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Abstract 

Human African Trypanosomiasis (HAT), caused by Trypanosoma brucei 

subspecies, is one of the most neglected diseases: available treatments are old, toxic, 

and difficult to administer; they are not efficacious against all parasite species or disease 

stages and drug resistance is an increasing problem.  

Protein kinases are well validated drug targets for a variety of human diseases 

with many inhibitors under development or in the clinic. The T. brucei kinome has been 

annotated and there is evidence of essentiality of some of the members of this family. 

This thesis aims at evaluating the essentiality of Glycogen Synthase Kinase 3 (TbGSK3 

short; Tb927.10.13780) and chemically validating it as a potential drug target in T. 

brucei. 

TbGSK3 recombinant protein was biochemically characterised and screened 

against a focussed kinase library using the KinaseGlo assay method. Further repurchase 

and synthesis of novel compounds yielded 10 validated chemical series against TbGSK3 

short. In particular two series showed anti-proliferative activity against the parasite. 

GSK3 07 series was further investigated by the Drug Discovery Unit with a phenotypic 

approach for its off-target effects, and GSK3 09 series was further validated to act “on 

target”.  The latter series showed a good correlation between biochemical potency and 

cellular efficacy. Using a combination of chemical and genetic approaches TbGSK3 

short was demonstrated to be specifically targeted by a GSK3 09 tool molecule in T. 

brucei lysates. Furthermore, the in vitro efficacy in trypanosomes could be reverted by 

target over-expression. Further validation of its activity “on target” was given by its 

ability to modulate the cell toxicity caused by TbGSK3 short over-expression.  

The genetic validation of TbGSK3 short by generation of conditional null 

mutants was not possible due to the tight regulation of the protein levels and the cell 

toxicity associated with protein over-expression.  

The validated TbGSK3 short chemical tool could be used to elucidate the 

functions of TbGSK3 short in T. brucei, identify its substrates and increase the chance 

to solve the crystal structure of this enzyme for the design of novel inhibitors with 

different mechanism of inhibition and/or increased selectivity. 
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Chapter 1 Introduction 



 
 

Figure 1.1 Classification of the endemic countries for HAT according to the 

reported cases in 2009  

The dark line separates the Western endemic countries for T. b. gambiense from the 

Eastern endemic countries for T. b. rhodesiense (figure adapted from Simarro et al., 

2011). 

 

Figure 1.2 Comparison between reported number of cases of T. b. gambiense and 

screen of the population  

Number of cases are reported as green columns and the population screened as blue 

circles over the period 1939–2004 in Africa (Figure from Brun et al., 2010). 
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1.1 Human African trypanosomiasis 

Human African trypanosomiasis (HAT, or also known as sleeping sickness) is 

one of the most neglected parasitic diseases. If untreated, this disease is invariably 

lethal. Endemic in Sub-Saharan Africa, it puts at risk the lives of approximately 70 

million of people distributed over a territory that covers 36 countries (Simarro et al., 

2010). It is caused by infection with the unicellular parasite Trypanosoma brucei (T. 

brucei or T.b.) and transmitted by the bite of tse-tse fly of the genus Glossina.  

There are three sub-species of T. brucei causing Trypanosomiasis in humans and 

animals: T. b. gambiense, which causes the human chronic form of the disease in West 

and Central Africa and represents 95% of the cases; T. b. rhodesiense, which is 

responsible for the human acute form in East Africa in the remaining 5% of the cases; 

and T. b. brucei, which infects primarily cattle causing the animal form of the disease, 

called Nagana (Brun et al., 2010) (Figure 1.1). 

1.1.1 Epidemiology and distribution 

Human African Trypanosomiasis reached an estimated 800,000 deaths between 

1896 and 1906; between 1920 and 1940 there was a second epidemic, but at that time 

the colonial control program almost achieved the elimination of the disease by active 

screening and treatment of the population. After independence from colonialism, the 

political instability associated with wars and the lack of surveillance under the local 

health-systems caused the spread of a new epidemic in 1990 (Brun et al., 2010). The 

correlation between active control of the disease and reduction of number of cases is 

well established, as well as the reappearance when the surveillance is reduced (Brun et 

al., 2010) (Figure 1.2). 
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Figure 1.3 Number of cases reported of T. b. gambiense and T. b. rhodesiense 

in the period 2000 – 2009 (Figure adapted from Simarro et al., 2010).  
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Figure 1.4 Drug treatments for the second stage of T. b. gambiense infection 

in the period 2001-2010 NECT-EML: introduction of the nifurtimox-

eflornithine combination therapy (NECT) in WHO list of the essential medicines 

(EML) (Figure adapted from Simarro et al., 2012)  
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In 1997 a resolution from the World Health Organization (WHO) advocated 

interventions for HAT, increased the funding and the control activities, including active 

screen of the population and access to treatment tools, which resulted in a reported 

number of cases below 10,000 in 2009 (Simarro et al., 2010) (Figure 1.3). Despite the 

efforts made to compile an atlas of HAT, which associates foci to number of cases, it is 

likely that at least two thirds of the cases are not reported. HAT is endemic in 36 

African countries, but in 2009, nineteen disease-endemic countries reported no cases 

(Simarro et al., 2010). The Central African Republic and the Democratic Republic of 

the Congo are the most affected countries, reporting more than 1,000 cases annually; 

Chad more than 500 cases; and Angola, Sudan and Uganda more than 100 cases. The 

remaining eleven countries have reported less than 100 cases (Simarro et al., 2010) 

(Figure 1.1). The number of cases reported annually is only a fraction of the real 

number of infected people and the WHO estimate of the number of cases in 2006 was 

between 50,000 -70,000 (WHO, 2010).  

HAT is considered a neglected disease because it affects poor people living in 

rural areas in Sub-Saharan Africa. Furthermore, the drugs available to cure it are toxic, 

difficult to administer in poor settings and inefficacious for all forms and stages of the 

disease. Also resistance in the field is becoming an increasing problem, making the 

already poor treatments available even less efficacious (Fairlamb, 2003). Yet, there is 

very little economic incentive in developing new drugs as the disease affects 

marginalised people with very little political voice. This creates a very vicious cycle 

between poverty and disease aggravated by the fact that the animal form of the disease 

limits the availability of meat and milk and reduces the income of these already poor 

households. The FAO (Food and Agriculture Organization) estimates the annual loss in 

income associated to HAT to be around US$ 1.5 billion (WHO, 2010). 
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Although the numbers of cases have reduced in the recent years due to the joint 

effort of the WHO, non-governmental organizations (NGOs) such as Médecins Sans 

Frontières (MSF) and local governments together with the introduction of a new 

combined therapy (NECT) as first line treatment included in the WHO list of Essential 

Medicines (Figure 1.4), this disease still threatens the economic and human 

development of a large part of the African continent (Simarro et al., 2012). Reducing 

the attention and focus now could cause as in the past an increase in number of cases; 

on the other hand the reduction in number of cases opens the opportunity for the 

elimination of the disease, considering also that two new molecules have recently 

reached clinical development (section 1.2.3). However, the path to the clinical use of 

new molecules is extremely hard and characterised by high rate of failure (Brown and 

Superti-Furga et al., 2003); therefore it will be a mistake at this time to stop the 

development of new drugs for HAT. 

1.1.2 Trypanosome cell cycle in vector and in human host 

Trypanosoma brucei belongs to the order of Kinetoplastida. Species of this order 

are unicellular flagellated protozoa, characterised by a single large mitochondrion, 

which contains compacted DNA called the “kinetoplast” (Stuart et al., 2008). 

Trypanosomes are transmitted by the bite of flies of the genus Glossina, where both 

male and female flies are obligate blood-feeders and can transmit the disease. Around 

33 species of tse tse flies exist that can be sub-divided in three groups (Morsitans, 

Palpalis and Fusca) according to the habitat in which they live (savannah, river and 

forest) (Gooding and Krafsur, 2005). Climate and demographic changes have caused a 

redistribution of the vectors with consequent shift of the foci of the disease from 

savannah to forest areas and in some cases foci have been found in populated urban 

centres (Malvy and Chappuis, 2011).  



 
 

 

Figure 1.5 Life cycle of African trypanosome in the vector and in the human host 

(Figure adapted from Vickerman, 1985 and Barrett et al., 2007; pictures from WHO 

website, www.who.int). 
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The two major changes between the mammalian and the insect developmental 

cycle of African trypanosomes are at the level of mitochondrion and the surface 

membrane (Figure 1.5). In mammals the trypanosomes rely on glycolysis for ATP 

production because of the availability of glucose in the host fluids and are coated with 

variant surface glycoproteins (VSG) that protect the parasite from the host immune 

system by antigenic variation (Vickerman, 1985; Pays, 2005; Horn and McCulloch, 

2010). Only one VSG gene is expressed at a time from among 10-20 telomeric 

expression sites, in addition to around 1000 silent VSGs and VSG pseudogenes in 

subtelomeric regions (Horn and McCulloch, 2010). This remarkable capacity for 

antigenic variation makes the development of a vaccine for HAT difficult, relying 

exclusively on control activities and chemotherapeutics for surveillance of the disease. 

During a blood meal the fly deposits infective metacyclic trypanosomes in the 

dermal connective tissue, where they divide to form a chancre, and then move to the 

lymph nodes and into the bloodstream. Parasites can then multiply by mitosis as slender 

trypomastigotes. The parasitemia fluctuates according to the host immune response 

directed against the VSG on the plasma membrane of trypanosome, with increases in 

IgG and IgM and reduction in parasite numbers till the antigenic variation makes the 

immune response inadequate (Vickerman, 1985, Paulnock and Freeman, 2010). As 

parasite numbers increase, a parasite-derived soluble factor, stumpy derived factor (SIF) 

promotes cell cycle arrest in G0/G1 and generation of stumpy forms (Fenn and 

Matthews, 2007). The non-dividing stumpy forms are taken-up by the flies during the 

blood meal and they continue their life cycle in the vector (Vickerman, 1985).  

In the midgut of the vector the stumpy transforms into an elongated parasite, the 

proliferative procyclic form (Vickerman, 1985). In vitro, the transition from stumpy to 

procyclic can be obtained by a reduction in temperature and exposure to citrate/cis-

aconitate, both compatible with a drop in temperature during the night when the fly 



 

Figure 1.6 Trypanosome cell architecture 

(Figure from ILRI website (International Livestock Research Institute), 

www.ilri.org) 
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tends to feed and with the citrate concentration in the fly midgut (Fenn and Matthews, 

2007).  A family of transporters called PAD (proteins associated with differentiation), 

expressed on the surface of the stumpy form, is required to sense the citrate/cis-

aconitate signal (Dean et al., 2009). Once in the vector the insect form of the parasite 

exchanges the variable antigen coat for procyclins and relies upon proline metabolism 

and oxidative phosphorylation as principal sources of energy (Fenn and Matthews, 

2007; Vickerman, 1985). The differentiation of the insect form of the parasite into an 

infective form takes between 3 and 5 weeks, during which the parasites undergo 

complex steps of differentiation and migrate to the salivary glands. Once in the salivary 

glands the procyclics transform into epimastigotes, which are characterised by a 

prenuclear kinetoplast. Finally, epimastigotes develop into the infective metacyclic 

forms, which are injected in the host during the blood meal. The metacyclic forms 

regain some of the characteristics of the forms infecting humans with a reduction in size 

of the mitochondrion and the re-appeareance of variable antigen coat (Vickerman, 1985) 

(Figure 1.5). 

 

1.1.3 Trypanosome cell architecture 

The trypanosome cell has an elongated and polarized form (Figure 1.6) 

(Matthews, 2005). During the life cycle the morphology of the cells changes with 

respect to the position of the flagellum, nucleus and kinetoplast, size of mitochondrion, 

efficiency of endocytosis, and protein expression of the parasite coat. In the slender 

trypomastigote and stumpy form the kinetoplast is positioned at the posterior end of the 

parasite and is connected through the mitochondrial membrane to the basal body of the 

flagellum. At the posterior end is also located the flagellar pocket that is the only site of 

exo- and endocytosis. The antigenic variation, occurring in the mammalian form of the 

parasite, requires that the full VSG coat is renewed every 12 mins in order to assure 
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evasion of the immune response (Overath and Englster, 2004). In the bloodstream 

trypomastigote the mitochondrion is an elongated organelle positioned all long the cell 

body from the posterior to the anterior end. The absence of an active oxidative 

respiration in bloodstream forms explains the lack of internal cristae. The mobility of 

trypanosomes depends upon a single flagellum that is anchored to the basal body at the 

posterior end of the cell and is attached to the cell body along its length. The flagellum 

has a typical “9+2” microtubule axoneme, and is connected to the cell through the 

paraflagellar rod (PFR) and a set of four microtubules that constitute the flagellum 

attachment zone (FAZ) (Vaughan and Gull, 2003). During proliferation, the new 

flagellum is replicated beside the old one, starting from the duplication of the basal 

body and kinetoplast. Once the duplication of the new flagellum is completed the 

separation starts from the anterior tip. The process of duplication and separation 

requires coordination of the replication and regulation of positioning of single 

organelles (flagellar pocket, flagellum, mitochondrion, kinetoplast and nucleus). The 

major changes in the insect procyclic and epimastigote cells is the positioning of the 

kinetoplast to a more anterior position that results in a progressively longer anterior 

flagellum that might help attachment to the salivary gland; the replacement of the VSG 

coat with the procyclin coat;  the increase of mitochondrial activity and the reduction of 

the endocytic rate (Matthews, 2005). 

 

1.1.4 Symptoms and diagnosis 

After infection the disease evolves in two different stages. The initial 

haemolymphatic stage, when the parasite is present in the bloodstream and lymphatic 

system, is characterised by generic symptoms: fever, headache, lymphadenopathies, and 

oedema and in some cases splenomegaly or hepatomegaly (Malvy and Chappuis, 2011). 

The disease progresses to the late meningo-encephalitic stage when the parasites 
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penetrate the central nervous system (CNS). The late stage of the disease is 

characterised by far more severe symptoms: disturbed sleep patterns, confusion, tremor, 

general motor weakness, hemiparesis, abnormal movements and neuro-psychiatric 

disorders. In the terminal phase of the disease the patient is in an unconscious state and 

if untreated the disease usually results in death (Malvy and Chappuis, 2011). The 

progression of the disease caused by T. b. gambiense is chronic and takes on average 

three years. In contrast T. b. rhodesiense causes an acute form of the disease that 

progress rapidly to the late stage in weeks or months (Brun et al., 2010). The diagnostic 

test available for T. b. gambiense is the card agglutination test (CATT) (Magnus et al., 

1978), a serological test with 87-98% sensitivity and 93-95% specificity (Brun et al., 

2010). A positive test has to be corroborated by a parasitological confirmation of the 

presence of the trypanosomes in lymph node aspirate and blood. The CATT test is 

sensitive only against T. b. gambiense and there are no available serological tests for T. 

b. rhodesiense. Thus, the diagnosis relies on the clinical symptoms and on the 

parasitological confirmation, which is easier for T. b. rhodesiense because of the higher 

number of circulating parasites (Brun et al., 2010; Malvy and Chappuis, 2011). 

Because treatment differs between stages of disease, the staging of the disease is 

compulsory after parasitological confirmation. The staging is determined by detection 

of trypanosomes and white blood cells in the cerebrospinal fluid (CSF) (>5 per l) 

(Brun et al., 2010; Malvy and Chappuis, 2011).   

 

1.2 Chemotheraphy of sleeping sickness 

1.2.1 T. b. rhodesiense infection 

Suramin (introduced in the early 1920s), a polyanionic sulphonated 

naphthylamine, is used to treat first-stage T. b. rhodesiense infection. This molecule 



Table 1.1 Drugs used for the treatment of human African trypanosomiasis 

Causitive 

agent  

Disease 

stage  

Drug  

(date 

introduced)  

Chemical structure  
Treatment regimen  

      adult doses  

T. b. 

rhodesiense 

First  

stage 

Suramin  

(1920s)  

 

IV test dose  

4-5 mg/kg on day 1 

then 

20 mg/kg IV weekly 

for 5 weeks 

 Second 

stage 

Melarsoprol  

(1949)  

 

slow IV infusion  

2.2 mg/kg/day  

for 10 days 

     

T. b. 

gambiense  

 

First  

stage 

Pentamidine  

(1941)  
 

IM or slow IV infusion 

4 mg/kg/day  

for 7 days   

 Second 

stage 

Eflornithine  

(1990)  
  

IV infusion  

100 mg/kg  

every 6 hours for 14 days  

 

 Second 

stage 

Nifurtimox-

eflornithine 

combination 

therapy, NECT  

(2009)  

  

oral nifurtimox  

3x5 mg/kg/day  

for 10 days  

+  

IV infusion 

200 mg/kg  

every 12 h for 7 days 

 

IV intravenous; IM intramuscular. 

(Table adapted from Malvy and Chappuis, 2011) 
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does not penetrate the CNS, being highly charged, so it cannot be used for the second-

stage of the disease (Fairlamb, 2003). The recommended dose regimen consists of an 

initial test dose of 4-5 mg/kg intravenous injection (IV) for the first day, and, in the 

absence of an acute reaction, the drug can be administered at the dose of 20 mg/kg IV 

weekly for 5 weeks (Malvy and Chappuis, 2011) (Table 1.1). The side effects are 

nephrotoxicity, peripheral neuropathy and bone marrow toxicity; generally their severity 

is mild and they revert once the treatment is completed. The mechanism of action of this 

drug is not completely understood, but the fact that resistance in the field has been 

rarely reported despite being used for many decades suggests that this drug might 

inhibit multiple targets (Barrett et al., 2003; Fries and Fairlamb, 2003). It has also been 

suggested that suramin mode of action might involve inhibition of glycolytic enzymes 

(Fairlamb and Bowman, 1980) and the synergistic action with eflornithine (DFMO) 

might implicate a role in polyamine metabolism (Clarkson et al., 1984). It is known that 

suramin enters the trypanosomes by endocytosis through the flagellar pocket, this 

process is receptor-mediated due to the tight binding to low-density lipoprotein (LDL) 

(Voogd et al., 1993). Recently Alsford and colleagues (2012) have elucidated how 

suramin uptake is mediated by an invariant surface glycoprotein (ISG75) that is 

specifically expressed in bloodstream form. Then ISG75 trafficking delivers the drug to 

the lysosome where it is liberated by the action of lysosomal proteases and possibly 

delivered to the cytosol through a lysosomal transmembrane protein (major facilitator 

superfamily transporter).  They also linked spermidine and N-acetylglucosamine 

biosynthesis to the mode of action of suramin.   

Melarsoprol (introduced in 1949), a melaminophenyl-based organic arsenical, 

remains the only therapeutic option for the second-stage of T. b. rhodesiense infection 

despite the extreme toxicity. The dose regimen is 2.2 mg/kg/day IV for 10 days (Malvy 

and Chappuis, 2011) (Table 1.1). Five to 10% of patients develop reactive 
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encephalopathy, which causes the death of half of them. The active metabolite is 

melarsen oxide, which is rapidly converted in the blood (Keiser et al., 2000). Melarsen 

oxide forms with trypanothione (bis-glutathionyl-spermidine) a stable and reversible 

adduct called MelT, which depletes the intracellular pool of trypanothione and acts as 

competitive inhibitor of trypanothione reductase (Fairlamb et al., 1989), an enzyme 

essential in maintaining the correct thiol-redox balance of trypanosomes. However, it 

has been argued that arsenicals interact more tightly with other thiols, including lipoic 

acid (Fairlamb et al., 1992) and that when lysis occurs due to arsenicals only a small 

fraction of trypanothione is conjugated with the merlasen oxide, making unclear if 

trypanothione and the enzymes involved in its metabolism are the real targets for this 

drug (Denise and Barrett, 2001). 

Melarsen oxide is transported in the cells by the P2 aminopurine transporter 

(Carter and Fairlamb, 1993), and mechanisms of resistance both in vitro and in the field 

are associated to loss of the P2 transporter (Barrett et al., 2007). An ATP-binding 

cassette (ABC) transporter, MRPA (multidrug resistance protein A) is responsible for 

the efflux of MelT from the cells, and over-expression of this transporter increases 

resistance to melarsoprol (Shahi et al., 2002). Alsford and colleagues (2012) also found 

that aquaglyceroporins (AQPs) were responsible for the cross-resistance of melarsoprol 

and pentamidine. In particular TbAQP2 has been further characterised as a high affinity 

melarsoprol and pentamidine transporter, previously reported as high affinity 

pentamidine transporter (HAPT1), and as a major determinant of cross-resistance to 

these drugs (Baker et al., 2012, Munday et al., 2014).  

1.2.2 T. b. gambiense infection 

Pentamidine (introduced in 1941), an aromatic diamidine, has been used as 

first-line treatment for the haemolymphatic stage of T. b. gambiense infection for over 

60 years. Being positively charged at physiological pH this molecule has poor oral 
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availability and no CNS penetration (Fairlamb, 2003). The use of this drug is thus 

limited to the treatment of first stage of the disease, for which it is administered by 

intramuscular (IM) or IV injection with a schedule of 4 mg/kg/day per 7 days (Malvy 

and Chappuis, 2011) (Table 1.1). Toxicity includes pain at the injection site, 

nephrotoxicity, leucopenia and hypoglycaemia (Malvy and Chappuis, 2011).  

The mechanism of action of pentamidine is not fully understood. Being a 

dication, pentamidine binds negatively charged molecules, as DNA, including the 

mitochondrial kinetoplast. However, the disruption of the kinetoplast DNA cannot 

account for all action of the drug as parasites that have lost the kinetoplast (a condition 

called dyskinetoplastidy) retain viability (Fairlamb, 2003). Other hypothetical 

mechanisms include effects on trans-splicing and RNA editing in trypanosomes; in fact 

pentamidine has been reported to inhibit group I intron catalytic activity in Candida 

albicans and Pneumocystis carinii (Zhang et al., 2002; Liu et al., 1994), but this 

hypothesis has not been further investigated. Also the enzyme S-adenosylmethionine 

decarboxylase (AdoMetC) was proposed as a target, due to the enzyme inhibition in 

vitro, but no changes in the levels of putrescine and spermidine were observed in T. 

brucei exposed to pentamidine in vivo (Berger et al., 1993) and no changes in 

sensitivity to the drug were observed in null mutants and in cells overexpressing 

AdoMetC in Leishmania donovani (Roberts et al., 2002).   It is known that the drug is 

concentrated in the trypanosomes by the P2 amino-purine transporter and by two 

pentamidine transporters, a low-capacity high-affinity pentamidine transporter (HAPT1) 

and a high-capacity low-affinity pentamidine transporter (LAPT1) (Carter et al., 1995; 

de Koning, 2001). Pentamidine reaches millimolar concentrations in the cell (Carter et 

al., 1995), so that its toxicity could be caused by multiple cellular targets. Recently it 

has been found that plasma membrane H
+
-ATPases may also be required for the 

pentamidine uptake (Alsford et al., 2012, Baker et al., 2012) and the high-affinity 
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pentamidine transporter (HAPT1) has been genetically identified to be TbAQP2 and 

responsible for the cross-resistance of pentamidine and melarsoprol.   

Eflornithine (1990), or D,L-α-difluoromethylornithine (DFMO), is an analogue 

of the amino acid ornithine and acts as an irreversible inhibitor of ornithine 

decarboxylase (ODC), the first enzyme in the biosynthesis of polyamines (Barrett et al., 

2007). It was initially developed as anticancer agent, but it has never been registered for 

this indication. DFMO is equi-potent against the human and parasite enzyme, but the 

specificity is achieved by the slower turnover of the parasite enzyme (Ghoda et al., 

1990; Heby et al., 2003). Inhibition of the enzyme causes an accumulation of S-

adenosyl methionine (Yarlett and Bacchi, 1988) and depletion of polyamines and 

trypanothione (Fairlamb et al., 1987) with consequent inappropriate methylation and 

increase in oxidative stress. The trypanosomes stop growing and transform into a 

stumpy-like form that is incapable of antigenic variation. A fully functional host 

immune system is then required to clear the parasites (Bitonti et al., 1986). 

Unfortunately the T. b. rhodesiense ODC is naturally resistant to the drug, probably due 

to a faster turnover of the enzyme (Iten et al., 1997). The transport of the drug in the 

parasite is carrier-mediated and in the laboratory it has been demonstrated that 

resistance to eflornithine can develop by loss of the amino acid transporter TbAAT6 

(Vincent et al., 2010; Baker et al., 2011; Schumann Burkard et al., 2011). 

The drug is active against the T. b. gambiense infection, but the cost and 

complexity of the administration does not make its use feasible for the first-stage of the 

disease. The regimen for the single therapy with eflornithine consists of 100 mg/kg 

every 6 hours for 14 days by IV infusion with a total of 56 injections for a full treatment 

(Malvy and Chappuis, 2011) (Table 1.1). The main adverse reactions include fever, 

headache, hypertension, peripheral neuropathy, tremor and gastrointestinal problems, 

including diarrhea (Brun et al., 2011). The complexity of the treatment in terms of 
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logistics and costs (the kit for one treatment weighs 20 kg at a cost of €554 including 

the transport to the rural health centres (Simarro et al., 2012) prompted a search for 

alternative therapies.  

DNDi (Drug for Neglected Disease initiative, a not-for-profit product 

development partnership) and Médecins Sans Frontières’ efforts to shorten the 

eflornithine-based treatment have been successful with the inclusion of the nifurtimox-

eflornithine combination therapy (NECT) in 2009 in the WHO list of Essential 

Medicines (Figure 1.4). A multicenter clinical trial has demonstrated that NECT was 

not inferior compared with the standard eflornithine treatment (Priotto et al., 2009). 

NECT regimen schedule combines eflornithine by IV at 200 mg/kg every 12 h for 7 

days (for a total of 14 IV injections rather than the 56 of the single therapy) with 

nifurtimox being given orally at 5 mg/kg three times a day for 10 days (Table 1.1).  

Nifurtimox is a nitrofuran derivative, already in use for the treatment of acute Chagas 

disease, caused by Trypanosoma cruzi. Previously, nifurtimox was given on 

compassionate grounds to second-stage patients resistant to melarsoprol, but because of 

its limited efficacy (30-80%), it was never granted registration as a monotherapy for 

HAT. Nifurtimox acts as a pro-drug and requires the activation of a specific parasite 

nitroreductase (NTR) to produce an unsaturated open-chain nitrile that is equally 

cytotoxic towards mammalian and parasite cells (Hall et al., 2011).  Nifurtimox 

resistance can be quickly generated in the laboratory by loss of a single NTR allele 

either through selection of drug resistant clones or targeted gene deletion (Wilkinson et 

al., 2008; Sokolova et al., 2010, Alsford et al., 2012).  The only significant adverse 

events reported for NECT are a higher incidence of tremors, gastrointestinal nausea and 

anorexia (Priotto et al., 2009). 
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1.2.3 New drug candidates for HAT 

A major advancement towards a better cure for HAT is the current clinical 

development of two new molecules. 

Fexinidazole, a 2-substituted 5-nitroimidazole, was identified as a promising 

candidate for the treatment of HAT by DNDi through a compound mining approach 

aimed at the re-discovery of potential anti-trypanosomial drugs from the already well-

known bioactive class of nitroimidazoles (Torreele et al., 2010). The re-utilization of 

this forgotten molecule (Winkelmann and Raether, 1978; Jennings and Urquhart, 1983) 

has the potential to represent a major breakthrough in the treatment for HAT. 

Fexinidazole is the first drug to enter clinical trials for stage two HAT in the last 30 

years and it is currently in clinical phase II/III study aimed at assessing safety and 

efficacy compared to NECT in patients with late stage HAT (http://clinicaltrials.gov/). 

If successfully developed as an oral drug, it will have the invaluable advantage that it 

can be used in both stage I and stage II of the disease, simplifying both the case 

management and the diagnostic process, and abolishing the need for a lumbar puncture. 

Fexinidazole has many of the desirable attributes defined by the Target Product Profile 

(TPP) for HAT: it is effective against both stages of the disease caused by both T. b. 

gambiense and T. b. rhodesiense and a short course of oral treatment (<7 days) is 

curative in murine models of acute and chronic disease (Torreele et al., 2010). In 

addition fexinidazole has the potential to achieve cure in the acute model with a single 

high dose (Torreele et al., 2010). Fexinidazole is quickly metabolised into the sulfoxide 

and sulfone metabolites, both having similar trypanocidal activity (Sokolova et al., 

2010). It is probable that the sustained in vivo activity of this drug in mice, rats and dogs 

is due to the combined exposure of the three chemical species having different half-

lives: 1-3 h for fexinidazole, 2-7 h for the sulfoxide, and up to 24 h for the sulfone after 

oral administration (Torreele et al., 2010). The mechanism of action of this drug seems 
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to be similar to other nitrodrugs and is mediated by the activation by NTR to generate a 

cytotoxic species (Hall et al., 2011). Resistance to nitrodrugs can be easily generated in 

the laboratory (Sokolova et al., 2010): cell lines resistant to nifurtimox show increased 

resistance to fexinidazole, raising the risk that resistance to this drug could develop even 

before its approval for clinical use. In order to reduce the risk of resistance, it would be 

necessary to evaluate a combination therapy of fexinidazole with existing drugs or new 

drugs that might become available in the future (Kaiser et al., 2011). 

SCYX-7158, a benzoxaborole derivative, represents the latest hope to develop a 

new treatment for HAT. This molecule was discovered as part of collaborative Drug 

Discovery program funded by DNDi and performed in collaboration with Scynexis and 

Pace University. This chemical series was initially synthesised by Anacor 

Pharmaceuticals and its activity against T. brucei was determined by phenotypic 

screening performed at the Sandler Center. Scynexis further developed this series until 

the identification of SCYX-7158 (Nare et al., 2010; Jacobs et al., 2011). This 

compound is active in vitro against both T. b. gambiense and T. b. rhodesiense, it is also 

efficacious in both stage 1 and stage 2 murine HAT models. The in vivo 

pharmacokinetic studies have demonstrated high bioavailability after oral 

administration, long half-life (24 h), high brain exposure and quick distribution to CSF 

to achieve therapeutically relevant concentrations (Jacobs et al., 2011). Up to date the 

mechanism of action of the oxaborole compounds is not known, but the rapid 

trypanocidal effect (12 h above the minimum inhibitory concentration) suggests that 

oxaboroles are retained within the parasites or they exert irreversible effects on the 

potential target(s) during this limited time frame (Nare et al., 2010). 

 Based on its promising characteristics SCYX-7158 has been selected as a 

preclinical candidate and in 2012 has entered phase I clinical studies on healthy 
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volunteers from Sub-Sahara Africa to determine safety, tolerability, pharmacokinetics 

and pharmacodynamics. 

 

1.3 Target assessment and target product profile 

The lack of efficacious drugs for all subspecies and stages of the disease urges 

research for drugs with novel mechanisms of action. The clinical development of 

fexinidazole and SCYX-7158 gives hope for an oral treatment for both stages of the 

disease and both subspecies, and for the simplification of the diagnosis by elimination 

of the disease staging. Unfortunately, the attrition rate of the clinical development 

process is quite high, with only one in 10 molecules completing the clinical 

development process (Brown and Superti-Furga et al., 2003).  

New drugs can be developed either using a phenotypic approach or by target-

driven screening campaigns (Gilbert, 2013). Although the first approach selects 

molecules active in cells and overcomes problems related to drug import and efflux, the 

lack of knowledge of the mechanism of action requires target deconvolution and the 

chemical development of the active compounds cannot be guided by structural 

information. The second approach requires the identification of validated drug targets as 

starting point for a screening campaign. This approach has the advantage to be target-

directed and the availability of structural knowledge or preliminary chemical validation 

in other species can speed up the process of drug discovery, but poses the challenge to 

translate the biochemical potency into efficacy against cells. Futher, many compounds 

active in protein-based assays are inactive in whole cells owing to their physicochemical 

properties (Nwaka and Hudson, 2006; Renslo and McKerrow, 2006). 

The process of drug target identification and validation at the Drug Discovery 

Unit in Dundee (DDU) is based upon a traffic-light system. Target assessment is 

performed against a series of parameters, such as genetic and chemical validation, 
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druggability, assay feasibility, toxicity, structural information and resistance potential as 

illustrated in detail by Frearson and colleagues (2007). The target assessment process 

has to be linked to the target-product profile (TPP) that defines the therapeutic 

requirements for a pre-clinical candidate molecule (Frearson et al., 2007; Wyatt et al., 

2011). The biological and physico-chemical properties are linked to the specific disease 

setting and the need of the affected populations. In the case of sleeping sickness an oral 

or parenteral treatment for the late stage of both gambiense and rhodesiense infection is 

among the priorities.  

The sequencing of the genome of the Tritryps, Trypanosoma brucei (Berriman 

et al., 2005; Jackson et al., 2010), Leishmania major (Ivens et al., 2005) and 

Trypanosoma cruzi (El-sayed et al., 2005) has undiscovered a plethora of potential drug 

targets. In order to rationalize and prioritize these targets various initiatives have been 

developed aimed at collating all available information and ranking the targets using 

similar parameters as those used for the target assessment in the DDU (Agüero et al., 

2008).  

The DDU has a balanced pipeline, including drug targets unique to the parasite 

for which the biology is well understood, but with little knowledge about their 

druggability, such as trypanothione reductase (Patterson et al., 2011), trypanothione 

synthetase (Torrie et al., 2009), and Trypanosome brucei pteridine reductase 1 (Spinks 

et al., 2011); drug targets that have been well validated in other organisms both 

genetically and chemically are also included, but the presence of orthologues poses the 

problem of toxicity, which could be overcome by exploiting the structural differences 

between the mammalian and parasite target (examples of such targets are Trypanosoma 

brucei N-myristoyltransferase (Frearson et al., 2010) and T. brucei cdc2-related protein 

kinase CRK3 (Cleghorn et al., 2011)). In combination the DDU adopts a phenotypic 

strategy aimed at the identification of bioactive molecules against the whole organism, 



  
 

Figure 1.7 Structure of the conserved kinase catalytic domain.  

 

Figure 1.7 Generic structure of a protein kinase 

Protein kinases have a small N-lobe containing five β sheets and one α helix 

called αC-helix. The bigger C-lobe contains 6 α-helices. The ATP binds in the 

cleft between the two lobes. The glycine-rich loop and the autophosphorylation 

loop are indicated in yellow (Figure from Taylor and Kornev, 2011). 
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postponing to a later stage the identification of the molecular target (Smith et al., 2011, 

De Rycker et al., 2013). 

 

1.4 Protein kinases  

Eukaryotic protein kinases (ePKs) catalyse a chemical reaction that requires the 

binding of ATP (or GTP) as a complex with Mg
2+

 or Mn
2+

, the binding of the protein 

substrate and transfer of the-phosphate from the phosphate donor to the hydroxyl 

residue (serine, threonine or tyrosine) of the protein substrate (Hanks and Hunter, 1995). 

The catalytic domain of protein kinases consists of twelve subdomains conserved across 

the major groups and containing characteristic conserved residues (Figure 1.7). The 

twelve subdomains are organised in two lobes: a smaller amino-terminal lobe (N-lobe) 

composed of five β sheets and one α helix and a larger carboxy-terminal lobe (C-lobe) 

composed of six α-helical domains (Hans and Hunter, 1995; Huse and Kuriyan, 2002). 

The two lobes are connected by a hinge linker.  The amino-terminal lobe is involved in 

the binding of the ATP and the carboxy-terminal lobe in the binding of the peptide 

substrate and initiation of the chemical reaction, with the cleft between the two domains 

being responsible for the catalysis. ATP is bound in this cleft between the two lobes, in 

an area described by a conserved loop (P loop). The P loop is a highly flexible glycine-

rich area also containing an aromatic residue: the glycine residues allow the 

coordination of the phosphates of the ATP via backbone interactions and the aromatic 

residue participates in the phosphate transfer. The activation loop, generally 20-30 

amino acids in length, is centrally located and allows the binding of the peptide acceptor 

in proximity of the -phosphate. Phosphorylation of the activation loop allows the 

stabilization of the kinase in an active conformation. The position and number of 

phosphorylation sites varies among ePKs (Hans and Hunter, 1995; Huse and Kuriyan, 

2002, Taylor and Kornev, 2011) (Figure 1.7). 



Table 1.2 Classification of PKs by groups in human and in Trypanosoma 

brucei 

Protein 

kinase 

group  

Hs kinases T. brucei kinases 

Manning 

 et al., 2002 
Parsons 

 et al.,  2005 

Nett 

 et al., 2009a 

Urbaniak  

et al., 2012 

Jones et al., 

2014 

AGC  63 12 22 18 14 

CAMK 74 14 28 33 14 

CK1  12 5 5 5 5 

CMGC  61 42 47 47 42 

RGC  5 0 0 0 0 

Other 83 39 40 38 42 

STE 47 25 28 30 25 

TK 90 0 0 0 0 

TKL  43 0 0 0 0 

unique 0 19 0 0 28 

atypical 40 20 12 11 20 

Total 518 176 182 182 190 

 

Protein kinases classification as defined by Miranda-Saavedra and Burton (2007): AGC 

(including cyclic-nucleotide and calcium-phospholipid dependent kinases, ribosomial 

S6-phosphorylating kinases, G protein coupled kinases, and close relatives); CAMK 

(calcium/calmodulin-regulated kinases); CK1 (casein kinases I, and close relatives); 

CMGC (cyclin-dependent kinases, mitogen activated protein kinases, glycogen synthase 

3 kinases, casein kinases II, CDK-like kinases); RGC (receptor guanylate cyclases); 

Other (mixed collection of kinases that could not be classified easily into the previous 

families);  STE (protein kinases involved in MAP kinase cascades, homologs of yeast 

sterile kinases); TK (tyrosine kinases); and TKL (tyrosine-kinase like, which are, in 

fact, serine/threonine kinases); atypical kinases (including alpha, PIKK [phosphatidyl 

inositol 3' kinase-related kinases], PDHK [pyruvate dehydrogenase kinases], and RIO 

[right open reading frame kinases]).  
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Eukaryotic PKs have been classified into major groups (Hanks and Hunter, 

1995; Manning et al., 2002; Miranda-Saavedra and Barton, 2007) as described in more 

detail in Table 1.2. ePKs play an important role in eukaryotic organisms (such as 

Caenorhabditis elegans (Plowman et al., 1999), Drosophila melanogaster (Rubin et al., 

2000), and Homo sapiens (Manning et al., 2002) including cell cycle regulation, 

differentiation, apoptosis, cell shape and organization, transcription, and metabolism 

(Cohen, 2000). Although for years protein phosphorylation was believed to be a 

regulation mechanism present only in higher eukaryotes, several bacterial homologues 

have been identified in recent years (Kennelly, 2003). Mutation and deregulation of 

protein kinases are responsible for human diseases, such as cancer and auto-

inflammatory diseases. The development of new molecules targeting this family has 

demonstrated that ePKs have structural features that make them druggable (Hopkins and 

Groom, 2002), resulting in the introduction into the clinic of blockbusters such as 

Gleevec and Iressa (Druker et al., 1996; Barker et al., 2001). A total of 22 kinase 

inhibitors have been approved as drugs for the treatment of various cancers and more 

than 300 compounds are under current clinical development (http://clinicaltrials.gov/). 

The economic potential to exploit this family to develop drugs for “profitable” diseases 

such as cancer, inflammation, diabetes and Alzheimer’s disease, has resulted in an 

exponential increase in structural and chemical knowledge (Noble et al., 2004).  

 

1.4.1 The T. brucei kinome 

By comparative analysis of the kinome of the three trypanosomatids, 

Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, Parsons and 

colleagues (2005) have initially found that orthologues are conserved across the three 

species and their kinome consists of 176, 190 and 199 PKs, respectively. The T. brucei 

kinome is around one third of the human one (518 PKs) and it is approximately 2% of 
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the parasite genome (~7500 proteins in total), well above the number of PKs for other 

unicellular parasites, such as Plasmodium falciparum (Leroy and Doerig, 2008; Parsons 

et al., 2005) (Table 1.2). Further studies have refined the initial classification done by 

Parsons and colleagues and up to date the T. brucei kinome consists of a total of 190 

members: 170 ePKs (including 12 predicted pseudo-kinases) and 20 atypical PKs (Nett 

et al., 2009a; Urbaniak et al., 2012a; Jones et al., 2014) (Table 1.2). Parsons and 

colleagues (2005) also identified 19 unique PKs in Trypanosoma brucei, which are the 

least conserved among the trypanosomatids and their divergence might be a potential 

source of selective drug targets, although they have been reassigned to ePKs groups by 

other studies (Nett et al., 2009a; Urbaniak et al., 2012a). 

The most striking difference among the parasite and human kinome is the 

absence of kinases belonging to the receptor-linked TK and TKL groups. Nevertheless 

tyrosine phosphorylation in T. brucei has been reported and attributed to the action of 

atypical tyrosine kinases such as Wee1, and dual specificity kinases (DYRKs, CLKs, 

and STE7) (Parsons et al., 1991; Nett et al., 2009b; Urbaniak et al., 2013). Moreover 

certain groups and families of ePKs are over-represented, such as CMGC, STE and 

NEK kinases. Another unique feature is the relative scarcity of transmembrane domains, 

to date only few kinases have been reported to be associated to membranes; eukaryotic 

initiation factor 2 alpha kinase at the membrane of the flagellar pocket (Moraes et al., 

2007), LDK at the membrane of lipid droplets (Flaspohler et al., 2010) and recently 

RDK1 (Jones et al., 2014; see section 1.4.2). Finally approximately 8% of the ePKs 

were reported to be pseudokinases, catalytically inactive, lacking some of the conserved 

residues indispensable for the enzymatic activity (Parsons et al., 2005).  

Phosphorylation has to play a key role in the parasite biology if protein kinases 

represent such large proportion of the genome. This has been recently confirmed by a 

global SILAC phosphoproteomic analysis performed in both procyclic form (PCF) and 
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bloodstream form (BSF) of T. b. brucei that has identified just above 10,000 

phosphorylation sites on 2,551 proteins (Urbaniak et al., 2013). PKs not only represent 

2% of the entire genome, but also one third of the expressed proteins seem to be 

regulated by phosphorylation. This is particularly important considering that T. brucei 

lacks of transcription factors and regulation of gene expression is done though mRNA 

processing (Clayton and Shapira, 2007) and post-translational modification (Urbaniak et 

al., 2013). The fact that phosphorylation as well as protein expression is differential in 

the two life stages of the parasite just adds a further degree of complexity to the 

understanding of the role of protein phosphorylation in T. brucei and in the 

kinetoplastids. 

 

1.4.2 Protein kinases in T. brucei as drug targets 

Protein kinases were initially proposed as drug targets in trypanosomes and 

Leishmania (Naula et al., 2005), due to their relative abundance in the trypanomatids 

genome and the potential role played in important functions such as regulation of the 

cell cycle and cytokinesis (Naula et al., 2005; Hammarton et al., 2007a; Hammarton, 

2007b). Indeed multiple kinases have now been studied and found to play a role in cell 

cycle regulation; these studies have also elucidated the differences in cell cycle between 

the two life stages of the parasite (Li, 2012; Farr and Gull, 2012, Tu et al., 2005). As 

expected cyclins and the CDK-related kinases (CRKs) are among the key regulators of 

the cell cycle: CRK1/cyc2 regulates DNA replication and G1/S transition, whilst 

CRK3/cyc6 controls G2/M progression (Tu and Wang, 2004; Tu et al., 2005). AUK1 

together with TLK1 plays a role in mitosis and spindle assembly (Tu et al., 2006, Li et 

al., 2006; Li et al., 2007; Li et al., 2008b), whereas MAPK6, PLK, PK50 and PK53 

have been characterised as main regulators of cytokinesis (Wei and Li, 2014; 

Hammarton et al, 2007c; Li et al, 2010; Ma et al., 2008). Akiyoshi and Gull (2014) 
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have recently identified 19 unconventional kinetochore proteins in Trypanosoma brucei, 

four of them are protein kinases: CLK1, CLK2, PK6 and a protein previously annotated 

as putative protein kinase (named KK10, KK19, KKT3 and KKT2, respectively, after 

the discovery of their function). These proteins are all responsible for DNA segregation. 

Cell replication in T. brucei requires also a coordinated duplication of its 

organelles: CRK9 seems to play a role in kinetoplast segregation in both PCF and BSF 

(Gourguechon et al., 2009; Jones et al., 2014); PLK is required for bilobe duplication 

and Golgi biogenesis as well as basal body duplication and flagellum elongation (de 

Graffenried et al., 2008; Ikeda and de Graffenried, 2012); and Vps34, a lipid kinase, 

segregates the Golgi complex after duplication (Hall et al., 2006). Jones and colleagues 

(2014) have performed a kinome wide RNAi study looking for cell viability in BSF and 

confirmed previously published findings, but also further characterised the function of 

known essential kinases as GSK3 short and Casein kinase 1.2 (Ojo et al., 2008; 

Urbaniak, 2009), and identified 15 novel cell cycle regulators. 

Protein kinases in T. brucei also play important roles in cell differentiation: ZFK 

(Vassella et al., 2001), mTOR4 (Barquilla et al., 2012) and MAPK5 (Domenicali Pfister 

et al., 2006) have been characterized as negative regulators of the differentiation from 

the proliferative trypomastigote to the quiescient stumpy induced by SIF in the human 

host. More recently an RNAi study has identified positive regulators of the quorum 

signalling and not surprisingly found among others three protein kinases (FlaK, NEK, 

and YAK) responsible for the signal transduction pathway that induces the cell-cycle 

arrest in G0/G1 characteristic of stumpy forms (Mony et al., 2014). The aforementioned  

RNAi study from Jones and colleagues (2014) has also identified two new kinases 

acting as repressors of differentiation from bloodstream to procyclic form, the STE-11 

like RDK1, which works in concert with the tyrosine phosphatase PTP1 and localizes at 

the membrane, and the RDK2 belonging to the NEK family, which works 
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independently from other triggers. Finally MKK1, a MAP Kinase Kinase, is the first 

kinase associated with the transmission of the disease from insect to human (Morand et 

al., 2012). 

Protein kinases in T. brucei are also important for cell proliferation: TbTOR1 regulates 

protein synthesis and nucleolar structure (Barquilla et al., 2008); TbTOR2 controls cell 

polarization and endocytosis (Barquilla et al., 2009); eukaryotic initiation factor 2 alpha 

kinase is associated to the flagellar pocket and is involved in sensing and translational 

control (Moraes et al., 2007) and CRK12 plays a role in endocytosis (Monnerat et al., 

2013). Very few physiological substrates of protein kinases have been identified 

compared to the abundance of phosphorylated proteins and sites in both life stages. The 

T. brucei phosphoproteome is enriched in proteins involved in functions such as mRNA 

binding and flagellum motility for which very little is known of the role played by 

protein kinases (Urbaniak et al., 2013). In the phosphoproteomic study, it also emerged 

that the MAPK kinase pathway is activated in both life cycle stages (Urbaniak et al., 

2013). It is known that in promastigote Leishmania mexicana MPK9 regulates the 

flagellum biogenesis and maintenance (Bengs et al., 2005), thus more work is necessary 

to investigate whether MAPK kinases control the flagellum biogenesis and functions 

also in T. brucei (Rotureau et al., 2009).  

In addition to single gene studies, various RNAi studies have confirmed that protein 

kinases represent a source of drug targets in T. brucei. A small RNAi screen has 

attempted to genetically validate 30 uncharacterized protein kinases in T. brucei and 

identified MPK2 and CRK12 as important genes for cell proliferation (Mackey et al., 

2011). A target sequencing RNAi screen against the T. brucei genome has found that 

protein kinases are over-represented among genes responsible for loss-of-fitness in 

bloodstream form cells and differentiation (Alsford et al., 2011). The already mentioned 

RNAi study of the whole T. brucei kinome has identified a comprehensive list of 



Table 1.3 T. brucei protein kinases genetically and chemically investigated 

Gene Product 

 

Function 

Chemical validation 

Genetic 

validation 

References 

ZFK (Tb927.11.9270) Differentiation from BSF to stumpy form, but not 

essential for BSF growth 

gene knock-out Vassella et al., 2001 

 

Nuclear DBF-2-related (NDR) 

kinases PK50 and PK53 

(Tb927.10.4940 and 

Tb927.7.5770) 

PK50 and PK53 are essential regulators of cytokinesis. 

Chemical validation: HTS against molecular targets 

PK50 and PK53 resulted in potent inhibition in the 

biochemical assay but low activity in cellular assay. Only 

PK53 inhibitor could bind the protein target in lysate. 

 

RNAi Hammarton et al., 2005;  Ma et al., 2010; 

DDU project ; Urbaniak et al., 2012a 

 

 

PKAC1/PKAC2 

(Tb927.9.11100 and 

Tb927.9.11030) 

Growth defect in BSF, cytokinesis RNAi, 

gene knockout 

Kramer et al., 2004 

LDK 

(Tb927.11.8940) 

Mild growth defect in BSF, lipid droplets biogenesis  Flaspohler et al., 2010 

Casein Kinase 1.2 

(Tb927.5.800) 

Growth inhibition in BSF. Role in kinetoplast division and 

cytokinesis 

Chemical validation: purvalanol B and imidazopyridines 

bind native LmexCK1.2 and LmajCK1.2, respectively. 

Lapatinib, canertinib, AEEE788 bind CK1.2 in T. brucei 

lysate. 

RNAi,  

gene knock-out 

attempted 

Urbaniak et al.; 2009; Jones et al., 2014, 

Knockaert et al., 2000; Allocco et al., 

2006, Katiyar et al., 2013 

CRK1 

(Tb927.10.1070) 

Growth defect in BSF and PCF 

Interaction with cyc2, cyc4, cyc5 and cyc7. 

Role in DNA replication and in G1/S transition 

Chemical validation: Diaminopyrimidines 

RNAi Tu and Wang, 2004; Tu and Wang, 2005; 

Li et al., 2012; Mercer et al., 2011; Jones 

et al., 2014 

CRK3 

(Tb927.10.4990) 

Growth defect, interaction with cyc6,  block in G2/M 

Chemical validation: LmexCRK3/cyc6 nanomolar 

inhibitors were identified by HTS, but they did not 

translate in potent inhibitors in vitro against either T. 

brucei or Leishmania  

RNAi Tu and Wang, 2004; Cleghorn et al., 2011 



Gene Product 

 

Function 

Chemical validation 

Genetic 

validation 

References 

(Tb927.6.1780) 

 

in both BSF and PCF 

 

 

MAPK5 

(Tb927.6.4220) 

Role in differentiation from BSF to stumpy form 

 

gene knock-out in 

PCF 

Domenicali Pfister et al., 2006 

 

MAPK6  (MPK2) 

(Tb927.10.5140) 

 

 

Furrow ingression and cytokinesis completion in PCF. 

Rapid cell death, essential for cytokinesis initiation in 

BSF.  

Chemical validation: Diaminopyrimidines 

RNAi 

 

 

 

Wei and Li, 2014; Jones et al., 2014, 

Mercer et al., 2011, Mackey et al., 2011  

 

 

MAPK14 

(Tb927.3.690) 

Cell death; essential in cytokinesis in BSF. 

Chemical validation: Diaminopyrimidines 

RNAi 

 

Jones et al., 2014, Mercer et al., 2011 

 

MAPK9 

(Tb927.10.14800) 

Chemical validation: Diaminopyrimidines 

  

Mercer et al., 2011 

 

ECK1 

(Tb927.11.16790) 

Essential in both PCF and BSF. In procyclic C-terminal 

truncation phenotype: abnormal cell proliferation 

Expression of 

truncated 

TbECK1  

Ellis et al., 2004 

KKT2 

(Tb927.11.10520) 

 

Unconventional kinetochore protein: segregation of both 

megabase chromosomes and minichromosomes. 

 

RNAi 

 

 

Akiyoshi and Gull, 2014 

 

 

KKT3  

(Tb927.9.10920) 

 

Unconventional kinetochore protein: arrested cell growth 

in BSF, normal cell cycle. 

 

RNAi 

 

 

Akiyoshi and Gull, 2014; Jones et al., 

2014 

 

FlaK 

(Tb927.2.2720) 

Signal transduction component of the quorum signalling RNAi 

 

Mony et al., 2014 

Aurora Kinase I (AUK1) 

(Tb927.11.8220) 

 

Divergent function: chromosome segregation and 

cytokinesis initiation in PCF; cytokinesis in BSF without a 

control on mitosis or organelle duplication. 

Chemical validation: VX-680 and Hesperidin replicate 

AUK1 RNAi phenotype. Danusertib inhibits AUK1 and is 

efficacious in cells and animal model 

 

RNAi Tu et al., 2006 ; Li and Wang, 2006; Li et 

al., 2008a; Jetton et al., 2009; Li et al., 

2009; Hu et al., 2014; Ochiana et al., 

2013. 



Gene Product 

 

Function 

Chemical validation 

Genetic 

validation 

References 

CRK6 

(Tb927.11.1180) 

No defect 

Chemical validation: Diaminopyrimidines 

 

RNAi Tu and Wang, 2004; Mercer et al., 2011 

CRK9 

(Tb927.2.4510) 

Mitosis  and cytokinesis initiation in PF and BSF   

Role in kinetoplast segregation 

RNAi Gourguechon and Wang, 2009; Jones et 

al., 2014 

CRK12 

(Tb927.11.12310) 

CRK12:cyc9 complex in both PCF and BSF  

Growth inhibition in BSF, role in endocytosis, no effect 

on cell cycle 

 

RNAi, 

gene knock-out 

Mackey et al., 2011; Monnerat et al., 

2013; Jones et al., 2014; Merritt and 

Stuart, 2013 

CLK1 and CLK2 

(Tb927.11.12410 and  

Tb927.11.12420) 

Growth defect in BSF. Responsible for missegregation in 

anaphase cells 

Chemical validation: hypothemycin, a covalent inhibitor 

of CDXG kinase, targets native CLK1 

 

RNAi Akiyoshi and Gull, 2014; Nishino et al., 

2013; Jones et al., 2014 

DYRK/YAK 

(Tb927.10.15020) 

Signal transduction component of the quorum signalling RNAi Mony et al., 2014 

TbGSK3 short and TbGSK3 long 

(Tb927.10.13780 and 

Tb927.7.2420) 

TbGSK3 short RNAi causes growth defects in BSF and 

differentiation. TbGSK3 long RNAi causes gain of fitness 

in procyclic stage. 

Chemical validation: Non selective/non-specific 

inhibitors of HsGSK3 cause growth defects in T. brucei 

and Leishmania. HTS vs Merck and Pfizer GSK3 focused 

libraries. Target in cell of hypothemycin, canertinib, 

lapatinib, and DDD00085893 

 

RNAi Ojo et al., 2008; Oduor et al., 2011; 

Urbaniak et al., 2012a; Nishino et al., 

2013; Katiyar et al., 2013; Jones et al, 

2014. 

KFR1 

(Tb927.10.7780) 

Proliferation of BSF induced by interferon-γ   

  

Hua and Wang, 1997 

 

MAPK2 

(Tb927.10.16030) 

Role in differentiation from BSF to PCF 

 

gene knock-out 

 

Muller et al., 2002 

 

MAPK4 Confers resistance to temperature stress, but not essential gene knock-out Guttinger et al., 2007 



Gene Product 

 

Function 

Chemical validation 

Genetic 

validation 

References 

T. brucei Tousled like Kinase 1  

(TbTLK1) 

(Tb927.4.5180) 

TLK1 cooperates with Aurora in the regulation of the 

spindle assembly and chromosome segregation 

Chemical validation: lapatinib, canertinib, AEEE788 

 

RNAi Li et al., 2007; Li et al., 2008b; Katiyar et 

al., 2013, Jones et al., 2014 

Casein kinase 2 (TbCK2) Localized at the nucleolus, interacts with the nucleolar 

proteins Nopp44/46 and NOG1. Growth arrest in BSF. 

Role in cytokinesis 

RNAi Park et al., 2002; Jensen et al., 2006; 

Jones et al., 2014 

 

NEK12.1/ RDK2 

(Tb927.4.5310) 

Repressor of differentiation in BSF RNAi Jones et al., 2014 

NEK17 

(Tb927.10.5950) 

Signal transduction component of the quorum signalling RNAi Mony et al., 2014 

TbNRKC kinase 

(Tb927.10.460) 

 

Basal body and cytokinesis RNAi  and 

overexpression 

mutants 

Pradel et al., 2006 

Polo-like kinase (TbPLK) 

(Tb927.7.6310) 

Basal body replication and kinetoplast migration, 

cytokinesis initiation. Localized at the flagellum is 

responsible for flagellum attachment elongation. 

Chemical validation: GW843682X causes block of 

cytokinesis. Analogue-sensitive approach to specifically 

target PLK in cells. 

 

RNAi Graham et al., 1998;  Kumar and Wang, 

2006; Hammarton et al., 2007c, de 

Graffenried et al., 2008 ; Li et al., 2010; 

Sun and Wang, 2011; Yu et al., 2012; 

Ikeda et al., 2012; Lozano-Núñez et al., 

2013 

RDK1 

(Tb927.11.14070) 

 

Repressor of differentiation in BSF RNAi Jones et al., 2014 

TbTOR1 (T. brucei Target of 

Rapamycin) 

(Tb927.10.8420) 

Regulation of cell growth by regulating cell cycle, protein 

synthesis and nucleolus structure 

Chemical validation: NVP-BEZ235 is a nanomolar 

mTOR/PI3K inhibitor, with efficacy indication in an acute 

mouse infection model. 

  

RNAi Barquilla et al.,  2008, de Jesus et al., 

2010, Diaz-Gonazalez et al.,  2011. 



Gene Product 

 

Function 

Chemical validation 

Genetic 

validation 

References 

TbTOR2  

(Tb927.4.420) 

Cell polarization, endocytosis and cytokinesis 

Chemical validation: TOR complex 2 is sensitive to 

rapamycin 

RNAi Barquilla et al.,  2009 

TbTOR4  

(Tb927.1.1930) 

Negative  regulator of  differentiation RNAi Barquilla et al.,  2012 

TbVps34  

(Tb927.8.6210) 

Lipid kinase. Segregation of the Golgi complex RNAi Hall et al., 2006 

Eukaryotic initiation factor 2 

alpha kinase (elF2alpha kinase) 

(Tb927.4.2500) 

Associated to the membrane of the flagellar pocket, 

involved in sensing and translational control 

NA Moraes et al., 2007 

MKK1 Role in transmission from insect to human 

Not essential in BSF and in PCF 

Knock-out Morand et al., 2012; Jensen et al., 2011 
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essential protein kinases, cell cycle and differentiation regulators (Jones et al., 2014). 

These studies have a certain degree of agreement among them and the previous 

literature, but still the proposed essential targets will require further chemical and 

genetic validation (Jones et al., 2014, Frearson et al., 2007). 

In recent years more information has been collated regarding which protein 

kinase targets might be essential in T. brucei. The majority of the genetic studies are 

performed by RNAi and over-expression with tetracycline inducible systems as gene 

knock-outs remain generally labour intensive and tricky for proteins that are finely 

regulated (Merritt and Stuart, 2013). The divergences among RNAi studies derive from 

the differential levels of gene knock-down achieved using different strains and 

constructs and off-target effects (degradation of mRNA of genes that were not 

intentionally targeted), making gene validation by RNAi not always conclusive (Merritt 

and Stuart, 2013). 

In some cases chemical validation has been attempted using known human 

protein kinase inhibitors that are not selective or specific for T. brucei (Ojo et al., 2008; 

Jetton et al., 2009; Diaz-Gonazalez et al., 2011). High throughput screening campaigns 

have been performed only for a handful of protein kinases (TbGSK3 short, PK50, 

PK53, TbPLK), mainly due to the lack of active recombinant proteins (Ojo et al., 2008; 

Oduor et al., 2011; Urbaniak et al., 2012a; DDU unpublished data). 

Although a detailed description of all the T. brucei kinases is beyond the scope 

of this thesis, a list of the best characterized kinases, their function and whether have 

been validated by genetic or chemical means is reported in Table 1.3. 

Protein kinases are potential drug targets for parasitic diseases. On the one hand, 

they offer the comparative advantage of piggybacking on the extensive knowledge 

already existing on human protein kinase inhibitors. On the other hand targeting 

enzymes present in the human host poses the challenge to develop selective inhibitors 
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against the parasite ortholog. However, the fact that most of the parasite kinases share 

less than 60% identity in the catalytic domain with respect to the corresponding human 

kinases suggests that is possible to develop selective kinase inhibitors that specifically 

target the parasite enzyme (Naula et al., 2005). Furthermore the availability of structural 

information relative to the human kinases combined with computational modelling is a 

powerful tool for the design of selective inhibitors exploiting key differences in the 

amino acid sequences. 

This thesis assesses the short form of glycogen synthase kinase 3 (GSK3) as a 

drug target in Trypanosoma brucei using a combined chemical and genetic approach 

(see section1.7).  

 

1.5 Glycogen synthase kinase: role in diseases and inhibitor 

development 

In humans the two isoforms of glycogen synthase kinase 3 (GSK3) are called 

GSK3α and GSK3β, these two enzymes have molecular weight of 51 kDa and 47 kDa, 

respectively. They are very similar in their kinase domain (98% identity), but differ in 

their amino- and carboxyl-terminal and functional activity (Doble and Woodget, 2003). 

Yet they are not interchangeable as demonstrated by the inability of GSK3α to rescue 

the embryonic lethality of GSK3β knock-out (Hoeflich et al., 2000). There are two 

variants of HsGSK3β, the minor splice variant HsGSK3-2 has an insert of 13 amino 

acids within the kinase domain. The insertion seems to be responsible for a differential 

recognition of scaffold proteins and also a differential localization (Mukai et al., 2002).  

The crystal structure of HsGSK3β has been solved shedding light on the 

mechanisms of activation, substrate recognition and inhibition (Dajani et al., 2001). 
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GSK3 is constitutively active, and its regulation occurs either by inactivation by 

upstream signals or by changes in substrate recognition.  

The activation loop of GSK3 is phosphorylated at Tyrosine 216 and Tyrosine 

279 in GSK3 and GSK3 respectively. The tyrosine phosphorylation is not required 

for kinase activity, but facilitates the phosphorylation of the substrate and increases 

protein stability (Dajani et al., 2001; Cole et al., 2004). The activation loop 

phosphorylation has been shown to be an autophosphorylation event (Cole et al., 2004), 

which happens after translation requiring the involvement of a chaperone protein 

(Lochhead et al., 2006).  

GSK3 preferentially phosphorylates substrates that are pre-phosphorylated at the 

priming site at the C-terminus in its consensus sequence Ser/Thr-X-X-X-

(phospho)Ser/Thr. The priming site is believed to interact with a positively charged 

pocket (Arg96, Arg180 and Lys205) that positions the protein substrate in the right 

orientation for the subsequent phosphorylation. Un-primed substrates can also be 

recognised and phosphorylated by GSK3, as they often have a negatively charged 

residue that mimics the primed site (Doble and Woodget, 2003). 

GSK3 can be regulated by phosphorylation on regulatory Ser9 and Ser21 

residues, respectively in GSK3 and GSK3. The upstream kinases protein kinase B 

(also called AKT), MAPK-activated protein kinase 1 (also called p90RSK), p70 

ribosomal S6 kinase, cAMP-activated protein kinase and protein kinase C (PKC) are 

responsible for phosphorylation of Ser9/21 causing reduction in kinase activity and 

consequently reduction in phosphorylation of downstream substrates (Doble and 

Woodget, 2003, Cross et al., 1995; Cohen et al., 1997).  The phosphorylation on 

Ser9/21 mimics the primed substrate, by occupying the site for the substrate in a 

competitive manner. High concentrations of primed substrate can compete for this 

intermolecular inhibition (Doble and Woodget, 2003).  
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GSK3 can also be regulated by interaction with docking proteins that allow the 

substrate to make contacts with the priming kinase. Specific combinations of 

scaffolding proteins and substrates (e.g. axin is the docking protein for casein kinase 1 

and presenilin is the docking protein for protein kinase A) determine different functions 

of GSK3 in the cell (Meijer et al., 2004). 

Apart from glycogen synthase, GSK3 has a plethora of substrates in the cell in 

various compartments: metabolic proteins such as ATP citrate lyase, acetyl-CoA 

carboxylase, cyclin D1 and E, the eukaryotic initiation factor eIF2B, axin, hexokinase, 

and presenilin; structural proteins such us tau, neurofilaments, dynein, kinesin light 

chain, and microtubule associated proteins (MAPIB); and transcription factors such β-

catenin, CREB, Myc, NFB, HSF-1, Notch, p53, and HIF-1. This list is not exhaustive 

and the functions and phosphorylation effects on various substrates have been reviewed 

by Doble and Woodget (2003). Thus it is not surprising that GSK3 in mammalian cells 

is involved in a wide spectrum of cellular processes, including cell proliferation, 

differentiation, embryonic development, metabolism, transcription, translation, 

cytoskeletal regulation, intracellular vesicular transport, cell cycle progression, 

circadian rhythm regulation and apoptosis (Frame and Cohen, 2001). 

GSK3 plays an important role in two major pathways, the Wnt/-catenin 

pathway, essential during embryonic development, and the Hedgehog pathway, 

involved in cell fate determination and morphology (Double and Woodget, 2003). 

Protein stability seems to be one of the mechanisms through which GSK3 regulates 

cellular processes (Xu et al., 2009). The phosphorylation of target proteins by GSK3 

induces ubiquitination and proteolysis, in the case of cytoplasmic levels of β-catenin in 

the wnt pathway, or proteolytic cleavage of the substrate, in the case of transcription 

activator Ci (Cubitus interruptus) in the Hedgehog pathway. GSK3 also plays an 

inhibitory role in cell cycle progression and cell proliferation as phosphorylation of both 
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cyclin D1 and cyclin E induces their rapid degradation (Kang et al., 2008). GSK3 

activity is elevated in cells quiescent and in G1 phase, but is lowered when cells 

progress in S phase. GSK3 may also play a role in DNA repair after UV irradiation by 

inducing degradation of cdc25A, and allowing cells more time for DNA repair (Kang et 

al., 2008). Over-expression of GSK3 and the consequent increase in its activity induce 

apoptosis in cells undergoing cellular stress (Cross et al., 2001; Pap and Cooper, 1998). 

It looks like GSK3 is a master regulator, able to integrate both positive and negative cell 

stimuli through regulation of the stability and turnover of the protein targets. 

There are several diseases that could benefit from GSK3 inhibitors based upon 

its role in different cellular processes. Lithium is an inhibitor of GSK3 used for the 

treatment of bipolar disorder and mood stabilization despite the potency in cells is only 

in the the millimolar range. Lithium has a dual mechanism of inhibition: it inhibits 

GSK3 directly through competition with the Mg
2+

 coordinating the ATP and indirectly 

by increasing the phosphorylation of the inhibitory serine in the N-terminus (Jope, 

2003). GSK3 has also been linked to other disorders of the nervous system, such as 

Alzheimer’s disease caused by hyperphosphorylation of tau and formation of 

neurofibrillary tangles. Furthermore, elevated GSK-3 activity can cause overproduction 

of β-amyloid and the senile plaques observed in the Alzheimer patients (Martinez et al., 

2011). GSK3 inhibition has been also considered as therapeutic target for neuronal cell 

death, Parkinson’s disease, Huntington’s disease, transmissible spongiform 

encephalopathies and regulation of the circadian-clock (Meijer et al., 2004). As the 

inhibition of GSK3 by protein kinase B is insulin mediated and results in activation of 

glycogen synthase with consequent increase in glucose utilization, pharmacological 

inhibition of GSK3 has also been considered for the treatment of type 2 diabetes. The 

possible role of GSK3 inhibition in cancer treatment is unclear: on one hand inhibition 

of GSK3 can cause activation of wnt signalling and accumulation of β-catenin, 
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responsible for many colorectal cancers and stabilization of cyclin D1 and C and Myc-1 

all involved in tumorigenesis; on the other hand dual CDK-GSK3 inhibitors could 

synergistically induce apoptosis in prostate cancer through a mechanism that involves 

enhancement of TRAIL (TNF-related apoptosis-inducing ligand) apoptotic activity. It 

has also been reported that GSK3 plays a role in the mitotic spindle and GSK3 

inhibition is responsible for arrest in prometaphase (Meijer et al., 2004). The use of 

GSK3 in cancer therapy therefore requires the careful design of inhibitors that do not 

interact with the wnt pathway or are specifically directed towards certain cellular 

compartments (Meijer et al., 2004).  

Additional therapeutic areas for GSK3 have been identified in the treatment of 

osteoporosis and vascular calcification. These conditions could be treated by the 

activation and inhibition of the Wnt/β-catenin signalling pathway, respectively. 

Although activators of GSK3 could also play a role in the treatment of cardiac 

hypertrophy and cancer, no direct activators of GSK3 are under development 

(Takahashi-Yanaga et al., 2013) 

More than 30 GSK3 inhibitors have been reported (Meijer et al., 2004); some of 

them have been co-crystallized with GSK3β in the ATP pocket (Bertrand et al., 2003). 

The majority of GSK3 inhibitors are not selective and generally GSK3 inhibition is 

associated with CDK2 inhibition as well, as the two enzymes are very closely related in 

their kinase domain (Bain et al., 2007; Meijer et al., 2004).  

Tideglusib, belonging to the chemical family of the thiadiazolidindiones 

(TDZDs), is the only GSK3 inhibitor currently in clinical development. Initially it was 

erroneously characterized as a non-competitive ATP inhibitor, but it has been recently 

demonstrated that it is in reality an irreversible inhibitor of GSK3 (Martinez et al., 

2002a; Dominiguez et al., 2012). Disappointingly the results for the completed phase II 

clinical trial for the treatment of Alzheimer’s disease and progressive supranuclear palsy 



 

 

 
 

Figure 1.8 Amino acid sequence alignment of HsGSK3β, HsGSK3α, TbGSK3short, and TbGSK3long 

The background colour varies from the least conserved residues (white) to the most conserved residues (dark blue). 
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have revealed that although well tolerated by the patients one year after administration, 

this molecule has failed to show any clinical efficacy (Tolosa et al., 2014).  

 

1.6 Glycogen synthase kinase as a drug target in kinetoplastida  

Glycogen synthase kinase 3 is a conserved protein kinase across eukaryotes and 

has been proposed as a drug target against Toxoplasma gondii (Qin et al., 1998), 

Plasmodium falciparum (Droucheau et al., 2004), Trypanosoma brucei (Ojo et al., 

2008), and Leishmania donovani (Xingi et al., 2009).  

In T. brucei there are two isoforms of glycogen synthase kinase 3, TbGSK3 

short (Tb927.10.13780) and long (Tb927.7.2420), respectively 40 kDa and 55 kDa. 

Both isoforms are more similar to HsGSK3β than HsGSK3α with an identity of 40.9% 

and 33.1% for TbGSK3 short and TbGSK3 long to HsGSK3β, respectively. The two 

parasite isoforms share an identity of 30.6% between them (Ojo et al., 2008). The 

identity is more over the kinase domain, while the amino-terminal and carboxyl-

terminal domains are not very well conserved (Figure 1.8). 

A phosphoproteomic study performed by Nett and colleagues (2009a) in 

bloodstream form cells has shown that TbGSK3 short is phosphorylated in the 

activation loop at Tyr187, suggesting that the mechanisms of activation might be 

conserved between mammals and parasites. It is unclear whether the identified 

phosphorylation on Ser2 might mimic the mechanism of inhibition of GSK3 performed 

by the phosphorylated Ser9 in the N-terminus of HsGSK3β. Recently Urbaniak and 

colleagues (2013), performing a global phosphoproteomic study in procyclic and 

bloodstream form, have added two additional phosphorylation sites for TbGSK3 short 

on T6 and S41 and determined a differential protein expression in the two life stages 

(higher in bloodstream than procyclic form). The phosphorylation on the activation loop 

was also identified in the procyclic form only for TbGSK3 long at Tyr277 (Nett et al., 
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2009b). Tyrosine phosphorylation on GSK3 activation loop has also been found by 

phosphoproteomic studies in Leishmania infantum (Hem et al., 2010) and Trypanosoma 

cruzi (Nakayasu et al., 2009; Marchini et al., 2011).  

The substrate recognition patterns (S/TXXXphosphoS/T) are conserved 

considering that recombinant TbGSK3 short (Ojo et al., 2008) and LdGSK3 short 

(Xingi et al., 2009) could trans-phosphorylate a known primed GSK3 substrate based 

upon the GSK3 phosphorylation sites of mammalian glycogen kinase (Meijer et al., 

2004). In epimastigote T. cruzi, around 7% of the identified phosphoproteins were 

compatible with the GSK3 consensus sequence (Nakayasu et al., 2009) confirming also 

in kinetoplastids the relevant role played by GSK3, as one of the kinases with most 

substrates in the cell (Linding et al., 2007). 

The role of TbGSK3 is unknown. TbGSK3 short RNAi has been associated with 

defects in growth in both bloodstream form T. brucei and in differentiation (Ojo et al., 

2008; Alsford et al., 2011). On the other hand TbGSK3 long RNAi did not show 

significant effect on growth in bloodstream form, but was responsible for a gain-of-

fitness in procyclic indicating a differential role for this isoform of the enzyme (Ojo et 

al., 2008; Alsford et al., 2011). Recently Jones and colleagues (2014) have shown that 

TbGSK3 short knockdown causes cell arrest with a delay in mitosis and/or defects in 

cytokinesis.  These findings are supported by a study performed on Leishmania 

donovani that has established that LdGSK3 short is involved in cell cycle control and 

apoptosis-like death. The same study has also determined that in promastigote (insect 

form) cells the enzyme is cytosolic during logarithmic growth, but localises to the 

nucleus and flagellum at the stationary-phase, whereas in axenic amastigotes (model 

system used to study the intracellular amastigotes infecting the human macrophages) the 

cytosolic localisation is more punctate (Xingi et al., 2009). In Plasmodium falciparum 

the expression of GSK3 (PfGSK3) is predominant in the trophozoite stage; here the 
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protein is rapidly exported to the erythrocyte cytoplasm where it associates with 

vescicle-like structures called Maurer’s clefts suggesting a function in protein 

trafficking (Droucheau et al., 2004). An interesting speculative role for this kinase in P. 

falciparum is the regulation of the parasite cycle that occurs in a circadian-dependent 

manner (always multiple of 24 hours) (Droucheau et al., 2004). 

Up to date no crystal structure of TbGSK3 short has been solved, but it has been 

possible to build homology models using the solved structures for HsGSK3β (Ojo et al., 

2008; Oduor et al., 2011; Woodland et al., 2013) and LmajGSK3 (Ojo et al., 2011). 

These computational studies have identified key differences in the parasite ATP binding 

site that could be exploited to develop selective inibitors.  

Non-specific inhibitors of HsCDK2 and HsGSK3 have shown cellular efficacy 

with some correlation with the potency in vitro against recombinant TbGSK3 providing 

a preliminary indication of chemical inhibition of this enzyme in cells (Ojo et al., 2008). 

Furthermore a focused screen of Pfizer proprietary compounds targeting  HsGSK3β has 

identified two compounds with 7-fold selectivity for TbGSK3 short over HsGSK3β and 

this achieved selectivity has been rationalised by a key difference in the gatekeeper 

residue of the active site (TbM101/HsL132) (Oduor et al., 2011). This selectivity is in 

agreement with the bioinformatics analysis performed by Osolodkin and colleagues 

(2011) that has proposed to target the gatekeeper residue in order to achieve selectivity 

for GSK3 protozoal kinases. The substitution of the gatekeeper residue (Leu132Met) 

affects the volume of the binding site, and is present not only in Trypanosoma, but also 

in Plasmodium, Leishmania and Toxoplasma (Osolodkin et al., 2011). The methionine 

gatekeeper is longer and more flexible than the leucine explaining the selectivity 

towards the human enzyme of the majority of known GSK3 inhibitors. On the one hand 

the longer lateral chain can obstruct inhibitor binding due to steric clash, but on the 

other hand smaller inhibitors may be able to make hydrogen bonds with the sulphur of 
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the methionine thereby preferentially inhibiting the protozoan kinases (Osolodkin et al., 

2011).  

Unfortunately the selective compounds identified by Oduor and colleagues 

(2011) are quite promiscuous inhibitors of mammalian kinases with associated cellular 

toxicity and are unlikely to specifically target TbGSK3 in cells. 

Interestingly two distinct chemoproteomic studies, aimed at identifying the 

cellular targets of lapatinib, a kinase tyrosine inhibitor, (Katiyar et al., 2013) and of 

hypothemycin, a covalent inhibitor of kinase containing a CDXG motif (Cys-Asp-Xaa-

Gly) (Nishino et al., 2013), have identified TbGSK3 short among their targets in vivo in 

T. brucei. Both lapatinib and hypothemycin kill T. b. brucei in proliferation assays with 

potency of 1.5 µM and 170 nM, respectively. As TbGSK3 is not the only target 

identified, the cellular activity cannot be completely attributed to this enzyme. 

Nonetheless, these studies provide further evidence that this protein kinase can be 

targeted in the cells.  

None of the compounds studied up to date are specific enough as inhibitors of 

TbGSK3 short to be used as chemical probes to interrogate the still unknown biological 

functions of this kinase in T. brucei or selective enough towards HsGSK3β to be 

considered as starting points for medicinal chemistry optimization as anti-trypanosomal 

drugs. 
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1.7 Aims of the project 

 

The objective of this project is to evaluate with a combination of chemical and 

genetic approaches Glycogen Synthase Kinase 3 (TbGSK3) as potential drug target in 

Trypanosoma brucei.  

The specific goals of the project are to: 

(1) perform a biochemical characterization of the molecular target; 

(2) identify small molecule inhibitors from a medium throughput screening (MTS) 

campaign against the molecular target; 

(3) identify any correlations between inhibition of the enzymatic activity (IC50) with 

respect to inhibition of trypanosome proliferation (EC50);  

 (4) determine the mode of inhibition and binding kinetics of identified inhibitors 

(determination of IC50, Ki, Kd, kon and koff); 

(5) investigate potential off-target mode(s) of action and identify the molecular targets 

responsible for the efficacy in vitro;  

(6) establish whether or not the mode of action is on target against the whole parasite by 

over-expression or under-expression studies looking for shifts in inhibitor potency. 

(7) examine essentiality by gene knock-out. 
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2.1 Materials 

The kinase focused set was collated by the Computational Group at the 

University of Dundee (Brenk et al., 2008). Further synthesis and chemical 

characterisation of inhibitors of TbGSK3 short were performed by Dr Andrew 

Woodland and Dr Laura Cleghorn for series GSK3 07 (Woodland et al., 2013) and by 

Dr Robert Urich for series GSK3 09 (Urich et al., 2014). All the reagents were bought 

from Sigma Aldrich if not otherwise stated. All the solutions were prepared with milliQ 

water. All the reagents were bought at the highest grade of purity and stored according 

to the manufacturer’s recommendations. 

2.2 General molecular biology 

2.2.1 Isolation of genomic DNA from bloodstream form T. brucei 

Genomic DNA (gDNA) was isolated from bloodstream form (BSF) T. brucei 

brucei strain 427 Lister (S427) (~ 100 ml of 1-2 x 10
6
 cell ml

-1
). Cells were harvested 

by centrifugation (800 x g, 10 min at room temperature) and resuspended in 450 l of 

lysis buffer (10 mM Tris-HCl, pH 8.0; 25 mM EDTA; 100 mM NaCl; 0.5% (w/v) SDS, 

0.1 mg ml
-1 

proteinase K). The resuspended cells was incubated overnight at 56 ºC. 

DNA was extracted with Tris-buffered, pH 8.0 phenol/chloroform/isoamyl alcohol 

(PCI, 25:24:1). The organic phase was separated from the aqueous one containing the 

DNA by two repeated cycles of extraction and centrifugation at 16,000 x g for 1 min. A 

final extraction was done with chloroform/isoamyl alcohol (CI, 24:1). Finally the 

extracted DNA was precipitated with 70% ethanol and let to dry prior to resuspension in 

10 mM Tris-HCl, pH 8.5 and stored at 4 ºC. 

 



Table 2.1 Primers used for recombinant protein expression in E. coli  

Primer use 

 

Name 

 

Primer sequence (5’-3’) 

 

 

Restiction 

Endonucleases 

 

Cloning in expression vectors   

1 TbGSK3short _ORF_s gcgcctcgagATGTCGCTCAACCTTACCGATGC XhoI 

2 TbGSK3short _ORF_as gcgcggatccTTACTTCTTCAGCAGATACTC BamHI 

    

3 TbGSK3long _ORF_s gcgcctcgagATGAGTGAGCGGATTTTGCCGTCG XhoI 

4 TbGSK3long _ORF_as gcgcggatccTTATATCGCATTCTCCGGC BamHI 

    

5 TbGSK3short _K49A_s AAGCACGGGGTCACTAGTAGCAATTGCAAAGGTGATACAAGATCCG Mutation  of 

K49A 6 TbGSK3short _K49A_as CGGATCTTGTATCACCTTTGCAATTGCTACTAGTGACCCCGTGCTT 

    

7 TbGSK3short _K49M_s CGGGGTCACTAGTAGCAATTATGAAGGTGATACAAG Mutation  of 

K49M 8 TbGSK3short_K49M_as CTTGTATCACCTTCATAATTGCTACTAGTGACCCCG 

 

Upper case letters refer to nucleotides corresponding to gene sequences in T. brucei; lower case refers to additional sequences used in generating 

constructs. The restriction sites are underlined. Bold case letters correspond to the mutation sites. 
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2.2.2 DNA amplification 

DNA was amplified by the polymerase chain reaction (PCR) using Platinum 

PCR SuperMix High Fidelity (Invitrogen) with proofreading ability according to the 

manufacturer’s guidelines. A 50 l reaction contained approximately 100 pmol of gene-

specific forward and reverse primers (Table 2.1 and Table 2.2) and approximately 1-

200 ng of genomic DNA or plasmid template. All PCR reactions were carried out in 

200 l tubes (Thermo Scientific) in a Thermo-Hybaid MSB 0.2G thermal cycler. 

Generally the tubes were incubated at 94 ºC for 2 min to denature the template and 

activate the enzyme. PCR amplification was generally performed in 30 cycles of 

denaturation (94 ºC for 30 s), annealing (30 s 55-68 ºC depending on the melting 

temperature of the primers) and extension (1 min at 68 ºC per kb). A final step of 

extension for 10 min at 72 ºC was included. PCR reaction products were stored at 4 ºC. 

 

2.2.3  Agarose gel electrophoresis and extraction of DNA  

DNA size and purity were analysed by agarose gel electrophoresis. Gels were 

prepared by dissolving 0.8% (w/v) agarose in TAE buffer (40 mM Tris-acetate, pH 8.0, 

1 mM EDTA) containing 0.1 µg ml
-1

 ethidium bromide for DNA staining. Separation 

was performed in TAE buffer at 80 V. DNA was visualised using an UVP 

transilluminator. One Kb Plus DNA Ladder (Invitrogen) was used as standard for size 

determination of DNA bands. If required, the DNA band of interest was excised from 

the gel and purified with the QIAquick Gel Extraction Kit (Qiagen) as per 

manufacturer’s guidelines. 

 



Table 2.2 Primers used for generation of knock-outs and rescue constructs 

Primer use 

 

Name 

 

Primer sequence (5’-3’) 

 

 

Restiction 

Endonucleases 

 

Knock-outs    

9 TbGSK3short _5UTR_s ataagaatgcggccgcGAGTGAACAAACACCTCCAAG NotI 

10 TbGSK3short _5UTR_as gtttaaacttacggaccgtcaagcttGTAGTGAATAGTGCGATTTTG HindIII/PmeI 

11 TbGSK3short _3UTR_s gacggtccgtaagtttaaacggatcCATGGTCGTGTTTTAAGTTGTG PmeI/BamHI 

12 TbGSK3short _3UTR_as ataagtaagcggccgcCGTGCCACACCTACTTGCTTC NotI 

Silent Mutation of HindIII  site in TbGSK3 short    

13 TbGSK3short (T960C)_s GGGAGCCAACAACGAAGCTCCCCAGTGGTA Silent mutation  of 

HindIII 14 TbGSK3short (T960C)_as TACCACTGGGGAGCTTCGTTGTTGGCTCCC 

Ectopic copy    

15 TbGSK3short _ORF_s gcgcaagcttcATGTCGCTCAACCTTACCGATGC HindIII 

16 TbGSK3short _ORF_s gcgccatATGTCGCTCAACCTTACCGATGC NdeI 

17 TbGSK3short _ORF_as gcgcggatccTTTACTTCTTCAGCAGATACTC BamHI 

18 TbGSK3short _ORF_as gcgcttaattaaCTTCTTCAGCAGATACTC PacI 

Silent Mutation of HindIII  site in TbGSK3 long   

19 TbGSK3long (T501C)_s CCGTGCGTTGTGAAGCTCCTGGATCATTTCTTCGC Silent mutation  of 

HindIII 20 TbGSK3long (T501C)_as GCGAAGAAATGATCCAGGAGCTTCACAACGCACGG 

Ectopic copy    

21 TbGSK3long _ORF_s gcgcaagcttcATGAGTGAGCGGATTTTGCCGTCG HindIII 

22 TbGSK3long _ORF_as gcgcggatccTTATATCGCATTCTCCGGC BamHI 

23 TbGSK3long _ORF_as gcgcttaattaaTATCGCATTCTCCGGC PacI 

 

Upper case letters refer to nucleotides corresponding to gene sequences in T. brucei; lower case refers to additional sequences used in generating 

constructs. The restriction sites are underlined. Bold case letters correspond to the mutation sites. 
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2.2.4 Cloning of PCR products 

Following PCR (section 2.2.2.) and, when necessary, gel extraction (section 

2.2.3.), blunt-end PCR products were usually sub-cloned into pCR-BluntII-TOPO 

vector (Invitrogen). Ligations were carried out for 30 min on ice, following the 

manufacturer’s guidelines. Ligated TOPO vectors were immediately transformed into 

50 µl TOP10 chemically competent cells, as described in section 2.2.5. Alternatively 

when the PCR products were obtained by primers with overhanging regions they were 

digested with the restriction endonucleases corresponding to their cloning sites (Table 

2.1 and Table 2.2.) and ligated in the vector according to section 2.2.8. 

 

2.2.5 Transformation of competent E. coli cell lines 

Transformation of plasmids was achieved by heat shock of the following 

competent cells: Escherichia coli strains TOP10 (Invitrogen) were used for cloning and 

sequencing, JM109 (Stratagene) for DNA amplification, XL10-Gold Ultracompetent 

(Stratagene) for ligation of expression plasmids, BL21 Star (DE3) (Invitrogen) for 

protein expression of TbGSK3 short and long, and ArcticExpress (DE3) RIL 

(Stratagene) for expression of insoluble proteins at low temperature. Typically, 50 ng of 

plasmid DNA was added to 10 - 50 μl competent cells and incubated on ice for 10 min. 

Cells were then subjected to heat shock according to the manufacturer’s conditions in a 

water bath at 42 °C, followed by a further incubation on ice for 2 min. SOC medium 

(250 μl, containing 0.5% (w/v) yeast extract, 2% (w/v) tryptone, 10 mM NaCl, 2.5 mM 

KCl, 10 mM MgCl2, 20 mM MgSO4 and 20 mM glucose) was added and the resulting 

culture was incubated at 37 °C for 1 h. Cells were then plated out on Luria Bertiani (LB, 

0.5% (w/v) yeast extract, 1% (w/v) tryptone and 1% (w/v) NaCl, pH 7.5) agar plates 

supplemented with appropriate antibiotics. Plates were incubated at 37 °C overnight and 

colonies were picked and grown at 37 °C with agitation at 200 rpm in 10 ml LB 
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medium containing appropriate antibiotics. All the LB media and plates were prepared 

by the media kitchen of the University of Dundee. 

 

2.2.6 Purification and digestion of plasmid DNA  

Transformed cultures were incubated overnight at 37 °C with agitation at 200 

rpm. Cells were harvested by centrifugation (3,800 x g, 15 min, room temperature) and 

plasmid DNA was purified using a QIAprep kit (Qiagen) according to the 

manufacturer’s instructions. Plasmids were analysed by digestion with appropriate 

restriction enzymes. Typically, 10 units of each restriction enzyme (New England 

Biolabs, Promega or Fermentas) and 1 μl of the recommended 10-fold buffer were 

added to 200 ng plasmid DNA, with autoclaved milliQ water added to a final volume of 

10 μl. The total amount of restriction enzymes was kept below 10% for both single and 

double digests. Reactions were incubated at 37°C in a water bath for 2 h and then 

analysed by agarose-gel electrophoresis (section 2.2.3.). For preparative purposes, DNA 

was digested in a larger volume (up to 100 μl) maintaining the equivalent ratio between 

DNA, restriction enzymes and buffer, the reactions were incubated overnight at 37 °C. 

If digested DNA was used for ligation, the restriction enzymes were inactivated 

according to the manufacturer’s indications. Linearised plasmids were treated with 

Antarctic phosphatase (New England Biolabs) according to the manufacturer’s 

indication and phosphatase inactivated for 5 min at 65 °C. Both plasmids and inserts 

were purified by gel extraction (section 2.2.3.) prior to ligation. 

 

2.2.7 DNA sequencing 

DNA sequencing was performed by DNA Sequencing and Services at the 

University of Dundee (http://www.dnaseq.co.uk), using Applied Biosystems Big-Dye 
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Terminator chemistry version 3.1 on an Applied Biosystems 3730 automated capillary 

DNA sequencer. Plasmid DNA samples were submitted at concentrations of 16 – 20 ng 

µl
-1

.  

 

2.2.8 Ligation 

Ligation reactions were carried out with gel-purified restriction fragments 

(section 2.2.6). Purified target vector (~50 ng) and insert were typically combined in 

molar ratios of 1:1, 1:3 and 1:5, respectively, in a 10-µl reaction. To control for 

background vector self-ligation, 50 ng of vector was incubated in the absence of insert. 

Ligations were carried out in the presence of 1 U T4 DNA ligase (Promega or Roche) at 

RT for 5 h or at 4 °C overnight. Following incubation, the T4 DNA ligase was 

inactivated by heating at 65 °C for 10 min. The ligation reaction (1 µl) was transformed 

in 30 – 50 µl XL10-Gold Ultracompetent cells (Stratagene) as in section 2.2.5. Single 

colonies of the transformed cells were used for plasmid purification (section 2.2.6.), and 

the accuracy of the assembled constructs was verified by restriction digest and DNA 

sequencing as previously described (section 2.2.6. and 2.2.7.).  

 

2.2.9 Southern analysis of genomic DNA 

Genomic DNA isolated from wild-type and genetically modified T. brucei was 

analysed by Southern blot (Southern, 1975). DNA (~5 µg) was digested overnight at 37 

°C in the presence of the restriction enzymes (New England Biolabs). The digested 

DNA was resolved on a 0.8% (w/v) agarose gel (section 2.2.3.) and depurinated in 0.25 

M HCl for 10 min. Following equilibration in 0.4 M NaOH, DNA was transferred to a 

positively charged nylon membrane (GE Healthcare) by the downward capillary transfer 

method (Sambrook and Russell, 2001). When the transfer was complete, the membrane 
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was rinsed in 5 X SSC buffer (supplied as 20 X buffer by Invitrogen) for 25 min and 

DNA was cross-linked to the membrane by UV irradiation at 1200 µJ cm
-2

. The 

membrane was pre-hybridised at 42 °C for 2 h in DIG Easy Hyb (Roche) prior to 

overnight hybridisation at 42 °C with the denatured digoxigenin-dUTP-labelled DNA 

probe. Probes were prepared in advance from the open reading frame (ORF) of TbGSK3 

short or its 5’UTR, using PCR DIG Probe Synthesis Kit (Roche), following the 

manufacturer’s guidelines.  

Washing of the membrane post hybridisation, as well as the immunological 

detection of the probe, were performed with the DIG Wash and Block Buffer Set and 

the CSPD ready-to-use reagent (Roche), according to the manufacturer’s guidelines. 

The processed membrane was exposed to Amersham Hyperfilm ECL (GE Healthcare) 

for 2 min. To strip the membrane for subsequent hybridisations, the membrane was 

rinsed in autoclaved ultrapure MilliQ water for 1 min and washed twice for 15 min at 37 

°C with 0.2 M NaOH, 0.1% SDS. The stripped membrane was neutralised in 2 X SSC 

buffer and either stored at 4 °C or pre-hybridised and processed further, as described. 

 

2.3 Recombinant protein expression and purification 

2.3.1 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) 

SDS-PAGE was used to determine the size and the purity of recombinant 

proteins (Laemmli, 1970). Equal volume of 2 X Laemmli buffer (Bio-Rad) containing 

0.5% (v/v) β-mercaptoethanol (ME) was added to each sample and heated for 10 min 

at 70 ºC prior to analysis. Electrophoretic separation of the bands was carried out using 

NuPAGE Novex 4-12% Bis-Tris mini Gels (Invitrogen) and the XCell SureLock Mini-

cell apparatus at 200 V for approximately 50 min using MOPS SDS (Invitrogen) as 



 
Figure 2.1 pET-15b_TEV_BAP cloning/expression region 

Starting Methionine (M), linker (GSS), His6 tag (HHHHHH), TEV protease 

recognition motif (ENLYFQG, the cleavage occurs between the Q and G residues), 

Biotin Acceptor Peptide (BAP) (GGLNDIFEAQKIEWH) and cloning sites (XhoI and 

BamHI). 
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running buffer. Protein bands were stained with Coomassie Blue (0.25 % (w/v) 

coomassie Brilliant Blue R250, 40% (v/v) methanol and 10% (v/v) acetic acid) and 

destained with 20% (v/v) methanol and 10% (v/v) acetic acid. Precision Plus (All blue, 

Bio-Rad) protein standard was used to determine the relative molecular mass (Mr) of 

the resolved bands. 

 

2.3.2 Protein quantification 

Recombinant proteins and protein content from lysates were quantified using the 

Bio-Rad protein assay based on the Bradford method (Bradford, 1976) according to the 

manufacturer’s instructions using BSA as standard. Absorbance at nm was 

measured in a WPA Biowave II spectrophotometer. Recombinant proteins were also 

quantified using the calculated extinction coefficient (ProtParm) at 280 nm using the 

WPA Biowave II spectrophotometer. 

 

2.3.3 Recombinant protein expression 

The plasmid pET-15b-TEV-BAP was a modification of pET-15b (Novagen) 

where the sequence encoding the thrombin cleavage site was replaced with the Tobacco 

Etch Virus (TEV) protease recognition motif and the Biotin Acceptor Peptide sequence 

was also inserted (Figure 2.1). This plasmid was a generous gift of Ms Sharon 

Shepherd (University of Dundee). This expression plasmid allows the purification of the 

recombinant protein by metal-ion affinity chromatography using the Hexahistidine tag 

(His6), the cleavage by TEV protease that can be easily produced in house and the 

specific biotinylation at the N-terminus by the biotin-protein ligase BirA (Predonzani et 

al., 2008). Expression constructs were transformed into the expression strains of E. coli 

indicated in Table 2.3 as described in section 2.2.5. Single colonies were cultured as 



Table 2.3 Protein expression and purification conditions 

 

Protein No 

 

Expression conditions 

 

Nickel affinity chromatography binding 

buffer
a
 

Purification method
b
 

TbGSK3 short 1 BL21 Star (DE3) 

Auto-induction medium + Amp,  

22 ºC, 20 h 

 

20 mM Hepes, pH 7.4; 0.5 M NaCl; 1 mM 

TCEP; 0.05% (w/v) CHAPS; 5% (v/v) 

glycerol; 30 mM imidazole 

 

IMAC 

TEV cleavage 

IMAC 

SEC 

TbGSK3 long 2 BL21 Star (DE3) 

Auto-induction medium + Amp,  

22 ºC, 20 h 

 

20 mM Hepes, pH 7.4; 0.5 M NaCl; 1 mM 

TCEP; 0.05% CHAPS; 5% (v/v) glycerol; 

30 mM imidazole 

 

IMAC 

TEV cleavage 

IMAC 

TbGSK3(K49A) short 3 BL21 Star (DE3) 

Auto-induction medium + Amp,  

22 ºC, 20 h; 37ºC, 20 h 

 

20 mM Hepes, pH 7.4; 20-500 mM NaCl; 

1 mM TCEP; 0.05-0.5% CHAPS; 20-30 

mM imidazole 

 

IMAC: low level of 

expression 

TbGSK3(K49A) short 4 ArcticExpress (DE3) RIL 

Auto-induction medium + Amp,  

13 ºC, 48 h 

 

20 mM Hepes, pH 7.4; 0.5 M NaCl; 1 mM 

TCEP; 0.05% CHAPS; 30 mM imidazole 

 

IMAC 

IEX 

IMAC after ATP/MgCl2 

incubation 

TbGSK3(K49M) short 5 ArcticExpress (DE3) RIL 

Auto-induction medium + Amp,  

13 ºC, 48 h 

 

20 mM Hepes, pH 7.4; 0.5 M NaCl; 1 mM 

TCEP; 0.05% CHAPS; 30 mM imidazole 

 

IMAC 

IMAC with washes with 

ATP/MgCl2/denaturated 

protein from E. coli. 

 
a
Lysis buffers were obtained supplementing binding buffers with 500 M activated sodium-orthovanadate, 500 M sodium fluoride, 500 M sodium--

glycerophosphate, 500 M sodium-pyrophosphate; EDTA-free protease inhibitor tablet (Roche) and DNase I (Roche). 
b
 Metal-ion affinity chromatography (IMAC), size-exclusion chromatography (SEC), ion-exchange chromatography (IEX). 
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previously described (section 2.2.5.). Cultures were harvested by centrifugation (3800 x 

g, 15 min, RT) and resuspended in fresh LB containing 100 g ml
-1

 ampicillin. The 

cultures were then used to inoculate 1 L of pre-warmed auto-induction medium with 

ampicillin. BL21 Star (DE3) cells in auto-induction medium were incubated with 

agitation at 200 rpm for 3 h at 30 ºC, followed by 24 h incubation at the selected 

temperatures (Table 2.3). ArcticExpress (DE3) RIL cells in auto-induction medium 

were incubated with agitation at 200 rpm for 6 h at 30 ºC, followed by 48 h incubation 

at 13 ºC. Following incubation, cells were harvested by centrifugation (4,500 x g, 30 

min, 4 ºC). Cell pellets were resuspended in lysis buffer (Table 2.3), either processed or 

flash frozen in liquid nitrogen and stored at -80 ºC. 

 

2.3.4 Immobilised metal ion affinity chromatography  

Hexahistidine-tagged recombinant proteins were purified by immobilised metal 

ion affinity chromatography (IMAC). Cells were lysed using a Continuous One-Shot 

Cell Disruptor (Constant Systems) under a 30 kpsi pressure. Lysates were clarified by 

centrifugation (20,000 x g, 30 min, 4 °C) and supernatants were passed through a 0.22 

μm PES membrane filter (Helena Biosciences). A 5 ml HiTrap chelating HP column 

(GE Healthcare) was pre-equilibrated using a binding buffer identical to the 

composition of lysis buffer (10 X column volume) before the filtrate was passed 

through the column. The column was washed with 20 ml of binding buffer and 

connected to an AKTA
 
FPLC purifier. Bound proteins were eluted in 2 ml fractions 

from the column using a 0-100% gradient of 500 mM imidazole in the binding buffer at 

a flow rate of 5 ml min
-1

. Eluates were analysed by SDS-PAGE (section 2.3.1.). 

Fractions (2 ml) containing the highest concentrations of recombinant proteins were 

pooled together and dialysed (4 °C for 16 h) against binding buffer in absence of 
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imidazole in a 10-kDa molecular weight cut-off slide-A-lyzer cassette (Pierce 

Biotechnology) to remove imidazole. 

Purified TbGSK3 short and long were further cleaved of their hexahistidine tag 

(section 2.3.5). Further purification of contaminating proteins co-purifying with 

TbGSK3(K49A) and TbGSK3(K49M) short kinase dead mutants was attempted by 

anion exchange chromatography (section 2.3.6.) and further metal ion affinity 

chromatography after either incubation with the binding buffer supplemented with 1 

mM ATP, 1 mM MgCl2 or extensive washes with binding buffer containing 5 mM ATP, 

10 mM MgCl2 and 0.1 mg ml
-1

 denaturated proteins from E. coli (Rial et al., 2002).  

 

2.3.5 TEV cleavage of hexahistidine-tag 

Hexahistidine tags were removed from recombinant TbGSK3 short and long by 

TEV cleavage following nickel column affinity chromatography. Recombinant TbGSK3 

short and long were incubated with His6-tagged TEV protease (prepared by Mr Adam 

Roberts, University of Dundee), with a ratio of 10:1 (w/w) recombinant enzyme versus 

TEV protease at 4°C for 16 h, during dialysis in binding buffer in absence of imidazole. 

Following incubation, reactions were passed through a 1-ml HiTrap chelating HP 

column to remove free tags and the tagged proteins, which were bound to the column. 

The flowthrough containing the cleaved proteins was collected. TbGSK3 long was 

dialysed in the storage buffer (20 mM Hepes, pH 7.4; 150 mM NaCl; 1 mM DTT), 

concentrated by centrifugation (3,800 x g, 4°C) using vivaspin 20 concentrators 

(Sartorius Stedim Biotech) with 10 kDa MWCO and polyethersulfone membranes. 

Concentrated TbGSK3 long was quantified (section 2.3.2) and flash frozen in small 

aliquots following the addition of 10% (v/v) glycerol. The aliquots were stored at -80 

°C. TbGSK3 short was further purified by gel filtration chromatography (section 2.3.7).  
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2.3.6 Anion-exchange chromatography 

Prior to anion-exchange chromatography pooled fractions of cleaved 

recombinant protein were desalted using PD-10 columns (GE Healthcare) according to   

manufacturer’s guidelines and concentrated using a vivaspin 20 concentrator (Sartorius 

Stedim Biotech) (10 Kda MWCO).  A 5-ml HiTrap Q HP column (GE Healthcare) was 

pre-equilibrated with 10 X column volume of the appropriate binding buffer. Desalted 

proteins were loaded manually onto the column using a syringe. The column was 

washed with 20 ml binding buffer and connected to the AKTA FPLC purifier. Bound 

proteins were eluted in 2 ml fractions from the column using a 0-100% gradient of 0.5 

M NaCl in the binding buffer at a flow rate of 5 ml min
-1

. Eluates were analysed by 

SDS-PAGE and fractions containing the highest concentrations of pure recombinant 

proteins were pooled.  

 

2.3.7 Gel filtration chromatography 

Cleaved TbGSK3 short was dialysed overnight at 4 °C in the gel filtration buffer 

(20 mM Hepes, pH 7.4; 150 mM NaCl; 1 mM DTT; 10% (v/v) glycerol) and separation 

by gel filtration was performed using HiLoad 26/60 Superdex 200 prep grade column. 

Column equilibration, automated sample loading and protein separation were carried 

out according to the manufacturer’s guidelines. Fractions (2 ml) were collected and 

analysed by SDS-PAGE (section 2.3.1). Following each run, gel filtration standards 

(Bio-Rad) were applied to the column and resolved under the same conditions as the 

sample. To determine the molecular mass (Mr) of the resolved proteins, a calibration 

curve was prepared by plotting log Mr for each gel filtration standard as a function of its 

elution volume. TbGSK3 short was concentrated by centrifugation (3,800 x g, 4°C) 

using a vivaspin 20 concentrator (Sartorius Stedim Biotech) with 10 kDa MWCO. 



Table 2.4  Primary and secondary antibodies used for Western blotting analysis  

Primary antibody 

 

Immunogen 

 

Dilution Secondary antibody Dilution 

Mouse anti-phospho-

GSK3 (Tyr279/Tyr216) 

mAb,  

clone 5G-2F (Upstate, 

Millipore) 

 

c-KQLLHGEPNVS[pY]ICSRI 

203-219 from Drosophila 

GSK3/shaggy enzyme 

1:375 or 1:500 Goat anti-mouse IgG, 

HRP-conjugated (Bethyl)  

1:5,000 

 

     

Mouse anti-GSK3/ 

mAb, clone 4G-1E 

(Upstate, Millipore) 

 

c-KQLLHGEPNVSYICSRI 

203-219 Drosophila 

GSK3/shaggy enzyme 

1:375 or 1:500 Goat anti-mouse IgG, 

HRP-conjugated (Bethyl)  

1:5,000 

 

     

Rabbit anti-GSK3/ 

mAb 

(Upstate, Millipore) 

 

Recombinant full length human 

GSK3 

1:1000 Goat anti-rabbit IgG,  

HRP-conjugated (BioRAD) 

 

1:3,000 
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Concentrated TbGSK3 short was quantified (section 2.3.2.) and flash frozen in small 

aliquots. The aliquots were stored at -80 °C.  

 

2.3.8 Protein characterization by mass spectrometry 

Identification of proteins by mass fingerprinting analysis was performed by the 

FingerPrints Proteomics Facility at the University of Dundee. Samples were submitted 

to the facility resolved on a NuPAGE Novex 4-12% Bis-Tris gel and stained with 

Coomassie blue (section 2.3.1). Protein bands of interest were excised from the gel and 

trypsin-digested, prior to analysis by nano-LC coupled to electrospray ionisation tandem 

MS (ESI-MS-MS), using the 4000 QTRAP (Applied Biosystems) tandem MS system. 

 

2.3.9 Protein characterization by Western blotting 

Prior to analysis by Western blotting, unstained SDS-PAGE gels (section 2.3.1.) 

were equilibrated in Towbin transfer buffer (25 mM Tris, 192 mM glycine, 20% (v/v) 

methanol; Towbin et al., 1979). Proteins were transferred onto Protran nitrocellulose 

membrane (Whatman) using Trans-Blot SD semi-dry electrophoretic transfer cell (Bio-

Rad) at 25 V for 20 min. Membranes were incubated for at least 1 h with 5% (w/v) dry 

milk in PBS containing 0.5% (v/v) Tween 20 to block non-specific binding sites. 

Primary and secondary (horseradish peroxidise (HRP)-conjugated) antibodies (Table 

2.4) were sequentially incubated with the blot for 1 h each in PBS containing 1% (w/v) 

dry milk and 0.5% (v/v) Tween 20, with an intermediate washing step (3 x 10 min) in 

antibody dilution buffer. Finally, membranes were washed (3 x 10 min) in buffer 

without milk. Washed blots were incubated with Amersham ECL or ECL Plus
 
detection 

reagent (GE Healthcare) and exposed to Hyperfilm ECL (GE Healthcare), following the 

manufacturer’s protocol. 
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2.4 Enzymatic and kinetic studies 

2.4.1 TbGSK3 biochemical characterization 

TbGSK3 short was sub-cloned and fused to an N-terminal maltose binding 

protein which was subsequentially expressed and purified as previously reported in 

literature (Ojo et al., 2008). For biochemical characterization of TbGSK3 short, the 

kinase assay buffer (25 mM Tris-HCl, pH 7.5, 10 mM MgCl2, 5 mM DTT, 0.02% (w/v) 

CHAPS, 2 U ml
-1

 Heparin) and mix of ATP/[γ-
33

P]-ATP and GSP2 substrate (Biotin-

C6-YRRAAVPPSPSLSAHSSPHQ[pS]EDEEE) (Pepceuticals) were used in a 

radiometric P-81 cellulose filterplate assay (Whatman).  

 

2.4.2 Determination of the TbGSK3 short Km for the substrates 

The Michaelis-Menten constants (Km) for the ATP and the peptide substrate 

GSP2 were determined by varying the concentrations of both substrates in a matrix 

experiment. To determine bireactant kinetic parameters, the equation:  

 [A][B][B][A]

[A][B]max




abba KKKK

V
v


   (equation 1) 

 

was used, where v represents the measured velocity, Vmax is the maximum velocity, [A] 

and [B] and Ka and Kb are the concentrations and Michaelis Menten constants, 

respectively, of substrates A and B, and  is the co-operativity factor between the two 

substrates (Segel, 1993). The  parameter was fitted either as free or fixed to 1 and the 

best fit was assessed using the Akaike information criterion (Burnham and Anderson, 

2002). Graphs and analysis were performed using SigmaPlot 10.0.  
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2.4.3 Determination of mechanism of inhibition 

To establish mode of inhibition, rates were determined at 10 inhibitor 

concentrations with 4 varied concentrations of one substrate with a saturating 

concentration of the other. Each data set was individually fitted to the Michaelis-Menten 

equation, and the resulting Lineweaver-Burk plots were examined for diagnostic 

patterns for competitive (equation 2), mixed (equation 3), or non-competitive inhibition 

(equation 4).  

Competitive inhibition   
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Mixed inhibition   
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Non-competitive inhibition   
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  (equation 4) 

 

Where v represents the measured velocity, Vmax is the maximum velocity, [S] is the 

concentration of substrate S and Km is the Michaelis-Menten constant, and Ki and Ki’are 

the constants of inhibition (Segel, 1993). Graphs and analysis were done using Grafit 

6.0. 

 

2.4.4 Surface Plasmon Resonance 

Amine-coupling reagents (N-ethyl-N’-(3-dimethylaminopropyl)carbodiimide [EDC], N-

hydroxy-succinimide [NHS], and ethanolamine HCl) were purchased from Biacore AB.  
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The Running Buffer used in all SPR experiments was 25 mM Tris-HCl (pH 7.5), 150 

mM NaCl, 10 mM MgCl
2 

and 5 mM DTT plus 1% DMSO, and degassed and sterile-

filtered through 20 μm filters by vacuum filtration apparatus (Millipore).  

Interaction analyses were performed using Biacore T100 optical biosensor equipped 

with research-grade CM5 sensor chips (Biacore AB). Biacore instrument was primed 

with HBS-N buffer (Biacore) after removing maintenance chip and docking CM5 

sensor chip. To prepare the sensor chip for interaction analysis, the dextran layer 

coating the CM5 chip surface was preconditioned with two consecutive injections for 

each of 100 mM HCl, 50 mM NaOH, and 0.5 % SDS. Aliquots of these preconditioning 

solutions were injected over all four flow cells for 6 s at a flow rate of 100 μL min
-1

. 

Data were always collected at the highest collection rate.  

Coupling conditions were first optimised by preparing 1 μL of TbGSK3 short in 50 μL 

of Immobilisation Buffer (Biacore) at two different pHs (5.5 and 4.5). The ligand 

solutions were injected over sensor chip surface using a contact time of 2 min at a flow 

rate of 10 μL min
-1

. Subsequently, a short pulse of 50 mM NaOH was injected over the 

surface at flow rate 100 μL min
-1

 to remove last traces of the electrostatically bound 

ligand.  

Using a flow rate of 10 μL min
-1

, the sensor chip’s four flow cells were activated 

at 25 °C with a 7 min injection of a 1:1 mixture of EDC and NHS. For amine coupling, 

1 μL of GSK-3 (concentration = 0.6 mg mL
-1

) along with 2 μL of 10 mM ATP and 100 

μL acetate (pH 5.5) was injected at a flow rate of 10 μL min
-1

 for 7 min. Finally, 1M 

ethanolamine was injected for 7 min to deactivate the surface. To test for analyte (ATP) 

binding, a threefold dilution series of six concentrations with a starting concentration of 

500 μM was prepared and injected at flow rate of 10 μL min
-1

 at 20 °C. One flow cell 

was used as a reference to substract nonspecific binding, drift and bulk refractive index. 
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2.4.5 Isothermal Titration calorimetry 

Both TbGSK3 short and TbGSK3 long were extensively dialyzed against buffer 

containing 25 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 1 mM DTT, 0.02% CHAPS and 

1% DMSO. Experiments were carried out at 20 °C with a VP-ITC titration calorimeter 

(MicroCal Inc.) with 1 μM protein in the cell and 30 μM DDD00085893 in the syringe. 

Each titration experiment consisted of a 5 μl injection followed by 29 injections of 

10 μl. Data were fitted to a single binding site model using Origin (version 7.0 

MicroCal). 

 

2.5 Screening 

2.5.1 Compound library 

The kinase focused set library was collated from commercial sources. At the 

time of screening, the library included 4110 compounds, with purity confirmed to be 

higher than 90%. The criteria used for the library selection were previously described in 

literature (Brenk et al., 2008). Briefly, the selection was based upon literature and patent 

searches of already known kinase scaffolds, which were then used to assemble the 

collection of commercially available inhibitors. The virtual set was filtered in order to 

eliminate non drug-like compounds, reactive or toxic groups. The final library contained 

113 scaffolds that were represented with a minimum of 1 compound and a maximum of 

50 examples per scaffold.  

 

2.5.2 Screening workflow 

The kinase library was screened in a single point assay at 25 M in a KinaseGlo 

format (Promega).  Compounds showing a percentage of inhibition higher than 3-times 

the standard deviation (SD) of the high controls were cherry picked and re-tested in 



 
 

Figure 2.2 KinaseGlo assay principle  

(A) KinaseGlo is a luminescent-based assay that detects the amount of ATP left 

un-reacted at the end of the kinase reaction. The emission of light is due to the 

oxidation of the substrate luciferin to oxyluciferin by the addition of Luciferase 

enzyme in the presence of Mg
2+

.
 
(B) Linear regression of the titration curve of the 

ATP from to 10 M up to 170 nM, linear regression and regression coefficient are 

shown.  
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double point at 25 M. The reconfirmed hits were tested in 10-data points curves from 

30 M to 1 nM in two independent determinations in a Flashplate assay (PerkinElmer). 

The material from the top concentration of the curve was analysed by LC-MS in order 

to confirm structure and purity of the hits. Where possible, validated hits were 

repurchased or re-synthesised in house for the final validation. Only fully validated hits 

were further investigated. Data from the screening campaign were analysed in 

collaboration with a medicinal chemist and a computational chemist in the DDU (Dr 

Andrew Woodland and Dr Torsten Luksch, respectively) 

 

2.5.3 Primary screening assay – KinaseGlo format 

For the primary screening of the focussed kinase inhibitor library a 384-well 

KinaseGlo (Promega) luminescence-based assay previously described was used (Ojo et 

al., 2008). The luminescence is inversely related to kinase activity. Unreacted ATP is 

used as substrate by Ultra-Glo Luciferase when Kinase-Glo Reagent is added to stop the 

kinase reaction, products of the reactions are the mono-oxygenation of luciferin and the 

generation of light (Figure 2.2 A). The ATP titration curve done in TbGSK3 kinase 

buffer confirmed that the light emission was linear up to 10 M ATP (Figure 2.2 B). 

Luminescence is generally less prone to interference from library compounds than 

fluorescence-based assays, and in this particular assay format inhibitors of the 

Luciferase enzyme are not detected as false positives.  

 The reactions contained 7.5 nM TbGSK3 short, 3.2 μM GSP2 substrate peptide 

(Biotin-C6-YRRAAVPPSPSLSAHSSPHQ[pS]EDEEE) (Pepceuticals), 1 μM ATP and 

25 μM test inhibitor compound in optimised kinase assay buffer in a final volume of 30 

l. DMSO and an 8-point titration of GW8510 (Sigma) from 1 μM to 50 pM were 

included as controls. Reactions were incubated at room temperature for 1 h and stopped 
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by the addition of 30 l KinaseGlo reagent. Plates were then sealed and the signal was 

left to stabilize for 1 h in the dark before luminescence was determined using a 

TopCount NXT HTS counter (PerkinElmer).  

 

2.5.4 Potency screening assay – Flashplate assay 

For hit validation and all subsequent compound potency determinations, a 

radiometric 96-well Flashplate assay (PerkinElmer) was adopted, with a final volume of 

50 l per reaction. Compounds were solubilised in DMSO at a top concentration of 3 

mM and serially diluted to achieve 10-point titration of final assay concentrations from 

30 μM to 0.3 nM with a final DMSO concentration of 1% (v/v). The reaction mixtures 

contained 1 μM biotinylated GSP2 substrate (Biotin-C6-

YRRAAVPPSPSLSAHSSPHQ[pS]EDEEE), 1 μM ATP, 3.7 KBq/well [γ-
33

P]-ATP 

and 2.5 nM TbGSK3 short in the TbGSK3 kinase assay buffer (25 mM Tris-HCl, pH 

7.5, 10 mM MgCl2, 5 mM DTT, 0.02% (w/v) CHAPS, 2 U ml
-1

 Heparin). Inhibitors 

were screened for selectivity assessment also against HsGSK3  and HsCDK2/Cyclin 

A.  

For HsGSK3  assay the reaction mixes contained 1 μM biotinylated GSP2 

substrate, 2 μM ATP, 7.4 KBq/well [γ-
33

P]-ATP and 15 nM HsGSK3  in the TbGSK3 

kinase assay buffer. For HsCDK2/cyclin A assay the reaction mixtures contained 1 mM 

CDK5 biotinylated peptide substrate (Biotin-C6-PKTPKKAKKL), 1 μM ATP, 7.4 

KBq/well [γ-
33

P]-ATP and 2 nM HsCDK2/cycine A in the kinase assay buffer (50 mM 

Tris-HCl, pH 7.5, 10 mM MgCl2, 2 mM DTT, 100 mM NaCl, 0.2 mM EGTA, 0.02% 

(v/v) Brij35).  

Reactions were incubated for a further 60 min at room temperature on a shaker 

before being terminated by the addition of 25 mM EDTA. Reaction mixtures were 
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transferred to 96-well streptavidin-coated Flashplates (PerkinElmer) and incubated for 

60 min at room temperature on an orbital shaker. Plates were washed twice with PBS, 

0.1% (v/v) Tween 20 using a microplate washer (Wellwash AC Thermo Labsystems), 

sealed and read using a TopCount NXT HTS counter (PerkinElmer).  

 

2.5.5 Screening batch – pass criteria 

During screening quality control (QC) plates were added as follows: 2 QC plates 

for every 6 assay plates for the primary screen and re-test screen; 2 QC plates for every 

12 assay plates for the potency screen. Each assay plate had also internal QC 

represented by high (un-inhibited reaction) and low controls (no enzyme) and a standard 

inhibitor curve. Analysis of the QC data enabled the acceptance of a batch of plates 

based upon three main parameters: standard inhibitor IC50 in a range of acceptance, Z'-

factor ( 'Z ) value ≥ 0.6 (equation 5), coefficient of variation (CV) ≤ 10%. 
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
    (equation 5) 

Where 'Z  represents the Z'-factor, High  and Low  are the standard deviations of the 

high and log controls respectively, and High  and Low  are the average of the high and 

log controls respectively (Zhang et al., 1999).  

 

2.5.6 Mammalian kinase profiling 

Selected compounds were screened against a panel of mammalian kinases 

routinely run by the Division of Signal Transduction Therapy (DSTT) at the University 

of Dundee in duplicate point at 10 M. Enzymes included in the panel and assay 

conditions are reported in literature (Bain et al., 2007). All biochemical assays are run 
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below the Km for the ATP for each enzyme allowing comparison of inhibition across the 

panel.  

 

2.5.7 Data analysis 

IC50 values were determined using a 4-parameter equation in XLFit 4.2 model 

205 (equation 6):  
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  (equation 6) 

The inhibition was background corrected and normalized for the un-inhibited 

reaction, bottom and top values were left free to float, but could be fixed at 0 and 100% 

inhibition respectively, if needed. In equation 6, y is the percentage of inhibition at 

inhibitor concentration [I].  IC50 is defined as the concentration of inhibitor for which 

the activity of the enzyme is inhibited of 50% and Hill slope is a measure of the 

stoichiometry of the reaction. For 1:1 interaction between inhibitor and ligand a Hill 

slope factor of 1 is expected (Copeland, 2005). 

 

2.5.8 Proliferation assay of MRC5 and BSF T. brucei cells 

The routine screen of hits identified against BSF T. brucei and MRC5 (human 

lung fibroblast) was performed by the Drug Discovery Unit, and in particular Mr Iain 

Collie, Ms Bhavya Rao and Ms Irene Hallyburton. Mr Daniel James assisted with the 

data management and analysis. Measurement of inhibition of the proliferation of MRC5 

cells was performed using a modification of cell viability assay previously described 

(Raz et al., 1997). Compounds (50 μM to 0.5 nM, 0.5% DMSO final concentration) 

were incubated with 2 x 10
3
 cells per well in a final volume of 200 l in the appropriate 

culture medium (MEM with 10% foetal bovine serum) in clear 96 well plates (Greiner). 
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Plates were incubated at 37 °C in the presence of 5% CO2 for 69 h. Rezasurin was then 

added to a final concentration of 50 μM, and plates were incubated as above for a 

further 4 h before being read on a BioTek flx800 fluorescent plate reader. Measurement 

of inhibition of the proliferation of BSF T. brucei brucei strain 427 lister and analysis of 

the data was done accordingly to section 2.6.6.  

 

2.6 T. brucei cell culture and genetic manipulation 

2.6.1 Bloodstream form T. brucei cell culture 

BSF T. b. brucei strain Lister 427 (S427), previously genetically modified to 

express T7 RNA polymerase (T7RNAP) and the tetracycline repressor protein (TetR) 

(Wirtz et al., 1999) was used as the parental cell line referred hereafter as wild-type 

(WT). This cell line is under G418-neomicin (NEO) selection and allows inducible 

expression of ectopic genes under the control of the T7 promoter and tetracycline 

operator. Wild-type and genetically modified T. brucei cell lines generated during this 

study were routinely diluted every time they reached a concentration of approximately 2 

x 10
6
 cells ml

-1 
in fresh modified HMI9-T medium (HMI-9 containing 56 mM 

thioglycerol in place of 200 mM 2-mercaptoethanol) supplemented with 2.5 g ml
-1

 of 

G418 to sustain the drug selection and the required drugs for the genetic modified cell 

lines. Cells were routinely cultured at 37 ºC with 5% CO2. HMI-9T medium was 

routinely prepared by the Drug Discovery Unit, University of Dundee.  

 

2.6.2 Cell density  

BSF T. brucei cells were counted manually using a Neubauer hemocytometer 

chamber under a light microscope (Zeiss). Alternatively, cells were counted using a 

CASY cell counter Model TT (Sharfe) according to the manufacturer’s guidelines. 



 
 

Figure 2.3 Schematic representing cloning steps in the construction of knock-out 

cassettes 
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2.6.3 Generation of TbGSK3 short single knock-out cell lines 

Single knock-outs (SKO) of TbGSK3 short (Tb927.10.13780) were generated by 

homologous recombination (Figure 2.3 and section 4.1.2). The replacement cassettes 

were generated by designing primers for the 3' and 5' untranslated regions (UTR) 

immediately before and after the open reading frame (ORF). Using the Tritryps.org 

genome browser application, the 5'-UTR region upstream and 3'-UTR region 

downstream of the codifying region of TbGSK3 short were selected with a size of 359 

bp and 301 bp, respectively. The 5'-UTR and 3'-UTR were PCR amplified from T. 

brucei S427 genomic DNA (section 2.2.1.) using TbGSK3short_5UTR_s and 

TbGSK3short_5UTR_as, TbGSK3short_3UTR_s and TbGSK3short_3UTR_as coupled 

primers, respectively (Table 2.2). The 5'-3'UTR region was subsequently knitted by 

overlap extension PCR (Roper et al., 2002) of the two UTRs using the 

TbGSK3short_5UTR_s and TbGSK3short _3UTR_as primers and introduction of the 

linking region HindIII, PmeI and BamHI. The resulting PCR product was inserted using 

the cloning NotI sites in a pGEM-5Zf (+) vector (Promega). Either the resistance genes 

hygromycin phosphotransferase (HYG) or puromycin acetyltransferase (PAC) were 

subsequently inserted into the cloning sites HindIII and BamHI. DNA sequencing 

confirmed the accuracy of the final transfection constructs. Genetically modified cell 

lines were named accordingly the nomenclature defined by Clayton and colleagues 

(1998) (Table 2.5). 

 

2.6.4 Generation of transgenic T. brucei cell lines 

Wild-type BSF T. brucei cells were transfected using the Amaxa Nucleofector 

system (Lonza), according to Burkard (2007). Briefly, plasmid DNA was linearised by 



 

Table 2.5 Lists of mutant cell lines generated in BSF T. brucei 

Genotype
a
 Restriction sites

b
 Markers Abbreviations

c
 

    

TetR NEO GSK3short /GSK3short  NEO WT 

pGEM-5Zf(+): knock-outs    

Δgsk3short::PAC/GSK3short HindIII/BamHI NEO, PAC SKO (PAC) 

Δgsk3short::HYG/GSK3short HindIII/BamHI NEO, HYG SKO (HYG) 

pLew82: leaky over-expression    

GSK3short
Ti

 HindIII/BamHI NEO, BLE WT
OE

 GSK3short
Ti

  

GSK3short
Ti

 Δgsk3short::PAC/GSK3short HindIII/BamHI NEO, PAC, BLE SKO
OE

 GSK3short
Ti

 

pLew100v5: conditional over-expression    

GSK3short
Ti

 HindIII/BamHI NEO, BLE cWT
OE

 GSK3short
Ti

  

GSK3short
Ti

 Δgsk3short::PAC/GSK3short HindIII/BamHI NEO, PAC, BLE cSKO
OE

 GSK3short
Ti

 

GSK3short
Ti

 Δgsk3short::HYG/GSK3short HindIII/BamHI NEO, HYG, BLE cSKO
OE

 GSK3short
Ti

 

GSK3short
Ti

 Δgsk3short::PAC/Δgsk3short::HYG HindIII/BamHI NEO, PAC, BLE, HYG cDKO
OE

 GSK3short
Ti

 

GSK3(K49A)short
Ti

 HindIII/BamHI NEO, BLE cWT
OE

 GSK3(K49A)short
 Ti

 

GSK3(K49A)short
Ti 
Δgsk3short::PAC/GSK3short HindIII/BamHI NEO, PAC, BLE cSKO

OE 
GSK3(K49A)short

Ti
  

TbGSK3long
Ti

 HindIII/BamHI NEO, BLE cWT
OE

 GSK3long
 Ti

 

pLew100: conditional expression    

GSK3short
Ti

 NdeI/BamHI NEO, BSD cWT GSK3short
Ti

 

GSK3short
Ti

 Δgsk3short::PAC/GSK3short NdeI/BamHI NEO, BSD, PAC cSKO GSK3short
Ti

 

GSK3short
Ti

 Δgsk3short::HYG/GSK3short NdeI/BamHI NEO, BSD, HYG cSKO GSK3short
Ti

 

GSK3short
Ti

 Δgsk3short::PAC/Δgsk3short::HYG NdeI/BamHI NEO, BSD, PAC, HYG cDKO GSK3short
Ti

 
a
 Genotype is defined according Clayton and colleagues (1998) rules for genetic nomenclature for Trypanosoma and Leishmania. 

b 
The restriction sites refer to the cloning sites for the plasmid of interest. All constructs were linearised by NotI. 

c 
The abbreviations are defined upon the degree of gene over-expression and control of tetracycline induction. 
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NotI digestion, purified by precipitation in 70% ethanol (v/v) containing 80 mM sodium 

acetate, and resuspended in autoclaved MilliQ water to a final concentration of 1 g l
-

1
. For a single transfection 10 g of DNA was mixed with 4 x 10

7
 cells (logarithmic 

phase of growth) and 100 l of Amaxa Nucleofactor system (Lonza). The 

electroporation was performed using the program X-001 of the Nucleofector II 

electroporator and cells were subsequently incubated in pre-warmed medium overnight 

(section 2.6.1). Approximately 16 h later, the selection drugs were added (5g ml
-1

 

puromycin (PAC), hygromycin (HYG), phleomycin (BLE), or blasticidin (BSD)) and 

cultures were diluted 25- and 625-times and incubated in 24-well plate for 4-5 days. 

Transfected cells with tetracycline inducible expression vectors were cultured in 

medium supplemented with 1g ml
-1

 tetracycline added daily in order to induce the 

exogenous protein expression. Table 2.5 reports the genotype, the cloning sites, the 

markers used for selection and the abbreviated name of all generated BSF T. brucei cell 

lines. 

 

2.6.5 Cloning of genetic modified T. brucei lines 

All mutant T. brucei cell lines were cloned by limiting dilution. After drug 

selection and two passages in fresh medium, parental cell lines were diluted to 1.5 cells 

ml
-1

 and plated in 96-well plate (200 l per well) in order to obtain ⅓ parasite per well 

in a medium supplemented with the relevant drug for selection and tetracycline was 

added daily where required. After 1 week, dividing cells were present generally in 30% 

of the wells, between 5 to 10 clones were selected for further analysis. Clonal cell lines 

were also stabilated at a density of 1 x 10
6
 cell ml

-1
 in HMI9-T medium containing 10 % 

(v/v) glycerol in liquid nitrogen.  

 



 58 

2.6.6 Growth inhibition studies of T. brucei 

The in vitro sensitivity of inhibitors to BSF T. brucei was measured at an 

effective compound concentration which inhibits cell growth by 50% (EC50). One 

hundred and ninety-nine l of a cell suspension (2.5-5 [x 10
3
] cells per ml based upon 

cell growth regeneration time) were plated in 96-well plates. Inhibitors were diluted in 

100% DMSO in a 10-point dilution curve (1:2 dilutions) and 1l inhibitor was added to 

each well by a manual multichannel pipette. Each plate had 8 wells with high controls 

(DMSO only) and 8 wells with low controls (only medium). Generally pentamidine or 

melarsoprol were added as a standard control. After incubation for 69 h at 37 ºC, 50 M 

resazurin was added and the plates were incubated at 37 ºC for additional 4 h. 

Fluorescence due to the formation of resorufin was measured at excitation of 528 nm and  

emission of 590 nm by a BioTek flx800 fluorescent plate reader.  

Background corrected data and normalized with respect to the un-inhibited 

growth were analysed with a four- parameter non-linear regression using GraFit 6.0:  

ottom
I

range
y

Hillslope
b

EC

][
1

50













   (equation 7) 

In equation 7 y is the percentage of inhibition at the corresponding inhibitor 

concentration [I], range is the difference between the high and low controls, bottom is 

the background and EC50 is the effective dose of inhibitor required to inhibit the cell 

growth by 50%. Data are reported as the weighted mean ± SD of three independent 

determinations done in triplicate. 

The weighted mean EC50 and Hill slope coefficient were subsequently used to 

calculate the EC99 (concentration of inhibitor required to kill 99% of cells): 

EC99 = EC50 x 99 
1/Hill slope

   (equation 8) 
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2.6.7 Cell lysis for Western blotting 

Cells were pellet at 800 g at room temperature for 10 min. The cell lysate was 

prepared as reported by Nett and colleagues (2009b). Briefly, cells were washed three 

times in ice-cold PBS prior to lysis with ice-cold RIPA (10 mM Tris-HCL, pH7.5; 1 

mM Sodium--glycerophosphate, 1 mM sodium pyrophosphate; 1 mM sodium fluoride, 

5 mM EDTA, 0.5% NP40, 0.2% sodium deoxycholate, 0.2% SDS, EDTA-free protease 

inhibitor tablet (Roche), 100 M activated sodium-orthovanadate) at a ratio of 1 x 10
9
 

cells per 1 ml of buffer. The lysate was sonicated in ice three times for 15 s at 80% 

power (Jencons) and centrifugated at 14,000 rpm for 20 min at 4 °C. The protein 

concentration of the supernatant was measured using the Bradford protein assay kit 

(Bio-Rad). Equal amount of protein lysate (~10 g) or cells number (~1 x 10
7
) were 

loaded per lane. 

2.7 Chemical-proteomics 

2.7.1 Kinobeads method 

This method relies on the use of kinobeads immobilizing a mixture of seven 

protein kinase inhibitors that interact with a very broad spectrum of kinases and purine-

binding proteins (Bantscheff et al., 2007). The incubation of cell lysate with increasing 

concentration of an unmodified inhibitor results in competition between the inhibitor 

target and the kinobeads. This competition will decrease the iTRAQ (isobaric Tags for 

Relative and Absolute Quantitation) ion sensitivity for peptides derived from the target 

protein. The advantage of this method is that the inhibitor treatment of the cell lysate is 

done before the incubation with the kinobeads, so that is possible by competition to 

identify the inhibitor’s targets and to estimate their IC50 values (White, 2007). More 

details regarding the methods are reported by Urbaniak and colleagues (2012). The 

chemical-proteomic validation was performed in collaboration with Cellzome using hit 
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compounds identified by the target-based screening campaigns I performed for TbGSK3 

short, PK50 and PK53. 

 

2.8 Molecular modelling 

The homology modelling of TbGSK3 short and the generation of binding modes 

of GSK3 07 and GSK3 09 compounds were performed by Dr Torsten Luksch and Dr 

Robert Urich, University of Dundee. 

 

2.8.1 Homology modelling 

The homology model for TbGSK3 short (Tb927.10.1378) was built using the 

human GSK3 beta crystal structures as templates (Protein Data Bank accession no. 

1R0E). HsGSK3 provided a template for 91% of the TbGSK3 sequence (amino acids 

20-348). ClustalW was used to generate the sequence alignments which were 

subsequently used for building the homology models with Modeller9-2 (Sali and 

Blundell, 1993).  

2.8.2 Generation of binding modes 

An energy-minimised conformation of DDD00065658 was built using Sybyl 

(Tripos Inc., Sybyl, St. Louis, MO (USA) 2004). This conformation was manually 

placed in the binding pocket of the TbGSK3 short homology model with Moloc (Gerber 

and Müller, 1995) and subsequently minimised with the Moloc MAB force field. 

During the minimisation process the ligand was considered as fully flexible whereas all 

protein amino acids were kept rigid.  

The putative binding modes of DDD00085893 and DDD00101234 were built in 

the same manner as described for DDD00065658. 
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Chapter 3 Results 



 

 
Figure 3.1 Determination of the kinetic parameters for TbGSK3 short 

The Km for the ATP and the substrate (GSP2) were determined in a matrix 

experiment where the initial velocities (v) were determined as nM of product 

formed per minute. The grid represents the predicted velocities fitted with a 

Random Mechanism with alpha equal to 1. 

 

Table 3.1 Determination of Km for ATP and GSP2  

 MBP-TbGSK3 short  His6-TbGSK3 short 

Substrate 
Km  

(µM) 

 

Published  Km
app

  

(µM) 
(Ojo et al., 2008)

a
 

 

 

Published  Km 

  (µM) 
(Ojo et al., 2011)

b
 

GSP2 8.4 ± 1.3
c
 2.4  6.6 ± 3.6 

ATP 11.0 ± 1.8
c
 4.5  9.4 ± 2.0 

 

a
The Km

app
 values for ATP and GSP2 were measured with a filterplate assay, it is not 

reported if the kinetic parameters were measured at saturating concentration of both 

substrates. 
b
The Km values for ATP and GSP2 were measured with a filterplate assay by varying the 

concentrations of both substrates. 
c
The standard deviation reported is the error associated to the fitting by multi-regression 

analysis. The results reported are representative of one experiment, but the kinetic 

parameters were confirmed by multiple experiments. 
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3.1 Identification of small molecule inhibitors 

3.1.1 Biochemical characterization of TbGSK3 

The short form of the recombinant T. brucei Glycogen Synthase kinase 3 

(TbGSK3 short, Tb927.10.1378) was provided by the University of Washington as part 

of a collaboration with the Drug Discovery Unit (DDU) with the aim of discovering 

novel inhibitors. The recombinant enzyme was tagged at the N-terminus with a maltose 

binding protein (MBP), which simplified the purification procedure and enhanced the 

solubility of the protein. This enzyme had been previously used to screen a small set of 

HsGSK3 inhibitors revealing some preliminary indication of correlation between 

enzyme potency and inhibition of T. brucei growth (Ojo et al., 2008). 

The substrate specificity of TbGSK3 short shows similarity to the human 

isoform, HsGSK3, as it can phosphorylate primed substrates and recognises the same 

consensus sequence as the human enzyme: S/TXXXphoshoS/T (Dajani et al., 2001). 

The substrate used for the biochemical assay was the peptide substrate GSP2 (biotin-C6-

YRRAAVPPSPSLSAHSSPHQ[phosphoS]EDEEE). I determined the Km values for the 

ATP and the peptide substrate in a matrix experiment by varying the concentrations of 

both substrates while measuring the rate of the reaction as nmole of product formed per 

minute. This experimental design permits the determination of the kinetic parameters, 

and also tests for co-operativity between substrates (Figure 3.1). The Km for ATP and 

GSP2 were 8.4 ± 1.3 M and 11.0 ± 1.8 M respectively, with no evidence of co-

operativity. These values are of the same order of magnitude as those previously 

published for the same recombinant MBP-TbGSK3 short used here and a His6-tagged 

TbGSK3 short (Ojo et al., 2008; Ojo et al., 2011) (Table 3.1). The lack of co-

operativity between the two substrates indicates that the concentration of one substrate 
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does not affect the Km of the other one, allowing more flexibility in the set up of 

biochemical assays suitable for hit identification (Copeland, 2003; Yang et al., 2009).  

 

3.1.2 Primary Screen of TbGSK3 short   

A focused kinase library of 4,110 compounds was assembled at the DDU based 

upon literature and patent review that had identified 113 scaffolds able to bind into the 

ATP pocket of kinases; for each scaffold up to 50 examples were purchased that 

fulfilled the criteria of lead-like properties and did not have unwanted functional groups 

(Brenk et al., 2008). This set is biased towards the identification of ATP-competitive 

inhibitors, as it had been collated using already commercial available kinase inhibitor 

scaffolds (Brenk et al., 2008). The primary screening assay I set-up was aimed to 

increase the sensitivity towards ATP-competitive inhibitors, i.e. the ATP concentration 

in the assay was fixed at 1 M, 10-fold below the Km for the ATP of 11 M (Copeland, 

2003).  

KinaseGlo is a luminescent-based assay that detects the amount of ATP left un-

reacted at the end of the kinase reaction. The detection is attributed to the emission of 

light from oxidation of the substrate luciferin to oxyluciferin by the addition of 

Luciferase enzyme in the presence of Mg
2+ 

(Figure 2.1 A). This assay format has many 

advantages: first, it does not require radiolabeled ATP or modified substrates, and, 

second, it is a homogeneous assay that does not require separation steps, hence it can be 

easily automated in microplate assays to increase the assay throughput. One 

disadvantage of this format is its reliance on the measurement of the concentration of 

the unreacted substrate, hence in order to obtain a reasonable signal to noise ratio (SN) 

it is necessary to ensure that the consumption of substrate is higher than 10%. This has 

implications for the accuracy of the potency of the identified hits, in particular with 



 

 

Figure 3.2 GW8510 standard inhibitor IC50 determination  

(A) GW8510 structure. (B) GW8510 prototypical inhibition curve (data are IC50 

± SD, Hill slope ± SD, of 27 independent determinations). GW8510 was used as 

positive control in all assay plates and its potency used as measure of the assay 

reproducibility.  

 

 

Table 3.2 TbGSK3 short assay conditions and screening statistics  

 KinaseGlo assay  Flashplate assay  

TbGSK3 short  7.5 nM  2.5 nM  

GSP2  3.2 M  1 M  

ATP  1 M (<Km)  1 M (<Km) 

Z'
a  0.61 ± 0.02  

(n = 15)
b
 

0.80 ± 0.01 
(n = 34) 

GW8510 IC
50
  10 ± 0.05 nM  

(n = 15) 
6.0 ± 0.7 nM  

(n = 34) 
a
Z' is a measure of the robustness of the assay  (Zhang et al., 1999). 

b
Values are reported as mean ± SEM and number of independent determinations (n). 
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respect to the weaker inhibitors that could be missed as a consequence of deviation of 

enzyme linearity (Copeland, 2005).  

In the primary screen, known inhibitor GW8510 (Ojo et al., 2008) was included 

as a standard control and used as an indicator of the reproducibility of the assay 

conditions across all plates (Figure 3.2 A and B). I screened the focused kinase set in 

384-well assay format as a single point at 25 μM generating a robust set of data  with a 

Z’ parameter above 0.6 (Zhang et al., 1999) (Table 3.2). 

From this primary screen, 567 compounds with percentage of inhibition higher 

than 30% were subsequently re-tested in a duplicate point screen, which gave 517 

reconfirmed compounds with inhibition values higher than 30%, representing a hit rate 

of 12.8% (Figure 3.3 A and B). The high hit rate was due to the fact that the library was 

biased towards kinase inhibitors and that the sensitivity of the assay was enhanced 

towards ATP-competitive inhibitors by the concentration of ATP in the assay set below 

its Km.  

 

3.1.3 Potency Screen of TbGSK3 short 

For hit validation and all subsequent compound potency determinations, I 

developed a radiometric 96-well Flashplate assay (PerkinElmer). Although the 

KinaseGlo format brings many advantages for screening of chemical libraries, its 

reliance upon ATP consumption means it requires a level of substrate consumption 

higher than 10% to achieve an acceptable signal window and hence it is not a suitable 

assay for accurate IC50 determinations. The alternative Flashplate assay measures the 

product formation relying on the transfer of 
33

P-labeled phosphate from ATP to the 

biotinylated substrate. The substrate is selectively bound to the streptavidinated plates, 

the unreacted [γ-
33

P]-ATP removed by a series of washes and the emission of beta 

radiation is detected by addition of scintillation liquid. 



 

 

Figure 3.3 Primary screen 

(A) Distribution of the percentage of inhibition of focussed kinase set. Hits (highlighted in blue) were selected using as threshold 3 

standard deviation units from the average of high controls (≥ 30% inhibition). (B) Correlation plot of the 567 selected hits re-tested in 

duplicate.  
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The assay was performed at a concentration below the Km for ATP of the 

enzyme, so that the Ki
app

 for ATP-competitive inhibitors approximates the measured 

IC50 value, aiding the assessment of selectivity (Cheng and Prusoff, 1973). I carried out 

potency evaluations (10-point curves) in duplicate for the 100 most potent compounds. 

As in the primary screen, the potency assay format yielded highly robust data (Z’ = 0.80 

± 0.08, Table 3.2). The compounds exhibited a range of potencies for TbGSK3 short 

(Table 3.3), which were highly reproducible (Figure 3.4), with 15 compounds having 

IC50 values <1 μM. The structure and purities of the hits taken into potency assessment 

were subsequently confirmed by LCMS. 

 

3.2 Hit validation 

3.2.1 TbGSK3 short series classification 

The confirmed hits were classified by Dr Andrew Woodland into series based 

upon structure similarity and the most potent compound of each series was considered 

as its representative. From the screening of the recombinant TbGSK3 short eight 

compound series were identified (GSK3 01-08), and additional examples of two 

inhibitors series, GSK3 09 and GSK3 10 were synthesised by Dr Robert Urich based on 

a combination of in-house expertise and literature data (Wyatt et al., 2008). Both GSK3 

09 and GSK3 10 series had highly potent inhibitors against TbGSK3 short (Figure 3.5).  

Where possible the hit compounds were repurchased and re-tested. In addition a 

programme of hit expansion, via purchasing of analogues or investigation of the 

presence of similar scaffolds in the DDU large diversity set (Brenk et al., 2008) was 

conducted to expand on the preliminary structure-activity relationship (SAR). All the 

GSK3 series were assessed for chemical properties, evidence of an initial SAR in the 

biochemical assay, correlation of the activity against TbGSK3 short versus the T. b. 



 

 

Figure 3.4 Potency screen 

The 100 most potent hits were tested in 10-data point curve in 2 independent 

determinations, the correlation plot between the LogIC50 of the replicates is 

reported.  

 

 

 

 Table 3.3 Ranking of the kinase set compound potencies 

 

IC50 (µM) Number of Compounds 

<1 15 

1-10 75 

10-20 10 

20-30 - 

 



 

 

Figure 3.5 Compound series identified from focused screening and testing of 

literature compounds  

Most active examples identified from the screen are shown with the core scaffold 

highlighted in red.  
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brucei proliferation assay, toxicity against MRC5 proliferation assay, and selectivity 

against a panel of mammalian recombinant kinases. In particular, two series, GSK3 07 

and GSK3 09, were subjected to further studies (Woodland et al., 2013, Urich et al., 

2014).  

 

3.2.2 GSK3 07 series: correlation, specificity and selectivity 

GSK3 07 is a series of 2,4-diaminothiazol-5-carbaldehydes (Figure 3.5) for 

which only two examples were present in the initial DDU focused kinase set. The most 

potent compound, DDD00065658 had an IC50 value of 0.38 M. This compound 

showed a high ligand efficiency of 0.52 kcal mol
−1 a

 and hence was deemed to be an 

interesting starting point for hit validation (Hopkins et al., 2004). Using a combination 

of diversity and docking studies (section 3.2.7) 21 compounds were selected for testing 

from the DDU general screening and commercial sources. The IC50 values were 

determined for TbGSK3 short, HsGSK3  and HsCDK2/cyclin A as well as EC50 values 

for bloodstream form (BSF) T. b. brucei and MRC5 cell lines. The data for some key 

examples of GSK3 07 are summarised in Table 3.4. The hit expansion was successful 

with compound DDD00086390 (IC50 value of 0.03 M) which was over 10-fold more 

active than the initial hit DDD00065658 (IC50 value of 0.38 M). DDD00086390 

showed also a greater activity for HsGSK3 (IC50 value of <10 nM) than for TbGSK3 

short which seemed to be a general trend for the GSK3 inhibitors from this series. 

GSK3 07 compounds generally showed good levels of selectivity for T. b. brucei versus 

MRC5 cells, giving preliminary indication that inhibition of HsGSK3 could be tolerated 

                                                 

 

 

a
 Ligand efficiency is a measure of the affinity related to the MW: Ligand efficiency = [-RT Ln 

(IC50)] / Nnon-hydrogen atoms 



 

Table 3.4 GSK3 07 Selection of early hits with activities against TbGSK3 

short, HsGSK3β, HsCDK2, BSF T. b. brucei and MRC5 cells 

 

R1 R2 

TbGSK3 

short 

IC50 

(µM) 

HsGSK3β 

IC50 

(µM) 

HsCDK2 

IC50 

(µM) 

BSF  

T. b. brucei 

EC50 

(µM) 

MRC5 

EC50 

(µM) 

        

DDD00065658  
 

0.38 <0.010 

 

0.15 

 

2.6 >15 

DDD00066736 Me 
 

>30 ND ND 38 >50 

DDD00066742 Me 

 

>30 ND ND 29 >50 

DDD00063206 

 

Me 1.1 ND ND 13 26 

DDD00086390 

  

0.03 <0.010 0.27 0.16 13 

DDD00086393 

  

0.04 <0.010 0.045 0.13 >50 

DDD00086398 

  

0.1 <0.010 0.72 0.7 4 

The number of determinations was two or higher. ND: not determined. 



 

 

 

Figure 3.6 Correlation plot for GSK3 07 compounds 

Correlation plot between inhibition of TbGSK3 short and inhibition of 

bloodstream form T. b. brucei cell growth for the initial set of compounds (solid 

lane) and for the later set (dashed lane). 



 

Table 3.5 GSK3 07 Selection of late hits with activities against TbGSK3 short, 

HsGSK3β, HsCDK2/cyclin A, BSF T. b. brucei and MRC5 cells 

 

R1 R2 

TbGSK3 

short 

 IC50 

(µM) 

HsGSK3β 

IC50 (µM) 

HsCDK2/ 

cyclin A 

%I 

At 1 µM 

BSF  

T. b. 

brucei 

EC50 

(µM) 

MRC5 

EC50 

(µM) 

DDD00086390 

  

0.03 0.007 91% 0.2 13 

DDD00088340 

  

0.02 <0.01 97% 0.12 1.6 

DDD00088327 

 
 

 

0.4 2.5 31% 0.4 20 

DDD00088328 

  

0.1 <0.01 90% 0.2 >50 

DDD00088331 

 
 

0.2 0.13 17% 9 35 

DDD00088337 

 
 

0.06 <0.01 84% 0.18 38 

DDD00088338 

  

0.19 <0.01 91% 0.13 11 

DDD00088336 

  

0.7 <0.01 30% 0.4 41 

DDD00088334 

  

0.5 <0.01 65% 5.7 38 

DDD00088342 

 
 

3.4 0.5 21% 0.04 20 

DDD00090123 

  
12 ND ND 0.30 >50 

The number of determinations was two or higher. ND: not determined. 
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to some extent by these cells. It was also observed that it was possible to achieve 

selectivity over HsCDK2, a desirable feature considering the similarity between these 

enzymes and potential toxicity issues related to inhibition of HsCDK2 (Meijer et al., 

2004) (Table 3.4). 

For the early compounds investigated from this series cell efficacy (BSF T. 

brucei LogEC50) correlated with the enzyme potency (TbGSK3 LogIC50) (correlation 

coefficient equal to 0.90) with a 5-fold drop off between the TbGSK3 short and T. 

brucei activities (Figure 3.6). For ATP-competitive inhibitors a drop-off of activity is 

expected between the IC50 values measured in a biochemical assay, where the 

concentration of ATP is below its Km, and the EC50 values measured in the cellular 

assay, where the physiological concentration of ATP is in the millimolar range (Cheng 

and Prusoff, 1973; Knight and Shokat, 2005). Considering that in the case of TbGSK3 

short the Km for ATP determined is 11 μM, the expected drop-off between biochemical 

and cellular assay should be around 100 fold (Knight and Shokat, 2005). Indeed, other 

factors such as protein binding or the requirement for a high level of inhibition of the 

enzyme to achieve a phenotypic effect, could actually result in a drop off greater than 

100-fold. The 5-fold difference between potency against the enzyme and the cell 

activity for this series was inconsistent with an exclusive ATP-competitive mechanism 

of inhibition of TbGSK3 short as the direct cause of the cell activity. 

Further optimisation within this series was designed to improve inhibitor 

potency. The newly synthesised compounds were also tested against TbGSK3 short, 

HsGSK3, HsCDK2/cyclin A, BSF T. b. brucei and MRC5 cells (Table 3.5). Compound 

DDD00088327 showed 6-fold selectivity towards TbGSK3 short (IC50 0.4 M) with 

respect to HsGSK3  (IC50 2.5 M), giving an indication that it was possible to obtain 

compounds more potent towards the parasite isoform of the enzyme. The most 

significant development was the diverging correlation between TbGSK3 potency and T. 



 

  

 

Table 3.6 Mammalian kinase selectivity panel for series GSK3 07 
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MKK1 0 74 84 94 68 96 94 AMPK 41 74 78 85 96 67 101

ERK1 59 91 66 127 20 72 73 MARK3 34 93 59 89 100 25 112

ERK2 26 58 58 59 16 68 95 BRSK2 42 79 53 62 93 55 95

JNK1 36 67 54 103 60 75 98 MELK 34 57 79 42 70 47 89

JNK2 48 65 69 88 39 81 90 CK1 14 37 91 91 82 13 74

p38 MAPK 14 16 48 47 24 8 102 CK2 107 108 99 102 114 111 118

P38 MAPK 47 55 44 74 22 12 82 DYRK1A 12 14 60 71 25 10 88

p38g  MAPK 53 75 81 47 71 77 89 DYRK2 25 26 60 67 39 79 90

p38s MAPK 56 87 63 65 67 62 102 DYRK3 51 69 81 89 57 83 96

ERK8 9 24 19 36 18 14 43 NEK2a 68 88 79 89 93 92 93

RSK1 24 50 48 63 67 29 89 NEK6 60 87 91 102 113 97 100

RSK2 47 82 78 104 85 38 104 IKKb 55 64 67 116 70 82 99

PDK1 64 96 82 94 106 65 108 PIM1 71 80 74 81 94 79 90

PKB 89 95 85 94 85 84 90 PIM2 80 88 76 88 94 91 109

PKB 70 88 88 86 73 85 83 PIM3 32 69 68 48 69 69 82

SGK1 80 85 89 100 81 98 91 SRPK1 26 46 51 45 93 6 92

S6K1 53 55 39 91 78 57 86 MST2 42 94 64 92 97 40 104

PKA 77 86 75 73 97 90 106 EF2K 84 79 83 93 89 95 111

ROCK 2 42 72 56 97 97 55 107 HIPK2 3 35 31 37 64 16 79

PRK2 33 75 62 90 98 57 95 PAK4 32 66 73 61 88 47 88

PKC 70 85 73 84 101 64 100 PAK5 38 80 72 75 103 66 110

PKC zeta 33 68 50 85 83 83 104 PAK6 52 82 94 91 93 87 98

PKD1 29 40 23 53 35 46 85 SRC 42 91 63 85 99 47 99

MSK1 73 82 74 99 122 87 102 LCK 53 86 87 93 86 49 85

MNK1 71 75 70 102 105 110 105 CSK 57 87 84 79 95 90 98

MNK2 70 82 87 99 94 99 96 FGF-R1 39 62 59 99 97 64 87

MAPKAP-K2 98 100 99 104 96 99 102 IRR 16 22 22 32 25 24 93

PRAK 72 74 88 82 96 63 103 EPH A2 77 99 82 106 110 71 106

CAMKKb 15 52 35 98 63 12 83 MST4 65 90 69 79 76 57 90

CAMK1 34 58 62 52 86 55 109 SYK 45 84 81 86 91 37 111

SmMLCK 22 47 51 59 44 29 74 YES1 25 63 31 76 114 26 109

PHK 74 90 92 105 105 88 112 IKKe 35 81 48 85 88 84 108

CHK1 24 91 75 110 96 86 80 TBK1 53 98 80 91 88 92 95

CHK2 27 75 49 90 61 30 53 IGF-1R 41 90 144 78 80 80 118

GSK3 0 12 2 3 1 4 15 VEG-FR 30 77 55 86 57 17 82

CDK2-Cyclin A 2 34 17 48 5 2 13 BTK 60 86 86 98 75 68 79

PLK1 65 84 87 120 82 86 93 IR-HIS 63 85 88 103 75 88 93

Aurora B 59 91 76 72 75 24 107 EPH-B3 78 95 92 105 88 59 94  
 
Compounds were tested in duplicate at 10 M. Data shown as percentage of 

uninhibited activity. The ranking of inhibition is shown as a heat map: red below 

30% residual activity; orange 31-50% residual activity; yellow 51-70% residual 

activity; white above 70% residual activity. The kinase profiling was performed 

by the Division of Signal Transduction Therapy (DSTT) at the University of 

Dundee.  



 

 

 
 

Figure 3.7 Mechanism of inhibition was determined for (A) DDD00088338 

and (B) DDD00088340  

Rates (cpm in 20 min) were determined at the reported inhibitor concentrations in 

M with 4 varied concentrations of ATP at saturating concentration of the other 

substrate. The resulting Lineweaver-Burke plots were examined for diagnostic 

patterns for competitive inhibition and globally fitted to the equation for 

competitive inhibition. 
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brucei anti-proliferative activity, as it is shown by the lack of correlation for these latter 

compounds (Figure 3.6). The unrelated SAR between enzyme activity and cell efficacy 

in vitro is particularly evident for compounds DDD00088342 and DDD00090123, 

which have greater potency against T. brucei cells (EC50 values of 40 nM and 300 nM 

respectively) than against TbGSK3 short (IC50 values of 3.4 M and 12 M 

respectively).  

Finally, the potential toxicity of these compounds was also assessed by testing a 

select group against a panel of mammalian kinases performed by DSTT at the 

University of Dundee (Bain et al., 2003; Bain et al., 2007). Initial compounds 

(DDD00086390, DDD00086405, DDD00086406 and DDD00089411) and late 

compounds (DDD00088338, DDD0008340 and DDD0009213) were profiled at 10 M 

in duplicate (Table 3.6). The profiling results illustrate that these compounds were 

potent inhibitors of the human HsGSK3 (percentage of inhibition of at least 85%) and 

also consistently hit HsCDK2/cyclin A, but selectivity against HsCDK2/cyclin A could 

be achieved. The compounds had a diverse ranking of toxicity against MRC5 cells, with 

the less promiscuous compounds generally being inactive against this cell model.  

 

3.2.3 GSK3 07 series: mode of inhibition and Ki characterization 

I performed studies of the mechanism of inhibition of DDD00088338 and 

DDD00088340, selected compounds from GSK3 07 series, which confirmed that they 

are ATP-competitive inhibitors of TbGSK3 short (Figure 3.7). The resulting Ki values 

(0.25 ± 0.03 µM and 0.05 ± 0.01 for DDD00088338 and DDD00088340, respectively) 

correlated well with the determined IC50 values in the biochemical assay (Table 3.6). 

This was expected, considering that the concentration of ATP in the assay is below the 

Km for the ATP, the IC50 values are a good approximation of Ki. These compounds had 



 

 

 

Table 3.7 GSK3 09 Selection of R1 substituted aminopyrazoles with activities 

against TbGSK3 short, HsGSK3β, HsCDK2/cyclin A, BSF T. b. brucei and 

MRC5 cells 

 

R1 

TbGSK3 
short 
IC50 

(µM)  

HsGSK3β 
IC50 (µM)  

HsCDK2/
cyclin A 

IC50 (µM)  

BSF 
T. b. 

brucei 
EC50  
(µM)  

MRC5 
EC50 
(µM)  

DDD00085893 

 

0.002 < 0.005 0.019 0.52 31 

DDD00085905 
 

0.007 < 0.005 0.010 0.32 0.13 

DDD00085896 

 

0.016 < 0.005 0.269 1.09 2.5 

DDD00085887 
 

0.024 < 0.005 0.038 1.31 0.76 

The number of determinations was two or higher.  



 

 

Table 3.8 Mammalian kinase selectivity panel for series GSK3 09  
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MKK1 54 83 17 76 MARK3 84 93 83 74

ERK1 75 100 33 93 BRSK2 55 77 60 83

ERK2 18 51 2 92 MELK 32 100 13 96

JNK1 31 77 8 71 CK1 55 88 25 89

JNK2 51 82 15 63 CK2 74 100 21 81

P38α MAPK 81 80 71 81 DYRK1A 6 84 1 79

P38β MAPK 74 95 91 90 DYRK2 3 63 1 28

P38γ MAPK 60 72 24 95 DYRK3 24 100 2 80

P38σ MAPK 57 85 38 72 NEK2a 100 99 69 95

ERK8 14 27 7 47 NEK6 100 84 70 82

RSK1 74 70 54 77 IKKb 54 100 36 86

RSK2 92 82 93 78 PIM1 46 100 13 92

PDK1 87 87 86 94 PIM2 90 97 82 85

PKBα 96 85 86 95 PIM3 19 94 1 96

PKBb 45 98 84 80 SRPK1 90 78 72 83

SGK1 89 92 81 95 MST2 72 81 69 84

S6K1 100 100 58 94 EF2K 99 85 92 79

PKA 81 74 76 91 HIPK2 14 100 4 93

ROCK2 81 74 72 88 PAK4 68 74 27 39

PRK2 95 83 65 77 PAK5 68 75 47 51

PKCα 49 90 48 91 PAK6 97 90 71 77

PKC zeta 57 83 60 96 Src 98 94 85 91

PKD1 46 59 59 72 Lck 76 90 67 87

MSK1 80 86 66 91 CSK 85 77 73 91

MNK1 76 81 82 103 FGF-R1 99 95 72 116

MNK2 100 63 77 97 IRR 39 87 26 75

MAPKAP-K2 92 33 90 13 EPH A2 100 100 100 99

PRAK 52 92 65 84 MST4 46 49 30 80

CAMKKb 34 50 27 41 SYK 78 100 70 84

CAMK1 36 76 46 87 YES1 100 79 45 103

SmMLCK 25 65 23 55 IKKe 62 85 46 87

PHK 89 63 45 77 TBK1 63 96 73 91

CHK1 100 84 94 83 IGF-1R 96 100 15 79

CHK2 100 75 51 59 VEG-FR 52 90 29 93

GSK3β 33 0 0 10 BTK 100 100 100 91

CDK2 1 9 1 38 IR-HIS 84 99 50 81

PLK1 100 96 99 95 EPH-B3 60 100 72 88

Aurora B 46 87 47 91 IKK 68 90 71 ND

AMPK 46 88 49 104 MINK1 ND ND ND 18  
 

Compounds were tested in duplicate at 10 M and data shown as percentage of 

uninhibited activity. The ranking of inhibition is shown as a heat map: red below 

30% residual activity; orange 31-50% residual activity; yellow 51-70% residual 

activity; white above 70% residual activity. The kinase profiling was performed 

by the Division of Signal Transduction Therapy (DSTT) at the University of 

Dundee.  

ND: not determined. 
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a different ratio between efficacy in cells and biochemical potency (the ratio T. brucei 

EC50 /Ki varied from 0.4 for DDD00088338 to 4.3 for DDD00088340) which was 

unexpected for inhibitors with the same mechanism of inhibition. The divergent ratios 

of cellular and enzymatic activities, despite the ATP-competitive mechanism of 

inhibition towards the molecular target TbGSK3 short, give additional hints that these 

compounds have a common pharmacophore shared with other unknown targets in T. 

brucei. 

 

3.2.4 GSK3 09 series: correlation, specificity and selectivity 

GSK3 09 is a series of 4-amino-1H-pyrazole-5-carboxamide (Figure 3.5). These 

compounds were synthesised based on the literature, by varying residues to explore the 

relationship between TbGSK3 short, HsCDK2 and HsGSK3 activity (Wyatt et al., 

2008). Initially 19 examples were tested and some of them were found to be nanomolar 

inhibitors of TbGSK3 short, such as compounds DDD00085893, DDD00085905, 

DDD00085896 and DDD00085887 with IC50 values ranging from 2 to 24 nM (Table 

3.7).  Interestingly, the most potent compound DDD00085893 was active against T. b. 

brucei cells (EC50 of 0.52 M), and it was not toxic against MRC5 cells (EC50 of 30 

M). This compound was profiled against the mammalian panel of kinases at 10 M; 

only HsGSK3 and HsCDK2/cyclin A were inhibited more than 90% (Table 3.8) with 

IC50 values of 1 nM and 19 nM, respectively, indicating that in MRC5 cells HsGSK3 

inhibition did not cause cell toxicity.  All the compounds from this series obtained by 

replacement of R1 were not selective against HsGSK3, but selectivity could be 

achieved against HsCDK2/cyclin A.  

The other two compounds (DDD00085887 and DDD00085905) profiled against 

the mammalian kinase panel were more promiscuous and this was reflected by a higher 



 

  

 

Figure 3.8 Correlation plot between inhibition of TbGSK3 short and 

inhibition of T. brucei cell growth for GSK3 09 series 

The compounds substituted in position R1 are indicated with close circles and the 

compounds substituted in position R2 are indicated with open circles. 

 

 



 

Table 3.9 GSK3 09 Selection of R2 substituted aminopyrazoles with activities 

against TbGSK3 short, HsGSK3β, HsCDK2/cyclin A, BSF T. b. brucei and 

MRC5 cells 

  

R2 
TbGSK3 

short 
IC50 (µM)  

HsGSK3β 
IC50 (µM)  

HsCDK2/ 
cyclin A 

IC50 (µM)  

BSF 
T. b. 

brucei 
EC50  
(µM)  

MRC5 
EC50 
(µM)  

DDD00101238 
 

0.001 0.02 2.04 4.51 42.08 

DDD00101236 
 

0.001 ND > 10 6.59 > 50 

DDD00101223  0.008 0.08 2.4 11.64 > 50 

DDD00101234 
 

0.001 0.33 > 10 5.92 50 

DDD00101250 
 

0.002 0.07 1.56 6.42 33.68 

DDD00101247 
 

0.004 0.12 1.31 8.15 > 50 

DDD00101237 
 

< 0.001 ND > 4.76 6.69 45.28 

DDD00101224 
 

0.006 0.07 4.3 11.50 > 50 

DDD00101246  0.001 0.1 4.8 7.29 > 50 

DDD00101242 

 

0.006 0.14 4.67 12.22 > 50 



 

  

R2 
TbGSK3 

short 
IC50 (µM)  

HsGSK3β 
IC50 (µM)  

HsCDK2/ 
cyclin A 

IC50 (µM)  

BSF 
T. b. 

brucei 
EC50  
(µM)  

MRC5 
EC50 
(µM)  

DDD00101248 
 

0.001 0.05 1.16 4.09 35.43 

DDD00101235 

 

0.008 0.08 > 10 8.90 37.82 

DDD00101220 
 

0.018 ND > 10 15.58 > 50 

DDD00101240 
 

0.015 0.32 > 10 20.22 > 50 

DDD00101228  0.012 0.22 > 10 18.84 > 50 

DDD00101229 
 

0.081 0.45 > 10 50 > 50 

DDD00101239  0.034 0.30 > 10 42.75 > 50 

DDD00101221 
 

0.316 0.66 > 10 > 50 > 50 

DDD00101230 
 

0.318 0.94 > 10 > 50 > 50 

DDD00101232 
 

0.142 0.87 > 10 > 50 > 50 

DDD00101241 
 

0.332 0.47 > 10 > 50 > 50 

DDD00101243 
 

0.054 0.63 > 10 > 50 > 50 



 

  

R2 
TbGSK3 

short 
IC50 (µM)  

HsGSK3β 
IC50 (µM)  

HsCDK2/ 
cyclin A 

IC50 (µM)  

BSF 
T. b. 

brucei 
EC50  
(µM)  

MRC5 
EC50 
(µM)  

DDD00107470 

 

0.001 ND ND 7.66 >50 

The number of determinations was two or higher. ND: not determined. 
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toxicity against MRC5 cells with EC50 values of 0.76 M and 0.13 M, respectively 

(Table 3.7 and Table 3.8). GSK3 09 series overall had a very good correlation between 

inhibition of the recombinant TbGSK3 short and efficacy in vitro versus BSF T. b. 

brucei cells (correlation coefficient of 0.80) giving an indication that  this series could 

exert its action “on target” against TbGSK3 short (Figure 3.8). Moreover, the drop-off 

between enzyme inhibition and cellular efficacy was ~ 100-fold. This was consistent 

with the expected ATP-competitive mode of inhibition (as discussed in section 3.2.2). 

Further optimization within the series was aimed at exploring whether it was 

possible to obtain selectivity towards HsGSK3β retaining potency against TbGSK3 

short. As DDD00085893 was the most promising inhibitor (potent against TbGSK3 

short in the biochemical assay, blocking proliferation of BSF T. b. brucei in culture, and 

not toxic against MRC5 cells) the 2,6-dimethoxybenzamide group was retained in 

position R1 and an array of substituents was made in position R2 (Table 3.9). The 

majority of variations on this position retained the activity against TbGSK3 short in the 

nanomolar range. The R2-substituted compounds were tested in proliferation assay 

against BSF T. b. brucei and MRC5 cells. As for the R1-substituted analogues, also for 

the R2-substitutes there was a good correlation (correlation coefficient of 0.94) between 

the enzymatic inhibition of TbGSK3 short and cell efficacy in BSF T. b. brucei culture 

with a 1000-fold drop in potency between the biochemical and the cellular assay 

(Figure 3.8).  

Interestingly, compared to the variations in position R1, a majority of R2 

analogues showed selectivity over both HsCDK2/cyclin A and HsGSK3β up to reaching 

more than 10,000-fold selectivity towards HsCDK2 and more than 300-fold selectivity 

towards HsGSK3β. Compound DDD00101234, substituted with a benzyl in position R2 

is the most selective TbGSK3 short inhibitor known so far (Table 3.9) (Ojo et al., 2008; 

Oduor et al., 2011). This compound not only is a potent TbGSK3 inhibitor selective 



 

 

 
 

Figure 3.9 Mechanism of inhibition of DDD00085893 towards ATP 

 Rates (cpm in 20 min) were determined at the reported inhibitor concentrations 

(M) with 4 varied concentrations of ATP at the Km
app

 concentration of the other 

substrate (8.4 µM) and 2.5 nM of TbGSK3 short. The direct plot (A) and the 

derived Lineweaver-Burke plot (B) were examined for diagnostic patterns before 

globally fitting the data to the equation for competitive inhibition. The Ki value of 

DDD00085893 is 5.7 ± 0.1 nM. 



 

 

Figure 3.10 Mechanism of inhibition of DDD00085893 towards GSP2 

substrate 

Rates (cpm in 20 min) were determined at the reported inhibitor concentrations 

(M) with 4 varied concentrations of GSP2 substrate at the Km
app

 concentration of 

the ATP (11 M) and 2.5 nM of TbGSK3 short. The direct plot (A) and the 

derived Lineweaver-Burke plot (B) were examined for diagnostic patterns before 

globally fitting the data to the equation for mixed inhibition. The calculated Ki  

and Ki’ value of DDD00085893 are 7.5 ± 3.1 nM and 35.9 ± 11.9 nM, 

respectively. 
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towards the human isoform, but also retains efficacy against the BSF T. b.  brucei in 

culture (EC50 of 5.9 µM) and is not toxic for MRC5 cells (EC50 of 50 µM) (Table 3.9). 

DDD00101234 was also profiled against a panel of mammalian kinases. This 

compound inhibited the activity of only three PKs more than 80%: GSK3β, MAPKAP-

K2 and MINK1, confirming that is a selective kinase inhibitor (Table 3.8). 

 

3.2.5 GSK3 09 series: Mode of inhibition and Ki determination 

I determined the Ki of DDD00085893 proving that this compound acts through 

competitive inhibition with respect to ATP (Figure 3.9) and mixed inhibition towards 

the peptide substrate GSP2 (Figure 3.10). Increasing the concentration of 

DDD00085893 resulted in an increase in the Km
app

 for ATP, but the Vmax remained 

unchanged. On the other hand, varying the concentration of inhibitor caused changes in 

both Vmax and Km
app

 for the peptide substrate GSP2. The calculated Ki of DDD00085893 

(5.7 ± 0.1 nM) correlates as expected with the IC50 in the biochemical assay, taking into 

consideration that the IC50 value was determined at an ATP concentration below its Km. 

 

3.2.6 Mode of binding of series GSK3 07 and GSK3 09 

The homology model for TbGSK3 short was built by Dr Torsten Luksch using 

as template the solved crystal structure of HsGSK3 (pdb code 1R0E). These two 

proteins shared a high degree of identity (52%) in their kinase domains, but a closer 

look at their binding pocket revealed that inhibitor selectivity could be achieved 

exploiting the difference in nine residues in the binding site (Figure 3.11 and Table 

3.10). TbGSK3 short is also very similar to HsCDK2, although in this case there are 

differences in some key residues in the kinase domain that could be exploited to achieve 

selectivity (Table 3.10). These findings were in agreement with the independent 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Superposition of the HsGSK3 crystal structure 1R0E with the 

homology model of TbGSK3 short 

The HsGSK3β structure is in pink, the TbGSK3 short homology model in blue. 

Both structures are shown in cartoon representation. Amino acids that are 

different in the binding pocket of TbGSK3 short in comparison to HsGSK3β are 

represented as sticks. Residue numbers are for HsGSK3. The homology 

modelling was performed by Dr Torsten Luksch (figure from Woodland et al., 

2013). 

 

 

 

 



 

Table 3.10 Differences in the ATP binding pockets of TbGSK3, HsGSK3β 

and HsCDK2  

TbGSK3 HsGSK3β HsCDK2 

V25 V61 K9 

 A26 I62 I10 

G27 G63 G11 

Q28 N64 E12 

G29 G65 G13 

T30 S66 T14 

F31 F67 Y15 

V34 V70 V18 

L36 Q72 K20 

A47 A83 A31 

K49 K85 K33 

E61 E97 I52 

M65 M101 L55 

V77 V110 V64 

M101 L132 F80 

E102 D133 E81 

F103 Y134 F82 

104 V135 L83 

P105 P136 H84 

E106 E137 Q85 

T107 T138 D86 

H109 Y140 K88 

R110 R141 K89 

K154 K183 K129 

H156 Q185 Q131 

N157 N186 N132 

L159 L188 L134 

C170 C199 A144 

D171 D200 D145 

 

Amino acids of HsGSK3β or HsCDK2 which differ in TbGSK3 short are shown 

in bold (table from Urich et al., 2014). 



 

 

  

 C

 

 

Figure 3.12 Proposed binding modes for (A) DDD00065658, (B) DDD00085893, and (C) DDD00101234 in the homology model of 

TbGSK3 short 

Both, ligands and protein are represented in sticks and colour coded by atom types. Ligand carbon atoms are shown in pink and protein carbon 

atoms in light blue. Hydrogen bonds are shown as yellow dotted lines. The binding modes were generated by Dr Torsten Luksch and Dr Robert 

Urich (figures adapted from Woodland et al., 2013 and Urich et al., 2014).  
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observations of Ojo and co-workers (2008; 2011). This homology model was used for 

the docking of the identified inhibitors from both series GSK3 07 and GSK3 09 which 

were predicted to bind in the ATP pocket (Figure 3.12 A, B and C).  

In the binding mode of the GSK3 07 initial hit, DDD00065658, the 2, 4-

diaminothiazole group has a kinase hinge binding recognition motif allowing hydrogen 

bonds to the backbone of Glu102, Phe103, and Val104 (Figure 3.12 A). All the other 

residues DDD00065658 is interacting with are conserved between HsGSK3β and 

TbGSK3 short, so it is not surprising that all the compounds tested from this series in 

the kinase panel (Table 3.6) are not selective towards HsGSK3β (Woodland et al., 

2014). 

A potential binding mode was generated also for DDD00085893 and protein-

ligand interactions were analysed by Dr Robert Urich (Figure 3.12 B). Also the 4-

amido-5-carboxamide-pyrazole group bears a kinase hinge binding motif and makes 

hydrogen bonds to the backbone of Glu102, Phe103, and Val104. Notably, the 

gatekeeper residue differs between TbGSK3 short, HsGSK3β, and HsCDK2 (Table 

3.10). While HsGSK3β and TbGSK3 short enzymes have Leu132 or Met101, 

respectively, in this position, in HsCDK2 a Phe80 is present. The gatekeeper region of 

HsCDK2 is more constrained and less accessible by bulky R
1
-substituents such as the 

2,6-dimethoxybenzamide group of DDD00085893. This main difference could explain 

the selectivity of this compound towards HsCDK2.  

The achieved selectivity towards HsGSK3β of the compounds substituted in R
2
 

could be rationalised again docking the compounds in the homology model for TbGSK3 

short. The docking of DDD00101234 suggests that the source of the selectivity is the 

replacement of Phe103 in a hydrophobic pocket of TbGSK3 short with Tyr134 in 

HsGSK3β. The phenyl of the N-benzylamide moiety of DDD00101234 can interact 

with the aromatic side chain of Phe103 in TbGSK3 short, but it is electrostatically 



 

 

Figure 3.13 DDD00085893 inhibition of TbGSK3 short activity and rate of 

killing of BSF T. b. brucei cell proliferation 

(A) The inhibition of the recombinant TbGSK3 short was measured using a 

filterplate assay (open circles), whereas cell proliferation inhibition of 

bloodstream trypanosomes was measured with resazurin assay (close circles) (as 

reported in Materials and Methods). Fifty percent and 90% of inhibition are 

represented respectively with a blue and red line. Data points are average of 

triplicate determinations ± SD. (B) BSF T. b. brucei cells were cultured in 

presence of different concentrations of DDD00085893 as reported in the legend. 

Cell densities were determined daily by manual counting with a haemocytometer. 

Each data point is average of two determinations.  
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repulsed by the polar lateral chain of Tyr134 in HsGSK3β (Urich et al., 2014). This 

moiety also has hydrophobic interactions with Leu36 and Ala26 in TbGSK3 short. 

Leu36 is replaced by polar amino acids in HsGSK3β and HsCDK2 (Gln72 and Lys20, 

respectively), further diminishing hydrophobic interactions and increasing the 

selectivity of DDDD001010234 over HsGSK3β and HsCDK2 (Figure 3.12 C). 

 

3.2.7 DDD00085893 is a cidal inhibitor of T. brucei 

DDD00085893 is a potent ATP-competitive inhibitor of the recombinant 

TbGSK3 short with an IC50 of 3 nM and Ki
 
of 5.4 nM. In my assays, this compound also 

demonstrated a detrimental effect on BSF T. brucei proliferation with an EC50 of 3.9 

M
a
. The shift in potency is in agreement with the ATP-competitive mechanism of 

inhibition and the differential concentration of ATP in T. brucei (mM range) and in the 

biochemical assay (1 M) (as discussed in section 3.2.2 and 3.2.4) (Figure 3.13 A).  

In order to verify whether DDD00085893 had a cidal or a static effect on BSF T. 

brucei, cells were incubated for 72 h with inhibitor concentration ranging from 0 to 50 

M (Figure 3.13 B). Cells were counted daily and subcultured in fresh medium after 

removal of the inhibitor. As expected, 50% of growth inhibition was obtained at 5 µM, 

a concentration equivalent to the EC50 value determined with the resazurin assay. After 

incubation for 24 h in presence of 50 µM of DDD00085893, no cells were detectable, 

but cells washed free of the inhibitor could recover after 8 days. In contrast after 

                                                 

 

 

a
 This value was 10-times higher with respect to the one determined by the DDU routine 

screening, the discrepancy could be explained by the fact that: (i) a new batch of inhibitor was 

synthesised and (ii) in the meantime some medium components were re-placed resulting with faster 

growth of the BSF T. brucei. Both factors could have impacted in the change of potency of 

DDD00085893, which remained thereafter constant throughout my study. 



 

Table 3.11 Determination of DDD00085893 IC50, for TbGSK3 short and EC50, 

EC90, EC99 and EC99.9 for BSF T. brucei  

 

DDD00085893 TbGSK3 short (nM) (n=4) 

Hill slope IC50    

     

0.9 ± 0.1 3 ± 1     

     

DDD00085893 BSF T. brucei (M) (n=4) 

Hill slope EC50 EC90 EC99 EC99.9 

     

2.5 ± 0.2 3.9 ± 0.6 9.5 ± 2.1 25.3 ± 7.1 25.4 ± 7.1 

     

Where n is the number of 4 independent experiments.  
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incubation for 48 h with 50 µM the trypanosomes did not recover, even after washing 

off of the inhibitor. Thus, DDD00085893 is a cidal inhibitor of Trypanosoma brucei 

after 48 h incubation at the concentration of 50 µM. Overall these findings are 

consistent with the EC99 (or minimum inhibitory concentration, MIC) of this inhibitor 

which is greater than 25 M (Table 3.11).  

 

3.3 Target identification by chemical proteomic approach 

3.3.1 Kinobeads approach 

From the screening of TbGSK3 short, two chemical series were identified with 

an effect on the proliferation of BSF T. brucei. Intriguingly, series GSK3 07 had a very 

limited drop-off between cellular and enzyme potency, with some examples clearly 

having off-target effects displaying higher potency against the cells rather than the 

enzyme. In contrast, series GSK3 09 had a tighter correlation between cell and enzyme 

activity in agreement with an ATP-competitive mechanism of inhibition. Consequently 

this was considered a promising series for the chemical validation of TbGSK3 short as a 

drug target in T. brucei. Although the biochemical assay of the recombinant TbGSK3 

short seemed to be a good model for the prediction of the efficacy of the compounds in 

the cells, the biological complexity in cells is far higher than in a biochemical assay, 

therefore it is important to prove that the cellular effect is due to the action of the 

inhibitor on the target enzyme (Patricelli et al., 2011). To achieve this, we decided to 

investigate the targets of these compound series in T. brucei lysate in collaboration with 

Cellzome AG (Heidelrberg, Germany). 

A chemical proteomic approach was undertaken for the direct identification of 

kinase inhibitor targets in cell lysates (Bantscheff et al., 2007) utilising kinobeads and 

iTRAQ technology (section 2.7.1).  Bantscheff and colleagues (2007) tested their 



 

 

Figure 3.14 Proteomic profiling of DDD00085893 in BSF T. b. brucei and 

MRC5 lysates by kinobeads competition assay  

Competition binding curves calculated by iTRAQ reporter signals (measured as 

percentage of residual binding). DDD00085893 was dosed in 5 concentrations 

ranging from 39 nM to 10 M in T. brucei (A) and in MRC5 cell lysates (B). The 

curves are the non-linear fits using the 2- and 4-parameter IC50 equation with 

GraFit.  

This work was done in collaboration with Cellzome (Heidelberg) (Urbaniak et al., 

2012a).
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technology against numerous human and rodent cell lines proving that a broad spectrum 

of protein kinases interacted with the kinobeads. Kinobeads not only capture protein 

kinases, but also other ATP- and purine-binding proteins such as chaperones, helicases, 

ATPases, motor proteins, transporters and metabolic enzymes (Bantscheff et al., 2007). 

Similarly this technology could be used to identify directly in T. brucei lysate the native 

targets of inhibitors and also to verify potential toxicity directly in MRC5 lysate.  

The kinobeads could bind T. brucei kinases with a coverage of 57 kinases 

belonging to AGC (5 examples), CAMK (10), CK1 (1), CMGC (22), other (3), STE (6), 

NEK (9), and atypical (1) families (Urbaniak et al., 2012a).  

Compound DDD00085893 is a potent inhibitor of TbGSK3 short in vitro, with a 

good efficacy against cultured T. brucei and good selectivity against mammalian cells 

(Table 3.7). The kinobead profiling of DDD00085893 against T. b. brucei cell lysates 

confirmed the TbGSK3 short was specifically targeted by this compound. In the 

chemical proteomic experiment a total of 171 proteins, 49 of them protein kinases, were 

detected by affinity enrichment with the kinobeads (Urbaniak et al., 2012a). When 

incubated with DDD00085893 ranging from 10 M to 39 nM only five proteins were 

no longer bound, four of which were protein kinases (Figure 3.14 A). The top binder of 

this inhibitor was TbGSK3 short with 17% of residual binding at 39 nM (an IC50 value 

could not be extrapolated). The protein kinase hits belonged to the same family of 

CMGC kinases and in the rank order of affinity were MAPK kinase (Tb427.10.3230) 

with an IC50 of 2.6 M, RCK kinase (Tb427.10.14800) with IC50 of 3.2 M,  CDK-like 

kinase ECK1 (Tb11.01.8550) with IC50 of 6.6 M, and finally a hypothetical protein 

(Tb927.4.4060) with an IC50 of 12.9 M.  

These results confirm that TbGSK3 short is the main target of DDD00085893 in 

T. b. brucei cells and that this compound has an affinity in the low nM range for the 

endogenous protein as well as the recombinant one. The coverage of the T. b. brucei 



 

Table 3.12 Kinobeads competition assay for the BSF T. b. brucei and MRC5 

targets of DDD00085893 

 

BSF T. b. brucei targets 

 

GeneDB accession 

number 
IC50 ± SD (M) 

or percentage of inhibition 

   

CMGC/GSK Tb427.10.13780 17% at 39 nM 

CMGC/MAPK Tb427.10.3230 2.62 ± 0.85 

CMGC/RCK Tb427.10.14800 3.23 ± 1.6 

CMGC/ECK1 Tb427.01.8550 6.61 ± 2.9 

hypothetical protein Tb427.04.4060 12.9 ± 6.4 

   

MRC5 targets 
IPI accession 

number 

 

IC50 ± SD (M) 

 

   

HsGSK3 IPI00216190.1 0.087 ± 0.03 

HsGSK3 IPI00292228.1 0.076 ± 0.16 

CDK9 IPI00552413.2 0.45 ± 0.02 

Cyclin T1 IPI00030247.1 0.61 ± 0.08 

   

These data have been published by Urbaniak et al., 2012a 



 

 

Figure 3.15 ClustalW alignment of TbGSK3 short and TbGSK3 long  

Blue coloured residues are identical. Sequences highlighted in gray are the 

peptides identified in the competition experiment. LCDFGSAK peptide is shared 

by TbGSK3 short and TbGSK3 long.  
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kinome by the kinobeads in this experiment was 27% (considering a total of 182 PKs) 

and DDD00085893 was not a promiscuous inhibitor of these kinases.  

A similar competition experiment was conducted with MRC5 lysates in order to 

evaluate the selectivity of this compound against the parasite kinome and potential toxic 

effects against the host kinome. In MRC5 lysates the kinobeads could bind 238 proteins, 

125 of which were annotated as protein kinases. Only four were actually displaced by 

incubation of DDD00085893 ranging from 10 M to 39 nM. The top binders were 

HsGSK3 with an IC50 of 87 nM, other binders were HsGSK3 with an IC50 of 76 nM, 

CDK9 with an IC50 of 0.45 M and its binding partner cyclin T1 with a comparable 

affinity (Figure 3.14 B and Table 3.12). These results indicate that the compound 

DDD00085893 is a specific inhibitor of TbGSK3 short, but not completely selective for 

T. brucei. 

T. brucei has two isoforms annotated in GeneDB, TbGSK3 long 

(Tb927.07.2420) and TbGSK3 short (Tb927.10.1378), which are 40% identical at the 

amino acid level. In the competition experiment all the identified peptides were unique 

to TbGSK3 short with only one peptide sequence in common (LCDFGSAK) between 

the two isoforms (Figure 3.15). The results from the kinobeads experiment prove that 

DDD00085893 binds the native TbGSK3 short, although binding to the long isoform 

cannot be definitely ruled out. To date TbGSK3 long protein has never been identified 

in any global proteomic and phosphoproteomic study in bloodstream form T. b. brucei 

(Urbaniak et al., 2012b; Urbaniak et al., 2013). 

 



 

 

 

Figure 3.16 Expression and purification of recombinant TbGSK3 short 

tagged at the N-terminus with His6-BAP tag 

Protein sample were run on 4-12% SDS-PAGE gel and stained with Coomassie 

Blue. (A) Purification by Ni-affinity column: (M) marker; (1) insoluble fraction; 

(2) clarified lysate by centrifugation; (3) flowthrough; (4-8) fractions at higher 

absorbance of the eluate of the Ni-affinity column. (B) TEV protease cleavage and 

purification by Ni-affinity chromatography: (1) pooled fractions from first Ni-

affinity column; (2) over-night reaction with TEV protease; (3) flowthrough by 

the second Ni-affinity chromatography collecting the cleaved BAP-TbGSK3 short 

protein.



 

 

 

Figure 3.17 Size-exclusion purification of recombinant TbGSK3 short tagged at the N-terminus with BAP tag 

Protein samples were run on 4-12% SDS-PAGE gel and stained with Coomassie Blue. (A) Size exclusion chromatogram and (B) corresponding SDS-

PAGE of analysed fractions: (1) His6-cleaved BAP-TbGSK3 short pooled fractions; (2-10) labeled fractions in the chromatogram (A) with higher 

absorbance values. (C) Determination of native mass of TbGSK3 short indicated with a gray square on the calibration curve obtained using as 

standards thyroglobulin (670 kDa), bovine gamma-globulin (158 kDa), chicken ovalbumin (44 kDa), equine myoglobin (17kDa).  
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3.4 Protein expression and purification 

3.4.1 Protein expression and characterization of BAP-tagged TbGSK3 

short  

In order to support further studies of inhibitor characterization and chemical-

genetic validation, I expressed recombinant TbGSK3 short protein in house. The protein 

used for the hit identification (kindly provided by the University of Washington) had at 

the N-terminus a large MBP tag (45.1 kDa) (Ojo et al.,2008). The attempts I made to 

determine the binding kinetics of GSK3 07 and 09 compounds using this construct by 

Surface Plasmon Resonance (SPR) were unsuccessful, due to the fact that the 

recombinant TbGSK3 tagged with MBP was inactive after immobilization onto the 

CM5 chip by amino-coupling. This procedure includes a step at pH 5.5 that can cause 

loss of activity. Furthermore, proteins with bulky tags are not ideal for immobilization 

for SPR because they decrease the assay sensitivity due to the increased distance 

between the binding interaction and chip surface.  

The Biotin Acceptor Peptide (BAP) tag, which can be site-specifically 

biotinylated by the biotin-protein ligase BirA (Predonzani et al., 2008), improves the 

rate of success of SPR analysis by specific biotinylation in a known position that does 

not interfere with the activity of the protein and the immobilization at the chip surface 

can happen through the extremely strong interaction of biotin with streptavidin (Kd = 10
-

15 
M) (Predonzani et al., 2008). 

The TbGSK3 short encoding region was cloned into the modified pET-15b-

TEV-BAP vector and the expressed protein was purified by metal ion-affinity 

chromatography (Figure 3.16 A). The N-terminal His6-tag was subsequently cleaved by 

TEV protease and the cleaved protein purified by a second nickel column (Figure 3.16 

B). The cleaved protein was further purified by size-exclusion chromatography (Figure 

3.17 A and B). The protein had the expected Mr of 43.1 kDa by SDS-PAGE analysis, 



 

 
 

 

Figure 3.18 Characterization of recombinant TbGSK3 short tagged at the N-

terminus with BAP peptide  

(A) Protein sample after TEV cleavage and size exclusion purification. Protein sample 

was run on 4-12% SDS-PAGE gel and stained with Coomassie Blue. (B) Identity 

confirmation by Mass-fingerprint analysis of the His6-BAP tagged TbGSK3 short 

performed by the Mass Proteomics Facility at the University of Dundee (Mr Douglas 

Lamont). (C) Plot of the distribution of sedimentation coefficients generated by 

analytical ultracentrifugation (AUC) of TbGSK3 short at 0.15 mg/ml in buffer 20 mM 

Hepes pH 7.4, 1 mM DTT, 150 mM NaCl, 10% glycerol (Dr Mark Agacan).  
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but the elution of TbGSK3 short from the gel filtration column indicated a tetrameric 

status (Figure 3.17 C). The protein identity was confirmed by mass-fingerprint analysis 

(Figure 3.18 A and B), and ultracentrifugation revealed that the protein was primarily 

monomeric, but aggregates were also present in solution (Figure 3.18 C). The detergent 

present in the purification buffer might be responsible for the increased tendency of the 

protein to aggregate.  

The protein yield for the His6-tagged protein was higher than 20 mg per litre of 

culture, but the cleavage of the His6-tag and the following steps of purification gave a 

final yield of 5 mg per litre.  

The BAP-tagged TbGSK3 short was active with a specific activity of 8.7 nM 

min
-1

 nM
-1

 at room temperature (201.4 nM min
-1 

mg
-1

, MW 43,129.6 Da) that was ~2-

times higher than the MBP-tagged TbGSK3 preparation received from University of 

Washington that had an activity of 4 nM min
-1

 nM
-1

 (46.8 nM min
-1 

mg
-1

, MW 85,391.6 

Da).  

Due to time constraints and limited access to instrumentation this TbGSK3 short 

construct was not used for the biophysical characterization of the GSK3 inhibitors by 

Surface Plasmon Resonance, but it represents a useful reagent for further studies and 

potentially for undertaking fragment screening in the search for novel inhibitors with 

potential alternative mechanism of binding and inhibition. 

 

3.4.2 Protein expression and characterization of TbGSK3 long 

TbGSK3 long protein has never been found expressed in bloodstream form 

trypanosomes in previous proteomic and phosphoproteomic studies (Urbaniak et al., 

2012b; Urbaniak et al., 2013), whereas the peptide corresponding to the 

autophosphorylation loop of TbGSK3 long has been identified by a phosphoproteomic 

analysis conducted in procyclic cells (NVPposphoYIFSR) (Nett et al., 2009b), meaning 



 

 

 

 

 

Figure 3.19 Expression and purification of recombinant TbGSK3 long tagged at 

the N-terminus with His6-BAP tag 

Protein sample were run on 4-12% SDS-PAGE gel and stained with Coomassie Blue. 

(A) Purification by Ni-affinity column. (M) marker; (1) insoluble fraction; (2) 

clarified lysate by centrifugation; (3-4) flowthrough; (5-11) fractions at higher 

absorbance of the eluate of the Ni-affinity column. (B) TEV protease cleavage and 

purification by Ni-affinity chromatography: (1) pooled fractions from first Ni-affinity 

column; (2) over-night reaction with TEV protease; (3) flowthrough by the second Ni-

affinity chromatography collecting the cleaved BAP-TbGSK3 long protein. 
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that the protein is expressed in the insect life stage most likely in an active form. 

Moreover, RNAi studies have shown that this protein kinase is not essential in 

bloodstream form cells or for differentiation to procyclic form, and its knock-down is 

beneficial for the proliferation of procyclic cells (Alsford et al., 2011; Jones et al., 

2014). This suggests that TbGSK3 short and TbGSK3 long have different expression 

and functions in the different life stages and they cannot compensate for each other.  

In order to address the question whether DDD00085893 could bind TbGSK3 

long in vitro and in cultured cells I expressed recombinant protein in E. coli and 

overexpressed this gene in BSF T. b. brucei (see section 4.1.8). 

 The open reading frame (ORF) region of the long form of TbGSK3 was cloned 

from the genomic DNA of strain 427 (S427) using as reference the coding region 

reported in the genome for the strain 927 (S927) in GeneDB. The consensus sequence 

of three independent PCR reactions was compared to the DNA sequence reported in the 

reference S927 genome and 11 single nucleotide polymorphisms (SNPs) were identified 

between S427 and S927, four of these SNPs translated in four different amino acids 

(D15N, A51V, V201L and T322S).
a
  

The ORF of the long isoform of TbGSK3 was cloned in the same modified pET-

15b-TEV-BAP plasmid used for the protein expression of TbGSK3 short. The His-

tagged form of the recombinant protein was expressed in E. coli and purified in a 

soluble form by metal-affinity chromatography; subsequently the protein was untagged 

by TEV cleavage and purified by a second nickel ion-affinity column (Figure 3.19 A 

and B). The protein had the expected Mr of 58.1 kDa by SDS-PAGE analysis (Figure 

                                                 

 

 

a
 These differences were in agreement with the genome sequence subsequently reported in 

Trytripsdb.org for T. brucei  Lister strain 427. 



 

 
 

Figure 3.20 Expression and purification of recombinant TbGSK3 long tagged at 

the N-terminus with BAP peptide in E. coli 

A) Protein sample after TEV cleavage and second nickel ion affinity column. Protein 

sample was run on 4-12% SDS-PAGE gel and stained with Coomassie Blue. B) 

Identity confirmation by Mass-fingerprint analysis performed by the Mass Proteomics 

Facility at the University of Dundee (Mr Douglas Lamont). C) Plot of the distribution 

of sedimentation coefficients generated by analytical ultracentrifugation (AUC) of 

TbGSK3 long at 0.75 mg/ml in buffer 20 mM Hepes pH 7.4, 2 mM DTT, 150 mM 

NaCl (Dr Mark Agacan).  



 

 

Figure 3.21 Isothermal titration calorimetry of DDD00085893 with TbGSK3 

short and TbGSK3 long  

Isothermal titration calorimetry data for a solution of A) 3 µM of TbGSK3 short and 

B) 3 µM of TbGSK3 long titrated with 30 µM DDD00085893. The two panels show 

the raw data. 
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3.20 A), the identity was confirmed by mass-fingerprint and verified to be primarily a 

monomer by ultracentrifugation (Figure 3.20 B and C).  

The protein yield for the His6-tagged TbGSK3 long was of 5 mg per litre of 

culture, but after the cleavage of the His6-tag the final yield was of 1.6 mg per litre.  

Using the same peptide substrate previously used for the biochemical assay, I 

compared the enzymatic activity of TbGSK3 long BAP-tagged at the N-terminus to the 

activity of TbGSK3 short, BAP-tagged as well at the N-terminus. TbGSK3 long was 

~380-fold less active than TbGSK3 short with a specific activity of 0.023 nM min
-1

 nM
-

1
 (0.4 nM min

-1 
mg

-1
, MW 58,126.3 Da). Neither enzyme was capable of 

autophosphorylation in the absence of substrate, but considering that both proteins 

cross-reacted with an antibody directed against the phosphorylated tyrosine of the 

activation loop (see following section), it is plausible that the proteins were already 

fully phosphorylated on this residue during protein production and no further 

autophosphorylation could happen. This is in agreement with what has been reported in 

literature that the autophosphorylation on the activation loop is an intramolecular 

reaction happening immediately after translation, during the protein folding and assisted 

by chaperone proteins, such as Hsp90 (Lochhead et al., 2006).  

Because of the extremely low enzymatic activity it was not possible to address 

the question whether DDD00085893 could inhibit TbGSK3 long in vitro with an 

activity assay, but isothermal titration calorimetry (ITC), which does not require 

enzymatic activity, gave a preliminary indication that DDD00085893 does not bind 

TbGSK3 long in solution (Figure 3.21 A). On the other hand TbGSK3 short did bind 

DDD00085893, but due to buffer mismatch it was not possible to integrate the results 

and obtain a Kd value (Figure 3.21 B). Further experiments are also required to fully 

characterise the kinetics of binding of DDD00085893 to TbGSK3 short. 

 



 

kDa kDa

 

Figure 3.22 Western blot analysis of recombinant BAP-TbGSK3 short and long 

Western blot analysis showed that only the p-Tyr-GSK3 antibody directed against the 

activation loop (C-KQLLHGEPNVS[pY]ICSRY), cross-reacted with the long form of 

TbGSK3 protein expressed in E. coli (Figure 3.20 A). In contrast, the anti-GSK3 

directed versus the same un-phosphorylated peptide did cross-react with the short 

isoform but not cross-react with the long isoform (Figure 3.20 B). 

Serial dilutions (1:2 from 0.2 μg to 0.05 μg) of recombinant TbGSK3 short and long 

probed with anti-phosphoTyr-GSK3 (A) and anti-GSK3 antibodies (B). (C) ClustalW 

alignment of the activation loop of HsGSK3 and TbGSK3 enzymes. The arrows 

indicate Tyr216 in HsGSK3β and the conserved Tyr across species and isoforms. 
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3.4.3 Western blot analysis of recombinant TbGSK3 short and TbGSK3 long 

Commercially available antibodies (Millipore) raised against both the 

phosphorylated and un-phosphorylated form of a synthetic peptide 

(KQLLHGEPNVS[phosphoY]ICSRY) corresponding to the autophosphorylation loop 

of the Drosophila GSK3/shaggy enzyme were tested for cross-reactivity against 

recombinant TbGSK3 short and long. Considering that this region is highly conserved 

in all species, the antibodies were also expected to recognise the T. brucei isoforms of 

the enzyme. 

Western blot analysis conducted on the recombinant proteins showed that the 

phospho-Tyr-GSK3 antibody directed against the activation loop (C-

KQLLHGEPNVS[pY]ICSRY), cross-reacted with both the short and long isoforms of 

TbGSK3 expressed in E. coli (Figure 3.22 A). In contrast, the GSK3 antibody directed 

against the same un-phosphorylated peptide cross-reacted only with the short isoform 

(Figure 3.22 B). The insertion of six amino acids in the antibody recognition sequence 

of TbGSK3 long might account for the lack of cross-reactivity with the antibody 

directed against the unphosphorylated substrate (Figure 3.22 C). 

Together with the activity data these results indicate that the TbGSK3 long gene 

encodes for a protein that can be expressed in E. coli in a soluble form, that can 

autophosphorylate in the activation loop and trans-phosphorylate a primed substrate, 

although with an extremely low specific activity with respect to the short isoform. 

Interestingly TbGSK3 long has in its sequence an Arg residue instead of a catalytically 

important Lys residue (K86 in HsGSK3β, R88 in TbGSK3 long). Usually this mutation 

is used to make kinase dead mutants and this might explain why the enzyme activity is 

so low and lack of significant catalytic activity might also explain why this isoform is 

not essential and not expressed or expressed at undetectable levels in T. brucei. It might 

also be the case that the protein is also less stable and easily degraded because of this 



 

 

 

 

Figure 3.23 Expression and purification of HIS6-BAP-TbGSK3(K49A) in E. coli 

and western blot analysis  

(A) TbGSK3(K49A) expression and partial purification from BL21(DE3)* cells 

cultured in auto-induction media at 22 ºC for 24 hours before lysis. Coomassie bleu 

staining of SDS-PAGE: (1) insoluble fraction; (2) clarified bacterial cell lysate by 

centrifugation (19,000 rpm for 30 min at 4 ºC); (3) flowthrough; (4) pooled fractions 

purified by Ni-affinity chromatography. The same samples were transferred into two 

nitrocellulose blots and probed with antibodies directed against anti-phospho-

tyrosine-GSK3 (pTyr-GSK3) (B) and anti-GSK3 (GSK3) (C). Proteins at the 

expected size of TbGSK3 short (40.3 kDa) are marked by arrows. The HIS6-BAP-

tagged TbGSK3(K49A) has a molecular weight of 45.3 kDa. 



 

 

Figure 3.24 Purification of recombinant HIS6-BAP-TbGSK3(K49A) in E. coli 

(A) TbGSK3(K49A) expression and partial purification from ArcticExpress (DE3) RIL cells cultured in auto-induction media at 13 ºC for 48 h 

before lysis. Coomassie blue stained SDS-PAGE: (M) marker; (1) insoluble fraction; (2) clarified lysate by centrifugation (19,000 rpm for 30 

min at 4 ºC) (dil 1/10); (3) flowthrough from the Ni-affinity column; (4) washes with binding buffer; (5-11) fractions at higher absorbance of the 

eluate of the Ni-affinity column. (B) Second Ni-affinity column after incubation at 4 ºC for 1 h in Buffer A supplemented with 1 mM ATP, 1 

mM MgCl2. Coomassie blue stained SDS-PAGE: (M) marker; (1) pooled fractions after the first Ni-affinity and following purification by ion 

exchange chromatography; (2) flowthrough from the second Ni-affinity column; (3) washes; (4-11) fractions at higher absorbance of the eluate 

from the second Ni-affinity column. In both panels the arrows indicate the expected Mr for HIS6-BAP-tagged TbGSK3(K49A) (45.3 kDa) and 

for Oleispira antartica Cpn60 (60 kDa). 
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mutation, the reason for this could be that usually autophosphorylation contributes to 

the stability of the protein, but, given that the protein is almost inactive, a lack of 

autophosphorylation might cause instability and degradation. 

3.4.4 Protein expression and purification of TbGSK3 short inactive 

mutant  

In order to address the question whether DDD00085893 could bind the inactive 

form of TbGSK3 short in vitro and in cultured cells, kinase dead mutants of TbGSK3 

short were expressed in E. coli and overexpressed in T. b. brucei cultured cells (see 

section 4.1.7). 

Based on the homology model of mammalian GSK3β the catalytic Lys85 

corresponding to Lys49 in TbGSK3 short was mutated to Ala (K49A) or Arg (K49R) to 

obtain kinase-dead mutants (He et al., 1995; Eldar-Finkelman et al., 1996).  

The mutated TbGSK3(K49A) short was cloned into the pET-15b-TEV-BAP 

plasmid (Figure 2.1). The plasmid was transformed in BL21(DE3)* cells for protein 

expression in auto-induction medium at 22ºC for 20 h (Studier, 2005) using similar 

conditions previously reported for the expression of the N-terminus His6-tagged 

TbGSK3 short (Ojo et al., 2011). The mutant protein was poorly expressed in these 

conditions and primarily insoluble (Figure 3.23 lane 1) as demonstrated also by 

Western analysis (Figure 3.23 B and C). An increase in protein expression and 

solubility was obtained using ArcticExpress (DE3) cells due to the co-expression of 

chaperonins Cpn60 and Cnp10 from Oleispira antarctica (Ferrer et al., 2003; Ferrer et 

al., 2004). Indeed, TbGSK3(K49A) short was co-purified with a contaminant protein at 

higher molecular weight (~60 kDa), which mass-fingerprint analysis confirmed to be 

the OaCpn60. The attempts to separate this co-purified contaminant by anion exchange 

chromatography (data not shown) and by incubation with the binding buffer 

supplemented with 1 mM ATP, 1 mM MgCl2 were unsuccessful (Figure 3.24 A and B).  



 

 

Figure 3.25 Purification of recombinant HIS6-BAP-TbGSK3(K49M) in E. coli 

(A) TbGSK3(K49M) expression and partial purification from ArcticExpress (DE3) RIL cells cultured in autoinduction media at 13 ºC for 48 h. 

Coomassie blue stained SDS-PAGE: (M) marker; (1) insoluble fraction; (2) clarified lysate by centrifugation (19,000 rpm for 30 min at 4 ºC); 

(3) flowthrough from the Ni-affinity column; (4) washes with binding buffer supplemented with 10 mM MgCl2 and 1 mM ATP; (5-14) fractions 

at higher absorbance of the eluate of the Ni-affinity column. (B) Second Ni-affinity column after extensive washes with binding buffer 

containing 5 mM ATP, 10 mM MgCl2 and 0.1 mg/ml denaturated proteins from E. coli. Coomassie blue stained SDS-PAGE: (M) marker; (1) 

pooled fractions from the first Ni-affinity column dialysed overnight in buffer A without imidazole; (2) flowthrough; (3) washes with 5 mM 

ATP, 10 mM MgCl2 and 0.1 mg/ml denaturated proteins from E. coli; (4-11) fractions at higher absorbance of the eluate from the Ni-ion affinity 

column. In both panels the arrows indicate the expected Mr for HIS6-BAP-tagged TbGSK3(K49M) (45.3 kDa) and for Oleispira antartica 

Cpn60 ( ~60 kDa). 
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Similar results were also obtained when an alternative kinase dead mutant was 

generated by replacement of Lysine49 with a Methionine, obtaining the kinase dead 

mutant called TbGSK3(K49M) short. This mutant protein also co-purified with 

OaCpn60 when expressed from ArcticExpress (DE3) cells at 13 ºC for 48 h (Figure 

3.25 A). Also, in this case attempts to separate the contaminating protein after extensive 

washes with binding buffer containing 5 mM ATP, 10 mM MgCl2 and 0.1 mg ml
-1

 

denaturated proteins from E. coli were unsuccessful (Rial et al., 2002) (Figure 3.25 B).  

In conclusion, the expression of the kinase dead mutants TbGSK3(K49A) and 

TbGSK3(K49M) from ArcticExpress(DE3) cells resulted in partially soluble proteins 

tightly associated with a chaperonin. It is likely that also in cultured BSF T. b. brucei 

these mutants are unstable when over-expressed (see section 4.1.6). Indeed, it is 

reported that autophosphorylation in the activation loop increases the stability of 

HsGSK3β (Cole et al., 2004) and it is an intramolecular chaperone-dependent event that 

occurs after translation (Lochhead et al., 2006). This might also explain why the 

inactive mutant protein would be so tightly bound to the chaperonin protein and failed 

to progress from this transitional intermediate to the fully active protein.   

Due to protein instability it is not possible to confirm whether DDD00085893 is 

able to bind the kinase dead mutants TbGSK3(K49A) and TbGSK3(K49M).  

Interestingly a band at the expected molecular weight for TbGSK3(K49A) short 

was observed in the Western analysis also with the anti-phoshoTyr antibody directed 

against the activation loop (Figure 3.23 B), this is surprising considering that this is an 

intramolecular autophosphorylation, meaning that this expressed protein although 

unstable is not completely inactive. Further work would be required to test the activity 

of these preparations using an in gel kinase assay. 
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Chapter 4 Chemical-genetic validation of 

TbGSK3 short 
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4.1 Chemical validation using genetic approach 

 

4.1.1 Rationale of the chemical-genetic approach 

TbGSK3 short was initially proposed as a drug target for human African 

trypanosomiasis  by Ojo and colleagues (2008). Phosphoproteomic studies conducted in 

T. brucei revealed that this protein is expressed in both bloodstream (Nett et al., 2009a) 

and in procyclic trypanosomes (Nett et al., 2009b). In both the parasite life stages the 

activation loop of TbGSK3 short was found to be phosphorylated, an indication that this 

kinase should be enzymatically active considering that in other species this is an auto-

phosphorylation event (Eldar-Finkelman et al., 1996; Cole et al., 2004). 

RNA interference (RNAi) studies demonstrated that knock-down of TbGSK3 

short causes a growth defect in BSF T. brucei, while the knock-down of the long 

isoform has no effect on cell growth (Ojo et al., 2008). Subsequently Alsford and 

colleagues (2011) conducted a genome-wide RNA interference target sequencing study 

directed against both bloodstream and procyclic T. b. brucei. Their findings confirmed 

that RNAi of TbGSK3 short resulted in inhibition of proliferation and differentiation in 

bloodstream form only. Recently another RNAi study has confirmed that TbGSK3 short 

knock-down in bloodstream form trypanosomes causes arrest of growth and plays a role 

in mitosis and/or cytokinesis (Jones et al., 2014).   

To date this potential drug target has never been genetically validated by 

generation of knock-outs and the chemical compounds used by others for chemical 

validation of TbGSK3 short were not sufficiently specific to clearly attribute their 

cellular effects to exclusive “on target” activity (Ojo et al., 2008; Oduor et al., 2011; 

Ojo et al., 2011). The chemical proteomic approach we performed in collaboration with 



 

 
 

 

Figure 4.1 Generation of TbGSK3 single knock-out (SKO) cell lines  

(A) Schematic representation of the generation of the TbGSK3 single knock-out 

(SKO) cell lines. The replacement of an endogenous allele by incorporation of the 

puromycin-resistance gene (PAC) produced Tbgsk3::PAC/TbGSK3 cell line 

(SKO(PAC), top) and the replacement with the hygromycin-resistance gene (HYG), 

produced Tbgsk3::HYG/TbGSK3 cell line (SKO(HYG), bottom). (B) Analysis of 

restriction sites for BamHI/PstI for TbGSK3/TbGSK3 (WT), Tbgsk3::PAC/TbGSK3 

(SKO(PAC)) and Tbgsk3::HYG/TbGSK3 (SKO(HYG)) loci and expected fragment 

sizes when probed with TbGSK3 5’-UTR. (C) Southern analysis of ~5 µg of DNA 

digested with BamHI and PstI from WT, SKO(PAC)
 
and SKO(HYG)

 
and probed with 

TbGSK3 5'-UTR. 
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Cellzome demonstrated that DDD00085893 binds to the TbGSK3 short native protein 

with high affinity (IC50 below 40 nM) and is also a specific GSK3 inhibitor for both T. 

brucei and human MRC5 cells (see section 3.3 and Urbaniak et al., 2012a). Next I 

wanted to assess whether this compound could specifically act “on target” in living 

cells. 

To date the role of TbGSK3 short has not yet been elucidated, and its 

physiological substrates in T. brucei are unknown; hence it was not possible to validate 

DDD00085893 directly by inhibiting the phosphorylation of TbGSK3 short downstream 

targets. An alternative strategy to demonstrate that DDD00085893 specifically inhibits 

TbGSK3 short in cultured trypanosomes is by modulating its protein expression in 

mutant cell lines. An inhibitor that acts “on target” is more potent against mutant cell 

lines under-expressing the molecular target and becomes less potent when the target 

protein is overexpressed (Wyllie et al., 2009), or in other words the potency to a small 

molecule inhibitor acting “on target” can be modulated by changing the level of protein 

expression of its molecular target. 

 

4.1.2 Null mutants of TbGSK3 short have a lethal phenotype  

It was previously demonstrated that TbGSK3 short gene is present as a single 

copy per haploid genome by Southern analysis (Ojo et al., 2008).  

Single knock-out cell lines (SKO) were obtained by replacement of one TbGSK3 

allele with the puromycin N-acetyl transferase resistance gene (PAC) flanked with the 

5'- and 3'- untranslated regions (5'-UTR and 3'-UTR) of TbGSK3 short generating the 

Tbgsk3::PAC/TbGSK3 cell line. Likewise it was possible to incorporate the 

hygromicin phosphotransferase resistance gene (HYG) generating the 

Tbgsk3::HYG/TbGSK3 cell line. (Figure 4.1 A and B). The replacement of a single 



 

 

 

Figure 4.2 Strategy for inducible expression of an ectopic copy  

(A) The WT cell line constitutively expresses T7 RNA polymerase and the 

tetracycline repressor protein (TetR) under G418-neomicin (NEO) selection. (B) 

Inducible expression vectors designed for integration in the ribosomal locus.  Figure 

adapted from Wirtz et al., 1999 and Professor George Cross’ website 

(http://tryps.rockefeller.edu/trypsru2_plasmids.html). 
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allele with the resistance gene cassettes in the TbGSK3 locus was confirmed by 

Southern analysis (Figure 4.1 C). Repeated attempts to obtain a null mutant replacing 

the second allele by homologous recombination with either PAC or HYG were 

unsuccessful. Similarly also for other essential genes studied up to date in T. brucei, in 

which there is not a metabolic by-pass or compensation of function by other isoforms 

and/or enzymes, it has not been possible to generate null mutants (Roper et al., 2002; 

Sienkiewicz et al., 2008; Urbaniak, 2009; Wyllie et al., 2009). This negative result 

suggests that TbGSK3 short is an essential gene in T. brucei, although it cannot be 

considered a definitive proof of its essentiality (Frearson et al., 2007).  

 

4.1.3 Generation of conditional cell lines and tuning of the ectopic 

expression 

When it is not possible generate a null mutant directly by replacement of both 

alleles, an established procedure is to insert an ectopic copy of the gene in an alternative 

locus under tetracycline-inducible regulation (Wirtz et al., 1999). This strategy requires 

a background cell line, referred as wild-type (WT), which constitutively expresses T7 

RNA polymerase (T7RNAP) and the tetracycline repressor protein (TetR) under G418-

neomicin (NEO) selection (Figure 4.2 A) (Wirtz et al., 1999). The ectopic copy is 

generally inserted in the ribosomal locus, its expression being regulated by a 

tetracycline-inducible promoter. Selection is possible by the presence of a resistance 

cassette regulated by a constitutive T7 promoter. Different vectors can induce different 

level of expression of the ectopic protein based upon their “leaky” nature or tighter 

regulation, so that the ectopic protein expression can be finely tuned, in particular for 

toxic genes (Wirtz et al., 1999).  

For the generation of TbGSK3 short over-expressing cell lines, the pLew82 

over-expressor vector was initially used as it gives the highest level of expression at the 



 

 

 

Figure 4.3 Genotypic analyses of conditional cell lines  

(A) Agarose gel of PCR reactions performed with 100 ng genomic DNA from conditional cell 

lines cWT
OE

 GSK3short
Ti 

(BLE, pLew100v5) (lane 1-3), cSKO(PAC)
OE

 GSK3short
Ti

 (BLE, 

pLew100v5)(lane 4a-4b), WT
OE

 GSK3short
Ti 

(BLE, pLew82) (lane 5-8), and SKO(PAC)
OE

 

GSK3short
Ti

 (BLE, pLew82) (lane 9a-10b) to confirm incorporation of resistance genes, PAC 

(600bp) and BLE (424 bp). M, marker. (B) Southern blot analysis of DraI and PstI digested 

genomic DNA (~5 µg) from WT (lane 1), TbGSK3short SKO (HYG) (lane 2), TbGSK3short 

SKO (PAC) (lane 3), cWT
OE

 GSK3short
Ti 

(BLE, pLew100v5) (lane 4-6), cSKO(PAC)
OE

 

GSK3short
Ti

 (BLE, pLew100v5)(lane 7), WT
OE

 GSK3short
Ti 

(BLE, pLew82) (lane 8-11), and 

SKO(PAC)
OE

 GSK3short
Ti

 (BLE, pLew82) (lane 12-13). Southern blot probed with TbGSK3 

short ORF. WT shows the expected size of 1.5 kbp (completed digested DNA) and 1.8 kbp 

(partial digested DNA). The membrane had previously been probed with the 5’-UTR probe 

and stripped. The expected extra band at 0.7 kbp for the introduction of  HYG in the 

TbGSK3short SKO (HYG) cell line is still visible in the blot (lane 2). (C) Map of the 

restriction sites for DraI and PstI in WT cell lines, TbGSK3short SKO (HYG)  and 

TbGSK3short SKO (PAC). 
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expense of a poor regulation since it is controlled by a leaky tetracycline-inducible T7 

promoter. This vector has a single T7 promoter that drives transcription of both the 

ectopic gene and the drug resistance gene, whereas transcription is terminated 

downstream by tandem T7 terminators (Figure 4.2 B). The unregulated over-expression 

of TbGSK3 short by the pLew82 vector caused either cell toxicity or deletion of the 

ectopic copy by gene rearrangement, although the gene conferring resistance was 

maintained (lane 5, 9a and 10a in Figure 4.3 A and lane 12 and 13 in Figure 4.3 B). 

These results suggested that the level of TbGSK3 short protein in T. brucei is tightly 

regulated and expression above the physiological levels is as lethal as gene deletion. 

These finding were in agreement with the fact that over-expression of HsGSK3 was 

able to induce apoptosis in a variety of cell lines (Pap et al., 1998; Beurel and Jope, 

2006). 

The pLew100 vector is tightly regulated by a PARP (procyclic acidic repetitive 

protein) promoter with two Tet operators, thus the level of conditional expression of the 

ectopic copy under induction is comparable to the WT level (Figure 4.2 B). Therefore, 

it is generally used as a rescue construct for generation of conditional null mutants, but 

it is not suitable for protein over-expression above physiological levels (Wirtz et al., 

1999). A modified version of the pLew100 vector, called pLew100v5
a
 combines 

expression above physiological levels with a tighter regulation that can be finely tuned 

by tetracycline concentration. This vector has a back-to-back dual promoter, a 

constitutive T7 promoter which drives the drug resistance and a regulated rRNA 

polymerase (rRNAP) that drives the expression of the ectopic gene (Figure 4.2 B). 

Using pLew100v5 it was possible to introduce an ectopic copy of TbGSK3 short both 

                                                 

 

 

a
 http://tryps.rockefeller.edu/trypsru2_plasmids.html 



 

 

Figure 4.4 Cumulative growth analyses of wild-type and genetically modified 

TbGSK3 short cell lines 

(A) WT growth was compared to the growth of SKO (PAC) and SKO (HYG) clonal 

cell lines. (B) WT growth in the absence (closed symbols) and in the presence (open 

symbols) of 1 g ml
-1

 of tetracycline (tet) was compared to the cumulative growth of 

a conditional over-expressing clone (cWT
OE

) and a TbGSK3 conditional single 

knock-out clone (cSKO
OE

).  
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into WT and SKO background cell lines generating conditional over-expressing 

(cWT
OE

) and conditional single knock-out (cSKO
OE

) cell lines. PCR and southern blot 

analysis of genomic DNA from these cell lines confirmed that the ectopic copy under 

phleomycin (BLE) selection was introduced and retained (lane 1 to 4a in Figure 4.3 A 

and lane 4 to 7 in Figure 4.3 B).
a
 

 

4.1.4 Over-expression of TbGSK3 short is toxic for cell viability 

The growth of the mutant cell lines generated using pLew100v5 as conditional 

over-expressor was compared to the growth of WT cell lines. SKO clones (both SKO 

(PAC) and SKO (HYG)) showed comparable growth to the WT (Figure 4.4 A). The 

growth of the conditional over-expressing cell lines in the presence and absence of 

tetracycline (tet) compared to WT trypanosomes showed growth defects when induced 

by tetracycline around day 2-3 and an erratic growth profile (Figure 4.4 B). The defect 

in growth observed under tetracycline induction supports the indication that TbGSK3 

short over-expression is toxic for the cells. 

 

4.1.5 Expression of TbGSK3 short and long in BSF T. b. brucei 

Bloodstream form T. b. brucei lysates were probed with the same anti-phospho-

tyrosine GSK3 antibody that cross-reacted with recombinant TbGSK3 short and 

                                                 

 

 

a
 The restriction enzymes used in the Southern analysis (DraI and PstI) gave two bands for the 

WT  when probed with the TbGSK3 short probe due to the presence of two DraI restriction sites in the 

5’-UTR region of TbGSK3 short and partial digestion (see Figure 4.3 B and C). The partial digestion of 

the DNA does not compromise the validity of the information obtained regarding the incorporation of the 

ectopic copy and therefore the blot is shown as evidence of ectopic copy incorporation.  To avoid this 

problem in further Southern analysis a new pair of restriction enzymes was chosen (BamHI and PstI, see 

Figure 4.1B).  



 

 

 

Figure 4.5 Western blot analysis of BSF T. b. brucei 

Immunoblots of whole cell extracts (5, 10 and 20 µg) from BSF T. b. brucei were 

probed with (A) anti-phospho-GSK3 (α-pTyr-GSK3) and (B) anti-GSK3 (α-GSK3) 

antibodies in two independent blots. In both panels the arrows indicate the expected 

Mr for TbGSK3 short (40.3 kDa) and for TbGSK3 long (55.3 kDa). 

 



 

 

Figure 4.6 Targeting of TbGSK3 short by DDD00085893 in bloodstream form T. 

b. brucei 

(A) EC50 values determination against WT (closed circles), SKO (HYG) (open 

squares) and SKO (PAC) (open diamonds). (B) EC50 determination against TbGSK3 

short-overexpressing (cWT
OE

) and conditional SKO (cSKO
OE

) cells non-induced 

(close upward triangles and close downward triangles, respectively). Tetracycline-

induced cWT
OE

 (open upward triangles) and cSKO
OE

 (open downward triangles) 

showed cell toxicity that could be rescued by increasing concentration of 

DDD00085893. EC50 values are indicated in the graph by the red dotted lines. Data 

are shown as mean ± SD of triplicate measurements.  



 

Table 4.1 Sensitivity to DDD00085893 of WT, SKO, TbGSK3 conditional over-expressing (cWT
OE

) and conditional SKO (cSKO
OE

) cell 

lines 

 

Cell line EC50, M Ratio EC50 Ratio EC50 Hill slope Ratio Hill slope 

 minus Tet plus Tet plus Tet / minus Tet plus Tet / WT minus Tet plus Tet plus Tet / minus Tet 

WT 3.9 ± 0.1 3.8 ± 0.1 1.0 1.0 2.5 ± 0.3 1.9 ± 0.6 

 

0.8 

 

SKO (PAC) 2.1 ± 0.1 2.3 ± 0.1 1.1 **0.5 2.1 ± 0.1 2.0 ± 0.1 

 

1.0 

 

SKO (HYG) 2.2 ± 0.2 2.3 ± 0.2 1.0 *0.6 1.5 ± 0.1 1.8 ± 0.5 

 

1.2 

 

cWT
OE

 3.5 ± 0.1 9.3 ± 0.8 *2.7 *2.4 2.6 ± 0.1 3.9 ± 0.1 

 

*1.5 

 

cSKO
OE

 1.9 ± 0.3 11.4 ± 0.9 **6.0 *2.9 2.2 ± 0.2 4.0 ± 0.2 

 

*1.8 

 

EC50 values are weighted means and standard errors (SEM) of at least two independent determinations done in triplicate. 

pLew100v5 was used as rescue construct for the conditional over-expression of the ectopic copy under tetracycline control. 

The two-tailed P values were calculated using an unpaired t-test performed using the weighted mean, the SEM and number of independent 

determinations. P values below 0.05 (95%) were considered statistically significant (*), P values below 0.01 (99%) were considered highly 

statistically significant (**). 
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TbGSK3 long, and the anti-GSK3 antibody that recognised only the recombinant 

TbGSK3 short (see section 3.4.3, Figure 3.22 A and B). Bands at the expected 

molecular mass of ~40 kDa for TbGSK3 short and ~55 kDa for TbGSK3 long were 

visible on both blots, in addition to an intense non-specifc band at 100 kDa for the  

immunoblot probed with the anti-phospho-tyrosine GSK3 antibody  (Figure 4.5 A and 

B). Two distinct bands were visible at the predicted molecular mass for TbGSK3 short 

in the blot probed with the anti-GSK3 antibody, presumably the phosphorylated and 

unphosphorylated form of the enzyme, and a single band for the blot probed with the 

anti-phosho-tyrosine GSK3. These results seem to indicate that these antibodies are able 

to cross-react with not only the recombinant TbGSK3 short but also the protein in the 

cell lysate. Considering that the anti-GSK3 antibody could not recognise the 

recombinant TbGSK3 long, it is unclear if the band observed at ~50 kDa in both blots is 

TbGSK3 long or an aspecific cross-reacting protein.   

 

4.1.6 Chemical validation of TbGSK3 short as drug target 

To assess whether TbGSK3 short was specifically targeted by DDD00085893 in 

trypanosomes, TbGSK3 short SKO cell lines and over-expressing cell lines (cWT
OE

 and 

cSKO
OE

), obtained using pLew100v5 as conditional over-expressor, were compared 

with the WT for their relative sensitivity to this inhibitor. 

The increase in sensitivity of the SKO cell lines to DDD00085893 correlated 

well with an expected reduction of the 50% in protein expression due to deletion of one 

allele. Indeed, after 72 h incubation DDD00085893 EC50 values were 2.2 ± 0.2 and 2.1 

± 0.1 M for SKO cell lines (SKO(HYG) and SKO(PAC), respectively) compared to an 

EC50 value of 3.9 ± 0.1 M for the WT (Figure 4.6 A, Table 4.1). Western analysis 

demonstrated that TbGSK3 short protein levels were higher in tetracycline-induced 



 

 

 

Figure 4.7 Western blot analysis of mutant cell lines for TbGSK3 short 

Cells were grown for 72 hours in presence (+) or absence (-) of tetracycline (tet) prior to analysis. (A) Ponceau staining of the blot is used as 

loading control. In each lane were loaded ~10 g of protein at the exception of tetracycline-induced cSKO for which not enough cells survived 

to the induction. (B) The blot was probed with anti-pTyr-GSK3. A 100 kDa non-specific band was also detected, which was used as an internal 

loading control. (C) The same blot was stripped and blot with anti-GSK3.  
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cWT
OE

 and cSKO
OE

 cell lines than in WT cells (Figure 4.7 A, B and C). The non-

induced cWT
OE

 and cSKO
OE

 cells had EC50 values of 3.5 ± 0.1 and 1.9 ± 0.3 M, 

respectively, comparable to the values of their respective parental cell lines (Figure 4.6 

B, Table 4.1). Conditional over-expression of TbGSK3 short affected cell growth 

causing cell toxicity that could be rescued by increasing concentrations of 

DDD00085893 up to 3 M, but higher concentrations of compound resulted in 

inhibition of growth in itself. The induced cell lines reached maximum growth at 3 M, 

and this growth level was used to normalize the inhibitor effect of DDD00085893; the 

derived inhibition profile had an unusual U shape depicting rescue of growth inhibition 

below 3 M and the inhibitory effect above this concentration. The inhibition shifted 

with respect to the parental cell lines, and in particular tetracycline-induced cWT
OE

 and 

cSKO
OE

 had EC50 value of 9.3 ± 0.8 and 11.4 ± 0.9 M, respectively, displaying a 

decrease in sensitivity. These tetracycline-induced cell lines also gave an increase in 

their Hill-slope values, which increased 1.5 and 1.8 fold, respectively, compared to the 

parental cell lines (Figure 4.6 B and Table 4.1). A steeper Hill-slope can be attributed 

to off-target effects or to a reduction of the percentage of enzyme inhibition necessary to 

achieve a cellular effect (Czock and Keller, 2007; Sampah et al., 2011). 

In conclusion, an increase in TbGSK3 short protein expression and/or activity is 

detrimental to cell proliferation in bloodstream form T. b. brucei and the associated 

toxicity can be chemically modulated by DDD00085893. Taken together these results 

provide evidence that DDD00085893 targets TbGSK3 short in cultured trypanosomes 

and chemically validates TbGSK3 short as drug target in BSF T. brucei. 

 



 

 

Figure 4.8 Genotypic analysis of conditional over-expressing TbGSK3(K49A) 

kinase dead cell lines 

Southern blot analysis of conditional over-expressing kinase dead TbGSK3 short cell 

lines obtained using pLew100v5 plasmid. Genomic DNA from the T. b. brucei 427 wild-

type (WT), from TbGSK3(K49A) over-expressing
 
cell line (cWT

K49A
) and from 

TbGSK3K49A
Ti

 ΔTbgsk3::PAC/TbGSK3 cell line (cSKO
K49A

) was digested with BamHI 

and PstI and probed with the TbGSK3 ORF probe. The blot shows the incorporation of 

the ectopic copy. 

 

 
 

Figure 4.9 Cumulative growth of T. brucei WT and conditional over-expressing 

TbGSK3(K49A) kinase dead cell lines 

Wild-type (WT) (closed circles); non-induced and tetracycline-induced 

TbGSK3(K49A) kinase conditional over-expressing cell lines (cWT
K49A

) (closed and 

open squares, respectively); non-induced and tetracycline-induced TbGSK3(K49A) 

kinase dead conditional single knock-out (cSKO
K49A

) (close and open triangles, 

respectively). 



 

 

 

 

 

Figure 4.10 DDD00085893 sensitivity towards conditional over-expressing 

TbGSK3(K49A) kinase dead cell lines 

 Non-induced and tetracycline-induced cWT
K49A

 EC50 values of 4.4 ± 0.2 and 4.6 ± 

0.2 μM were determined (closed and open circles, respectively). Non-induced and 

tetracycline-induced cSKO
K49A

 EC50 values of 2.1 ± 0.1 and 2.3 ± 0.2 μM were 

determined (open and closed squares, respectively). WT (closed triangle) and SKO 

(close diamond) inhibition profiles were added as comparison to cWT
K49A

 and 

cSKO
K49A

 cell lines. EC50 values are indicated in the graph by the red dotted lines. 

Data are shown as mean ± SD of triplicate measurements.  



 

Table 4.2 Sensitivity of DDD00085893 towards cell lines conditional over-expressing TbGSK3(K49A) kinase dead mutant 

 

DDD00085893 EC50 ± SD, M Ratio EC50 Ratio EC50 Hill slope ± SD Ratio Hill slope 

Cell line minus Tet plus Tet plus Tet / minus Tet plus Tet / WT
a
 minus Tet plus Tet plus Tet / minus Tet 

WT
a 

3.9 ± 0.1 3.8 ± 0.1 1.0 1.0 2.5 ± 0.3 1.9 ± 0.6 

 

0.8 

 

cWT
K49A 

4.4 ± 0.2 4.6 ± 0.2 1.1 1.2** 2.7 ± 0.2 3.1 ± 0.2 

 

1.1 

 

SKO
a 

2.1 ± 0.1 2.3 ± 0.1 1.1 0.5** 2.1 ± 0.1 2.0 ± 0.1 

 

1.0 

 

cSKO
K49A 

2.1 ± 0.1 2.3 ± 0.2 1.1 0.6* 2.9 ± 0.2 3.3 ± 0.2 

 

1.1 

 
a 
EC50 value for WT and SKO as reported in Table 4.1.  

EC50 values are means and standard errors of triplicate measurements. 

The two-tailed P values were calculated using an unpaired t test calculated using the weighted mean, the SD and number of replicates. P values 

<0.05 (95%) were considered statistically significant (*), P values <0.01 (99%) were considered highly statistically significant (**). 
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4.1.7 Over-expression of inactive TbGSK3 short in bloodstream form  

Having shown that DDD00085893 is an “on target” inhibitor of TbGSK3 short, I 

wanted to address the question as to whether this compound targeted both the active and 

inactive forms of the enzyme, as well as whether the toxic effects associated with 

TbGSK3 over-expression were due to an increase in enzyme activity or an increase in 

cellular protein concentration. In HsGSK3 there is a conserved lysine (Lys) at position 

85 that plays an important role in the catalytic activity of the enzyme (Cole et al., 2004). 

Mutation of this residue to alanine (Ala) results in a catalytically inactive form of the 

enzyme. This residue is conserved in all orthologues of GSK3 including the 

kinetoplastids (Figure 1.8).  

Using this information I generated a kinase dead mutant of TbGSK3 short by 

site-direct mutagenesis in which Lys49 was mutated to Ala, namely hereafter 

TbGSK3(K49A) short. Conditional over-expressing cell lines were obtained by 

transfection of an ectopic copy of this mutant using pLew100v5 vector into both wild-

type and single knock-out background cell lines.  The incorporation of the ectopic copy 

in selected clones was confirmed by Southern analysis (Figure 4.8). The growth of 

cWT
K49A

 and cSKO
K49A

 cells was compared to the growth of their parental cell lines 

and were found to be slightly slower (Figure 4.9). The sensitivity of DDD00085893 to 

the tetracycline induced and un-induced cWT
K49A

 and cSKO
K49A

 cells was tested after 

72 h exposure and found unchanged with respect to the sensitivity to WT and SKO cell 

lines. The tetracycline induction had no effect on the sensitivity of DDD00085893 

against cWT
K49A

 clonal cell lines with EC50 values of 4.4 ± 0.2 and 4.6 ± 0.2 μM for 

non-induced and tetracycline-induced, respectively. Similarly also cSKO
K49A

 cell lines 

had EC50 values of 2.1 ± 0.1 and 2.3 ± 0.2 μM for non-induced and tetracycline-

induced, respectively (Figure 4.10 and Table 4.2).  



 

 

 

 

 

Figure 4.11 Western Blot analysis of T. brucei conditional over-expressing 

TbGSK3(K49A) kinase dead mutant cell lines 

Cells were induced with tetracycline (tet) for 72 h prior to analysis. Blots were probed 

with antibody directed against phospho-tyrosine-GSK3 (pTyr-GSK3) (A) and anti-

GSK3 (GSK3) (B), the corresponding Ponceau staining of the blots is also shown 

as loading control (C and D). Ten g of total protein was loaded for each lane. 
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Previously it had been reported that the phosphorylation of HsGSK3 in the 

activation loop is an autophosphorylation event (Cole et al., 2004), thus it is assumed 

that the kinase-dead enzyme could not be phosphorylated in the activation loop. 

Western blot analysis of tetracycline-induced cWT
K49A

 and cSKO
K49A

 did indeed show 

no increase in the amount of the phosphorylated form of the enzyme, but also total 

protein levels did not appear to be increased either (Figure 4.11). The fact that total 

protein was not elevated after tetracycline induction suggests that the kinase-dead either 

is not over-expressed or this form of the enzyme is unstable and quickly targeted for 

degradation considering that the wild-type protein was over-expressed despite being 

toxic (Figure 4.7). This hypothesis would be in agreement with Cole and colleagues’ 

(2004) observation that the phosphorylation in the activation loop is not required for 

protein activity but rather for stability. Further evidence that the kinase dead might be 

unstable in T. b. brucei cells comes from the inability to obtain soluble recombinant 

protein in E. coli not interacting with folding proteins (see section 3.4.4, Figure 3.24 

and Figure 3.25). Thus, the failure to demonstrate over-expression of the kinase dead 

mutant leaves unanswered the question whether the cellular toxicity is caused by the 

increase in enzyme activity or protein level of TbGSK3 short. 

 

4.1.8 Over-expression of TbGSK3 long in bloodstream form T. brucei 

The chemical proteomic approach clearly identified TbGSK3 short as target of 

DDD00085893 in T. brucei lysate. All the peptides attributed to TbGSK3 were unique 

to this isoform at the exclusion of one peptide (LCDFGSAK) that was shared between 

the short and the long form (Tb427.07.2420) (section 3.3.1, Figure 3.13). The low 

number of observations for this peptide and the fact that no unique peptides for the long 

isoform were observed makes it unlikely that the long isoform of TbGSK3 was among 

the binders of DDD00085893 in the chemical-proteomic experiment. 



 

 

 

 

Figure 4.12 DDD00085893 sensitivity towards conditional over-expressing 

TbGSK3 long cell line 

 EC50 values of 4.5 ± 0.7 and 5.4 ± 1.0 μM were determined for a non-induced and 

tetracycline-induced clonal cell line over-expressing the long form of TbGSK3. EC50 

values are indicated by the red dotted lines. Data are shown as mean ± SD of triplicate 

measurements.  

 



 

 

 

Figure 4.13 Western Blot analysis of T. brucei conditional over-expressing 

TbGSK3 long cell lines  

Cells were induced with tetracycline (tet) for 72 h prior of the study. Blots were 

probed with antibody directed against phospho-tyrosine-GSK3 (pTyr-GSK3) (A) 

and anti-GSK3 (GSK3) (B), the corresponding Ponceau staining of the blots is also 

shown as loading control (C and D). Arrows indicate the expected size for TbGSK3 

short and TbGSK3 long. An unspecific band at 100 kDa is reported as internal loading 

control. Ten g of total protein was loaded per each lane. 
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In previous studies, the knock-down of TbGSK3 long did not affect the growth 

of BSF T. brucei (Ojo et al., 2008, Alsford et al., 2011) and was associated to a gain-of-

fitness in procyclic form (Alsford et al., 2011). The phosphoproteomic studies 

conducted by Nett and colleagues (2009a; 2009b) identified no phosphorylated peptides 

belonging to the long isoform in the BSF, but in procyclic a unique phosphorylated 

peptide was identified corresponding to its activation loop (NVPpYIFSR). These data 

suggest that TbGSK3 long is expressed in the procyclic stage, probably in an active 

form, but there is no evidence to date of the expression of this protein in BSF in an 

active form. Thus, I sought to investigate whether this protein could be over-expressed 

in BSF T. brucei and could be inhibited by DDD00085893.  

I cloned the TbGSK3 long ORF (see section 3.4.2) into the pLew100v5 plasmid 

for ectopic over-expression in T. brucei. The growth of two distinct clonal cell lines 

resistant to phleomycin (BLE) were examined and found comparable to wild-type cells 

(data not shown). These cell lines had also unaltered sensitivity to DDD00085893 even 

when induced by tetracycline (Figure 4.12). Although a p-Tyr-GSK3 antibody can 

recognise the recombinant TbGSK3 long (see section 3.4.4), the protein was not 

detected in BSF lysates even when the expression was induced with tetracycline 

(Figure 4.13). A lack of expression or reduced stability in BSF would explain why 

TbGSK3 long does not play a role in the clinically relevant form of T. brucei, and 

therefore DDD00085893 presumably targets only TbGSK3 short. Not only Lys85, but 

also the conserved residue Lys86 plays a role in the kinase activity of GSK3 across 

species. Interestingly in TbGSK3 long this residue is mutated to Arg88, making 

TbGSK3 long more similar to a kinase dead mutant than an active protein. This might 

explain the extremely low activity of the recombinant protein (see section 3.4.2) and the 

associated instability might account for the low level of expression or rapid protein 

turnover. 



 

 
 

Figure 4.14 Southern blot analysis of conditional double knock-out cell lines 

obtained using the conditional over-expressor pLew100v5 plasmid 

Genomic DNA from the wild-type (WT) T. brucei S427, from ΔTbgsk3::PAC/TbGSK3 

cell line (SKO), from TbGSK3
Ti

 ΔTbTbgsk3::PAC/TbGSK3 cell line (cSKOOE) and 

TbGSK3
Ti

 ΔTbgsk3::PAC/ΔTbgsk3::HYG cell line (cDKOOE) was digested with BamHI 

and PstI and probed with the TbGSK3 ORF probe. The arrows show the expected size for 

TbGSK3 endogenous copy and for the ectopic TbGSK3Ti. Five g of digested DNA was 

loaded per lane. 



 

 

 

Figure 4.15 Cumulative growth of T. brucei WT and conditional null mutant cell 

line 

Wild-type (WT, closed circles) was compared to the growth of non-induced and 

tetracycline-induced conditional null mutant cell line (cDKO
OE

, closed and open 

squares, respectively). 

 

 



 

 

 

Figure 4.16 DDD00085893 sensitivity towards conditional null mutant (cDKO) 

cell line  

EC50 values of 3.6 ± 0.3 and 4.2 ± 0.3 μM were determined for non-induced and 

tetracycline-induced TbGSK3 cDKO
OE

 cell lines (close and open squares 

respectively). WT (closed circle) inhibition profile was added as comparison to 

cDKO
OE

 cell line. EC50 values are indicated by the red dotted lines. Data are shown as 

mean ± SD of triplicate measurements.  
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4.2 Genetic validation of TbGSK3 short 

4.2.1 Generation of conditional double knock-out using pLew100v5 

As reported in section 4.1.2 the failure to knock-out both alleles of TbGSK3 

gene suggests a lethal phenotype. Thus, generation of a conditional null mutant was 

attempted by insertion of an ectopic copy. When pLew100v5 was used as rescue 

construct, after several attempts it was possible to select a clonal cell line that was 

resistant to both PAC and HYG, suggesting that both alleles of the WT gene were 

replaced. The removal of both copies was confirmed by Southern analysis (Figure 

4.14). The growth of this conditional null mutant was compared to wild type cells and 

found to be equivalent both in presence and absence of tetracycline (Figure 4.15). The 

sensitivity to DDD00085893 of the cDKO
OE

 cell line was unaltered with EC50 values of 

3.6 M and 4.2 M when un-induced and tetracycline-induced, these values were not 

significantly different from the EC50 value of 3.9 M for the WT cell line (Figure 4.16). 

The unaltered sensitivity to DDD00085893 indicated that the level of protein expression 

was unchanged, even when tetracycline was withdrawn from the culture medium. It is 

known that conditional null mutants can escape from the tetracycline regulatory 

machinery in particular when the protein is essential for the parasite survival. Previously  

it has been reported that reverting cell lines had undergone genetic rearrangement and 

deleted the TETR gene thereby losing the tetracycline control (Roper et al., 2002). Other 

mechanisms could also be responsible for the lack of tetracycline control and the 

constitutively expression of TbGSK3 short, as such as mutations in the TetR gene or 

expression of a non-functional TetR protein (Sienkiewicz et al., 2008). The cause of 

reversion was not deemed to be part of the remit of the study and was therefore not 

further investigated.  



 

 

 

Figure 4.17 Southern blot analysis of pLew100 conditional WT (cWT) and 

conditional single knock-out (cSKO) cell lines 

Five µg of genomic DNA from four different clones of TbGSK3 conditional WT 

(lanes 1 to 4) and conditional single knock-out cell lines (lanes 5 to 8) were digested 

with BamHI and PstI and probed with the ORF of TbGSK3 short. Expected size for 

the endogenous TbGSK3 and ectopic TbGSK3
Ti

 are reported on the right hand-side. 



 

 

Figure 4.18 Cumulative growth of T. brucei WT, conditional WT and conditional 

single knock-out cell lines obtained using pLew100 as rescue vector 

Wild-type (WT) growth in the absence of tetracycline (tet) was compared to the 

growth of non-induced and tetracycline-induced pLew100 conditional WT (cWT) and 

conditional single knock-out (cSKO) cell lines.  



 

 

 

 

Figure 4.19 DDD00085893 sensitivity towards pLew100 conditional WT and 

conditional single knock-out cell lines  

 EC50 values of 2.5 ± 0.2 and 2.7 ± 0.1 μM were determined for non-induced and 

tetracycline-induced TbGSK3 cSKO cell lines (close and open inverted triangles 

respectively). EC50 values of 3.2 ± 0.1 and 3.8. ± 0.1 μM were determined for non-

induced and tetracycline-induced TbGSK3 cWT cell lines (closed and open squares 

respectively). WT (closed circle) and SKO (close triangle) inhibition profiles were 

added as comparison. EC50 values are indicated by the red dotted lines. Data are 

shown as mean ± SD of triplicate measurements.  

 



 

Table 4.3 Sensitivity of DDD00085893 towards conditional WT (cWT) and conditional SKO (cSKO) cell lines 

DDD00085893 EC50, M Ratio EC50 Ratio EC50 Hill slope Ratio Hill slope 

Cell line minus Tet plus Tet plus Tet / minus Tet plus Tet / WT minus Tet plus Tet plus Tet / minus Tet 

WT
a
 3.9 ± 0.1 3.8 ± 0.1 1.0            1.0 2.5 ± 0.3 1.9 ± 0.6 0.8 

SKO
 a
 2.1 ± 0.1 2.3 ± 0.1 1.1   0.5** 2.1 ± 0.1 2.0 ± 0.1 1.0 

pLew100v5        

cWT
OEa

 3.5 ± 0.1 9.3 ± 0.8   2.7* 2.4* 2.6 ± 0.1 3.9 ± 0.1  1.5* 

cSKO
OE a

 1.9 ± 0.3 11.4 ± 0.9     6.0** 2.9* 2.2 ± 0.2 4.0 ± 0.2  1.8* 

pLew100        

cWT
b
 3.2 ± 0.1 3.8 ± 0.1     1.2** 1.0 2.7 ± 0.1 2.9 ± 0.2 1.1 

cSKO
 b
 2.5 ± 0.2 2.7 ± 0.1 1.1      0.7*** 3.0 ± 0.1 3.5 ± 0.1 1.2** 

a
EC50 values are weighted means and standard errors (SEM) of at least two independent experiments done in triplicate. 

b
EC50 values are means and standard deviations (SD) of triplicate measurements. 

The two-tailed P values were calculated using an unpaired t test calculated using the weighted mean, the SD or SEM and number of replicates. P 

values <0.05 (95%) were considered statistically significant (*), P values <0.01 (99%) were considered highly statistically significant (**), P 

values ≤0.001 (99.9%) were considered extremely statistically significant (***). 
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As previously reported (section 4.1.4) over-expression above physiological 

levels of TbGSK3 was toxic for the cells, but they seemed to be able to adjust to the 

increased protein expression after one week of continuously culturing in presence of 

tetracycline (Figure 4.4). The loss of tetracycline control may have occurred at the level 

of the cSKO
OE

 cell lines when continuously induced with tetracycline for one week 

prior to the final transfection to obtain the cDKO
OE

. Incidentally, when cSKO
OE

 cells 

were cultured in the presence of tetracycline for a shorter period of time (3 days) before 

the final transfection event, no cells were recovered after drug selection.  

 

4.2.2 Generation of conditional double knock-out using pLew100 

An alternative strategy was used to generate a potential cDKO by the use of 

pLew100, an expression vector that could achieve lower protein expression more 

comparable to the physiological levels. Using pLew100 as rescue construct it was 

possible to insert an ectopic copy of TbGSK3 short into WT and 

ΔTbgsk3::PAC/TbGSK3 (SKO) cells obtaining, respectively, TbGSK3
Ti

 (cWT) and 

TbGSK3
Ti

 ΔTbGSK3::PAC/TbGSK3 (cSKO) cell lines, as confirmed by Southern 

analysis of clonal lines (Figure 4.17). The growth of the TbGSK3
Ti

 (cWT) and 

TbGSK3
Ti

 ΔTbgsk3::PAC/TbGSK3 (cSKO) clonal cell lines was comparable to the 

background cell lines WT and SKO respectively (Figure 4.18), without any toxic side 

effects due to tetracycline induction. Moreover, there was no shift in sensitivity towards 

DDD00085893 (Figure 4.19 and Table 4.3), suggesting that the level of protein was 

not elevated above physiological levels.  

The transfection of HYG flanked with the UTR’s regions of TbGSK3 short into a 

cSKO background (GSK3short
Ti

 Δgsk3short::PAC/GSK3short) generated cell lines that 

were resistant to both selectable markers and were selected in clonal cell lines by 

limiting dilution. Unfortunately, southern analysis showed that these clones had not 



 

 
 

Figure 4.20 Southern blot analysis of cDKO cell lines obtained using pLew100 as 

rescue vector  

Genomic DNA from the wild-type (WT) T. brucei 427, ΔTbgsk3::PAC/TbGSK3 cell 

line (SKO), from TbGSK3
Ti

 ΔTbTbgsk3::PAC/TbGSK3 cell line (cSKO) and TbGSK3
Ti

 

ΔTbgsk3::PAC/ΔTbgsk3::HYG cell line (cDKO) was digested with BamHI and PstI and 

probed with the TbGSK3 short ORF probe (A) and TbGSK3 short 5'UTR probe (B). 

Panel A depicts the incorporation of the ectopic copy in the cSKO and cDKO cell lines, 

the removal of the endogenous copies and the insertion of an additional copy of TbGSK3 

gene in an alternative locus (band indicated by an arrow at ~4,500 bp). Panel B shows the 

incorporation of puromycin-resistance gene (PAC) in the SKO and cSKO cell lines and 

the further incorporation of hygromycin-resistance gene (HYG) at the expected bp size in 

the cDKO. Also this blot shows the extra band at ~ 4,500 bp. Same amounts of digested 

DNA (5 µg) were loaded into two different gels and transferred into two distinct blots. 
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only replaced both allelic copies of TbGSK3 short, but had also undergone gene 

rearrangement and that the endogenous copy of TbGSK3 had shifted to an alternative 

locus (Figure 4.20). The observation that the second allelic copy of the gene had 

translocated to another locus probably indicates that the level of expression of the 

ectopic copy under pLew100 control did not reach levels that could maintain the 

parasites’ viability once the second allelic copy of the gene was removed.  

These data suggest that the gene knock-outs can be particularly difficult to 

obtain for proteins that have tightly regulated levels of expression or are toxic at 

concentrations above physiological levels. Under these circumstances alternative 

methods of gene validation are required. Taken together, these experiments indicate that 

TbGSK3 short is an essential druggable gene in BSF T. brucei due to the following: (i) 

knock-outs could not be obtained even using different rescue constructs and (ii) its 

activity can be modulated by small molecule inhibitors directly in cells.  
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Chapter 5 Discussion 
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5.1 Key findings 

At the beginning of this project TbGSK3 short had been just proposed as a drug 

target for Human African trypanosomiasis. Its genetic validation was based upon a mild 

growth defect by RNAi and chemically validated by using compounds that were not 

selective or specific for TbGSK3 short (Ojo et al., 2008). In the previous studies the 

correlation existing between biochemical and cellular activity was quite loose and the 

cellular activity could not be completely attributed to TbGSK3 short, considering the 

promiscuity of the compounds. Finally, the highest selectivity that could be achieved 

towards HsGSK3 was only seven fold (Oduor et al., 2011). 

Despite the very limited genetic and chemical validation available for TbGSK3 

short as potential drug target, what made it attractive from a drug discovery point of 

view was 1) the availability of recombinant active enzyme and biochemical assays for 

medium throughput screening (Ojo et al., 2008), 2) the pre-existing chemical 

knowledge on protein kinase inhibitors together with the availability of an in-house 

focused kinase library of chemical starting points (Wyatt et al., 2008; Brenk et al., 

2007),  and 3) the availability of crystal structures for HsGSK3 and HsCDK2, the most 

closely related kinases to TbGSK3 short in humans.  

In addition to the main question whether TbGSK3 short was a good drug target 

or not, there were other unanswered questions about 1) the level of enzyme inhibition 

required to obtain cell efficacy and in particular if TbGSK3 short inhibition would be 

cytocidal or cytostatic; 2) whether it would be possible to achieve higher selectivity 

between the human and parasite kinases; and 3) what the function(s) of TbGSK3 short 

might be in T. brucei or other kinetoplastids. The presence of another isoform in the T. 

brucei genome, TbGSK3 long, also posed the question whether this enzyme which has 
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been characterised as not essential by RNAi (Ojo et al., 2008; Alsford et al., 2011), 

would have been able to compensate for the inhibition of TbGSK3 short.  

This project has contributed greatly to the chemical and genetic validation of 

TbGSK3 short as drug target determining that: 

1) TbGSK3 short is a druggable target; 

2) TbGSK3 short is most likely to be an essential gene; 

3) selectivity can be achieved towards both HsGSK3 and greatly towards 

HsCDK2; 

4)  a high enzyme inhibition (~99%) is required for cell efficacy, due to the 

millimolar concentrations of ATP in the trypanosomes, indicating that 

alternative mechanisms of inhibition other than competitive with respect to 

ATP would be required to achieve nanomolar cell efficacy by specific 

inhibition of TbGSK3 short;  

5) TbGSK3 long is most likely to be an inactive enzyme, poorly expressed in 

BSF T. brucei if at all, therefore unable to compensate for TbGSK3 short 

functions; 

6) a specific chemical tool for TbGSK3 short has been developed and 

characterised to reveal the function(s) of this protein kinase in T. brucei.  

 

5.2 TbGSK3 short is a druggable target in African trypanosomes 

The druggability of a target is a measure of the likelihood of identifying drug-

like molecules that can modulate its activity in cells, in animal models and ultimately in 

human with both adequate efficacy and safety (Frearson et al., 2007). 

The biochemical screening carried out with the recombinant MBP-tagged 

TbGSK3 short has led to the identification of a few series of small molecule inhibitors 

(GSK3 01-08) able to inhibit the enzyme in the nanomolar range (Woodland et al., 
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2013). The previous knowledge about HsCDK2 inhibitors had contributed to the 

synthesis of two additional series (GSK3 09-10) that were extremely active against 

TbGSK3 short (Wyatt et al., 2008, Urich et al., 2014). 

The identification of small molecule inhibitors against a recombinant enzyme is 

not per se an indication that a protein is druggable as the biochemical assay could be a 

model system unable to replicate the physiological conditions in which the native 

protein functions in the cell (Copeland et al., 2005, Patricelli et al., 2011). The 

establishment of a correlation between biochemical inhibition and cellular efficacy is a 

first step in the chemical validation of a drug target, although correlation does not 

necessarily mean causation (Hardy and Peet, 2004).  

In the case of compounds from GSK3 09 series their nanomolar potency in the 

enzymatic assay translated into micromolar efficacy in BSF T. b. brucei, with high 

correlation among all the members of the series substituted in different positions. The 

shift in potency between the biochemical assay and the cellular assay could be 

explained by the ATP-competitive mechanism of inhibition and the differential ATP 

concentration in the cells with respect to the biochemical assay (Cheng and Prusoff, 

1973; Hofer et al., 1998). In contrast, although compounds from series GSK3 07 were 

very potent and had a very promising ligand efficacy, they had a minimal drop in cell 

efficacy that could not be explained by either the biochemical inhibition of TbGSK3 

short or their ATP-competitive mechanism of inhibition. Therefore this series was not 

considered to act on target anymore and was subsequently pursued phenotypically. This 

project, which was initially set-up as target-based approach, has evolved into a new 

project aimed at identifying phenotypically active compounds. These have been 

subsequently developed into potent leads for both HAT, Nagana and Leishmaniasis 

(DDU, unpublished work). Currently compounds developed from this series are facing 

preclinical development selection for the treatment of Leishmaniasis and identification 
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of their target(s) is ongoing. Preliminary results indicate that the cellular targets are 

other protein kinases. 

Some of the GSK3 09 inhibitors were specific TbGSK3 short inhibitors and 

selectivity towards both HsCDK2 and HsGSK3 could be achieved, up to 10,000 and 

330 fold, respectively, with the most selective TbGSK3 short compound being 

DDD00101234 so far. This compound has also moderate efficacy in trypanosomes and 

no toxicity in human MRC5 cells. 

 The chemical proteomic approach defined TbGSK3 short as the main target for 

DD00085893 among the protein kinases that could be bound by this compound. Using 

kinobeads it was possible to screen a third of the T. brucei kinome, the biggest panel of 

T. b. brucei kinases available to date with the advantage of testing endogenous proteins 

rather than recombinant ones. The binding of an inhibitor to a target protein in the T. b. 

brucei lysate does not confirm that this binding is responsible for the efficacy in cells, 

particularly considering that the cellular ATP is removed from the lysate to reduce 

competition.  

The definitive proof that a compound is acting on target is the modulation of the 

inhibitor potency directly in cells expressing different levels of protein (Hardy and Peet, 

2004). The deletion of a TbGSK3 short copy by gene knock-out increased the 

sensitivity to DDD00085893 by about 2-fold, whereas the over-expression of an ectopic 

copy of TbGSK3 short decreased the sensitivity to DDD00085893 of ~3-fold (Figure 

4.6 A and B). Further evidence that DDD00085893 acts on target comes from the 

ability of this inhibitor to revert the toxicity associated with over-expression and(or) 

hyper-activity of this protein. This small molecule inhibitor is able to work as a 

chemical switch, modulating the activity in the cells to a level that is no longer toxic for 

cell proliferation. Taken together, all these data provide the best chemical validation of 
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TbGSK3 short as druggable target and provide a validated chemical tool for 

investigating the role of this kinase in T. brucei. 

Other chemical proteomic approaches have recently identified two bioactive 

compounds, lapatinib and hypothemycin, which target TbGSK3 short among other 

protein kinases in T. b. brucei cells (Katiyar et al., 2013, Nishino et al., 2013). These 

two molecules are not specific inhibitors of TbGSK3 short as they act on multiple 

targets, so they cannot be used as tool compounds for interrogating TbGSK3 short 

biology. Interestingly these compounds target a combination of proven essential 

kinases. Together with TbGSK3 short, hypothemycin targets mainly TbCLK1, an 

essential kinase recently characterised to be an unconventional kinetochore protein 

(Akiyoshi and Gull, 2014). Lapatinib targets other three additional protein kinases, two 

of which have been characterised to be essential: TbTLK1 (Li et al., 2007; Li et al., 

2008b) and CK1.2 (Urbaniak et al., 2009). While hypothemycin is quite a promiscuous 

inhibitor of human kinases targeting a total of 45 kinases with unsurprising associated 

toxicity (Schirmer et al., 2006), lapatinib is an extremely specific inhibitor of epidermal 

growth factor receptor (EGFR) (Karaman et al., 2008) already approved for clinical 

use
a
. These recent findings add further evidence to the druggability of  TbGSK3 short in 

T. brucei. 

                                                 

 

 

a
 New derivatives of lapatinib have been developed specifically to increase 

trypanocidal activity and have shown efficacy in animal model (Patel et al., 2013). The 

phenotype of the lead compound 23 is similar to the phenotype for the knockdown of 

CK1.2 described by Jones and colleagues (2014). 
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Proof that TbGSK3 short can be specifically targeted with small molecule 

inhibitors in cells (in vitro) is only the first step in its validation as drug target for HAT. 

It still remains to demonstrate the selective toxicity, efficacy and safety of the inhibition 

of this target with drug-like molecules in animal models (in vivo) and ultimately in 

human (clinical trials).  

 

5.3 TbGSK3 short is an essential gene 

TbGSK3 short is a druggable target in African trypanosomes, but is it an 

essential target? The fact that genetic knock-outs were not obtained even in presence of 

inducible expression of an ectopic copy supports the idea that this is an essential target 

and that there are no alternative pathways for the cell to compensate for the loss of this 

gene. Attempts to obtain genetic knock-outs of GSK3 have failed not only in T. brucei, 

but also in Plasmodium falciparum (Tewari et al., 2010). Unfortunately the tendency 

not to publish negative results makes it difficult to review all of the genes for which 

genetic validation has been attempted and has failed. 

All the RNAi studies performed in T. b. brucei are in agreement that TbGSK3 

short plays a role in BSF trypanosomes (Ojo et al., 2008; Alsford et al., 2011; Jones et 

al., 2014). It has been also reported that protein down regulation causes cell arrest rather 

than cell death (Jones et al., 2014), but irreversible cell death can be obtained dosing 

DDD0085893 at concentration equal to the EC99 (Figure 3.13 B). This result indicates 

that almost complete enzymatic inhibition is required to get a cidal effect, and also 

alerts us that the outcomes of RNAi studies might reflect the level of protein 

knockdown rather than the real static/cidal nature of the target. The use of a target-

specific inhibitor for determining the rate of killing and the recovery after wash-off 

gives a far better indication of the static or cidal nature of a target compared to RNAi 
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studies, but it requires well validated and specific tool molecules (Jacobs et al., 2011; de 

Rycker et al., 2012). 

 

5.4 Alternative strategies of inhibition to obtain selectivity and 

efficacy 

The extremely high enzyme inhibition required to obtain cellular efficacy poses 

two problems for the development of drug inhibitors of this protein kinase. First, for 

ATP-competitive inhibitors picomolar potencies are required to reach nanomolar 

efficacy in cells, and second, although we have demonstrated that selectivity can be 

obtained towards HsGSK3β, lack of selectivity and potential toxicity could be still a 

problem for extremely potent compounds (Cohen and Goedert, 2004; Martinez et al., 

2002b). Furthermore it would be advantageous to have only a moderate inhibition of 

HsGSK3β considering the toxicity concerns associated with the inhibition of the human 

enzyme (hypoglycaemia, cardiotoxicity, neuronal deregulation, nephrotoxicity and 

potential tumorigenesis) (Eldar-Finkelman and Martinez, 2011). 

The development of inhibitors with alternative mechanisms of inhibition could 

address both the selectivity and efficacy issues. At present, alternative strategies of 

inhibition have been already considered for HsGSK3β: allosteric inhibitors (Palomo et 

al., 2011); irreversible inhibitors (Castro et al., 2008; Perez et al., 2011; Dominguez et 

al., 2012); substrate competitive inhibitors (Avrahami et al., 2013; Licht-Murava and 

Eldar-Finkelman, 2011; Eldar-Finkelman et al., 2010); and activators (Takahashi-

Yanaga et al., 2003; Takahashi-Yanaga et al., 2006). Moreover, small molecules that 

regulate cell localization, interaction with scaffolding proteins or inhibitors of the 

priming kinases could provide alternative mechanisms of inhibition for HsGSK3 

(Meijer et al., 2004). 
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5.4.1 Allosteric inhibitors   

Allosteric inhibitors generally act by inducing conformational changes without 

binding in the ATP pocket. Allosteric modulators should be more selective with less 

off-target side effects as they bind in sites that are more unique to a specific kinase 

rather than the well conserved ATP binding site. However, drug resistance could be 

developed more easily, as mutations that are not directly responsible for the kinase 

activity are better tolerated than changes in the catalytic residues that tend to be 

conserved (Johnson, 2009).  

Palomo and colleagues (2011) have performed a computational study on 

HsGSK3β and found that there are 7 targetable cavities which are present in the 

majority of GSK3-ligand crystal structures analysed. Of these seven cavities, only three 

are known binding sites of GSK3: 1) the ATP binding pocket, 2) the substrate binding 

site and 3) the axin/fratide binding pocket (Palomo et al., 2011). 

The ATP noncompetive inhibitor manzamine A binds to the enzyme in the 

substrate binding site constituted by three basic residues, Arg96, Arg180, and Lys205, 

near the activation loop which is responsible for the binding of the primed substrate. 

The binding of this inhibitor in the substrate pocket was postulated by computational 

studies and experimentally confirmed by competition studies with a synthetic primed 

substrate (Palomo et al., 2011). A similar site seems to be occupied by L803, a peptide 

reported to bind in the cavity near loop 85-95 (Avrahami et al., 2013). Lastly the 

quinoline derivative VP0.7 is  a reversible allosteric inhibitor of HsGSK3β (IC50 ~3 

µM), non-competitive towards both ATP and a synthetic primed substrate, which has 

been docked to bind preferentially in cavity 7 with a resulting conformational change 

that will impede substrate binding (Palomo et al., 2011). Other “allosteric” cavities have 

never been explored by small molecule inhibitors, but could be potential targeted by 

rational design to achieve both efficacy and selectivity. Further computational studies 
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are required to evaluate if similar cavities are present in TbGSK3 short and whether key 

differences could be exploited to achieve selectivity towards the human enzyme. 

An alternative “allosteric” inhibition could be achieved by targeting  the inactive 

conformation. This approach has some pharmacological advantages compared to the 

targeting of the active conformation: the inactive configuration is more unique than the 

active conformation shared among all protein kinases, and more importantly the inactive 

kinase has a lower affinity for the ATP and an inhibitor specifically targeting this 

conformation will be less susceptible to the competition of the intracellular ATP 

(Johnson, 2009; Knight and Shokat, 2005).  

Lapatinib, targeting TbGSK3 short in T. b. brucei cells (see section 5.2) (Katiyar 

et al., 2013), is a tyrosine kinase inhibitor known to specifically target the inactive 

conformation of the Epidermal Growth Factor Receptor (EGFR) (Wood et al., 2004). 

Another interesting property of lapatinib is its slow off-rate (half-life 300 min) 

compared to other inhibitors that target the active conformation of EGFR, such as 

gefitinib and erlotinib, with off-rates of approximately 30 min (Johnson, 2009; Wood et 

al., 2004). The inhibitor dissociation from the inactive conformation is probably slow as 

requires conformational changes or alternatively because of the very tight binding. The 

combination of a slow off-rate and specificity towards the inactive conformation are 

desirable characteristics for inhibitors of TbGSK3 short. Lapatinib targets TbGSK3 

short, thus this suggests that it is possible to target the inactive conformation of this 

protein kinase. 

HsGSK3β is a constitutively active protein. The tyrosine phosphorylation of the 

activation loop (Tyr216 in HsGSK3β) is an intramolecular chaperone-dependent event 

happening immediately after translation (Lochhead et al., 2006). The tyrosine 

phosphorylation increases the protein stability (Cole et al., 2004) and locks the protein 

in an active conformation. Once activated, HsGSK3β is an intermolecular Ser/Thr 
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kinase that is no longer dependent on chaperone activity (Lochhead et al., 2006). Some 

inhibitors are able to target specifically the activation process (i.e. geldanamycin, 

radicicol, LiCl, SB216763) and their effect could be monitored using the rabbit 

reticulocyte lysate translation system (Lochhead et al., 2006). Biochemical assay 

formats using the constitutionally active recombinant protein would miss inhibitors of 

the auto-activation of GSK3, so novel assays able to monitor the transient post-

translational activation should be developed to find inhibitors with this alternative 

mechanism of inhibition.  

 

5.4.2 Irreversible inhibition 

Irreversibile inhibitors are an attractive alternative to ATP-competitive 

inhibitors: high inhibitor concentration is not required for efficacy in cells as the 

inhibitor cannot dissociate from its target. Thus to restore activity requires protein re-

synthesis; irreversible inhibition can prevent the development of resistance; with 

irreversible inhibitors it is possible to obtain an efficacy far higher than the one obtained 

using reversible inhibitors without prolonged exposure, and rational design can help the 

development of molecules that specifically target the protein kinase of interest (Rastelli 

et al., 2008; Liu et al., 2013). Irreversible inhibitors are also powerful tools as mutants 

of the reactive cysteine can rescue the inhibition phenotype providing in-cell evidence 

of the mode of action and specificity of inhibition (Liu et al., 2013). 

Usually an irreversible inhibitor is specifically targeted to a binding site where it 

can initially have reversible interactions, then the proximity between a cysteine (or other 

amino acid side chain) and the reactive moiety of the molecule allows the establishment 

of the irreversible interaction. In the case of irreversible inhibitors, the potency cannot 

be monitored by measurement of IC50 or Ki values, as the time of incubation plays a 

relevant role. Both the Ki of the non-covalent initial binding and the rate of inhibition of 
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the covalent binding should be taken in consideration for the development of 

irreversible inhibitors (Liu et al., 2013). The turnover of the protein is another important 

factor to take in consideration, as the protein function is recovered when new protein is 

synthesised (Liu et al., 2013). 

HsGSK3 is among the human protein kinases that have a reactive cysteine 

immediately before of the DFG motif that could be targeted by irreversible inhibitors. 

Indeed this binding site has been exploited for the development of two inhibitors of 

HsGSK3β: Tideglusib (Castro et al., 2008; Dominguez et al., 2012) and compound 40, 

a maleimide-based molecule substituted with a reactive halomethylketo (HMK) moiety 

(Perez et al., 2011).  

Tideglusib is a thiadiazolidinone based compound currently in clinical 

development for both Alzheimer’s disease and progressive supranuclear palsy. It was 

initially erroneously classified as non-ATP competitive inhibitor (Castro et al., 2008) as 

irreversible inhibitors often display same pattern of inhibition as non-ATP competitive 

inhibitors in reciprocal plots, based on the assumption that the binding of the inhibitor to 

its target is rapid and reversible. Recently it has been characterised to be an irreversible 

inhibitor by a more in-depth mode of inhibition study (Dominguez et al., 2012). The 

fact that its mechanism of inhibition was misinterpreted underlines the importance in 

drug discovery of undertaking rigorous studies of the mode of inhibition rather than 

relying exclusively on IC50 and Ki determination, but also determining reversibility of 

inhibition, time dependency and study of the kinetics of binding. Compound 40, a 

maleimide derivative substituted with a reactive halomethylketo (HMK) moiety (Perez 

et al., 2011), was rationally designed with the aim to transform ATP-competitive 

reversible inhibitors in irreversible inhibitors, by covalently binding the reactive Cys199 

with the HMK moiety. This compound was confirmed to bind covalently by Maldi-TOF 

analysis and its efficacy was demonstrated in cells by the decrease of Tau 
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phosphorylation. Irreversible inhibitors of GSK3 targeting Cys199 are specific towards 

CDK kinases as this residue is not conserved. 

Hypothemycin is a polyketide natural product that binds irreversibly to 45 

human protein kinases containing a specific CDXG motif (Schirmer et al., 2006). In this 

motif the reactive Cys is close to the conserved Asp residue responsible for the binding 

to the Mg
2+

 complexed with the ATP (Rastrelli et al., 2008). TbGSK3 short contains 

this motif and it is among the protein kinases targeted by this compound in T. brucei 

lysates (Nishino et al., 2013). The cell efficacy of this inhibitor was mainly attributed to 

TbCLK1 by virtue of the higher inhibition of both the recombinant enzyme and stronger 

binding of the native protein immunoprecipated after incubation with hypothemycin. 

Nonetheless this demonstrates that irreversible inhibition can be achieved for TbGSK3 

short.  

 

5.4.3 Substrate inhibitors 

Protein kinases have different specificities for protein substrates and are more 

likely to bind and trans-phosphorylate specific consensus sequences. Competitive 

inhibitors for the substrate have generally weak interactions and protein-protein 

interaction inhibitors have been generally disregarded as difficult to develop. 

Although both the binding site for the primed substrate and the auto-inhibition 

performed by the pseudo-substrate (phosphorylated Ser9 at the N-terminus) are well 

understood from a structural point of view (Dajani et al., 2001; Ilouz et al., 2008; 

Palomo et al., 2011; Eldar-Finkelman et al., 2010), very few substrate inhibitors have 

been reported for HsGSK3β. GSK3 has an unique substrate recognition motif 

(S/TXXXphoshoS/T). The substrate binds between the two lobes, in a site delimited by 

the P-loop and the short loop from Gln89 to Asn95 (Licht-Murava et al., 2011). It 

establishes interactions with Gln89, Asn95 and Phe93. The 89-95 loop is well 
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conserved in kinetoplastids, with the exception of TbGSK3 long where none of the 

residues essential for substrate recognition are conserved (see Figure 1.8). Thus, it is 

not surprising that the ability to trans-phosphorylate the synthetic primed substrate 

GSP2 is considerably lower compared to TbGSK3 short (see section 4.1.8). This loop is 

involved in substrate recognition, but it does not affect the ability of GSK3 to auto-

phosphorylate the Tyr216 in the activation loop (Licht-Murava et al., 2011). 

In addition, the phosphorylated priming site interacts with a positively charged 

pocket constituted by Arg96, Arg180 and Lys205. GSK3 preference for primed 

substrates has led to the identification of L803-mts: a peptide mimetic inhibitor based 

upon the recognition sequence of heat shock-factor 1 (HSF-1) (Eldar-Finkelman et al., 

2010). This peptide has a weak IC50 of 40 µM, but has shown in vivo efficacy in 

diabetes and CNS models of neuroprotection, antidepressive activity and axon 

morphogenesis (Eldar-Finkelman et al., 2010; Eldar-Finkelman and Martinez, 2011). 

Modifications of this peptide inhibitor aimed to increase the hydrophobic interactions 

with Phe93 have brought to the development of the more potent inhibitors L803F and 

PQ9P (Eldar-Finkelman and Martinez, 2011). In conclusion, although substrate 

competitive inhibition can be obtained for HsGSK3β, this is associated with moderate 

efficacy, but greater selectivity, both characteristics that are considered positive 

attributes for the therapeutic uses of HsGSK3β inhibitors.  It would be interesting to 

investigate whether it would be possible to develop selective substrate competitive 

inhibitors of TbGSK3 short, although both parasite and human kinases are very similar 

in their substrate recognition sites (the only difference is the substitution of one residue 

in the 85-95 loop). 
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5.4.4 Alternative screening strategies 

The development of TbGSK3 short inhibitors with an alternative mechanism of 

inhibition rather than ATP-competitive would require different assays and screening 

strategies. The TbGSK3 short screening campaigns, conducted here in Dundee and 

elsewhere, were biased towards the identification of ATP-competitive inhibitors 

because the ATP concentration was set below the Km for the ATP  and because of the 

nature of compounds tested (kinase focussed library and known HsGSK3 inhibitors) 

(Ojo et al., 2008, Oduor et al., 2011). Allosteric inhibitors could be identified by the 

screening of fragment libraries in assay platforms not biased towards ATP competitors. 

The identified binders with higher ligand efficiency could be rationally improved using 

the available homology models built for TbGSK3 short to expand them towards 

allosteric cavities (Hopkins et al., 2004; Ciulli and Abell, 2007). By adopting 

biophysical assays, it would possible to obtain indications on the kinetic properties of 

the binders (slow binders, longer residence time); properties that could direct in the 

selection of the best compound for development, rather than rely exclusively on potency 

(IC50 or Kd) (Copeland et al., 2006). The available recombinant BAP-tagged TbGSK3 

short protein, suitable for biotinylation, could be used to develop biophysical assays for 

both surface plasmon resonance and biolayer-interfometry-based platforms. 

Unfortunately TbGSK3 short has not been crystallized to date, but the new potent 

ligands from series GS309 could be used for co-crystallization studies. The availability 

of the enzyme crystal structure could be of great help in the development of fragment 

derived compounds, as it would give confirmation of their mode of binding and direct 

their chemical development. 
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5.5 Generation of a chemical tool to dissect new biology 

DDD00085893 has all the wanted characteristics of the chemical probe:  it is 

specific enough to correlate the in vitro potency to its cellular efficacy, its mechanism of 

inhibition has been studied and is coherent with its efficacy in cells, and its efficacy has 

been tested in target over-expressing cell lines (Hardy and Peet, 2004; Cohen, 2010; 

Frye, 2010; Workman and Collins, 2010). The combined use of both chemical and 

genetic approaches provides an orthogonal validation and the establishment of causal 

relationship between the inhibition of the target and in cell effect. As a validated  

chemical probe for TbGSK3 short DDD00085893 can be used for interrogating its 

role(s) and function(s) in T. brucei and for the identification of its physiological 

substrates. 

The functions of TbGSK3 short in T. brucei are unknown, but on the basis of 

HsGSK3β roles and what is known on other species, it can be postulated a role in cell 

cycle control (Gladden and Diehl, 2005); in protein synthesis (Wang et al., 2001); 

regulation of flagellar assembly and intraflagellar transport (Wilson and Lefebvre, 2004, 

Nett et al., 2009b; Absalon et al., 2008a; Absalon et al., 2008b); and pro-apoptotic 

action (Beurel and Jope, 2006; Xingi et al., 2009) among others. TbGSK3 could also 

play a role in protein degradation and targeting for ubiquitination, determining protein 

stability and turnover (Xu et al., 2009).  

Preliminary SILAC experiments have been performed by Dr Michael Urbaniak 

using DDD00085893 (unpublished data) to identify the substrates of TbGSK3 short in 

BSF trypanosomes; although protein levels are not affected by sub-lethal doses, 

multiple sites have both significantly increased and decreased levels of phosphorylation. 

Target proteins with higher levels of change in phosphorylation, combined with the 

knowledge of the pathways in which HsGSK3β is involved, could be prioritized for 
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substrate validation in conjunction with pharmacological studies of the phenotype of 

cells treated with DDD00085893. 

 

5.6 Conclusions  

This kinase target-based project had two main outcomes. First, the genetic-

chemical validation of TbGSK3 short as drug target using compounds from the GSK3 

09 series that were synthesized based upon previous literature knowledge (Wyatt et al., 

2008). Second, and the identification of a phenotypically active series (GSK3 07) that 

acts off-target with efficacy in animal models for both HAT and leishmaniasis. 

The limited cell efficacy of specific and potent TbGSK3 short inhibitors in 

trypanosomes and the narrow window of selectivity towards the HsGSK3β caused the 

de-prioritization of TbGSK3 short as drug target in the DDU pipeline, even though this 

protein target can be now regarded as fully chemically validated in vitro for HAT. 

However, some important lessons from this project can be learned, in particular 

considering more protein kinase target-based projects are entering the DDU pipeline as 

potential drug targets for HAT and leishmaniasis. 

Protein kinases as drug targets should be selected according to their essentiality 

proven in animal models and/or by RNAi. The target proteins that require lower degree 

of enzymatic inhibition or protein knock-down for a cidal effect in cells should be 

prioritised for screening (Jones et al., 2014). Furthermore, the screening cascades 

should not be limited to the identification of ATP-competitive inhibitors and where 

possible an array of assay platforms and conditions should be tested in order to identify 

compounds with alternative mechanisms of inhibition or favourable kinetics.  

Although specificity is a vital characteristic for a chemical probe, it is not a 

requirement for a lead molecule. Promiscuous inhibitors towards a pool of essential 

parasitic protein kinases, but selective towards the human isoforms would be the best 
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candidates for further chemical development. Until now the limiting step in the 

execution of protein kinase target-based projects has been the availability of active 

recombinant protein, and, even when available, recombinant enzymes have not always 

been able to predict cell efficacy (Urbaniak et al., 2012a). Recently global approaches 

have informed us about essentiality of protein kinases (Alsford et al., 2011; Jones et al., 

2014), level of protein expression and phosphorylation in T. brucei (Urbaniak et al., 

2012b and Urbaniak et al., 2013). We need now to automate medium throughput 

systems integrated with proteomics that allow the characterization of phenotypically 

active compounds directly on cell lysates (Bantscheff et al., 2007; Patricelli et al.,2011), 

in order to identify potent binders to multiple essential native protein kinases. The 

development of these platforms will inform whether it is possible to identify potent 

kinase inhibitors with favourable network pharmacology for the treatment of HAT 

(Hopkins et al., 2008). 
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ABSTRACT: The protozoan parasite Trypanosoma brucei is the
causative agent of African sleeping sickness, and there is an urgent
unmet need for improved treatments. Parasite protein kinases are
attractive drug targets, provided that the host and parasite kinomes
are sufficiently divergent to allow specific inhibition to be achieved.
Current drug discovery efforts are hampered by the fact that
comprehensive assay panels for parasite targets have not yet been
developed. Here, we employ a kinase-focused chemoproteomics
strategy that enables the simultaneous profiling of kinase inhibitor
potencies against more than 50 endogenously expressed T. brucei
kinases in parasite cell extracts. The data reveal that T. brucei
kinases are sensitive to typical kinase inhibitors with nanomolar potency and demonstrate the potential for the development of
species-specific inhibitors.

The protozoan parasite Trypanosoma brucei is transmitted
by the bite of an infected Tsetse fly and causes African

sleeping sickness, which is also known as Human African
Trypanosomasis (HAT). The disease is invariably fatal if left
untreated and results in upward of 10,000 deaths each year in
sub-Saharan Africa.1 T. brucei has a complex digenetic lifecycle
between the insect vector and mammalian host, and the ability
to adapt to these environments is essential to its survival and
virulence. During early stages of infection the clinically relevant
bloodstream form of the parasite proliferates in the blood and
lymph of the human host and then in the second stage enters
the cerebrospinal fluid and brain, resulting in coma and death.
Current treatments are expensive, toxic, and difficult to
administer, leaving an urgent unmet need for improved
therapeutic agents.2

Protein kinases play key roles in the control of growth and
cell signaling and are a major target of the pharmaceutical
industry. Parasite protein kinases have been proposed as
attractive targets for drug discovery as such efforts can “piggy-
back” on the extensive knowledge of the development of
inhibitors against human protein kinases.3 In the case of T.
brucei, bioinformatic analysis of the genome has identified 176−
182 putative protein kinases on the basis of sequence similarity,
the majority of which can be placed within well-recognized
kinase groups (Supplementary Table S1).4,5 Efforts to

determine the detailed biological role of T. brucei protein
kinases are ongoing, although knock-down by RNA interfer-
ence has provided evidence of the essential nature of a
significant number of protein kinases.6 However, the rationale
to develop drugs to target the T. brucei kinome poses a
conundrum: if mammalian and parasite protein kinases are
sufficiently similar to be identified and classified on the basis of
sequence similarity and are inhibited by typical inhibitors, will
parasite kinase inhibitors lack host−parasite specificity?
Conversely, if the kinases are sufficiently different that host−
parasite specificity can be readily obtained, will they be
inhibited by typical inhibitors of mammalian kinases? In
other words, we need to consider the similarity of the chemical
space that parasite and mammalian protein kinase inhibitors
occupy, rather than the similarity in protein kinase sequence.
One way to probe the inhibitor chemical space is to profile

inhibitor activity against both the mammalian and parasite
kinomes. Such profiling is often achieved using in vitro activity
assays against a panel of recombinant protein kinases,7 but
there is no such panel available for the T. brucei kinome; indeed
only a handful of active T. brucei kinases have been
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Figure 1. Chemical proteomics approach to profiling the targets of kinase inhibitors. T. brucei cell lysates are incubated in the presence or absence of
the test inhibitor prior to the addition of mixed kinase-inhibitor beads (kinobeads) to enrich kinases and related proteins. The presence of the test
kinase inhibitor prevents the binding of its target(s) to the kinobeads. Analysis of the kinobead-bound subproteome by quantitative tandem mass
spectrometry using isobaric tags allows inhibition curves to be calculated for each protein observed.

Figure 2. Profiling the kinome expressed in bloodstream form T. brucei using complementary mass spectrometry-based observations. (a) Venn
diagram summarizing overlapping protein kinase observations. (b) Details of protein kinases observed (black square), divided by kinase group
classification according to the similarity of their catalytic domains. Proteome: detection at natural abundance. Phosphorylated: enrichment of
phosphorylated peptides.5 Kinobeads: enriched by immobilized mixed kinase-inhibitors.
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recombinantly expressed as active enzymes.8−10 A recent
advance in kinase inhibitor profiling uses a chemical proteomic
methodology that captures a substantial portion of the
expressed kinome (and related proteins) contained in cell
lysates on a mixed kinase-inhibitor matrix known as
kinobeads.11,12 Addition of a kinase inhibitor to the cell lysates
enables it to bind to its specific target(s), occupying the binding
sites and preventing binding to the kinobeads, whereas the
binding of nontargeted kinases and other proteins are
unaffected. Incubation of the lysate with varying concentrations
of the inhibitor and subsequent analysis of the kinobead-bound
subproteome by quantitative mass spectrometry allows
inhibition curves to be generated for each protein observed
(Figure 1). We reasoned that this methodology should be
species independent, provided that the kinobeads are
sufficiently promiscuous to capture a sizable portion of the
parasite kinome.

Here, we present the results of our efforts to establish
kinobead chemoproteomics profiling in T. brucei and estimate
the coverage of the parasite kinome. Our strategy enabled us to
access more than 50 parasite kinases for inhibitor profiling,
which by far exceeds any currently available enzyme panels. We
report the profile of the mammalian kinase inhibitors
staurosporine and BMS-387032 and several early hit com-
pounds identified as parasite protein kinase inhibitors by the
Drug Discovery Unit at the University of Dundee.

■ RESULTS AND DISCUSSION

Coverage of the T. brucei Kinome. Kinobeads consist of
immobilized analogues of a variety of ATP competitive kinase
inhibitors that show relatively promiscuous binding to the
mammalian kinases, but their ability to bind kinases from more
divergent organisms has not been examined. To establish to
what extent T. brucei protein kinases were able to bind to the
kinobeads, we examined the subproteome enriched from cell

Figure 3. Chemical proteomics profiling of Staurosporine and BMS-387032 against the trypanosome and human kinome. Horizontal bars represent
IC50 value calculated from the isobaric reporter signals, gray bars indicate where binding was not quantified. Lysates were incubated with varying
concentrations of compounds prior to incubation with kinobeads, and the bound fraction was quantified by tandem mass spectrometry. Data for TK,
TKL, atypical, and lipid kinase are not shown for clarity; the full data for the trypanosome profile can be found in Supplementary Table S5, and the
CLL cell data has been reported previously.17
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lysates of the clinically relevant bloodstream form of T. brucei.
Initially, we compared four versions of kinobeads that differ in
the identity of the immobilized inhibitors (see Methods). In
these experiments, we observed the enrichment of a total of a
57 protein kinases (Supplementary Table S2). The enrichment
of a significant number of trypanosome protein kinases by these
promiscuous mammalian kinase inhibitors suggests that the
ATP binding pocket architecture is broadly conserved between
the two species.
Estimating the portion of the trypanosome kinome captured

is not straightforward, as the bloodstream form represents just
one of the multiple lifecycle stages of T. brucei and may not
express every kinase encoded by the genome. Before we could
determine the proportion of the bloodstream form kinome that
was captured by kinobeads, we needed to estimate how many
protein kinases were present in the cell lysates. To achieve this,
we took advantage of the differing bias of two orthogonal
proteomic techniques. By analyzing the total proteome
contained in the non-enriched cell lysate we identified the
most abundant 3248 proteins, which included 90 protein
kinases (Supplementary Table S3). This data shows good
overlap with a recent comparative SILAC proteomic study of
the bloodstream and procyclic form T. brucei, which identified
65 protein kinases,13 including 18 not seen in this study. A
separate phosphoproteomic study by Nett et al.,5 which used
strong cation exchange and TiO2 chromatography to enrich for
phosphopeptides, identified 43 phosphorylated protein kinases
in bloodstream form T. brucei. Comparison of the protein
kinases identified by these three orthogonal proteomics
techniques revealed overlapping and complementary coverage
of the bloodstream form kinome (Figure 2 and Supplementary
Table S4), providing experimental observation of a total of 124
protein kinases out of the predicted 182 (68%). The kinases
that bind to kinobeads are not significantly biased toward
abundant (Supplementary Figure S1) or phosphorylated
protein kinases or any particular kinase group. Mapping the
kinases that bind to kinobeads onto the phylogeny of the T.
brucei kinome shows that kinobead enrichment appears to be
independent of the degree of sequence homology (Figure 2).
While it is likely that the coverage of this observable
bloodstream form kinome is not complete, it is in reasonable
agreement with transcriptome studies that suggest 25% of the
genome is differentially expressed between bloodstream and
procyclic form T. brucei cells.14 The kinobead-enriched
subproteome contains 46% of the observed bloodstream form
kinome (31% of the predicted genome), comparable to the
coverage obtained from analysis of human cell lysates (52% of
the predicted genome).
Profiling of Known Kinase Inhibitors. Kinobead-based

profiling enables access to a sizable fraction of the expressed
trypanosome kinome, which can be used to determine the
potency and selectivity of kinase inhibitors in cell extracts by
means of a multiplexed competition binding assay. The
kinobeads version producing the best coverage of the T. brucei
kinome was used to determine the kinase inhibition profile of
two well-studied kinase inhibitors: Staurosporine and BMS-
387032. The binding of these inhibitors to their cellular targets
was quantified by mass spectrometry using isobaric tags for
relative and absolute quantification (iTRAQ)15,16 for 51 protein
kinases and 67 other kinobead-binding proteins (Figure 3 and
Supplementary Table S5). Staurosporine, a natural product, is a
prototypical ATP-competitive pan-kinase inhibitor that binds to
many protein kinases with high affinity and little selectivity.11 In

a previous study we reported kinobead profiling of
staurosporine in primary chronic lymphocytic leukemia cells17

and demonstrated that more than a third of the observed
human kinome (41/112) displayed submicromolar IC50 values
(Figure 3). This pan-kinase activity was retained against the T.
brucei kinome, with more than a third of the observed
trypanosome kinome (18/44) displaying IC50 values <1 μM,
including 10 with IC50 values below 100 nM (Figure 3).
The second kinase inhibitor to be profiled, BMS-387032, an

established pan-cyclin-dependent kinase (CDK) inhibitor, was
selected because T. brucei have a relatively expanded CMGC
group including many putative CDK or CDK-like (CDKL)
family members.4,5 Kinobead profiling of BMS-387032 against
primary chronic lymphocytic leukemia cells showed that all of
the seven observed CDKs were inhibited, with CDK2, CDK9,
CRK7, and PCSTAIRE2 displaying submicromolar IC50 values
(Figure 3).17 BMS-387032 retained the ability to inhibit the
majority of the observed trypanosome CDKs, including
targeting the CDK2-related kinases CRK2 and CRK3 with
submicromolar potency (IC50 of 148 and 57 nM, respectively),
although no inhibition of CRK1 was observed (Figure 3). In
addition, the compound selectivity was slightly broader than
just the CDKs, with two additional kinases (CMGC and
CAMK) also inhibited with IC50 values below 500 nM, which
may reflect the divergence of the trypanosome kinome. These
data provide the first molecular evidence that the trypanosome
kinome is sensitive to typical mammalian kinases inhibitors
with nanomolar potencies and suggest that other standard
kinase inhibitor scaffolds may retain substantial activity.

Profiling Trypanosome Kinase Inhibitors. The Drug
Discovery Unit at the University of Dundee has conducted a
number of screening campaigns to help identify preclinical
candidates for the treatment of African sleeping sickness,
including target-based screens against the T. brucei protein
kinases Glycogen Synthase Kinase 3 (GSK3, Tb427.10.13780)
and the Nuclear DBF-2-related (NDR) kinases PK50
(Tb427.10.4940) and PK53 (Tb427.07.5770).8 Details of the
compound screening and optimization will be reported
elsewhere. To further probe the chemical space that
mammalian and trypanosome kinase inhibitors occupy and
demonstrate the utility of chemical proteomics in antiparasitic
drug discovery, we profiled hits selected from these screens
(Supplementary Tables S6 and S7). The compounds selected
all show nanomolar potency against their respective molecular
target in vitro and variable efficacy against cultured trypanosome
and human hepatocyte (MRC5) cells (Table 1).

Table 1. Trypanosome Kinase Inhibitors

GSK3 PK50 PK53

compound ID DDD85893 DDD34425 DDD88213
T. brucei enzyme IC50
(μM)a

<0.002 0.013 ± 0.006 0.73 ± 0.14

T. brucei kinobead IC50
(μM)b

<0.039 not observed 5.7

T. brucei EC50 (μM)c 1.3 ± 1.2 0.86 ± 0.52 45 ± 4
H. sapiens MRC5 EC50
(μM)c

28 ± 9.7 >50 >50

H. sapiens kinobead IC50
(μM)b

<0.06 not observed not observed

aEnzyme IC50 values were determined using a plate-based radiometric
assay. bKinobead IC50 is described in Methods. cCell EC50 values were
determined using an Alamar blue assay.34
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The compound DDD85893 was identified as a potent
inhibitor of T. brucei GSK3 (TbGSK3) in vitro, with good
efficacy against cultured T. brucei and good selectivity against
cultured human cells. The kinobead profiling of DDD85893
against T. brucei cell lysates confirmed that TbGSK3 was
inhibited with nanomolar potency, with three other CMGC
kinases inhibited at micromolar level (Figure 4). The
compound also showed a very clean profile against human
MRC5 cell lysates, with only human GSK3α, GSK3β, and

CDK9 inhibited with nanomolar potency. These data show that
the compound DDD85893 has excellent selectivity for GSK3
and limited other CMGC members but does not display any
species specificity.
The second compound to be profiled (DDD34425) was

identified as a potent inhibitor of T. brucei PK50 in vitro, with
good efficacy against cultured T. brucei and good selectivity
against cultured human cells. Unfortunately, the expected target
PK50 was not among the kinases that bound to the kinobeads,

Figure 4. Chemical proteomics profiling of trypanosome kinase inhibitors against the kinome of bloodstream form T. brucei. Horizontal bars
represent IC50 value calculated from the isobaric reporter signals; gray bars indicate where binding was not quantified. Lysates were incubated with
varying concentrations of compounds prior to incubation with kinobeads, and the bound fraction was quantified by tandem mass spectrometry. Data
for TK, TKL, atypical, and lipid kinase are not shown for clarity; the full data can be found in Supplementary Tables S6 and S7.
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suggesting that the ATP binding site contains features that are
not recognized by the set of standard ligands immobilized on
the beads. Indeed, none of the four human NDR kinases
(NDR1, NDR2, LATS1, LATS2) were among the kinases in
MRC5 lysates that bound to the kinobeads. However, the
kinobead profile of DDD34425 against T. brucei cell lysates
revealed that MAPK10 and MAPK5 were inhibited with
nanomolar potency, with three other kinases inhibited at
micromolar level (Figure 4). As T. brucei bloodstream form
MAPK5 null mutants grow normally in vitro18 and little is
known about MAPK10,19 it is unclear what effect, if any, their
inhibition may contribute to the observed trypanocidal effect of
DDD34425. The kinobead profile against MRC5 cell lysates
showed a broader specificity, with the MAPK NKL and TKLs
RIPK2 and ALK2 inhibited with nanomolar potency. Six
additional kinases from four different groups were inhibited at
the micromolar level. These data revealed that the compound
DDD34425 lacks specificity against the observable trypano-
some kinome and significant poly pharmacology against the
observable human kinome, including a number of tyrosine-
specific kinases that are absent from T. brucei.
The compound DDD88213 was identified as a submicro-

molar inhibitor of T. brucei PK53 in vitro but lacked efficacy
against both cultured T. brucei and human cells. The kinobeads
profile of DDD88213 against T. brucei cell lysates revealed that
PK53 was inhibited with an IC50 of 5.7 μM, with CK2α2 also
inhibited with similar potency (Figure 4). The 10-fold drop in
potency between the enzyme IC50 and the kinobeads binding
assay is not significantly different from that seen with other
inhibitors and may reflect differences between purified proteins
and cell extracts. Moreover, the potency determined with
kinobeads is in line with the weak activity of the compound in
the Alamar blue assay. The kinobead profile against MRC5 cell
lysates showed that none of the observable human kinome was
significantly inhibited by DDD88213. These data show that
while this compound does appear to be specifically targeting
the desired trypanosome kinase and appears to have little effect
on the human kinome, it lacks sufficient potency to achieve the
desired trypanocidal effect and would require further
optimization.
The final compound to be profiled was recently identified as

a potent inhibitor of the Leishmania major cyclin dependent
kinase 2-related kinase 3 (LmCRK3) (compound 33, Cleghorn
et al.20) but lacked efficacy against cultured L. major or the
related parasite T. brucei.20 As active recombinant T. brucei
CRK3 (TbCRK3) is not available for in vitro screening, we
attempted to use kinobead profiling to investigate whether the
lack of cellular potency against T. brucei was due to lack of
potency against TbCRK3. The kinobead profile of the
compound revealed that none of the observed T. brucei kinases
were significantly inhibited, including TbCRK3, and neither
were any mammalian kinase (Supplementary Tables S6 and
S7). The complete lack of inhibition suggests that the native
state of parasite CRK3s is distinct from the recombinant form
used for in vitro screening. While these differences may be due
to the absence of the associated cyclin, a recent screen against
LmCRK3-cyclin 6 also resulted in compounds that lacked
efficacy against cultured L. major.21

Summary and Conclusions. We set out to examine the
similarity of the chemical space that parasite and mammalian
protein kinase inhibitors occupy using a recently developed
chemical proteomics approach to profile kinase inhibitors. The
data presented here represent the first molecular evidence that

typical ATP-competitive inhibitors can retain low nanomolar
potency against T. brucei protein kinases. The inhibition profile
of the compounds does not seem to map directly between the
two species, suggesting that it may be possible to exploit these
differences to obtain host/parasite specificity. It is also possible
that the differences observed are an artifact due to the limited
coverage of the kinome achieved by kinobead enrichment.
However, the lack of bias in the enriched kinome suggested that
this is unlikely.
Our data suggest that phenotypic screening of known kinase

inhibitors against T. brucei is likely to identify potent
compounds but also show that it is inappropriate to infer the
molecular target on the basis of the inhibition profile
established in mammalian systems. The chemoproteomics
approach presented to profile potential kinase inhibitors
simultaneously covers as much as half the observed blood-
stream form kinome, representing a 10-fold increase in the
selection of active parasite kinases currently available for drug
discovery. Development of kinobeads tailored to the
trypanosome kinome, for instance, by immobilizing novel
inhibitors identified through phenotypic screening, is an
attractive approach to extend the coverage of the parasite
kinome. Importantly, the approach presented here is species-
independent and can be applied to any clinically relevant
pathogen for which a genome sequence is available.

■ METHODS
Reagents and Drugs. All reagents were purchased from Sigma

unless otherwise noted. Staurosporine was purchased from IRIS
Biotech, and BMS-387032 was custom synthesized by Park Place
Research.

Preparation of Bloodstream Form T. brucei Cell Lysates.
Bloodstream form T. brucei brucei variant 117 (MITat1.4) was purified
from infected rodent blood over DE52 cellulose as described
previously.22 The cells were centrifuged at 800 × g for 10 min at 4
°C and resuspended at 1 × 109 cells/mL in ice-cold buffer 1 containing
protease and phosphatase inhibitors (0.1 mM TLCK, 1 μg/mL
Leupeptin, 1 μg/mL aprotinin, 1 mM PMSF, 1 mM benzamidine,
Phosphatase Inhibitor Cocktail II (Roche)), and hypotonic lysis was
allowed to proceed for 10 min on ice. An equal volume of ice-cold
buffer 2 (100 mM Tris pH 7.5, 10% glycerol, 300 mM NaCl, 50 mM
NaF, 3 mM MgCl2, 0.2 mM Na3VO4, 1.6% Igepal-CA630, 2 mM
DTT, 0.1 mM TLCK) was added, and the lysate was centrifuged at
145,000 × g for 1 h at 4 °C. The BCA assay (Pierce) was used to
determine the total protein content in the supernatant, and the
concentration was adjusted to 5 mg/mL. Aliquots were frozen in liquid
nitrogen and stored at −80 °C prior to use.

Preparation of H. sapiens MRC5 Cell Lysates. MRC5 cells were
grown at 37 °C, 5% CO2 in MEM supplemented with 10% FCS. Cell
lysates were prepared washing the cells briefly in PBS, incubating with
an equal volume of buffers 1 and 2 for 15 min, and then processing the
crude lysate as described above.

Proteomic Analysis. The total proteome was determined in
duplicate by fractionating 25 μg of the bloodstream form T. brucei cell
lysate by SDS-PAGE and pixilation into 24 bands, followed by in-gel
reductive alkylation and tryptic digest. Samples were analyzed by liquid
chromatography − tandem mass spectrometry on a Eksigent 1D+
HPLC system coupled to a LTQ-Orbitrap mass spectrometer
(Thermo scientific). MS spectra were searched using Mascot (Matrix
Science) against a nonredundant, in-house compiled database of
Trypanosoma brucei 927 and 427 strains obtained from TriTrypDB 3.0
23 with additional protein sequences from SwissProt and RefSeq
databases, as well as known contaminant sequences such as keratins
and trypsin. To assess the false discovery rate (FDR) “decoy” proteins
(reverse of the protein sequence) were added to the database. Protein
identifications were accepted as follows: (i) For single spectrum to
sequence assignments, we required the assignment to be the best
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match and a minimum Mascot score of 37 and a 10× difference of the
assignment over the next best assignment. On the basis of these
criteria, the decoy search results indicated <1% false discovery rate
(FDR). (ii) For multiple spectrum to sequence assignments and using
the same parameters, the decoy search results indicate <0.1% FDR. To
make our data accessible to the scientific community, we have
uploaded the results of this study to TriTrypDB (http://www.
tritrypdb.org).23

Kinobead Profiling. Procedures are essentially as described
previously.11,17,24 Kinobeads were prepared by immobilization of
ATP-mimetics on sepharose beads, with the four versions differing in
the identity of the immobilized kinase ligands, as described in
Supplementary Table S8.
For kinobead profiling, compounds were dissolved in DMSO,

added at various concentrations (0, 0.039, 0.156, 0.625, 2.5, and 10
μM) to 1-mL cell lysate samples, and incubated for 45 min at 4 °C.
Subsequently, kinobeads were added to each sample and incubated for
a further 60 min at 4 °C. The kinobeads were collected by
centrifugation and washed with lysis buffer containing 0.2% Igepal-
CA630, and bead-bound proteins were eluted with NuPAGE LDS
buffer (Invitrogen) containing 50 mM DTT for 30 min at 50 °C
followed by alkylation with 20 mg/mL iodoacetamide for 30 min.
Samples were purified on 4−12% NuPAGE gels, stained with colloidal
Coomassie blue, digested with trypsin, and subsequently labeled with
TMT isobaric tagging reagents (ThermoFisher Scientific).15 Tryptic
peptides were separated over 4 h using nanoflow reversed-phase
chromatography online coupled to an Orbitrap mass spectrometer.
Peptide fragmentation was performed using PQD, and peptides were
identified with Mascot and quantified as described.25

Identification of the T. brucei 427 Strain Kinome. The
annotated proteins from T. brucei brucei 427 strain was obtained from
TriTrypDB 3.023 and scanned through a highly sensitive and specific
multilevel HMM library of the protein kinase superfamily,26 followed
by expert curation. Assignment of putative protein kinases to the main
ePK and aPK groups was done by using the E-value cutoffs specific for
each group as described previously.26,27 This procedure identified and
assigned 187 protein kinases (Supplementary Table S1).
Phylogenetic Analysis. The phylogeny of the kinase groups

identified in T. brucei 427 strain was determined using the Phylogeny.fr
platform28 and comprised the following steps: Sequences were aligned
with T-Coffee (v6.85) using pairwise alignment methods,29 and
ambiguous regions (i.e., containing gaps and/or poorly aligned) were
removed with Gblocks (v0.91b)30 with low stringency (Min. seq. for
flank pos.: 55%, Max. contig. nonconserved pos.: 8, Min. block length:
5, Gaps in final blocks: half). The phylogenetic tree was reconstructed
using the maximum likelihood method implemented in the PhyML
program (v3.0 aLRT)31 with reliability for internal branch assessed
using the aLRT test (minimum of SH-like and Chi2-based
parametric).32 Graphical representation and editing of the phyloge-
netic tree was performed with TreeDyn (v198.3).33
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ABSTRACT: Glycogen synthase kinase 3 (GSK3) is a
genetically validated drug target for human African trypanoso-
miasis (HAT), also called African sleeping sickness. We report
the synthesis and biological evaluation of aminopyrazole
derivatives as Trypanosoma brucei GSK3 short inhibitors. Low
nanomolar inhibitors, which had high selectivity over the off-
target human CDK2 and good selectivity over human GSK3β
enzyme, have been prepared. These potent kinase inhibitors
demonstrated low micromolar levels of inhibition of the
Trypanosoma brucei brucei parasite grown in culture.

■ INTRODUCTION

Human African trypanosomiasis (HAT) or African sleeping
sickness is a serious life threatening disease.1 Around 60 million
people in 36 African countries are currently in constant threat
of infection. Although the reported number of cases has
dropped over recent years, the actual number of unreported
cases is estimated to be around 70000−80000.2 HAT is caused
by infection with Trypanosoma brucei, a vector-borne parasite,
which is transmitted by the bite of tsetse flies. The symptoms of
the disease occur in two main stages. In the first stage, known
as the hemolymphatic phase, the parasites multiply in blood,
subcutaneous tissues, and lymph, causing headaches, fever,
itching, joint pains, and swelling of lymph nodes. In the second
stage, or neurological phase, the trypanosomes cross the
blood−brain barrier and invade the central nervous system.
This phase entails confusion, change of behavior, reduced
coordination, sensory disturbances, disturbance of sleep cycle,
and finally death. Most available drugs for HAT display severe
toxic side effects, require long periods of administration, and/or
are expensive due to the logistics to reach rural African areas.3

Further, resistance to all in use drugs has been observed in the
laboratory and/or in the field,4 resulting in an urgent
requirement for better, safer, and inexpensive therapeutic
alternatives to the current treatments.
Genetic knockdown studies have identified several proteins

that are essential for the survival of the parasite, including
members of the protein kinase (PK) family.5−8 In Trypanosoma
brucei PKs are essential in many fundamental cellular processes,
e.g., proliferation, differentiation, and cell cycle control, and can

therefore be considered as potential drug targets for the
treatment of HAT.7,9−12

In the T. brucei genome there are two kinases that are highly
homologous to human glycogen synthase kinase 3 (HsGSK3):
TbGSK3 short and TbGSK3 long.13 RNA interference (RNAi)
knockdown of TbGSK3 has shown that TbGSK3 short is
critical for cell growth, with a role in the control of mitosis and/
or cytokinesis.7,13

The ability to selectively inhibit TbGSK3 over the off-target
HsGSK3 is highly desirable because mouse knockout studies
revealed that the disruption of the murine GSK3β gene causes
embryonic lethality; consequently, nonselective inhibitors are
not applicable for use in infants and women of child bearing
age.14,15

From a homology perspective, TbGSK3 is not only very
closely related to HsGSK3β but also to other human PKs such
as cyclin dependent kinase 1 (HsCDK1) and cyclin dependent
kinase 2 (HsCDK2).16 HsCDK2 and HsCDK1 are essential for
G1/G2 progression and S/M-phase entry of the cell cycle. Off-
target inhibition of these human kinases will therefore result in
cell cycle arrest and reduction of cellular proliferation and as
such potentially lead to severe side effects.
Over the past decade, various groups and pharmaceutical

companies have identified multiple series of HsGSK3β
inhibitors.16,17 Recently, Astex Therapeutics and researchers
at the University of Osaka have developed a series of
aminopyrazoles that are potent inhibitors of HsGSK3β.18−20
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Co-crystal structures of this series with HsGSK3β are not
available to date; however, complex structures with the closely
related HsCDK2 have been determined.19 In all structures, the
pyrazole scaffold forms two hydrogen bonds to the hinge
region of HsCDK2 (Figure 1). Further, the NH group of the 3-

position amide forms an additional hydrogen-bond interaction
to the backbone of Leu83. A water-mediated hydrogen bond
from the amide carbonyl oxygen atom to the backbone NH of
Asp145 is also observed. The R1 residues (Figure 2) access the

gatekeeper region between the gatekeeper residue Phe80 and
the catalytic Asp145 (Figure 1). The R2 substituents occupy the
hydrophobic pocket II, formed by the backbone of the linker
region, Leu83, Phe82, and side chains of Ile10, Asp86, and
Leu134. Finally, an intramolecular hydrogen bond between the
R1-NH and R2-carbonyl group is present. The similarity of
HsCDK2, HsGSK3β, and TbGSK3 indicates that amino-
pyrazoles will also bind into the ATP-binding site of the latter
enzyme.13,16

Herein, we describe the design, synthesis, and biological
evaluation of aminopyrazole inhibitors which bind to TbGSK3
short. The inhibitors were also tested against the closely related
off-targets HsGSK3β and HsCDK2 and evaluated against a
panel of mammalian protein kinases. The most potent
compound has nanomolar affinity for TbGSK3 short, is
selective over HsGSK3β and HsCDK2, and clean in the kinase
panel. By using computer-aided molecular modeling, we were
able to rationalize the observed selectivity profile. Enzyme
affinity correlated with inhibition of T. b. brucei proliferation,
albeit a 100-fold offset in potency, was found. In light of these
results, we discuss the value of TbGSK3 short as a drug target
for HAT.

■ RESULTS
Starting Point. The aminopyrazole derivatives developed

by Astex Therapeutics and Yumiko Uno et al. for inhibition of
HsCDK2 and HsGSK3β enzymes were chosen as a starting
point for the investigation of TbGSK3 short inhibitors.18−20

Aminopyrazoles analogues were generated by substituting at
either R1 or R2 position (Figure 2) using two synthetic routes
(Scheme 1A,B).19

Differences in the ATP Binding Pockets of TbGSK3,
HsGSK3β, and HsCDK2. A structural model of TbGSK3 was
built to assess the differences in the binding sites of TbGSK3
short, HsGSK3β, and HsCDK2 and to guide ligand design. An
overlay of 42 HsGSK3 crystal structures showed that there is
low flexibility in the ATP binding site. Only the regions
including Phe67 and Arg141 showed some mobility. Phe67
either points toward or away from the hinge region. Arg141
also spans a number of distinct conformations, including
examples where it occupies space in the binding site (1J1B,
1J1C, 1O9U, 2O5K) and therefore could influence docking
results. However, to allow for ligands of a significant size, we
have used examples with Arg141 pointing out of the binding
site. Therefore, two homology models for TbGSK3 were
generated representing both states of Phe67. As we were mainly
interested in aminopyrazoles with less extended R1 groups, the
crystal structure with Phe67 pointing toward the hinge (with
structure 1r0e as a representative) was more suited as model
system. The selection of 1r0e instead of other members of this
group (with Phe67 pointing toward the hinge) was arbitrary.
For this analysis, all residues that are located within 6 Å of the
ligand bound to the template structure (1r0e) were considered.
The binding pockets of TbGSK3 and HsGSK3β differ by

nine amino acid residues (Table 1, Figure 3A). Of the amino
acid side chains that point toward the ligand, the most
significant differences are the replacement of Tyr134 in
HsGSK3β with Phe103, Leu132 with Met101, Gln72 with
Leu36, and Tyr140 with His109. The binding pockets of
TbGSK3 and HsCDK2 are more diverse. Here, in total 16 out
of 26 amino acids were found to be different (Table 1, Figure
3B), the most important of these differences being the
replacement of Lys20 in CDK2 with Leu36, Phe80 with
Met101, His84 with Pro105, Lys89 with Arg110, and Ala144
with Cys170. Interestingly, most of the amino acid differences
occurred in the hydrophobic pocket II and the gatekeeper
region. Therefore, we decided to direct the optimization of the
lead scaffold toward suitable interactions with amino acids
which are located in these subpockets of the ATP binding site.

Chemistry. The synthesis of R1 and R2 substituted
aminopyrazole derivatives started from 4-nitro-pyrazole-3-
carboxylic acid 1 and is described by two different routes

Figure 1. Co-crystal structure (2vu3) of AT751919 (carbon atoms in
gray) bound to CDK2. The binding pocket of CDK2 is shown in light-
blue surface representation. Key: red sphere, water molecule; black
dashed lines, protein−ligand and water−ligand hydrogen bonds;
yellow stick, hydrogen atom..

Figure 2. Generic binding mode of the R1 and R2 substituted
aminopyrazole scaffold (carbon atoms in gray).
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(Scheme 1) based on previous work from Wyatt et al.19 In
route A, 1 was coupled with trans-4-methoxycyclohexylamine
using EDC as the activating agent. Reduction of the subsequent
intermediate 2 by hydrogenation in the presence of palladium
on carbon generated amino pyrazole 3. The conversion to
compounds 4a−z was accomplished by coupling of 3 with a
suitable selection of carboxylic acids. In route B, after
esterification of the carboxyl group of 1, the nitro group of
intermediate 5 was reduced to afford amine 6. Treatment of 6
with 2,6-dimethoxybenzoyl chloride under standard conditions,
followed by base hydrolysis of the ester, provided acid 8. In the
final step, 8 was coupled with appropriate amines in a
microwave reaction using polystyrene-bound carbodiimide to
yield final compounds 9a−x.
Activity and Selectivity of R1 Substituted Compounds.

Twenty-six R1 substituted aminopyrazole analogues (Table 2)
were made according to the synthetic route shown in Scheme
1A. A range of R1 groups varying in size and polarity was
chosen to probe whether the differences in the gate keeper
region between TbGSK3, HsGSK3, and HsCDK2 could be
exploited to derive selective and potent TbGSK3 inhibitors
(Figure 3).
Enzyme Activity. All compounds showed good potency

against TbGSK3 (<1 μM). An unsubstituted phenyl ring (4f)
provided on average a 20-fold improvement of inhibition
potency relative to saturated six-membered ring systems (4a
and 4b) and benzyl groups (4c, 4d, and 4e). In general, a
variety of different aryl and heteroaryl rings (4g−4y compared
to 4a and 4b) in the R1 position led to significantly improved
potency against TbGSK3. Additionally, a wide variety of

substituents were tolerated on the phenyl ring. In general,
ortho-substituted phenyl rings gave the best improvement in
activity compared to the unsubstituted phenyl group (4j, 4k,
4m, and 4n). The methoxyphenyl moieties in 4j, 4m, and 4n,
which had TbGSK3 IC50 values of 4, 2, and 3 nM, respectively,
were the most favorable substituents. These derivatives were
approximately 10-fold more potent than the unsubstituted
phenyl compound 4f. Only the 2,4,6-trimethoxyl derivative 4n
showed >10-fold selectivity over HsGSK3. Interestingly, this
was also the most selective compound for HsCDK2 (>1000-
fold).
To rationalize the observed selectivity, all analogues were

docked into the binding sites of TbGSK3, HsGSK3β, and
HsCDK2 and their poses were visually analyzed. For most
compounds, a binding mode similar to that observed for
AT751919 in HsCDK2 (Figure 1) was predicted in TbGSK3,
HsGSK3β, and HsCDK2. One important difference between
HsCDK2, TbGSK3, and HsGSK3β is the gatekeeper residue
(Table 1, Figure 3A,B). While HsGSK3 and TbGSK3 enzymes
have Leu or Met, respectively, in this position, in HsCDK2 Phe
is present. As a consequence, the gatekeeper region of HsCDK2
(located between Phe80 and Asp145) is more restricted
compared to the other two enzymes. This resulted in a higher
energy, out of plane conformation of the amide group of 4f
when binding into this pocket (Figure 4), while a low energy
conformation was found when binding into T. brucei and
human GSK3 (not shown). Further, without induced fit
adaptations, the bulky R1-substituents such as the 2,6-
dimethoxybenzamide group of 4m, the 2,4,6-trimethoxybenza-
mide groups 4n, and the phenylaminobenzamide groups of 4k

Scheme 1. Synthetic Routes for 50 R1 and R2 Substituted Aminopyrazoles (4a−z and 9a−x)a

aReagents and conditions used in routes A and B: (a) trans-4-methoxycyclohexylamine, EDC, HOBt, DMF, rt; (b) 10% Pd/C, H2, DMF, rt; (c)
R1COOH, EDC, HOBt, DIPEA, rt; (d) SOCl2, MeOH, 0°C, rt; (e) 10% Pd/C, H2, EtOH, rt; (f) 2,6-dimethoxybenzoylchloride, Et3N, dioxane, rt;
(g) NaOH, dioxane, H2O, rt; (h) R2NH2, polystyrene-bound carbodiimide, HOBt, acetonitrile, MW, 100 °C.
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and 4l can only be accommodated by the gatekeeper region of
TbGSK3 and HsGSK3β but not the narrower HsCDK2
gatekeeper region. These observations might explain the
reduced binding affinity of 4f for HsCDK2 compared to
HsGSK3. Of note, this explanation is further supported by the
report by Wyatt et al.,19 which found that the aryl groups which
are located in the same position need to twist in order to
provide potent CDK2 activity.

Antiparasitic Activity. All R1 substituted compounds were
tested for their ability to inhibit the proliferation of bloodstream
form (BSF) T. b. brucei in culture. As an initial indication of
potential toxicity, compounds 4a−4z were additionally tested
against proliferating human fetal lung fibroblast cells (MRC5
cell line). Four compounds (4g, 4j, 4m, and 4y) had EC50
values <1 μM and a further 11 compounds had EC50 values <3
μM against BSF T. b. brucei (Table 2). The EC50 values
correlated well with enzyme activity (R2 = 0.73, Figure 5).
However, a 100-fold drop from enzyme to cellular activity was
observed. Selectivity over the MRC5 cells was achieved with
compounds 4m (60-fold), 4s (>19-fold), 4x (12-fold), and 4n
(>9-fold), however, the majority of compounds showed a poor
selectivity over MRC5 cells.

Activity and Selectivity of R2 Substituted Compounds.
As 4m was the most potent inhibitor of TbGSK3 and
proliferation of T. b. brucei cells, we retained the 2,6-
dimethoxybenzamide group at position R1 for optimization of
the R2 substituent. R2 substituted aminopyrazole analogues
(9a−9x) were made according to the synthetic route shown in
Scheme 1B to explore the structural requirements for
improvement of antiparasitic activity and selectivity over the
closely related human kinases.

Enzyme Activity. The majority of variations led to potent
TbGSK3 inhibitors, indicating that chemical diversity at this
position was well tolerated (Table 3). One of the SAR trends
observed was that six-membered saturated rings (9c) and
seven-membered saturated rings (9d) were favored over their
three- and four-membered equivalents (9a and 9b). Further, it

Table 1. Differences in the Binding Pockets of TbGSK3,
HsGSK3β, and HsCDK2a

TbGSK3 HsGSK3β HsCDK2

V25 V61 K9
A26 I62 I10
G27 G63 G11
Q28 N64 E12
G29 G65 G13
T30 S66 T14
F31 F67 Y15
V34 V70 V18
L36 Q72 K20
A47 A83 A31
K49 K85 K33
E61 E97 I52
M65 M101 L55
V77 V110 V64
M101 L132 F80
E102 D133 E81
F103 Y134 F82
104 V135 L83
P105 P136 H84
E106 E137 Q85
T107 T138 D86
H109 Y140 K88
R110 R141 K89
K154 K183 K129
H156 Q185 Q131
N157 N186 N132
L159 L188 L134
C170 C199 A144
D171 D200 D145

aAmino acids of hGSK3β or HsCDK2 which differ in TbGSK3 short
are shown in boldface.

Figure 3. Superposition of the binding sites of the homology model of TbGSK3 short (blue carbon atoms) with (A) the HsGSK3β crystal structure
(PDB code 1r0e) and (B) the HsCDK2 crystal structure (PDB code 2vu3). The solvent accessible surface of TbGSK3 short is shown in light blue.
Only residues that differ between the binding pockets are shown. For orientation, the ligands bound to crystal structures are also displayed. Amino
acid residue labels are for TbGSK3.
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was noted that the replacement of the cyclohexane of 9c with a
phenyl ring or 4-pyridine, to give 9k or 9l, gave a 6-fold
decrease in potency against TbGSK3. The 2-pyridine analogue
(9m), on the other hand, was much less active (50-fold) against
TbGSK3. Homologation of aromatic (9g) and saturated six-
membered (9j) rings by one carbon atom produced inhibitors
with 1 nM activity for TbGSK3. For aliphatic side chain
derivatives 9r−9w, the pentanyl and 1-isopropoxypropanyl
analogues had IC50 values of 1 nM. The impact of replacing the

amide group (3-position) with carboxylic acid and ester groups
was investigated with compounds 8 and 7. Compound 8
containing a carboxylate group in the 4-position showed a
dramatic loss in activity (IC50 >50 μM). The ester group of
compound 7 on the other hand was better tolerated (IC50 0.5
μM). Interestingly, compared with 4a−4z, a majority of R2

substituted analogues (9a−9x) showed selectivity over

Table 2. Kinase Inhibitory Activity and Antiproliferative Efficacy of R1 Substituted Aminopyrazoles

IC50 (μM) IC50 (μM) IC50 (μM) EC50 (μM)

compd TbGSK3a HsGSK3βa ratio HsGSK3β/TbGSK3 HsCDK2a ratio HsCDK2/TbGSK3 T. b. bruceib MRC5c

4a 0.50 0.008 0.16 1.0 2 16 >50
4b 0.69 0.008 0.0012 0.38 0.55 32 >50
4c 0.39 0.14 0.35 0.82 2.1 23 >50
4d 0.50 0.21 0.42 0.85 1.7 22 40
4e 0.23 0.2 0.87 0.29 1.3 7.3 3.1
4f 0.024 <0.005 >0.21 0.038 <1.6 1.3 0.8
4g 0.020 <0.005 0.25 0.014 <0.7 0.4 1.0
4h 0.018 <0.013 <0.72 0.1 5.6 2.3 3.3
4i 0.053 0.02 0.38 0.07 1.3 2.8 3.4
4j 0.004 <0.013 <3.3 0.1 25 0.9 1.5
4k 0.011 0.02 1.8 >10 >910 4.4 35
4l 0.066 0.03 0.45 >10 >150 5.8 16
4m 0.002 <0.005 <2.5 0.19 95 0.5 31
4n 0.003 0.09 30 3.1 1000 5.9 >50
4o 0.053 <0.005 <0.09 0.22 4.2 3.8 11
4p 0.024 <0.005 <0.21 0.083 3.5 2.6 0.6
4q 0.057 <0.005 <0.08 0.63 11 9.6 13
4r 0.016 <0.005 <0.31 0.27 17 1.1 2.5
4s 0.019 <0.005 <0.26 0.13 6.8 2.7 >50
4t 0.070 <0.005 <0.071 1.0 14 2.0 20
4u 0.013 <0.005 <0.38 nd nd 1.2 0.8
4v 0.063 <0.005 <0.080 0.042 0.67 1.9 1.0
4w 0.094 <0.005 <0.053 0.15 1.6 2.6 5.9
4x 0.10 0.042 0.42 2.2 22 2.9 34
4y 0.007 <0.005 <0.72 0.01 1.4 0.3 0.1
4z 0.92 0.005 0.0058 22 24 >50 28

aData represents the average of two or more experiments. bConcentration required to inhibit the growth of T. b. brucei in culture by 50% over 72 h.
cConcentration required to inhibit the growth of MRC5 cells in culture by 50% over 72 h.

Figure 4. Predicted binding mode of 4f in HsCDK2. Putative
hydrogen bonds are shown as black dotted lines. Docking results
suggested that the phenyl ring of compound 4f needs to be
significantly twisted out of plane by approximately 60° compared to
the amide in order to fit into the gatekeeper region.. Figure 5. Correlation between the inhibition of recombinant TbGSK3

and bloodstream form T. b. brucei proliferation by R1 substituted
aminopyrazole derivatives (4a−z).
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HsCDK2 and HsGSK3β. These are the most selective TbGSK3
inhibitors described to date.
The predicted binding mode of 9g in TbGSK3 offers an

explanation for the observed selectivity (Figure 6). In the
highest scoring docking pose, the core scaffold adopts a similar
binding mode as observed for AT7519 in HsCDK2 (Figure
1).19 In addition, the docking results suggested that the
hydrophobic pocket II of TbGSK3 was occupied by the N-
benzylamide group of 9g in such a way that its phenyl moiety
formed T-shaped edge-to-face interactions with the side chain
of Phe103 and hydrophobic interactions with Leu36 and Ala26.
In hGSK3β, Phe103 is replaced with a Tyr (Table 1, Figure
3A), resulting in steric clash and electrostatic repulsion toward
the benzyl moiety of 9g. Further, Leu36 is substituted with
Gln72 in hGSK3β and Lys20 in HsCDK2, diminishing
hydrophobic interactions between the benzyl moiety of 9g
and these residues. Overall, these changes together with
differences in the gatekeeper region of HsCDK2 (see above)
are likely to be responsible for the high selectivity of 9g for
TbGSK3 over hGSK3 and HsCDK2. Similar observations
regarding the R2 group placement and selectivity were also
made for compound 9h supporting this model.
Antiparasitic Activity. The R2 substituted compounds were

tested against BSF T. b. brucei and MRC5 cells. As for the R1-
substituted analogues, a good correlation between the EC50 and
IC50 values and a 100-fold drop in activity between the
biochemical and cell assay was observed (Figure 7). Compound
9c had an EC50 for T. b. brucei of 4 μM (Table 3). Limited
selectivity (>7-fold) over MRC5 cells was achieved with
compounds 9c, 9d, 9g, 9s, and 9t. It was found that the

compounds showed selective inhibition of TbGSK3 over
HsGSK3 (>20-fold) and HsCDK2 (>1200-fold).

Human Kinase Selectivity Profile. PK inhibitors
frequently inhibit multiple kinases, often leading to off-target
toxic effects. To assess the selectivity of the aminopyrazole
inhibitors, remaining activity at 10 μM concentration was
measured for compounds 4f, 4m, and 4y against a panel of 80
human PKs and for compound 9g against 124 human PKs.
Compounds 4m and 9g were found to be highly specific (Table
4). Compound 4m inhibited only two PKs, namely GSK3β and
CDK2, at more than 80%. 9g showed activity against three PKs:
GSK3β, MAPKAP-K2, and MINK1 at more than 80%.
Compound 4f was found to inhibit seven PKs and compound
4y 15 PKs by greater than 80% at 10 μM.

■ DISCUSSION

In this work, we exploited the knowledge of the previously
described aminopyrazoles inhibitors of HsCDK2 and
HsGSK3β20 to identify selective inhibitors of the TbGSK3
short isoform. This kinase has been shown using genetic
manipulation studies to be essential for the survival of the T. b.
brucei parasite.13 However, we wanted to confirm if antiparasitic
activity could be gained using selective, small molecule
inhibitors of TbGSK3. The ability to selectively inhibit
TbGSK3 over HsGSK3 and HsCDK2 is essential to avoid
potential side effects. Therefore, more than 50 aminopyrazole
derivatives were synthesized and screened against TbGSK3,
HsGSK3β, HsCDK2, and proliferating T. b. brucei and human
cells in culture.

Table 3. Kinase Inhibitory Activity and Antiproliferative Efficacy of R2 Substituted Aminopyrazoles

IC50 (μM) IC50 (μM) IC50 (μM) EC50 (μM)

compd TbGSK3a HsGSK3βa ratio HsGSK3β/TbGSK3 HsCDK2a ratio HsCDK2/TbGSK3 T. b. bruceib MRC5c

9a 0.012 0.22 18 >10 >830 19 >50
9b 0.008 0.08 10 2.4 300 12 >50
9c 0.001 0.05 50 1.2 1200 4.1 35
9d 0.001 0.02 20 2.0 2000 4.5 42
9e 0.018 nd nd >10 560 16 >50
9f 0.081 0.45 5.6 >10 120 50 >50
9g 0.001 0.33 330 >10 10000 5.9 50
9h 0.015 0.32 21 >10 670 20 >50
9i 0.14 0.87 6.2 >10 71 >50 >50
9j 0.001 nd nd nd nd 7.7 >50
9k 0.006 0.07 12 4.3 720 11.5 >50
9l 0.004 0.12 30 1.3 330 8.2 >50
9m 0.32 0.94 2.9 >10 31 >50 >50
9n 0.002 0.07 35 1.6 800 6.4 34
9o 0.001 nd nd >4.8 4800 6.7 45
9p 0.006 0.14 23 4.7 780 12 >50
9q 0.008 0.08 10 >10 1300 8.9 38
9r 0.034 0.3 8.8 >10 290 43 >50
9s 0.001 0.1 100 4.8 4800 7.3 >50
9t 0.001 nd nd >10 10000 6.6 >50
9u 0.33 0.47 1.4 >10 30 >50 >50
9v 0.32 0.66 2.1 >10 31 >50 >50
9w 0.054 0.63 12 >10 190 >50 >50
9x 0.002 <0.005 <2.5 0.19 95 0.5 31
8 >50 >10 >10 >50 >50
7 0.52 4.5 8.7 >10 19 >50 >50

aData represents the average of two or more experiments. bConcentration required to inhibit the growth of T. b. brucei in culture by 50% over 72 h.
cConcentration required to inhibit the growth of MRC5 cells in culture by 50% over 72 h.
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The results (Table 2 and Table 3) showed that almost all
compounds were highly potent TbGSK3 inhibitors. The activity
could be rationalized using the homology models and
subsequent molecular docking studies (Figure 4 and Figure
6). The aminopyrazole derivatives make three H-bond
interactions with the kinase hinge region, driving much of the

potency of the compounds against the three kinases studied.
Selectivity could be derived from substitution at both R1 and R2

positions.
From a homology perspective, HsCDK2 is the most closely

related kinase to HsGSK3β.16 Although, the enzymes only share
approximately 33% amino acid identity, their ATP binding
pockets are highly conserved,16 resulting in the majority of
known HsCDK2 inhibitors also potently inhibiting HsGSK3β.
The results demonstrated that the required profile could be
achieved, with several compounds with high affinity (<18 nM)
for TbGSK3 showing high selectivity (>500-fold) over
HsCDK2. Docking studies provided a number of important
insights into the binding modes and the selectivity profile of
aminopyrazole derivatives. First, the docking results suggested
that if the phenyl ring of compound 4f is planar with the amide
group at R1 position it cannot bind into the truncated gate
keeper region of HsCDK2, defined by Phe80 in HsCDK2,
compared to Met101 in TbGSK3. To fit into this region of
HsCDK2, the phenyl ring needs to significantly twist out of
plane of the amide, with a torsion angle of approximately 60°,
resulting in reduced binding affinity (Figure 4). To stabilize this
twist, di-ortho-substituents on the R1 phenyl group are required
to cause a steric/electronic clash with the carbonyl of the amide
bond. However, this region of the pocket in HsCDK2 is narrow
(in a plane perpendicular to the hinge backbone and the
pyrazole core), only allowing small ortho-substituents (such as
in compound 9g) on the phenyl group. In contrast, the wider
gatekeeper regions of hGSK3 and TbGSK3 can tolerate large
substituents such as the ortho-dimethoxy groups of compound
4m or 4n and the ortho-phenylaminobenzamide groups of 4k
or 4l. Second, the highest increase in selectivity (>10000-fold)
over HsCDK2 was achieved by accessing the hydrophobic
pocket II. Exploitation of hydrophobic interactions in these two
pockets not only reliably increased ligand-binding affinity but
also impacted on the selectivity profile of these compounds. On
the basis of the biological results of compound 9g and
structural modeling studies, we have shown that selectivity over

Figure 6. Proposed binding mode of 9g in the homology model of
TbGSK3 (blue carbon atoms) overlaid on the HsGSK3β crystal
structure (pink carbon atoms). Both ligand and protein are
represented as sticks and color coded by atom types. Ligand carbon
atoms are shown in gray, protein carbon atoms of TbGSK3 are shown
in blue, and HsGSK3β carbon atoms in salmon. Amino acid residue
labels are for TbGSK3. Hydrogen bonds and hydrophobic interactions
are shown as black dotted lines, with interaction distances in
angstroms. TbGSK3 amino acids which are involved in hydrophobic
interactions with the benzyl group are marked in bold. The gold
sphere represents the center of the phenyl ring..

Figure 7. Correlation between the inhibition of recombinant TbGSK3
and bloodstream from T. b. brucei proliferation using R2 substituted
aminopyrazole derivatives (9a−x).

Table 4. Kinase Profiling against a Panel of Mammalian
Kinasesa

PKs 4f 4m 4y 9g

MKK1 54 83 17 76
ERK2 18 51 2 92
JNK1 31 77 8 71
JNK2 51 82 15 63
ERK8 14 27 7 47
MAPKAP-K2 92 33 90 13
GSK3b 33 0 0 10
CDK2 1 9 1 38
MELK 32 100 13 96
DYRK1A 6 84 1 79
DYRK2 3 63 1 28
DYRK3 24 100 2 80
PIM1 46 100 13 92
PIM3 19 94 1 96
HIPK2 14 100 4 93
IGF-1R 96 100 15 79
MINK1 nd nd nd 18

aNumbers represent average percentage of activity compared to the
control at 10 μM. In this table, only kinases with activity values <20%
are shown (for full table see Supporting Information). PK activity
values <20% are marked in bold.
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HsGSK3 can be achieved by exploiting the Phe103Tyr,
Leu36Gln, and Ala26Ile active site differences in the hydro-
phobic pocket II of TbGSK3 enzyme (Figure 6). Taken
together, the region between the gate keeper residue and the
catalytic aspartate of the DFG loop, together with the
hydrophobic pocket II, are the key areas to exploit to achieve
high selectivity over HsCDK2.
The TbGSK3 short enzyme IC50 values correlated well with

the T. b. brucei antiproliferative EC50 activities of the described
substituted aminopyrazole inhibitors (Figures 5 and 7),
indicating that the compounds act on target. However, a 100-
fold drop in cell activity was observed, compared to that in the
TbGSK3 assay (1 μM). The calculated physical properties
(MW < 473; log P −0.4−3.6; PSA < 130 Å) of the series of
compounds suggest this loss of activity was not driven by lack
of cellular penetration. In addition, the compound series was
observed to be highly chemically stable under the range of
synthetic conditions used during the chemistry campaign,
suggesting that chemical degradation was not responsible for
the loss of activity in the proliferation assay. Although
metabolism by the parasite cannot be ruled out, the high
degree of correlation between enzyme inhibition and
antiparasitic activity suggests this is not the case, as it would
be not expected that all compounds be metabolized to a
constant extent. Therefore, the drop of activity was probably
due to the high ATP concentration (millimolar range) in the
cell compared to the kinase assay conditions.21 Furthermore,
chemical proteomic profiling conducted in parasite cell extracts
confirmed that compound 4m binds the endogenous TbGSK3
short with nanomolar affinity and very few other kinase targets
with much lower affinity in the micromolar range.22

■ CONCLUSION
In this study, we have developed a series of substituted
aminopyrazole amides as TbGSK3 short inhibitors starting
from a compound series initially designed by Astex
Therapeutics to inhibit HsCDK2 and HsGSK3β. SAR
investigation and optimization successfully provided 18 low
nanomolar (IC50 <10 nM) inhibitors of TbGSK3 with high
selectivity (>10000-fold) over HsCDK2. With compound 9g,
we have shown that good (330-fold) selectivity over HsGSK3
can be achieved by targeting the hydrophobic pocket II.
Compound 9g is the most selective TbGSK3 inhibitor
described to date.13,23−25 In addition, 9g proved to be highly
selective against a panel of 124 human PKs, showing >90%
inhibition at 10 μM against only one PK, HsGSK3β. Molecular
modeling has also shown that despite overall conservation in
sequence and conformation between the three PKs (HsGSK3β,
HsCDK2, and TbGSK3), the binding pockets have distinct
features that determine their specificity for particular
compounds. Further, we have shown that enzymatic inhibition
correlates well with cell efficacy over a wide range of
concentrations and a representative member of this series
binds the endogenous TbGSK3 with nanomolar potency,
indicating that compounds definitely act on target.22 However,
a general 100-fold drop in activity between target and cellular
activities resulted at best in compounds with low micromolar
antiparasitic activity. Taken together, this data suggests that
specific ATP competitive hinge binders of TbGSK3 short
require low picomolar potency to obtain nanomolar anti-
proliferative activity against T. brucei. This leads us to the
conclusion that alternative strategies are required. First, non-
ATP competitive approaches to inhibition of TbGSK3, through

irreversible hinge binders or allosteric inhibitors, could be
pursued. However, these approaches have potential downsides,
through the introduction of a reactive functionality or an
increased chance of resistance causing mutations, respectively.
Second, a polypharmacology approach through the inhibition
of a number of essential T. brucei kinases in addition to
TbGSK3 could be investigated, although obtaining selectivity
over human kinases would be more problematical. However,
the aminopyrazole compounds (4a−4z and 9a−9x) reported
here represent an excellent start for chemistry optimization of
selective TbGSK3 short inhibitors and an outstanding probe for
studying the physiological functions of TbGSK3 short in T.
brucei parasites.

■ EXPERIMENTAL SECTION
Molecular Modeling. Homology Modeling. Sequence alignments

between T. brucei and HsGSK3β were generated using ClustalW.26

Subsequently, Modeler 9.227 was used to build homology models of
TbGSK3 short, whereas the HsGSK3β crystal structure (PDB code
1r0e) served as template. Modeler was run with default settings, and
only the highest-scoring structure was used for further analysis and
modeling.

Ligand Docking. FlexX 2.0.1 (BioSolveIT GmbH) was used to
dock ligands flexible into protein binding sites.28 The active sites were
defined as the areas within 7 Å of the co-crystallized ligands of
HsCDK2 (PDB code 2vu3)19 and HsGSK3β (PDB code 1r0e)29 or
the equivalent residues in the homology model of TbGSK3. In all three
structures, protonation states of amino acids and the orientations of
the protons of hydroxyl and amine groups of active-site residues were
manually assigned using the FlexX GUI. A highly conserved water
molecule (H2O 82 in 1r0e or H2O 2134 in 2vu3) was kept in all three
protein structures used for docking. Docking was carried out using
default settings, and only the highest scoring binding modes were
visually analyzed.

All figures of protein binding sites were prepared using PyMol.30

Potency Screen Assays. For compound potency determinations,
a radiometric 96-well Flashplate assay (PerkinElmer) was adopted.
Compounds were solubilized in DMSO at a top concentration of 3
mM and serially diluted to achieve 10-point titration of final assay
concentrations from 30 μM to 0.3 nM with a final DMSO
concentration of 1% (v/v). The reaction mixtures contained 1 μM
biotinylated GSP2 substrate, 1 μM ATP, 3.7 KBq/well [γ-33P]-ATP
and 2.5 nM TbGSK3 in the TbGSK3 kinase assay buffer. GSK3
inhibitors were screened for selectivity assessment also against
HsGSK3β. For HsGSK3 assay, the reaction mixes contained 1 μM
biotinylated GSP2 substrate, 2 μM ATP, 7.4 KBq/well [γ-33P]-ATP
and 15 nM HsGSK3β in the TbGSK3 kinase assay buffer (25 mM
Tris-HCl, pH 7.5, 10 mM MgCl2, 5 mM DTT, 0.02% CHAPS, 2 U/
mL heparin). For HsCDK2/cyclin A assay, the reaction mixtures
contained 1 mM CDK5 biotinylated peptide substrate (Biotin-C6-
PKTPKKAKKL), 1 μM ATP, 7.4 KBq/well [γ-33P]-ATP and 2 nM
HsCDK2/cyclin A in the kinase assay buffer (50 mM Tris-HCl, pH
7.5, 10 mM MgCl2, 2 mM DTT, 100 mM NaCl, 0.2 mM EGTA,
0.02% (v/v) Brij35).

Statistical Evaluation of Assay Reproducibility. The statistical
significance of the compound potency (IC50) was based on the
performance of standard molecules which have been tested to a high
replication. In the case of TbGSK3 short assay, the standard
compound GW8510 was tested 93 times across 9 independent runs.
The average pIC50 value was 8.26 with a SD (standard deviation) of
0.23. The minimum significant ratio (MSR) of 0.4 was evaluated
considering the following formula:

= × NMSR 2.3 SD/

where SD is the standard deviation and N the number of replicate
values routinely used for the assay (2 in our case).31 This implies that a
difference of >0.4 in pIC50 can be considered statistically significant for
this assay.
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In the case of HsGSK3 assay, the standard compound GW8510 was
tested 47 times across 5 independent runs, with an average pIC50 value
of 8.10 and a SD of 0.21. This implies that a difference of >0.3 in pIC50
can be considered statistically significant for this assay.
For the HsCDK2 assay, the analysis was performed using two

different standards (GW8510 and staurosporine) tested respectively
five times in a single run and 19 times in 2 independent runs. This
implies that a difference of >0.3 in pIC50 can be considered statistically
significant for this assay.
Mammalian Kinase Profiling. Selected compounds were

screened against a panel of mammalian kinases routinely run by the
Division of Signal Transduction Therapy (DSTT) at the University of
Dundee in duplicate at 10 μM.32 Enzymes included in the panel and
assay conditions are reported in the literature. All biochemical assays
are run below the Km

app for the ATP for each enzyme, allowing
comparison of inhibition across the panel.
Trypanosome and MRC5 Proliferation Assay. Measurement of

inhibition of the proliferation of MRC5 (human lung fibroblast) cells
and T. b. brucei bloodstream stage cells was performed using a
modification of the cell viability assay previously described.33

Compounds (50 μM to 0.5 nM) were incubated with 2 × 103 cells/
well in 0.2 mL of the appropriate culture medium (MEM with 10%
fetal bovine serum for MRC5 cells) in clear 96-well plates. Plates were
incubated at 37 °C in the presence of 5% CO2 for 69 h. Resazurin was
then added to a final concentration of 50 μM, and plates were
incubated as above for a further 4 h before being read on a BioTek
flx800 fluorescent plate reader.
Chemistry. General Experimental Details. 1H and 13C NMR

spectra were recorded on either a Bruker Avance DPX 300 or 500
MHz spectrometer. Chemical shifts (δ) are expressed in parts per
million (ppm) and coupling constants (J) are in hertz (Hz). Signal
splitting patterns are described as singlet (s), broad singlet (br s),
doublet (d), triplet (t), quartet (q), quintuplet (quin), sextuplet (sex),
septet (sept), multiplet (m), or combinations thereof. LCMS (liquid
chromatography mass spectrometry) analyses were performed with
either an Agilent HPLC 1100 series connected to a Bruker Daltonics
MicrOTOF or an Agilent Technologies 1200 series HPLC connected
to an Agilent Technologies 6130 quadrupole LCMS, and both
instruments were connected to an Agilent diode array detector. LCMS
chromatographic separations were conducted with a Phenomenex
Gemini C18 column, 50 mm × 3.0 mm, 5 μm particle size; mobile
phase/acetonitrile +0.1% HCOOH 80:20 to 5:95 over 3.5 min, and
then held for 1.5 min; flow rate 0.5 mL min−1. High resolution
electrospray measurements (HRMS) were performed with a Bruker
Daltonics MicrOTOF mass spectrometer. Thin layer chromatography
(TLC) was carried out on Merck silica gel 60 F254 plates using UV
light and/or KMnO4 for visualization. Column chromatography was
performed using RediSep 4 or 12 g silica prepacked columns. When
applicable, all glassware was oven-dried overnight and all reactions
were carried out under dry and inert conditions (Argon atmosphere).
All in this work synthesized compounds had a measured purity of

greater than 95% (measured on analytical HPLC-MS system). M+ data
are given below to substantiate the purity and integrity of the
compounds. 1H NMR, 13C NMR, and HRMS experiments were also
used to confirm compound identity and purity.
N-((1r,4r)-4-Methoxycyclohexyl)-4-nitro-1H-pyrazole-3-carboxa-

mide (2). A mixture of 4-nitro-3-pyrazolecarboxylic acid (1) (2.33 g,
14.8 mmol), trans-4-methoxy-cyclohexylamine (2.39 g, 18.5 mmol),
EDC (3.55 g, 18.5 mmol), and HOBt (2.50 g, 18.5 mmol) in DMF
(75 mL) was stirred at ambient temperature for 16 h. The mixture was
reduced in vacuo and partitioned between saturated aqueous sodium
bicarbonate and EtOAc. The organic layer was washed (water, brine),
dried (MgSO4), and reduced in vacuo to give a yellow oil, which was
purified by column chromatography, eluting 0−100% EtOAc in
petroleum ether to give 2. Yield: 3.12 g (solid), 62%. 1H NMR
(DMSO-d6 DMSO-d6) δ (ppm) 14.02 (s, 1H), 8.73 (s, 1H), 8.57 (d, J
= 7.81 Hz, 1H), 3.74 (m, 1H), 3.24 (s, 3H), 3.11 (m, 1H), 1.95 (dd, J
= 55.8, 10.9 Hz, 4H), 1.27 (m, 4H). 13C NMR (DMSO-d6) δ (ppm)
159.04, 141.49, 132.17, 131.44, 77.40, 55.01, 47.58, 29.67, 29.30.
LRMS (ES+): m/z 269 [M + H]+.

4-Amino-N-(4-methoxycyclohexyl)-1H-pyrazole-3-carboxamide
(3). A solution of 2 (1.13 g, 4.2 mmol) in DMF (100 mL) was treated
with 10% palladium on carbon then shaken under hydrogen at room
temperature and atmospheric pressure for 5 h. The reaction mixture
was diluted with EtOAc, filtered through Celite, washing with further
EtOAc, and the filtrate reduced in vacuo to give crude 3 as brown oil.
Yield: 982 mg, 98%. 1H NMR (CD3OD) δ (ppm) 7.23 (s, 1H), 3.84
(m, 1H), 3.37 (s, 3H), 3.23 (m, 1H), 2.07 (dd, J = 45.8, 11.2 Hz, 4H),
1.38 (m, 4H). 13C NMR (MeOD-d4) δ (ppm) 165.58, 134.15, 133.13,
118.22, 79.72, 56.15, 48.58, 31.37. LRMS (ES+): m/z 239 [M + H]+.

General Method for Variation of Substituent R1: Example 4-
Benzamido-N-(4-methoxycyclohexyl)-1H-pyrazole-3-carboxamide
(4f). A mixture of benzoic acid (0.051 g, 0.42 mmol), 3 (0.1 g, 0.42
mmol), EDC (0.096 g, 0.5 mmol), and HOBt (0.068 g, 0.5 mmol) in
DMF (10 mL) was stirred at ambient temperature for 16 h. The
mixture was reduced in vacuo and partitioned between saturated
aqueous sodium bicarbonate and EtOAc. The organic layer was
washed (water, brine), dried (MgSO4), and reduced in vacuo to give a
creamy solid 4f, which was purified by column chromatography.
Evaporation of the appropriate fraction yielded the desired compound
as an amorphous solid. Yield: 39 mg, 27%. 1H NMR (CDCl3) δ (ppm)
10.65 (s, 1H), 8.52 (s, 1H), 8.01 (d, J = 7.2 Hz, 2H), 7.57 (t, J = 7.2
Hz, 1H), 7.51 (m, 2H), 6.86 (d, J = 8.3 Hz, 1H), 4.01 (m, 1H), 3.39
(s, 3H), 3.22 (m, 1H), 2.16 (m, 4H), 1.42 (m, 4H). 13C NMR
(CDCl3) δ (ppm) 164.36, 163.21, 133.54, 133.28, 132.03, 128.83,
127.24, 123.74, 120.82, 78.13, 55.91, 47.48, 30.69, 30.11. LRMS (ES+):
m/z 343 [M + H]+. HRMS (ES+): calcd for C18H23N4O3 [M + H]+

343.1765, found 343.1751.
4-(4,4-Difluorocyclohexanecarboxamido)-N-(4-methoxycyclo-

hexyl)-1H-pyrazole-3-carboxamide (4a). Yield: 90 mg (solid) 56%.
1H NMR (CDCl3) δ (ppm) 9.86 (s, 1H), 8.35 (s, 1H), 6.83 (d, J = 8.3
Hz, 1H), 3.95 (m, 1H), 3.39 (s, 3H), 3.21 (m, 1H), 2.44 (m, 1H), 2.22
(m, 2H), 2.11 (m, 6H), 1.94 (m, 2H), 1.81 (m, 2H), 1.40 (m, 4H).
13C NMR (CDCl3) δ (ppm) 171.61, 163.21, 133.28, 123.22, 122.55 (t,
J = 239.4 Hz), 120.71, 78.07, 55.91, 47.50, 42.74, 32.85 (t, J = 23.5
Hz), 30.35, 25.73. LRMS (ES+): m/z 385 [M + H]+. HRMS (ES+):
calcd for C18H27F2N4O3 [M + H]+ 385.2046, found 385.2036.

N-(4-Methoxycyclohexyl)-4-(tetrahydro-2H-pyran-4-carboxami-
do)-1H-pyrazole-3-carboxamide (4b). Yield: 94 mg (solid), 64%. 1H
NMR (CDCl3) δ (ppm) 9.86 (s, 1H), 8.34 (s, 1H), 6.81 (d, J = 8.1
Hz, 1H), 4.07 (m, 2H), 3.95 (m, 1H), 3.47 (m, 2H), 3.39 (s, 3H), 3.20
(m, 1H), 2.59 (m, 1H), 2.13 (d, J = 11.0 Hz, 4H), 1.91 (m, 4H), 1.40
(m, 4H). 13C NMR (CDCl3) δ (ppm) 171.97, 163.30, 133.22, 123.23,
120.71, 78.12, 67.26, 55.92, 47.50, 42.20, 30.64, 30.12, 29.10. LRMS
(ES+): m/z 351 [M + H]+. HRMS (ES+): calcd for C17H27N4O4 [M +
H]+ 351.2027, found 351.2011.

4-(2-(2-Fluorophenyl)acetamido)-N-(4-methoxycyclohexyl)-1H-
pyrazole-3-carboxamide (4c). Yield: 56 mg (solid), 71%. 1H NMR
(CD3OD) δ (ppm) 8.20 (s, 1H), 7.38 (t, 7.7 Hz, 1H), 7.34−7.26 (m,
1H), 7.18−7.05 (m, 2H), 3.83 (m, 1H), 3.80 (s, 2H), 3.33 (s, 3H),
3.16 (m, 1H), 2.06 (br d, J = 11.5 Hz, 2H), 1.97 (br d, J = 12.0 Hz,
2H), 1.34 (m, 4H). 13C NMR (CD3OD) δ (ppm) 169.57, 164.14 (d, J
= 159.5 Hz), 134.23, 132.98, 130.64 (d, J = 10.9 Hz), 125.75, 123.77,
123.20 (d, J = 18.2 Hz), 121.96, 116.48 (d, J = 21.7 Hz), 79.69, 56.14,
48.68, 37.61, 31.41, 31.27. LRMS (ES+): m/z 375 [M + H]+. HRMS
(ES+): calcd for C19H24FN4O3 [M + H]+ 375.1827, found 375.1817.

N-(4-Methoxycyclohexyl)-4-(2-(2-methoxyphenyl)acetamido)-
1H-pyrazole-3-carboxamide (4d). Yield: 43 mg (solid), 53%. 1H
NMR (DMSO-d6) δ (ppm) 13.13 (s, 1H), 9.76 (s, 1H), 8.15 (s, 1H),
8.00 (d, J = 8.3 Hz, 1H), 7.31−7.23 (m, 2H), 7.02 (d, J = 8.0 Hz, 1H),
6.93 (t, J = 7.4 Hz, 1H), 3.82 (s, 3H), 3.79−3.70 (m, 1H), 3.24 (s,
3H), 3.07 (m, 1H), 2.01 (d, J = 11.4 Hz, 2H), 1.79 (d, J = 11.4 Hz,
2H), 1.45 (m, 2H), 1.21 (m, 2H). 13C NMR (DMSO-d6) δ (ppm)
167.30, 162.43, 157.02, 132.38, 130.90, 128.59, 123.21, 122.30, 120.44,
119.70, 110.88, 77.70, 55.41, 55.04, 46.70, 38.17, 30.26, 29.73.
LRMS(ES+): m/z 387 [M + H]+. HRMS (ES+): calcd for C20H27N4O4
[M + H]+ 387.2027, found 387.2028.

4-(2-(2,6-Dichlorophenyl)acetamido)-N-(4-methoxycyclohexyl)-
1H-pyrazole-3-carboxamide (4e). Yield: 63 mg (solid), 81%. 1H
NMR (DMSO-d6) δ (ppm) 13.18 (br s, 1H), 9.86 (s, 1H), 8.14 (s,
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1H), 8.05 (d, J = 7.9 Hz, 1H), 7.51 (d, J = 8.2 Hz, 2H), 7.36 (t, J = 8.2
Hz, 1H), 4.10 (s, 2H), 3.76 (m, 1H), 3.24 (s, 3H), 3.08 (s, 1H), 2.01
(m, 2H), 1.81 (m, 2H), 1.45 (m, 2H), 1.19 (m, 2H). 13C NMR
(DMSO-d6) δ (ppm) 170.16, 162.31, 135.49, 131.62, 129.68, 128.30,
128.10, 122.23, 122.09, 77.68, 55.04, 46.77, 38.23, 30.25, 29.74. LRMS
(ES+): m/z 425 [M + H]+. HRMS (ES+): calcd for C19H23Cl2N4O3
[M + H]+ 425.1142, found 425.1147.
4-(2-Fluorobenzamido)-N-(4-methoxycyclohexyl)-1H-pyrazole-3-

carboxamide (4g). Yield: 97 mg (solid), 64%. 1H NMR (CDCl3) δ
(ppm) 10.89 (d, J = 12.2 Hz, 1H), 8.45 (s, 1H), 8.07 (m, 1H), 7.44
(m, 1H), 7.22 (m, 1H), 7.13 (m, 1H), 6.73 (d, J = 8.3 Hz, 1H), 3.96
(m, 1H), 3.29 (s, 3H), 3.11 (m, 1H), 2.05 (m, 4H), 1.31 (m, 4H). 13C
NMR (CDCl3) δ (ppm) 162.80, 160.84 (d, J = 246.9 Hz), 160.53,
133.81 (d, J = 10.9 Hz), 131.77, 124.79, 123.19, 121.42, 120.65 (d, J =
10.7 Hz), 116.46 (d, J = 21.8 Hz), 78.19, 55.88, 47.27, 30.75, 30.14.
LRMS (ES+): m/z 361 [M + H]+. HRMS (ES+): calcd for
C18H22FN4O3 [M + H]+ 361.1670, found 361.1645.
N-(4-Methoxycyclohexyl)-4-(2-(trifluoromethyl)benzamido)-1H-

pyrazole-3-carboxamide (4h). Yield: 67 mg (solid), 78%. 1H NMR
(DMSO-d6) δ (ppm) 13.40 (s, 1H), 10.22 (s, 1H), 8.32 (s, 1H), 8.29
(d, J = 8.6 Hz, 1H), 7.90−7.88 (m, 1H), 7.84−7.81 (m, 1H), 7.78−
7.75 (m, 2H), 3.72 (m, 1H), 3.23 (s, 3H), 3.06 (m, 1H), 2.00 (br d, J =
12.5 Hz, 2H), 1.76 (br d, J = 12.5 Hz, 2H), 1.45 (m, 2H), 1.14 (m,
2H). 13C NMR (DMSO-d6) δ (ppm) 163.34, 162.73, 135.06, 133.01,
132.78, 130.73, 128.39, 126.63 (d, J = 5.2 Hz) 126.04 (d, J = 29.1 Hz),
123.57 (d, J = 276.3 Hz), 122.06, 120.30, 77.66, 55.06, 46.97, 30.28,
29.67. LRMS (ES+): m/z 411 [M + H]+. HRMS (ES+): calcd for
C19H22F3N4O3 [M + H]+ 411.1639, found 411.1621.
4-(2-Ethylbenzamido)-N-(4-methoxycyclohexyl)-1H-pyrazole-3-

carboxamide (4i). Yield: 63 mg (solid), 81%. 1H NMR (CDCl3) δ
(ppm) 10.04 (s, 1H), 8.39 (s, 1H), 7.53 (d, J = 7.6 Hz, 1H), 7.39 (t, J
= 7.6 Hz, 1H), 7.30 (d, 7.7 Hz, 1H), 7.25 (t, J = 7.5 Hz, 1H), 6.87 (d, J
= 8.3 Hz, 1H), 3.92 (m, 1H), 3.36 (s, 3H), 3.16 (m, 1H), 2.90 (q, J =
7.6 Hz, 2H), 2.08 (br d, J = 10.0 Hz, 4H), 1.35 (m, 4H), 1.26 (t, J =
7.6 Hz, 3H). 13C NMR (CDCl3) δ (ppm) 167.60, 163.29, 142.86,
134.89, 133.19, 130.65, 129.69, 127.15, 126.11, 123.25, 120.94, 78.18,
55.86, 74.45, 30.58, 30.12, 26.44, 15.84. LRMS (ES+): m/z 371 [M +
H]+. HRMS (ES+): calcd for C20H27N4O3 [M + H]+ 371.2078, found
371.2078.
4-(2-Methoxybenzamido)-N-(4-methoxycyclohexyl)-1H-pyrazole-

3-carboxamide (4j). Yield: 35 mg (solid), 45%. 1H NMR: (DMSO-
d6) δ (ppm) 13.25 (s, 1H), 11.77 (s, 1H), 8.44 (s, 1H), 8.15 (s, 1H),
8.04 (s, 1H), 7.63 (s, 1H), 7.29 (s, 1H), 7.18 (s, 1H), 4.15 (s, 3H),
3.88 (m, 1H), 3.30 (s, 3H), 3.16 (m, 1H), 2.08 (m, 2H), 1.91 (m, 2H),
1.55 (m, 2H), 1.29 (m, 2H). 13C NMR (DMSO-d6) δ (ppm) 162.43,
160.94, 157.47, 133.49, 131.33, 122.29, 120.83, 120.59, 120.28, 112.32,
77.73, 56.05, 55.05, 46.72, 30.28, 29.83. LRMS (ES+): m/z 373 [M +
H]+. HRMS (ES+): calcd for C19H25N4O4 [M + H]+ 373.1870, found
373.1873.
N-(4-Methoxycyclohexyl)-4-(2-(phenylamino)benzamido)-1H-

pyrazole-3-carboxamide (4k). Yield: 41 mg (solid), 45%. 1H NMR
(DMSO-d6) δ (ppm) 13.32 (br s, 1H), 10.93 (s, 1H), 9.53 (s, 1H),
8.31 (s, 1H), 8.28 (d, J = 8.5 Hz, 1H), 7.68 (dd, J = 8.0, 1.4 Hz, 1H),
7.43 (m, 1H), 7.33−7.28 (m, 3H), 7.16−7.14 (m, 2H), 7.01−6.96 (m,
2H), 3.82 (m, 1H), 3.35 (s, 1H), 3.25 (s, 3H), 3.09 (m, 1H), 2.03 (br
d, J = 12.0 Hz, 2H), 1.81 (br d, J = 12.0 Hz, 2H), 1.48 (m, 2H), 1.20
(m, 2H). 13C NMR (DMSO-d6) δ (ppm) 164.84, 162.97, 144.57,
141.62, 132.81, 129.33, 128.04, 122.32, 122.00, 120.01, 119.63, 119.26,
118.30, 116.49, 77.74, 55.06, 46.95, 30.33, 29.73. LRMS (ES+): m/z
434 [M + H]+. HRMS (ES+): calcd for C24H28N5O3 [M + H]+

434.2187, found 434.2165.
4-(2-((2,3-Dimethylphenyl)amino)benzamido)-N-(4-methoxycy-

clohexyl)-1H-pyrazole-3-carboxamide (4l). Yield: 53 mg (solid),
55%. 1H NMR (DMSO-d6) δ (ppm) 13.35 (br s, 1H), 10.89 (s, 1H),
9.53 (s, 1H), 8.33 (s, 1H), 7.63 (dd, J = 8.1, 1.4 Hz, 1H), 7.34 (m,
1H), 7.11−7.09 (m, 2H), 6.99−6.97 (m, 1H), 6.87 (m, 1H), 6.82 (dd,
J = 8.4, 1.0 Hz, 1H), 3.84 (m, 1H), 3.35 (s, 1H), 3.25 (s, 3H), 3.09 (m,
1H), 2.29 (s, 3H), 2.14 (s, 3H), 2.03 (br d, J = 12.0 Hz, 2H), 1.82 (br
d, J = 12.0 Hz, 2H), 1.49 (m, 2H), 1.21 (m, 2H). 13C NMR (DMSO-
d6) δ (ppm) 165.36, 163.08, 147.05, 138.87, 137.74, 132.95, 132.72,

130.25, 127.52, 125.96, 125.74, 122.41, 120.79, 119.98, 117.44, 115.36,
114.63, 77.74, 55.06, 46.95, 30.33, 29.75, 20.25, 13.64. LRMS (ES+):
m/z 462 [M + H]+. HRMS (ES+): calcd for C26H32N5O3 [M + H]+

462.2500, found 462.2503.
4-(2,6-Dimethoxybenzamido)-N-(4-methoxycyclohexyl)-1H-pyra-

zole-3-carboxamide (4m). Yield: 73 mg, 43% (solid). 1H NMR
(DMSO-d6) δ (ppm) 13.28 (s, 1H), 9.75 (s, 1H), 8.29 (s, 1H), 8.20
(d, J = 8.4 Hz, 1H), 7.39 (t, J = 8.5 Hz, 1H), 6.75 (d, J = 8.5 Hz, 2H),
3.76 (s, 6H), 3.70 (m, 1H), 3.22 (s, 3H), 3.06 (m, 1H), 2.00 (m, 2H),
1.76 (m, 2H), 1.45 (m, 2H), 1.13 (m, 2H). 13C NMR (DMSO-d6) δ
(ppm) 162.79, 161.21, 156.88, 132.21, 131.08, 122.52, 119.81, 115.03,
104.28, 77.66, 55.81, 55.08, 46.93, 30.29, 29.66. LRMS (ES+): m/z 403
[M + H]+. HRMS (ES+): calcd for C20H27N4O5 [M + H]+ 403.1976,
found 403.1960.

N-(4-Methoxycyclohexyl)-4-(2,4,6-trimethoxybenzamido)-1H-
pyrazole-3-carboxamide (4n). Yield: 76 mg (solid), 84%. 1H NMR
(CD3OD) δ (ppm) 8.36 (s, 1H), 6.17 (s, 2H), 3.84 (s, 3H), 3.82 (s,
6H), 3.35 (s, 3H), 3.22 (m, 1H), 2.08 (m, 4H), 1.36 (m, 4H). 13C
NMR (CD3OD) δ (ppm) 164.90, 164.72, 164.35, 160.74, 134.07,
124.36, 122.58, 108.39, 92.09, 79.74, 57.05, 56.89, 56.62, 48.71, 31.61,
31.40. LRMS (ES+): m/z 433 [M + H]+. HRMS (ES+): calcd for
C21H29N4O6 [M + H]+ 433.2082, found 433.2065.

4-(2,4-Difluorobenzamido)-N-(4-methoxycyclohexyl)-1H-pyra-
zole-3-carboxamide (4o). Yield: 114 mg (solid), 72%. 1H NMR
(DMSO-d6) δ (ppm) 13.24 (s, 1H), 10.89 (d, J = 10.2 Hz, 1H), 8.33
(s, 1H), 8.09 (q, J = 8.7 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.39 (m,
1H), 7.24 (m, 1H), 3.82 (m, 1H), 3.25 (s, 3H), 3.10 (m, 1H), 2.02 (d,
J = 10.3 Hz, 2H), 1.84 (d, J = 11.6 Hz, 2H), 1.47 (q, J = 12.0 Hz, 2H),
1.22 (q, J = 12.5 Hz, 2H). 13C NMR (DMSO-d6) δ (ppm) 164.3 (q, J
= 250.6, 10.9 Hz), 162.71, 160.3 (q, J = 250.8, 14.5 Hz), 158.03,
133.26, 133.18, 132.82, 122.12, 120.50, 117.39, 117.31, 112.59, 112.42,
104.96, 104.75, 104.52, 79.12, 78.84, 78.58, 77.71, 55.07, 46.89, 30.09,
29.76;. LRMS (ES+): m/z 379 [M + H]+. HRMS (ES+): calcd for
C18H21F2N4O3 [M + H]+ 379.1576, found 379.1567.

4-(3,5-Difluorobenzamido)-N-(4-methoxycyclohexyl)-1H-pyra-
zole-3-carboxamide (4p). Yield: 157 mg (solid), 99%. 1H NMR
(DMSO-d6) δ (ppm) 13.39 (s, 1H), 10.77 (s, 1H), 8.34 (d, J = 8.5 Hz,
1H), 8.30 (s, 1H), 7.59 (m, 1H), 7.52 (m, 2H), 3.84 (m, 1H), 3.24 (s,
3H), 3.09 (m, 1H), 2.02 (d, J = 10.7 Hz, 2H), 1.81 (d, J = 10.7 Hz,
2H), 1.49 (q, J = 11.8 Hz, 2H), 1.20 (q, J = 11.8 Hz, 2H). 13C NMR
(DMSO-d6) δ (ppm) 162.8, 162.5(q, J = 250.7, 14.4 Hz), 160.3,
137.16 127.75, 126.59, 124.12, 122.13, 118.94, 110.2 (q, J = 22.0, 14.5
Hz), 107.5 (t, J = 27.0 Hz), 77.71, 55.06, 46.99, 30.29, 29.76. LRMS
(ES+): m/z 379 [M + H]+. HRMS (ES+): calcd for C18H21F2N4O3 [M
+ H]+ 379.1576, found 379.1568.

4-(3,5-Dichlorobenzamido)-N-(4-methoxycyclohexyl)-1H-pyra-
zole-3-carboxamide (4q). Yield: 147 mg (solid), 85%. 1H NMR
(CDCl3) δ (ppm) 10.34 (s, 1H), 8.23 (s, 1H), 7.60 (d, J = 1.9 Hz,
2H), 7.31 (t, J = 1.8 Hz, 1H), 7.05 (s, 1H), 6.58 (d, 1H), 3.77 (m,
1H), 3.15 (s, 3H), 2.98 (m, 1H), 1.91 (m, 4H), 1.18 (m, 4H). 13C
NMR (DMSO-d6) δ (ppm) 163.12, 161.74, 136.46, 135.73, 131.89,
128.34, 126.03, 125.79, 121.09, 78.10, 55.91, 47.48, 30.69, 30.08.
LRMS (ES+): m/z 411 [M + H]+. HRMS (ES+): calcd for
C18H21Cl2N4O3 [M + H]+ 411.0985, found 411.0966.

4-(4-(Difluoromethoxy)benzamido)-N-(4-methoxycyclohexyl)-
1H-pyrazole-3-carboxamide (4r). Yield: 96 mg (solid), 56%. 1H
NMR (CDCl3) δ (ppm) 10.65 (s, 1H), 8.48 (s, 1H), 8.02 (d, J = 8.6
Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.3 Hz, 1H), 6.62 (t, J =
73.2 Hz, 1H), 4.00 (m, 1H), 3.39 (s, 3H), 3.22 (m, 1H), 2.15 (m, 4H),
1.42 (m, 4H). 13C NMR (CDCl3) δ (ppm) 163.28, 163.20, 154.0 (t, J
= 2.9 Hz), 133.56, 130.28, 129.24, 123.64, 120.74, 119.22, 118.94,
115.47, 112.01, 78.11, 55.94, 47.53, 30.67, 30.12. LRMS (ES+): m/z
409 [M + H]+. HRMS (ES+): calcd for C19H23F2N4O4 [M + H]+

409.1682, found 409.1649.
N-(4-Methoxycyclohexyl)-4-(4-(pyrrolidin-1-yl)benzamido)-1H-

pyrazole-3-carboxamide (4s). Yield: 73 mg (solid), 42%. 1H NMR
(CDCl3) δ (ppm) 10.44 (s, 1H), 8.49 (s, 1H), 7.89 (d, J = 8.8 Hz,
2H), 6.85 (d, J = 8.3 Hz, 1H), 6.62 (d, J = 8.8 Hz, 2H), 4.01 (m, 1H),
3.39 (m, 7H), 3.20 (m, 1H), 2.15 (m, 4H), 2.06 (m, 4H), 1.41 (m,
4H). 13C NMR (CDCl3) δ (ppm) 164.74, 163.48, 150.26, 133.26,
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128.99, 124.26, 120.52, 119.42, 111.20, 78.20, 55.92, 47.66, 47.39,
30.73, 30.18, 25.46. LRMS (ES+): m/z 412 [M + H]+. HRMS (ES+):
calcd for C22H30N5O3 [M + H]+ 412.2343, found 412.2338.
N-(4-Methoxycyclohexyl)-4-(4-(4-methylpiperazin-1-yl)-

benzamido)-1H-pyrazole-3-carboxamide (4t). Yield: 37 mg (solid),
20%. 1H NMR (CDCl3) δ (ppm) 10.48 (s, 1H), 8.47 (s, 1H), 7.90 (d,
J = 8.8 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 6.83 (m, 1H), 4.00 (m, 1H),
3.39 (s, 3H), 3.37 (t, J = 5 Hz, 4H), 3.20 (m, 1H), 2.60 (t, J = 5 Hz,
4H), 2.38 (s, 3H), 2.14 (m, 4H), 1.41 (m, 4H). 13C NMR (CDCl3) δ
(ppm) 164.17, 163.44, 153.54, 133.33, 128.81, 124.05, 122.92, 120.61,
114.27, 78.17, 55.92, 54.79, 47.62, 47.41, 46.11, 30.72, 30.17. LRMS
(ES+): m/z 441 [M + H]+. HRMS (ES+): calcd for C23H33N6O3 [M +
H]+ 441.2609, found 441.2597.
4-(Benzofuran-2-carboxamido)-N-(4-methoxycyclohexyl)-1H-

pyrazole-3-carboxamide (4u). Yield: 134 mg (solid), 83%. 1H NMR
(CDCl3) δ (ppm) 10.76 (s, 1H), 8.53 (s, 1H), 7.70 (d, J = 7.5 Hz,
1H), 7.66 (d, J = 8.4 Hz, 1H), 7.59 (d, J = 0.9 Hz, 1H), 7.46 (t, J = 7.8
Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 4.07 (m,
1H), 3.40 (s, 3H), 3.22 (m, 1H), 2.16 (m, 4H), 1.43 (m, 4H). 13C
NMR (CDCl3) δ (ppm) 163.03, 156.21, 155.22, 148.18, 133.76,
129.23, 127.56, 127.24, 123.77, 122.59, 121.20, 112.41, 111.23, 78.15,
55.91, 47.41, 30.74, 30.14. LRMS (ES+): m/z 383 [M + H]+. HRMS
(ES+): calcd for C20H23N4O4 [M + H]+ 383.1714, found 383.1703.
N-(3-((4-Methoxycyclohexyl)carbamoyl)-1H-pyrazol-4-yl)-

pyrazolo[1,5-a]pyridine-2-carboxamide (4v). Yield: 115 mg (solid),
72%. 1H NMR (DMSO-d6) δ (ppm) 13.30 (s, 1H), 11.01 (s, 1H),
8.83 (d, J = 7.0 Hz, 1H), 8.37 (s, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.82
(d, J = 8.9 Hz, 1H), 7.34 (t, J = 7.7 Hz, 1H), 7.09 (t, J = 6.9 Hz, 1H),
3.85 (m, 1H), 3.26 (s, 3H), 3.11 (m, 1H), 2.04 (d, J = 10.3 Hz, 2H),
1.84 (d, J = 10.7 Hz, 2H), 1.49 (m, 2H), 1.23 (m, 2H). 13C NMR
(DMSO-d6) δ (ppm) 162.70, 158.15, 146.85, 141.15, 132.80, 128.99,
124.60, 122.00, 120.08, 119.14, 114.53, 97.79, 77.74, 55.06, 46.95,
30.33, 29.79. LRMS (ES+): m/z 383 [M + H]+. HRMS (ES+): calcd
for C19H23N6O3 [M + H]+ 383.1826, found 383.1812.
N-(3-((4-Methoxycyclohexyl)carbamoyl)-1H-pyrazol-4-yl)-

imidazo[1,2-a]pyridine-3-carboxamide (4w). Yield: 11 mg (solid),
7%. 1H NMR (MeOD-d4) δ (ppm) 9.57 (d, J = 6.9 Hz, 1H), 8.31 (d, J
= 8.3 Hz, 2H), 7.74 (d, J = 9.0 Hz, 1H), 7.57 (td, J = 6.9, 1.2 Hz, 1H),
7.19 (t, J = 6.9, 1.2 Hz, 1H), 3.94 (m, 1H), 3.39 (s, 3H), 3.27 (m, 1H),
2.12 (m, 4H), 1.50 (m, 2H), 1.39 (m, 2H). 13C NMR (DMSO-d6) δ
(ppm) 162.89, 156.52, 147.37, 136.35, 127.61, 127.41, 122.12, 119.89,
117.57, 117.46, 114.43, 77.71, 55.07, 46.90, 30.30, 29.76. LRMS (ES+):
m/z 383 [M + H]+. HRMS (ES+): calcd for C19H23N6O3 [M + H]+

383.1826, found 383.1811.
N-(3-((4-Methoxycyclohexyl)carbamoyl)-1H-pyrazol-4-yl)-2-

methylimidazo[1,2-a]pyridine-3-carboxamide (4x). Yield: 47 mg
(solid), 28%. 1H NMR (CDCl3) δ (ppm) 10.88 (s, 1H), 10.24 (s, 1H),
9.58 (d, J = 6.9 Hz, 1H), 8.51 (s, 1H), 7.67 (d, J = 9.0 Hz, 1H), 7.41 (t,
J = 7.9 Hz, 1H), 6.99 (t, J = 6.9 Hz, 1H), 6.80 (d, J = 7.9 Hz, 1H), 4.01
(m, 1H), 3.39 (s, 3H), 3.21 (m, 1H), 3.02 (s, 3H), 2.14 (m, 4H), 1.41
(m, 4H). 13C NMR (DMSO-d6) δ (ppm) 162.73, 157.27, 146.18,
145.49, 127.61, 127.42, 122.35, 120.04, 116.31, 114.46, 113.62, 77.74,
55.06, 46.77, 30.24, 29.81, 16.52. LRMS (ES+): m/z 397 [M + H]+.
HRMS (ES+): calcd for C20H25N6O3 [M + H]+ 397.1983, found
397.1972.
N-(4-Methoxycyclohexyl)-4-(5-phenylfuran-2-carboxamido)-1H-

pyrazole-3-carboxamide (4y). Yield: 107 mg (solid), 62%. 1H NMR
(CDCl3): δ (ppm) 10.61 (s, 1H), 8.49 (s, 1H), 7.84 (m, 2H), 7.48 (t, J
= 7.5 Hz, 2H), 7.38 (t, J = 7.4 Hz, 1H), 7.31 (t, J = 3.6 Hz, 1H), 6.85
(d, J = 8.5 Hz, 1H), 6.80 (d, J = 3.6 Hz, 1H), 4.07 (m, 1H), 3.40 (s,
3H), 3.22 (m, 1H), 2.16 (m, 4H), 1.42 (m, 4H). 13C NMR (CDCl3) δ
(ppm) 163.03, 156.39, 155.72, 146.33, 133.74, 129.49, 128.94, 128.80,
124.72, 122.85, 120.91, 117.13, 107.30, 78.18, 55.88, 47.25, 30.78,
30.14. LRMS (ES+): m/z 409 [M + H]+. HRMS (ES+): calcd for
C22H25N4O4 [M + H]+ 409.1870, found 409.1832.
N-(3-((4-Methoxycyclohexyl)carbamoyl)-1H-pyrazol-4-yl)-5-phe-

nyloxazole-4-carboxamide (4z). Yield: 71 mg (solid), 41%. 1H NMR
(DMSO-d6) δ (ppm) 13.30 (s, 1H), 11.20 (s, 1H), 8.68 (s, 1H), 8.38
(s, 1H), 8.30 (m, 2H), 8.14 (d, J = 8.4 Hz, 1H), 7.58−7.51 (m, 3H),
3.83 (m, 1H), 3.26 (s, 3H), 3.11 (m, 1H), 2.04 (d, J = 10.5 Hz, 2H),

1.84 (d, J = 11.0 Hz, 2H), 1.49 (q, J = 12.5 Hz, 2H), 1.23 (q, J = 11.5
Hz, 2H). 13C NMR (DMSO-d6) δ (ppm) 162.64, 157.34, 151.99,
150.43, 132.90, 130.23, 128.50, 128.07, 127.92, 126.62, 121.89, 120.02,
77.74, 55.06, 47.00, 30.33, 29.76. LRMS (ES+): m/z 410 [M + H]+.
HRMS (ES+): calcd for C21H24N5O4 [M + H]+ 410.1823, found
410.1807.

Methyl 4-Nitro-1H-pyrazole-3-carboxylate (5). A 100 mL three-
necked round-bottomed flask equipped with a magnetic stirring bar
and fitted with a dropping funnel was charged with 4-nitro-1H-
pyrazole-3-carboxylic acid (4.0 g, 25.5 mmol) and methanol (40 mL).
The flask was cooled to 0 °C, and thionyl chloride (2.1 mL, 28.9
mmol) was added to the vigorously stirred solution over a period of 10
min. The mixture was stirred for an additional 12 h at room
temperature, after which time TLC indicated complete consumption
of the starting acid. The reaction mixture was concentrated under
reduced pressure at 40 °C and the residue treated with toluene and
reconcentrated (3 × 20 mL) under reduced pressure at 40 °C to give
methyl ester 5 as an off-white solid. Yield: 4.42 g, 99%. 1H NMR
(DMSO-d6) δ (ppm) 14.39 (br s, 1H), 9.98 (s, 1H), 3.90 (s, 3H).

13C
NMR (DMSO-d6) δ (ppm) 161.15, 138.13, 133.20, 130.90, 52.84.
LRMS (ES+): m/z 172 [M + H]+.

Methyl-4-amino-1H-pyrazole-3-carboxylate (6). A 100 mL round-
bottomed flask equipped with digital thermometer and stirrer was
charged with 10% palladium on carbon (0.621 g) under argon. In a
separate vessel, a slurry of methyl ester 5 (4.42 g, 25.8 mmol) in
ethanol (45 mL) was warmed to 35 °C to effect dissolution and the
solution added to the catalyst under argon. Following a nitrogen−
hydrogen purge sequence, an atmosphere of hydrogen was introduced
and the reaction mixture maintained at 30 °C until the reaction
completion (6 h) was noted by 1H NMR analysis. Following a purge
cycle, the reaction mixture under argon was filtered and the liquors
concentrated under reduced pressure to give amine 6 as a solid. Yield:
3.57 g, 98%. 1H NMR (DMSO-d6) δ (ppm) 12.83 (br s, 1H), 7.10 (s,
1H), 4.83 (br s, 2H), 3.78 (s, 3H). 13C NMR (DMSO-d6) δ (ppm)
160.39, 136.94, 128.43, 115.59, 50.88. LRMS (ES+): m/z 142 [M +
H]+.

Methyl-4-(2,6-dimethoxybenzamido)-1H-pyrazole-3-carboxylate
(7). A solution of amine 6 (3.57 g, 25.3 mmol) in 1,4-dioxane (50 mL)
under argon was treated with triethylamine (4.3 mL, 31 mmol)
followed by 2,6-dimethoxybenzoyl chloride (6.13 g, 30.6 mmol) such
that the internal temperature was maintained in the range 20−25 °C.
The reaction mixture was stirred at 25 °C until the reaction was
complete (12 h) by TLC analysis. The reaction mixture was filtered,
the filter-cake washed with 1,4-dioxane, and the combined filtrates
progressed to next stage without further isolation.

To obtain analytical data for compound 7 and also to determine the
yield of this reaction, a 2 g sample was taken out of the homogeneous
filtrate solution (total weight of this solution is 91g). The 2 g sample
was then concentrated under reduced pressure until dryness. The
crude product (∼192 mg) was purified by column chromatography
(DCM/MeOH). Evaporation of the appropriate fractions yielded
finally the desired compound 7 as an amorphous solid (161 mg).
Therefore, in the whole filtrate contained 7.33 g of compound 7. A 5
mg sample was used for to obtain analytical data; the rest was
redissolved for use in the next reaction. Yield: 7.33 g, 95%. 1H NMR
(DMSO-d6) 13.68 (br s, 1H), 9.16 (s, 1H), 8.31 (s, 1H), 7.41 (t, J =
8.4 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H), 3.83 (s, 3H), 3.77 (s, 6H). 13C
NMR (DMSO-d6) δ (ppm) 163.86, 161.55, 157.07, 131.27, 129.97,
123.61, 120.41, 114.66, 104.35, 55.84, 51.63. LRMS (ES+): m/z 306
[M + H]+. HRMS (ES+): calcd for C14H16N3O5 [M + H]+ 306.1084,
found 306.1081.

4-(2,6-Dimethoxybenzamido)-1H-pyrazole-3-carboxylic Acid (8).
To a solution of sodium hydroxide (3.32 g, 83 mmol) in water (20
mL) was charged a solution of ester 7 in one portion (7.33 g, 24.0
mmol; the solution of crude 7 from the previous reaction, plus 156 mg
of redissolved pure 7). The reaction mixture was stirred at 25 °C until
completion as determined by TLC analysis. The reaction mixture was
concentrated under reduced pressure at 45 °C, the oily residue diluted
with water and acidified to pH 1 with concentrated hydrochloric acid,
such that the temperature was maintained below 30 °C. The resulting
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precipitate was collected by filtration, washed with water, pulled dry on
the filter, and subsequently washed with heptanes. The filter cake was
charged to a 200 mL rotary evaporator flask and drying completed
azeotropically with toluene. Yield: 6.22 g, 89%. 1H NMR (DMSO-d6)
13.44 (br s, 2H), 9.17 (br s, 1H), 8.29 (s, 1H), 7.40 (t, J = 8.4 Hz, 1H),
6.76 (d, J = 8.4 Hz, 2H), 3.77 (s, 6H). LRMS (ES+): m/z 292 [M +
H]+. HRMS (ES+): calcd for C13H14N3O5 [M + H]+ 292.0928, found
292.0920.
General Method for Variation of Substituent R2: Example N-

Cyclohexyl-4-(2,6-dimethoxybenzamido)-1H-pyrazole-3-carboxa-
mide (9c). A mixture of carboxylic acid (50 mg, 0.17 mmol, 1.2 equiv),
amine (14 mg, 0.14 mmol, 1.0 equiv), hydroxybenzotriazole (19 mg,
0.14 mmol, 1.0 equiv), polymer supported-carbodiimide (105 mg, 0.14
mmol, 1.0 equiv), and acetonitrile was heated by microwave irradiation
for 10 min at 100 °C. The final product (9c) was isolated from the
reaction mixture by filtering through a short column of Si-carbonate
under gravity, which scavenged the excess carboxylic acid and
hydroxybenzotriazole. No further purification was required. Removal
of the solvent under reduced pressure yielded the required compounds
as amorphous solids. Yield: 49 mg (solid), 67%. 1H NMR (CD3OD) δ
(ppm) 8.33 (s, 1H), 7.42 (t, J = 8.5 Hz, 1H), 6.75 (d, J = 8.4 Hz, 2H),
3.86 (s, 6H), 3.82 (m, 1H), 1.88 (m, 4H), 1.68 (d, J = 12.8 Hz, 1H),
1.40 (m, 4H), 1.27 (m, 1H). 13C NMR (CD3OD) δ (ppm) 165.02,
164.71, 159.24, 134.17, 132.97, 123.89, 121.82, 115.64, 105.24, 56.50,
49.36, 33.77, 26.58, 26.19. LRMS (ES+): m/z 373 [M + H]+. HRMS
(ES+): calcd for C19H25N4O4 [M + H]+ 373.1870, found 373.1850.
N-Cyclopropyl-4-(2,6-dimethoxybenzamido)-1H-pyrazole-3-car-

boxamide (9a). Yield: 42 mg (solid), 64%. 1H NMR (CD3OD) δ
(ppm) 8.32 (s, 1H), 7.42 (t, J = 8.4 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H),
3.86 (s, 6H), 2.79 (m, 1H), 0.80 (m, 2H), 0.65 (m, 2H). 13C NMR
(DMSO-d6) δ (ppm) 161.32, 161.20, 131.10, 122.44, 122.30, 115.01,
104.28, 55.82, 22.13, and 22.02 (d, rotamers), 5.55. LRMS (ES+): m/z
331 [M + H]+. HRMS (ES+): calcd for C16H19N4O4 [M + H]+

331.1401, found 331.1385.
N-Cyclobutyl-4-(2,6-dimethoxybenzamido)-1H-pyrazole-3-car-

boxamide (9b). Yield: 56 mg (solid), 94%. 1H NMR (DMSO-d6) δ
(ppm) 13.28 (s, 1H), 9.71 (s, 1H), 8.60 (d, J = 8.1 Hz, 1H), 8.30 (s,
1H), 7.40 (t, J = 8.4 Hz, 1H), 6.74 (d, J = 8.4 Hz, 2H), 4.37 (sex, J =
8.3, 1H), 3.76 (s, 6H), 2.13 (m, 4H), 1.63 (m, 2H). 13C NMR
(DMSO-d6) δ (ppm) 162.53, 161.23, 156.93, 132.14, 131.07, 122.61,
119.84, 115.07, 104.32, 55.82, 54.86, 43.39, 29.81, 14.62. LRMS (ES+):
m/z 345 [M + H]+. HRMS (ES+): calcd for C17H21N4O4 [M + H]+

345.1557, found 345.1548.
N-Cycloheptyl-4-(2,6-dimethoxybenzamido)-1H-pyrazole-3-car-

boxamide (9d). Yield: 60 mg (solid), 90%. 1H NMR (CDCl3) δ
(ppm) 12.19 (br s, 1H), 9.94 (s, 1H), 8.41 (s, 1H), 7.29 (t, J = 8.5 Hz,
1H), 6.98 (d, J = 8.1 Hz, 1H), 6.57 (d, J = 8.5 Hz, 2H), 4.05 (m, 1H),
3.80 (s, 6H), 2.00−1.94 (m, 2H), 1.66−1.45 (m, 10H). 13C NMR
(CDCl3) δ (ppm) 161.75, 160.98, 155.95, 131.18, 129.57, 121.16,
119.75, 112.84, 102.24, 54.19, 48.30, 33.28, 26.12, 22.39. LRMS (ES+):
m/z 387 [M + H]+. HRMS (ES+): calcd for C20H27N4O4 [M + H]+

387.2027, found 387.2043.
N-(Bicyclo[2.2.1]heptan-2-yl)-4-(2,6-dimethoxybenzamido)-1H-

pyrazole-3-carboxamide (9e). Yield: 49 mg (solid), 52%. 1H NMR
(DMSO-d6) δ (ppm) 11.80 (br s, 1H), 9.72 (s, 1H), 8.28 (s, 1H), 8.00
(br d, J = 6.9 Hz, 1H), 7.40 (t, J = 8.4 Hz, 1H), 6.75 (d, J = 8.4 Hz,
2H), 3.76 (s, 6H), 3.66 (m, 1H), 2.21 (br s, 1H), 2.15 (br s, 1H),
1.63−1.37 (m, 5H), 1.16−0.99 (m, 3H). 13C NMR (CD3OD) δ
(ppm) 165.11, 164.82, 159.28, 133.97, 133.00, 124.01, 122.33, 115.79,
105.34, 56.59, 53.91, 43.80, 40.38, 37.06, 36.28, 29.28, 27.54. LRMS
(ES+): m/z 385 [M + H]+. HRMS (ES+): calcd for C20H25N4O4 [M +
H]+ 385.1870, found 385.1857.
4-(2,6-Dimethoxybenzamido)-N-morpholino-1H-pyrazole-3-car-

boxamide (9f). Yield: 34 mg (solid), 53%. 1H NMR (DMSO-d6) δ
(ppm) 13.30 (s, 1H), 9.66 (s, 1H), 9.55 (s, 1H), 8.31 (s, 1H), 7.39 (t, J
= 8.4 Hz, 1H), 6.75 (d, J = 8.6 Hz, 2H), 3.76 (s, 6H), 3.62 (m, 4H),
2.84 (m, 4H). 13C NMR (DMSO-d6) δ (ppm) 161.26, 161.18, 156.93,
131.41, 131.10, 122.90, 119.80, 115.01, 104.32, 65.98, 55.82, 54.31.
LRMS (ES+): m/z 376 [M + H]+. HRMS (ES+): calcd for
C17H22N5O5 [M + H]+ 376.1615, found 376.1620.

4-(2,6-Dimethoxybenzamido)-N-(3-(dimethylamino)propyl)-1H-
pyrazole-3-carboxamide (9g). Yield: 41 mg (solid), 63%. 1H NMR
(DMSO-d6) δ (ppm) 13.15 (brs, 1H), 9.70 (s, 1H), 8.99 (t, J = 6.3 Hz,
1H), 8.32 (s, 1H), 7.38 (t, J = 8.4 Hz, 1H), 7.31−7.29 (m, 4H), 7.22
(m, 1H), 6.74 (d, J = 8.4 Hz, 2H), 4.41 (d, J = 6.4 Hz, 2H), 3.75 (s,
6H). 13C NMR (DMSO-d6) δ (ppm) 163.46, 161.29, 156.93, 139.45,
131.95, 131.10, 128.21, 127.26, 126.71, 122.58, 120.18, 115.01, 104.32,
55.82, 41.66. LRMS (ES+): m/z 381 [M + H]+. HRMS (ES+): calcd
for C20H21N4O4 [M + H]+ 381.1557, found 381.1543.

4-(2,6-Dimethoxybenzamido)-N-(pyridin-2-ylmethyl)-1H-pyra-
zole-3-carboxamide (9h). Yield: 28 mg (solid), 42%. 1H NMR
(DMSO-d6) δ (ppm) 13.33 (br s, 1H), 9.66 (s, 1H), 8.96 (t, J = 5.9,
1H), 8.50 (m, 1H), 8.34 (s, 1H), 7.74 (td, J = 7.7, 1.9 Hz, 1H), 7.39 (t,
J = 8.4 Hz, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.25 (m, 1H), 6.73 (d, J =
8.4 Hz, 2H), 4.53 (d, J = 5.6 Hz, 2H), 3.75 (s, 6H). 13C NMR
(DMSO-d6) δ (ppm) 163.65, 161.32, 158.14, 156.93, 148.75, 136.68,
131.89, 131.10, 122.61, 122.06, 120.84, 120.18, 114.98, 104.32, 55.82,
43.54. LRMS (ES+): m/z 382 [M + H]+.

4-(2,6-Dimethoxybenzamido)-N-((3-methylpyridin-2-yl)methyl)-
1H-pyrazole-3-carboxamide (9i). Yield: 30 mg (solid), 44%. 1H
NMR (DMSO-d6) δ (ppm) 13.30 (br s, 1H), 9.68 (s, 1H), 8.72 (t, J =
5.0 Hz, 1H), 8.39 (d, J = 5.0 Hz, 1H), 8.34 (s, 1H), 7.60 (d, J = 7.6 Hz,
1H), 7.39 (t, J = 8.4 Hz, 1H), 7.23 (dd, J = 7.6, 5.0 Hz, 1H), 6.75 (d, J
= 8.4 Hz, 2H), 4.54 (d, J = 5.0 Hz, 2H), 3.76 (s, 6H), 2.29 (s, 3H). 13C
NMR (DMSO-d6) δ (ppm) 163.28, 161.29, 156.96, 153.98, 145.81,
137.64, 132.10, 131.13, 130.64, 122.47, 122.24, 120.04, 114.98, 104.32,
55.84, 40.96, 17, 13. LRMS (ES+): m/z 396 [M + H]+. HRMS (ES+):
calcd for C20H22N5O4 [M + H]+ 396.1666, found 396.1656.

N-(Cyclohexylmethyl)-4-(2,6-dimethoxybenzamido)-1H-pyra-
zole-3-carboxamide (9j). Yield: 56 mg (solid), 84%. 1H NMR
(CD3OD) δ (ppm) 8.35 (s. 1H), 7.37 (t, J = 8.4 Hz, 1H), 6.71 (d, J =
8.4 Hz, 2H), 3.82 (s, 6H), 3.17 (d, J = 7.0 Hz, 2H), 1.77−1.64 (m,
5H), 1.55 (m, 1H), 1.28−1.13 (m, 3H), 1.00−0.89 (m, 2H). 13C
NMR (CD3OD) δ (ppm) 165.64, 165.00, 159.22, 134.15, 132.99,
123.89, 122.10, 115.69, 105.31, 56.58, 46.09, 39.42, 32.00, 27.57,
27.03. LRMS (ES+): m/z 386 [M + H]+. HRMS (ES+): calcd for
C20H27N4O4 [M + H]+ 387.2027, found 387.2008.

4-(2,6-Dimethoxybenzamido)-N-phenyl-1H-pyrazole-3-carboxa-
mide (9k). Yield: 48 mg (solid), 76%. 1H NMR (DMSO-d6) δ (ppm)
13.51 (s, 1H), 10.31 (s, 1H), 9.65 (s, 1H), 8.40 (s, 1H), 7.78 (d, J =
7.7 Hz, 2H), 7.41 (t, J = 8.5 Hz, 1H), 7.31 (t, J = 7.8 Hz, 2H), 7.09 (t,
J = 7.3 Hz, 1H), 6.76 (d, J = 8.5 Hz, 2H), 3.77 (s, 6H). 13C NMR
(DMSO-d6) δ (ppm) 162.29, 161.40, 157.02, 138.10, 132.32, 131.19,
128.49, 123.81, 123.02, 120.69, 120.37, 114.98, 104.40, 55.88. LRMS
(ES+): m/z 367 [M + H]+. HRMS (ES+): calcd for C19H19N4O4 [M +
H]+ 367.1401, found 367.1402.

4-(2,6-Dimethoxybenzamido)-N-(pyridin-4-yl)-1H-pyrazole-3-
carboxamide (9l). Yield: 10 mg (solid), 16%. 1H NMR (DMSO-d6) δ
(ppm) 13.63 (s, 1H), 10.73 (s, 1H), 9.55 (s, 1H), 8.43 (d, J = 6.4 Hz,
3H), 7.83 (d, J = 5.5 Hz, 2H), 7.42 (t, J = 8.3 Hz, 1H), 6.77 (d, J = 8.4
Hz, 2H), 3.78 (s, 6H). LRMS (ES+): m/z 368 [M + H]+. HRMS
(ES+): calcd for C18H18N5O4 [M + H]+ 368.1353, found 368.1347.

4-(2,6-Dimethoxybenzamido)-N-(pyridin-2-yl)-1H-pyrazole-3-
carboxamide (9m). Yield: 10 mg (solid), 16%. 1H NMR (DMSO-d6)
δ (ppm) 13.61 (s, 1H), 9.63 (s, 1H), 9.49 (s, 1H), 8.42 (s, 1H), 8.38
(br d, J = 4.6 Hz, 1H), 8.09 (d, J = 8.4 Hz, 1H), 7.83 (m, 1H), 7.42 (t,
J = 8.4 Hz, 1H), 7.18 (m, 1H), 6.77 (d, J = 8.5 Hz, 2H), 3.78 (s, 6H).
13C NMR (DMSO-d6) δ (ppm) 161.87, 161.55, 157.01, 150.45,
148.29, 138.41, 131.62, 131.30, 123.04, 120.90, 120.15, 114.66, 113.86,
104.35, 55.84. LRMS (ES+): m/z 368 [M + H]+. HRMS (ES+): calcd
for C18H18N5O4 [M + H]+ 368.1353, found 368.1335.

4-(2,6-Dimethoxybenzamido)-N-((1r,4r)-4-hydroxycyclohexyl)-
1H-pyrazole-3-carboxamide (9n). Yield: 51 mg (solid), 77%. 1H
NMR (DMSO-d6) δ (ppm) 13.21 (br s, 1H), 9.75 (s, 1H), 8.28 (s,
1H), 8.09 (d, J = 8.4 Hz, 1H), 7.39 (t, J = 8.4 Hz, 1H), 6.75 (d, J = 8.4
Hz, 2H), 4.53 (br d, J = 3.8 Hz, 1H), 3.76 (s, 6H), 3.66 (m, 1H),
3.40−3.33 (m, 1H), 1.82 (m, 2H), 1.73 (m, 2H), 1.44 (m, 2H), 1.19
(m, 2H). 13C NMR (DMSO-d6) 162.67, 161.25, 156.91, 131.07,
122.56, 115.10, 104.32, 68.11, 55.82, 47.00, 34.19, 30.00. LRMS (ES+):
m/z 389 [M + H]+. HRMS (ES+): calcd for C19H25N4O5 [M + H]+

389.1819, found 389.1800.
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cis-/trans-(4-(2,6-Dimethoxybenzamido)-N-(4-methylcyclohexyl)-
1H-pyrazole-3-carboxamide) (9o). Yield: 49 mg (solid), 74%. 1H
NMR (CD3OD) δ (ppm) 8.36 (s, 0.5H), 8.33 (s, 0.5H), 7.39 (t, J =
8.5 Hz, 1H), 6.73 (d, J = 8.5 Hz, 2H), 4.05 (m, 0.5H), 3.84 (s, 6H),
3.76 (m, 0.5H), 1.96−1.32 (m, 8H), 1.06 (m, 1H), 0.98 (d, J = 6.5 Hz,
1.5 H), 0.92 (d, J = 6.6 Hz, 1.5H). 13C NMR (CD3OD) δ (ppm)
165.06, 165.02, 164.76, 164.64, 159.25, 134.07, 134.01, 132.97, 123.99,
123.91, 122.30, 122.12, 115.70, 115.66, 105.39, 105.29, 56.54, 49.52,
46.86, 35.15, 33.67, 33.12, 31.53, 31.01, 30.09, 22.63, 21.25. LRMS
(ES+): m/z 387 [M + H]+. HRMS (ES+): calcd for C20H27N4O4 [M +
H]+ 387.2027, found 387.2007.
tert-Butyl 4-(4-(2,6-Dimethoxybenzamido)-1H-pyrazole-3-

carboxamido)piperidine-1-carboxylate (9p). Yield: 50 mg (solid),
41%. 1H NMR (CD3OD) δ (ppm) 8.35 (s, 1H), 7.37 (t, J = 8.4 Hz,
1H), 6.71 (d, J = 8.4 Hz, 2H), 4.08−3.99 (m, 3H), 3.82 (s, 6H), 2.90
(m, 2H), 1.89 (m, 2H), 1.51 (m, 2H), 1.46 (s, 9H). 13C NMR
(CD3OD) δ (ppm) 165.00, 164.89, 159.22, 156.39, 134.00, 132.99,
124.03, 122.16, 115.72, 105.35, 81.17, 56.61, 47.67, 44.39, and 43.61
(br d, rotamers), 32.69, 28.79. LRMS (ES+): m/z 474 [M + H]+.
HRMS (ES+): calcd for C23H32N5O6 [M + H]+ 474.2347, found
474.2324.
N-(1-Benzylpyrrolidin-3-yl)-4-(2,6-dimethoxybenzamido)-1H-pyr-

azole-3-carboxamide (9q). Yield: 69 mg (solid), 89%. 1H NMR
(CD3OD) δ (ppm) 8.32 (s, 1H), 7.36 (t, J = 8.4 Hz, 1H), 7.32−7.22
(m, 5H), 6.68 (d, J = 8.4 Hz, 2H), 4.52 (m, 1H), 3.78 (s, 6H), 3.58 (d,
J = 2.5 Hz, 2H), 2.76 (m, 2H), 2.58 (dd, J = 10.0, 4.3, 1H), 2.43 (q, J =
8.1 Hz, 1H), 2.27 (m, 1H), 1.75 (m, 1H). 13C NMR (CD3OD) δ
(ppm) 165.06, 165.00, 159.22, 139.26, 133.92, 132.99, 130.33, 129.50,
128.49, 124.01, 122.16, 115.67, 105.32, 61.26, 61.17, 56.58, 53.83,
49.19, 32.54. LRMS (ES+): m/z 450 [M + H]+. HRMS (ES+): calcd
for C24H28N5O4 [M + H]+ 450.2136, found 450.2113.
4-(2,6-Dimethoxybenzamido)-N-(2-methoxyethyl)-1H-pyrazole-

3-carboxamide (9r). Yield: 39 mg (solid), 65%. 1H NMR (CD3OD) δ
(ppm) 8.35 (s. 1H), 7.38 (t, J = 8.4 Hz, 1H), 6.72 (d, 8.4 J = 8.4 Hz,
2H), 3.83 (s, 6H), 3.53 (s, 4H), 3.37 (s, 3H). 13C NMR (CD3OD) δ
(ppm) 165.76, 165.05, 159.26, 134.10, 132.99, 115.71, 105.32, 72.07,
59.03, 56.56, 39.52. LRMS (ES+): m/z 349 [M + H]+. HRMS (ES+):
calcd for C16H21N4O5 [M + H]+ 349.1506, found 349.1504.
4-(2,6-Dimethoxybenzamido)-N-pentyl-1H-pyrazole-3-carboxa-

mide (9s). Yield: 52 mg (solid), 84%. 1H NMR (DMSO-d6) δ (ppm)
13.23 (br s, 1H), 9.74 (s, 1H), 8.38 (br s, 1H), 8.29 (s, 1H), 7.39 (t, J
= 8.5 Hz, 1H), 6.75 (d, J = 8.5 Hz, 2H), 3.76 (s, 6H), 3.19 (m, 2H),
1.49 (quint, J = 7.2 Hz, 2H), 1.31−1.22 (m, 4H), 0.85 (t, J = 7.0 Hz,
3H). 13C NMR (DMSO-d6) δ (ppm) 163.39, 161.20, 156.93, 132.25,
131.07, 122.35, 119.79, 115.05, 104.32, 55.82, 37.95, 28.77, 28.57,
21.78, 13.87. LRMS (ES+): m/z 361 [M + H]+. HRMS (ES+): calcd
for C18H25N4O4 [M + H]+ 361.1870, found 361.1868.
4-(2,6-Dimethoxybenzamido)-N-(3-isopropoxypropyl)-1H-pyra-

zole-3-carboxamide (9t). Yield: 64 mg (solid), 95%. 1H NMR
(CD3OD) δ (ppm) 8.35 (s, 1H), 7.38 (t, J = 8.5 Hz, 1H), 6.71 (d, J =
8.5 Hz, 2H), 3.83 (s, 6H), 3.58 (sept, J = 6.1 Hz, 1H), 3.53 (t, J = 6.1
Hz, 2H), 3.45 (t, J = 6.6 Hz, 2H), 1.83 (quin, J = 6.4 Hz, 2H), 1.15 (d,
J = 6.1 Hz, 6H). 13C NMR (CD3OD) δ (ppm) 165.58, 165.00, 159.22,
134.17, 132.99, 123.82, 121.99, 115.69, 105.32, 73.08, 67.50, 56.61,
38.06, 30.72, 22.49. LRMS (ES+): m/z 391 [M + H]+. HRMS (ES+):
calcd for C19H27N4O5 [M + H]+ 391.1976, found 391.1961.
4-(2,6-Dimethoxybenzamido)-N-(3-(dimethylamino)propyl)-1H-

pyrazole-3-carboxamide (9u). Yield: 49 mg (solid), 76%. 1H NMR
(CD3OD) δ (ppm) 8.23 (s, 1H), 7.26 (t, J = 8.4 Hz, 1H), 6.59 (d, J =
8.4 Hz, 2H), 3.71 (s, 6H), 3.26 (t, J = 7.5 Hz, 2H), 2.26 (t, J = 7.5 Hz,
2H), 2.11 (s, 6H), 1.65 (q, J = 7.5 Hz, 2H). 13C NMR (CD3OD) δ
(ppm) 165.70, 164.94, 159.22, 134.15, 132.99, 123.92, 122.05, 115.75,
105.35, 58.25, 56.61, 45.52, 38.23, 28.32. LRMS (ES+): m/z 376 [M +
H]+. HRMS (ES+): calcd for C18H26N5O4 [M + H]+ 376.1979, found
376.1965.
4-(2,6-Dimethoxybenzamido)-N-(2-(pyrrolidin-1-yl)ethyl)-1H-pyr-

azole-3-carboxamide (9v). Yield: 57 mg (solid), 86%. 1H NMR
(CD3OD) δ (ppm) 8.34 (s, 1H), 7.38 (t, J = 8.4 Hz, 1H), 6.71 (d, J =
8.4 Hz, 2H), 3.83 (s, 6H), 3.51 (t, J = 6.9 Hz, 2H), 2.69 (t, J = 6.9 Hz,
2H), 2.59 (m, 4H), 1.80 (m, 4H). 13C NMR (CD3OD) δ (ppm)
165.69, 164.97, 159.22, 134.09, 132.99, 123.89, 122.01, 115.72, 105.32,

56.58, 56.32, 55.08, 38.64, 24.31. LRMS (ES+): m/z 388 [M + H]+.
HRMS (ES+): calcd for C19H26N5O4 [M + H]+ 388.1979, found
388.1965.

4-(2,6-Dimethoxybenzamido)-N-(2-morpholinoethyl)-1H-pyra-
zole-3-carboxamide (9w). Yield: 37 mg (solid), 53%. 1H NMR
(CD3OD) δ (ppm) 8.34 (s, 1H), 7.40 (t, J = 8.4 Hz, 1H), 6.73 (d, J =
8.4 Hz, 2H), 3.84 (s, 6H), 3.70 (t, J = 4.5 Hz, 4H), 3.5 (t, J = 6.6, 2H),
2.57 (t, J = 6.6 Hz, 2H), 2.52 (br t, J = 4.5 Hz, 4 Hz). 13C NMR
(CD3OD) δ (ppm) 165.67, 165.00, 159.23, 134.06, 132.96, 123.86,
122.02, 115.72, 105.32, 67.80, 58.60, 56.55, 54.67, 36.50. LRMS (ES+):
m/z 404 [M + H]+. HRMS (ES+): calcd for C19H26N5O5 [M + H]+

404.1928, found 404.1929.
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Introduction

Human African trypanosomiasis (HAT), also known as African
sleeping sickness, is a parasitic disease caused by protozoan
parasites of the species Trypanosoma brucei and is fatal if un-
treated. HAT is endemic in certain regions of sub-Saharan
Africa, with around 50 million people at risk of infection across
25 countries. The number of reported cases of HAT has fallen
recently and is now at about 10 000 reported new cases per
year; however, the actual number of cases is estimated to be
much higher (30 000–40 000 new cases per year).[1–3]

Following infection by the bite of a tsetse fly, patients initial-
ly suffer from phase 1 disease, in which they experience epi-
sodes of fever, headache, sweating, and swelling of the lymph
nodes. Phase 2 disease results from the spread of infection
into the central nervous system (CNS). Patients begin to experi-
ence a disturbance in their circadian rhythm, resulting in bouts
of fatigue alternating with manic periods, which progress to

daytime slumber and nighttime insomnia, with progressive
mental deterioration leading to coma and death. Generally the
disease is diagnosed only when it has already progressed to
the phase 2 CNS stage.

HAT is a neglected disease, because despite millions of
people being under the threat of infection, there is no com-
mercial market to justify funding drug development. There are
only two stand-alone drugs available for the treatment of late-
stage sleeping sickness: melarsoprol and eflornithine. However,
both drugs have serious limitations such as toxicity, complex
parenteral administration, which is poorly suited to a rural Afri-
can setting, low and variable brain penetration, the develop-
ment of resistant parasites,[4] and patient compliance.[5] A com-
bination therapy of nifurtimox and eflornithine was recently
approved for the treatment of stage 2 HAT primarily due to
a cost benefit and improved convenience of the new treat-
ment over eflornithine alone. Unfortunately, resistance to nifur-
timox develops rapidly in the laboratory.[6–8]

In recent years a number of drug development initiatives
funded by foundations and/or governments have begun to ad-
dress the need for improved drugs to treat stage 2 HAT.[9] Two
new oral clinical candidates were recently developed: fexinida-
zole,[10] a nitroimidazole derivative that is currently in clinical
development, and SCYX-7158,[11] a benzoxaborole derivative
that has been selected for entry into clinical development.
However, owing to the high rates of attrition in drug discovery
and the requirement for multiple drugs to combat the devel-
opment of resistant parasites, the pipeline must be further en-
hanced.

There is a lack of validated drug discovery targets and lead
compounds for HAT and other neglected diseases.[12] Protein
kinases have been explored as possible targets for HAT, as they
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Human African trypanosomiasis (HAT) is a life-threatening dis-
ease with approximately 30 000–40 000 new cases each year.
Trypanosoma brucei protein kinase GSK3 short (TbGSK3) is re-
quired for parasite growth and survival. Herein we report
a screen of a focused kinase library against T. brucei GSK3.
From this we identified a series of several highly ligand-effi-

cient TbGSK3 inhibitors. Following the hit validation process,
we optimised a series of diaminothiazoles, identifying low-
nanomolar inhibitors of TbGSK3 that are potent in vitro inhibi-
tors of T. brucei proliferation. We show that the TbGSK3 phar-
macophore overlaps with that of one or more additional mo-
lecular targets.
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play important roles in virtually every cellular event from cell
division to stress response.[13] Kinases are druggable targets,
and crystal structures have been published for many of
them.[14] Bioinformatics searches of the T. brucei genome identi-
fied 176 parasite protein kinases,[15, 16] making this family an at-
tractive source of novel drug discovery targets for the treat-
ment of HAT and other parasitic diseases.[17–19]

Human GSK3b (HsGSK3b) is involved in the regulation of
a vast array of cellular processes in eukaryotes: insulin signal-
ling, growth factors, nutrient levels, cell fates during embryonic
development, cell division, apoptosis, and microtubule func-
tion.[20] HsGSK3b has been investigated as a drug target for
many diseases, from diabetes to neurodegenerative diseases.
To aid development, the crystal structure of HsGSK3b has been
solved, and high-affinity small-molecule inhibitors of HsGSK3b

have been developed.[14, 21–24] Whilst the precise role of the try-
panosome orthologue GSK3 short kinase (TbGSK3) in the
bloodstream form of T. brucei has yet to be determined in
terms of parasite biology, the importance of this enzyme has
been demonstrated by RNA interference experiments that
showed decreased growth rates for parasites in in vitro cul-
ture.[25, 26]

Herein we report our studies on the identification and opti-
misation of TbGSK3 inhibitors with potent antiparasitic activity
and highlight their potential for the development of new
therapies for the treatment of HAT.

Results and Discussion

Homology modelling

Crystal structures of Leishmania major[27] and human GSK3
have been published. The tertiary structure of LmGSK3 (PDB
code 3E3P) is very similar to that of HsGSK3b (PDB code 1R0E),
but several binding pocket residues are missing in the Leish-
mania crystal structure, as no clearly defined electron density
was present. In addition, no ligand is bound in the LmGSK3
crystal structure. Therefore, we selected the crystal structure of
HsGSK3b as the template to build a homology model for
TbGSK3. The TbGSK3 sequence is 52 % identical and 71 % simi-
lar to the sequence in the HsGSK3b structure (PDB code 1R0E).
Hence HsGSK3b provides a template for 91 % of the TbGSK3
sequence (amino acids 20–348) which allowed a reliable model
to be built (Figure 1). Analysis of the ATP binding pockets re-
vealed amino acid differences that could be exploited to
design selective inhibitors (Table 1).

Hit discovery

Recombinant TbGSK3 was produced as previously described.[25]

The kinetic parameters were determined by measuring initial
reaction velocities in a matrix experiment of varied ATP and
peptide substrate concentrations. The KM value of TbGSK3 for
the substrate with sequence YRRAAVPPSPSLSAHSSPHQ[pS]E-
DEEE (GSP2) and ATP were 8.4�1.3 and 11.0�1.8 mm, respec-
tively, with no evidence of cooperativity (Figure 2). The deter-

mined KM values for GSP2 and ATP are similar to those previ-
ously reported of 2.4 and 4.5 mm, respectively.[25]

For the primary screen, a 384-well KinaseGlo (Promega) lumi-
nescence-based assay was used as previously described.[25] In
this assay, luminescence is inversely related to kinase activity
and directly related to ATP depletion (Figure 3 A). GW8510 was
used as a standard inhibitor[6] (figure S1, Supporting Informa-
tion). The DDU kinase set of 4110 compounds[29] was screened
in single point at 25 mm providing robust data (Z’= 0.61�0.06;
Table 2). From this, 567 compounds with a percentage of in-
hibition >30 % were retested in a duplicate-point screen, to
give 517 reconfirmed compounds with inhibition values
�30 % (12.8 % of the library; Figure 3 B,C).

For hit validation and all subsequent compound potency de-
terminations, a radiometric 96-well Flashplate assay (PerkinElm-

Figure 1. Superposition of the HsGSK3b crystal structure (PDB code 1R0E)
with the homology model of TbGSK3. The human structure is shown in pink,
the TbGSK3 homology model in blue; both structures are shown in ribbon
representation. Binding pocket residues of TbGSK3 that differ from those of
HsGSK3b are represented as sticks. Regions of the kinase site are labelled ac-
cording to previously published conventions.[28]

Table 1. Residue differences in the ATP binding sites of HsGSK3b and
TbGSK3.

Kinase pocket region HsGSK3b[a] TbGSK3[b]

Hinge region D133 E
Y134 F

Gatekeeper L132 M
E1 Y140 H

Q185 H
Adenine pocket I62 A

Q72 L
G-loop N64 Q

S66 T

[a] PDB code 1R0E. [b] Homology model.
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er) was adopted (Figure 4 A). Although the KinaseGlo format
has many advantages for screening of chemical libraries, its re-
liance upon ATP consumption means it requires a level of sub-
strate consumption >10 % to achieve an acceptable signal
window; it is therefore unsuitable for accurate IC50 determina-

tions. The Flashplate assay was performed at an ATP concen-
tration below the enzyme’s KM value for ATP, so that the Ki

app

approximated the measured IC50 value, aiding the assessment
of selectivity. Potency evaluation (10-point curves) was carried
out in duplicate for the 100 most potent compounds. As in
the primary assay, the potency assay format yielded highly
robust data (Z’= 0.80�0.08; Table 2). The compounds exhibit-
ed a range of potencies for TbGSK3 which were highly repro-
ducible, with an r2 value of 0.99 for two replicates (Figure 4 B),
with 15 compounds having IC50 values <1 mm. The identity
and purity of hits taken into potency determination were con-
firmed by LC–MS.

Prioritisation of hits and series definition

To prioritise the hits, hit compounds were rank ordered by
their ligand efficiencies against TbGSK3, in which ligand effi-
ciency = [�RT ln(IC50)]/Nnon-H atoms.

[30] Subsequently, the highest-
priority compounds were grouped into series based on struc-
tural similarity (Figure 5), resulting in a number of different
compound series. Several of the TbGSK3 inhibitors identified

have ligand efficiencies
>0.4 kcal mol�1 per heavy atom,
beyond the commonly used
guideline of 0.3 kcal mol�1 per
heavy atom, which relates to an
optimised lead with an IC50 value
of 10 nm and 38 non-hydrogen
atoms (Mr~500 Da).[30] In particu-
lar, diaminothiazole 1 is a highly
ligand-efficient starting point,
with a TbGSK3 ligand efficiency
of 0.52 kcal mol�1 per heavy
atom.

Hit validation

Five promising hit series contain-
ing ligands with ligand efficien-
cies >0.3 kcal mol�1 per heavy
atom were progressed into hit
series validation. Series 2 was
based around a diaryl urea and
exemplified by compound 2.
Compounds of this series were
also identified as broad-spec-
trum kinase inhibitors with toxic-

Figure 2. Determination of kinetic parameters for TbGSK3. KM values for the
ATP and GSP2 substrates were determined in a time-course matrix experi-
ment in which the initial velocities (v) were determined as product formed
(P, nm) per minute. The grid represents the best fit obtained by globally fit-
ting the data to the equation for the random-order rapid equilibrium model
with cooperation parameter (a) equal to 1.

Figure 3. Format and results of the primary screen. A) A KinaseGlo assay format was adopted for the primary
screen based on luminescence detection. B) Distribution of the percent inhibition of the focused kinase set. Hits
were selected by setting 3 standard deviation units from the average of high controls as threshold (�30 % inhibi-
tion). C) 567 selected hits were retested in duplicate, and the two replicate values showed high correlation.

Table 2. Assay conditions and screening statistics.

KinaseGlo Flashplate

TbGSK3 7.5 nm 2.5 nm

GSP2 3.2 mm 1 mm

ATP 1 mm (<KM) 1 mm (<KM)
Z’ 0.61�0.06 0.80�0.08
GW8510 IC50 10�0.2 nm 6�4 nm
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ity toward mammalian cell lines during our previous-
ly published investigations of the CRK3 kinase, so no
further work was conducted with this compound
series.[31]

Series 3 was based around 2-amino-1,3,5-triazines;
36 examples of this series were contained in the
screening library with compound 3 being the only
active example (Figure 5). Due to the limited com-
mercial availability for representatives of this series
and the apparent requirement for specific substitu-
ents, this series was not pursued further.

The 8-aminoimidazo[1,2-a]pyrazines (series 4) were
also identified in a previous DDU project and were
found to be broad-spectrum kinase inhibitors that
are toxic to human cell lines (MRC5 cells). In addition,
the lead compound 4 has an unfavourable calculated
log P value of 4.8 (Figure 5). Therefore, no further
work was carried out on this series.

Eleven oxazole-4-carboxamides (series 5) were
identified in the high-throughput screen (HTS), with
compound 5 inhibiting TbGSK3 at a sub-micromolar
IC50 value (Figure 5). Over 900 examples of this com-

pound series were commercially available at the time of our
study, and more than 100 compounds were selected for pur-
chasing and testing. However, none of these compounds dem-
onstrated activity in the T. brucei cell assay. This, combined
with the relatively poor TbGSK3 IC50 value of 0.1 mm observed
within the series after testing more than 140 examples, as well
as the flat SAR, it was decided that this series would not be
pursued any further.

Compound 1 (series 1) was the only 2,4-diaminothiazol-5-
carbaldehyde present in the DDU kinase screening set at the
time of screening (Figure 5). Although 1 was a singleton, it has
good predicted physical properties (Mr = 288 Da, log P = 2.1,
TPSA = 68 �2), a ligand efficiency of 0.52 kcal mol�1 per heavy
atom for TbGSK3, and demonstrated promising activity in
a T. brucei proliferation assay (EC50 2 mm). Of slight concern is
the presence of a ketone functionality, which has the potential
to interact with nucleophiles within the cell ; this would have
to be monitored during compound development. Based on
these considerations, it was decided to progress this com-
pound to hit validation. As a side note, compound 1 is also
a very effective HsGSK3 inhibitor, with an IC50 value of 5 nm

(n = 2) and an outstanding ligand efficiency of 0.67 kcal mol�1

per heavy atom. Thus, 1 may also be an excellent starting
point for a human GSK3 drug discovery programme.

Structure-guided design

A potential binding mode for compound 1 in the homology
model of TbGSK3 was generated using Moloc (Gerber Molecu-
lar Design, Switzerland; Figure 6). In the proposed binding
mode the 2,4-diaminothiazole moiety forms three hydrogen
bonds with the protein backbone of the TbGSK3 hinge
(Glu102, Phe103, and Val104). Furthermore, the thiazole group

Figure 4. Format and results of the potency test. A) A flashplate radiometric
assay format was adopted for the potency determination based on selective
capture of the biotinylated phosphorylated product by the streptavidin-
coated plates. B) The 100 most potent hits were tested in 10-data point
curves in two independent determinations; the correlation plot between the
log IC50 values of the replicates is reported.

Figure 5. Series classification. Common features representative of each series are high-
lighted in red. Ligand efficiencies are given as kcal mol�1 per heavy atom.
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is sandwiched between Leu159 and Ala47 and undergoes hy-
drophobic interactions with both amino acids. In addition, the
ligand carbonyl group is proposed to be in plane with the
core thiazole and forms an intramolecular hydrogen bond with
the primary amino group. A water molecule, observed in many
HsGSK3b structures, was kept for the binding mode generation
and is predicted to mediate a hydrogen bond between the in-
hibitor carbonyl lone pair and the backbone amide NH group
of Asp171. The presence of an
analogous water molecule in the
recently solved X-ray crystal
structure of LmGSK3 (PDB code
3E3P) gives further evidence that
the water molecule is conserved
and plays an important role in
GSK3–ligand binding. The 2-
chlorothiophene moiety is pre-
dicted to form lipophilic interac-
tions with Phe31 and Cys170,
while the ethyl group points
toward Leu159, and the hydro-
phobic part of Thr107 potentially
contributes van der Waals inter-
actions to the binding affinity.

Docking was carried out in
order to guide the hit expansion,
with the aim of confirming the
aminothiazoles as a series of
TbGSK3 inhibitors, improving in
vitro potency, and to build SAR.

A series of 112 commercially available 2,4-diaminothiazoles
with various substituents were docked into the homology
model of TbGSK3 using FlexX.[32] The docking solutions were
visually inspected, and 21 compounds were selected for pur-
chase (Table 3).

Biological results and structure–activity relationships

The biological data for early hit optimisation are summarised
in Table 3. The hit compound 1 has an ethyl group at R1 which
may form hydrophobic interactions with Leu159 and the hy-
drophobic part of Thr107 (Figure 6, Table 1). Although no
direct analogues were available, the closely related methyl ana-
logue 6 is around 50-fold less active than 1, suggesting that
lipophilic bulk in the R1 region is beneficial. Introducing an aro-
matic group into R1 and truncating R2 to methyl was tolerated,
with an IC50 value of 1 mm for 7. Increasing the size of R1 while
maintaining a lipophilic group at R2 gave a 10-fold improve-
ment in activity, with several examples demonstrating IC50

values of <100 nm for TbGSK3, such as compounds 8, 9, and
10.

In general the 2,4-diaminothiazol-5-carbaldehydes tested
were found to be more potent inhibitors of HsGSK3b than
they are of TbGSK3, confirming that selectivity between Hs and
TbGSK3 can be achieved, albeit initially in the undesired direc-
tion. In contrast, in cellular assays, the lead molecules are selec-
tive antiparasitic agents as exemplified by 9, which has an EC50

value of 0.13 mm against T. brucei, but no activity against MRC5
cells (EC50>50 mm).

A correlation plot of cell efficacy (bloodstream form (BSF)
T. brucei log EC50) against enzyme potency (TbGSK3 log IC50)
gave a strong correlation for the early members of this series
(correlation coefficient: 0.90) with a 5-fold drop off between
the TbGSK3 and T. brucei activities (Figure 7 and Supporting In-
formation table S1). Considering that the physiological level of

Figure 6. Proposed binding mode for 1 in the homology model of TbGSK3.
Both, ligand and protein are represented in sticks and colour-coded by atom
type. Ligand carbon atoms are shown in salmon, and protein carbon atoms
in light blue. Putative hydrogen bonds to the ligand are shown as yellow
dotted lines (other hydrogen bonds within the active are not shown for
clarity).

Table 3. Activity of key compounds from series 1.

IC50 [mm] EC50 [mm]

Compd R1 R2 TbGSK3 HsGSK3b T. brucei MRC5

1 0.4 0.005 2 >15

6 25 ND[a] 7 >50

7 1 ND[a] 13 25

8 0.03 0.007 0.2 13

9 0.05 0.003 0.1 >50

10 0.1 0.007 0.7 4

[a] Not determined.
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ATP in T. brucei is in the millimolar range, whilst in our TbGSK3
potency assay, the concentration was 1 mm, we expected the
IC50 value for TbGSK3 in cells to drop off by at least 100-fold
according to the Cheng–Prusoff equation [Eq. (1)] .[33] In addi-
tion, other factors such as protein binding or the requirement
for a high level of enzyme inhibition to achieve a phenotypic
effect, as observed previously for other T. brucei targets, could
even result in a >100-fold drop off.[34] The much lower ob-
served difference between IC50 and EC50 suggested that the
mode of action of series 1 may not be just through inhibition
of TbGSK3.

IC50 ¼ K i

�
1þ ½ATP�

K M
ATP

�
ð1Þ

The small difference between potency against the enzyme
and the cell activity for this series led us to consider that there
may be more than one mechanism of action driving the cell
activity. Substituted 2,4-diaminothiazoles have been described,
and examples are known to be potent inhibitors of
HsGSK3b,[35] several CDKs,[36, 37] p25,[37] and PDE4B.[38] Interest-
ingly, there are also reports of a 2,4-diaminothiazole (DAT1)
which binds to and disrupts microtubules.[39] Homologues of
these targets are present in T. brucei and could therefore be
modulated by compounds of this series. Additionally, prolific
kinase inhibitors often show toxicity toward cells in culture.
Compound 8 was profiled at 10 mm against the mammalian
protein kinase panel at the University of Dundee, which at the
time of testing consisted of 76 mammalian kinases. In agree-
ment with our biochemical assays, compound 8 potently inhib-
ited HsGSK3b ; it also inhibited CDK2, MKK1, ERK8, and HIPK2
by >90 % at this concentration (Supporting Information
table S2). The human protein kinase profile was sufficiently
clean for an early-stage kinase inhibitor project, and we decid-
ed to monitor the kinase profile as the series was developed.

Hit-to-lead development

Based on the promising data obtained for the series we decid-
ed to progress the project into hit-to-lead development. A
stepwise solid-supported two-step synthetic route to diamino-
thiazoles has been published, starting from the non-commer-
cial reagent, benzyl carbamimidothioate hydrobromide 11.[40]

We modified the synthesis so that both steps are carried out in
a one-pot, solution-phase reaction (Scheme 1). Benzyl bromide

12 was treated with thiourea to give benzyl carbamimido-
thioate hydrobromide 11 in 89 % yield. Benzyl carbamimido-
thioate 11 was allowed to react with an isothiocyanate in the
presence of H�nig’s base, 2-bromoketones were then added
along with an additional equivalent of H�nig’s base to give
the desired 2,4-diaminothiazoles 13 in a three-component
one-pot synthesis with yields ranging from 3 to 69 %.

The most potent compounds identified in the early work
were 2,4-diamino-5-ketothiazoles 13 bearing aromatic groups
in both the R1 and R2 position, such as compound 8 (IC50 =

0.03 mm, Table 3). Although we had identified several TbGSK3
inhibitors with IC50 values less than 1 mm, we wished to im-
prove the selectivity over HsGSK3b. Our design explored R1

and R2 groups of varying size, shape, and polarity to probe the
limits of the ATP binding pockets of the TbGSK3 and HsGSK3b

enzymes to identify regions where selectivity could be ach-
ieved (Table 4).

Initial work focused on the R2 group. Introduction of ortho
substituents, which would be expected to twist the R2 group
out of plane with the ketothiazole core, was well tolerated for
small groups such the fluorine-substituted analogue 14 (IC50 =

0.02 mm). The larger and more electron-rich 2,6-dimethoxy-
phenyl 15 (IC50 = 0.4 mm) was over 10-fold less active than 14
against TbGSK3. Lipophilic bulk in the meta position of the R2

substituent was tolerated, but provided no significant potency
gains, with 3-bromo analogue 16 (IC50 = 0.1 mm) showing simi-
lar activity to the phenyl analogue 8 (IC50 = 0.03 mm).

The R1 substituent was then investigated. The 2,6-dimethyl-
phenyl derivative 17 (IC50 = 0.2 mm) is approximately 10-fold
less active against TbGSK3 than 8 (IC50 = 0.03 mm). Increasing
the meta and para lipophilic bulk at R1 had no benefit, with
3,4-dimethylphenyl 18 similar to 8. Replacing the R1 phenyl
ring with cyclohexyl 19 (IC50 = 0.19 mm) caused a small (sixfold)
decrease in potency against the enzyme. Insertion of one or
two methylene units between the amine and the cyclohexyl
and aromatic groups gave small decreases in activity against
TbGSK (20, IC50 = 0.7 mm ; 21, IC50 = 0.5 mm). As part of our strat-

Figure 7. Correlation between inhibition of TbGSK3 and inhibition of
T. brucei cell growth for the initial set of compounds. Supporting Information
table S1 lists the compounds used to derive the correlation plots along with
the TbGSK3 log IC50 and T. brucei log EC50 values.

Scheme 1. Reagents and conditions : a) thiourea (1 equiv), EtOAc, 120 8C,
5 min, b) isothiocyanate (1.1 equiv), DIPEA (1.2 equiv), DMF, RT, 24 h, then 2-
bromoketone (1.2 equiv), DIPEA (2.1 equiv), RT, 1 h.
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egy to test the limits of the TbGSK3 and HsGSK3b pockets, the
tetrahedral lipophilic tert-butyl ketone 22 was synthesised. This
compound is ~300-fold less active than 8 toward TbGSK3;
however, it is a potent inhibitor of T. brucei growth in vitro,
with an EC50 value of 0.3 mm, and is also highly selective (>
150-fold) over the human MRC5 cell line.

Biological characterisation of 2,4-diaminothiazol-5-carbalde-
hydes

Studies of the mechanism of inhibition by compounds from
the diaminothiazole series (19 and 14) confirmed that they are
ATP-competitive inhibitors of TbGSK3, as evident from the
Lineweaver–Burk plots (Figure 8). The calculated Ki

app values
(0.25�0.03 and 0.05�0.01 mm for 19 and 14, respectively) cor-
related very well with the determined IC50 values in the bio-
chemical assay (Table 4) as expected, considering that the level
of ATP in the assay was below the KM value for ATP.

During analysis of the SAR it
became apparent that the inhibi-
tion of cellular (T. brucei) growth
was no longer tracking with in-
hibition of the enzyme, TbGSK3.
This was particularly apparent
when a correlation plot of
T. brucei log EC50 values against
TbGSK3 log IC50 values was pro-
duced for all of the compounds
generated by this stage in the
programme (Figure 9 and Sup-
porting Information table S1). At
the extremes of this plot, the
ratio of T. brucei EC50 values/
TbGSK3 IC50 values for 23 is 115,
whilst for 22 it is 0.017, a differ-
ence of ~6700-fold (Table 4). We
believe that the reason for this
variation is that an essential mo-
lecular target or targets is pres-
ent in the T. brucei parasite
which can be modulated by
compounds with a similar phar-
macophore to that required for
TbGSK3 inhibition.

Earlier in the project we had
demonstrated that 8 was not
a prolific kinase inhibitor (Table 3
and Supporting Information
table S2). To determine whether
22 is a broad-spectrum inhibitor
of protein kinases we tested 22
along with 14 and 19 in the Uni-
versity of Dundee kinase panel
at a concentration of 10 mm

(Supporting Information
table S2). Most members of

series 1 showed >90 % inhibition against several of the kinases
tested. Interestingly, 22 was the least broad-spectrum kinase
inhibitor tested and it did not inhibit any kinase at the >90 %
level; it only inhibited CDK2 and GSK3 at >70 %. These en-
couraging data demonstrate that 22 selectively modulates the
activity of the unknown parasitic target(s) over a broad range
of mammalian kinases, and that these targets can be modulat-
ed by drug-like molecules. However, owing to the complex
pharmacology of these compounds, and as it is not clear what
the off-targets are, the only option will be to optimise these
compounds phenotypically, rather than through protein
screening.

Conclusions

In summary, we have shown that a screen of a focused kinase
library led to the identification of ligand-efficient inhibitors of
TbGSK3 with sub-micromolar potency. The chemotypes we
identified have physicochemical properties consistent with the

Table 4. Activity of key compounds from series 1.

IC50 [mm] EC50 [mm]

Compd R1 R2 TbGSK3 HsGSK3b T. brucei MRC5

8 0.03 0.007 0.2 13

14 0.02 0.005 0.2 1.6

15 0.4 2 0.4 20

16 0.1 0.005 0.2 >50

17 0.2 0.2 9 35

18 0.06 0.002 0.2 14

19 0.2 0.002 0.1 11

20 0.7 0.02 0.4 41

21 0.5 0.003 6 38

22 12 ND[a] 0.3 >50

23 0.04 0.007 4.1 0.3

[a] Not determined.
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development of orally bioavailable compounds. For the most
active series based on 2,4-diaminothiazoles, the compounds
were also active against the parasite T. brucei. Some of the ex-
amples had potencies in the order of 100 nm against the para-
site, which represents a very good starting point for a drug dis-
covery programme against HAT. However, it quickly became
apparent that this series has one or more molecular targets in
addition to TbGSK3, which contributes strongly to the trypano-
cidal activity of the compounds. Interestingly, although based
on a kinase scaffold, this series had a reasonably clean profile
against the 79 mammalian kinases investigated. In the absence

of a clear understanding of
which molecular target(s) are re-
sponsible for anti-trypanosomal
activity, the only way to optimise
this compound is phenotypically.
We shall report results for this in
due course.

Experimental Section

Homology modelling : Sequence
alignments between TbGSK3b

(Tb927.10.13780 in GeneDB) and
HsGSK3b were generated with
ClustalW.[41] Subsequently, Model-
ler 9.2[42] was used to build homol-
ogy models of TbGSK3 short,
whereas the human GSK3b crystal
structure (PDB code 1R0E) served
as template.[43] Modeller was run
with default settings, and only the
highest-scoring structure was used
for further analysis and modelling.
The quality of the model was as-
sessed with QMEAN.[44, 45] A total
QMEAN score of 0.726 and Z-score
of �0.50 were calculated, indicat-
ing that the model is of good qual-
ity.

Generation of putative binding modes : An initial binding mode
for compound 1 was generated by manually docking the ligand
into the ATP binding pocket of the TbGSK3 homology model with
the requirement to establish hydrogen bonds to the hinge resi-
dues using Moloc. Its position was subsequently optimised with
the MAB force field as implemented in Moloc.[46] To allow for uncer-
tainties in the homology model, the amino acid side chains facing
the binding site were kept flexible during minimisation. For the hit
expansion, ligands were docked into the active site of the homolo-
gy model using FlexX.[32] A highly conserved water molecule (H20
82 in 1R0E) was kept in the structure used for docking. For the
active site determination, a radius of 13 � around the ligand
bound in 1R0E was selected, always using complete amino acids.
Ligand conformations were calculated using CORINA.[47] Com-
pounds were docked using default settings.

TbGSK3 biochemical characterisation : TbGSK3 short protein with
an N-terminal maltose binding protein fusion was cloned, ex-
pressed, and purified as previously reported.[25] For biochemical
characterisation of TbGSK3, the kinase assay buffer (25 mm Tris·HCl
pH 7.5, 10 mm MgCl2, 5 mm DTT, 0.02 % CHAPS, 2 U mL�1 heparin)
and mix of ATP/[g-33P]ATP and GSP2 substrate (YRRAAVPPSPSL-
SAHSSPHQ[pS]EDEEE; Pepceuticals) were used in a radiometric
format (filterplate assay). The KM values for the two substrates (ATP
and GSP2) were determined by varying the concentrations of both
substrates in a time-course matrix experiment.

Compound library selection was described previously.[29]

Primary screen assays : For the primary screening of the focused
kinase inhibitor library, a 384-well KinaseGlo (Promega) lumines-
cence-based assay was used as previously described.[25] The reac-
tions contained 7.5 nm TbGSK3, 3.2 mm substrate peptide (Pepceut-
icals), 1 mm ATP, and 25 mm test inhibitor compound in optimised

Figure 8. Mechanism of inhibition was determined for A) 19 and B) 14. Rates (CPM) were determined at the re-
ported inhibitor concentrations (mm) with four varied concentrations of ATP at saturating concentration of the
other substrate. The resulting Lineweaver–Burk plots were examined for diagnostic patterns for competitive inhib-
ition and globally fitted to the equation for competitive inhibition.

Figure 9. Correlation between inhibition of TbGSK3 and inhibition of
T. brucei cell growth for the initial set of compounds. The later compounds
show weaker correlation. Supporting Information table S1 lists the com-
pounds used to derive the correlation plots along with the TbGSK3 log IC50

and T. brucei log EC50 values. Figure 9 was generated using both the early
and later examples of series 1.
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kinase assay buffer. DMSO and an eight-point titration of GW8510
(Sigma) from 1 mm to 50 pm were included as negative and posi-
tive controls. Reactions were incubated at room temperature for
1 h and stopped by the addition of KinaseGlo reagent. Plates were
then sealed, and the signal was left to stabilise for 1 h in the dark
before luminescence was determined using a TopCount NXT HTS
counter (PerkinElmer).

Potency screen assays : For hit validation and all subsequent com-
pound potency determinations, a radiometric 96-well Flashplate
assay (PerkinElmer) was adopted. Compounds were solubilised in
DMSO at a top concentration of 3 mm and serially diluted to ach-
ieve 10-point titration of final assay concentrations from 30 mm to
0.3 nm with a final DMSO concentration of 1 % (v/v). The reaction
mixtures contained 1 mm biotinylated GSP2 substrate, 1 mm ATP,
3.7 KBq [g-33P]ATP per well, and 2.5 nm TbGSK3 in the TbGSK3
kinase assay buffer. GSK3 inhibitors were screened for selectivity
assessment against HsGSK3b as well. For the HsGSK3b assay the re-
action mixes contained 1 mm biotinylated GSP2 substrate, 2 mm

ATP, 7.4 KBq [g-33P]ATP per well, and 15 nm HsGSK3b in the TbGSK3
kinase assay buffer (25 mm Tris·HCl pH 7.5, 10 mm MgCl2, 5 mm

DTT, 0.02 % CHAPS, 2 U mL�1 heparin).

Mammalian kinase profiling : Selected compounds were screened
against a panel of mammalian kinases routinely run by the Division
of Signal Transduction Therapy (DSTT) at the University of Dundee
in duplicate at 10 mm. Enzymes included in the panel and assay
conditions are reported.[48] All biochemical assays were carried out
below the KM

app value for ATP for each enzyme, allowing compari-
son of inhibition across the panel.

Trypanosome and MRC5 proliferation assay : Measurement of in-
hibition of the proliferation of MRC5 (human lung fibroblast) cells
and T. brucei bloodstream-stage cells was performed using a modifi-
cation of a cell viability assay previously described.[49] Compounds
(50 mm to 0.5 nm) were incubated with 2 � 103 cells per well in
0.2 mL of the appropriate culture medium (MEM with 10 % foetal
bovine serum for MRC-5 cells) in clear 96-well plates. Plates were
incubated at 37 8C in the presence of 5 % CO2 for 69 h. Resazurin
was then added to a final concentration of 50 mm, and plates were
incubated as above for a further 4 h before being read on a BioTek
flx800 fluorescent plate reader.

Data analysis : Determination of the TbGSK3 kinetic parameters
was carried out as described previously.[50] IC50 values were deter-
mined using a four-parameter equation in XLFit 4.2. To establish
mode of inhibition, rates were determined at 10 inhibitor concen-
trations with four varied concentrations of ATP in saturating con-
centration of GSP2. The resulting Lineweaver–Burk plots were ex-
amined for diagnostic patterns for competitive, mixed, or uncom-
petitive inhibition. Graphs and analyses were carried out using
Grafit 6.0. The correlation between in vitro IC50 against TbGSK3 in
T. brucei cells and inhibitor potency (Ki) for ATP-competitive inhibi-
tors was determined according to the Cheng–Prusoff equation
[Eq. (1)] .

Chemistry

1H NMR spectra were recorded on a Bruker Avance DPX 500 instru-
ment unless otherwise stated. Chemical shifts (d) are expressed in
ppm. Signal splitting patterns are described as singlet (s), broad
singlet (br s), doublet (d), triplet (t), quartet (q), multiplet (m), or
combination thereof. Low-resolution electrospray (ES) mass spectra
were recorded on a Bruker MicroTof mass spectrometer, run in pos-
itive ion mode, using either MeOH, MeOH/H2O (95:5), or H2O/

CH3CN (1:1) + 0.1 % formic acid as the mobile phase. High-resolu-
tion electrospray MS measurements were performed on a Bruker
MicroTof mass spectrometer. LC–MS analyses were performed with
an Agilent HPLC 1100 (Phenomenex Gemini Column 5 m C18 110A
50 � 3.0 mm, eluting with 20 % MeOH/H2O, 0–3 min) and a diode
array detector in series with a Bruker MicroTof mass spectrometer.
Column chromatography was performed using RediSep 4 or 12 g
silica pre-packed columns.

The following compounds were purchased from commercial sup-
pliers and their purity and identity confirmed by LC–MS analysis
(all compounds were >85 % pure based on a diode array detec-
tor). Compounds 1 and 2 were purchased from ChemBridge Cor-
poration; 3 was purchased from Maybridge; 4 was purchased from
BioFocus; 5 was purchased from ChemDiv Inc. ; 6, 9, and 23 were
purchased from TimTec; 7 and 10 were purchased from Specs.

Benzyl carbamimidothioate hydrobromide (11): Benzyl bromide
(16.0 mL, 135 mmol), thiourea (10.0 g, 131 mmol), and EtOAc
(75 mL) were combined, and then heated at 120 8C in a microwave
reactor for 5 min. The reaction was allowed to cool to room tem-
perature, and the resulting solid was collected by filtration to give
benzyl carbamimidothioate hydrobromide 11 as a white solid
(29.3 g, 118.6 mmol, 89 % yield); 1H NMR (500 MHz, [D6]DMSO): d=
9.07 (br s, 4 H), 7.44–7.32 (m, 5 H), 4.49 ppm (s, 2 H).

4-Amino-2-(phenylamino)thiazol-5-yl)(phenyl)methanone (8):
General procedure A (used for the synthesis of compounds 8, 14–
22): Benzyl carbamimidothioate hydrobromide (100 mg, 0.4 mmol),
phenyl isothiocyanate (52 mL, 0.43 mmol), and N,N-diisopropylethyl-
amine (DIPEA; 76 mL, 0.43 mmol) were added to DMF (5 mL), and
the resulting mixture was stirred at room temperature for 24 h. 2-
Bromoacetophenone (96 mg, 0.48 mmol), DIPEA (139 mL,
0.80 mmol), and DMF (2 mL) were then added, and the mixture
was stirred at room temperature for 1 h, after which the reaction
was quenched by the addition of aqueous HCl (1 m, 4 mL). The
product was extracted with EtOAc (3 � 3 mL), and the combined
extracts were back washed with LiCl (2 � 3 mL of a 5 % w/w solu-
tion in H2O), brine (3 mL), and then dried with MgSO4, and the sol-
vent was removed under reduced pressure. Purification by column
chromatography on silica eluting with petroleum ether (PE) 40–
60 8C and EtOAc gave 8 as a yellow solid (47 mg, 0.15 mmol, 39 %
yield); 1H NMR (500 MHz, [D6]DMSO): d= 10.80 (br s, 1 H), 8.22 (br s,
2 H), 7.69–7.67 (m, 2 H), 7.62 (d, J = 7.7 Hz, 2 H), 7.51–7.46 (m, 3 H),
7.39–7.36 (m, 2 H), 7.09 ppm (tt, J = 7.4 and 1 Hz, 1 H); 13C NMR
(125 MHz, DMSO): d= 182.7, 167.2, 165.6, 141.9, 139.5, 130.4, 129.1,
128.4, 126.7, 123.4, 119.0, and 92.2 ppm; LC–MS m/z = 296 [M + H]+

, tR = 4.28 min, purity 88 % (Agilent, 20–90 % CH3CN, ES + on an
acidic method).

(4-Amino-2-(phenylamino)thiazol-5-yl)(2,6-difluorophenyl)me-
thanone (14): General procedure A gave 14 as a yellow solid
(32 mg, 0.10 mmol, 10 % yield); 1H NMR (500 MHz, [D6]DMSO): d=
10.89 (br s, 1 H), 8.31 (br s, 2 H), 8.08 (br s, 1 H), 7.57–7.50 (m, 3 H),
7.39–7.35 (m, 2 H), 7.23–7.19 (m, 2 H), 7.13–7.10 ppm (m, 1 H); LC–
MS m/z = 332 [M + H]+ , tR = 4.25 min, purity 90 % (Agilent, 20–90 %
CH3CN, ES + on an acidic method).

(4-Amino-2-(phenylamino)thiazol-5-yl)(2,6-dimethoxyphenyl)me-
thanone (15): General procedure A gave 16 as a yellow solid
(9 mg, 0.03 mmol, 3 % yield); 1H NMR (500 MHz, [D6]DMSO): d=
10.58 (br s, 1 H), 7.79 (s, 2 H), 7.54 (d, J = 8.0 Hz, 2 H), 7.54–7.52 (m,
3 H), 7.06 (t, J = 7.3 Hz, 1 H), 6.69 (d, J = 8.4, 2 H), 3.71 ppm (6 H, s) ;
LC–MS m/z = 356 [M + H]+ , tR = 4.10 min, purity 100 % (Agilent, 20–
90 % CH3CN, ES + on an acidic method).

� 2013 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemMedChem 2013, 8, 1127 – 1137 1135

CHEMMEDCHEM
FULL PAPERS www.chemmedchem.org

www.chemmedchem.org


(4-Amino-2-(phenylamino)thiazol-5-yl)(3-bromophenyl)metha-
none (16): General procedure A gave 16 as a yellow solid (211 mg,
0.56 mmol, 69 % yield); 1H NMR (500 MHz, [D6]DMSO): d= 10.85
(br s, 1 H), 8.29 (br s, 2 H), 7.81 (t, J = 1.7 Hz, 1 H), 7.71 (ddd, J = 1.0,
2.0, 8.0 Hz, 1 H), 7.69–7.67 (m, 1 H), 7.63 (d, J = 7.8 Hz, 2 H), 7.46 (t,
J = 7.8 Hz, 1 H), 7.39–7.36 (m, 2 H), 7.12–7.08 ppm (m, 1 H); LC–MS
m/z = 376 [M + H]+ , tR = 4.58 min, purity 100 % (Agilent, 20–90 %
CH3CN, ES + on an acidic method).

(4-Amino-2-((2,6-dimethylphenyl)amino)thiazol-5-yl)-
(phenyl)methanone (17): General procedure A gave 17 as a yellow
solid (35 mg, 0.11 mmol, 11 % yield); 1H NMR (500 MHz, [D6]DMSO):
d= 10.11 (br s, 1 H), 8.40 (br s, 1 H), 7.97 (br s, 1 H), 7.54–7.16 (m,
8 H), 2.20 ppm (s, 6 H); LC–MS m/z = 324 [M + H]+ , tR = 4.39 min,
purity 95.6 % (Agilent, 20–90 % CH3CN, ES + on an acidic method).

(4-Amino-2-((3,4-dimethylphenyl)amino)thiazol-5-yl)-
(phenyl)methanone (18): General procedure A gave 18 as a yellow
solid (100 mg, 0.30 mmol, 30 % yield); 1H NMR (500 MHz,
[D6]DMSO): d= 10.60 (br s, 1 H), 8.31 (br s, 1 H), 8.11 (br s, 1 H), 7.67–
7.65 (m, 2 H), 7.51–7.45 (m, 3 H), 7.34 (d, J = 8.3 Hz, 1 H), 7.31 (s,
1 H), 7.12 (d, J = 8.2 Hz, 1 H), 2.21 (s, 3 H), 2.19 ppm (s, 3 H); LC–MS
m/z = 324 [M + H]+ , tR = 4.55 min, purity 88 % (Agilent, 20–90 %
CH3CN, ES + on an acidic method); HRMS m/z [M + H]+ calcd for
C18H18N3OS: 324.1165, found: 324.1158.

(4-Amino-2-(cyclohexylamino)thiazol-5-yl)(phenyl)methanone
(19): General procedure A gave 19 as a yellow solid (59 mg,
0.19 mmol, 19 % yield); 1H NMR (500 MHz, [D6]DMSO): d= 8.57 (br s,
1 H), 8.49 (br s, 1 H), 7.89 (br s, 1 H), 7.63–7.61 (m, 2 H), 7.47–7.42 (m,
3 H), 3.70 (br s, 1 H), 1.91 (d, J = 10.7 Hz, 2 H), 1.76–1.70 (m, 2 H), 1.57
(d, J = 12.9 Hz, 1 H), 1.32–1.13 ppm (m, 5 H); LC–MS m/z = 302 [M +
H]+ , tR = 4.42 min, purity 88 % (Agilent, 20–90 % CH3CN, ES + on an
acidic method); HRMS m/z [M + H]+ calcd for C16H20N3OS:
302.1322, found: 302.1321.

(4-Amino-2-((cyclohexylmethyl)amino)thiazol-5-yl)-
(phenyl)methanone (20): General procedure A gave 20 as a yellow
solid (136 mg, 0.43 mmol, 43 % yield); 1H NMR (500 MHz,
[D6]DMSO): d= 8.63 (br s, 1 H), 8.43 (br s, 1 H), 7.84 (br s, 1 H), 7.63–
7.61 (m, 2 H), 7.48–7.43 (m, 3 H), 3.17–3.03 (m, 2 H), 1.17–1.52 (m,
6 H), 1.23–1.11 (m, 3 H), 0.94–0.87 ppm (m, 2 H); LC–MS m/z = 316
[M + H]+ , tR = 4.63 min, purity 97 % (Agilent, 20–90 % CH3CN, ES +
on an acidic method); HRMS m/z [M + H]+ calcd for C17H22N3OS:
316.1478, found: 316.1472.

(4-Amino-2-(phenethylamino)thiazol-5-yl)(phenyl)methanone
(21): General procedure A gave 21 as a yellow solid (77 mg,
0.24 mmol, 24 % yield); 1H NMR (500 MHz, [D6]DMSO): d= 8.73 (br s,
1 H), 8.47 (br s, 1 H), 7.87 (br s, 1 H), 7.63–7.61 (m, 2 H), 7.48–7.43 (m,
3 H), 7.32–7.29 (m, 2 H), 7.26–7.21 (m, 3 H), 2.90 (s, 1 H), 2.87 (t, J =
7.2 Hz, 2 H), 2.74 ppm (d, J = 0.5 Hz, 1 H); HRMS m/z [M + H]+ calcd
for C14H18N3OS: 324.1165, found: 324.1153.

1-(4-Amino-2-(cyclohexylamino)thiazol-5-yl)-2,2-dimethylpro-
pan-1-one (22): General procedure A gave 22 as a yellow powder
(171 mg, 0.61 mmol, 61 % yield); 1H NMR (500 MHz, CDCl3) d= 5.34
(d, J = 7.1 Hz, 1 H), 3.30–3.28 (m, 1 H), 2.00 (dd, J = 13.6, 3.3 Hz, 1 H),
1.70 (dt, J = 13.6, 4.0 Hz, 2 H), 1.57 (dt, J = 13.2, 4.0 Hz, 1 H), 1.38–
1.33 (m, 2 H), 1.20 (s, 9 H, tBu-H), 1.19–1.17 (m, 1 H), 0.81 (t, J =
7.1 Hz, 1 H), 0.79–0.76 ppm (m, 1 H); 13C NMR (DMSO, 125 MHz) d=

128.6, 128.4, 119.5, 53.4, 53.3, 32.0, 27.0, 24.9, 24.3, 17.9, 16.6,
12.2 ppm; LC–MS m/z = 282 [M + H]+ , tR = 4.60 min, purity 96 %
(Agilent, 20–90 % CH3CN, ES + on an acidic method); HRMS m/z
[M + H]+ calcd for C14H24N3OS: 282.1635, found: 282.1641.
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