client yet, but can consider this after the new year. Bio-

Formats supports Evotech, shall we add Incell 1000.

(Also note I have contacted Cellomics twice, no response.)

Extract 1 - 2007-11-09 OMERO Review Meeting (OMERO 2010)

The OMERO project is operating alongside the Bio-Formats project; the information

exchanged between these creates dependencies throughout the development process. The

OMERO project must have the technical ability to read the proprietary file formats, which

is the main focus of the Bio-Formats project. The information on reading the proprietary

file formats of HCS were critical to the development process. With the OMERO project

and the Bio-Formats project being located in the UK and USA respectively, the OMERO

development team uses a wide set of tools in order to maintain communication, such as

instant messenger, email, Skype, and face-to-face group meetings four to five times a year.

A further dependency that both the OMERO and Bio-Formats project rely on is shown in

the communication with commercial entities, in regards to gathering the required

information about a HCS proprietary file format.

This scenario raises potential dependencies for the OMERO project, as the community may

ask to read the HCS format X that is owned by commercial company Y. Any delay in

communication with company Y is of harm to the project and to the wider Project

Community itself. If not properly managed, this ultimately could have a knock-on effect for

the success of the OMERO project. This is a situation where the software development

process must be able to manage and handle the spectrum of interaction and communication

in which it is involved.

A further dependency created by the technical challenge of the HCS project was the size of

the data. The typical file size was over 10 Gigabytes; a typical file size handled by OMERO

until then was generally 1 to 2 Gigabytes. Such an increase made the technical

developments of testing the data more difficult. Extract 2 demonstrates the nature of the

technical challenge the OMERO team faced and extends further to the testing dependency.

208

The context in Extract 2 was at the end of the development cycle where the project is

feature-frozen and both general testing and user testing have started with the OMERO team

assessing the remaining technical challenge of testing large datasets.

Bio-Formats

 HCS. Coming. More data?

 Just SO big (+10Gig, one plate). Generate a smaller one?

 Dan needs a solution, possible source of data.

 Action: Jack sends an email.

 Action: Steve gets more than one plate (3 plates?) from Finn and uploads it.

 Notice: some of the datasets have 100K+ files, each one huge.

 Lots of issues

 -Tricky testing on real data

 - Other format requests

 - More time fielding emails

 Extract 2 - 2008-05-16 OMERO Review Meeting (OMERO 2010)

Throughout the HCS development work, there has been on-going clarification and

communication about HCS development. One channel of communication was through the

weekly development meetings. The following Extract 3 is about the preparation for the

Beta 3.1 release of the OMERO software. The release is one of many elements considered

as the project moves towards the release date of the software

HCS format

 Yvan is planning on getting started once Beta3 is out.

 Status from Eli & Steve?

 Hasn't been integrated with importer

 Flex is currently the only format. INCELL 1000 is coming. And then of course

 more after that.

Extract 3 - 2008-05-30 OMERO Review Meeting (OMERO 2010)

209

Extract 3 is part of the roadmap of development for the Beta 3.1 release. This includes the

other areas of development work of an import history, 're-import' feature, search and tag

improvements, maximum intensity projections in one of the OMERO clients, and a new

scripting engine framework. The scope of the software evolution through the software in

Review one is evident in the technical challenge of dealing with such a large amount of

HCS data.

The release cycles of the software have had to deal with this in increments, and to notify the

community as to where the restrictions lie. This is demonstrated in Extract 4, which shows

how the project team has acknowledged the limited size of data to be imported, which may

restrict software use. The benefit of this is that it provides awareness of possible limitations

for the HCS community. This problem was subsequently solved in the next release of the

software and is documented in meetings that were not examined in this research.

PLEASE NOTE: In our testing with OMERO Beta3 and Beta3.1, we have seen that

importing many thousands of image files will cause OMERO.server to slow down,

and possibly need a restart. See wiki: OmeroThrottling for more info. For the

moment, please limit imports to no more than 1000 image files at once.

 Extract 4 - (OMERO MilestoneArchive 2010)

In examining this issue with the OMERO software developers involved in HCS, the

problems were caused when the sample data files were insufficient or not representative of

how the data files may be used in the system (e.g. a small image data file is provided when

the typical size is much larger). This was in some cases down to a conflict of interest of

submitting example image data, as all those users supplying the sample image data files did

not understand that it would be for their own benefit and that of the scientific community.

The supplier of the data holds his/her own agenda but resolving the problem is not always

an easy task for the Project Team. In the informal discussions with the members of the

development team directly involved in the HCS development, the developers informed me

that they were required to communicate and interact with the company responsible for

creating the HCS data model. In these instances, the communications were with

commercial developers. This, in the context of the project, is significant as commercial

210

development comes with a very different perspective from that of academic development.

The agenda discussed in the context of the project is disregarded because the commercial

entity may not typically be concerned with serving the elements of the wider context of the

academic community. In my discussion with Yvan, one of the OMERO developers

working with HCS, the further perspective was added about how communication with

Rafael, a commercially based developer, was very helpful on the OMERO development

forums. The agenda and roles for interaction with commercial entities cannot always be

assumed. The further HCS development objectives were highlighted during the March

2009 OMERO team meeting. In the development timeline of the OMERO project, this

meeting came several months into the development of the HCS.

During the evaluation of the HCS Review one, the development process was reacting and

adjusting to problems, as they became better understood. The OMERO project was using

an Agile approach and working in this way meant the Project Team made estimations for

the proposed HCS development work in terms of how long a development task will take to

complete. However, this also meant that the estimations of the development work were

subject to any delays in the feedback and communication process for the HCS process. One

of the techniques the OMERO team explored was the use of a specific agile SCRUM

method of planning poker (Cohn, 2005). This technique involves all the team members

presenting individual stories. Each team member then selects a numbered card based on

how much work is involved in his or her story that has been discussed. The overall

conclusion about this technique was that it was of minimal benefit to the team and the

OMERO team has not used it again since.

The March 2009 OMERO team meeting highlighted two types of development for HCS –

functional and infrastructure development. The meeting itself was significant as the project

team was defining the work for the rest of 2009 after the release of Beta4.0. The

infrastructure development is concerned with the development OMERO server. The

functional development is focused on the improvements to the user interface of the

software. Infrastructure development is key for further developments in functionality.

However, to improve the software and increase end users of the software, developing

features is significant but has to be done with a balance between functional and

211

infrastructure development. It is critical for long-term project sustainability that both

elements are maintained. This importantly highlights how the formation and use of strategic

thinking is a primary need within SSD and can benefit from the reflection of three equal

factors (SSD, UCD, and the community), which is underlined in the Project Community

Framework.

Figure 8.3: The infrastructure and functionality development conflict

Figure 8.3 is based on observed practice within the SSD environment, where there is a high

demand to enhance functionality in order to stay updated with evolving scientific

techniques. This is why Figure 8.3 represents the scientists’ central concern with the

functionality of the software. However, this is not necessarily always so, as scientists may

primarily want the speed of the system to be improved at some point or deem data handling

as being more representative of infrastructural development of the software. In the areas of

development for HCS, the compromise between infrastructure and functionality was

important. The concern was whether infrastructural development for HCS would allow

more HCS file formats to be imported into the OMERO software, which would widen the

scope of the HCS community and the use of the software. Even so, the HCS functionality

212

development provides the ability to view the large number of images associated with HCS

data. The technical details of these are shown in Table 8.1.

Table 8.1 Infrastructure and functionality identified for HCS development (OMERO 2010)

Item Functionality or

Infrastructure

Known use cases Comments

HCS viewer Functionality Database/Model;

Multiple

Adjustment to data model and

database to offer a useful plate

viewer.

File formats Infrastructure Multiple HCS file formats possibly.

8.3.4 The HCS developer review discussion

The HCS development process was evaluated with the software engineers involved; Figure

8.4 highlights particular aspects of the HCS process. The HCS process involves the external

software calculating the result that the end users might wish to use in the OMERO

software/platform, by storing the images and the information (metadata) associated.

Figure 8.4: OMERO scientific software development view of HCS

1) The HCS model was constructed with the commercial
community who created it. This presented the challenge of working
with both the academic and commercial entities for constructing
the HCS data model.

2) Technically, for the software engineer, the HCS data is defined
and there is no way to change it. This was because the HCS data
model is created by OMERO and the commercial HCS community.
A key challenge is to store the large volume of HCS data. The
information was stored in different locations, however this gives
rise to problems in handling and accessing the data.

213

The OMERO project was handling a requirement from the HCS community, as the

community required a solution on how to handle the large amount of image HCS data. The

OMERO project created the data model for the HCS data; the HCS community represented

both academic and commercial entities. The summary of challenges is outlined in Figure

8.4.

Technically, for the software engineer, the HCS data is defined and there is no way to

change the data. This was because the HCS data model was created by OMERO and with

the commercial HCS community. A key challenge was to store the large volume of HCS

information. Information, which was stored in different locations; however, this gave rise to

problems in handing and accessing the data and data type.

The OMERO project had to redefine the HCS data model to meet the project's challenges

(overcoming how the data was stored and the speed of accessing the data) and the HCS data

model was adjusted to support these changes. The outcome of the HCS development

process was the first release of the software that supported HCS in OMERO. Since this

Review was documented for this research, further development has taken place to meet the

growing HCS community that is now using OMERO.

8.3.5 Summary of HCS fieldwork

The process for developing and supporting the function of HCS process was problematic

because of the need to provide a generic software solution. The project was striving to build

and achieve a broad platform with community input, yet, the interaction with the

community continued to prolong the development work, similar to the on-going technical

challenges of the project.

The challenges occurred when the community was not always interested in what the project

team was involved in or it may not have shared the short-term or long-term vision of the

team. The term community becomes much more abstract for the OMERO team because of

the conflicting interests between different entities making up a community. Through my

interaction and discussions within the OMERO team, the conflict of interests of the

214

different types of people that make up the HCS community has been relevant and important

for the development of HCS, as the process has spanned a wide range of end user types. So

helping to provide a generic solution was beneficial for the project. The type of end users

covers academic users of HCS, the commercial end users and creators of the HCS data

model. The project’s reaction to working with the spectrum of end users has been to adapt

and adjust to the nature of the people involved and to communicate with them. However,

this has highlighted how the Project Team manages and resolves potential conflict of the

requirement requests that are made for HCS. The implication of this is on the Project team's

time; consequently, the Project Team must make further decisions about the requirements

and impact on connected areas of development.

8.3.6 Summary of the HCS fieldwork against the Project Community Framework

How Review 1 functions with the PCF is highlighted in the following discussion. Step I of

the PCF combats a central challenge of HCS development: catering for the wide range of

possible end user types, from academic users to commercial end users. Step I identifies the

Project Community through the domain, community, and practice. This shows a framework

to engage community members in activities and discussions and to share information. This

also promotes relationship building so people from within the OMERO Project Team and

Project Community may learn from each other. The variation of the type of users in the

HCS community is positive for the PCF, as it is not restrictive in the identification of

anyone who is in some way connected to the project. As well as this the Project

Community also documents its expectations. However, as highlighted in Step I, in order to

achieve this level of communication takes an investment in time and a level of sustained

interaction with the Project Community from the Project Team. The tools for the PCF

outlined in Step I of a version control system, bug tracking system, mailing list/forum, and

project web site, the OMERO team already had an established set of these tools All the

team used the tools, but Jack had the primary responsibility for administering and fixing of

the tools if they happen to break down.

Step II of the PCF provides a central repository for the storage of the Project Community

information and for the SSD process. In the HCS Review one, no one tool covers the

215

central purpose of having a centralised repository of information for the project. The tools

that came closest to this was the bug tracking system, and the version control system that is

used to record the development tasks. The version control system is judged to fit the way in

OMERO project works, although, as highlighted throughout Step II, the success of a tool

depends on its fit, adoption, and uptake by the Project Team.

Step III of the PCF supports the HCS data Review one. The HCS development process

benefited from having access to valid sample files and this was a crucial element. This step

may further support the example files by exposing the development process to a range of

UCD techniques. The selection of the UCD techniques may be based on what is

complementary to the existing development information.

The first phase of Step IV, Reflection-in-Action, has been limited because of a restricted

amount information that Review 1 is able to provide. Therefore, the ability to gain

sufficient insight through this was limited and no definitive perspective was gained from

this step. The second phase of Step IV, Reflection-on-Action, draws on expanding and

contributing to the challenges of working towards a generic platform. This second phase

was in the way the HCS Review one had to redefine the HCS data model. So that it catered

for the HCS community’s challenges in dealing with HCS data. A general comment to

come from this final step was the ability to identify the conflicts of interest between the

entities of the PCF. This is for future development work of the Project Team. This, in turn,

exposes the strategy that may be formed from the Reflection-on-Action process, which is

key for building and evolving through a learning process, and connecting the skills,

experience, and insights of the Project.

8.4 Review 2: New Community Fluorescence Lifetime Imaging Microscopy

8.4.1 Background

As already mentioned, FLIM is a fluorescence microscopy technique used in imaging to

map the spatial distribution of proteins lifetime and interactions. As a new technique, FLIM

216

aims to provide scientists with the ability to analyse the images for experimental work such

as Total Internal Reflection Fluorescence (TIRF) and Fluorescence Resonance Energy

Transfer (FRET) analysis. The growth of the FLIM technique and its adoption into the

OMERO project is also further evidence of the accommodating trends and new scientific

techniques into the project.

8.4.2 Central elements

Again, the fieldwork analysis has been conducted through the OMERO team meetings and

OMERO conference calls that focused on the FLIM development process, and these

provided the main source of data. My own narrative, informal interviews, and discussions

with the OMERO developers involved in the FLIM development process have supported

this, when necessary when assessing the FLIM fieldwork meeting notes.

8.4.3 The timeline of the FLIM fieldwork

Figure 8.5 Key timeline of development events for FLIM

The FLIM development was documented from the March 2009 OMERO team Meeting

(See Figure 8.5). As highlighted in the HCS Review one, this meeting aimed to address the

217

wider goals of the project for the next release of the software. Extract 5 highlights the focus

for the project team, outlining the project team’s work goals:

1. To deliver these goals, we need to agree on a work plan. This will likely

mean a very integrated work pattern, using the mini-group/iteration system

2. Most importantly, the natural tendency to focus on your own work, and hold

functionality and commit later will have to be put aside

Extract 5 - March 2009 OMERO Team Meeting (OMERO 2010)

The above extract identifies two points significant for the FLIM process that was developed

from within the OMERO team. The first point concerns the team’s development practice of

implementing a mini-group system in the project team, which was a step away from the

individual working practices. The mini-group process for the project team was organised

into two groups: group A was responsible for the client side of the work and group B was

responsible for the server side of the work. The Project Team, from working on this

practice, also went on to adopt mini-group meetings in order to hold deeper detailed

discussions about specific areas of development, with the developers more directly

involved. The mini-group meeting allows further discussions outside the general meetings,

so more time in the general meetings could then be spent on the wider issues relevant for

the whole project team. The mini-groups and what the mini-group want have also been

used to identify what they wish to get out of the community events.

The second point in extract 5 recognises the natural tendency of developers in the project to

work independently. This is highlighted in the work by Weinberg (1971), where he

discusses independent practice in development work. The discussion of independent

working is significant for the OMERO team, which demonstrates its awareness of the

potential drawbacks that can arise for the team from this. Dependency is the first element

examined against the FLIM work; this is prominent throughout the FLIM development

work. The dependencies within the project highlight the compromises throughout the

development process. They are of two types: first, technical-led dependencies that occur

within the project team, which are related to the software development; and secondly, the

dependencies that extend to the interactions with the community.

218

The discussion in the FLIM meeting cited in Extract 6 was about the remaining work

related to the region of interest (ROI). Every ROI needs a set of new analysis results. The

dependency for the continuing development requires a more efficient scripting service and

job submission system. The project team’s previous experience with HCS played a part in

the FLIM process by informing the type of technical dependencies in the FLIM

development. The background experience of the Project Team in developing the HCS

model served as a reference in the construction of the FLIM model. The FLIM data model

could benefit from the experience of the HCS work, for example by reproducing the

process for a proposal and the steps necessary for creating a data model for a community.

Extract 6 shows this. The disparity between the HCS and the FLIM data models is in how

the HCS scientific community identified the need for the data model.

Write proposal (as with HCS Screen Plate Well)

Submit to several groups

See what they need

Repeat (as a process)

Extract 6 - 2009-07-03 OME Group Conference Call (OMERO 2010)

The need to create a FLIM data model led the Project Team to search for an external FLIM-

based institution, as there was a limited amount of FLIM work within the Skye institution

(The details of a visit to the institution outside of Skye are discussed later in section 8.4.5).

Using two user FLIM groups was the main work practice of the Project Team throughout

this phase of development and this was implemented in the March 2009 OMERO team

meeting. Extract 7 below gives an example of a discussion during a meeting that leads to a

further smaller meeting that is held outside of the entire OMERO project team.

Relation to spectral lifetime?

currently only adding one dimension

supporting N-dimensions? – Highlights wider issue for model

enumeration is N! bigger discussion. off-meeting? 1400BST Monday

Extract 7 - 2009-07-03 OME Group Conference Call (OMERO 2010)

219

The dependencies identified in Extract 7 extended to the communication and interactions

with the wider community. This was centred on the core development process, as Levi the

OMERO developer was interacting with the local scientist Patrick working with FLIM (end

user 1) and Carly – a bio-informatician (end user 2) who was working on algorithms related

to the FLIM work. Figure 8.6 shows the interactions and lines of communications of the

workflow and requirements for FLIM.

Figure 8.6: Roles in the FLIM work

The interactions of the software engineer with the scientists led to the proposal of the

following FLIM workflow.

- Tag the images with ‘FRET’, ‘NoFRET’ – Providing the ability to categorise the
images into two sets

- Draw one ROI in image and one ROI in the background
- Assign to each ROI a keyword from FLIM workflow
- Run script on dataset
- Results k1, k2, a1, a2, chi attached to each image6
- Combined results of each cell attached to dataset

 - Generate histogram
 - Stats: average, std dev

- Heatmap for each image
MacDonald Unpublished

6 These are typical statistical results of a FLIM analysis.

220

Community collaboration and interactions have created further dependency for the project

team, as the project team is dependent on receiving information to move forward with the

on-going FLIM development (Extract 8).

“Yvan has contacted Carly (the bio-informatician) about her algorithm but has not

heard back yet.”

Extract 8 - 2009-08-07 OME Group Conference Call (OMERO 2010)

The development meetings showed the communication and interaction with external end

users and the dependency of information from them was necessary for SSD process. This

involved, in part, identifying the spectrum of end users with whom the project team

communicates. How to deal with and react to situations when communicating with end

users was not something that was feasible to apply within the remit of the PCF. This

question is discussed further in Chapter 9 section 9.4 about how further work may

investigate a policy to help with exchange of team communication. Indeed, how the area of

communication is generally handled within the team was a significant area of the

evaluation for the work. This also involved thinking about the communications with people

outside the project team in the context of academic SSD, where a project team is co-located

and has access to information about its environment. For the FLIM development work, the

communication had a dependency on how the development was going to be implemented

with the OMERO team and how these decisions had to be communicated to the community

so as to gain feedback.

Extract 9 below demonstrates the dependency that exists between the on-going technical

developments of FLIM and the creation of an ideal workflow for the initial user. This

involved analysing the on-going feedback from the scientist.

 Miles: breaks downstream things that we were planning

* sub-optimal: ok. But we know we're not giving Patrick everything

* Does it give Patrick anything he can use?

* We're already stretching his delivery requirements

221

Should we get an independent assessment?

Patrick is the arbiter. Can we get feedback from him?

 Extract 9 - 2010-04-01 Thursday Meeting (OMERO 2010)

There is an underlying element of dependency and co-operation for the project team, within

the project. This phase of observed work for the FLIM development has demonstrated the

compromise that exists between the infrastructure and functionality. These decisions

between the infrastructure and functionality concern either the development of the

infrastructure in the client-server software, or the development of the functionality of the

OMERO project. The project depends on both aspects for the software to evolve. This has

been significant for the OMERO Team in supporting the feature developments for the

community. The OMERO Team may either be focused on the area of software

infrastructure development or software functionality. When the focus of development is on

the software infrastructure functionality, it can have the effect that the improvements to the

software slow down to the users. It further points out the necessary communication between

the three elements of the SSD process, UCD process, and then out to the community, so it

does not have a negative effect on the uptake of the software. From the perspective of the

Project Team and the PCF, how this could be accounted and managed for in the PCF is by

the Project Community Mediating role. This again stresses the importance of the Project

Community Mediating role to communicate the information between all necessary areas of

the SSD project.

8.4.4 Clarification and communication within the Project Team

The aspects of the FLIM work that demonstrate the collaborative work of the software team

are the continuing clarification for communication and the dependency for synergies.

Several aspects in the planning and evolution of the software objectives over time show

this. The following, Extract 10, highlights a discussion on the short-term goals for the

project. The focus is on how the interaction within the OMERO team is being used to

clarify and refine the software development activities for the upcoming community

meeting.

222

This meeting will therefore define our activities for the next 6 weeks, in the lead-up

to Paris meeting, and decide what infrastructure we will fix, and what functionality

we will add in the coming weeks.

To deliver these goals, we need to agree on a work plan. This will likely mean a

very integrated work pattern, using the mini-group/iteration system.

 Extract 10 - March 2009 OMERO Team Meeting (OMERO 2010)

The team meetings have benefited from the social nature of the software development

process with its on-going clarification and communication. Extract 11 below further

demonstrates the OMERO team’s planning of the next iteration and testing for FLIM. The

discussion of the FLIM testing identified the need to purchase a new server for the FLIM

testing because the testing required more intensive computation.

Yvan: What' next in the iteration? Would be nice if we can decide this sooner rather

than later. Levi’s FLIM work should be ready to start testing in anger.

Jack: Good time to buy a new server for FLIM.

Action: Everyone start planning the next iteration.

Levi: Then we have a FLIM workflow that saves 10s of hours. Really just want to

give folks the heatmaps.

Extract 11 - 2010-03-30 Tuesday Meeting (OMERO 2010)

The following extract (12) demonstrates the communication within the Project Team. It

highlights Miles’ point about the need to communicate the collaborations that will occur

within the OMERO team for the upcoming FLIM work. This also demonstrates the core

technical understanding the OMERO team has developed that is required for the FLIM

analysis.

Miles: Obviously, there will be some synergies here

 - Making simple ROI measurements and ROI support on server is an example.

Extract 12 - March 2009 OMERO Team Meeting (OMERO 2010)

223

Extract 13 further highlights the evolving nature of the science and technology. This is

shown with the particular discussion with the team’s support of N-dimensional object as

more users (scientists) were coming with this type of files from a new scientific OMX

microscope. The relevance of the issue, given the growing uptake of the new OMX

microscope in the community, was significant for the team as more information about the

microscope was required from the community. It is always important to understand this

throughout the project, particularly when new microscopy techniques are being used.

FLIM

review of devteam discussion

using deltaT in planeInfo to differentiate (rasterizing)

supporting N-dimensional object. more uses are coming online (OMX,...)

trying to keep as much information as possible

structural illum. v. flim v. ... timelapse

supporting a wide-spectrum of use cases

discuss in Paris

Extract 13 - 2009-05-15 OME Group Conference Call (OMERO 2010)

Extract 14 demonstrates how the development team has formed an understanding of the

scientists’ work in FLIM. The FLIM analysis was significantly beneficial for the

development process, as it taught the development team the value of providing such a tool

in their software.

FLIM-analysis

Then there should be another dozen people wanting to do FLIM

Time? A week to have something to show people.

2 iterations (including holiday)

Has a month worth’s of results, then he won't be doing it anymore.

Jack: is this FLIM or analysis?

Levi: focuses on FLIM but generally fixing namespace/keyword selection for ROI’s

Jack: Bob's ticket 2036 could refactor the ROI workout

Jack: estimate of 2.5 for FLIM is not realistic for everything in ticket 1985

224

Levi: not sure how long it'll take

Levi: two steps that haven't been mentioned yet

* changing colours of ROIs and ...

* not doing it now, but necessary for other people

Action: Sit down tomorrow (Bob, Yvan, Levi) about the way to break it down

Not 100% sure of Patrick's deadline (started 2 weeks ago)

Action: Need feedback from Patrick (the scientist)

* Needs tagging/annotation of ROI selections (to distinguish ROIs from each other)

Extract 14 - 2010-03-11 Thursday Meeting

8.4.5 Exploration of an external FLIM based Institution

In addition to the development work for FLIM in Skye, a visit was made to a second

academic institution where several imaging staff and a PI were using the FLIM technique.

The main purpose of the visit was to gather information about the FLIM data model, and to

view the additional development work that the institution was involved in regarding the

FLIM technique. The visit was arranged and planned through a contact of Miles at the

selected institution. This demonstrated the benefit of community promotion that Miles is

involved in (please refer back to Chapter 3 section 3.2 for information on the role of Miles).

Figure 8.7 provides an overview of the Mull institution, which was discussed during the

software developers’ 2009-07-03 OME Group Conference Call meeting. I participated in a

visit to the Mull institution and was able to take new findings about the use of the software

back to the OMERO development team. The visit to the Mull institution was an approach

of understanding the differences from Skye as it provided a view of another scientific

institution having the OMERO software setup. Figure 8.7 illustrates the range of

departments within the faculty of Natural Sciences where OMERO was being used. The

OMERO team used further this information to establish one of the key points of contact for

the Mull institution.

225

Figure 8.7 Overview of the Mull institution

The FLIM analysis was conducted in the biology department; this work was complemented

by on-going research and development work within the photonics department. Some of the

aspects covered within the visit to the Mull institution ranged from the file's formats, an

overview of the FLIM data and the institutional workflow, the existing resources of the

institution, and the specific background to the laboratory setup.

The FLIM findings gave to the development team various insights about the existing

resources available in different work practices of another institution. For example, such an

insight has provided information about the image file types (Leica and Zeiss) and the

requirements based on this:

We need this reliably (Leica and Zeiss files) importing before we are able to fully

get going.

Extract 15 – Loynton, unpublished

Further points have elaborated on the nature of the scientific work carried out at Mull

institution. Extract 16 highlights the perspective gained into the scientific background at

Mull institution.

226

The laboratory deals principally with quantitative microscopy. This means two

possibilities for their work:

1) Cell biologist work at labelling protein interactions. (This is the same work

that is done by Patrick in Skye)

2) Biologist viewing naturally occurring proteins i.e. these occur in skin. Johan,

a researcher/lecturer based at Mull institution, is doing some preliminary work

in this area.

Extract 16 – Loynton, unpublished

8.4.6 Information outcomes for the project visit

The outcomes of the external visit in relation to the development work and project are

summarised in the 2009-07-03 OMERO group conference call notes. The key implications

for the data model highlighted in Extract 17 are the two changes to allow storage for

additional planes of data and values from microscope instruments in order to perform the

analysis calculations.

Lifetime meeting at Mull

2 categories of changes

 - Changes to allow storing additional planes of data in sensible way

 - Values from instrument to do calculations: bin, width, etc.

How to find the proper level for attachment

Relation to spectral lifetime?

currently only adding one dimension

supporting N-dimensions? – Highlights wider issue for model

enumeration is N!

Bigger discussion. off-meeting? At 1400BST Monday

Extract 17 - 2009-07-03 OME Group Conference Call

The outcome from the meeting concerned the need to support the continuous technical

challenge of N-dimensions images. This challenge affects the technical development of the

OMERO project on an extensive scope, as shown at the end of Extract 17 where a further

227

meeting is scheduled. The Project Team had several discussions about which solution to

take and the possible evolution of N-dimensions. Whether the solution would provide a

subsequent future solution for N-dimensions or not generated many key questions about the

development of the software. The OMERO team had to decide between the solutions and

their effects in the implementation in the code. The schedule for the rollout of the solution

was intended to be over a long period, again emphasising the multiple aspects of the N-

dimensions problem.

The above instance for the development of N-Dimensional work presented a instance where

a quickly put together solution may offer an immediate short-term benefit with the

development of FLIM. However, this solution has subsequent dependencies in the code

base in the Review of FLIM, so an incomplete solution could be detrimental to the wider

SSD process. Applying this to a Project Team, a quickly put together solution would need

the full agreement of the Project Team to avoid ill thought out solution that may affect

dependencies in the code for others.

The interpersonal benefits for visiting the institution concern establishing lines of

communication with the right people, which is beneficial as it makes gathering

requirements for the Project Team easier for any future demands. In addition, a face-to-face

communication with the institution helps to demonstrate that the Project Team wish to form

or maintain collaboration.

8.4.7 FLIM developer discussion

For the FLIM work, I did have the opportunity to carry out informal questioning with the

OMERO team. The information provided in the present section summarises the information

from these conversations, as it has supported the FILM Review 2.

228

Figure 8.8: A software development view of FLIM

1) A key problem in the FLIM development workflow is that the OMERO software does

not provide the actual FLIM result (See Figure 8.8). The implication of this for the software

developer is the limited access to the image. Consequently, the development process is

placed under technical restrictions with what can or cannot be done with the FLIM analysis.

The development is restricted to performing the calculation on the image result only.

2) The FLIM work required an understanding of the scientific FLIM workflow to be

established. The FLIM development work has followed an iterative process with feedback

in regular meetings between the developer and scientists to confirm the changes to how the

FLIM ROI is generated by the user and once created, the software then handles the

information and processes the result.

3) The FLIM data presented a challenge because a Data Model had to be created from

scratch. This required the developer to carry out exploratory work on the construction of

the Data Model. In creating a FLIM Data Model, the development team had to make certain

assumptions about channel and time-points; consequently, the information is not stored in

an ideal way.

In discussing the development process with Anthony, the software engineer responsible for

229

the Data Model, the following points were made.

• The perspective of investigation in the Mull institution focused on the technology to

develop for FLIM. This led to a more abstract view of how the Data Model was

required to interact and develop with the FLIM requirements. This was valuable

because it linked together the requirements from the real world, but it also generated

points about a further context of how the software was used and where to develop

the software. This information helps the OMERO project team to look at ‘potential

future developments’ of the software.

• The discussions at the institute were held to create an abstract ‘picture’ for the

preliminary FLIM work. However, the requirements and details for the

implementation would require more detailed material as the collaboration evolved.

• Anthony felt that there was still little appreciation and insight into the software

development work, and the type of work that was required for the process. In using

the FLIM work as an example, Anthony explained how a scientist would only see

the final image analysis as a result of the FLIM work. This would not reflect all the

additional work that was required to be implemented by the OMERO team to get

this result. A personal question raised by Anthony was if the scientific community

appreciates the background work required to implement a solution and understand

that it will take time.

• A further example of this and the difficulty that is encountered happened at the

OMERO User Meeting. The project presented the feature x and now shall present

feature y… This may not be the complete end result the scientists want, but it is

difficult to clarify and clearly indicate all the work that has to take place to get the

desired solution.

• The scale of the work required for the FLIM development and implementation may

have been more difficult for the FLIM community to recognise, and, in contrast, the

HCS community development work required a lot of image data to be handled and

could be more easily acknowledged and appreciated in terms of the scale of the

task. The challenge of developing the FLIM work, to some extent, remains hidden.

The second informal interview with Levi, a developer directly involved in the FLIM work,

yielded further insights into Review two. The first issue was the co-location of the software

230

developer, which allowed him to work directly with and interact with Patrick (the scientist)

and the local scientists based within the same building in Skye. This helped Levi to build

up an understanding of the FLIM work practice carried out by Patrick, which was vital for

the initial development work in terms of Patrick’s work with FLIM.

This position for the software developer thus offered him direct exposure to the work

practice of Patrick’s FLIM work. Levi, in these meetings, discussed the FLIM workflow of

the scientist and its implications for the development process. However, this required

continual interactions for them both to understand the full details of the FLIM workflow. It

thus demands frequent meetings for progress updates and what can be described as a

feedback loop between the developer and scientist. This interaction between Levi and

Patrick was problematic for Levi when continual interaction and communication with him

obstructed the development work. Levi highlighted how the focus is on development so

regular interactions can, on occasion, distract from the necessary software development

work.

In reviewing the implementation of the FLIM development work from the meeting notes,

the requirements gathering about the FLIM workflow required a consistent line of

interaction and communication within the OMERO team to understand how it progresses

and how it may impact on other areas of the OMERO project that FLIM is part of. Extract

18 documents an example of these interactions within the OMERO where both short-term

issues of the need to define a ROI workflow and a standardized FLIM workflow are

highlighted and longer-term issues such as when a new microscope will be online and

available for use. The consequence of this is that the OMERO software must be ready to

handle the new image data.

- Need to use Polygon to define ROI.

- Current Polygon in measurement tool needs to be re-written.

- Need to define ROI in terms of workflow.

- Standard FLIM workflow + User defined objects

- Script takes one single image for noFRET and one for FRET need to convert to a

batch

231

- N-Dimensional support.

- Time information (other metadata)

- Multiple channels (we’re getting a new scope in June!!!)

 Still further key points for future

- Deploy to Cluster

- Same methods can be adapted for FRAP

- Better Quantification

- Simple to add more statistics, LDA, Fisher scores between samples

Extract 18 - MacDonald Unpublished

8.4.8 Summary of FLIM fieldwork

The communication and interaction during the software development process for the FLIM

work occurred between the two roles of the scientist’s and the bio-informatician as

previously illustrated in Figure 8.6. The review demonstrated that this was undertaken for

Levi to understand the scientist’s FLIM workflow. The subsequent interview with Levi

highlighted how his work with Patrick (the scientist) during the development of FLIM led

him to take on the role of interacting with the end user of the OMERO software. This was

feasible for Levi under the conditions of the FLIM development because of the co-located

work environment (see Figure 5.4), as it offered ease of access to potential end users.

However, as Levi pointed out, working with end users brings additional responsibility for

the software developer in terms of maintaining a consistent line of communication and

clarifying the development process on a frequent basis. A software engineer is often

focused on the development process so this is not always conducive for providing a

consistent line of communication, even though this communication and information maybe

in the interest for the Project Team in the long-term.

232

8.4.9 Summary of the FLIM review against the Project Community Framework

Review 2 has demonstrated the potential of the Steps of the PCF. The application of Step I

and Step II of the PCF to Review 2 is similar to the possible application of Review 1. The

actions of Step I may identify the context of the FLIM community and be used to

understand the domain, the community, and the work practice. The supporting Project

Community Mediating role, as defined in Step I, is significant for the FLIM Review 2

because it provides a role for the communication and interaction between the scientist and

the developer and this role did not exist in Review 2. Subsequently, the developer was

involved heavily in the communication, which was commented on by the developer that

this activity was a distraction from the core development work.

Step II of the PCF examines where Review 2 may have benefited from a centralised

repository of information again the development work for FLIM similar to the HCS

formation of the Data Model. The use of a information data repository such as a project

wiki used Review 2 may have benefited the team. It was discussed early on in the work

carried in Review 2 that from lessons may be learned from previous experiences of

managing data and so could be applied to the FLIM work. However, this could be

problematic in how the OMERO team could effectively document the insights from

Review 1 so that it would be applicable to other new areas of development.

The application of the Step III through the FLIM Review 2 involved continued interaction

between Levi, Carly, and Patrick. The UCD led techniques applied by the developer Levi

was interviewing the users. However, as highlighted in Review 2, this also allowed him to

maintain the feedback loop between himself and the scientists. Based on this type of

interaction, the research advocates the Project Community Mediating role to provide

continued communication while the SSD developer focused on the development work and

maintain a continual level of communication. The Review 2 example also demonstrates the

lack of UCD expert involved in the process and how a SSD developer has taken up the

responsibility of carrying out user feedback. This is not recommended in a SSD project.

The evidence from Review 2 that would support the need for a specific UCD role was

demonstrated by a comment by the developer was involved heavily in the communication

was that this interaction was a distraction from the core development work.

233

Step IV (Phases 1 and 2) of the PCF is in some aspects demonstrated through the FLIM

Review 2, or more specifically through the collaborative working and the mini-group

meetings where the OMERO team further clarifies and refines the software development

issues. This reflects aspects of Reflection-on-Action as it allows for actively thinking back

on what has been done and employs elements of strategic planning for the Project Team in

allowing insights to be developed from the Reflection-in-Action. What Review 2 does not

demonstrate is the full reflection of the SSD, UCD, and the community uptake in relation to

the software, where the central focus is on SSD issues. The Reflection-in-Action through

Review 2 is only briefly demonstrated in the N-Dimensional work because of the

connection with the FLIM work. The OMERO team required an element of planning with

the long-term development of the N-Dimensional work alongside current work of the FLIM

development.

8.5 Discussion of the reviews

The two evaluation reviews have aided in understanding of the PCF because they have

reviewed actual SSD meetings and problems. This is explained below:

• Review 1: The focus of this evaluation was on the problem of image management

within the HCS community, which required the OMERO project to form and

develop HCS support in the OMERO software. The evaluation retrospectively

analysed this development against the PCF.

• Review 2: The focus of this evaluation was on the formation and development of

the FLIM technique within the OMERO system. The evaluation took place within

the local community and drew on experiences from a second institution (Mull). The

evaluation again used a retrospective approach against the concept of the PCF.

The two reviews have again shown many challenges during the SSD process. A key

common element is the collaborative working, whether with fellow developers/software

engineers or scientists themselves, because of communicating and translating the complex

234

nature of the scientific work into the software. Anthony, an OMERO developer associated

with the FLIM work, particularly highlighted this point with how the complexity and

challenges of the development work can be hidden from the scientists who only see the end

result. The evaluation has examined the meeting notes with two separate expert software

developers, who create scientific tools through interaction with scientists and feedback

from the community. The reviews have demonstrated the expertise gained by the software

developers communicating with the scientists; in both Reviews 1 and 2, the developers

were co-located with scientists within the same institution – Skye.

The reviews highlight a key issue about the multi-disciplinary roles that can make up the

SSD process. This has been covered in both evaluation reviews of the OMERO Team

meeting notes, where experts on such things as data visualisation, image classification, and

mathematics were used. Thus, these are core concepts that are transferable and benefit

scientific inquiry. This itself returns to the point of defining the Project Team and the

Project Community for two reasons. First, the Project Team and the Project Community

Mediating role must comprise multiple individuals to support the multi-disciplinary

contributions, one of which is UCD. Secondly, the interactions with multi-disciplinary roles

outside the Project Team can mean working with role(s) whose main goal do not reflect the

same goals of the Project Team and interests with the SSD software. Consequently, the

communication and feedback can be affected, and in these circumstances the value of

having a Project Community Mediating role(s) can aid to take the responsibility of the

continual feedback and communication.

The following discusses the PCF in relation to two evaluation reviews that I have

conducted. Table 8.2 identifies where the PCF has been applied through each review and to

what extent each review has demonstrated the PCF steps, as covered in Chapter 7.

235

Table 8.2 Project Community Framework evaluation review

 Review 1

Review 2

Step I: Capture and characterisation

of the Project Community
P P

Step II: Storage of the Project

Community information
P P

Step III: Process of UCD P P

Step IV: Project Community action

and reflection

Phase 1 – Reflection-in-Action X P

Phase 2 – Reflection-on-Action P P

In the above table, a green tick represents significant correlation of the corresponding PCF

step while an amber tick represents some correlation to the PCF step with scope for further

adoption. Finally, a red cross represents where the step has not been definitely validated in

the review.

Table 8.2 shows how each step of the two reviews has been applicable in some degree. The

positive learning experiences from the PCF as a method were that the steps were distinctly

defined and so it seems there is no overlap in the instructions of the steps. This is perceived

to be a positive factor given the range of users that the PCF has been formed for. A

significant positive learning experience was how Step III may be applied. Review 2 showed

how a scientific software developer was using interviews to gain feedback for the

development process. However, given the demands of the interaction it was stated by the

scientific software developer that this interaction became a distraction from his own coding

process. Based on this, it would warrant the inclusion and requirement for a UCD role that

may have taken on this process.

The amber tick and red cross in Table 8.2 indicate further scope for investigation regarding

the PCF. For Step I, the further scope of questioning would investigate multiple SSD

236

projects and ask how robust capturing and characterising the Project Community would be

in different situations. For Step II, it is identified that a significant amount of investigation

would be required, as it would involve questioning the types of software development tools

that could be used to support the PCF. For my own research, this also connected to the

further ways I may evaluate the PCF. The full conclusion to this is explored in Chapter 9

section 9.4. The research now goes on to describe in the following section the further

output of the research of the Project Community Framework Manifesto.

8.6 The Project Community Framework Manifesto

In part, the Project Community seeks to project the experiences of the research work by the

philosophies and practices of UCD. A common way of promoting such practices has taken

the form of a manifesto. A manifesto aims to encapsulate the strategy and position of work

as it moves forward. In moving to use a manifesto for my own research work, it aims to

capture and represent the core principles of the research of SSD, UCD, and the community

of the project. The research findings have observed the significance of uniting the elements

of SSD, UCD, and the community of the project. This manifesto has been set out to

encapsulate the requirement and thinking for SSD projects to do this.

Examples of this in the current research include the software design manifesto (Kapor,

1996) and the Agile manifesto (Beck et al., 2001), which both respectively set out a call to

action for evolving the thinking of the practices and processes of software development.

The research work has particularly drawn on the experience from the software design

manifesto and the principle stating that programming and design activities of a project must

be closely interrelated.

So to present the qualities of the PCF and to stress its own UCD led philosophies for

working in the academic SSD context, the direct findings from the research are listed

below:

1. The identification of the Project Team but also its position and its relationship with

the community.

237

2. The identification of the Community, its boundaries, and but also its relationship

with the Project Team.

3. The value for continual communication both within the Project Team and with the

community.

4. The need for continual reflection on the Project Team’s creativity and the

communication of this within the team.

5. The continual facilitation of communication both within the Project Team and

community.

6. A requirement for listening to the community and the Project Team.

7. A SSD project must start equally with the consideration of the scientific software

development, the scientists, and the scientific software project community.

Table 8.3 below shows the evidence of each of these seven points in the research.

Table 8.3: Manifesto summary

Point Evidence in the research
1.

This point was linked to Review 1 through the action of defining the Project
Team. The OMERO team then took into account of the wider community in the
creation of the HCS data model, where a non-member of the Project Team was
not neutral and was imposing a view without any consideration for the wider
academic community.

2. Recognising who is part of the Project Community was used in both reviews.
This raised awareness about who is and who is not involved. For Review 1, those
involved in the work extends to the Bio-Formats project and the interaction
required for the Bio-Formats project to read proprietary HCS file formats.

Review 2 is significant for the OMERO software developer’s role of interaction
with the FLIM scientist and bio-informatician. They are both collaborating
members of the Project Community. Review 1 has also illustrated this in terms of
dependency within the Project Community.

3. The level of communication was most prominent in Review 1; this
communication of the development process was evident in both the Bio-Formats
project and external commercial entities.

4. The importance of reflection was identified in both reviews. This concerned, in
particular, reflection on the interaction in forming the HCS community and the
reflection-on-Action with the interactions with HCS community to help to
support the development of the FLIM community.

5. The role of mediation by a software developer was demonstrated in Review 2.
The mediation that took place within the Project Team was for the continued
scientific software development throughout the user meetings for those involved

238

in the FLIM work. The software developer in this instance was the mediating role
for the communication of information within the Project Team.

The further work in Review 2 at the external FLIM based institution provided
wider feedback for the Project Team. This was documented in the outcomes from
the visit and it involved both a developer role and my own role as a mediator of
the information back into the Project Team. This was demonstrated in the project
meetings that took place for the Project Team. The OMERO Community meeting
was also further evidence of this. The importance for the mediation is in the
exchange of information between disciplines.

6. This point is central to the UCD perspective of the manifesto and is vital to
ensure that the Project Team can form a wide and well-informed perspective.

This was evident in Review 1 through the infrastructure and development
conflict, where the users of the system are centrally concerned with seeing the
development of the system and the functionality that comes with this. The
software developers in the context of the client-server architecture are required to
support the infrastructure to allow for the required development in functionality.

7.

The final point concludes with the fundamental philosophy and motivation for the
Project Community as a new way of thinking. It draws on all three elements of a
SSD project – the SSD, UCD, and community – and stresses the importance of
all three for a comprehensible software experience.
The SSD points are evident in Review 1, with the technical focus of managing
the size of HCS image data and the requirements for database upgrades. The
UCD points are apparent in the direct feedback from the FLIM scientist through
Review 2. The community point is evident in Review 2 where the visit to the
external institution was used to both gather more information about FLIM but
also to understand how FLIM was being used to support the SSD process.

The central message of the PCF is to ensure that each of these aspects of the SSD,
UCD, and community is accounted for equally in an academic SSD project.

8.7 Summary

The main contribution of the PCF is in how it has demonstrated that the most valuable part

of an SSD project is the people of the Project Team. This finding emerged despite the many

challenges and conflicts within the Project Community. This is based on the conclusion and

observation of how the PCF was responsive to certain PCF steps and the explanation that a

Project Team all committed to the SSD tools, UCD process, and commitment to the Project

Team community functions better than a Project Team that does not.

239

Because of this and expectation that a SSD project may or may not be responsive to certain

PCF steps the following five questions have been constructed to support the Project

Community Mediating role (see Chapter 7 section 7.3.8) and to help to uncover other

challenges not anticipated within a SSD project and its community.

1. How do you decide which type of users/groups to target first?

2. Do we have access to an entire laboratory, collaborating laboratories, or scientific

institutions for the initial software use?

3. Is the software use compulsory or optional?

4. What are the barriers to entry?

5. How can you make the early adopters happy?

The fieldwork process has formed a dual perspective with analysing scientific users and

then the scientific software development team of OMERO. This has given the research the

ability to look through the multiple perspectives of SSD, UCD, and the community. It is

this fieldwork process that the PCF has emerged from. The research outcomes would have

been significantly different without both the ethnographic information analysis and the co-

working with the SSD Project Team. This consequently led to the formation of the PCF in

such a way that it accounts for scientific software development tools, UCD, and the

directives for an SSD Project Team for the awareness within its Project Community.

It is the PCF intention to be accessible and open to interpretations because of the many

possible perspectives that may make up an SSD project. How successful this will be is a

question for further work and is discussed in Chapter 9, but the implications this has had on

the steps for the PCF is that they are set out so that a user of the framework may utilise its

full aspects. The application of the steps of the PCF includes using software development

tools, employing UCD, and the two iterative phases of Reflection-in-Action and Reflection-

on-Action. Reflection-in-Action allows for the Project Team to spend time on

understanding the actions of the Project Team by exploring these as they occur in the SSD

project and Reflection-on-Action aids in new understandings and giving insights to inform

the goals of the Project Team.

240

Also related to maximising the accessibility and use of the PCF is to promote its integration

within the Project Team. The research acknowledges that such work by Demarco and Lister

(1999) discusses integrating teams so that a team’s work is flexible in itself to the situations

that arise, and that the team members are working towards a common set of goals. In

working towards this point, the research acknowledges the work by Demarco and Lister

(1999) and their definition of professionalism. They highlight that professionalism in a

healthy work culture is based on people to be knowledgeable and competent in what they

do. The element of professionalism is a factor desired in the Project Team to create a sense

of belonging centred on its goals. Team members are more effective because they're more

directed. Therefore, goal alignment for the individual members of the Project Team and for

the Project Team would be beneficial.

A further point established in the existing literature and discussed earlier in this research,

was the seven challenges of UCD and software engineering integration (see Chapter 2

section 2.7). This research recognises that many of these problems cannot be easily solved

in the short term (e.g. the need for UCD to be adopted throughout an organisation, a lack of

support tools for the UCD process and the education gap a UCD students in software

engineering and software engineering students in UCD). Therefore, the purpose of bringing

professionalism into the Project Team is to aid this sense of belonging and aid working

towards SSD project goals.

This research has established the need for a wider approach to integrating UCD into

academic SSD rather than simply applying UCD methods without recognising the

challenges of working with UCD in software development within the scientific context. It

has explored how the work within a SSD project and its Project Team is vital to the

project's success within the fast-moving, complex, and highly demanding world of the

scientific community. The research has gone on to explore a practical way of drawing

together the aspects of the scientific software development, UCD and the SSD project

Community. This is provided by software development tools used, clear use of need for a

UCD in all SSD projects, and the continued reflection and action of information for a SSD

project. The research work has culminated and contributed to the creation of an initial

framework – the Project Community Framework.

241

The research has not gone on as far as creating a fully operational community-orientated

framework. This is central to what the evaluation has demonstrated. The research work

acknowledges that this is an area for further development (See Chapter 9 section 9.4). What

has been contributed and formed in this research though is a foundation so that a fully-

fledged operational community-orientated framework that can be based on the core

findings of this research. This core foundation has gone on to be evaluated through

Reviews 1 and 2, where the topics of HCS and FLIM were explored. The extent of the

further work for this research is now discussed in the concluding Chapter 9.

242

Chapter 9: Conclusion

9.1 Summary of the research

This research set out to investigate and analyse an academic SSD project where UCD was

applied through the Usable Image project into the OME project. The research was carried

out from within the Usable Image project – an EPSRC funded research project allied to a

longer standing academic SSD project called OMERO. The Usable Image project set out to

investigate the various challenges and constraints to attempt to extend and improve the

adoption of UCD methods and principles in OMERO. The research presented in this thesis

was a subset of that project specifically concerned with identifying barriers to UCD

adoption in academic SSD, and proposing tools or methods to help to overcome these. The

complexity of academic SSD in this work has been observed from two perspectives; that of

the scientific and the SSD domains. The subsequent analysis of these two perspectives led

to the formation of a proposal for a Project Community Framework (PCF). The implication

this has had for the research has not been solely about the application of UCD for scientific

software but also about the ability to integrate UCD with it and developing an

understanding how academic SSD is conducted.

The fieldwork for this thesis began in traditional UCD fashion with a focus on the scientist

end users. Through the fieldwork, the research started to comprehend the position of UCD

in the context of the SSD and its interconnectedness with the wider elements of SSD. The

second phase of the fieldwork examined the actual SSD and sought to understand the

working practices of a real SSD process. Based on the analysis of these two perspectives,

the manifesto for the PCF was formed.

The research fieldwork demonstrated that academic SSD projects must focus not only on

SSD and UCD, but also on the community of which the SSD is part. The challenge for

designers of SSD systems is in ensuring that SSD reflects, considers and responds to the

needs of the wider view of the “user community” than is traditionally considered in UCD.

The PCF encourages a more holistic understanding of the various players in the SSD, UCD,

and the end user communities that comprise any SSD project. Furthermore the PCF

243

provides a means for bringing such an understanding to the fore, so that they may be

accounted for by the SSD project.

The philosophy of this approach is provided in the form of the PCF manifesto (see section

8.6). As previously highlighted, the points of the manifesto are as follows:

1. The identification of the Project Team but also its position and its relationship with

the community.

2. The identification of the Community, its boundaries, and but also its relationship

with the Project Team.

3. The value for continual communication both within the Project Team and with the

community.

4. The need of continual reflection on the Project Team’s creativity and the

communication of this within the team.

5. The continual facilitation of communication both within the Project Team and

community.

6. A requirement for listening to the community and the Project Team.

7. A SSD project must start equally with the consideration of the scientific software

development, the scientists, and the scientific software project community.

The work by the editors of the famous Science journal (2011) describes the emergence of

the data role for scientists, as they frequently have to deal with larger and larger amounts of

scientific data. The resulting implications are that many scientific data sets are becoming

too large to download and work with. Even where the data might be accessible, it can be

inefficiently organised to use for any scientific research work. The OMERO project - a

scientific project that deals with the microscopy image data management - is trying to

tackle this increasing hurdle. My own research integrates in this project by ensuring that

such data management scientific software is developed not only to handle the data but also

to integrate the principles of UCD and the consideration of the academic scientific

community.

244

The research has directly observed through the ethnographic fieldwork in the Usable Image

Project and then within the OMERO project (See Chapters 5 and 6). This provided multiple

perspectives allowed the research work to form multiple standpoints.

This research investigation has outlined the PCF aims to accommodate for the software

development tools used, the role of a UCD, and the continued reflection and action of

information for a SSD project. It defines mediating roles in order to promote

communication and information throughout a Project Team. This has led to the concrete

proposal of the PCF manifesto that has been built around the three key elements for

academic SSD: SSD, UCD, and the community.

9.2 Summary of contributions

This research has overlapped across the domains of science (specifically the field of image

informatics) and SSD, with the overarching perspective of the research investigation being

from UCD. The research has investigated the gap between UCD and SSD, which has

consequently resulted in the construction of the PCF. This PCF has subsequently been used

and evaluated in two reviews.

The first contribution has been towards the deeper understanding of the gap between UCD

and SSD which lead to the proposal that SSD development requires a balance between the

development of SSD, UCD, and the community. The research has recommended this

balance to be consciously considered from the very beginning of a SSD project. The PCF

has echoed this requirement by recommending a UCD professional(s) to be part of a SSD

team and by defining a Project Community Mediating role, a role specifically formed to aid

in the communication and feedback for a SSD project team.

The second contribution of the research is the project community manifesto. It proposes a

richly ‘community focussed’ way of thinking about the development of academic scientific

software, away from exclusively starting with the scientists as the way forward described in

the work by Kalawsky et al., (2006).

245

“START WITH THE SCIENTISTS, not the technology – what are the problems

that they want solved.” (Kalawsky et al., 2006)

According to the findings of this research, starting solely with scientists sets out a false

pretence and imposes a limiting perspective on the complexity and scope of problems that

exist in academic SSD projects. The implications of this research are that academic SSD

projects must re-think the wider context of incorporating the UCD approach into academic

SSD. In light of the statement made by Kalawsky et al., (2006) and the work proposed in

this research, I suggest instead that academic SSD must:

“START EQUALLY WITH THE SCIENTISTS, THE SSD, AND THE

SCIENTFIC SOFTWARE DEVELOPMENT PROJECT COMMUNITY GOALS –

focusing on any single aspect will unbalance the direction of the SSD project.”

(Project Community Manifesto – Loynton, unpublished results)

In redefining this statement, the resulting proposal retains the focus of scientists but also

recognises and aims to unite UCD with SSD and the community of the SSD project. The

PCF then can be viewed as a medium for improving the uptake of UCD philosophies,

methods and thinking in academic SSD.

9.3 Further testing

In addition to the limitations of the research work the Framework would require additional

testing – this would be valuable and worthwhile for any future work because of the

significance of the challenges that have been discussed in the research. The prominent

challenge and first reason for the further testing is for the benefit of integration between

UCD to SSD. Step three aims to integrate UCD into the SSD process and so step three

would benefit from having a greater understanding on how UCD and SDD can be better

united. Although, no specific UCD methods have been specified in step three. The major

variable condition identified in step three is the range of UCD methods and how they are

used throughout the project. The recommendation based on this for the future testing is that

a wide spectrum of UCD methods are tested and used and documented in a variety of SSD

246

projects, so as to gain an insight into what types of UCD methods work best and under

what type of conditions.

The second challenge and second reason for the further testing is for the purpose of

examining the framework within the context of different SSD projects. The purpose of this

role of testing is to aim to asses the framework in a wider range of SSD projects and the

variety of constraints this brings with it. The necessary future testing would require the PCF

to be tested in various specialised SSD projects as has been previously described by

Killcoyne & Boyle (2009), Basili et al., (2008), and Ackroyd et al., (2008) (See Section

2.7.1 pg 46). Killcoyne and Boyle (2009) have formed a specific research informatics team

to meet the challenges of software development within the life sciences. The ten-man team

is involved with many projects across the institute. This team have formed a process that

supports good communication across the team, rapid development and delivery, and project

management to coordinate development and manage dependencies. It is argued that this

type of SSD project with already established practices may more readily support the

adoption and transition of the PCF.

However, the testing would also need to be carried out with several new SSD projects

where the context of the project is open to a wide set of variables. Table 9.1 has been

constructed to provide some indication of the range of variables that could be investigated

in further testing. Table 9.1 has been adapted from the work by Liu et al., 2008. For the

purpose of this work the additional variable factor of the Project Community Mediating

Role(s) has been added. This variable consists of the Usability champion, Project

Community Mediator(s) and so would require further testing based on availability of these

roles in a SSD project. The goal of testing with new established SSD projects here would

be to establish how the PCF could benefit a project when it has specific goals set from start

and how this can effect the goals of the UCD process and the goals of integrating

information across the project and for the evolution for the project.

Table 9.1: Scope of Possible Variables for

Further Testing (modified Liu et al., 2008)

Project
Purpose Purpose

Scientific Contribution
Project Team Programmer Expertise

Team Management

247

Programmer turn over
Designer
Project Community Mediating Role(s)
 Process Development Process
Group Meeting
Code Management
Budget
Testing
User Centered Design process
Schedule

Products Character of Software
Size and Complexity of Software
Interface
Documentation
Open Source

9.4 Limitations of the research

• Choice of the research approach

The research approach used ethnography and secondary ethnographic data analysis. The

limitations of the research approach therefore are linked to the known limitations of the

ethnographic approach, specifically; the disruption caused by researcher’s presence in the

SSD team and poor generalisabilty of results. However, the context-rich data and focus on

rich understandings made the ethnography approach suitable for exploring my research

questions. The issue of the currency of the data set was identified as a limitation in Chapter

4 section 4.6.1. In any further work, a recommendation to overcome this would be to allow

for any secondary analysis work to be carried out with the option to begin at the same time

as the ethnographic work. The practical alternatives for a suitable research approach would

have involved designing a more empirical approach by setting up multiple experiments

with the groups involved. This technique would be required to present artificial scenarios

and measurements to the groups. However, it is important to note that the set of suitable

resources required for this approach was not easily obtainable. Therefore, it was not chosen,

as the research was embedded within an existing collaboration with the Usable Image

project and the OMERO project, so this had to be taken into account in the selection of the

research method and so this was why the ethnographic method was chosen.

248

• PCF context and evolution

The two reviews of the PCF have allowed the research to iteratively develop the framework

and identify the shortcomings of the work. The major limitation of the study surrounds the

context in which the PCF could be evaluated, which in turn relates to the existing known

limitations of empirical software development work with UCD, specifically as discussed in

Seffah and Metzker (2008). This concerns the difficulty to control and replicate the benefits

of UCD between separate software development teams, as multiple factors would need to

be accounted for (e.g. skill, motivation, and the software engineering approach). This

highlights the further question of how the PCF must continue to progress as the software

evolves and how this may be evaluated. The critical issue here is dependencies on the

people using the PCF and their ability to continue to learn and evolve alongside the

software tools and techniques within the framework. It also brings additional limitations in

the form of an increasing responsibility of running the Project Community and promoting

its values. This dependency rests heavily on the Project Community Mediating role(s)

within the Project Team to continue to promote the communication and reflection for the

design and development work.

Nevertheless, the value of the evaluation approach used in this research is that it has

allowed for the PCF to be understood in the context in which it was formed. The major

limitation recognised for the approach was that it introduced a bias from the OMERO

developer in choosing a second evaluation topic (the FLIM Review 2, proposed by Yvan).

This was an advantage for my immediate evaluation as it gave me an existing area for the

project. Thus, it did mean that my selection was externally influenced. Additionally, the

evaluation review did explore existing data that I had been aware of from the analysis work

carried out in Chapter 6 (Extract 14 presented in Chapter 8). This was for the purpose of the

evaluation review, as it provided current and up to date information on the evolution of the

feature. Because of the restrictions placed on the evaluation review, the application and

evaluation of the PCF within multiple SSD projects would prove to be an appropriate area

of future work, with the possibility that multiple SSD projects could be investigated with

the necessary support from the funding body to setting up an appropriate Project Team.

Furthermore, a recognised limitation lies in how to effectively compare the use of the PCF

between projects. This problem can be compared to the use of UCD organisational surveys

(previously described in Chapter 2 section 2.7). Those surveys were difficult to conduct

249

because it would require comparing the use of the UCD against a different project that is

not using the UCD. A similar situation could be applicable to a SSD project using the PCF

to one that is not using the PCF.

9.5 Future research work

• Funding of scientific software projects

The RCUK report of e-Science (EPRSC 2010) suggests that usability is an overlooked

issue for SSD. This highlights that despite the heavy investment in, and expectations of,

academic SSD, UCD is still not critically considered. One problem identified in the

research by Segal (2004) is that scientific software is developed for a single scientific

question so has a limited shelf life. This SSD practice can mean usability is frequently

overlooked. However OMERO represents a growing breed of academic SSD project aimed

at providing more widely applicable toolsets rather than single question focussed tools, and

in this respect the team and the setup of the OMERO project resembled more then SSD

model of a specialised software development team (See Chapter 2 section 2.7.1)

The work conducted by OMII-UK (Open Middleware Infrastructure Institute) and funded

by EPSRC demonstrates the positive role of funding bodies and their recognition for

developing e-science projects at the levels of software, support, and sustainability. In the

recent funding of the Software Sustainability Institute, however, this group of funding

bodies and institutions have was created to ensure the sustainability of scientific software

and not explicitly UCD. Because of this, a future question posed by this research asks if the

funding of academic SSD projects can be re-formed on the basis of all three areas of SSD,

UCD, and the community of the software. This area of further work would help to open up

further opportunities to examine the requirements of the PCF from the perspective of

funding bodies. The next steps in this work concerns two areas. The first area of work

identified is in the integration and tracking of the use of the PCF in a wider range of

contexts. This would include implementing the PCF from the very start of an SSD project,

but the framework would also benefit from further work within a wider variety of SSD

projects. This thesis has shown the nature of differences between SSD projects, with the

type and scale of the software under development and the scale and size of the Project

250

Team. The other scenarios that are frequent in scientific software are in larger-scale

collaborative SSD projects. The wider opportunities this opens up for the PCF concern how

it may be applied at the local development level and then in the co-ordination of multiple

development teams.

• Developing the PCF

The second step accounts for the social development of the PCF. This considers the Project

Team and its experience as key, especially in terms of forming a jelled team where all those

involved are moving towards the same goals. The effect of having multiple distributed parts

of the Project Team, along with further variations in a Project Team’s experience and

expertise, would all play a part in how the Project Team functions. Nevertheless, many of

these factors may move beyond the control of the PCF.

The communication of the Project Team could be further addressed through investigating

software development tools that may be used in the scientific software development

process. The difficulty in this is in getting various software development tools that

complement each other and provide a suitable collection to meet requirements. This further

work may draw on the field of CSCW, and would be complemented by an additional range

of observational work on how tools and techniques of software development may evolve

and be refined for the context of PCF driven SSD.

• Education

Another area of further work identified is centred on the educational aspects for future life

scientists, bio-informaticians, software engineers, and UCD professionals. A key reason for

the project’s success is the expertise of the people involved. My own research would also

benefit from a wider “cross-pollination” of education between the disciplines in which this

research is situated. This was illustrated in the transition between the scientific observations

and the requirements of the ethnographic fieldwork to inform the software development

process. In this transition, I observed that working between the two projects led me to

realise that cross-pollination between UCD and SSD would have helped me integrate the

process of UCD for the benefit of the Project Team.

251

Existing education work that implemented such a strategy has been carried out at the

Bioinformatics Education Conference (http://casb.ucsd.edu/bioed/) and has examined ways

to teach bioinformatics to undergraduate biology students. Pevzner and Shamir (2009)

discuss that this awareness to teach bioinformatics is not new in a National Research

Council report (called “Bio2010”, National Research Council 2003). They recommended

substantial changes in the mathematics curricula for biology undergraduates. Similar

education changes would be made by this research in how they could be taught aspects of

software engineering and UCD. The work by Bialek and Botstein (2004) and Pevzner

(2004) also recognise the problem of educating biology students and have outlined some

approaches to its solution. The solution offered by Pevzner (2004) is to address the

shortcomings of many biology departments. Pevzner (2004) call for the introduction of

additional required courses of ‘Algorithms and Statistics’ in the undergraduate molecular

biology curriculum. The vision is of a problem-driven course with all examples and

problems being biology-motivated. The introduction of the course is to modernise the

biology curriculum and to give students computational ideas in molecular biology. Even so,

the question of how best to deliver computational ideas to biologists remains. One of the

critical problems highlighted by Pevzner and Shamir (2009) is how bioinformatics is taught

as a science that explains the computational ideas; but it should rather be taught as a

collection of a ‘cookbook-style’ recipe that relate to the biological problems the scientists

encounter. There are also questions on how to educate software developers about how they

work within the scientific software environment. Because of the SSD environment it

underlines how a software developer has an increasing opportunity to specialise in SSD.

The work by Baber (1982 cited in Downey, 2005) and Parnas (1999 cited in Downey,

2005) reviews how they express that software engineering education is dictated by the

requirement to create products that are fit to use. Jackson (1998) argues that software

engineers must become specialists in a way similar to physical engineers.

Certain institutions are currently putting in to place such teaching initiatives. For example

such an initiative, in July 2010 by the University of Houston in the USA received a $2.4

million grant to fund a new multidisciplinary approach for fighting cancer. Its research

combines cancer biology with computational disciplines like computer science, theoretical

physics, or chemistry. There is a real realisation that “all the problems of cancer won’t be

solved by biology”, said Merkl (2010). It is because of this growing recognition that science

252

must bring in a wider range of expertise fields if the promise of science is to be realised. In

relation to my own research, I echo this requirement and advocate it for that wider expertise

of fields in science to include trained specialist scientific software developers and UCD

experts.

9.6 Closing words

To conclude, this research has explored in depth a serious and recognised problem – the

gap between academic SSD and UCD – and presented an analysis from a rich extended

field study of that gap in a real-world SSD setting. Academic SSD in this work has been

observed from the dual perspectives of the scientific and SSD domains. The subsequent

findings have demonstrated that academic SSD projects must focus not only on SSD and

UCD but also on the community of the SSD project. Furthermore, it has presented a clear

manifesto for the redesign of SSD to deal with the integration of UCD into the SSD process

along with the consideration of this wider SSD project community. The research has

proposed a framework (the Project Community Framework) for enacting this manifesto.

Society increasingly demands science to provide actionable research findings that address

the core problems of our current circumstances, from climate change to disease. Scientific

software is a key tool for this endeavour, and improving its usability and sustainability in

an era of increasing challenges to the funding available for science is a topic of interest to

all – developers, scientists, funders, and society in general. It is hoped the work presented

here will provide some assistance in meeting such challenges, both by providing a richer

understanding of the roots and nature of the gap, and by developing the beginnings of a

philosophical and practical response to it.

 251

References

Abraham, V. C., Taylor, D. L. and Haskins, J. R. (2004). High content screening applied
to large-scale cell biology. Trends in biotechnology, 22 (1), pp.15-22.

Ackroyd, K. S., Kinder, S. H., Mant, G. R., Miller, M. C., Ramsdale C. A. and
Stephenson, P. C. (2008). Scientific Software Development at a Research Facility, IEEE
Software, 25 (4) (Jul. 2008), pp. 44-51.

ACM. (2009). Human-Computer Interaction: Definition of HCI. [Online] Available at:
http://old.sigchi.org/cdg/cdg2.html#2_1 [Accessed 21st September, 2012]

Aikio, K-P. (2006). Integrating Usability Engineering with Software Engineering: a
preliminary view on aspects surrounding the topic of usability integration.

Aikio, K-P. (2007). Exporting usability knowledge into a small-sized software
development organization: a pattern approach. In Proceedings of the 2007 conference
on Human interface: Part I, Michael J. Smith and Gavriel Salvendy (Eds.). Springer-
Verlag, Berlin, Heidelberg, pp. 3-11.

Akrich, M. (1995). User representations: Practices, methods and sociology. In Rip, A.,
Misa, T. J. and Schot, J. (eds.) Managing technology in society. London: Pinter
Publishers, pp. 167-184.

Ambati, V. and Kishore, S. P. (2004). How can academic software research and open
source software development help each other?, Collaboration, Conflict and Control:
The 4th Workshop on Open Source Software Engineering, W8S Workshop - 26th
International Conference on Software Engineering, pp. 5-8.

Anderson, R. J. (1994). Representations and Requirements: The Value of Ethnography
in System Design, Human-Computer Interaction, 9 (2), pp. 151-182.

Anderson, J., Fleek, F., Garrity, K., and Drake, F. (2001). Integrating usability
techniques into software development. IEEE Software, 18 (1), pp.46-53.

Angrosino, M. (2007). Doing ethnographic and observational research. London: Sage
Publications.

Antikainen, M., Aaltonen, T. and Väisänen, J. (2007). The role of trust in OSS
communities - Case Linux Kernel community, in IFIP International Federation for
Information Processing Open Source Development, Adoption and Innovation, 234, pp.
223-228.

Bannon, L. J. (1991). From human factors to human actors: the role of psychology and
human-computer interaction studies in system design. In J. Greenbaum, & M. Kyng
(Eds.), Design at Work: Cooperative Design of Computer Systems (pp. 25-44).
Hillsdale, NJ: Lawrence Erlbaum Associates

Basili, V., Daskalantonakis, M. and Yacobellis, R. (1994). Technology Transfer at
Motorola, IEEE Software, 11(2), pp.70-76, March 1994.

http://old.sigchi.org/cdg/cdg2.html#2_1

 252

Basili, V., Shull, F., Lanubile, F., (1999). Building Knowledge through Families of
Experiments, IEEE Transactions on Software Engineering, 25(4), pp. 456-473.

Basili, V., Donzelli, P., Asgari, S., (2004). A Unified Model of Dependability: Capturing
Dependability in Context, IEEE Software, 21(6) pp. 19-25.

Basili, V. R., Cruzes, D., Carver, J. C., Hochstein, L. M., Hollingsworth, J. K.,
Zelkowitz, M. V. and Shull, F. (2008). Understanding the High-Performance-
Computing Community: A Software Engineer's Perspective, IEEE Software, 25 (4), pp.
29-36.

Bass, L., John, B. E. and Kates, J. (2001). Achieving usability through software
architecture. Technical Report CMU/SEI-2001-TR-005, Software Eng. Inst., Carnegie
Mellon Univ.

Battle, L. (2005). “Patterns of integration: Bringing user centered design into the
software development lifecycle”, in A. Seffah (eds.) Human-Centred Software
Engineering – Integrating Usability in the Development Process, pp. 287-308, 2005
Springer, Netherlands.

Baxter, S. M., Day, S. W., Fetrow, J. S. and Reisinger, S. J. (2006). Scientific Software
Development Is Not an Oxymoron. J. McEntyre, ed. PLoS Computational Biology, 2(9),
pp. 4.

Beck, K. Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J. and Thomas, D. (2001). Manifesto for Agile
Software Development. [Online] Available at: http://www.agilemanifesto.org/ [Accessed
13th October, 2010].

Beck, K. (2003). Test-Driven Development by Example, Wokingham: Addison-Wesley.

Beck, K. (2004). Extreme Programming Explained: Embrace Change. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Bell, G., Hey, T. and Szalay, A. (2009). Beyond the Data Deluge, Science, 323(5919),
pp. 1297–1298.

Bellotti, V., Ducheneaut, N., Howard, M., and Smith, I., (2003). Taking email to task:
the design and evaluation of a task management centered email tool. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pp. 345-352.

Benner, K. M., Feather, M. S., Johnson, W. L., and Zorman, L. A., (1993). Utilizing
scenarios in the software development process. Information system development
process, 30, pp.117-134.

Bentley, R., Hughes, J. A., Randall, D., Rodden, T., Sawyer, P., Shapiro, D., and
Sommerville, I. (1992). Ethnographically-informed systems design for air traffic
control, Proceedings of the 1992 ACM Conference on Computer-Supported
Cooperative Work, CSCW '92. ACM, New York, NY, pp. 123-129.

Bergstrom, S. and Raberg, L. (2004). Adopting the Rational Unified Process: Success

 253

with the RUP, Wokingham: Addison-Wesley.

Beyer, H. and Holtzblatt, K. (1998). Contextual Design: Defining Customer-Centered
Systems, London: Academic Press.

Bialek, W. and Botstein, D. (2004). Introductory science and mathematics education for
21st-Century biologists. Science, 303(5659), pp.788-790.

Billingsley, P. (1995). Starting From Scratch: Building a Usability Program at Union
Pacific Railroad. Interactions October 1995. ACM Press.

Bird, C., Murphy, B., Nagappan, N., and Zimmermann, T., (2011). Empirical software
engineering at Microsoft Research. In Proceedings of the ACM 2011 conference on
Computer supported cooperative work. ACM, pp.143-150.

Blom, M. (2010). Is scrum and XP suitable for CSE development? Procedia Computer
Science, 1, 1, pp. 1511-1517.

Blomberg, J. (2007). Some Perspective. Fieldwork for Design, 3, Springer London, pp.
59-88.

Bloomer, S., Croft, R. and Kieboom, H. (1997). Strategic Usability: Introducing
Usability into Organizations. CHI.

Blythe, M. A., Overbeeke, K., Monk, A. F. and Wright, P. C. (2005). Funology: From
Usability to Enjoyment. Kluwer Academic Publishers, Norwell, MA, USA.

Bødker, S., (2006). When second wave HCI meets third wave challenges. In
Proceedings of the 4th Nordic conference on Human-computer interaction: changing
roles, pp. 1-8.

Boehm, B. (1986). A Spiral Model of Software Development and Enhancement, ACM
SIGSOFT Software Engineering Notes, 11 (4), pp.14-24.

Boehm, B. (1988). A spiral model of software development and enhancement, IEEE
Computer, 21 (5), pp. 61-72.

Boivie, I., Gulliksen, J. and Goransson, B. (2006). The lonesome cowboy: A study of the
usability designer role in systems development. Interacting with Computers, 18(4), 601-
634.

Bolchini, D., Finkelstein, A., Perrone, V. and Nagl, S. (2009). Better bioinformatics
through usability analysis, Bioinformatics, 25, pp. 406–412.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition, 2nd edition, Addison-Wesley Professional.

Burke, J., and Kirk, A., (2001). Ethnographic methods. Choosing Human- Computer
Interaction (HCI) Appropriate research methods (CHARM). [Online] [Accessed 17th
November, 2012]. Available from: http://otal.umd.edu/hci-rm/ethno.html

Bygstad, B., Ghinea, G., and Brevik, E. (2008). Software development methods and

http://otal.umd.edu/hci-rm/ethno.html

 254

usability: Perspectives from a survey in the software industry in Norway. Interacting
with Computers, 20(3), pp.375–385.

Card, S. K., Moran, T. P. and Newell, A. (1983). The Psychology of Human-Computer
Interaction, Hillsdale: Erlbaum Associates.

Carpenter, A. E., Kamentsky, L. and Eliceiri, K. W. (2012). A call for bioimaging
software usability. Nat Methods, 9(7), pp. 666-670.

Carroll, J. M. (2000). Making Use: Scenario-Based Design of Human-Computer
Interactions, Cambridge: MIT Press.

Carroll, J. (2002). Human-computer interaction in the new millennium, New York:
Boston.

Carroll, J. M. (ed.) (2003). HCI Models, Theories, and Frameworks: Toward a
Multidisciplinary Science, Interactive Technologies, Morgan Kaufmann.

Carroll, J. M. (2009). ‘Human Computer Interaction (HCI)’, in Soegaard, Mads and
Dam, Rikke Friis (eds.). Encyclopedia of Human-Computer Interaction. Aarhus,
Denmark: The Interaction-Design.org Foundation. [Online] Available at:
http://www.interaction-design.org/encyclopedia/human_computer_interaction_hci.html.

Carver, J. C., Kendall, R. P., Squires, S. E. and Post, D. E. (2007). Software
Development Environments for Scientific and Engineering Software: A Series of Case
Studies, 29th International Conference on Software Engineering (ICSE'07), pp. 550-
559.

Chan, S. S., Wolfe, R. J. and Fang, X. (2003). Issues and strategies for integrating HCI
in masters level MIS and e-commerce programs. International Journal of Human-
Computer Studies.

Charmaz, K. (2006) Constructing grounded theory. London: Sage Publications.

Chilana, P. K., Wobbrock, J. O. and Ko, A. J. (2010). Understanding usability practices
in complex domains, Proceedings of the 28th international Conference on Human
Factors in Computing Systems (Atlanta, Georgia, USA, April 10 - 15, 2010). CHI '10.
ACM, New York, pp. NY, 2337-2346.

ClearSy (2011). B Method Web Site. [Online] Available at: http://www.bmethod.com/
[Accessed 15th April, 2011]

Cohn, M. (2005). Agile Estimating and Planning, Prentice Hall PTR.

Collins, T. J. (2007). ImageJ for microscopy. Biotechniques, 43(1), pp. 25-30.

Cooper, A. (1999). The inmates are running the asylum: Why high tech products drive
us crazy and how to restore the sanity, Indiana:Sams.

Constantine, L. L. and Lockwood, L. A. D. (1999). Software for use: a practical guide
to the essential models and methods of usage-centered design. Reading, MA: Addison-
Wesley.

 255

Constantine, L. L. (2002). Process agility and software usability: Toward lightweight
usage-centered design. Information Age, 8(8), pp.1-10.

Constantine, L. L. and Lockwood, L. A. D. (2002). User-centered engineering for web
applications. IEEE Software, 19(2), pp. 42–50.

Constantine, L. L. and Windl, H. (2003). Usage-centered design: scalability and
integration with software engineering. In C. Stephanidis and J. Jacko (Eds.) Human-
Computer Interaction: Theory and Practice. Proceedings of the 10th International
Conference on Human-Computer Interaction, New Jersey: Lawrence Erlbaum
Associates, 2003.

Constantine, L. L., Biddle, R., and Noble, J. (2003, May). Usage-centered design and
software engineering: models for integration. In IFIP Working Group (Vol. 2, No. 13.4,
pp. 3-10).

Crabtree, A. (2003). Designing collaborative systems: A practical guide to ethnography.
London: Springer.

Crabtree, A. and Rodden, T. (2004). Domestic Routines and Design for the Home.
Computer Supported Cooperative Work, v.13, n.2, pp.191-220.

Crabtree, A., Rodden, T., and Mariani, J., (2004). Collaborating around collections:
informing the continued development of photoware. In Proceedings of the ACM
conference on Computer supported cooperative work, ACM, pp. 396-405.

Crabtree, C. A., Koru, A. G., Seaman, C. and Erdogmus, H. (2009). An empirical
characterization of scientific software development projects according to the Boehm
and Turner model: A progress report, Proceedings of the 2009 ICSE Workshop on
Software Engineering for Computational Science and Engineering, SECSE. IEEE
Computer Society, Washington, DC, pp. 22-27.

DeMarco, T. and Lister, T. (1999). Peopleware: Productive Projects and Teams, 2nd
edition, Dorset House Publishing Company, Incorporated.

Denaro, G., and Pezze, M., (2002). An Empirical Evaluation of Fault-Proneness
Models. In Proceedings of the 24th International Conference on Software Engineering,
ACM, pp. 241-251.

De Roure D. and Goble, C. (2009). Software Design for Empowering Scientists, IEEE
Software 26 (1), pp. 88-95.

De Roure, D., Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D.,
Fisher, P., Kollara, N., Michaelides, D., Missier, P., Newman, D., Ramsden, M., Roos,
M., Wolstencroft, K., Zaluska, E. and Zhao, J. (2010). The Evolution of myExperiment,
Sixth IEEE e–Science conference (e-Science 2010), December 2010, Brisbane,
Australia.

Desel, J. and Juhás, G. (2001). What Is a Petri Net? Informal Answers for the Informed
Reader. In Unifying Petri Nets, 2128, pp.1-25.

 256

Dey, I. (2003) Qualitative data analysis a user-friendly guide for social scientists,
London: Routledge.

Diaper, D. (1989) (ed.) Task Analysis for Human-Computer Interaction. Ellis-Horwood

Diaper, D. and Sanger, C. (2006). Tasks For and Task In Human- Computer Interaction.
Interacting with Computers, 18(1), pp.117- 138.

Dix, A., Finlay, J., Abowd, G. and Beale, R. (1993). Human-Computer Interaction,
Prentice Hall.

Dourish, P. (2006). ‘Implications for design’, in Grinter, R., Rodden, T., Aoki, P.,
Cutrell, E., Jeffries, R. and Olson, G. (ed.) Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, Montréal, Québec, Canada, April 22 - 27, 2006,
CHI '06. ACM, New York, NY, 541-550.

Dourish, P. (2007). Responsibilities and implications: further thoughts on ethnography
and design. In Proceedings of the 2007 conference on Designing for User eXperiences.
ACM, pp. 2-16.

Dourish, P. (2012). Reading and Interpreting Ethnography, [Online] Available at:
http://www.gillianhayes.com/Inf231F12/wp-content/uploads/2012/10/ethnography-
ways-submit.pdf [Accessed 14th October, 2012].

Downey, J. (2005). A framework to elicit the skills needed for software development,
Proceedings of the 2005 ACM SIGMIS CPR Conference on Computer Personnel
Research, Atlanta, Georgia, USA, April 14 - 16, 2005, SIGMIS CPR '05. ACM, New
York, NY, 122-127.

Dubberly, H., Pangaro, P. and Haque, U. (2009). On Modelling What is interaction? Are
there different types? Interactions, 16(1), pp.69–75.

Easterbrook, S. M. and Johns, T. C. (2009). Engineering the Software for
Understanding Climate Change. Computing in Science and Engineering, 11 (6), pp. 64-
74.

Eisenstein, M. (2006). Tower of Babel – OME file format. Nature, 443 (7114), pp. 1021.

Emmott S. et al. (2006). Towards 2020 Science, Technical report, Microsoft, [Online]
Available: http://research.microsoft.com/en-us/um/cambridge/projects/towards2020
science/downloads/T2020S_ReportA4.pdf [Accessed 27th October, 2010].

EPSRC. (2010). RCUK review of e-Science 2009 Town Meeting Transcript, [Online]
Available at: http://www.epsrc.ac.uk/SiteCollectionDocuments/transcripts/transcript-
review_of_e-science_town_meeting.pdf [Accessed 3rd November, 2010].

EPSRC. (2011). Introduction to e-science programme. [Online] Available at:
http://www.epsrc.ac.uk/about/progs/rii/escience/Pages/intro.aspx [Accessed 10th March,
2011]

e-Science Usability Task Force. (2011). Usability Research Challenges in e-Science.
[Online] Available at: http://www.cs.nott.ac.uk/~tar/UTF.pdf [Accessed 12th April,

 257

2011].

Faulk, S., Loh, E., Van De Vanter, M. L., Squires, S. and Votta, L. G. (2009). Scientific
Computing’s Productivity Gridlock - How Software Engineering Can Help, Computing
in Science and Engineering, 11 (6), pp. 30-39.

Faulkner, X. (2000). Usability Engineering. Palgrave Publishers Ltd. New York.

Faulkner, X. and Culwin, F. (2000). Enter the Usability Engineer: Integrating HCI and
Software Engineering. ITicSE 2000 7/00 Helsinki, Finland. ACM Press.

Fellenz, C. (1997). Introducing Usability into Smaller Organizations. ACM 4, pp. 29–
33.

Fitzgerald, B., (1998). An empirically-grounded framework for the information systems
development process, In Proceedings of the international conference on Information
systems, pp.103-114.

de la Flor‚ G., Jirotka‚ M., Lloyd, S. and Warr, A. (2010). Embedding e−Research
Applications: Designing for Usability, In Dutton‚ W. and Jeffreys‚ P. (eds). World
Wide Research: Reshaping the Sciences and Humanities. Cambridge‚ MA: MIT Press.

Fong, A., Valerdi, R. and Srinivasan, J. (2007). Boundary Objects as a Framework to
Understand the Role of Systems Integrators. Systems Research Forum, 2(01), pp.11.

Fry, J. and M. Thelwall (2006). Using Domain Analysis and Organisational Theory to
Understand E- Science Sustainability. NCeSS 2nd International Conference on e-Social
Science.

Gabriel R. P. and Goldman, R. (2002). Open Source: Beyond the Fairytales [Online]
Available at: http://opensource.mit.edu/papers/gabrielgoldman.pdf. [Accessed 15th
November, 2010]

Glaser, B. (1963). The use of secondary analysis by the independent researcher. The
American Behavioural Scientist, 6, pp. 11–14.

Glaser, B. (1998). Doing grounded theory. Mill Valley, CA: Sociology Press.

Glass, R., (1995). A structure-based critique of contemporary computing research,
Journal of Systems and Software, 28(1), pp. 3-7.

Goffman, E. (1974). Frame Analysis: An Essay on the Organization of Experience, New
York: Harper and Row.

Göransson, B. Gulliksen, J. and Boivie, I. (2003). The Usability Design Process –
Integrating User-centered Systems Design in the Software Development Process.
Software Process Improvements and Practice. Vol.8, no. 2, pp. 111-131.

Gould, J. D. and Lewis, C. (1985). Designing for usability: Key principles and what
designers think, Communications of the ACM, 28, 3, pp. 300–311.

Gould, J. D., Boies, S. J. and Ukelson, J. (1997). How to design usable systems. In

 258

Helander, M. G., Landauer, T. K., and Prabhu, P. V. (Eds.), Handbook of human-
computer interaction, 2nd ed., 231-254. Amsterdam, The Netherlands: North-Holland.

Grudin, J. (1991). Systematic sources of suboptimal interface design in large product
development organizations. Hum.-Comput. Interact, 6 (2), pp. 147-196.

Grudin, J. (2006). Is HCI homeless?: in search of inter-disciplinary status. Interactions,
13, 1 (January 2006), pp. 54-59.

Guion, L. A., Diehl, D. C., McDonald, D. (2011). Triagulation: establishing the validity
of qualitative studies. [online]. [Accessed 8 November 2012]. Available from:
http://edis.ifas. ufl.edu/fy394

Guowu, X., Chen, J. and Neamtiu, I. (2009). Towards a better understanding of
software evolution: An empirical study on open source software, Software Maintenance,
IEEE International Conference on. IEEE.

Gulliksen, J., Göransson, B., Boivie, I., Blomkvist, S., Persson, J. and Cajander, Å.
(2003). Key principles for user-centred system design, Behaviour & Information
Technology, 22(6), pp. 397-409.

Gulliksen, J, Boivie, I. Persson, J., Hektor, A. and Herulf, L. (2004). Making A
Difference – A Survey of the Usability Profession in Sweden. In Hyrskykari A. (ed.),
Proceedings of the 3rd Nordic Conference on Human Computer Interaction, NordiCHI,
ACM Press, pp. 207-215.

Gunther, R., Janis, J. and Butler, S. (2001). The UCD Decision Matrix: How, When, and
Where to Sell User-Centered Design into the Development Cycle. [Online] Available at
http://www.ovostudios.com/upa2001/ [Accessed 29th June, 2011].

Hall, J.K. (2004). Language learning as an interactional achievement, The Modern
Language Journal, 88, pp. 606-612.

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P., Pfahl, D., and Wilson, G.
(2009). How do scientists develop and use scientific software?, in Proceedings of the
2009 ICSE Workshop on Software Engineering For Computational Science and
Engineering (May 23 - 23, 2009), SECSE. IEEE Computer Society, Washington, DC,
pp. 1-8.

Harning, B., and Vanderdonckt, J. (2003). Closing the Gaps: Software Engineering and
Human-Computer Interaction, Proceedings of IFIP INTERACT03: Human-Computer
Interaction

Hartswood, M., Procter, R., Rouncefield, M., & Slack, R. (2003). Making a Case in
Medical Work: Implications for the Electronic Medical Record. Computer Supported
Cooperative Work (CSCW), 12(3), pp. 241-266 Kluwer Academic.

Harvey, L, J., and Myers, M., (2002). Scholarship and Practice: The Contribution of
Ethnographic Research Methods to Bridging the Gap, In Qualitative Research in
Information Systems: A Reader‘, M.D. Myers and D.E. Avison (eds.), Sage
Publications, London, pp. 169-180.

http://www.hcirn.com/ref/refh/hela_97.php
http://www.hcirn.com/res/publish/north.php
http://www.interaction-design.org/references/conferences/proceedings_of_ifip_interact03-_human-computer_interaction.html
http://www.interaction-design.org/references/conferences/proceedings_of_ifip_interact03-_human-computer_interaction.html

 259

Hatton, L. (1997). The T Experiments: Errors in Scientific Software, IEEE
Computational Science and Engineering, 4 (2), pp. 27-38.

Heaton, J. (1998). Secondary analysis of qualitative data. Social Research Update (22),
Department of Sociology, University of Surrey, [Online] Available at:
http://sru.soc.surrey.ac.uk/SRU22.html [accessed 13 September 2012]

Hinds, P. S., Chaves, D. E., and Cypess, S. M. (1992). Context as a source of meaning
and understanding. Qualitative health research, 2(1), pp. 61-74.

Hinds P. S., Vogel R, J., and Clarke-Steffen, L., (1997). The possibilities and pitfalls of
doing a secondary analysis of a qualitative dataset. Qualitative Health Research 7(3),
pp. 408–424.

Hine, C. (2006). Databases as Scientific Instruments and Their Role in the Ordering of
Scientific Work, Social Studies of Science, 36 (2), pp. 269-298.

Hix, D. and Hartson, H. R. (1993). Developing User Interfaces: Ensuring Usability
Through Product and Process. John Wiley & Sons, New York.

Holtzblatt, K., Wendell, J. B., and Wood, S. (2005). Rapid contextual design: A how-to
guide to key techniques for user-centered design. San Francisco, CA: Morgan
Kaufmann.

Holtzblatt, K. and Beyer, H. R. (2013). Contextual Design. In: Soegaard, Mads and
Dam, Rikke Friis (eds.). "The Encyclopedia of Human-Computer Interaction, 2nd Ed.".
Aarhus, Denmark: The Interaction Design Foundation. [Online] Available at
http://www.interaction-design.org/encyclopedia/contextual_design.html [Accessed 20th
October, 2012].

Howison, J. and Herbsleb, J. D. (2011). Scientific Software Production: Incentives and
Collaboration. Physics, pp. 513-522.

Hughes, J. A., Randall, D. and Shapiro, D. (1993). From Ethnographic Record to
System Design: Some Experiences From the Field, Computer Supported Cooperative
Work (CSCW): An International Journal, 1 (3), pp. 123-141.

Hughes, J., King, V., Rodden, T. and Andersen, H. (1994). Moving out from the control
room: ethnography in system design, Proceedings of the 1994 ACM conference on
Computer supported cooperative work (CSCW '94). ACM, New York, NY, USA, 429-
439.

Hughes, J., King, V., Rodden, T. and Anderson, H. (1995). The role of ethnography in
interactive systems design, Interactions, 2 (2), pp. 56-65.

Hutchins, E. (1995). Cognition in the wild, Cambridge: MIT Press.

Hvannberg, E. T. (2009). ‘Cause and Effect in User Interface Development Human-
Centered Software Engineering’, in Seffah, A., Vanderdonckt, J. and Desmarais, M. C.
(eds.), Springer London, Volume II, pp. 201-222.

IBM. (2012). User-Centered Design [Online] Available at: http://www-

http://www.interaction-design.org/encyclopedia/contextual_design.html
http://www-01.ibm.com/software/ucd/ucd.html

 260

01.ibm.com/software/ucd/ucd.html [Accessed 23rd August, 2012].

ifip (2011) 5th Workshop on Software & Usability Engineering Cross-Pollination:
Patterns, Usability and User Experience [Online] Available at:
http://wwwswt.informatik.uni-rostock.de/PUX2011/ [Accessed 22th September, 2011]

Iivari, N. (2006). Representing the User, Software Development - a cultural analysis of
usability work in the product development context. Interacting with Computers, 18 (4),
pp. 635-664.

Iivari, J. and Iivari, N. (2006). Varieties of User-Centeredness. Proceedings of the 39th
Annual Hawaii International Conference on System Sciences HICSS06, 00(C),
pp.176a-176a.

Jacobson, I., Christerson, M., Jonsson, P. and Övergaard, G. (1992). Object-oriented
software engineering - a use case driven approach. Addison-Wesley.

Javahery, H., Seffah, A., and Radhakrishnan, T. (2004). Beyond power: making
bioinformatics tools user-centered. Commun. ACM 47, (11), pp 58-63.

Jerome, B. and Kazman, R. (2005). ‘Surveying The Solitudes:An Investigation into the
Relationships between Human Computer Interaction and Software Engineering in
Practice’, in Seffah, A., Gulliksen, J. and Desmarais M. (ed.) Human-Centered Software
Engineering - Integrating Usability in the Development Process, Kluwer Academic
Press.

John, B. E., Bass, L., Sanchez-Segura M. I. and Adams R. J. (2004). Bringing Usability
Concerns to the Design of Software Architecture. In Proceedings of EHCI-DSVIS'04:
The 9th IFIP Working Conference on Engineering for Human-Computer Interaction and
the 11th International Workshop on Design, Specification and Verification of Interactive
Systems. Hamburg, Germany, July 11-13.

Kalawsky, R. S., Holmes, I. R., O’Brien, J., Lewin, M., Armitage, S. and Goonetilleke,
T. S. (2006). Human Factors Audit of Selected e-Science Projects : Joint Information
Systems Committee, [Online] Available at:
http://syseng.lboro.ac.uk/JISC%20HF%20Audit%20-%20Final%20Report%20Issue
%204.pdf [Accessed 15th May, 2011].

Kane, D. (2003a). Finding a Place for Discount Usability Engineering in Agile
Development: Throwing Down the Gauntlet. In Proceedings of the Conference on Agile
Development (ADC '03). IEEE Computer Society, Washington, DC, USA, pp. 40.

Kane, D. (2003b). Introducing Agile Development into Bioinformatics: An Experience
Report. In Proceedings of the Agile Development Conference (Salt Lake City, USA)
ADC’03, IEEE Computer Society Washington, DC, USA, pp. 132-139.

Kane, D. W., Hohman, M. M., Cerami, E. G., McCormick, M. W., Kuhlmman, K. F. and
Byrd, J. A. (2006). Agile methods in biomedical software development: a multi-site
experience report, BMC Bioinformatics, 30 (7), pp. 273.

http://www-01.ibm.com/software/ucd/ucd.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Christerson:Magnus.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/j/Jonsson:Patrik.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/=/=Ouml=vergaard:Gunnar.html

 261

Kapor, M. (1996). A software design manifesto. In T. Winograd, ed. Bringing Design to
Software. Addison-Wesley, pp. 1-6.

Karat, J., and Dayton, T., (1995). Practical education for improving software usability.
In Proceedings of the SIGCHI conference on Human factors in computing systems (CHI
'95), Katz, I. R., Mack, R., Marks, L., Rosson, M. B. and Nielsen, J. (Eds.). ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA, pp. 162-169.

Karat, J. (1996). User Centered Design: Quality or Quackery?, interactions, 3 (4),
pp.18-20.

Karat, J. (1997). Evolving the scope of user-centered design, Commun. ACM, 40 (7),
pp. 33-38.

Katz-Haas, R. (1998) User-centered design and web development. [Online] Available at:
http://www.stcsig.org/usability/topics/articles/ucd%20_web_devel.html [Accessed 24th
November 2012]

Kazman, R. Gunaratne, J. and Jerome, B. (2003). Why Can't Software Engineers and
HCI Practitioners Work Together?, Human-Computer Interaction Theory and Practice -
Part 1, pp. 504-508.

Kazman, R. and Bass, L. (2003). Special issue on bridging the process and practice
gaps between software engineering and human–computer interaction, Software
Process: Improvement and Practice, 8 (2), pp. 63–65.

Keinonen, T. (2008). User-centered design and fundamental need, Proceedings of the
5th Nordic Conference on Human-Computer interaction: Building Bridges, Lund,
Sweden, October 20-22, 2008), NordiCHI '08, vol. 358. ACM, New York, NY, pp. 211-
219.

Kelly, D. F. (2007). A Software Chasm: Software Engineering and Scientific Computing,
IEEE SOFTWARE, New York: IEEE Computer Society, 24 (6), pp 120-119.

Kelly, D. and Smith, S. (2009). 2nd CASCON Workshop on Software Engineering for
Science. In Proceedings of the 2009 Conference of the Center for Advanced Studies on
Collaborative Research, Martin, P. Kark, A.W. and Stewart, D. (Eds.). ACM, New York,
NY, USA, pp. 345-347.

Kensing, F. and Blomberg, J. (1998). Participatory Design: Issues and Concerns,
Comput. Supported Coop. Work 7, 3-4 (Jan. 1998), pp. 167-185.

Kerr, J. M. and Hunter, R. (1993). Inside RAD: How to Build a Fully-Functional System
in 90 Days or Less, New York: McGraw-Hill.

Killcoyne, S. and Boyle J. (2009). Managing Chaos: Lessons Learned Developing
Software in the Life Sciences, Computing in science & engineering, 11 (6), pp. 20-29.

Kirwan, B. and Ainsworth, L. K. (eds.), 1992. A Guide to Task Analysis. London: Taylor
& Francis, Ltd.

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., Emam, K. and

 262

Rosenberg, J. (2002). Preliminary guidelines for empirical research in software
engineering, IEEE Trans. Softw. Eng, pp. 721-734.

Kling, R., and McKim, G. (2000). Not just a matter of time: Field differences in the
shaping of electronic media in supporting scientific communication, Journal of the
American Society for Info. Science, 51(14), pp. 1306-1320.

Kruchten, P. (1998). The Rational Unified Process: An Introduction, 3rd ed.,
Wokingham: Addison-Wesley Professional.

Kubicki, S. and Halin, G. (2010). Usage-centered design of adaptable visualization
services - Application to cooperation support services system in the AEC sector,
Exploring Services Science.

Kujala, S. (2003). User involvement: a review of the benefits and challenges, Behaviour
& Information Technology, 22 (1), pp. 1-16.

Kuutti, K. (2001). Hunting for the lost user: From sources of errors to active actors and
beyond. Cultural usability seminar, University of Art and Design Helsinki.

Kyng, M. (1995). Making representations work. Communications of the ACM, 38(9),
pp.46-55.

Latour, B. and Woolgar, S. (1979). Laboratory life: The social construction of scientific
facts, London: SAGE.

Latour, B. (1987). Science in Action: How to Follow Scientists and Engineers Through
Society, Cambridge: Harvard University Press.

Latour, B. (1999). Pandora's hope: essays on the reality of science studies, Cambridge:
Harvard University Press.

Larman, C. and Basili, V. R. (2003). Iterative and Incremental Development: A Brief
History, IEEE Computer (IEEE Computer Society), 36 (6), pp 47–56.
doi:10.1109/MC.2003.1204375. ISSN 0018-9162.

Lazar, J., Feng, J. and Hochheiser H. (2010). Research methods in human-computer
interaction, Chichester, West Sussex, U.K.: Wiley.

LeCompte, M.D., and Goetz, J.P. (1982). Problems of reliability and validity in
educational research, Review of Educational Research, 52(2), pp. 31-60.

Lesser, E.L. and Storck, J. (2001). Communities of practice and organizational
performance. IBM Systems Journal, 40(4), pp.831-841.

Letondal C. and Mackay W. E. (2004). Participatory Programming and the Scope of
Mutual Responsibility: Balancing scientific, design and software commitment, in
Proceedings of PDC 2004 (Participatory Design Conference), July 27 -31, 2004 -
Toronto, Canada.

Letondal, C. (2005). ‘Participatory programming: developing programmable
bioinformatic tools for end-users’, in Lieberman, H., Paterno, F. and Wulf, V. (ed.) End

http://www.cpsr.org/prevsite/conferences/pdc2004/

 263

user development, Springer, pp. 207-242.

Letondal, C. (2006). Participatory Programming: Developing Programmable
Bioinformatics Tools for End-Users, In End User Development, Eds Lieberman, H.,
Fabio Paternò, F. and Wulf, V. pp. 206-242.

Liu, D., Xu, S. and Brockmeyer, M. (2008). Investigation on Academic Research
Software Development, 2008 International Conference on Computer Science and
Software Engineering, 2, pp. 626-630.

Losada, B., Urretavizcaya, M., López-Gil, J. M. and Fernández-Castro, I. (2012).
Combining InterMod agile methodology with usability engineering in a mobile
application development, Proceedings of the 13th International Conference on
Interacción Persona-Ordenador (INTERACCION '12), ACM, New York, NY, USA,
Article 39.

Macaulay, C., Sloan, D., Jiang, X., Forbes, P., Loynton, S., Swedlow, J. R. and Gregor,
P. (2009). Usability and User-Centered Design in Scientific Software Development,
IEEE Software, 26 (1), pp. 96-102.

Macmillan Publishers Limited, (2013). |Enterprise software, [Online] Available:
http://www.macmillandictionary.com/thesaurus/british/enterprise-software [Accessed
30th September 2012]

Maguire, M (2001). Context of use within usability activities, International Journal of
Human-Computer Studies, 55 (4), pp. 453-483.

Mao, J. and Vredenburg, K. (2001). User centred design methods in practice: A survey
of the state of the art, In 11th IBM centres for advanced studies conference.

Mao, J., and Vredenburg, K., Smith, P. W. and Carey, T. (2005). The state of user-
centered design practice. Communications. ACM 48(3) pp. 105-109.

Mayhew, D. J. (1996). Managing User Interface Design , InContext Enterprises
Incorporated.

Mayhew, D. J. (1998). The usability engineering lifecycle. In CHI 98 Conference
Summary on Human Factors in Computing Systems. ACM, pp. 127-128.

Mayhew, D. J. (1999). The Usability Engineering Lifecycle: A Practitioner’s Handbook
to User Interface Design, San Francisco: Morgan Kaufmann Publishers Inc.

Mayhew, D. J. (2008) User Experience Design: The Evolution of a Multi-Disciplinary
Approach, Journal of Usability Studies, 3(3), pp. 99-102.

McCann, T. and Clark, E. (2003). Grounded theory in nursing research: Part 2 -
Critique, Nurse Researcher, 11 (2), pp. 19-28.

McCarthy, J. and Wright, P. (2004). Technology as Experience. The MIT Press

McInerney, P. and Maurer, F. (2005). UCD in agile projects: dream team or odd
couple? Interactions, 12(6), p.19-23.

 264

McGrath, O. G. (2006). Balancing act: community and local requirements in an open
source development process. SIGUCCS Proceedings of the 34th annual ACM
SIGUCCS, pp. 240-244.

McNally, J. G., Karpova, T., Cooper, J. and Conchello J. A. (1999). Three-dimensional
imaging by deconvolution microscopy, Methods, 19(3), pp. 373–385.

Merkl, L. (2010). Biology, Computer Science Combine Efforts to Fight Cancer,
[Online], Available: http://www.uh.edu/newsevents/stories/2010articles/
July2010/07272010MontePetti CPRIT.php. [Accessed 11th September, 2010].

Metzker, E. and Offergeld, M. (2001). An Interdisciplinary Approach for Successfully
Integrating Human-Centered Design Methods into Development Processes Practiced by
Industrial Software Development Organizations. In Proceedings of the 8th IFIP
International Conference on Engineering for Human-Computer Interaction (EHCI '01),
Murray Reed Little and Laurence Nigay (Eds.). Springer-Verlag, London, UK, 19-34.

Mohammad, A. F. (2010). A New Perspective in Scientific Software Development. In
Innovations and Advances in Computer Sciences and Engineering Ed Editor: Sobh,
Tarek. Springer Netherlands. pp. 129-134.

Molich, R., and Nielsen, J. (1990). Improving a human-computer dialogue,
Communications of the ACM, 33(3), pp. 338-34

Mugridge, R. (2003). Test Driven Development and the Scientific Method, in
Proceedings of the Agile Development Conference (Salt Lake City, USA) ADC’03,
IEEE Computer Society Washington, DC, USA, pp. 47-52.

Myers, G. (1990). Writing Biology: Texts in the Social Construction of Scientific
Knowledge, Madison: University of Wisconsin Press.

Myers, B. A. (1998). A Brief History of Human Computer Interaction Technology, ACM
interactions, 5(2), pp. 44-54.

National Research Council. (2003). BIO2010 Transforming Undergraduate Education
for Future Research Biologists, Washington. The National Academies Press.

Nardi, B. A. (1996). Context and Consciousness: Activity Theory and Human -
Computer Interaction, Cambridge: MIT Press.

Naur, P. and Randell, B. (ed.) (1969). Software Engineering: Report of a conference
sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct. 1968,
Brussels: Scientific Affairs Division, NATO 231.

Newman, M. W. and Landay, J. A. (2000). Sitemaps, storyboards, and specifications: a
sketch of Web site design practice. In Proceedings of the 3rd conference on Designing
interactive systems: processes, practices, methods, and techniques (DIS '00), Boyarski,
D. and Kellogg W. A. (Eds.). ACM, New York, NY, USA.

Nielsen, J. (1990). Big paybacks from 'discount' usability engineering. IEEE Software,
7, 3, pp. 107-108.

 265

Nielsen, J. (1993). Usability Engineering. W. Weber, ed., Academic Press.

Nielsen, J. (1994a). Heuristic evaluation. In Nielsen, J., and Mack, R.L. (Eds.),
Usability Inspection Methods, John Wiley & Sons, New York, NY.

Nielsen, J. (1994b) Guerrilla HCI: Using Discount Usability Engineering to Penetrate
the Intimidation Barrier. [Online] Available at
http://www.useit.com/papers/guerrilla_hci.html [Accessed 1st September, 2012].

Nielsen, J. and Mack, R. L. (ed.) (1994). Usability Inspection Methods, New York:
Wiley.

Norman, D. A. (1981). A psychologist views human processing: Human errors and
other phenomena suggest processing mechanisms

Norman, D. A. (1986) User centered system design, Lawrence Erlbaum Associates,
Proceedings of the 7th international joint conference on Artificial intelligence, (2) pp.
1097-1101.

Norman, D. A. and Draper, S. W. (1986). User Centered System Design; New
Perspectives on Human-Computer Interaction. L. Erlbaum Assoc. Inc., Hillsdale, NJ,
USA.

Norman, D. A. (2004). Emotional Design: Why We Love (Or Hate) Everyday Things,
New York: Basic Books.

Norman, D. A. (2007). The Design of Future Things, The MIT Press.

Norman, D. A. (2010). Living with Complexity, The MIT Press.

Nuin, P. (2008). ‘How to improve scientific software?’ in The Blind Scientist, [Online],
Available: http://blindscientist.genedrift.org/2008/04/23/how-to-improve-scientific-
software/.

NSF. (2011). Cyberinfrastructure training, education, advancement, and mentoring for
our 21st century workforce program [Online] Available at:
http://www.nsf.gov/pubs/2011/nsf11515/nsf11515.htm [Accessed 17th April, 2011]

Oudshoorn, N. E. J. and Pinch, T. J. (2003). How users matter. The co-construction of
users and technology. MIT Press.

Chilana, P, K., Wobbrock, J, O. and J. (2010). Understanding usability practices in
complex domains. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems ACM,

Parnas, D. L (1999). Software Engineering Programs Are Not Computer Science
Programs. IEEE Software. 16(6), pp. 19-30.

Patton, J. (2002). Hitting the target: adding interaction design to agile software
development. Conference on Object Oriented Programming Systems, pp.1.

http://www.useit.com/jakob/inspectbook.html
http://www.useit.com/papers/guerrilla_hci.html
http://blindscientist.genedrift.org/2008/04/23/how-to-improve-scientific-software/
http://blindscientist.genedrift.org/2008/04/23/how-to-improve-scientific-software/

 266

Patton, J. (2003). Improving On Agility: Adding Usage-Centered Design to a Typical
Agile Software Development [Online] Available at:
http://www.agileproductdesign.com/writing/index.html [Accessed 13th May 2011].

Paulson, J. W., Succi G. and Eberlein, A. (2004). An empirical study of open-source and
closed-source software products, Software Engineering, IEEE Transactions, pp. 246-
256.

Pavelin, K., Cham, J. A., de Matos, P., Brooksbank, C., Cameron, G., et al. (2012).
Bioinformatics Meets User-Centred Design: A Perspective, PLoS Comput Biol, 8(7).

Perry, D., Porter, A. and Votta, L., (2000). Empirical Studies of Software Engineering:
A Roadmap. Proceedings of the Conference on the Future of Software Engineering.
(ed.) ACM, pp. 345-356.

Petersen, M. G., Iversen, O. S., Krogh, P. G., and Ludvigsen, M. (2004). Aesthetic
Interaction: a pragmatist's aesthetics of interactive systems. In Proceedings of the 5th
conference on Designing interactive systems: processes, practices, methods, and
techniques, pp. 269-276.

Pevzner, P. A. (2004). Educating biologists in the 21st century: bioinformatics scientists
versus bioinformatics technicians. Bioinformatics, pp. 2159.161

Pevzner, P. and Shamir, R. (2009). Computing has changed biology - biology education
must catch up. Science, 325(5940), pp.541-542.

Phillips, C. H. E and Kemp, E. A. (1996). Human- computer interaction in software
engineering courses: A discussion summary. Software Engineering: Education and
Practice (SE:E&P'96), Dunedin, 24-27 January 1996, pp. 520- 521.

Pitt-Francis, J. O Bernabeu, M. Cooper, J. Garny, A. Momtahan, L. Osborne, J.
Pathmanathan, P. Rodriguez, B. Whiteley, J. P. and Gavaghan, D. J. (2008). Chaste:
using agile programming techniques to develop computational biology software. Phil.
Trans. R. Soc. 366(1878), pp. 3111-3136

Poppendieck, M. and Poppendieck, T. (2003). Lean Software Development: An Agile
Toolkit, Wokingham: Addison-Wesley Professional.

Potts, C., (1995). Using schematic scenarios to understand user needs. In: ACM
Symposium on Designing Interactive Systems, ACM Press, pp. 247-256.

Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland, S. and Carey, T. (1994). Human-
Computer Interaction. Addison-Wesley: Wokingham, UK.

Preece, J., Rogers, Y. and Sharp, H. (2002). Interaction design, Wiley & Sons.

Pressman, R. S. (2005). Software engineering: a practitioner's approach, 6th ed., New
York: McGraw-Hill Higher Education

Procter‚ R., Borgman‚ C., Bowker‚ G., Jirotka, M.‚ Olsen‚ G., Pancake, C.‚ Rodden, T.
and Schraefel, M. C. (2006). Usability Research Challenges for Cyberinfrastructure and

http://www.agileproductdesign.com/writing/index.html

 267

Tools, Proceedings of ACM CHI 2006 Conference on Human Factors in Computing
Systems‚ Workshops‚ (2), pp. 1675−1678.

Prowell, S. J., Trammell C. J., Linger R. C. and Poore J. H. (1999). Cleanroom Software
Engineering: Technology and Process, Wokingham: Addison-Wesley.

Pyla, P. S., Pérez-Quiñones, M. A., Arthur, J. D. and Hartson, H. R. (2004). What we
should teach, but don't: Proposal for a cross pollinated HCI-SE curriculum. In Proc.
Frontiers in Education (FIE) Conference, S1H17-22.

Pyla, P. S., Pérez-Quiñones, M. A., Arthur, J. D. and Hartson, H. R. (2005). A. Seffah
(eds.), Human-Centered Software Engineering – Integrating Usability in the
Development Process, pp. 245–265.

Radle, K. and Young, S. (2001). Partnering Usability with Development: How Three
Organizations Succeeded. IEEE Software, 18 (1), pp. 38-45.

Randall, D., Rouncefield, M. and Hughes, J. A. (1995). Chalk and cheese: BPR and
ethnomethodologically informed ethnography in CSCW. In Proceedings of the fourth
conference on European Conference on Computer-Supported Cooperative Work
(ECSCW'95), Hans Marmolin, Yngve Sundblad, and Kjeld Schmidt (Eds.). Kluwer
Academic Publishers.

Rasmussen, J. (1986). Information Processing and Human-Machine Interaction: An
Approach to Cognitive Engineering, Elsevier Science Inc.

Reed, R. (2005). Software Engineering: The Past, the Future, and Your TCSE. IEEE
Software. 22(4), pp106-107.

Reiterer, H. (2000). Tools for Working with Guidelines in Different User Interface
Design Approaches. Annual Workshop of the Special Interest Group on Tools for
Working with Guidelines, Biarritz, France, 2000.

Rideout, T., Uyeda, K. and Williams, E. (1989). Evolving the Software Usability
Engineering Process at Hewlett-Packard. 1989 IEEE.

Roberts, D. (2005). Coping with Complexity. In A. Seffah, J. Gulliksen, and M. C.
Desmarais (eds.), Human-centered software engineering: Integrating usability in the
development process. Springer, Dordrecht, Netherlands, 2005, pp. 201–217.

Robinson, M. and Bannon, L. (1991). Questioning representations, in Proceedings of
the second conference on European Conference on Computer-Supported Cooperative
Work, Kluwer Academic Publishers, pp. 233.

Rockwell, C. (1999). Customer connection creates a winning product: building success
with contextual techniques. Interactions, 6, (1), pp. 50-57.

Rolland, C., Achour, C. B., Cauvet, C., Ralyté, J., Sutcliffe, A., Maiden, N., and
Heymans, P. (1998). A proposal for a scenario classification framework. Requirements
Engineering, 3(1), 23-47.

Rosenbaum S, Rohn J, Humburg J, Bloomer S, Dye K, Nielsen J, Rinehart D & Wixon

 268

D (1999). What Makes Strategic Usability Fail? Lessons Learned from the Field. A
panel. CHI 99 Extended Abstracts, Pittsburgh, USA, ACM, New York: 93-94.

Rosenbaum, S., Rohn, J. and Humburg, J. (2000). A toolkit for strategic usability:
Results from workshops, panels, and surveys. Conference on Human Factors in
Computer Systems.

Rosenbaum, S., Chauncey, E., Jokela, W., Rohn, T., Smith, A. and Vredenburg, K.
(2002). Usability in Practice: User Experience Lifecycle – Evolution not Revolution,
Conference on Computer Human Interaction,

Royce, W. W. (1970). Managing the development of large software systems:Concepts
and techniques, in WESCON Technical Papers. Reprinted in Proceedings of the Ninth
International Conference on Software Engineering, 1987, pp. 328–338.

Sanders, R. (2008). The Development and Use of Scientific Software. [Online] Available
at:http://catspaw.its.queensu.ca/jspui/bitstream/1974/1188/1/Sanders_Rebecca_J_20080
4 _MSc.pdf [Accessed 12th September, 2010]

Sanders, R. and Kelly, D. (2008). Dealing with risk in scientific software development,
IEEE Software, 25 (4), pp.21–28, July/August 2008.

Schaffer, E. 2004. Institutionalization of usability: a step-by-step guide. Addison-
Wesley. Pearson Education, Inc. 2004. Boston. ISBN-0-321-17934-X.

Schmidt, K. (2000). The Critical Role of Workplace Studies in CSCW, in Luff, P.,
Hindmarsh, J. and Heath C. (Eds.), Workplace Studies – Recovering Work Practice and
Informing System Design, Cambridge: Cambridge University Press.

Schön, D. A. (1973). Beyond the Stable State, New York: Norton.

Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think In Action,
Basic Books,

Schraefel, M. C., Hughes, G. V., Hugo R. M., Smith, G., Payne, T. R. and Frey, J.
(2004). Breaking the book: translating the chemistry lab book into a pervasive
computing lab environment. In Proceedings of the SIGCHI conference on Human
factors in computing systems. ACM, New York, NY, USA, pp. 25-32.

Science. (2011). Challenges and Opportunities, Introduction to special issue, Science,
331 (6018), pp.692-693. [Online] Available at: https://www.sciencemag.org/content/
331/6018/692.full.pdf [Accessed 23rd May, 2012].

Seaman, C. (1999) ‘Qualitative Methods in Empirical Studies of Software Engineering’,
IEEE Transactions on Software Engineering, 25(4), July/August, pp. 557-572.

Seffah, A. and Metzker, E. (2004). ‘The Obstacles and Myths of Usability and Software
Engineering’, in Communications of the ACM, New York: ACM, 47 (12), pp.71-76.

Seffah, A., Desmarais, M. C., and Metzker, E. (2005). ‘HCI, usability and software
engineering integration: present and future’, in Seffah, A., Gulliksen, J., and Desmarais,
M. C. (ed.) Human-centered software engineering: Integrating usability in the

 269

development process, Dordrecht: Springer, pp. 35-57.

Seffah, A. and Metzker, E. (2008). Adoption-Centric Usability Engineering: Systematic
Deployment, Assessment and Improvement of Usability Methods in Software
Engineering (1 ed.). Springer Publishing Company.

Seffah, A., Vanderdonckt, J. and Desmarais, M. C. (2009). Human-Centered Software
Engineering Software Engineering Models, Patterns and Architectures for HCI.

Seffah, A., Vanderdonckt, J. and Desmarais, M. C. (2009). ‘Human-Centered Software
Engineering: Software Engineering Architectures, Patterns, and models for Human
Computer Interaction’, in Seffah, A., Vanderdonckt, J. and Desmarais, M. C. (ed.).

Seffah, A. and Metzker, E. (2009). Adoption-centric Usability Engineering, Systematic
Deployment, Assessment and Improvement of Usability Methods in Software
Engineering, Springer 2009.

Segal, J. (2001). Organisational learning and software process improvement: a case
study. In: Althoff, Klaus-Dieter; Feldmann, Raimund L. and Muller, Wolfgang eds.
Advances in learning software organizations: Third international workshop, LSO 2001.
Lecture notes in Computer Science, XI (2176). Springer, pp. 68–82.

Segal, J. (2004). The Nature of evidence in empirical software engineering. In Software
Technology and Engineering Practice Eleventh Annual International Workshop on,
pp.40-47.

Segal, J. (2005). When software engineers met research scientists: a case study,
Empirical Software Engineering, 10 (4), pp. 517–536.

Segal, J. (2007). Some problems of professional end user developers. Visual Languages
and HumanCentric Computing 2007 VLHCC 2007 IEEE Symposium on, pp.111-118.

Segal, J. (2008). Models of Scientific Software Development, in Proceedings of the 2008
Workshop on Software Engineering in Computational Science and Engineering,
Leipzig: SECSE.

Segal, J. and Morris, C. (2008). Developing scientific software, IEEE Software, 25, (4),
pp. 18- 20.

Segal, J. (2009). Some challenges facing software engineers developing software for
scientists, in Proceedings of the 2009 ICSE Workshop on Software Engineering For
Computational Science and Engineering (May 23 - 23, 2009), SECSE, Washington:
IEEE Computer Society, pp. 9-14.

Segal, J. A. and Morris, C. (2011). Developing software for a scientific community:
some challenges and solutions, in Leng, J. and Sharrock, W. (eds), Handbook of
Research on Computational Science and Engineering: Theory and Practice, USA: IGI
Global, pp. 177–196.

Seidel, J, V., (1998). Qualitative Data Analysis, www.qualisresearch.com (originally
published as Qualitative Data Analysis, in The Ethnograph v5.0: A Users Guide,
Appendix E, 1998, Colorado Springs, Colorado: Qualis Research

 270

Severin, A. J. (2011). Dealing with data: training new scientists. Science, 331(6024),
pp.1516.

Shankar, K. (2004). Recordkeeping in the production of scientific knowledge: An
ethnographic study. Archival Science, 4, pp. 367–382.

Shankar, K. (2006). Recordkeeping in the production of scientific knowledge: An
ethnographic study, Archival Science, 2006, 4, pp. 367-382.

Sharp, H., Woodman, M. and Hovenden, F. (2004). Tensions in the adoption and
evolution of software quality management systems: a discourse analytic approach,
International Journal of Human Computer Studies, 61(2), pp. 219-236.

Sharp, H. Rogers, Y. and Preece, J. (2007). Interaction Design: Beyond Human-
Computer Interaction. Second Edition. John Wiley.

Shneiderman, B. (1987). Designing the user interface: Strategies for effective human-
computer interaction. Reading, MA: Addison-Wesley.

Shneiderman, B. (2002). HCI theory is like the public library, Posting in CHIplace
online discussion forum, Oct 15th 2002, [Online], Available: www.chiplace.org
[Accessed 12th September, 2010].

Shneiderman, B. (2008). Science 2.0. Science, 319(5868), pp.1349-1350.

Siegel, D. and Dray, S. (2003). Living on the edges: user-centered design and the
dynamics of specialization in organizations. Interactions, (5). ACM.

Siegel, D. and Dray, S. (2005). Avoiding the next schism: ethnography and usability,
interactions, 12(2), pp. 58-61.

Sletholt, M. T., Hannay, J. E., Pfahl, D., Benestad, H. C. and Langtangen, H. P. (2011).
A literature review of agile practices and their effects in scientific software development,
in Proceedings of the 4th International Workshop on Software Engineering for
Computational Science and Engineering (SECSE '11), ACM, New York, NY, USA, pp.
1-9.

Sletholt, M. T., Hannay, J. E., Pfahl, D., Langtangen, H. P. (2012). What Do We Know
about Scientific Software Development's Agile Practices? Computing in Science &
Engineering, 14(2), pp.24-37.

Sloan, D., Macaulay, C., Forbes, P. and Loynton, S. (2009). User research in a scientific
software development project, in Proceedings of the 23rd British HCI Group Annual
Conference on People and Computers: Celebrating People and Technology (BCS-HCI
'09), British Computer Society, Swinton, UK, pp. 423-429.

Smith, E. (2008). Using Secondary Data in Educational and Social Research, Open
University Press.

Software Sustainability Institute. (2011). The Software Sustainability Institute [Online]
Available at: http://www.software.ac.uk/ [Accessed 27th April, 2011]

 271

Spencer, R. (2000). The streamlined cognitive walkthrough method, working around
social constraints encountered in a software development company. In Proceedings of
the SIGCHI conference on Human Factors in Computing Systems. ACM, pp. 353-359.

Spinuzzi, C. (2003). Tracing genres through organizations: A sociocultural approach to
information design. MIT Press.

Star, S. L. and Ruhleder, K. (1996). Steps Toward an Ecology of Infrastructure: Design
and Access for Large Information Spaces J. Yates and J. Van Maanen, eds.Information
Systems Research, 7(1), pp.111-134.

Stern, P. N. (2007). On solid ground: essential properties for growing grounded theory,
In: Bryant A, Charmaz K (Eds) The Sage Handbook of Grounded Theory. Sage
Publications, London, pp. 114-126.

Stiemerling, O. Kahler, H. and Wulf, V. (1997). How to make software softer: Designing
tailorable applications. Designing Interactive Systems, pp. 365–376.

Suchman, L. A. (1987). Plans and Situated Actions: the Problem of Human-Machine
Communication, Cambridge: Cambridge University Press.

Sutcliffe, A. G. (2011). Requirements Engineering: from an HCI Perspective. In:
Soegaard, Mads and Dam, Rikke Friis (eds.). "Encyclopedia of Human-Computer
Interaction". Aarhus, Denmark: The Interaction Design Foundation. [Online] Available
at http://www.interaction-design.org/encyclopedia/requirements_engineering.html
[Accessed 25th August, 2012]

Swedlow, J. R and Eliceiri, K. W. (2009). Open source bioimage informatics for cell
biology, Trends Cell Biol., 19 (11), pp. 656-660.

Tarpin-Bernard, F., Samaan, K. and David, B. (2009). ‘Achieving Usability of
Adaptable Software: The Amf-Based Approach Human-Centered Software
Engineering’, in Seffah, A., Vanderdonckt, J. and Desmarais, M. C., (eds.), Springer
London, Volume II, pp. 277-297.

Taylor, A. S. and Swan, L. (2005). Artful systems in the home. Conference on Human
Factors and Computing systems, pp. 641-650.

Thew, S., Sutcliffe, A., Procter, R., De Bruijn, O., McNaught, J., Venters, C. C. and
Buchan I. (2009). Requirements engineering for e-science: experiences in epidemiology,
IEEE Software, 26 (1), pp. 80- 87.

Thimbley, H. (2000). On discerning users, In how to make user centred design usable,
Gulliksen, J., Lantz, A. and Bovie, I. Eds., Stockholm: Royal Institute of Technology
Stockholm – Centre for User Orientated Design pp. 63-85.

Treviño, A. J. (2003). Goffman’s Legacy, Lanham, Md: Rowman & Littlefield
Publishers.

UPA (2010). What is UCD [Online] Available at:
http://www.upassoc.org/usability_resources/about_usability/ what_is_ucd.html.

http://www.interaction-design.org/encyclopedia/requirements_engineering.html

 272

[Accessed 16th October, 2010].

Venturi, G., Troost, J. and Jokela, T. (2006). People, Organizations, and Processes: An
Inquiry into the Adoption of User-Centered Design in Industry. International Journal of
Human- Computer Interaction 21, pp. 219–238.

Vessey, I. (1997). Problems versus solutions: the role of the application domain in
software. In Papers presented at the seventh workshop on Empirical studies of
programmers, S. Wiedenbeck and J. Scholtz (Eds.). ACM, New York, NY, USA, pp.
233-240.

Vredenburg, K., and Butler, M. B., (1996). Current Practice and Future Directions in
User-Centered Design. Usability Professionals’ Association Fifth Annual Conference,
Copper Mountain.

Vredenburg, K., Mao, J. Y., Smith, P. W. and Carey, T. (2002). A survey of user-centered
design practice, Proceedings of the SIGCHI conference on Human factors in computing
systems: Changing our world, changing ourselves (CHI '02), ACM, New York, NY,
USA, pp. 471-478.

Wagner, F. R Schmuki, R. and Wolstenholme, P. (2006). Modeling Software with Finite
State Machines, Auerbach Publications.

Warr‚ A., de la Flor‚ G., Jirotka, M. and Lloyd, S. (2007). Usability in e−Science: The
eDiaMoND Case Study. CHI 2007‚ San Jose‚ California.

Weinberg, G. M. (1971). The Psychology of Computer Programming, Van Nostrand
Reinhold Company.

Wellcome Trust. (2010). Wellcome Trust Annual Report and Financial Statements,
[Online] Available at:
http://www.wellcome.ac.uk/stellent/groups/corporatesite/@msh_publishing_group/
documents/web_document/wtx063982.pdf [Accessed 25th September, 2010].

Wenger, E. (2007). Communities of practice: A brief introduction, Communities of
practice, [Online], Available at: http://www.ewenger.com/theory/. [Accessed 13th
September, 2010].

Wenger, E., White, N. and Smith, J. D. (2009). Digital Habitats: stewarding technology
for communities, Portland: CPsquare.

Weyuker, E. J. (2011). Empirical Software Engineering Research - The Good, The Bad,
The Ugly, Empirical Software Engineering and Measurement (ESEM), 2011
International Symposium, pp. 1-9.

Whiteside, J., Bennett, J., and Holtzblatt, K. (1988). Usability engineering: Our
experience and evolution. In Helander, M. (Ed.), Handbook of Human-Computer
Interaction, pp. 791-817.

Wilson, G. (2006). Software Carpentry: Getting Scientists to Write Better Code by
Making Them More Productive, Computing in Science and Engineering, 8 (6), pp. 66-
69.

 273

Winograd, T. (1986). Understanding computers and cognition: a new foundation for
design, Wokingham: Addison-Wesley.

Winograd, T. and Flores, F. (1986) Understanding computers and cognition. Norwood,
N.J.: Ablex Pub. Corp.

Winograd, T. (1996). Bringing Design to Software, ACM Press.

Wixon, D. (2011). The unfulfilled promise of usability engineering. Journal of Usability
Studies, 6(4), pp. 198-203.

Wood, W. A. and Kleb, W. L. (2003). Exploring XP for Scientific Research, IEEE
Software, 20 (3), pp. 30-36.

Wright, P. and McCarthy, J. (2008). Empathy and experience in HCI, Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI '08), ACM, New
York, NY, USA, pp. 637-646.

Wright, P. and McCarthy, J. (2010). Experience-Centered Design: Designers, Users,
and Communities in Dialogue, Synthesis Lectures on Human Centered Informatics,
3(1), pp.1-123.

Wyeth, P. (2006). Ethnography in the kindergarten: examining children's play
experiences. In Proceedings of the SIGCHI conference on Human Factors in computing
systems (CHI '06), Grinter, R., Rodden, T. and Aoki, P. Ed Cutrell, Robin Jeffries, and
Gary Olson (Eds.). ACM, New York, NY, USA, pp. 1225-1228.

Xie, T., Thummalapenta, S., Lo, D. and Liu, C. (2009). Data Mining for Software
Engineering. IEEE Computer, 42(8), pp. 35-42.

Yourdon, E. (2007). Celebrating Peoplewareʼs 20th Anniversary. IEEE Software,
24(5), pp.96-100.

Zimmerman, J., Forlizzi, J., and Evenson, S. (2007). Research through design as a
method for interaction design research in HCI. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, pp. 493-502.

