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Abstract 

As there is a need for fully validated drug targets in Trypanosoma cruzi, the genetic and 

biochemical essentiality of N-myristoyltransferase (NMT) was assessed.  The genetic 

requirement was assessed using a classical gene replacement strategy, attempting to 

sequentially replace the endogenous alleles with drug resistance genes to generate an 

NMT null parasite.  It was only possible to achieve this in the presence of an ectopic 

copy of NMT under constitutive expression, providing the strongest evidence that this 

gene is essential for the proliferation of the epimastigote.  While both NMT and N-

myristoylation were detected in all lifecycle stages, there were subtle differences in the 

expression of several myristoylated proteins. However, at least ~10 myristoylated 

proteins were common throughout the lifecycle.  In addition, N-myristoylation in this 

parasite was found to be primarily associated with nascent protein synthesis, as 

treatment with cycloheximide reduced the number of N-myristoylated proteins detected.  

The sensitivity of epimastigotes to the inhibitor DDD85646 correlated with the 

expression of NMT, suggesting it to be the target in the parasite.  This was confirmed 

by the dose-dependent depletion of N-myristoylated proteins detected in parasites 

treated with this compound.  Mechanism of action studies revealed a cytokinesis defect 

caused by the inhibition of N-myristoylation and NMT.  Overexpression of NMT was 

able to rescue these cells from this phenotype confirming that it is NMT mediated.  The 

N-myristoylated proteins comprising the N-myristoylome of the epimastigote were 

identified using the myristic acid analog, azidomyristate and a chemical proteomics 

approach.  Combining label-free and SILAC methodologies, 38 proteins were enriched 

from azidomyristate labelled cells, 35 of which were predicted to have a glycine after 

the initial methionine.  The findings from these experiments have led to the most 

comprehensive N-myristoylome of T. cruzi studied to date and provide several 

hypotheses, by which the inhibition of NMT leads to the observed cytokinesis defect.  
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1.1.1 Kinetoplastida  

The kinetoplastids are a class of unicellular protozoan organisms belonging to the 

phylum Euglenozoa.  These parasites are named after the unique organelle forming part 

of their mitochondrion known as the kinetoplast.  This consists of a series of 

interlocking plasmids known as mini or maxi-circles, each ranging from 0.5-40 kbp in 

length and is found at the base of the flagellum (Westenberger et al., 2006).  The 

Trypanosomatid parasites belonging to this class are further sub-divided into the sub-

genera Blastocrithidia, Crithidia, Endotrypanum, Herpetomonas, Rhynchoidomonas, 

Leptomonas, Phytomonas, Leishmania and Trypanosoma (Stevens et al., 2001).  For the 

past 100 years, it has been known that parasites of the Trypanosoma and Leishmania 

families are the cause of several human diseases, all of which have been classified to be 

neglected tropical diseases in 2002 (Yamey, 2002).  The term, neglected tropical disease 

was coined due to the low interest of the pharmaceutical industry to start research 

programs into these organisms, with the aim of finding cures for the diseases that they 

cause. More than a decade later, these same diseases are still regarded to be neglected 

by the World Health Organisation (WHO) (Feasey et al., 2010). 

 

1.1.2 Trypanosoma brucei and Human African Trypanosomiasis 

The parasite Trypanosoma brucei (T. brucei) is the cause of Human African 

Trypanosomiasis (HAT) and is found in 36 sub-Saharan African countries (WHO 

Expert Committee, 1998).  In 1995 there was an estimated 60 million individuals at risk 

of infection with >300,000 cases per year, however, in recent times this number has 

dropped below 10,000
1
 (World Health Organization, 2006).  It is now estimated that 

there are ~30,000 individuals infected with T. brucei
1
.  This parasite is transmitted to 

humans through the bite of an infected Tsetse fly (Vickerman, 1976).  This digenetic 

                                                           
1
 http://www.who.int/mediacentre/factsheets/fs259/en/ 



Figure 1.1 Lifecycle of Trypanosoma cruzi
1. Triatomine bug ingests trypomastigotes from a blood meal.  2. Trypomastigote.  3.  
Trypomastigotes transform into the epimastigote in the hindgut. 4 Epimastigotes 
divide and continue to pass through the digestive tract of the triatomine bug. 5 
Epimastigotes transform back into trypomastigotes. 6 Infectious trypomastigotes are 
passed out in the faeces of the triatomine bug and gain entry to the host cells through 
a cut in the skin or via a mucosal membrane. 7-10 Parasites gain entry to a host cell 
and transform into an amastigote.  11 Amastigotes undergo cell division. 12 Most 
amastigotes transform into trypomastigotes. 13 Mixture of amastigotes and trypomas-
tigotes burst out of a host cell and circulate in the blood. 14 Trypomastigotes and 
amastigotes are able to infect new host cells or be taken up in a blood meal.  Alterna-
tively, trypomastigotes 15a or amastigotes 15b are able to infect host cells and propa-
gate the infection.  Figure modified from Texiera et al. PLoS Negl Trop Dis. 2012 
Aug;6(8):e1749. doi: 10.1371/journal.pntd.00017
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organism, possesses two replicative stages, the procyclic forms (PCF), found in the 

Tsetse fly and the bloodstream form (BSF) found circulating the in the blood of a 

mammalian host.  There are three subspecies of T. brucei, the brucei subspecies is only 

infectious to cattle, while rhodesiense and gambiense strains cause the human disease.  

The symptoms after the initial infection with this parasite are generally quite mild, with 

headaches, fevers and stiffness amongst other symptoms being reported (WHO Expert 

Committee, 1998).  However, as the disease progresses, parasites cross the blood brain 

barrier into the central nervous system leading to lethargy, seizures, comas (from which 

the disease name is derived) and ultimately death (WHO Expert Committee, 1998).  

 

1.1.3 Trypanosoma cruzi 

Trypanosoma cruzi (T. cruzi), the causative agent of Chagas disease was first identified 

by the Brazilian physician Dr Carlos Chagas in 1909.  This digenetic organism has a 

complex lifecycle formed of separate, but interlinked mammalian and insect lifecycles 

(Figure 1.1).  T. cruzi is primarily transmitted through the faeces of the Triatominae 

sub-family of Reduviidae bugs, colloquially referred to as kissing bugs (Dias, 2007).  

The most important species acting as a vector for the human disease is Triatoma 

infestans.  As an infected insect takes a blood meal from a mammalian host, it 

simultaneously expels its faeces, which contain metacyclic trypomastigote forms of the 

parasite next to the open wound.  The irritation caused by the taking of a blood meal 

causes the host to scratch the site surrounding the wound, resulting in trypomastigotes 

gaining access to the blood stream of the host.  Alternatively, trypomastigotes can 

invade via the mucosal membranes of the host such as the eyes, mouth and throat (Hoft 

et al., 1996).  Upon entry to the bloodstream, the trypomastigote is able in infect a 

variety of cell types; however they display a preference for cardiac muscle (Brener, 
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1973; Buckner et al., 1999).  This step is essential for the proliferation and propagation 

of these parasites in the mammalian host, as T. cruzi is an obligate intracellular 

organism.  After cell invasion, the trypomastigotes transform into the rounded 

amastigote stage displaying a greatly shortened flagellum in comparison with the 

trypomastigote stage (Brener, 1973).  The intracellular amastigote undergoes multiple 

rounds of cell division in the host cell prior to transforming into bloodstream 

trypomastigotes.  A mixture of trypomastigotes and amastigotes burst out of the infected 

cell and circulate in the blood, thus propagating the infection, as both the 

trypomastigotes and amastigotes have been reported to be infectious in murine models 

and in vitro (De Carvalho and de, 1986; Fernandes et al., 2013; Ley et al., 1988).  It is 

at this point, where a triatomine bug may take a blood meal from an infected host and 

ingest trypomastigotes.  As these parasite pass through the digestive tract of the insect, 

they transform into the insect exclusive, epimastigote stage.  Epimastigotes are unable 

to infect a mammalian host, as they are inactivated by complement-mediated lysis in 

humans (Norris, 1998).  Epimastigotes undergo division by binary fission in the mid-gut 

of the triatomine, however a study has also shown genetic exchanges may occur in vitro 

(Gaunt et al., 2003).  They then transform back into metacyclic trypomastigotes as they 

continue through the digestive tract before being excreted in the faeces of these insects, 

thereby completing the full lifecycle of T. cruzi.     

 

1.1.4 Sources of human infection  

The main route of infection in humans with this parasite is by the direct exposure of the 

contaminated insect faeces to broken skin, or the mucosal membranes.  Another 

common source of disease outbreaks can be traced back to the oral ingestion of 

contaminated food or drink (Alarcon de et al., 2010; Bastos et al., 2010).  Although 



5 
 

 
 

these make up the vast majority of cases, alternative routes of infection exist.  The first 

is receiving blood or organs from an infected donor.  Infection by blood transfusion has 

been well documented in the literature, with studies estimating that ~20% of patients 

receiving infected blood later test positive for Chagas (Fearon et al., 2013; Young et al., 

2007).  One study has shown these parasites to be extremely resilient, with the recovery 

of viable parasites from blood stored at 4 °C after 24 h and cultured cells after 28 days 

at the same temperature (Martin et al., 2014).  Transplantation of organs from an 

infected donor also presents a risk of transmission of the parasite and the disease (2002; 

2006; Huprikar et al., 2013).  Screening of donor organs and blood prior to 

transplantation greatly reduces this risk
2
 (Bern et al., 2008; Chin-Hong et al., 2011).  If 

infected organs are transplanted, the administration of chemotherapeutic treatment and 

continual monitoring is recommended.  With the continued use of this parasite as a 

model organism and the screening of blood from infected individuals, there is always 

the possibility of lab-acquired infection (Hofflin et al., 1987; Kinoshita-Yanaga et al., 

2009).  Finally, transmission of the parasite from an infected mother across the placenta 

into an unborn child can lead to congenital transmission.  Overall, children born to 

infected mothers are estimated to acquire the disease in ~5% of cases, with higher rates 

observed in countries where the disease in endemic (Cevallos and Hernandez, 2014; 

Howard et al., 2014; Moretti et al., 2005).   

 

1.2.1 Chagas disease 

Globally it is estimated that there are ~8 million infected individuals worldwide, 

resulting in at least ~10,000 deaths in 2008 alone (Rassi, Jr. et al., 2010; World Health 

Organization, 2012).  The disease itself is separated into the acute and the chronic 

                                                           
2
http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Blood/UCM2359

60.pdf 



Figure 1.2 Visual symptoms of the acute stage of Chagas disease
(A) Romañas sign is a swelling of the tissue surrounding the eye, caused by rubbing 
parasite-laden faeces into the conjunctival sac. (B) A chagoma is an inflamatory lesion 
found surrounding the point of entry of the parasite.  In this case, the cause was a 
needlestick injury in a lab.  Images have been adapted from Muñoz-Saravia, S.G. et al., 
2010 and Kinoshita-Yanaga et al., 2009.   

A B
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stages, separated by an indeterminate phase that can last for many years where patients 

display no symptoms of the disease.  

1.2.1.1 Acute disease 

The acute stage of this disease is very short, typically lasting for 4-8 weeks after the 

initial infection with this parasite (Dias, 1984).  This stage of the disease is 

characterised by high levels of parasitemia in the host, a characteristic that is also 

observed in animal models of the disease (Brener, 1973).  In some cases, patients 

display one of the two visual signs of infection with this parasite, Romañas sign or a 

Chagoma (Hemmige et al., 2012) (Figure 1.2).  The first of these is the classic sign 

associated with this disease and is a swelling around the eyelid caused by rubbing the 

parasite-containing faeces into the conjunctival tissues.  It is important to note that this 

reaction is not specific and can also be caused by numerous other chemicals and 

organisms.  However, whilst this symptom could be misdiagnosed without a follow-up 

investigation, two studies have shown Romañas sign to be present in ~50% of acute 

patients (Anez et al., 1999) (Dias, 1984).  The second visual symptom, is a skin lesion 

found around the point of infection that is usually the wound left from where a 

triatomine bug took a blood meal, however it can also occur at the site of an accidental 

inoculation (Hofflin et al., 1987).  While these symptoms can be indicators of infection 

with this parasite, they are not always present, in as many as 50% of patients (Anez et 

al., 1999) (Dias, 1984).  The following non-cutaneous symptoms have also been 

associated with the acute stage of Chagas disease, fever, nausea, vomiting, muscle pain, 

headaches, heart failure, hepatomegaly and oedema and diarrhoea (Anez et al., 1999; 

Bastos et al., 2010).  Despite the number of symptoms caused by the disease, many are 

mild and non-specific to Chagas disease and ~15% of patients will not display any 

symptoms of infection (Anez et al., 1999). 
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Whilst the acute disease can occur in adults, there is a higher prevalence of 

children diagnosed during this stage of the disease with over 60% of cases being 

reported in 1-5 year olds (Dias et al., 1956).  A review of acute cases by Dias found an 

increased severity associated with younger age groups.  They observed a 20% mortality 

rate during the acute stage of patients aged 0-2 years old, decreasing to 0% observed for 

those older than 11 years (Dias, 1984).  Overall, the acute mortality rate reported was 

8.3% and 8.6% in a study carried out in the state of Barinas in Venezuela (Parada et al., 

1997).  With the short acute phase and the large range of mild and non-specific 

symptoms, it is estimated that only ~1% of infected individuals will be diagnosed 

during this stage (WHO Expert Committee, 2002).  

 

1.2.1.2 Chronic disease 

The chronic form of this disease follows the acute stage, but does not appear 

immediately after the subsidence of the acute symptoms.  Instead, there is a latent 

period ranging from 10-30 years, before an estimated 30% of individuals develop the 

chronic disease.  The remaining 70% of people will remain in the asymptomatic, 

indeterminate phase for the remainder of their lives.  During this phase, the numbers of 

circulating parasites in the blood significantly decreases (with the exception of HIV 

positive patients), but those with the indeterminate form will continue to be natural 

reservoirs of the disease for the rest of their lives (Sartori et al., 2002).  The 

symptomatic chronic form is divided into the cardiac or “mega organ” forms; however, 

they are not mutually exclusive and a small proportion of patients display both forms of 

the disease.  The cardiac form of the disease is the most common symptomatic stage 

with an estimated 85-90% of patients displaying this pathology (Rassi et al., 2010).  

There are several clinical outcomes for the cardiac disease, ranging from 



A

B

Figure 1.3 Symptoms of the chronic stage of Chagas disease
(A) Cardiac failure in a patient that had chronic Chagas disease.  Arrow shows cardiac 
aneurysm  (B) The megacolon form of chronic chagas disease.  Images have been 
adapted from Muñoz-Saravia, S.G. et al., 2010 and  Marin-Neto et al,. Heart Disease in 
Latin America, Circulation. 2007; 115: 1109-1123.
  

A B
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cardiomyopathies (Figure 1.3A) to cardiac arrhythmias, leading to cardiac failure and 

death (Rassi, Jr. et al., 2010). 

Unlike the cardiac form, the mega organ disease does not affect only one organ, 

but can affect several points within the digestive system, starting with the oesophagus 

and ending with the colon (Pinazo et al., 2014; Rassi, Jr. et al., 2010).  Similar to the 

cardiac disease, parasites or parasite DNA has been detected in diseased organs 

(Brandariz et al., 1995; Marcon et al., 2011).  Organs with mega disease are found to be 

massively dilated, in comparison with un-infected organs and experience neuronal loss 

(Figure 1.3B) (da Silveira et al., 2007; Figueiredo et al., 2000).  This enlargement 

impairs the peristaltic function of these organs leading to dysphagia (difficulty in 

swallowing) or constipation for the mega oesophagus and mega colon diseases, 

respectively.  

A third form of the disease that is far less common involves the central nervous 

system, but it does not present on its own, and typically accompanies the cardiac 

disease.  In a handful of cases, reports of T. cruzi induced meningoencephalitis has been 

documented.  The majority of cases are in patients with reactivation of Chagas disease 

or, are infected with the HIV virus leading them to develop acquired immunodeficiency 

deficiency syndrome (AIDS) (Sartori et al., 1998; Sartori et al., 2002) (Almeida et al., 

2010).  A review of disease reactivation in AIDS patients has found an involvement 

with the CNS in 75% of all patients.  Studies of patients that have acute forms of 

meningoencephalitis also found the presence of trypomastigotes in the cerebral spinal 

fluid (Sartori et al., 2002).    

For many years, there has been a disagreement about the underlying cause of 

chronic Chagas disease, with two hypotheses based upon the persistence of the parasite 

within the host, or the autoimmune theory.  It has only been within the past decade that 



Figure 1.4 Worldwide distribution of Chagas disease
A map showing the estimated, worldwide distribution of infected individuals.  This 
figure has been adapted from 
http://thehealthcoach1.com/wp-content/uploads/2012/06/MapChagasJun09_large.jpg.
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the organ damage caused has become increasingly understood to involve both 

mechanisms (Girones and Fresno, 2003; Gutierrez et al., 2009).  It has been 

demonstrated in both murine models and in humans that parasites persist during the 

chronic infection, despite the lack of circulating parasites, see reviews (Marcon et al., 

2011; Tarleton, 2003).  The majority of studies have detected parasite DNA in the 

cardiac, skeletal and smooth muscle cells, although, on the basis of murine models, 

amastigotes have also been found to reside in adipocytes both in culture and in adipose 

tissue (Combs et al., 2005; Ferreira et al., 2011).  The latter authors noted that the 

pathogenic organisms Rickettsia prowazekii and Mycobacterium tuberculosis are also 

able to persist in adipose tissue, which has been suggested as a potential reservoir for 

the former species.  The identification of parasites in human adipose tissue raises the 

possibility that adipocytes may play an important role in the pathology and persistence 

of these parasites in the chronic disease.    

 

1.2.2 Worldwide distribution of the disease and association with poverty 

Due to the primary nature of transmission, Chagas disease is mainly localised to the 

Latin American countries where the triatomine bugs are present (Figure 1.4).  However, 

due to the increased economic and social mobility of individuals, the disease has been 

identified in countries that have no sylvatic cycle, or insect vectors to transmit the 

disease (Gascon et al., 2010; Schmunis, 2007).  There have been multiple studies 

carried out over the years to estimate the prevalence of Chagas disease in the migrant 

populations, in non-endemic populations.  In Spain, the Latin American migrant 

population is estimated to account for 3.85% of the total population of the country
3
.  A 

study carried out at a treatment centre in Barcelona identified that 2.87% of Latin 

                                                           
3
 http://www.ine.es/en/prensa/np854_en.pdf 

http://www.ine.es/en/prensa/np854_en.pdf
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American individuals had a chronic form of Chagas disease with 19% of those patients 

displaying cardiac or cardiodigestive forms of the disease (Roca et al., 2011). 

 

1.2.3 Economic burden of the disease 

The chronic stage of this disease does not have the same high levels of morbidity and 

mortality associated with other neglected diseases such as malaria.  Nonetheless, the 

global burden of this disease has been calculated to be in the region of 7.2 billion dollars 

per annum, which is higher than the similar costs of other disease such as cervical 

cancer and Lyme disease (Lee et al., 2013).  As expected, the highest cost of this 

disease was predicted to be in Latin American countries even when taking into account 

the lower treatment costs compared with North America and Europe.  Despite this 

massive economic burden, there has been little progress in developing new, safer and 

more effective drugs to treat this disease.  

 

1.2.4 Vector control to combat Chagas disease 

Since vector-born transmission accounts for the majority of cases, there have been 

several attempts to interrupt the transmission of this parasite by eliminating the insects 

that transmit the disease.  The governments of six countries (Argentina, Bolivia, Brazil, 

Chile, Paraguay and Uruguay) formed a coalition called the southern cone initiative 

(SCI) with the aim of eradicating the main vector of the disease, Triatoma infestans 

(Schofield and Dias, 1999).  The Andean initiative and central American initiatives 

were also set up to combat the transmission of the disease by similar methods (1998; 

Guhl, 2007).  The success of the SCI has been demonstrated on multiple levels, with the 

interruption of transmission in multiple countries (World Health Organization, 1998; 

World Health Organization, 2000a; World Health Organization, 2000b).  This resulted 
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in a decreased number of infected individuals (~70% reduction) identified across the 

countries monitored by the randomised screening (Dias, 2007; Moncayo, 2003).  In 

particular, Brazil has reported savings of $17 for every $1 spent on their vector 

elimination program (Moncayo, 2003).  Despite having interrupted transmission in 

multiple countries, this approach requires continued treatment and monitoring by the 

countries involved due to the presence of a sylvatic lifecycle (Apt et al., 1987; Navin et 

al., 1985).  Even if the insect vectors could be completely eradicated, it is likely that this 

disease will continue to be a major health problem in Latin America for many decades 

to come due to the long incubation period before the appearance of the chronic disease 

(Section 1.2.1.2) 

 

1.2.5 Immune response to infection with T. cruzi 

Studies have shown that both innate and adaptive immune responses play a role in the 

control of T. cruzi infection.  It is the later that scientists hope to exploit to produce a 

successful vaccine capable of providing protective immunity (Section 1.2.6).  It has 

been shown experimentally that parasite antigens are able to elicit the activation of 

natural killer cells which produce interferon (IFN)γ after stimulation by interleukin 2 

(Basso, 2013).  The subsequent increase in nitric oxide production has been shown to be 

important in the control of parasitemia.  A study has found in increase in parasitemia 

and mortality of infected mice when the production of nitric oxide is inhibited (Vespa et 

al., 1994).  Treatment of parasites with a S-nitroso-acetyl-penicillamine, which is a 

nitric oxide donor was found to directly kill parasites in vitro suggesting that nitric 

oxide is an important component of the innate immune response for controlling 

parasitemia.   

 



12 
 

 
 

1.2.6 Vaccination as a strategy against Chagas disease 

In addition, to vector control and the chemotherapeutic treatment (Section 1.3.2) 

programs that currently are in operation, there have been multiple labs looking into the 

development of a vaccine.  The underlying hypothesis behind this approach is that by 

controlling the parasite load it may subsequently lead to a reduction in, or control of the 

tissue damage caused by the parasite (Quijano-Hernandez and Dumonteil, 2011; 

Vazquez-Chagoyan et al., 2011).  One study has shown a protective effect against the 

cardiac damage caused by infection with the parasite in a murine model when the mice 

were pre-immunised with a DNA-prime/MVA-boost vaccine (Gupta and Garg, 2013).  

However, despite a considerable amount of work that has been reported over the years, 

there has yet to be a vaccine to make it into clinical trials in humans.  There are several 

challenges that need to be addressed in order to produce a successful treatment.  Firstly, 

it would need to target the extracellular trypomastigote and intracellular stages in order 

to be fully effective.   Secondly, there is a large diversity in the different strains of this 

parasite (Zingales et al., 2009), so a vaccine would need to be effective across multiple 

strains from the different DTU’s.   

 

1.3 Diagnosis and treatment of Chagas disease 

1.3.1 Diagnosis  

One of the major challenges facing the development of new drugs and the eradication of 

this disease is a lack of knowledge of suitable diagnostic markers for the eradication of 

the parasite (Andrade et al., 2011).  Over the years, many different methods have been 

developed for assessing infection, by observing the parasite directly, indirectly or the 

causative effects of the parasites presence.  Xenodiagnosis and haemoculture both 

observe the parasite by microscopy, but they have drawback that they are not very 
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sensitive, becoming less effective at monitoring the chronic disease where the numbers 

of circulating parasites decreases.  PCR and serological diagnosis methodologies offer 

greater sensitivities, at the cost of providing conflicting results.  It has been well 

documented in the literature that patients can remain seropositive, but are negative by 

PCR (Pinazo et al., 2010).  It is recommended that diagnosis is confirmed using two 

serological tests, with a mixture of PCR and serology being used in clinical assessment 

of treatments (Chin-Hong et al., 2011; deAndrade et al., 1996; Kinoshita-Yanaga et al., 

2009). 

 

1.3.2 Current drugs 

Currently, nifurtimox (Lampit, Bayer) and benznidazole (Roche, LAFEPE) are the only 

two approved drugs available for the treatment of Chagas disease.  These nitro-aromatic 

compounds were identified in the 1960’s and 70’s by a phenotypic approach and are 

derivatives of 5-nitrofuran and 2-nitroimidazole scaffolds.  Early mechanism of action 

studies of these compounds found that treated parasites generated reactive oxygen 

species.  Further studies identified that the functional nitro-groups of these drugs 

undergo a one or two electron reduction (Docampo et al., 1981; Docampo and Moreno, 

1984; Docampo and Moreno, 1986; Docampo and Stoppani, 1979; Koder et al., 2002; 

Roldan et al., 2008; Wilkinson et al., 2008).  It was initially thought that these drugs 

exerted their anti-parasitic effects by causing oxidative stress, however more recent 

studies suggested that the mechanism may involve the modification of DNA, lipids and 

proteins by drug metabolites (Diaz-de-Toranzo et al., 1988; Maya et al., 2007).  A 

recent metabolomics study carried out by Trochine has identified a variety of 

benznidazole metabolites formed by treatment of T. cruzi with this drug (Trochine et 



Table 1.1 Summary of the current clinical drugs available for the treatment of 
both acute and chronic Chagas disease. 

Drugs Benznidazole and Nifurtimox 
Acute stage efficacy ~70% cure 
Chronic stage efficacy ~8% when treated with benznidazole (Cancado, 2002) 
Side effects Skin irritation 

Headaches  
Nausea 
Vomiting 

Cessation of 
treatment   

In as many as 30% of patients treated with either drug 
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al., 2014).  Several of these metabolites were identified as adducts of major low 

molecular weight thiols from the parasite, namely, trypanothione and glutathione.   

Although approved for the treatment of Chagas disease, both drugs have a range 

of attributes that make them far from ideal treatments for this disease (Table 1.1).  If 

diagnosed during the acute stage of infection the cure rates for both drugs are in the 

region of 60-80% in children and adults depending on study and location (Cancado, 

2002; Urbina and Docampo, 2003).  The efficacy of treatment significantly decreases 

throughout the progression of the disease, producing parasitological cures in 8-30% of 

treated, chronic stage individuals (Cancado, 2002; WHO Expert Committee, 2002).  

The treatment regimens for both drugs are long, lasting 30-60 or 60-90 days for 

benznidazole and nifurtimox respectively.  However, aside from this and poor efficacy 

against the chronic stage, both drugs have been reported to have a high incidence of 

toxic side effects that are associated with their use.  Symptoms can include nausea, 

vomiting, skin irritations, central nervous system depression and fever (Hasslocher-

Moreno et al., 2012; Jackson et al., 2010).  These side effects can ultimately lead to the 

interruption or discontinuation of treatment in up to 30% of patients (Hasslocher-

Moreno et al., 2012; Jackson et al., 2010).  A lower occurrence of adverse reactions has 

been observed when treating infants and children, where these drugs are better tolerated 

(Altcheh et al., 2011). Current guidelines suggest that the drugs are prescribed for 

patients in the acute phase or the early chronic stage, which as the majority of 

individuals are diagnosed in the chronic stages makes these both poor but the only 

options for treatment of their disease.   

As is the case with all drugs used in the clinic, there is always the danger of 

resistance to the drug generated with its use in the field.  Studies of these drugs found 

naturally occurring resistance to both nifurtimox and benznidazole in some strains but 
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not others (Filardi and Brener, 1987; Neal and van Bueren, 1988).  The extent of this 

natural resistance to these drugs also varied strain by strain, however, almost all strains 

were found to be cross-resistant to both drugs demonstrating their similar mode of 

action (Filardi and Brener, 1987).  In T. cruzi, two genes in particular have been 

associated with resistance to these nitro drugs, a type I nitroreductase and prostaglandin 

F2α synthase also known as old yellow enzyme (Mejia-Jaramillo et al., 2011; Murta et 

al., 2006).  Loss of a single allele of NTR in T. cruzi, confers resistance to both drugs 

(Wilkinson et al., 2008).  This observed cross-resistance highlights the problem with 

multiple clinical candidates that have the same mode of action, as resistance to the first 

drug can render the second drug completely inactive.   

 

1.3.3 An overview of the current clinical pipeline for Chagas disease 

Although the curative rate of benznidazole against the chronic stage is far from 

desirable, a large clinical trial has been underway since 2009 (Set to conclude in 2014) 

to investigate the potential benefits of the continued treatment with this drug (Marin-

Neto et al., 2009).  The logic underpinning this study is that in chronically infected 

animal models, the continued treatment with either of the current drugs reduces the 

cardiac damage in these mice and simultaneously reduces both the number of 

circulating parasites and serological titres (Garcia et al., 2005; Molina-Berrios et al., 

2013).  If proved a success, the results of this trial may shape the future way that the 

chronic disease is treated, as this drug is not consistently prescribed during the chronic 

stage of infection. However, this would be more of a life prolonging or improving 

treatment rather than a cure for the chronic disease, similar to the treatment of HIV
+
 

individuals.  
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The lanosterol 14α-demethylase inhibitors Posaconazole (Schering-plough) and 

E1224 (ESAI) are both in phase II assessment for the treatment of the asymptomatic 

disease
4
.  A recent report had described the successful use of posaconazole, after 

treatment with benznidazole failed to cure a woman of the chronic disease (Pinazo et 

al., 2010).  Despite the co-administration with immunosuppressive therapies to treat her 

systemic Lupus, follow up examinations by diagnostic PCR revealed no parasite DNA 

detectable in the circulating blood, despite antibody titres remaining high throughout the 

follow up period.  This continued pattern of positive serological tests has been seen 

elsewhere where a patient is deemed to be cured, so the patient in the study was 

considered to have been cured using the PCR results alone.  Despite the apparent 

success of treatment in this case, the result of which has underpinned its clinical 

assessment.  The cost of treatment was reported to be ~£8000 making it highly 

unsuitable for the mass treatment of patients in endemic areas due to the high costs 

(Clayton, 2010; Pinazo et al., 2010).  A recent clinical trial of posaconazole found the 

treatment failure of benznidazole to be ~6%, whereas failure rates of 90% and 80% 

were observed in those treated with the low and highest possible doses of this drug, 

respectively (Molina et al., 2014).  The authors of this study note that whilst negative 

PCR tests observed for all patients in the trial after 14 days of treatment with either 

drug, two patients receiving the low dose of posaconazole had reverted to positive PCR 

results by the 60
th

 day of treatment.  Follow up studies found patients treated with the 

low dose, to revert to seropositive significantly earlier than those receiving the high-

dose, however benznidazole was clearly the more effective drug in the study. 

Ravuconazole, a pro-drug also known as E1224 has also been assessed for use in 

the treatment of Chagas disease.  This drug has the benefit of being cheaper to produce 

than posaconazole whilst maintaining anti-parasitic activity in animal models (Diniz et 

                                                           
4
 http://clinicaltrials.gov NCT01162967 and NCT01489228 
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al., 2010; Urbina et al., 2003).  However, it was recently announced that E1224 had 

failed its clinical assessment as a monotherapy.  Despite its potency in suppressing the 

parasitic loads in patients, the suppression was not permanent
5
.  As a result, E1224 is 

going to be re-assessed as a dual therapy treatment for this disease with an as yet, 

unnamed partner drug
5
.  Despite both posaconazole and E1224 producing extremely 

promising results in the murine models of the disease, these CYP51 inhibitors have 

failed be curative in human disease,  the underlying cause of which remains unknown 

(Molina et al., 2014; Urbina et al., 2003) . 

The Drugs for Neglected Diseases initiative (DNDi) reports two molecules in 

pre-clinical development, K-777 a cruzipain inhibitor and Fenarimol the mechanism of 

which is currently unknown
6
.  The nitro-drugs fexinidazole and VL-2098 are currently 

being studied for Chagas disease with the aim of progressing them as clinical 

candidates
7
 (Bahia et al., 2012).    Perhaps the major concern with pursuing another 

nitro drug for the clinical portfolio is naturally occurring resistance to the current drugs, 

in particular fexinidazole whose mechanism of action has been demonstrated to be 

nitro-reductase dependent in L. donovani (Wyllie et al., 2012).      

Since the introduction of benznidazole and nifurtimox into the clinic for the 

treatment of Chagas disease, the therapeutic pipeline has remained virtually unchanged 

until very recently.  There are clear advantages with to a drug-repurposing strategy, 

such as greatly reduced costs, known pharmacokinetic profiles of the compound and 

safety profiles established in Phase I trials (Sardana et al., 2011).  This strategy is 

becoming more commonplace in the pharmaceutical industry, with 30% of drugs 

registered with the FDA in 2009 having been repositioned (Sardana et al., 2011).  

                                                           
5
 http://www.dndi.org/media-centre/press-releases/1700-e1224.html 

6
 http://www.dndi.org/diseases-projects/portfolio.html 

7
 http://www.dndi.org/diseases-projects/portfolio/nitroimidazole-chagas.html 

http://www.dndi.org/diseases-projects/portfolio/nitroimidazole-chagas.html
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Whilst this tactic has successfully been used to produce drugs for the clinical treatment 

of various parasitic diseases, there has yet to be a successful anti-T. cruzi drug produced 

by this strategy. 

 

1.3.4 Pathways known to be essential in T. cruzi 

With high cost and project attrition rates reported by the pharmaceutical industry, the 

validation of potential drug targets is considered vital before embarking on any drug 

discovery project (Frearson et al., 2007).  In recent years, multiple studies have 

identified key biological pathways in T. cruzi. For instance, the type I nitroreductase 

that is involved with the activation of the current clinical drugs has been demonstrated 

to be essential for virulence in Trypanosoma cruzi, as the loss of both functional copies 

of TcNTR produced a severe virulence defect (Mejia et al., 2012; Wilkinson et al., 

2008).   

Ergosterol is a derivative of the classic steroid ring first and is notably absent 

from humans.  In fungi, it plays in important role and is found in the  membranes of 

these organisms (Iwaki et al., 2008; Zhang et al., 2010).  Treatment of T. cruzi with 

inhibitors of lanosterol 14a demethylase (CYP51) led to an increase in the cellular 

levels of C-14-methyl sterols (Doyle et al., 2010; Urbina et al., 1998).  The biological 

effect of one inhibitor reduced or abolished the ability of T. cruzi epimastigote and 

amastigotes to proliferate in vitro (Goad et al., 1989).  In a murine model of Chagas 

disease, treatment with the CYP51 inhibitor posaconazole was able to cure between 60-

75% of chronic stage model mice 177 days after infection (Urbina et al., 1998).  In the 

acute model, the parasitological cure rates were between 90-100%.  The reduced 

effectiveness of this drug against the chronic disease is similar to what is observed with 

the current drugs.  Posaconazole and a related inhibitor E1224 have been clinically 
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assessed for the treatment of chronic Chagas disease (Section 1.3.3).  It is also of note 

itraconazole, another CYP51 inhibitor, has been used in experimental models of Chagas 

disease and in patients with varying success (Apt et al., 2013; Apt et al., 2005; Moreira 

et al., 1992).  However, 20 years after itraconazole treatment, only 32% of individuals 

were deemed to be cured, based on ECG examination (Apt et al., 2013).     

Squalene synthase (SQS) catalyses the first committed step of the biosynthesis 

of ergosterol in T. cruzi thus making this enzyme a potential drug target in this parasite.   

Several studies have assessed this enzyme for the potential treatment of Chagas disease 

and inhibitors capable of the in vitro eradication of intracellular parasites developed 

(Lorente et al., 2005; Urbina et al., 2002). Two of these inhibitors that target TcSQS, 

E5700 and ER-119884, although found to be potent against the parasites in culture, only 

E5700 maintained a protective effect against the acute stage model of the murine 

disease (Urbina et al., 2004).  The other inhibitor was only able to provide partial 

protection against the disease.     

The majority of studies focusing on essential processes in T. cruzi are assessed 

in the insect stage of the parasite. However, this overlooks fact that this in an obligate 

intracellular organism in the mammalian stage.  An alternative approach to assessing 

important pathways for the growth of these parasites in infected cells, is by the genome-

wide RNAi knockdown of host cell genes that has been reported by the Burleigh lab.  

These studies have identified a number of cellular process that are required for the 

invasion and replication of these parasites within mammalian cells (Caradonna et al., 

2013).  Specifically the host Akt kinase was found to play an essential role in the 

proliferation of intracellular amastigotes.  An earlier study has found the expression of 

Akt to be up regulated in Vero cells when treated with membranes prepared from 

trypomastigotes (Wilkowsky et al., 2001).  It is also known that this enzyme is a 
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downstream target of phosphatydilinositol 3-kinase (PI3K) and treating mammalian 

cells with PI3K inhibitors reduces the ability of trypomastigotes to invade these cells, 

however does not completely abolish infection.  Interestingly, this increased expression 

of Akt due to parasite infection leads to the inhibition of pro-apoptocic genes at the 

transcriptional level (Chuenkova and PereiraPerrin, 2009).  The results of this study 

suggest that Akt may play an important role in the survival of the host cell during high 

parasite burden.  Clearly, further work is required to determine if Akt is a valid and 

druggable target as a cure for this disease, which may be further complicated by the 

variety of cellular types that these parasites can invade.   

The major cysteine protease in T. cruzi, known as cruzain has been shown to be 

a druggable target in this parasite (Engel et al., 1998b).  The inhibitor K777 has is 

currently being progressed through the clinical pipeline for assessment against Chagas 

disease (Section 1.3.3).  Several studies of various inhibitors against murine models of 

this disease have shown these inhibitors to be highly effective at prolonging life and in 

one case show better protection than benznidazole (Doyle et al., 2007; Engel et al., 

1998a; Ndao et al., 2014).  

 

1.4  Fatty acylation 

The fatty acylation of proteins represents one of the most diverse groups of protein 

modifications known to occur.  Acylated proteins have been identified in eukaryotes 

bacteria and archaea (Pugh and Kates, 1994; Thao et al., 2010).  These co- and post-

translational modifications include the addition of fatty acids of various chain lengths, 

ranging from 2-20 carbons onto specific amino acids of proteins (Ali et al., 1990; 

Herriott, 1935) (Mattoo et al., 1989). 
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1.4.1 N-myristoylation 

Originally, several groups identified myristoylation to occur in eukaryotic cells and was 

found to specifically modify multiple proteins (Schlesinger et al., 1980).  Studies by 

Magee et al identified that in cultured eukaryotic cell lines, these modifications 

appeared to fall into one of two categories (Magee and Courtneidge, 1985).  In the first 

type, all proteins labelled with palmitic acid were found to be sensitive to treatment with 

hydroxylamine, indicating their attachment via the side chain of a cysteine residue 

originally postulated (Magee et al., 1984).  The second type of labelling was found in 

[
3
H]-myristic acid labelled cells where several proteins were found to be resistant to 

hydroxylamine and alkali treatment suggesting that myristic acid was attached by an 

amide bond.  These studies also suggested the existence of dually acylated proteins, a 

hypothesis that has since been confirmed by multiple labs for numerous different 

proteins (Denny et al., 2000; Galbiati et al., 1999; Godsel and Engman, 1999; Hertz-

Fowler et al., 2001a; Mills et al., 2007).  An original study demonstrated that N-

myristoylation in eukaryotes was tightly coupled to protein synthesis (Buss et al., 1984).  

However, it has only been in recent years that post-translational N-myristoylation has 

been identified.  The first to be discovered was the pro-apoptotic protein BID, which 

was found to undergo caspase 8-mediated cleavage exposing an internal glycine for N-

myristoylation (Zha et al., 2000).  Subsequent studies have found many more proteins 

that undergo post-translational modification after proteolytic processing by a caspase 

(Martin et al., 2012; Martin et al., 2008; Perinpanayagam et al., 2013; Sakurai and 

Utsumi, 2006; Vilas et al., 2006).  It would appear that the post-translational 

modification is involved in the apoptotic pathway, a pathway that that trypanosomes 

most notably lack, however, there have been several reports of an apoptosis-like process 

in these parasites (Ameisen et al., 1995; Irigoin et al., 2009; Jimenez et al., 2008; 

Piacenza et al., 2007). 
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However, the hypothesised function of this lipid modification has been reported 

to vary depending upon protein.  The increased hydrophobicity of modified proteins is 

known to help promote membrane association and plays a role in the correct subcellular 

localisation of multiple proteins that have been studied to date (Lee and Shaw, 2008; Lu 

and Hrabak, 2013; Maric et al., 2011; Martins et al., 2010; Robbins et al., 1995; Sahin 

et al., 2008; Wingard et al., 2008).  Another aspect of myristoylation identified that for 

some proteins the presence of myristate is found to enhance their binding to 

membranes, particularly in Ca
2+

 binding proteins such as recoverin (Desmeules et al., 

2002).  Nuclear magnetic resonance studies of recoverin have identified that in the 

absence of calcium, the myristoyl group is sequestered into a hydrophobic pocket and is 

solvent accessible in the calcium bound form (Ames et al., 2000).  This activation has 

also been described as a myristoyl-switch, in that an external factor affects the affinity 

of the protein for a membrane such as calcium, leading to a conformation change in the 

protein.  However, this is not simply limited to calcium binding proteins, as glucose 

levels have been reported to affect the myristoyl mediated membrane localisation of the 

ß-subunit of AMP activated protein kinase (Oakhill et al., 2010).  These studies have 

shown that the N-myristoylation of proteins does not automatically lead to an increased 

membrane association on its own, but can be dependent upon the metabolic state of the 

cell.  Interestingly, localisation studies of fusion proteins has revealed that there are 

other factors of the protein that play a role in the correct localisation of these proteins, 

such as palmitoylation (Godsel and Engman, 1999; Oakhill et al., 2010).  There have 

also been several reports of cancerous cells having higher levels of NMT expression 

than their non-cancerous counterparts do (Selvakumar and Sharma, 2007; Shrivastav et 

al., 2007). 



Figure 1.5 Structure of NMT with bound analogs of substrates
The structure of NMT from S. cerevisiae (PDB accession: 2NMT) with the Myr-CoA 
analog, S-(2-oxo)pentadecyl-CoA bound to the active site (blue).  The residues that form 
the oxyanion hole have been highlighted in magenta, with the carbonyl bond that would 
be depolarised marked in yellow.  A peptide analog is shown in orange. 
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1.4.2 N-myristoyltransferase  

The enzyme that catalyses the addition of myristic acid onto the N-terminal glycine, N-

myristoyltransferase (EC 2.3.1.97) was first purified to homogeneity from 

Saccharomyces cerevisiae (Towler et al., 1987).  Kinetic characterisation of this 

enzyme has found it to have an ordered bi-bi mechanism, in which myristoyl-CoA binds 

before the peptide substrate (Figure 1.5A).   After catalysis, CoA is released prior to the 

N-myristoylated peptide (Rocque et al., 1993; Rudnick et al., 1991).  The structures of 

NMT from multiple species have been solved by X-ray crystallography (Bhatnagar et 

al., 1998; Brannigan et al., 2010; Farazi et al., 2001; Goncalves et al., 2012b; Sogabe et 

al., 2002).  The S. cerevisiae enzyme structure has been solved in complex with a non-

hydrolysable myristic acid analog known as S-(2-oxo)pentadecylCoA, with the region 

corresponding to the thioester bond of Myr-CoA positioned within the oxyanion hole 

formed by phenylalanine and leucine (Figure 1.5) (Bhatnagar et al., 1998).  This was 

confirmed with Myr-CoA NMT binary complex solved 3 years later (Farazi et al., 

2001).  The transfer of the acyl group onto the N-terminal glycine of the peptide occurs 

via a nucleophilic addition elimination reaction (Bhatnagar et al., 1998; Farazi et al., 

2001).  The oxyanion hole partially polarises the c1 carbonyl group of myristate making 

it susceptible to nucleophilic attack with the oxygen hydrogen bonding with the 

oxyanion hole residues.  The N-terminal ammonium group of the peptide substrate is 

de-protonated to an amine by a basic residue in the active site.   This amine attacks the 

carbonyl of Myr-CoA (nucleophilic attack) forming a stabilised reaction intermediate, 

followed by the release of CoA and the myristoylated peptide (Bhatnagar 1998).   

 

The homologs from Plasmodium sp., Leishania major, Homo sapiens and T. 

brucei have since been expressed and purified as recombinant fusion proteins from E. 
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coli (Brannigan et al., 2010; Frearson et al., 2010; Panethymitaki et al., 2006).  The 

mass of all NMTs characterised to date range between 46-60 kDa, and with the 

exception of bovine brain NMT, are monomeric (Bhatnagar et al., 1997; Glover and 

Felsted, 1995; Sogabe et al., 2002; Towler et al., 1987).  All of these enzymes 

preferentially utilise myristoyl-CoA (Myr-CoA) as the acyl-donor for the reaction.  

Several studies have probed the lipid specificity of NMT, by altering the chain, by 

substituting atoms and by testing the effects of unsaturated fatty acids (Devadas et al., 

1992; Heuckeroth et al., 1988; Heuckeroth et al., 1990; Kishore et al., 1993).  A 

number of studies have shown a level of divergence in the peptide substrates recognised 

by the different homologs, with much larger difference observed between higher and 

lower eukaryotes (Towler et al., 1988; Traverso et al., 2013).  However, the majority of 

substrates of each enzyme conform to the consensus N-myristoylation motif below. 

M-G-X-X-X-S-K-X 

 

The majority of studies to date have reported N-myristoylation to be a uniquely 

eukaryotic process; however, several pathogenic bacteria have been found to have N-

myristoylated proteins reviewed (Maurer-Stroh and Eisenhaber, 2004).  The proteins 

identified are secreted into a host plant cell undergoing N-myristoylation by the host’s 

NMT (Nimchuk et al., 2000).  More recently an enzyme with N-myristoyltransferase 

activity has been identified from Pseudomonas aeruginosa (Jyomoto et al., 2006).  This 

bacterial enzyme is unrelated to eukaryotic NMTs and is unusual in that it does not 

require CoA for the transfer of myristic acid onto an octapeptide (Islam et al., 2008).  In 

addition the enzyme could catalyse the transfer of myristic acid onto the alanine of a 

G2A mutant peptide, an activity not yet reported for the eukaryotic enzyme.    
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The genetic requirement for this enzyme has been assessed in multiple 

eukaryotic organisms studied to date.  

 

1.4.3 NMT as a potential chemotherapeutic target 

Despite these enzymes catalysing the same biochemical reaction, the diverse peptide 

substrate specificities of different NMT homologs have made them promising targets 

for rational drug design.  The first selective inhibitors generated were peptide mimics of 

known substrates for the enzyme and designed to target NMT from the pathogenic fungi 

Candida albicans (Devadas et al., 1997; Devadas et al., 1995).  Using this approach of 

targeting the peptide binding pocket has allowed the generation of highly specific NMT 

inhibitors with selectivity over the human isoforms of greater than 560-fold.  In recent 

years there have been several high-throughput inhibitor screening programs undertaken 

against the NMT homologs from Plasmodium spp., Trypanosoma brucei and Leismania 

major (Bell et al., 2012; Frearson et al., 2010; Goncalves et al., 2012b).  As a result, 

there have been many highly selective and species-specific inhibitors of recombinant 

NMT’s developed from a large range of chemical scaffolds (Zhao and Ma, 2014).  A 

screen of compounds at the University of Dundee Drug Discovery Unit (DDU) against 

T. brucei NMT identified a hit that was further optimised, leading to the development of 

the inhibitor DDD85646 (Frearson et al., 2010).  This compound was identified to be a 

competitive inhibitor of the peptide binding site of TbNMT, with the presence of Myr-

CoA increasing the affinity of the inhibitor for the enzyme by 33-fold to a kd of 1 nM.  

This site of binding was confirmed by the co-crystalisation of DDD85646 and Myr-

CoA into the L. major NMT protein crystal.  This pyrazole sulfonamide inhibitor was 

found to be highly potent against parasites in axenic culture, with an EC50 value of 2.1 

nM, increasing to 16.6 nM with the overxpression of NMT in the parasites 
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demonstrating that the inhibitor was targeting the enzyme in the parasite.  Despite the 

high potency of DDD85646 against the parasite, at the enzyme level, the inhibitor was 

only 2-fold more potent against TbNMT than HsNMT.  However, at the cellular level 

DDD85646 did not maintain its potency against the human derrived MRC5 cell line, 

finding the inhibitor to be 200-fold less potent than agaist the parasite.  This compound 

was found to be highly efficacious in the murine model of the disease, curing all mice 

infected with the non clininically relevant strain T. brucei brucei with as little as 12.5 

mg kg
-1

 over 4 days of treatment.  The clinically relevant rhodeinse strain was more 

resiliant, requiring 50 mg kg
-1

 over a period of 4 days, which the authors note is not due 

to a reduced potency of the inhibitor against the parasite, but is more likeley due to the 

distribution of the parasite in the host..  Whilst this inhibitor is successful against the 

acute stage of the disease, the chances of the current series of compounds to treat the 

second stage after the parasite has crossed the blood-brain barrier is markedly lower.  

This is due to the compounds being unable to cross this barrier into the brain with to any 

great level in addition to poor selectivity between the human and parasite enzymes 

(Brand et al., 2012).  In summary, these works have demonstrated that NMT is a 

druggable target in the African trypansome, despite requiring further optimisation to 

develop it as a suitable drug target.  

 

1.5 Aims 

As there is a current inequality between the worldwide burden caused by this disease 

and the current clinical portfolio, the aim of my project is to assess the suitability of 

potential drug targets in Trypanozoma cruzi.  The enzyme selected for this study is the 

enzyme N-myristoyltransferase. Specifically, we aim to investigate if NMT is essential 

for the survival of this parasite.  If found to be essential, the full characterisation of the 
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enzyme will be undertaken to assess its suitability as a potential drug target against T. 

cruzi. This study is carried out with the aim of assessing if TcNMT may be a druggable 

target in T. cruzi to treat Chagas disease.   
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2.1 Materials  

All reagents, enzymes and chemicals used in this study were of the highest grade and 

purity available from commercial companies.   

 

2.2 Parasite culture and genetic manipulation 

2.2.1 Epimastigotes 

T. cruzi epimastigotes of the strain Silvio X10/7  (MHOM/BR/78/Silvio; clone X10/7) 

(Silveira et al., 1979) were routinely grown at 28 
○
C in sealed flaks with RTH/FBS 

(RPMI 1640 supplemented  with 4.9 g L
-1

 trypticase, 10 mg l
-1 

haemin, 50mM HEPES 

pH 7.4 and 10% heat inactivated foetal calf serum (FBS, PAA) (Hunter et al., 1994) .  

The clone Silvio X10/7A was isolated by limiting dilution and was used in the 

subsequent experiments.  Epimastigotes were routinely sub-cultured every 3-4 days 

from a density of ~1 × 10
7
 cells ml

-1
 to ~ 1 × 10

5
 cells ml

-1 
into fresh medium.   

For SILAC studies, parasites were first adapted for growth in SDM-79 medium 

by gradually replacing RTH/FBS with the new medium over 10 sequential subcultures 

(Brun and Schonenberger, 1979; Greig et al., 2009).  SDM-79 medium depleted of L-

arginine, L-lysine and 10% FBS was first reconstituted with either light (R0K0) or 

heavy (R6K4) labelled isotopes of these amino acids at the same concentration 

described in the original formulation (L-arginine.HCl U
13

-C6, L-lysine.2HCl 4,4,5,5-

D4, CK Gas Products).  Prior to sterile filtration (0.22 µm), the medium was futher 

supplimented with 100 µM putrescence in addition to 10% FBS that had been heat 

inactivated and dialysed (PAA).   
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2.2.2 Vero cells  

Confluent Vero cell (Cercopithecus aethiops kidney cells, ATCC
®
 CCL-81

TM
) 

monolayers   were detached from culture flasks by treatment with 1   trypsin EDTA 

(GIBCO) for 10 mins at 37 
○
C (Ammerman et al., 2008).  The resulting suspension of 

cells was diluted with an equal volume of Dulbecco's Modified Eagle Medium 

supplemented with 10% heat inactivated FBS (DMEM/FBS) and the cells harvested by 

centrifugation (200 × g, 5 min, RT).  Harvested cells were then resuspended in the 

original volume of DMEM/FBS and diluted 1 in 10, into a new flask containing fresh 

medium and incubated at 37 
○
C with 5% CO2 in a humidified incubator.  Vero cells 

were routinely sub-cultured as described every 3-4 days when the monolayer reached 

90% confluence.   

 

2.2.3 Trypomastigote infection 

The differentiation of T. cruzi epimastigotes into the infectious trypomastigote forms 

has been reported in the literature (Figueiredo et al., 2000).  A mixed population of 

epimastigotes and metacyclic trypomastigotes derived from a 7-9 day old culture were 

washed in twice in PBS before resuspending in DMEM/FBS.  Vero cell infections were 

set up by overlaying a monolayer with parasites at a multiplicity of infection (MOI) of 

10:1.  The infected monolayer was subsequently washed with PBS to remove free-

swimming parasites and overlaid with fresh DMEM/FBS.  After 5-7 day incubation, 

trypomastigotes released from infected cells were recovered and used to infect a fresh 

Vero monolayer.   
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2.2.3 Purification of T. cruzi amastigotes 

Amastigotes were purified from a mixed population of trypomastigotes and amastigotes 

released from infected Vero cell monolayers (Marques et al., 2011).  Briefly, parasites 

were collected by centrifugation (10 min, RT, 4000 × g) and the pellet was overlaid 

with DMEM/FBS and incubated for 3 h at 37
 o

C.  Motile trypomastigotes released into 

the supernatant were removed and the pellet was resuspended in DMEM/FBS. This 

process was repeated two to three times to produce a homogenous population of 

amastigotes (~95%).  

 

2.2.4 Quantifying the infectivity of transgenic parasites 

Transgenic parasites were left to infect Vero cell monolayers overnight with an MOI of 

5:1 (Section 2.2.3).  Extracellular parasites were removed by extensive washing with 

PBS. The infected Vero cells were detached by trypsin EDTA treatment and washed in 

DMEM/FBS several times to remove excess trypsin.  Infected cells were counted using 

a Neubauer haemocytometer and diluted to 5 × 10
5
 cells ml

-1
 in DMEM/FBS before 

plating 100 µl per well into Corning® 384 well CellBIND® plates.  The plate was 

incubated at 37 °C with 5% CO2 for 72 hours before fixing with PBS containing 1% 

formaldehyde overnight at room temperature.  To visualise the nuclei of both the 

parasite and Vero cell, plates were stained with 5 µg ml
-1

 Hoechst 33342 diluted in 1 × 

PBS containing 0.01% (v/v) Triton X100 for 15 minutes.  Images were acquired with an 

Operetta high content fluorescence microscope (Perkin Elmer) using the 40X objective 

and capturing 5 fields of view per well.  Images were processed using the Columbus 

image analysis software package, which was trained to distinguish between the nuclei of 

the parasite and the Vero cell.  A threshold of >2 parasite nuclei per Vero cell was 

counted as an infected cell whilst less than 2 was counted as uninfected.  The percentage 
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of infected Vero cells and the mean number of parasites per infected cell were 

calculated for each of the parasite cell lines.  The results are expressed for 24 separate 

measurements for each transgenic parasite cell line tested.  The significance of the 

infectivity was determined using an unpaired Students t test.  

 

2.2.5 Transfection 

Transfection of overexpression or knockout constructs into T. cruzi epimastigotes were 

carried out using an Amaxa Nucleofector
TM

 electroporator, as previously described (Xu 

et al., 2009).  A total of 2-10 µg of ethanol precipitated DNA was transfected into early-

mid-log epimastigotes (1 × 10
7
), suspended in Human T cell Nucleofector

TM
 solution 

(100 µl, Lonza), using the program U-33.  Twenty-four hours following transfection, 10 

µg ml
-1

 puromycin dihydrochloride (Sigma), 250 µg ml
-1

 Geneticin® (G418, Gibco®) 

or 500 µg ml
-1

 hygromycin B (Roche) were added to cultures to select for transgenic 

parasites. 

 

2.2.6 Generating a clonal population of Trypanosoma cruzi 

Clonal parasite populations were obtained by plating onto semi-solid RTH/FBS agar 

plates (1 × RTH/FBS + 1% Noble agar) and incubating at 28 °C for 3 weeks.  Plates for 

cloning transgenic parasites were supplemented with 20 µg ml
-1 

puromycin 

dihydrochloride, 500 µg ml
-1 

G418 or 750 µg ml
-1

 hygromycin B, as appropriate.  

Individual colonies were picked and used to inoculate 1 ml of RTH/FBS plus 

appropriate drug and examined for motile parasites by light microscopy.  After 7 days, 

the 1 ml cultures were used to inoculate 10 ml cultures.   
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2.2.7 Cell counting and drug dose response (EC50) determination  

To determine the density of parasites in culture, they were diluted into 1   PBS + 1% 

paraformaldehyde and counted with a neubauer haemocytometer or a CASY model TT 

cell counter (Roche).  The concentration at which DDD85646 was able to inhibit the 

proliferation of T. cruzi epimastigotes by 50% (EC50) was determined by seeding 

parasites at 1 × 10
5
 cells ml

-1
 and co-incubating with a range of inhibitor concentrations 

(0-100 µM) for 5 days at 28 
○
C.  Parasites were counted using a Neubauer 

haemocytometer and expressed as 0-100% of the no drug control.  Data were processed 

using GRAFIT (version 5.0.4; Erithacus software) and fitted to a 2-parameter equation 

to obtain EC50: 

m

EC

I
y















50

][
1

100
 

In this equation [I] represents inhibitor concentration and m is the slope factor. 

The data are presented as the mean ± standard error. 

 

2.3 General molecular biology 

2.3.1 Isolation of genomic DNA 

Parasites were washed in PBS and 5 × 10
8
 cells were resuspended in 500 µl of gDNA 

lysis buffer (10mM Tris-HCl pH 8, 100 mM NaCl, 25 mM EDTA, 0.1 mg/ml 

proteinase K, 0.5% (w/v) SDS) and incubated at 56 
○
C overnight.  One volume of 

phenol:chloroform:isoamyl alcohol (PCI, 25:24:1) was added to the lysate and mixed, 

the upper phase containing the DNA was removed after centrifugation (13,000 × g, 1 

min), and re-extracted using with another volume of PCI.  The upper phase was then 

extracted with one volume of chloroform isoamyl alcohol, before precipitating the 



Table 2.1 List of primers used in this study to generate recombinant expression, ectopic expression and gene 
replacement constructs.  Sites for restriction endonuclease digestion are underlined, the complimentary 
sequence pmel, used in the knit PCR reaction is in lowercase.  

Use Primer Sequence 
   
Recombinant  
 NMT F CATATGGCAGAAGAGGGTTCAGGTTTACATCAG 
 NMT R GGATCCCTATAGCATGAACAATCCCACGTCACTTGG 
   
Ectopic  
 NMT F GAATTCATGGCAGAAGAGGGTTCAGGTTTACATCAG 
 NMT R CTCGAGCTATAGCATGAACAATCCCACGTCACTTGG 
   
Knockout construct  
 5’ NMT F ataagaatgcggccgcGTGATCTTCTCAACAACAAAAATGGATGA 
 5’ NMT R gtttaaacttacggaccgtcaagcttTCCTTCAAAAGGCGATCAAGTCCAAAATTAC 
 3’NMT F gacggtccgtaagtttaaacggatccGATGCGGGCGGAATTTAGGAGAGAAGT 
 3’ NMT R ataagtaagcggccgcCCGCATCCAGCAGATGGATTAATCACCGT 
   
Localisation constructs 
 FCaBP GAATTCATGGGTGCTTGTGGGTCGAAG 
 FCaBP G2A GAATTCATGGCTGCTTGTGGGTCGAAG 
 FCaBP R CCATGGAGGCGTTCTTGCCGTCCTTATC 
 X6 F GAATTCATGGGCCAGGATAATTCATTTG 
 X6 G2A GAATTCATGGCCCAGGATAATTCATTTG 
 X6 R CCATGGAAAGCGCTTCCATTTCAAATAAAC 
 ARF1 F GAATTCATGGGCCAGTGGTTAGCGTC 
 ARF1 G2A GAATTCATGGCCCAGTGGTTAGCGTC 
 ARF1 R CCATGGAGCCCACCATCAGAATGCGCAC 
 PP2C F GAATTCATGGGCAGCATGCTGCCGAA 
 PP2C G2A GAATTCATGGCCAGCATGCTGCCGAA 
 PP2C R CCATGGAAGCGCCGATGCGGTAATTACC 
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recovered gDNA by the addition of 2.5 volumes of 100% ethanol.  The isolated gDNA 

was resuspended in TE buffer (10 mM Tris-HCl and 1 mM EDTA, pH8) and purified 

samples were confirmed to be pure by spectrophotometry (260:280 ratio >1.8). 

 

2.3.2 PCR 

Polymerase chain reaction (PCR) was carried out using, Pfu (Promega), GoTaq 

(Promega) or Platinum Taq polymerases (Invitrogen) as per the manufacturer’s standard 

protocol using the appropriate primers (Table 2.1).  The template concentrations used 

ranged from 1-10 ng for gDNA and 10-100 pg for purified plasmid DNA and optimised 

for each target of interest.    

 

2.3.3 Agarose gel electrophoresis 

Agarose gels (0.8% (w/v), VWR) containing 10 µg ethidium bromide per 100 ml, were 

made in TAE buffer (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA).  DNA 

samples were separated by electrophoresis at 80 V in TAE until the desired separation 

was achieved.  The separation of a DNA marker (1 kbp DNA ladder, Promega) allowed 

the size of the samples to be estimated by comparing the relative migrations through the 

gel.  Gels were imaged by UV transillumination.    

 

2.3.4 TOPO
®
 cloning 

PCR products between 0.5-1.5 kbp (2.2.3) were routinely cloned into Zero Blunt® 

TOPO® or TOPO® TA vectors both of which utilise a Vaccina viral DNA 

topoisomerase I that is covalently attached to the 3´ strand.  The bound topoisomerase 

integrates the PCR product into the linear vector to forming the circular plasmid.  



Table 2.2 List of media and antibiotics concentrations used for the selection and culture of transformed E. coli. 

Plasmid E. coli strain Selection Media 
TOPO Zero® 
blunt®, TOPO TA® 

TOP10 LB-(agar or broth), 50 kanamycin 

   
pGEM5zf, 
pET15b-TEV 

JM-109, XL-10 Gold, 

XL-1 Blue 

LB-(agar or broth), 50 µg ml-1 
ampicillin 

   
pET15b-TEV Rosetta 2 (DE3) pLysS LB-(agar or broth), 50 µg ml-1 

ampicillin, 12.5 µg ml-1 

Chloramphenicol,  

 ArticExpress (DE3) RP LB-(agar or broth), 50 µg ml-1 

ampicillin, X µg ml-1 gentamycin, 
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Plasmids were transformed into chemically competent E. coli and cloned as described 

below (Section 2.3.5). 

 

2.3.5 TOPO
®
 XL cloning 

Larger PCR products (>3 kbp, section 2.3.2) were separated on a 0.8% agarose gel 

containing 1.5 µg ml
-1

 crystal violet to visualise the DNA.  The band of interest was 

excised from the gel and purified using the S.N.A.P
TM

 purification kit (Invitrogen) as 

described in the manufacturer’s protocol, and eluted with dH2O.  Gel purified PCR 

products were cloned into the TOPO® XL vector using the same principles as for the 

standard TOPO® reactions.  The TOPO® XL reaction was carried out as per the 

protocol.  TOPO® ligations were transformed into TOP10 cells (section 2.3.5).   

 

2.3.5 Transformation of competent cells 

Plasmid DNA was transformed into a variety of chemically competent E. coli cell lines 

(TOP10, JM109, XL-10 gold, Rosetta 2 (DE3) pLysS and Xl-1 blue) by heat shock.  

Approximately 5-100 ng of plasmid or ligation reaction was added to 50 µl of cells and 

incubated on ice for 30 min before the cells were incubated at 42 
○
C for 30 s.  Cells 

were incubated on ice for a further 2 minutes before adding 250 µl of SOC medium and 

incubating at 37 
○
C with agitation at 200 rpm for 1h.  The entire transformation was 

spread onto LB agar plates containing the appropriate antibiotic for the resistance gene 

encoded on the plasmid (Table 2.2) and incubated at 37 
○
C overnight.  JM-109 and Xl-1 

blue cells were used for the routine transformation of plasmid DNA whilst Xl-10 gold 

cells were used for the transformation of ligations (section 2.3.9).    

 



36 
 

 
 

2.3.6 Isolation of plasmid DNA 

Individual colonies of positive transformants were picked and grown in Luria Broth 

(LB) plus the appropriate antibiotic (50 µg ml
-1

 ampicillin or 50 µg ml
-1

 kanamycin) 

overnight in a 10 ml culture at 37 
○
C with agitation.  Cells were pelleted by 

centrifugation (3000 × g, 10 min at 4 
○
C) and plasmids purified using the Qiagen 

Miniprep kit, eluting in 50 µl of elution buffer.   

 

2.3.8 DNA sequencing 

All plasmids in this study were sequenced by the DNA sequencing service at the 

University of Dundee (http://www.dnaseq.co.uk/home.html).  Plasmids containing 

generic priming sequences were sequenced with their respective primers, whilst pTREX 

and pTEX plasmids were sequenced with gene specific primers (Table 2.1). 

  

2.3.9 Construct generation 

Sequence verified inserts were excised from their respective plasmids using the 

appropriate restriction endonucleases.  Double digestions were carried out 

simultaneously in a compatible buffer wherever possible, however; failing that 

sequential digestions were performed.  The linearized target vector was 

dephosphorylated with Antarctic phosphatase (NEB) as per the manufacturer’s protocol 

to prevent self-ligation of the linearized plasmid by removal of the 5´ phosphate 

overhangs.  Digested DNA was gel purified (QIAquick gel extraction kit, Qiagen) prior 

to the ligation of the insert into the linearized vector using a molar ratio of 2:1 (insert: 

vector) with T4 DNA ligase (Roche) overnight at room temperature.  Ligations were 

directly transformed into XL-10 Gold ultracompetent cells using the standard 

transformation protocol (Section 2.3.5) 

http://www.dnaseq.co.uk/home.html
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2.3.10 Synthesis of Southern blot probes 

Dig labelled probes for Southern blotting were generated using the PCR DIG synthesis 

kit (Roche).  Primers designed against the 5´ UTR or the ORF (Table 2.1) of NMT in 

addition to the PAC and HYG ORF’s were used to amplify and label the target region of 

DNA from 10 pg of plasmid DNA, as described in the manufacturers standard protocol.  

In addition to the DIG labelling reaction, a control reaction was also set up to determine 

the success of incorporating the DIG labelled UTP into the resulting PCR product.   

Efficient labelling was confirmed by DIG labelled products displaying a reduced 

electrophoretic mobility on an agarose gel (Section 2.3.3), in comparison with the 

unlabelled reaction.    

 

2.3.11 Southern blot 

A total of 5 µg of genomic DNA (gDNA) was digested with appropriate restriction 

endonucleases (NdeI, AfeI, AgeI, XhoI, HindIII or NotI) overnight at 37 
○
C.  Digested 

gDNA was separated on a 0.8% agarose gel (containing 20 µg of ethidium bromide per 

200 ml) over 3h at 80V in TAE buffer.  The gel was washed in 0.25 M HCl for 10 min 

to de-purinate the DNA before equilibrating in 0.4 M NaOH.  DNA was transferred 

onto positively charged nylon membrane (Roche) by reverse capillary action for 1 h 

using 0.4 M NaOH as the transfer buffer.  The membrane was pre-incubated in DIG 

Easy Hyb solution for 1 hour at 42 
○
C, prior to overlaying the membrane with fresh 

Easy Hyb solution containing 3 µl at 400 ng µl
-1

 of appropriate DIG labelled probe.  

After an overnight incubation, the membrane was washed in 5 × SSC supplemented 

with 0.01% (w/v) Sodium dodecyl sulphate (SDS) at 42 
○
C for 5 min, to remove any 

excess probe.  A further two stringency washes were carried out using 0.5 × SSC 

containing 0.01 % (w/v) SDS.  The blot was developed using the DIG block and wash 
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buffer set (Roche) as per the manufacturer’s instructions.  The DIG labelled probe was 

detected using an anti-dig HRP conjugated antibody (Roche) and the chemiluminescent 

substrate, CSPD (Roche).  Blots were exposed onto Amersham Hyperfilm
TM

 and 

developed using a KODAK film developer.   

 

2.4. Protein Biochemistry 

2.4.1 Quantification of protein concentrations 

The concentration of protein in a sample was determined using a coomassie based 

protein-binding assay (Bradford, Bio-Rad), using known amounts of bovine serum 

albumin to produce a standard curve.   

 

2.4.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Protein samples, or whole cell lysates were prepared in 2   Laemmli buffer containing 

either 50 µM DTT or 715 mM 2-mercaptoethanol as a reducing agent.  Samples were 

boiled for 5 min prior to separation on NuPAGE® Bis-Tris 4-12% gradient gels 

(Invitrogen) at 200 V in NuPAGE MES SDS running buffer (50 mM MES, 50 mM Tris 

Base, 0.1% SDS, 1 mM EDTA, pH 7.3). 

 

2.4.3 Coomassie blue 

Gels were washed briefly with H20 before staining in Coomassie Brilliant Blue staining 

solution (2.5 g L
-1

 Coomassie brilliant blue R250, 10% acetic acid and 40% methanol) 

at room temperature with agitation for 1h.  Coomassie stain was then removed and the 

gel incubated in de-staining solution for several hours (10% acetic acid + 40% 

methanol).  The gels were subsequently imaged with a UGenius gel imager. 
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2.4.4 In-gel fluorescence 

Fluorescently labelled proteins separated on SDS-PAGE gels were imaged using an 

ODYSSEY
®
 SA near infrared imager (LI-COR Biosciences).  Proteins labelled with the 

IRDye 800CW were imaged on the 800 nm channel whilst the pre-stained protein 

ladder was visible on the 700 nm channel. Gels were scanned with a resolution of 50 

µm using the appropriate sensitivity settings for each channel and a focal path length of 

3.5 mm.  Coloured images were converted to grayscale and in-gel fluorescence 

quantified in Image Studio Lite version 3.1 (LI-COR Biosciences).  

 

2.4.5 Western blotting 

After separating whole cell lysates by SDS-PAGE, gels were briefly equilibrated in 

Towbin’s buffer.  Proteins from the gel were transferred onto Whatman Protran 

nitrocellulose membrane by semi-dry electro transfer (BioRad Trans-Blot
®
) for 20 min 

at 25 V in  Towbin’s buffer.  The membrane was typically blocked in 5% milk (Marvel) 

made up in PBST (1 × PBS + 0.05 Tween20 (v/v)) for 1h at RT.  Primary rat antisera 

(either Rat anti-TcNMT or TcTryR) were diluted 1 in 500 into PBST and incubated with 

the membrane for 1h, before washing with PBST (3   5 min) (Tovar and Fairlamb, 

1996).  Blots were then probed with a polyclonal HRP-conjugated rabbit anti-rat 

antiserum (1 in 10,000, DAKO) for 1h followed by 3   5 min washes.  The blot was 

developed with the enhanced chemiluminescence mixture (ECL, Amersham) and 

several exposures of the membrane to Amersham Hyperfilm
TM

 ECL taken, typically 

ranging from 30 sec to 5 min.  Films were developed using a Kodak film developer.   
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2.4.6 Densitometry ImageJ 

Developed films were scanned as a TIFF image and converted to grayscale.  The 

intensity of each band was quantified using Image J (http://imagej.nih.gov/ij/), before 

subtracting a background measurement.  To compare relative changes in the expression 

of NMT in different transgenic parasites, the background-subtracted measurements were 

adjusted by relative changes in the intensity measured for trypanothione reductase in 

each lysate, compared to the WT.   

The mass of NMT per cell was determined in the epimastigote, trypomastigote 

and amastigote forms by densitometry analysis of a known number of parasites against 

known quantities of purified recombinant protein.  A calibration curve using the 

measured values from the known amounts of NMT was produced by fitting the data to a 

non-linear regression (Insert equation).  The cellular concentration of NMT could then 

be calculated using the calibrated values and previously published cell volumes for each 

stage of the parasite (Rohloff et al., 2003).  

 

2.5 Metabolic labelling and click chemistry   

2.5.1  L-[
35

S]-methionine 

Parasites grown in RTH/FBS medium (Section 2.2.1) were harvested by centrifugation 

(1620 × g, 15 min at RT) and resuspended in methionine free RTH/FBS medium.  

Parasites were incubated with 10 µCi ml
-1

 [
35

S] L-methionine (Perkin Elmer) for 5.5 

hours before washing cells twice (1620  g, 15 min at 4 
○
C) in PBS buffer to remove 

unincorporated label.  Parasite lysates were made in Laemmli buffer and separated by 

SDS-PAGE.  The gel was treated with En3hance solution (Perkin Elmer) for 1 hour and 

the fluors precipitated by incubating in cold water for 30 mins.  The gel was dried using 

a gel drier over 3 hours at 80 
○
C under vacuum (BioRad 583), and then exposed to 
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Kodak BioMax MS film overnight at -80 
○
C, using a low-energy intensifying screen 

(Kodak).  

 

2.5.2 [
3
H] Myristic acid 

Myristic acid ([9,10-
3
H(N)], 185 MBq, Perkin Elmer) stored in ethanol was dried under 

nitrogen stream and resuspended in PBS containing 10 mg ml
-1

 fatty acid free bovine 

serum albumin (Company).  Parasites grown in RTH/FBS medium were harvested by 

centrifugation (1620 × g, 15 min at RT) and resuspended in methionine and FBS free 

medium, supplemented with 50 mg ml
-1

 fatty acid free bovine serum albumin. [9,10-

3
H(N)] Myristic acid was added to a final concentration of 100 µCi ml

-1
 and incubated 

for 6 hours at 28 
○
C.  Parasites were washed and treated in an identical manner to that 

described for [
35

S] L-methionine samples.  Dried gels were exposed to film for 4 weeks.   

 

2.5.3 12-Azidododecanoic acid (azidomyristate) 

Parasites were labelled with 50 µM azidomyristate (Molecular Probes or SiChem) over 

a period of 4-20 h under using standard RTH/FBS or 
SILAC

SDM-79 (Section 2.2.1).  

Parasites were washed twice with PBS to remove excess azidomyristate and lysates of 

parasites made in either RIPA buffer (50 mM Tris-HCl, pH 7.4,150 mM NaCl, 1% 

sodium deoxycholate, 0.1% SDS, 1% Triton X-100 and a cOmplete mini EDTA-free 

protease inhibitor cocktail tablet).  Alternatively, cells for enrichment studies were 

resuspended and lysed in the urea lysis buffer supplied with the protein enrichment kit 

(Molecular probes).  
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2.5.4 Detection of N-azidomyristoylated proteins 

The concentration of RIPA buffer lysates was determined using the BioRad protein 

assay (See 2.4.1).  The IRDye 800CW alkyne (Li-cor biosciences) was attached to N-

azidomyristoylated by click chemistry using the protein reaction buffer kit (Invitrogen) 

as described in the supplied protocol.    Equal amounts of lysate were treated in this way 

for all conditions tested before they were methanol: chloroform precipitated and the 

samples separated by SDS-PAGE (Section 2.4.2).  Proteins were fixed with 10% acetic 

acid and 40% methanol for 15 min at RT before treating with 1 M KOH to remove O- 

and S-myristoylation.  Gels were imaged by in-gel fluorescence (Section 2.4.4). 

 

2.5.5 Enrichment of N-azidomyristoylated proteins 

Washed T. cruzi epimastigotes were resuspended in urea lysis buffer and the parasites 

biologically inactivated by three freeze thaw cycles.  The optimal lysis of parasites was 

achieved by subjecting the lysate to sonication (6, 3 second pluses at 10 micron) before 

the insoluble protein was pelleted (10,000 × g, 10 min at 4 
○
C).  Treated and untreated 

parasites prepared for qualitative analysis were separately enriched by click chemistry 

using the protein enrichment kit (Invitrogen), as recommended by the manufacturer with 

some minor modifications.  Before the samples were reductively alkylated with 

iodoacetamide, the enrichments were incubated with 1 M hydroxylamine (pH 7.0) for 

30 min to remove S-myristoylated proteins (Armah and Mensa-Wilmot, 1999).   
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2.6 Mass spectrometry and data processing 

2.6.1 Mass spectrometry 

All trypsin digestion and mass spectrometry was carried by the FingerPrints proteomic 

service at the University of Dundee (http://proteomics.lifesci.dundee.ac.uk).  The 

following protocol has been provided by Dr Abdel Atrih.  The beads were washed 5 

times with 60 mM ammonium bicarbonate then re-suspended in 200 μl ammonium 

bicarbonate (60 Mm) containing 25 μl of trypsin (0.1 μg/μl). Digestion was carried out 

overnight at 30 °C and resulting peptides were desalted using C18 cartridges.   Analysis 

of peptides was performed on a LTQ Orbitrap Velos Pro (Thermo Scientific) mass 

spectrometer coupled with a Dionex Ultimate 3000 RS (Thermo Scientific). LC buffers 

were the following:  buffer A (2% acetonitrile and 0.1% formic acid in Milli-Q water 

(v/v)) and buffer B (80% acetonitrile and 0.08% formic acid in Milli-Q water (v/v). 

Aliquots of 15 μL of each sample were loaded at 5 μL/min onto a trap column (100 μm 

× 2 cm, PepMap nanoViper C18 column, 5 μm, 100 Å, Thermo Scientific) equilibrated 

in 98% buffer A. The trap column was washed for 3 min at the same flow rate and then 

the trap column was switched in-line with a Thermo Scientific, resolving C18 column 

(75 μm × 50 cm, PepMap RSLC C18 column, 2 μm, 100 Å). The peptides were eluted 

from the column at a constant flow rate of 300 nl/min with a linear gradient from 98% 

buffer A to 40% buffer B in 68 min, and then to 98% buffer B by 70 min. The column 

was then washed with 98% buffer B for 15 min and re-equilibrated in 98% buffer A for 

34 min. LTQ Orbitrap Velos Pro  was used in data dependent mode. A scan cycle 

comprised MS1 scan (m/z range from 335-1800) in the LTQ Orbitrap Velos Pro 

followed by 15 sequential dependant MS2 scans (the threshold value was set at 5000 

and the minimum injection time was set at 200 ms) in LTQ with collision induced 

dissociation. The resolution of the Orbitrap Velos was set at to 60,000. To ensure mass 

http://proteomics.lifesci.dundee.ac.uk/
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accuracy, the mass spectrometer was calibrated on the first day that the runs were 

performed.  

 

2.6.2 Matrix assisted laser desorption ionisation time of flight spectrometry (MALDI-

TOF) 

The purity and mass of recombinant proteins were determined by MALDI-TOF on a 

AB Sciex Voyager DE-STR MALDI-TOF system.  This was carried out by the 

Fingerprints proteomic service (http://proteomics.lifesci.dundee.ac.uk).  

 

2.6.3 Tryptic mass fingerprinting  

Coomassie stained SDS-PAGE gels were digested in-gel with Trypsin gold (Promega) 

and analysed by LC-MS/MS.  In-solution digestion of immobilised proteins was also 

performed with trypsin gold and the peptides recovered and analysed by LC-MS/MS.  

LC-MS/MS spectra were acquired on an LTQ Orbitrap XL (Thermo Fisher). 

 

2.6.4 Polymyxin acylase digestion 

After tryptic digestion of the alkyne agarose, the resin was extensively washed with 

20% acetonitrile to remove peptides remaining from the trypsin digestion and then 

washed with 100 µM phosphate buffer (pH 8.0).  Digestion of alkyne agarose resin or 

N-azidomyristoylated proteins was carried out overnight at 37 °C in phosphate buffer 

pH 8.0.  Peptides on resin were analysed by Mass spectrometry (Section 2.6.1), whilst 

click chemistry was carried out on whole proteins (Section 2.5.5) 

 

http://proteomics.lifesci.dundee.ac.uk/
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2.6.5 N-myristoylome data processing 

Thermo Xcalibur raw files were processed with MaxQuant version 1.3.0.5 which 

incorporates the Andromeda search engine (Cox and Mann, 2008; Cox et al., 2011).  

This software package allows SILAC ratios and relative label free intensities to be 

calculated for the SILAC and label free experiments respectively.  For LFQ analysis, a 2 

min window for matching peptides between runs was allowed to account for possible 

differences in retention times between the HPLC separations prior to MS identification 

(Cox et al., 2014).  Experimental spectra were searched against a custom T. cruzi 

proteomic database consisting of 30,048 entries comprising sequences from CL 

Brenner, Silvio X10/1 and the Marinkelli strains that are deposited in UniProt and a 

database consisting of common laboratory contaminants.  Peptide assignments were 

made using a MS tolerance of 6 ppm and carbamidomethylation as a fixed modification 

due to the reductive alkylation of samples with iodoacetamide.  N-acetyl, N-

pyroglutamate and the oxidation of methionine were counted as variable modifications 

for the experiment.  To account for incomplete digestion, a maximum of two missed 

trypsin cleavage sites were allowed and the false discovery rates for both peptide and 

protein identifications were calculated to be <0.01 by performing a decoy search against 

a reversed sequence database.  

 

2.6 Recombinant protein expression and characterisation  

2.6.1 Expression of recombinant protein 

Competent cells were transformed with the pET15b-TEV plasmids containing the Silvio 

X10/7A ORFs encoding TcNMT.  The pET15b-TEV-TcNMT-CLBren plasmid was 

obtained from Dr Scott Cameron (University of Dundee).   
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2.6.2 Preparation of E. coli cell lysates  

E. coli cell pellets were harvested by centrifugation (5020 g, 30 min at 4 
○
C).  The 

pellets from 2 L cultures, were resuspended in 50 ml of cell lysis buffer (25 mM Tris, 

500 mM NaCl, 10 mM imidazole, pH 8.5, EDTA free protease inhibitor tablets 

(Roche), lysozyme and DNaseI (Sigma)).  Cells were lysed with a continuous flow cell 

disruptor at 4 
○
C (Constant Systems) by passing the sample through the cell disruptor 

twice at 30 kpsi.  Confirmation of cell lysis was achieved by examination using a light 

microscope.  Insoluble protein was separated from the soluble by centrifugation (40,000 

× g, 30 min, 4 
○
C) and the soluble protein passed through a 0.2 µm polyethersulphone 

filter (Sartorius).  

 

2.6.3 Protein purification 

All buffers prepared for protein purification were filtered through a 0.2 µM polyamide 

membrane (Sartorius) and de-gassed before use.  The columns used in all 

chromatographic separations were obtained from GE Healthcare and all purifications 

carried out on an ÄKTA purifier system equipped with a sample-loading pump using 

Unicorn 5.11.   

 

2.6.4 Nickel affinity chromatography 

Clarified E. coli lysates were loaded onto a 5 ml HisTrap HP nickel affinity 

chromatography column that had been pre-equilibrated with His binding buffer (25 mM 

Tris, 500 mM NaCl, 10 mM imidazole, 1 mM TCEP, pH8.5) at a constant flow rate of 5 

ml min
-1

.  To remove unbound proteins, the column was washed with 10 column 

volumes (CV) of His-binding buffer, or until a stable reading at 280 nm was achieved.  

Histidine rich proteins were then eluted with 0.5 M imidazole diluted in his buffer, over 
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20 CV and protein containing fractions collected.  If a more precise separation was 

required, the gradient was paused manually to allow a greater separation of merged 

protein peaks, after which the gradient was resumed.  Fractions were analysed by SDS-

PAGE to determine which fractions contained the protein of interest.   

 

2.6.5 Anion exchange chromatography 

Samples containing high concentrations of salt (>100 mM NaCl) were dialysed into 

anion exchange buffer containing 25 mM Tris, 25 mM NaCl at pH8.5, using a 10 kDa 

MWCO Slide-A-Lyzer cassette.  The semi-purified protein samples were loaded onto a 

1 ml HiTrap Q HP column (GE Healthcare), and eluted with a gradient of NaCl (0-500 

mM).  The purity of each fraction was determined by SDS-PAGE analysis.   

 

2.6.6 Preparative size exclusion chromatography 

Fractions containing the protein of interest were pooled and if required, concentrated to 

a volume less than 10 ml with a Vivaspin™ (20 k MWCO) centrifugal concentrator 

device.  The sample was loaded onto a Superdex 75 26/60 pre-equilibrated in 25 mM 

Tris, 150 mM NaCl, 1 mM TCEP with a flow rate of 1.5 ml min
-1

.  The protein 

containing eluent, as determined by absorbance at 280 nm was collected and the purity 

analysed by SDS-PAGE.  Fractions containing the protein of interest were pooled and 

concentrated to ~1 mg ml
-1

 and the enzyme activity determined.  Active TcNMT was 

diluted with glycerol to a final concentration of 10% v/v, flash frozen in liquid nitrogen 

and stored at -80 
○
C. 
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2.6.7 Analytical size exclusion chromatography 

For analytical separation, a Superdex 200 30/10 GL pre equilibrated was used to 

separate the BioRad, gel filtration protein standards (1.5 ml min
-1

).  The elution 

volumes of each standard were used construct a calibration curve for the column.  

Under the same conditions, 50 µl of ~1 mg ml
-1

 purified enzyme was separated, and the 

calibration curve used to calculate the MW of the sample.  

 

2.6.8 Crystallography 

Purified recombinant His6-TcNMT was concentrated to ~18 mg ml
-1

 in a Sartorius™ 

Vivaspin™ 6 Centrifugal Concentrator (10 k MWCO).  Concentrated protein was 

incubated with a 2-fold excess of myristoyl-CoA and DDD85646 on ice for 30 min 

prior to dialysing into 25 mM Tris-HCl, 25 mM NaCl pH8.5 in a Pierce Slide-A-Lyzer 

cassette with a 10 k MWCO for 30 mins at 4 
○
C.  The protein concentration was 

confirmed to be 16 mg ml
-1

 and then screened against the JCSG plus, JBScreen classics 

HTS I and JBScreen classics HTS II (Molecular dimensions and Jenna Bioscience) by 

vapour diffusion in a 96 well sitting drop format.  Drops containing 1 µl of protein 

solution (Apoenzyme or enzyme co-incubated with MCoA and DDD85646) and 1 µl of 

reservoir solution were incubated at 25 
○
C and signs of crystallisation monitored at 

regular intervals after 12 hours. Crystals mounted containing the reservoir solution as a 

cryoprotectant and the diffraction tested on a Rigaku M007HF X-ray generator 

equipped with Varimax Cu-VHF optics, a Saturn 944HG
+
 CCD detector and an AFC-11 

4-axis partial χ goniometer. 
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2.6.9 Production of polyclonal antisera  

Polyclonal anti-TcNMT antisera were raised in adult male Wistar rates using the 

recombinantly expressed and purified His6-TcNMT from CL-Brenner.  Purified protein 

was concentrated to 1 mg ml
-1

, and emulsified in Freund’s complete adjuvant for the 

initial immunisation or incomplete adjuvant for subsequent boosters.  Antisera were 

raised exactly as described for Leishmania major glyoxalase I antisera (Greig et al., 

2009).  Five weeks post immunisation; blood was harvested from the rats and clotted at 

37 °C for 1 h.  Cells were harvested by centrifugation (3000 × g, 15 min, 4 °C) and the 

antisera containing supernatant was removed and flash-frozen in the presence of sodium 

azide 0.05% (w/v) before storing at -20 °C.  Immunisation protocols were approved by 

the University Welfare and Ethical Use of Animals Committee and were performed 

under the Animals (Scientific procedures) Act 1986 in accordance with the European 

Communities Council Directive (86/609/EEC).   

 

2.7 Enzyme activity 

2.7.1 Monitoring the activity of NMT using a coupled enzyme assay 

The enzymatic activity of recombinant TcNMT was monitored using a modified 

coupled enzyme spectrophotometric assay, with the pH of the reaction having been 

lowered from 8.0 to 7.4 (Boisson and Meinnel, 2003) .  The assay buffer contained 50 

mM Tris, 0.5 mM EDTA, 0.5 mM EGTA, 1.25 mM DTT, 0.1% Triton X-100, 40 mM 

pyruvic acid, 0.125 U ml
-1

 pyruvate dehydrogenase, 0.2 mM thiamine pyrophosphate 

and 2.5 mM NAD
+
, adjusted to pH 7.4 with HCl.  All enzyme activity measurements 

were made using a UV-1601 spectrophotometer equipped with a peltier device 

(SHIMADZU) set to 30 °C using quartz cuvettes.   
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The formation of NADH
+
 from the coupled enzyme reaction was monitored at 

340 nm and converted to a rate (s
-1

), by dividing the change in absorbance by the molar 

extinction coefficient of NADH
+
 and the enzyme concentration used in the assay.  The 

rates were calculated for the linear regions of the spectra, which typically occurred 

between 50-100 seconds after starting the reaction.  The specific activity of TcNMT was 

determined in the presence of 700 µM TbCAP5.5 peptide (GCGGSKVKPQPPQAK 

[biotin]) (Frearson et al., 2010) and 40 µM MCoA (Sigma) by varying the enzyme 

concentration in the reaction.   

 

2.7.2 Determining kinetic parameters and inhibition of TcNMT 

Km and Km
app

 values were determined for a biotinylated peptide substrate derived from 

amino acids 2-15 of the T. brucei  and T. cruzi CAP5.5 proteins (TcCAP5.5 

GCCASKEKQPRPGAK[biotin], TbCAP5.5 GCGGSKVKPQPPQAK [biotin], custom 

synthesised by Pepceuticals); and MCoA.  In the case of Km
app

 values were determined 

using GraFit5.  The concentration of DDD85646 able to produce a 50% reduction in 

enzyme activity (IC50) was determined by varying the concentration of inhibitor in the 

presence the TbCAP5.5 peptide at 200 µM.  This data was fitted to the Morrison 

equation for tight binding inhibition (equation 1) to calculate the apparent dissociation 

constant (Ki
app

) of the inhibitor from the enzyme complex.  The true Ki was calculated 

from using equation 2. 

 (Eq. 1) 
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2.8 Microscopy 

2.8.1 Preparation of slides 

Parasites washed twice in PBS were resuspended at a concentration of 1 × 10
6
 parasites 

ml
-1

.  Parasites (20 µl) adhered to poly-L-lysine covered glass slides for 15 minutes at 

RT.  Slides were fixed either in 100% methanol at -20 
○
C overnight, or PBS containing 

1% formaldehyde for 10 minutes at room temperature. 

 

2.8.2 Localisation of eGFP fusion proteins  

Formaldehyde fixed parasites expressing eGFP fusion proteins mounted with 

SlowFade® Gold containing DAPI (Invitrogen) and a 1.5 glass coverslip fixed in place.   

 

2.8.3 Giemsa staining  

To determine confirm the life cycle stage of a parasite, methanol fixed parasites were 

stained with Giemsa stain for 15 min at room temperature.  Excess giemsa was removed 

by washing the slide with H2O for several minutes leaving the stained nuclear and 

kinetoplast DNA to be visualised by light microscopy. 

 

2.8.4 Fluorescence microscopy  

Parasites for localisation studies were imaged with a DeltaVision elite deconvolution 

microscope equipped with filters for the following fluorophores; DAPI, GFP, FITC, 
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Texas Red and Alexa 488.  Images were acquired using the 100 x oil objective and 

processed using softWoRx deconvolution software to remove out of focus light from 

the image.  Minor alterations were made to the brightness and or contrast of individual 

images.  Merged images were produced in ImageJ by combining separate images as 

individual colour channels.  

 

2.9 Bioinformatic analysis 

2.9.1 Proteome wide prediction of N-myristoylation in the trypanosomatids  

The reference proteomes of Trypanosoma cruzi, Trypanosoma brucei and Leishmania 

major were downloaded from UniProt (Accessions: UP000008313, UP000008524 

UP000000542).  The T. cruzi sequences were based on the predicted proteome for the 

Silvio X10/1 parasite.  Sequences not annotated to start with the amino acids MG were 

filtered out of the dataset and the N-myristoylation status of these proteins predicted 

using the program Myristoylator (http://web.expasy.org/myristoylator/).   

 

 

2.9.2 Bioinformatic analysis of experimental N-myristoylome 

N-myristoylated proteins found to be enriched in all biological replicates or just in the 

LFQ or SILAC experiments were analysed using a variety of prediction programs.  

These high confidence proteins were searched against the Pfam sequence database to 

identify potential functional domains present in these proteins.  Only significant 

matches from the “A database” were annotated as potential functional domains in 

addition to their significance value.  Identified proteins were submitted to the SOSUI 

server for the prediction of transmembrane domains (http://harrier.nagahama-i-

http://harrier.nagahama-i-bio.ac.jp/sosui/
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bio.ac.jp/sosui/).  The predicted isoelectric point of these proteins was calculated by the 

compute pI/Mw tool (Expasy). 

  

http://harrier.nagahama-i-bio.ac.jp/sosui/
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Figure 3.1 Sequencing and analysis of T. cruzi N-myristoyltransferase
(A) Sequencing analysis of the S150 and P150 clones encoded by the C-T SNP at 
position 448 (red box) in the nucleic acid sequence. (B) Alignment the NMT poly-
peptides from T. cruzi, T. brucei, L. major, H. sapiens, P. falciparum and S. cerevi-
sae.   

A



Figure 3.1 Sequencing and analysis of T. cruzi N-myristoyltransferase
(A) Sequencing analysis of the S150 and P150 clones encoded by the C-T SNP at 
position 448 (red box) in the nucleic acid sequence. (B) Alignment the NMT poly-
peptides from T. cruzi, T. brucei, P. falciparum, S. cerevisae and H. sapiens.  Amino 
acids in red are conserved in all sequences, black are not conserved.  Residues 
involved in the binding of Myr-CoA or peptide analogs are highligted in blue and 
purple respectivley, with those in peach involved in the binding of both.  These were 
inffered from the S. cerevisiae structure (Bhatnagar et al., 1998).  The orange shows 
theposition of Pro150 used this study.  

B



55 
 

 
 

3.1 Sequencing the N-myristoyltransferase gene from T. cruzi Silvio X10/7A 

In recent years, the genomes of several T. cruzi strains have been published, including 

that of Silvio X10/1, isolated from the blood of a 19-year-old male in Brazil (Silveira et 

al., 1979).  A putative open reading frame (ORF) corresponding to N-

myristoyltransferase was first identified in the X10/1 genome by BLAST 

(http://tritrypdb.org), using the sequence from Saccharomyces cerevisiae as a search 

template (ENA: AAA34815).  A single nucleotide sequence of 1359 bp was identified 

on an unassembled contig (TriTrypDB: TCSYLVIO_006126) in the X10/1 genome 

against which PCR primers were designed.  These primers were used to amplify the 

corresponding ORF from genomic DNA (gDNA), isolated from the cloned cell line, 

Silvio X10/7 clone A1 (X10/7A1).  The resulting products from three independent PCR 

reactions were cloned into the pCR™-Blunt II-TOPO vector and multiple plasmids 

from each reaction sequenced in duplicate to minimise the likelihood of sequencing 

errors.  Initial analysis these data revealed there to be two single nucleotide 

polymorphisms (SNPs) in the NMT ORF from X10/7A1 parasites.  Each SNP was 

found to be present only in 50% of the sequencing reactions and were found to be 

mutually exclusive, suggesting the SNPs are present on different alleles.  Although one 

SNP produced a change at the protein coding level by altering Ser150 to Pro (Figure 

3.1 A), the second was silent.  Multiple sequence alignments of the translated ORFs 

from T. brucei, L. major, S. cerevisiae, H. sapiens, P. falciparum, T. cruzi CL-Brenner 

and X10/1, revealed a lack of amino acid conservation at this position (Figure 3.1 B).  

The sequence containing Pro150 was used for the remainder of the studies as in both of 

the CL-Brener sequences there is a proline at this position.  From this multiple sequence 

alignment the conservation of the NMT primary sequence was calculated throughout 

eukaryotes.  Overall, sequence identify of NMT is broadly conserved across the 

trypanosomatids (53-58% identity), but a higher level of divergence is observed in 
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Figure 3.2 Analysis of TcNMT copy number  

(A)  Theoretical map of the TcNMT locus digested with EcoRI, BamHI, AfeI and DraI.  
The gene specific probe is marked as a black bar above the open reading frame.  (B) 
Southern blot analysis of EcoRI, BamHI, AfeI and DraI digested gDNA (5 µg) from T. 
cruzi X10/7A.  The blot was probed with the NMT open reading frame.  
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comparison with the P. falciparum, H. sapiens and S. cerevisiae enzymes (31-34% 

identity).  Despite these homologs catalysing the same chemical reaction, there is 

diversity in the primary amino acid sequence of the enzyme from different species.  

 

3.2 Determining the copy number of TcNMT in Silvio X10/7A 

Sequence analysis of the original genome strain CL-Brenner found it to be a hybrid of 

two lineages and upon closer inspection, 2 putative NMT’s sharing 99% sequence 

identity at the amino acid level have been annotated (TriTrypDB: TcCLB.506525.80 

and TcCLB.511283.90).  Prior to carrying out genetic validation, the copy number of 

NMT in X10/7A parasites was assessed by Southern blot.  Isolated gDNA from this 

clone was digested using AfeI or DraI (Figure 3.2 B, lanes 3+4).  These restriction 

endonucleases are both known to cut once within NMT ORF from sequencing of the 

X10/7A1 ORF and the X10/1 genome sequence (Figure 3.2 A).  The digoxigenin (DIG) 

labelled TcNMT ORF hybridised to two fragments in both the AfeI and DraI digestions.  

The resulting fragment sizes produced by AfeI matched the predicted sizes from the 

X10/1 genome. The lower fragment of DraI digested gDNA was approximately 1 kbp 

smaller than expected, suggesting the presence of a SNP downstream of the NMT ORF 

in the X10/7A genome.  Digestion with EcoRI or BamHI, both thought to cut outwith 

the coding sequence, yielded a single band, the sizes of which could not be predicted 

due to limited sequence assembley of Silvio X10/1.  Together, these results suggest that 

this gene is present as a single copy per haploid genome.  However, from these data we 

cannot rule out the possibility of aneuploidy in this parasite and that the chromosome 

encoding TcNMT has been duplicated.       

 



Figure 3.3 Analysis of WT, SKO and rescued NMT DKO cell lines
Southern blot analysis of AgeI and XmnI digested gDNA (5 µg) from WT cells (lane 1), SKOPAC cells (lane 2), SKOHYG cells (lane 3), 
SKOPAC cells constitutively  overexpressing NMT (lane 4), DKOPAC+HYG cells constitutively overexpressing NMT (lane 5) and failed NMT 
DKOPAC+HYG cells (lanes 6-8).  Maps show the predicted fragment sizes for the WT and the correct replacement with the drug resistance 
markers when digested with AgeI and XmnI.  Southern blots were probed with ORFs for (A) TcNMT, (B) HYG and (C) PAC.
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3.3 Generation of a rescued NMT double knockout cell line 

Having determined that NMT is a single copy gene, the genetic requirement for NMT in 

the epimastigote stage of this parasite was determined using a classical, multi-step gene 

replacement strategy (Wyllie et al., 2013).  TcNMT specific, gene replacement 

constructs were generated using the 449 bp immediately up and downstream of the 

NMT ORF to flank the hygromycin B phosphotransferase (HYG) and puromycin N-

acetyltransferase (PAC) drug selectable markers (Chang et al., 2002).  The resulting 

HYG and PAC knockout constructs were individually transfected into epimastigotes and 

after ~6 weeks of selection with the appropriate drug, resistant parasites were recovered 

and cloned on semi-solid agar plates.  Southern blot analysis was used to assess if these 

constructs were able to replace a single allelic copy of TcNMT.  Probing the membrane 

with the NMT ORF revealed a single band present in WT and both drug resistant 

parasites indicating the retention of at least one allele (Figure 3.3 A lanes 1-3).  The 

HYG and PAC probes were both found to hybridise to a single band in their respective 

drug resistant cell lines (Figures 3.3 B, lane 3 and 3.3 C, lane 2).  The apparent sizes 

of these hybridised fragments correlated with the expected sizes for the correct 

replacement of a single allele by homologous recombination (Figure 3.3 B + C right 

panel), confirming these parasites to be genuine single knockouts (SKO).  

Attempts were then made to replace the second allele in SKO
PAC

 parasites using 

the HYG replacement construct that had been used to generate the SKO
HYG

 cell line.  

Three independent transfections were carried out, but parasites resistant to both 

hygromycin B and puromycin were only recovered from two out of the three 

transfections. No parasites were observed in the third, even after 3 months.  Clonal 

populations of these parasites were analysed by Southern blot and were all found to 

retain a copy of NMT at the WT size, suggesting that it might not be possible to 

generate a NMT null mutant, at least in the absence of a rescue construct (Figure 3.3 A, 
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lanes 6-8).  Probing these failed DKO parasites (FDKO) for the HYG gene revealed it to 

be massively amplified in all FDKO cells in comparison with correct integration 

observed in the SKO
HYG

 cell line (Figure 3.3B lanes 6-8).  However, a single band 

corresponding to the correct replacement of a single allele of NMT was detected in one 

out of three FDKO clones, despite the retention of a native copy of TcNMT (Figure 3.3 

A+ B, lane 8). Probing with PAC revealed that this result was not due to the 

replacement of the PAC allele with the HYG knockout construct (Figure 3.3 C, lane 8).  

These results indicate some form of genomic rearrangement has taken place, which may 

have led to aneuploidy in this particular clone.   

The ability to generate a DKO in the presence of NMT overexpression was then 

investigated.  Firstly, a constitutively expressed ectopic copy of TcNMT was targeted to 

the ribosomal spacer of the SKO
PAC

 cell line and was confirmed to have integrated at 

one site within the genome.  It was then possible to replace this last endogenous copy of 

TcNMT only in the presence of the ectopic copy.  Collectively with the identification of 

the genomic abnormality in a FDKO clone, this provides strong evidence that TcNMT is 

an important gene for the growth and survival of T. cruzi epimastigotes.  

 

3.4 Analysis of failed double knockout parasites  

With the evidence suggesting TcNMT is essential for the epimastigote stage of the 

parasite, the nature the HYG bands in the false DKO cell was studied.  To determine if 

the intense nature of the detected bands was due to the formation of episomes, a 

diagnostic PCR reaction was carried out.  Primers designed against the T. cruzi 

trypanothione reductase (TcTryR) ORF, or to read out from the HYG ORF (HYG
OUT

) 

were used to amplify from equal amounts of gDNA isolated from WT, DKO
OE

 and the 

FDKO parasites.  To provide a control for this diagnostic amplification, PCR reactions 
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of pGEM®-5Zf-NMT-HYG were also set up for both sets of primers.  As expected, a 

single band at approximately 1.5 kbp was observed in PCRs from gDNA and was 

absent from the HYG-knockout plasmid, as it does not contain the TcTryR ORF 

(Figure 3.4 A).  The size of this band matches the predicted size of 1479 bp for the 

predicted TcTryR ORF from the Silvio X10/1 genome (TriTryp: 

TCSYLVIO_004807).  In theory, amplification with the HYG
OUT

 primers would only 

produce a PCR product in cells where the HYG ORF was present as an extra-

chromosomal episome, or had integrated with a head to tail concatemer. PCR products 

with a size of ~4.5 kbp were observed in FDKO parasites and the HYG knockout 

plasmid used as a positive control, but not in the WT and DKO
OE

 cell lines (Figure 3.4 

B).  To ensure that this was not simply due to a pipetting error, PCR reactions were 

repeated with the same results.  These PCR products were then ligated into the TOPO® 

XL plasmid for sequencing, but despite multiple clones and TOPO® reactions, it was 

not possible to obtain sequencing data. 

To assess if the product sizes from FDKO and control the PCR reactions 

matched by chance, these PCR products were digested with several restriction 

endonucleases (Figure 3.4 C-F).  Analysing these digestions by gel electrophoresis 

revealed all of the fragment sizes in FDKO PCR products to match those produced by 

the PCR of the HYG knockout construct.  In summary, these results suggest that the 

bands observed in Figure 3B are most likely to be episomal and they appear to have 

retained the pGEM5ZF backbone used in the construct generation.  This is despite 

ensuring the vector was fully linearized prior to transfecting into the epimastigotes.  

 



Figure 3.5 Levels of NMT expression throughout the lifecycle
Whole cell lysates (1× 107 parasites per lane) of epimastigotes, trypmoastigotes 
and amastigotes were probed by immunoblot with a specific polyclonal antiserum 
raised against the recombinant protein.  Known amounts of recombinant protein 
were used as standards for the quantification cellular NMT levels in the different 
lifecycle stage.  The larger apparent mass of the recombinant protein is due to the 
presence of an N-terminal His6 tag.
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3.5 Expression of TcNMT throughout the T. cruzi lifecycle 

As the genetic tools available for use in T. cruzi are severely limited, it has not yet been 

possible to assess genetic essentiality in the disease relevant stages.  To ensure that the 

enzyme is expressed in these clinically relevant stages, whole cell lysates of 

epimastigotes, trypomastigotes and amastigotes were probed with a specific polyclonal 

antiserum raised against the purified recombinant protein from T. cruzi CL-Brener.  

This antiserum was produced in collaboration with Dr Susan Wyllie, Dr Han Ong and 

Dr Scott Cameron at the University of Dundee.  A single band at ~53 kDa was detected 

in all stages and was close to the theoretical mass of 51.3 kDa for the native enzyme 

(Figure 3.5, top panel).  The amount of TcNMT present in each stage was estimated by 

densitometry analysis using the intensities for known amounts of recombinant X10/7A1 

protein, to produce the standard curve (Figure 3.5, bottom panel).  The purified protein 

appeared marginally larger than the native enzyme due to the presence of an N-terminal 

His6 tag.  Using published cell volumes for the epimastigote, trypomastigote and 

amastigote, the cellular concentration of TcNMT was calculated and was broadly 

similar throughout the life cycle at 1.2, 2.1 and 2.5 µM, respectively.  In summary, the 

data show that NMT is continuously expressed in all forms of the parasite at a similar 

concentration.  However, while NMT is expressed in the stages pertinent to the disease, 

we cannot extrapolate the importance of this enzyme during these infective stages.  

 

3.6 Expression, purification and characterisation of recombinant TcNMT 

With the results of the genetic validation suggesting that this gene is essential in T. cruzi 

epimastigotes, the recombinant expression of NMT was undertaken in order to confirm 

it encoded a fully functional N-myristoyltransferase.  TcNMT was expressed as a fusion 

protein containing an N-terminal His6 tag linked via a TEV protease cleavable peptide 
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Figure 3.6 Recombinant expression and biophysical characterisation of TcNMT
(A) SDS-PAGE of recombinant TcNMT purification.  Lane 1, insoluble fraction of 
induced RosettaTM 2 (DE3) pLysS [pET15b-TEV-TcNMT]; lane 2, soluble fraction 
of induced RosettaTM 2 (DE3) pLysS [pET15b-TEV-TcNMT]; lane 3, pooled frac-
tions from Ni2+ affinity purification; lane 4, pooled fractions from anion exchange 
chromatography; lane 5, pooled fractions from size exclusion chromatography. (B) 
Analtical size exclusion profile for His6-TcNMT.  The inset shows a plot of Ve/V0 
against the log molecular mass (Mw) of a standard protein mixture (open circles), 
where Ve is the elution volume and V0 is the void volume of the column. The closed 
circle represents the elution volume of NMT. (C) MALDI-TOF spectra of recom-
binantly purified His6-TcNMT from Figure 5A lane 5.
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sequence in E. coli.  This strategy has successfully been used for the recombinant 

expression of the T. brucei and L. major homologs (Frearson et al., 2010; Price et al., 

2003).  The recombinant protein was produced using auto-induction medium in Rosetta 

2 (DE3) pLysS cells, which express multiple tRNAs that are rarely used in E. coli 

(Studier, 2005).  Following a three step chromatographic separation (nickel-affinity, 

anion exchange and size exclusion), the recombinant protein was purified to relative 

homogeneity as determined by SDS-PAGE, with an apparent Mw of ~49 kDa (Figure 

3.6 A).  The removal of the His6 tag reduced the typical yield from ~2.5 mg L
-1

 to ~1 

mg L
-1

 of culture, so the activity of the tagged and untagged forms was tested (Section 

3.7).  

 Analysis of the sample by MALDI-TOF showed the purified fusion protein to 

be ~134 Da heavier than the theoretical mass of the protein with the N-terminal 

methionine excised (Figure 3.6 C).  Assuming the initial methionine is excised in E. 

coli the mass difference may be explained by a combination of post-translational 

modifications that may occur in E. coli, but were not investigated for the purposes of 

this study.  Alternatively, the methionine may still be present and the 15 Da discrepancy 

caused by a calibration error.  Virtually all NMT’s studied to date are reported to be 

monomeric however, the bovine brain form that has been shown to form oligomers 

ranging from 126-391 kDa as determined by size exclusion chromatography (Glover 

and Felsted, 1995).  To determine the oligomeric structure of TcNMT the purified 

recombinant enzyme was separated by analytical size exclusion chromatography against 

a series of protein markers of known mass (Figure 3.6 B).  The majority of the 

recombinant enzyme eluted in a single peak with an apparent Mw of 47.4 kDa which is 

a similar order of magnitude to the mass as determined by mass spectrometry.  Thus, 

TcNMT from X10/7A1 was purified to homogeneity, with the His6-fusion protein 

existing as a monomer in vitro.  Purification of the CL-Brener enzyme used in the 
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generation of polyclonal antisera was carried out in an identical manner and was also 

found to be monomeric. 

    

3.7 Kinetic characterisation of NMT and inhibitor studies 

The enzymatic products of NMT are not directly quantifiable in real time.  However 

there are many assays available for the characterisation of these enzymes using a variety 

of techniques, such as coupled enzyme assays, scintillation proximity, enzyme-linked 

immunosorbent (ELISA) and HPLC methods (Boisson and Meinnel, 2003; Goncalves 

et al., 2012a; Panethymitaki et al., 2006; Rampoldi et al., 2012; Towler et al., 1988).  

For the characterisation of the T. cruzi enzyme, we modified a previously published 

coupled enzyme spectrophotometric assay by lowering the pH to 7.4 and coupling the 

activity of the recombinant enzyme to pyruvate dehydrogenase (Boisson and Meinnel, 

2003).  The resulting reduction of NADH to NADH
+
 is monitored in real time at 340 

nm (Figure 3.7 A).  The activity of recombinant TcNMT was first measured using a 

synthetic peptide based upon amino acids 2-15 of the T. brucei cytoskeleton associated 

protein CAP5.5, which is known to be N-myristoylated (Frearson et al., 2010; Hertz-

Fowler et al., 2001b).  The activity of the coupling enzyme was only observed in the 

presence of myristoyl-CoA, TcNMT and the peptide substrate.  When substrates were 

individually omitted from the reaction or NMT had been heat inactivated, no detectable 

activity was observed.     

The specific activities for the His6-tagged and untagged recombinant proteins 

were determined presence of 100 µM TbCAP5.5 and 40 µM myristoyl-CoA (Myr-CoA) 

by varying the concentration of enzyme present.  The presence of the tag did alter the 

activity of the enzyme by decreasing the specific activity from x µmol min
-1

 mg
-1

 to x 

µmol min
-1

 mg
-1

 (Figure 3.7 B).  The remainder of the kinetic characterisation was 
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carried out on the His6-TcNMT enzyme, as there was not significant loss in activity due 

to the presence of the tag.   

The Km’s of TbCAP5.5 and TcCAP5.5 were determined using 150 nM NMT 

with this assay by taking the linear region of activity, which occurred between 60-110 

seconds after initiation (Figure 3.7 D+E).  Both substrates were able to accept myristic 

acid, however, the Km values of 250 ±28 and 12.1 ±1 µM for TbCAP5.5 and TcCAP5.5 

were significantly different to each other.  Whilst this is probably due to the differences 

in the peptide substrates, both substrates had a similar catalytic efficiency kcat/Km.  Due 

to reasons of cost and practicality, it was not possible to determine a true Km for Myr-

CoA under saturating concentrations of peptide substrate TbCAP5.5, so the apparent Km 

(Km
app

) was determined with 700 µM of the peptide (Figure 3.7 C).  The enzyme 

concentration was decreased (15 nM) to allow a longer linear region for quantification, 

as this assay starts to approach the limits of detection especially with Km values in the 

single digit µM range.  The Km
app

 for Myr-CoA was found to be 6.2 ± 0.6 µM, which is 

in a similar range to other reported Km values for different homologs.  

Having demonstrated that the recombinant protein encoded a fully functional N-

myristoyltransferase, the activity of the enzyme was determined in the presence of the 

T. brucei NMT inhibitor DDD85646 (Figure 3.7 F).  This activity was determined for 

various concentrations of DDD85646 with fixed concentrations of enzyme and substrate 

(150 nM NMT, 40 µM Myr-CoA and 200 µM TbCAP5.5).  The dose response curve 

suggested that the IC50 (the concentration of inhibitor required to reduce the activity to 

half the maximum) of DDD85646 was 75 nM which is in the region of tight binding 

inhibition.  The data were alternatively fitted to the Morrison equation for tight binding 

inhibition to allow an apparent Ki (Ki
app

 = 41.2 nM) to be calculated for the inhibitor 

enzyme complex.  It is known that there is a proportional relationship between the Ki
app
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and the Ki.  This was used to calculate the true Ki for DDD85646 to be 22.8 nM.   This 

confirms that DDD85646 is able to inhibit the enzymatic activity of TcNMT via a tight 

binding mechanism, similar to that reported against the T. brucei enzyme (Frearson et 

al., 2010). 

 

3.8 Crystallisation of TcNMT 

The differing substrate selectivities across these enzymes in eukaryotes have made them 

promising targets for rational based drug design (Section 1.4.3).  This process can be 

greatly aided by the availability of structural data for these enzymes.  A search of the 

protein data bank found crystal structures of the enzymes from L. major, Plasmodium 

vivax, S. cerevisiae, L. donovani and C. albicans, but not T. cruzi.  With the aim of 

producing a crystal structure of the T. cruzi homolog, purified His6-TcNMT was 

subjected to crystallisation trials in the presence in the absence and presence of Myr-

CoA and the TbNMT inhibitor DDD85646.  Within 24 hours, a single crystal had 

grown in 0.1 M Na/K phosphate pH 6.2, 25 % (v/v) 1,2-propanediol and 10 % (v/v) 

glycerol at 18.3 °C for the liganded recombinant protein.  With the help of Dr Scott 

Cameron the diffraction of this crystal was tested, however it failed to produce an x-ray 

diffraction pattern.  The initial hit conditions were then optimised by varying the 

concentrations of 1,2-propanediol and glycerol present in the reservoir solution. In 

addition, the protein concentration was decreased in an attempt to slow down the 

crystallisation process and after 5 months, a single crystal was found in 0.1 M Na/K 

phosphate pH 6.2, 27.5% 1,2-propanediol, 11 % Glycerol at 18.3 °C.  Once again, the 

ability of the crystal to diffract x-rays was tested by Dr Scott Cameron and diffraction to 

~4.5 Å was observed.  Despite this success, a dataset was not collected on this crystal in 

favour of using it for crystal seeding experiments, all of which failed to produce further 



Figure 3.8 Modulation of NMT expression 
Western blot analysis of transgenic NMT parasite cell lines.  Duplicate blots of 
epimastigotes (1 × 107 per lane) were probed with specific polyclonal 
antierum raised against TcNMT or TcTryR.  Densitometry analysis was used to 
quantify the relative expression changes of TcNMT  in SKO, WT and NMTOE 
cells using TcTryR as the loading control. 
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crystals for analysis.  The failure to grow crystals except in the presence of Myr-CoA 

and DDD85646 may suggest the presence of ligands may be an important factor for 

obtaining diffraction quality crystals.  

 

3.9 Altered expression levels of TcNMT in transgenic parasites 

To facilitate NMT inhibition studies in the parasite, WT and transgenic-NMT cell lines 

were probed by western blot for TcNMT expression to determine if the transgenic 

parasites had modulated levels of NMT in comparison with the WT.  The NMT
SKO

 line 

was generated as described earlier whilst cells constitutively overexpressing NMT were 

generated by transfecting pTREX-NMT into WT parasites.  Southern blot analysis of 

this cell line revealed the construct to have stably integrated twice within the genome 

however, the exact location of each integration was not determined.   A single band with 

an apparent Mw of ~53 kDa was detected in the lysates of WT, NMT
SKO

 and NMT
OE

 

parasites when probed with specific polyclonal antisera (Figure 3.8).  Although a large 

excess of NMT was detected in NMT
OE

 parasites in comparison with the WT, the 

difference between the WT and NMT
SKO

 cells was less obvious.  A duplicate blot was 

probed for the presence of TryR to act as a loading control across the different cell lines 

(Figure 3.8).  This was chosen for the loading control as the expression of TcTryR is 

unlikely to be affected by the modulation of NMT, as they are in unrelated pathways 

and different on chromosomes.  By quantifying, the intensities of the TcNMT and 

normalising the values to TcTryR a 63% reduction in NMT was detected in the 

NMT
SKO

 compared to the WT, whilst a 7.6-fold increase was observed in the NMT
OE

.  

In summary, these results have highlighted that it is possible to generate T. cruzi with 

modulated levels of expression by the deletion of a single allele, or by the genomic 

integration of a constitutive overexpression vector.   



Figure 3.9 Infectivity of transgenic T. cruzi parasites
(A) Uninfected Vero cells stained with Hoechst 33342. (B) Typical view of infected 
Vero cells stained with Hoescht 33342. (C) The percentage of Vero cells infected with 
transgenic SKOPAC, SKOHYG and NMTOE parasites in comparison with the WT. The 
infectivity of SKOPAC and SKOHYG were confirmed to be statistically significant (*P < 
0.01) using an unpaired Students t test. (D) The mean number of amastigotes per 
infected Vero cell.  Differences in the mean number of SKOPAC and NMTOE amastig-
otes in comparison to the WT were confirmed to be statistically significant using an 
unparied Students t test (*P < 0.05, ***P < 0.001).  A total of 24 measurements were 
made for each paramater.  The data is shown as the means ± S.E.M.
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3.10 Infectivity of transgenic T. cruzi parasites 

With the absence of full genetic validation in the clinically relevant stages, the ability of 

these transgenic parasites to infect a mammalian cell and progress through the complete 

lifecycle were compared.  The University of Dundee’s Drug Discovery Unit (DDU) has 

developed a T. cruzi high-throughput screening assay for assessing drug efficacy in 

Vero cells using image analysis software for quantification.  As initial Vero cell 

infections revealed an un-even distribution of infected cells, the high content assay was 

used to remove bias and assess the infectivity of these transgenic parasites.  A mixture 

of metacyclic trypomastigotes and epimastigotes obtained from late stage cultures were 

used to infect Vero cell monolayers overnight, before removing non-invaded parasites.  

After obtaining pure trypomastigote populations by cycling them through Vero cells (3 

times), fresh infections were set up with a parasite to Vero cell ratio of 5:1.  Infected 

cells were fixed with formaldehyde after 3 days and stained with DAPI.  With the help 

of Dr Manu De Rycker (DDU, University of Dundee), the infections were imaged using 

a high content microscope where the percentage of infected cells, and the number of 

parasites per infected cell were quantified.  Due to the size differences between 

mammalian and amastigote nuclei, the software is able to determine these parameters 

using these principles as described previously (Nohara et al., 2010).  Typical images of 

un-infected and infected Vero cells (Figure 3.9 A + B).  The deletion of a single allele 

of NMT led to a minor, but statistically significant, increase in the percentage of 

infected cells when compared to the WT, whereas the NMT
OE

 had no effect (Figure 3.9 

C).  Vero cells infected with SKO
PAC

 and NMT
OE

 parasites were found to have a 

marginally reduced, but statistically significant, parasite load compared to the WT 

parasites (Figure 3.9 D).  Despite the statistically significant differences observed 

between some of these cell lines, the measured changes do not appear greatly alter the 

biological relevance, as all parasite cell lines showed a similar infection profile.  
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Figure 3.10 Potency of DDD85646 against transgenic NMT parasites
EC50 values were determined against SKOPAC (open circles), WT (closed 
circles) and NMTOE (open squares) parasites after a 5 day incubation with 
various concentrations of DDD85646 in RTH/FCS.  EC50 values of 2.9 ± 
0.04, 6.3 ± 0.1 and 78.6 ± 4.2 µM were determined against SKOPAC, WT and 
NMTOE cell lines respectivley.  Shifts in potency were determined to be 
statistically significant with respect to WT cells (P=0.0001) using an unpaired 
Students t test.
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3.11 DDD85646 versus T. cruzi epimastigotes 

With the knowledge that the TbNMT inhibitor DDD85646 was a highly potent inhibitor 

of the T. cruzi recombinant enzyme, the activity of this compound was determined 

against the parasite.  The concentration of drug required to inhibit the growth of T. cruzi 

epimastigotes by 50% (EC50) was found to be 6.3 ± 0.1 µM against WT parasites 

(Figure 3.10).  To determine whether this anti-proliferative effect was mediated via 

NMT, EC50 values were also determined against cell lines containing modulated levels 

of NMT that were generated previously.  The SKO parasites became approximately 2-

fold more sensitive to treatment with DDD85646 (EC50 = 2.9 ± 0.04 µM) in comparison 

with WT parasites.  Conversely, a ~12-fold reduction in sensitivity to DDD85646 was 

observed with the overexpression of NMT (NMT
OE

, EC50 = 78.6 ± 4.6 µM).  The 

potency shifts determined for transgenic parasites in comparison with WT were 

confirmed to be statistically significant for both cell lines using an unpaired Students t 

test (P < 0.0001).  In combination with the data from Figure 3.8, the sensitivity of 

parasites to treatment with this inhibitor correlated with the cellular concentration of 

NMT present in the parasite.  This would suggest that the reduction in parasite 

proliferation is a result of the specific targeting of TcNMT in the cell by DDD85646. 

 

3.12 Detection of cellular N-myristoylation 

Due to the presence of multiple NAD
+
-reducing enzymes in the parasite, the coupled 

enzyme spectrophotometric assay used for the kinetic characterisation of TcNMT is not 

suitable for monitoring cellular N-myristoylation.  Previous studies in T. cruzi and T. 

brucei have monitored the incorporation of [
3
H]-myristic acid into proteins via NMT 

using autoradiography, which can require exposures to film over several weeks.  More 
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Figure 3.11 Detection of N-myristoylation
(A) Parasites take up the myristic acid analog azidomyristate and attach it to a 
molecule of CoA.  Azidomyristate is incorporated onto the N-terminal glycine of 
specific proteins via cellular NMT. A fluorecently labelled alkyne is attached to 
N-azidomyristoyalted proteins by click chemistry.  Labelled proteins visualised 
after separating by SDS-PAGE using in-gel fluorescence. (B) Detection of 
N-azidomyristoylated proteins with click chemistry.  (C) Detection of 
N-myristoyation with [3H]-myristic acid with an exposure time of 2 weeks.

NMT

Click
Alkyne-fluorophore

Protein with N-terminal glycine



68 
 

 
 

recently, the development of myristic acid analogs compatible with click chemistry has 

shortened this detection process to a few minutes (Figure 3.11 A) (Hang et al., 2007).  

To determine if the myristic acid analog 12-azidododecanoic acid (azidomyristate) was 

a comparable substrate to [
3
H]-myristic acid in T. cruzi, the two detection 

methodologies were directly compared.  Epimastigotes were labelled with 50 µM 

azidomyristate or 100 µCi ml
-1

 or myristic acid for 6 hours and samples subsequently 

processed and separated by SDS-PAGE and treated with 0.2 M KOH to remove O- and 

S-myristoylation.  A single faint band was detected in cells without azidomyristate 

above 49 kDa (Figure 3.11 B, lane 1), whilst >10 bands were observed in treated with a 

range of sizes (Figure 3.11 B, lane 2).  In comparison, parasites labelled with [
3
H]-

myristic acid displayed a slightly different pattern of N-myristoylation with bands at 

higher masses most notably absent (Figure 3.11 C).  However, the base-insensitive 

incorporation of azidomyristate into the epimastigote proteome suggests that these 

bands are N-myristoylated proteins.  

   

3.13 Inhibition of N-myristoylation in T. cruzi epimastigotes 

The direct inhibition of N-myristoylation in cells treated with this compound would 

confirm DDD85646 as a true TcNMT inhibitor.  With this in mind, the incorporation of 

the myristic acid analog azidomyristate into the epimastigote proteome was measured 

using click chemistry in the presence of the inhibitor (Figure 3.11 B).  Parasites were 

pre-incubated with DDD85646 at concentrations ranging from ~2-15 times the EC50 

value of WT cells to allow equilibration of the inhibitor into the parasite.  A single 

prominent band was detected at ~49 kDa in epimastigotes not labelled with 

azidomyristate, whilst multiple bands were observed in labelled cells in the absence of 

any drug (Figure 3.12 A lanes 1+2).  Increasing the inhibitor concentration produced a 
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Figure 3.12 Specific inhibition of N-myristoylation in epimastigotes
Mid-log epimastigotes were pre-incubated with various concentrations of 
DDD85646 (0-15 × EC50) and labelled with azidomyristate for 5h.  (A) 
N-myristoyalted proiteins were detected after click chemistry ligation of an 
alkyne dye onto N-azidomyristoylated proteins (upper panel) and nascent 
protein synthesis was assessed by L-[35S]-methionine labelling of parasites by 
autoradiography (lower panel).  Coloured circles highlight bands sensitive to 
treatment with DDD85646 that were quantified for panel B. (B) Reduced fluo-
rescence intensities as a function of DDD85646 concentration.
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dose-dependent depletion of six N-azidomyristoylated proteins that were detected and 

quantified by in-gel fluorescence (Figure 3.12 A, top panel lanes 3-6 and B).  The 

remaining bands were insensitive to DDD85646 treatment over incubation period of 5.5 

h, the cause of which is not known.  Parasites labelled with [
35

S] L-methionine 

confirmed that this effect was due to the direct inhibition of N-myristoylation in the 

parasite and not due to the interruption of nascent protein synthesis (Figure 3.12 A 

bottom panel).  These data provide the most conclusive evidence that DDD85646 acts 

via the chemical inhibition of TcNMT and cellular N-myristoylation.  

 

3.14 An alternative mechanism of DDD85646 in T. cruzi epimastigotes 

The evidence so far has shown DDD85646 to be a specific inhibitor of N-myristoylation 

in this parasite.  Morphological studies of T. brucei bloodstream form (BSF) parasites 

treated with this inhibitor showed a “Big Eye” phenotype caused by a massively 

enlarged flagellar pocket (Frearson et al., 2010).  To determine if this effect was 

observed in T. cruzi epimastigotes treated with 10 times the EC50 of the WT and stained 

with Giemsa prior to viewing by light microscopy.  After 72 hours, parasites appeared 

to have multiple flagella; however the nuclei and kinetoplasts of the parasites were not 

clearly resolved (Figure 3.13 A + B).  To investigate the hypothesis that the multiple 

flagella observed in drug treated parasites were as result of a cell cycle defect, treated 

cells were fixed at 24 h intervals and stained with DAPI to view nucleic acid containing 

organelles.  Slides were blinded prior to determining the parasites’ kinetoplast (K) and 

nuclei (N) numbers for control and DDD85646 treated epimastigotes (2 and 10 times 

the EC50).  Representative fluorescence and light microscopy images for 1K1N, 2K2N 

and 3K3N parasites are shown (Figure 3.13 C-E).  The accumulation of 2K2N WT and 

NMT
OE

 parasites was recorded at 2 times the EC50 revealing an increase in WT 2K2N 
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Figure 3.13 Inhibition of cytokinesis in |T. cruzi epimastigotes treated with 
DDD85646
Comparison of Geimsa staned epimastigotes treated  with DMSO (A) or 10 × 
EC50 of DDD85646 (B) after 48 hours.  Representative images of 1K1N (C), 
2K2N (D) and 3K3N (E) DAPI stained epimastigotes due to treatment with 
DDD85646.  Time resolved, accumulation of 2K2N parasites for WT and 
NMTOE parasites treated with 2 (F) and 10 × EC50 (G) of DDDD85646.  Popu-
lation profiles of 1K1N, 2K2N and >2K2N epimastigotes for incubations at 2 
(H) and 10 × EC50 (I) of DDD85646. 
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numbers at 72 h, with overexpression of NMT counteracting the build-up of these 

multinucleated cells (Figure 3.13 F).  This relationship also was evident in parasites 

treated with 10 times the EC50 of DDD85646, with the accumulation of 2K2N parasites 

appearing at 48 hours after addition of the drug in WT cells (Figure 3.13 G).  The drop 

in 2K2N WT parasites after 72 h at 10 times the EC50 was accompanied with an 

increase in cells containing greater than 2K2N (Figure 3.13 H) with the overexpression 

of NMT once again rescuing this phenotype (Figure 3.13 I).  Together, these results 

show the DDD85646 phenotype in T. cruzi epimastigotes is both dose-dependent and 

related to the expression levels of NMT and the morphological studies show the 

inhibition of N-myristoylation is associated with a failure to complete cytokinesis.  Due 

to poor selectivity of DDD85646 between host cell and intracellular parasites, it is not 

possible to determine if this drug acts via the same mechanism in the clinically relevant 

amastigote stage. 
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Chapter 4 

Characterising the N-myristoylome 
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Figure 4.1 Peptide substrate specificities of NMT homologs
Frequency Logo plots were generated for peptides capable of acting as 
substrates for AtNMT, HsNMT1, HsNMT2, ScNMT1 and PfNMT1.  Substrate 
specificities for these peptides was determined by a high-throughput assay and 
all substrates compared with each homolog.  The data for these plots were 
published by Traverso et al 2010.   



Table 4.1 Proteins predicted to be N-myristoylated with a high confidence using the program Myristoylator 
(ExPASy) from the T. cruzi reference proteome 

UniProt 
Accession 

Myr 
Score 

Protein names 

K4DUN8 0.978 Calpain cysteine peptidase, putative,cysteine peptidase, Clan CA, family C2, putative 
K4E5Y1 0.990 Cytoskeleton-associated protein CAP5.5, cysteine peptidase, Clan CA, family C2 
K4DSW1 0.982 Dynein heavy chain, putative 
K4DT87 0.982 Dynein heavy chain, putative 
K4E5P0 0.974 Fatty acyl CoA synthetase 2, putative 
K4EC28 0.986 Flagellar calcium-binding protein, putative 
K4E7U1 0.986 Flagellar calcium-binding protein, putative 
K4DYY3 0.981 Golgi reassembly stacking protein, putative 
K4E5W8 0.986 Mitotic centromere-associated kinesin (MCAK), putative 
K4E5P4 0.880 Monoglyceride lipase, putative 
K4E595 0.894 Nitrate reductase, putative 
K4DN46 0.976 Palmitoyltransferase (EC 2.3.1.-) 
K4E583 0.933 Phosphatase 2C, putative 
K4DSR7 0.989 Protein kinase, putative 
K4E6Q0 0.867 Protein kinase, putative 
K4DTB6 0.990 Protein phosphatase 2C, putative 
K4DV91 0.948 Serine/threonine-protein phosphatase (EC 3.1.3.16) 
K4E2R8 0.985 Succinate dehydrogenase flavoprotein subunit 
K4DRJ8 0.955 Trans-sialidase, putative 
K4DSE2 0.987 Trans-sialidase, putative 
K4DRN7 0.929 Trans-sialidase, putative 
K4DQ44 0.968 Trans-sialidase, putative (Fragment) 
K4DMQ6 0.968 Trans-sialidase, putative (Fragment) 
K4DL99 0.968 Trans-sialidase, putative (Fragment) 
K4DV27 0.982 Uncharacterized protein 
K4DTI6 0.905 Uncharacterized protein 
K4DUS5 0.865 Uncharacterized protein 
K4DWR5 0.988 Uncharacterized protein 
K4E6H0 0.980 Uncharacterized protein 
K4EAU1 0.983 Uncharacterized protein 
K4DNW0 0.988 Uncharacterized protein 
K4E2Y2 0.910 Uncharacterized protein 
K4DUB6 0.989 Uncharacterized protein 
K4E7W3 0.990 Uncharacterized protein 
K4EC81 0.968 Uncharacterized protein 
K4E955 0.989 Uncharacterized protein 
K4E3U8 0.990 Uncharacterized protein 
K4DYQ2 0.989 Uncharacterized protein 
K4DZT0 0.984 Uncharacterized protein 
K4E362 0.928 Uncharacterized protein 
K4DJS2 0.990 Uncharacterized protein 
K4E4Y5 0.989 Uncharacterized protein 
K4E1X7 0.975 Uncharacterized protein 
K4DZU1 0.856 Uncharacterized protein 
K4DTG5 0.955 Uncharacterized protein 
K4E8V8 0.976 Uncharacterized protein 
K4E943 0.989 Uncharacterized protein 
K4DWF7 0.988 Uncharacterized protein 
K4E8S3 0.912 Uncharacterized protein 
K4DUB9 0.987 Uncharacterized protein 
K4DTV5 0.963 Uncharacterized protein 
K4E818 0.988 Uncharacterized protein 
K4E5N2 0.990 Uncharacterized protein 
K4DLH0 0.969 Uncharacterized protein 
K4DSW4 0.990 Uncharacterized protein 
K4DW97 0.869 Uncharacterized protein 
K4DJU7 0.980 Uncharacterized protein 
K4DUK6 0.986 Uncharacterized protein 
K4DXT8 0.990 Zinc finger protein, putative 
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4.1 Bioinformatic prediction of the T. cruzi N-myristoylome  

Studies by Traverso have compared the differential peptide substrate specificities of 

NMT homologs from both higher and lower eukaryotes (Traverso et al., 2013).  The 

data from this study have been re-plotted to better illustrate these sometimes, subtle 

differences between the human, S. cerevisiae, P. falciparum and A. thaliana NMT 

homologs (Figure 4.1).  Whilst the majority of substrates are recognised across all 

NMTs, this trend most notably diverges between the substrates of higher and lower 

eukaryotes.  This is exemplified with a lower percentage of peptides containing 

asparagine in position 2 for lower eukaryotic NMT’s, whilst serine at position 5 

becoming slightly more common.   Despite this underlying substrate diversity, two 

programs, which predict the N-myristoylation of proteins, have been developed, using 

the substrate specificities from higher eukaryotes.  Previous work from Debbie Smiths 

lab (University of York) has predicted the N-myristoylome of the three-trypanosomatid 

parasites L. major, T. brucei and T. cruzi using a purely bioinformatic approach (Mills 

et al., 2007).  Following their analysis, they predicted L. major and T. brucei to have 

approximately 60 N-myristoylated proteins, whist T. cruzi was predicted to have ~123 

which they reasoned  was due to their use of the hybrid strain CL-Brenner which is 

known to have multiple gene isoforms (El-Sayed et al., 2005).   

To assess if this was true for a non-hybrid strain, the reference proteome 

containing the predicted proteins from Silvio X10/1 (Taxon: 5693) was analysed with 

Myristoylator (Expasy) for potentially N-myristoylated proteins.  This reference 

proteome consists of 10,805 sequences of which ~6.1% did not contain an N-terminal 

methionine.  These sequences were removed from the dataset and classified as 

missannotated or fragmented proteins.  Of the remaining sequences, 5.6% had a glycine 

following the initial methionine (subsequently referred to as ΔMG) and these sequences 

were analysed for N-myristoylation.  Out of 568 sequences, 98 were predicted to be N-
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Figure 4.2 Theoretical N-myristoylome
(A) Percentage of proteins predicted to be N-myristoylated with Myristoylator. (B) 
Confidence of N-myristoylation predictions for the 98 proteins, categorised into high, 
medium and low confidence groups.  Myristoylator scores of 0.85 of greater are 
classed as high confidence,  between 0.4-0.85 were medium and less than 0.4 are low 
confidence. 
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myristoylated with varying levels of confidence (Figure 4.2 A, B).  Analysis of this 

non-hybrid strain predicted 59 proteins to be N-myristoylated with a high confidence, 

similar to the number predicted for T. brucei 927 and L. major.  Both CAP5.5 and 

FCaBP, which are both known substrates for TcNMT were present in the bioinformatic 

predictions with a high confidence (Table 4.1).  However, the known N-myristoylated 

protein, phosphoinositide-specific phospholipase C (UniProt accessions: Q9TZN8, 

O96101, Q4DUP6) (Martins et al., 2010; Okura et al., 2005) was not present in the 

theoretical N-myristoylome due to its complete absence from the reference proteome.  

Despite the apparent incompleteness of the reference proteome, this bioinformatic 

approach has identified two known substrates of NMT with high confidence in addition 

to many uncharacterised proteins.  Whilst it is ultimately desirable to identify proteins 

that actually undergo N-myristoylation in the parasite, rather than rely upon predictions, 

this set of proteins can be used for future comparison with my experimentally 

determined N-myristoylome.  

 

4.2 Lifecycle N-myristoylation  

In the previous chapter (Section 3.12), epimastigotes were demonstrated to be able to 

utilise the myristic acid analog AzMyr to label specific proteins in the parasite.  Having 

also demonstrated that NMT is continuously expressed throughout the life cycle, N-

myristoylation in these clinically relevant stages was assessed using by click chemistry 

and in-gel fluorescence.  First N-myristoylation in the epimastigote and trypomastigote 

was compared side by side and whilst the majority of bands were identified in both 

stages, the relative intensities of several of these differed (Figure 4.3A, upper panel).  

Coomassie staining of the gel also revealed minor differences in the proteome between 

these two stages (Figure 4.3A, lower panel).  Whilst the presence of N-myristoylation 



Figure 4.3 Lifecycle N-myristoylation
Comparison of N-myristoylation in epimastigotes, trypomastigotes and amastigotes 
after AzMyr labelling (upper panel).  Coomassie stainied gel (lower panel).  Com-
parison of epimastigotes vs trypomastigotes (A).  Comparison of epimastigotes and 
amastigotes (B).
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in the non-dividing trypomastigote stage was not entirely unexpected, as they undergo 

protein synthesis, the result both demonstrates a stage-specific regulation of this 

modification and shows it to be a dynamic process that is independent of cell division.  

Similarly, amastigotes were able to incorporate AzMyr with a similar efficiency to the 

epimastigote and trypomastigote forms (Figure 4.3B).  However, the bands were not as 

distinct as the comparison of the epimastigote and trypomastigote, which may be due to 

possible proteolytic degradation, for instance the band at 49 kDa decreases to ~35 kDa.  

Despite this, the pattern of N-myristoylation appears to highly similar between the two 

epimastigote experiments.  Together with the data from the previous chapter (Section 

3.5), this demonstrates that the enzyme is functional throughout the lifecycle of the 

parasite. 

 

4.3 Turnover of N-myristoylated proteins 

A literature review has revealed a scarcity of information relating to the de-

myristoylation of proteins, with only two characterised enzymes having been reported 

to carry out this process (Burnaevskiy et al., 2013; Misumi et al., 1995).  Additionally 

the cytoplasmic fraction of brain synaptosomes has also been reported to de-

myristoylate the myristoylated alanine-rich c kinase substrate (MARKS) in vitro; 

however, the identity of this enzyme or complex has not yet been elucidated (Manenti et 

al., 1995).  The 26S proteasome inhibitor MG132 was used to probe if de-

myristoylation in T. cruzi is enzyme specific or if it is related to the proteasome 

mediated turnover of N-myristoylated proteins.  In a pulse chase labelling experiment, 

epimastigotes were labelled with AzMyr as described earlier (Figure 3.11B) for 4 hours 

to allow the incorporation of the analog into the proteome.  Parasites were washed into 

medium supplemented with myristic acid to outcompete any residual AzMyr in the cell 



1 2 3 4 1 2 3 4
A B

Figure 4.4 Turnover of N-myristoylated proteins
The depletion of N-azidomyristoylated proteins was monitored in the presence and 
absence of the proteasome inhibitor MG132.  Epimastigotes were labelled for  2 h 
with AzMyr and a lysate prepared (lane 2).  Following the labelling period, cells were 
incubated in the presence and absence of MG132 (Lanes 3 + 4 respectivley).  
N-myristoylated proteins were visualised using click chemistry and in-gel fluorecence 
(A).  Loading was revealed by coomassie blye staining of the gel after imaging (B).
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and then treated with or without MG132 for a further 4 hours.  N-myristoylation was 

assessed by click chemistry and in-gel fluorescence as before. As previously observed, 

there was only one significant band detected in control cells in the absence of AzMyr 

(Figure 4.4A, lane 1).  The shorter labelling pulse used in this experiment did not 

significantly alter the number N-myristoylated bands identified when compared to the 

prior experiment using a 6-h labelling, also detecting ~10 bands (Figure 4.4A, lane 2).  

In parasites chased with myristic acid and treated with MG132, the fluorescence 

intensities of the bands remained broadly unchanged in comparison with labelled 

parasites (Figure 4.4A, lanes 2+3).  However, in the presence of myristic acid and the 

absence of MG132, the band intensities decreased proportionally with the length of 

chase, when compared to inhibitor-treated cells (Figure 4.4A, lanes 3+4).  The gel was 

then stained with coomassie blue and analysed by fluorescence for equal loading.  

Whilst there were minor differences in loading between lanes, this was not able to 

account for the decrease in N-myristoylated proteins detected in the absence of MG132 

(Figure 4.4B).  Collectively the data show that the loss of myristoylated protein is 

primarily coupled to proteolytic turnover via the 26 S proteasome, because treatment 

with MG132 was able to abolish this effect.   

 

4.4 N-myristoylation is co-translational 

N-myristoylation has been described to occur both co- and post-translation (Section 

1.4.1).  The stage at which myristic acid is incorporated into the T. cruzi proteome was 

determined by detecting AzMyr labelling in the presence and absence cycloheximide, 

an inhibitor of nascent protein synthesis (Ennis and Lubin, 1964).  Epimastigotes pre-

incubated with cycloheximide before the addition of AzMyr were unable to incorporate 

the label to the same level as the seen in the untreated control (Figure 4.5 A, top).  
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Figure 4.5 Effect of cycloheximide on N-myristoylation 
Epimastigotes (A) and trypomastigotes (B) were treated with azidomyristate in the 
presence and absence of cycloheximide.  Detecting the incorporation of azidomyristate 
by click chemistry using in-gel fluorescence (upper pannels) or the incorporation of 
L-[35S]-methionine by autoradiography (lower pannels). 
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Whilst the labelling of several bands were abolished to below the detection limit, two 

prominent bands were observed in the cycloheximide treated cells suggesting that either 

nascent protein synthesis was not completely inhibited, or that a subset of proteins are 

modified post-translationally.  Assessment of the former hypothesis was carried out in 

parallel with the click chemistry labelling experiment by measuring the incorporation of 

L-[
35

S]-methionine.   The pre-incubation with cycloheximide was able to almost 

completely, interrupt nascent protein synthesis (Figure 4.5 B, bottom).  The same 

observations were also made in the trypomastigote stage of the parasite, where the 

incomplete inhibition of N-myristoylation did not correlate with the abolition of protein 

synthesis (Figure 4.5 B).  Whilst the data support the theory that the N-myristoylation 

of some proteins may occur post-translationally, it is clear that the majority of proteins 

are co-translationally, N-myristoylated in this parasite.  A repeat of this experiment in 

the presence and absence of an NMT inhibitor would confirm if this modification is 

carried out by NMT.    

 

4.5 Growth of T. cruzi epimastigotes in azidomyristate 

In the previous chapter, the enzyme N-myristoyltransferase was validated as a potential 

drug target against T. cruzi and the results outlined in this chapter has shown this 

process occurs throughout all stages of the parasite.  In an attempt to reconcile the 

mechanism of action of DDD85646 against epimastigotes as well as identifying new 

potential drug targets, the experimental identification of the parasites N-myristoylome 

was carried out using a click chemistry, enrichment approach.  Two studies in the 

related parasite T. brucei have found myristic acid analogues to be toxic to the cell 

(Doering et al., 1994; Doering et al., 1991).  Although no noticeable defect was 

observed in T. cruzi after labelling for 6 h with AzMyr, the toxicity was determined 



Time, h
0 20 40 60 80

P
ar

as
ite

s,
 m

l-1

0

62 x 10

64 x 10

66 x 10

68 x 10

710

71.2 x 10

1 x 10

Figure 4.6 Proliferation of T. cruzi parasites in the presence of AzMyr
The doubling of epimastigotes cultured in the absence (Open circles) and presence 
(closed circles) of 50 µM AzMyr was monitored for 72 h.  Parasites were cultured 
in RTH/FCS and counted with a Neubauer haemocytometer.  Data is plotted as the 
mean of three independent cultures ± standard deviation.   
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against the epimastigote stage over an extended time-period by monitoring the 

proliferation of the parasites was monitored in the presence of 50 µM AzMyr over 72 h 

(Figure 4.6).   Growth was unaffected over the first 27 h, but was slowed thereafter, 

indicating the toxic effect of this analog against the parasite.  Nonetheless, 20 h 

exposure would allow an almost complete single population doubling of the parasites, 

which in theory would allow the labelling of any proteins that may be related to the cell 

cycle.     

 

4.6 Label free analysis of the N-myristoylome 

There have been vast improvements in the field of proteomics over the past decade, 

allowing the identification of specific proteins from complex mixtures, or peptides 

covering several orders of magnitude in abundance, see review (Yates et al., 2009).  

Despite these advances, it is still common practice to carry out an enrichment step prior 

to identifying the digested peptides by mass spectrometry, as this can increase the 

number of proteins identified from a highly complex mixture.  As all stages of the 

parasite were able to incorporate AzMyr into the N-myristoylome, this analog was used 

to label and directly capture these proteins from epimastigotes onto an alkyne-

functionalised resin using click chemistry (Figure 4.7).  Since the number and 

intensities of the bands measured by in-gel fluorescence varied very little between the 

lifecycle stages, the epimastigote N-myristoylome was chosen as they are readily 

cultured to high densities and the relative toxicity could be determined.  In addition, as 

epimastigotes undergo cell division this could lead to the identification of proteins that 

may be related to the cell cycle, which are unlikely to be affected in the non-dividing 

trypomastigote stage.  
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Figure 4.7 Enrichement strategy for identifying the N-myristoylome
(A)  N-azidomyristoylated proteins from whole cell lysates were directly captured onto 
an alkyne-agarose resin using click chemistry.  Stringent washing of the resin under 
denaturing conditions was designed to remove non-specific contaminanting proteins.   
The captured proteins were digested on-resin with trypsin yielding tryptic peptides for 
identification by LC-MS/MS.  The N-azidomyristoylated peptide is retained on the 
agarose and could not be identified by mass spec.  (B)  An annotated example of a 
MS/MS spectrum matching a the peptide AATAVEVVEAMGYQAR from the unchar-
acterised protein Q4DLX6.  Matching b and y ions have been annotated on the peptide 
sequence.  
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Parasites cultured in normal RTH/FBS medium were labelled with 

azidomyristate or myristic acid over 20 h, based on the previous experiment showing 

that no adverse growth effects were observed up to this point (Figure 4.6).  Whole cell 

lysates of both labelled and unlabelled parasites were enriched by click chemistry onto 

an alkyne agarose resin overnight.  This allows N-azidomyristoylated proteins to be 

captured in labelled cells and to filter out non-specific interactions in the unlabelled 

sample.  After enriching equal amounts of the lysates, samples were stringently washed 

to remove non-specifically interacting proteins.  Hydroxylamine treatment of the resin 

removed S-myristoylated proteins prior and subsequent to reductive alkylation of the 

immobilised proteins with iodoacetamide, blocked cysteine residues for analysis by 

mass spectrometry.  Additional, high stringency washes were included to remove any 

remaining contaminant proteins.  Proteins were digested on-resin and the recovered 

peptides were analysed by liquid chromatography coupled to tandem mass spectrometry 

(LC-MS/MS) (Figure 4.7A).  A representative, high-confidence peptide identification 

resulting from the LC-MS/MS experiments is shown mapped with the detected b and y 

ions matching the theoretical tandem mass spectra of the peptide (Figure 4.7B). 

The enrichments were analysed by comparison of the label free quantitation 

intensities (LFQ) calculated by MaxQuant (Luber et al., 2010).  This method relies 

upon the measurement of the precursor ion intensities of identified peptides between 

two independent mass spec runs, in this case between the control and AzMyr labelled 

enrichments.  Owing to the incompleteness of the reference proteome (Section 4.1) 

tryptic MS/MS spectra were searched against the complete T. cruzi proteome consisting 

of 30,047 sequences from Cl-Brenner, Silvio X10/1 and Marinkellei sequences to 

maximise the number of hits.  Protein identifications were required to have a minimum 

of two matched peptides, one of which was required to be unique.  Using these criteria 

424, 372 and 106 proteins were identified from three biological replicates.  LFQ values 
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Figure 4.8 Label-free enrichment of the epimastigote N-myristoylome 
LFQ analysis of the enrichment of N-azidomyristoylated from three independant 
biological replicates (A, B and C). Log2 LFQ ratio changes are plotted against the 
-Log10 of posterior error of probability (PEP).  Green circles represent enriched 
proteins (>10 Log2) from each replicate.  Black circles are proteins that are unen-
riched or negativeley enriched. (D) Number of proteins common to all three label-
free enrichment experiments.  
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Table 4.2 List of enriched proteins from 3 label-free experiments. 

UniProt 

Accession 

First 2 

aa’s 

Protein names 

Q4DZP2 MG 60S ribosomal protein L18 

Q4D7Y8 MG ADP-ribosylation factor 1, putative 

Q4DZM9 MG ADP-ribosylation factor-like protein, putative 

Q4CW64 MG Calpain-like cysteine peptidase, putative 

Q4CV42 MG Calpain-like cysteine peptidase, putative 

Q4E2W1 ML Cystathionine beta-synthase (EC 4.2.1.22) 

Q4E5Z7 MA Cytochrome c oxidase copper chaperone, putative 

K4E5Y1 MG Cytoskeleton-associated protein CAP5.5, putative,cysteine peptidase,  

K4DT87 MG Dynein heavy chain, putative 

K4E5P0 MG Fatty acyl CoA synthetase 2, putative 

K4E1L2 MG Fatty acyl CoA synthetase, putative 

K4EAZ1 VC Flagellar calcium-binding protein, putative (Fragment) 

K4DY43 MS Gim5A protein, putative,glycosomal membrane protein, putative 

K4E595 MG Nitrate reductase, putative 

K4E583 MG Phosphatase 2C, putative 

Q4D0B9 MG Proteasome regulatory ATPase subunit 2, putative 

K4DTB6 MG Protein phosphatase 2C, putative 

Q4E4N2 MG Protein phosphatase, putative 

Q4DRI6 MG Putative uncharacterized protein 

Q4E5H8 MS Ribosomal protein 

Q4DFP3 ME Uncharacterized protein 

Q4E2Z0 MG Uncharacterized protein 

K4DWR5 MG Uncharacterized protein 

Q4DPA5 MG Uncharacterized protein 

K4E955 MG Uncharacterized protein 

K4DJS2 MG Uncharacterized protein 

K4E1X7 MG Uncharacterized protein 

K4DXD3 MG Uncharacterized protein 

K4E189 MG Uncharacterized protein 

K4E8V8 MG Uncharacterized protein 

K4E943 MG Uncharacterized protein 

Q4DLX6 MG Uncharacterized protein 

K4DWF7 MG Uncharacterized protein 

Q4DVL2 MG Uncharacterized protein 

Q4D708 MG Uncharacterized protein 

Q4DXG4 MG Uncharacterized protein 

Q4DDD2 MG Uncharacterized protein 

K4DQN8 MG Uncharacterized protein 

K4DZS1 MG Uncharacterized protein 

K4E5N2 MG Uncharacterized protein 

Q4CWV8 ML Uncharacterized protein 

K4E0P3 MM Uncharacterized protein 

K4E0J9 MR Uncharacterized protein 

K4DX27 MS Uncharacterized protein 

K4E681 MS Uncharacterized protein 

K4E3X3 MY Uncharacterized protein 

K4EE92 KG Uncharacterized protein (Fragment) 

Q4D6T7 MA Universal minicircle sequence binding protein (UMSBP) 
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from all experiments were all increased by 1 intensity value to avoid the generation of 

infinite values when LFQ enrichment ratios (LFQ
AzMyr

/LFQ
Myr

) were calculated.  This 

artefact is produced where a protein is identified in one experiment but not another.  

Log2 LFQ changes for each replicate were plotted against –Log10 posterior error of 

probability (PEP) and proteins with >10-fold enrichment selected for further analysis 

(Figures 4.8 ABC).  Using this cut-off, 245, 274 and 80 proteins were deemed to be 

enriched, with 48 proteins consistently found to be enriched across all replicates 

(Figure 4.8D, Table 4.2).  Whilst replicates one and two share the highest similarity 

with each other, the percentage of 
Δ
MG proteins identified were both lower than 

observed in the third experiment (28.6%, 28.8% and 43.8% respectively).  Combining 

the proteins across the three experiments greatly increased the specificity from 24-36% 

to ~71% (Table 4.2).  The use of hydroxylamine rather than KOH precludes the 

elimination of O-myristoylated proteins from the dataset.  Whilst LFQ analysis has 

provided a relatively robust identification of the parasite’s N-myristoylome, a further 

two experiments were carried out using stable isotope labelling to rule out errors in the 

handling and processing of the sample. 

 

4.7 SILAC N-myristoylome 

Despite the many merits offered by label-free proteomic quantitation, it is not suitable 

for the accurate quantification of expression changes for several reasons.  The 

development of stable isotope labelling of amino acids in cell culture (SILAC) can rule 

out many of the experimental errors associated with the parallel preparation of samples 

(Ong et al., 2002).  Ultimately, allowing for a higher accuracy in the calculated 

expression changes than currently offered by relative label-free quantitation.  The 

RTH/FBS medium used for the general culturing of epimastigotes is highly undefined 



Figure 4.9 SILAC N-myristoylome
(A)  Growth of T. cruzi epimastigotes in SDM-79 heavy (closed circles) and light (open 
circles) media.  (B)  Growth of epimastigotes in the presence (closed) and absence 
(open) of 50 µM AzMyr in SDM-79 medium.  (C+D)  Enrichment of 
N-azidomyristoylated proteins from light and heavy labelled epimastigotes.  (C) 
AzMyr labelling of light parasites.  (D) AzMyr labelling of heavy parasites.  Enriched 
proteins are marked by black circles. 
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due to the presence of trypticase (a pancreatic digest) and FBS, which both contain 

unknown concentrations of amino acids, thus making it unsuitable for use with SILAC.  

Previous work from our lab has demonstrated that these parasites can be cultured in the 

more chemically defined SDM-79 medium, which is more commonly used for the 

culture of procyclic forms of T. brucei (Greig et al., 2009).  Recently, a version of this 

medium compatible with SILAC has successfully used for studies in T. brucei 

(Urbaniak et al., 2012; Urbaniak et al., 2013).  Initial attempts to adapt epimastigotes 

for growth in this medium were not very successful, however supplementing the media 

with 100 µM putrescine aided the growth of these parasites since T. cruzi is auxotrophic 

for polyamines (Hunter et al., 1994).  Cells were labelled in light or heavy isotopically 

labelled mediums for 10 population doublings to allow for the complete incorporation 

of heavy labelled amino acids into protein.  Growth studies of parasites in the heavy 

SDM-79 medium revealed the cells became more sensitive to azidomyristate, so the 

labelling period was shortened to 12-h (Figure 4.9B).  Parasites were counted and 

mixed in a 1:1 ratio prior to washing away unincorporated label and lysates from 4 × 

10
9 

cells were processed as described for label-free click chemistry.  Two independent 

SILAC enrichments were carried out with the labels swapped between each experiment.  

Whilst the heavy to light ratios H/L for the first experiment were almost centred over a 

Log2 value of 0 indicating equal mixing, the second biological replicate of including the 

label swap was not (Figures 4.9C+D).  MaxQuant is able to calculate the normalised 

SILAC ratios based upon the principle that the abundance of the majority of protein for 

any given treatment should be unaffected and thus will be normally distributed around a 

Log2 of zero.  Applying this normalisation approach to the second set of data, failed to 

normalise the data and produced a standard distribution with no enrichment.  Proteins 

with log2 values less than 2 in the first experiment or greater than 1 in the second 

experiment were deemed to be enriched.  From the 108 and 85 enriched proteins 



Table 4.3 List of proteins enriched from 2 SILAC labelled samples and their predicted starting amino acids.  

UniProt 

Accession 

First 2 

aa’s 

Protein names 

Q4D7Y8 MG ADP-ribosylation factor 1, putative 

Q4DPJ1 MG ADP-ribosylation factor, putative 

Q4DZM9 MG ADP-ribosylation factor-like protein, putative 

K4DUN8 MG Calpain cysteine peptidase, putative,cysteine peptidase 

Q4CW64 MG Calpain-like cysteine peptidase, putative 

Q4CV42 MG Calpain-like cysteine peptidase, putative 

K4E5Y1 MG Cytoskeleton-associated protein CAP5.5, putative,cysteine 

K4DT87 MG Dynein heavy chain, putative 

K4E5P0 MG Fatty acyl CoA synthetase 2, putative 

K4E8Y0 MP I/6 autoantigen, putative 

K4E595 MG Nitrate reductase, putative 

K4EEE5 MS Oxidoreductase, putative 

K4E583 MG Phosphatase 2C, putative 

K4E1B3 MG PIF1 helicase-like protein 

Q4DZR8 MC Procyclic form surface glycoprotein, putative 

Q4D0B9 MG Proteasome regulatory ATPase subunit 2, putative 

K4DTB6 MG Protein phosphatase 2C, putative 

Q4E4N2 MG Protein phosphatase, putative 

Q4DRI6 MG Putative uncharacterized protein 

K4DTV7 MR Surface protease GP63, putative 

Q4DP22 MK Thioredoxin, putative 

K4DVP7 MY Trans-sialidase, putative 

K4DVI8 MG Ubiquitin carboxyl-terminal hydrolase (EC 3.4.19.12) 

K4DP88 MF Uncharacterized protein 

K4DV27 MG Uncharacterized protein 

K4E6H6 MG Uncharacterized protein 

Q4E2Z0 MG Uncharacterized protein 

K4DWR5 MG Uncharacterized protein 

K4E6H0 MG Uncharacterized protein 

Q4DPA5 MG Uncharacterized protein 

K4E955 MG Uncharacterized protein 

Q4CZT4 MG Uncharacterized protein 

K4EC97 MG Uncharacterized protein 

K4DJS2 MG Uncharacterized protein 

K4E1X7 MG Uncharacterized protein 

K4DXD3 MG Uncharacterized protein 

K4E189 MG Uncharacterized protein 

K4E8V8 MG Uncharacterized protein 

K4E943 MG Uncharacterized protein 

Q4DLX6 MG Uncharacterized protein 

K4DWF7 MG Uncharacterized protein 

Q4DVL2 MG Uncharacterized protein 

Q4DXG4 MG Uncharacterized protein 

Q4DDD2 MG Uncharacterized protein 

K4DQN8 MG Uncharacterized protein 

K4E818 MG Uncharacterized protein 

K4DZS1 MG Uncharacterized protein 

K4E5N2 MG Uncharacterized protein 

Q4DEK1 MK Uncharacterized protein 

Q4CWV8 ML Uncharacterized protein 

K4E0P3 MM Uncharacterized protein 

K4E948 MP Uncharacterized protein 

K4E6B5 MP Uncharacterized protein 

K4EBF6 MR Uncharacterized protein 

Q4DDT2 MR Uncharacterized protein 

K4E0J9 MR Uncharacterized protein 

K4DX27 MS Uncharacterized protein 

Q4DEA8 MS Uncharacterized protein 

Q4DQE0 MW Uncharacterized protein 

K4E3X3 MY Uncharacterized protein 

K4EE92 KG Uncharacterized protein (Fragment) 

Q4DDN8 MP Vesicle-associated membrane protein, putative 

K4DXT8 MG Zinc finger protein, putative 
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identified from the two replicates, 63 were found in both experiments (Figure 4.9, 

Table 4.3).  Similar to the label-free experiments the enrichment of ΔMG containing 

proteins were 44 and 65 % respectively.  After combining the two replicates this value 

marginally increased to 67 %.  Despite the different labelling conditions used in the 

enrichment of the N-myristoylome for SILAC and label-free analyses, 37 proteins were 

found to be consistently enriched (Table 4.3).  It was noted that the flagellar calcium 

binding protein is absent.  This is due to there not being enough H/L counts to 

accurately quantify the abundance of heavy and light peptides. Proteins present in both 

types of experiment are most likely to form the core N-myristoylome of the parasite.    

 

4.8 Polymyxin acylase digestion 

The data so far have identified 48 and 63 proteins in the label free and isotopically 

labelled experiments.  Whilst the direct immobilisation approach used in the enrichment 

was intended to reduce the number of contaminating proteins, by allowing high 

stringency washing.  The immobilised N-azidomyristoyl-glycine peptide is always 

retained on the resin after digestion.  There are two known enzymes that can carry out 

de-myristoylation, polymyxin acylase isolated from Pseudomonas sp. M-6-3 and factor 

invasion plasmid antigen J (IPAJ) from Shigella flexneri (Burnaevskiy et al., 2013; 

Misumi et al., 1995).  In an attempt to identify the myristoylated peptides that are 

covalently attached to the resin, post-tryptic resin was treated with polymyxin acylase 

and the extracted peptides identified by LC-MS/MS from both SILAC enrichments.  

However, whilst peptides were recovered from both replicates (6 and 9 respectively), 

only two contained an N-terminal glycine that also matched the N-myristoylome (Table 

S1).  The rest of these peptides did not match proteins enriched in all replicates and their 

identification was probably a result of carryover from the initial experiments, despite 



Figure 4.10 Proteomic analysis of AzMyr treated parasites
Epimastigotes grown in heavy and light SDM-79 medium and treated with and without 
AzMyr for 12 h.  Parasites were mixed in a 1:1 ratio,  and proteomic analysis was 
carried out on whole cell lysates after in-gel digestion.  (A) DMSO treated light and 
heavy parasites.  (B) AzMyr treated heavy parasites.  (C) AzMyr treated light parasites.
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extensive washing.  These data shows that polymyxin acylase is not efficient at de-

acylating, click-immobilised acyl peptides.  One possible reason is that the presence of 

the resin inhibits the activity of this enzyme by steric hindrance.  

 

4.9 Proteomic analysis of azidomyristate treated parasites 

Earlier in this thesis (Section 4.5), incubation with azidomyristate was shown to have a 

negative effect on the proliferation of these parasites after 12-27 h.   To see if these 

labelling conditions were producing large scale proteomic changes and thus artificially 

be altering the N-myristoylome, whole cell lysates of SILAC parasites that had been 

treated with or without azidomyristate and then mixed in a 1:1 ratio were analysed by 

tryptic mass fingerprinting.  Datasets were processed as described for the N-

myristoylome with minor modifications for Myr and AzMyr see below to look for large 

changes in H/L protein ratios.  Labelling of parasites with AzMyr did not appear to 

produce any large changes in the detected proteome by mass spectrometry (Figure 4.10 

A-C).  Whilst complete coverage of the T. cruzi proteome was not achieved, more than 

1000 proteins were identified across the two biological replicates and the control 

sample.  Subsequently the combined proteomic dataset was searched for the presence 

myristate and azidomyristate modified peptides (Mass changes of +211.2 Da and 

+223.1 Da respectively).  This analysis identified 4 peptides across the three replicates 

to be N-myristoylated and 2 to be N-azidomyristoylated (Table S2).  Comparing these 

proteins with mapped, modified peptides with those proteins identified from the click 

chemistry enrichments found 1 to be common to both datasets, identified as the calpain-

like cysteine peptidase peptide GCGASSKPSTVEYK (Q4CW64).  This finding 

validates the logic underpinning the enrichment process carried out prior to identifying 

the N-myristoylome (Sections 4.6 and 4.7) whilst confirming the N-myristoyl-peptide 



Table 4.4 List of proteins enriched in all SILAC and label-free experiments.  Those highlighted in red are not 

predicted to start with MG a requirement for co-translational N-myristoylation.  Proteins with homologs that 

are known to be N-myristoylated are indicated.   

UniProt Protein names N-myristoylated in Ref 

Q4D7Y8 ADP-ribosylation factor 1 C. albicans, S. cerevisiae  (Liu et al., 2009; Lodge et al., 1997) 

Q4DZM9 ADP-ribosylation factor-like protein T. brucei  

Q4CW64 Calpain-like cysteine peptidase L. major (Tull et al., 2004) 

Q4CV42 Calpain-like cysteine peptidase L. major (Tull et al., 2004) 

K4E5Y1 Cytoskeleton-associated protein 

CAP5.5 

T. brucei  (Hertz-Fowler et al., 2001) 

K4DT87 Dynein heavy chain, putative   

K4E5P0 Fatty acyl CoA synthetase 2, putative   

K4EAZ1 Flagellar calcium binding protein T. cruzi, T. brucei (Godsel and Engman, 1999) 

K4E595 Nitrate reductase, putative   

K4E583 Phosphatase 2C, putative   

Q4D0B9 Proteasome regulatory ATPase subunit 

2, putative 

S. cerevisiae  (Kimura et al., 2012) 

K4DTB6 Protein phosphatase 2C, putative   

Q4E4N2 Protein phosphatase, putative   

Q4DRI6 Putative uncharacterized protein   

Q4E2Z0 Uncharacterized protein   

K4DWR5 Uncharacterized protein   

Q4DPA5 Uncharacterized protein   

K4E955 Uncharacterized protein   

K4DJS2 Uncharacterized protein   

K4E1X7 Uncharacterized protein   

K4DXD3 Uncharacterized protein   

K4E189 Uncharacterized protein   

K4E8V8 Uncharacterized protein   

K4E943 Uncharacterized protein   

Q4DLX6 Uncharacterized protein   

K4DWF7 Uncharacterized protein S. cerevisiae (FRQ1)  

Q4DVL2 Uncharacterized protein   

Q4DXG4 Uncharacterized protein   

Q4DDD2 Uncharacterized protein   

K4DQN8 Uncharacterized protein   

K4DZS1 Uncharacterized protein   

K4E5N2 Uncharacterized protein   

Q4CWV8 Uncharacterized protein   

K4E0P3 Uncharacterized protein   

K4E0J9 Uncharacterized protein   

K4DX27 Uncharacterized protein   

K4E3X3 Uncharacterized protein   

K4EE92 Uncharacterized protein (Fragment)   

 

 

 

 

 

 

 

 

 

 



Figure 4.11  Multiple sequence alignments of homologous  proteins identified by 
BLAST.  Possible alternative start sites are highlighted by the red boxes.  (A) Align-
ment of the misannotated flagellar calcium binding protein (*) with other T. cruzi 
species. (B-D) Alignment of  multiple uncharacterised proteins with alternative anno-
tated T. cruzi isoforms. (*) indicates the top ranked protein identified from all biological 
replicates.
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of several proteins, something that we were unable to achieve with the secondary 

digestion with polymyxin acylase (Section 4.8).  Combined with the enrichment 

experiments, we have also experimentally identified 1705 proteins of the Silvio X10/7A 

epimastigote proteome.  

  

4.10 Bioinformatic analyses of consistently enriched proteins 

Earlier in this chapter, 48 and 63 proteins were consistently enriched by pulling down 

N-azidomyristoylated proteins.  Although these experiments were carried out under 

differing labelling conditions and these lists should be considered separately, combining 

these lists finds 38 proteins to be consistently enriched across all 5 biological replicates 

(Table 4.4).  For the purpose of this list, the known N-myristoylated protein the 

flagellar calcium binding protein has been included in this list as whilst it was identified 

in all 5 replicates, it could not be accurately quantified in the SILAC experiments due to 

the stringency settings.  In this combined N-myristoylome, 82% of proteins were 

annotated to start with MG.  A closer inspection of this list found there to be incorrectly 

annotated sequences associated with UniProt accession numbers such as the 

uncharacterised protein fragment K4EE92 and the flagellar calcium binding protein 

which were predicted to start with lysine and valine respectively.   With the current 

understanding of protein synthesis, this should not be possible as there is no initiator 

methionine annotated.  As a result, these sequences were BLAST searched against other 

T. cruzi sequences to identify the possibility that the start sites of these sequences had 

been missannotated (Figure 4.11 A+B).  Both proteins were found to have downstream 

MG sequences after alignment suggesting that these proteins, one of which is already 

known to be N-myristoylated, undergo N-myristoylation.  To see if the other 5 non-MG 

sequences were also missannotated, alignments with other the other T. cruzi strains 
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suggested that 2 additional proteins appear to be missannotated, as they both were 

predicted to have downstream MG sequences (Figure 4.11 C-D).  The incorrect 

annotation of start codons has previously been reported in T. brucei using a 

transcriptomics approach (Kolev et al., 2010).  The remaining 3 sequences were not 

predicted to be missannotated by this method.  One possible explanation is that these 

non-MG proteins may have GPI anchors that have incorporated AzMyr, as this type of 

modification requires base treatment to remove.  To test this, the sequences were 

analysed using the big-PI Predictor (http://mendel.imp.ac.at/sat/gpi/gpi_server.html), 

but, these sequences were predicted not to have this modification. Another explanation 

is that these proteins are modified post-translation with proteolytic cleavage exposing an 

internal glycine for modification, or the incomplete removal of S-myristoylated proteins 

from the dataset.  Finally, these proteins may just have a natural affinity for the agarose 

resin used for the enrichments, explaining their consistent identification.  In summary, 

this increases the number of N-myristoylated proteins in the epimastigote to 35.  

The theoretical masses of the constantly enriched proteins, correlated well with 

the size distribution of the N-myristoylated proteins detected by in-gel fluorescence 

(Figures 3.11 B and 4.12A) with the majority of enriched proteins have a mass less 

than 60 kDa.  Due to the use of two different experimental approaches to identify N-

myristoylated proteins and the differences between the complete and reference 

proteomes. It has not been possible to directly compare, the theoretical and experimental 

N-myristoylomes.  To determine the accuracy of Myristoylator and the NMT predictor 

to predict the N-myristoylome of T. cruzi, the enriched proteins were run through the 

programs.  Incorrectly annotated proteins had their downstream MG sequences used in 

place of their annotated start sequence.  Both Myristoylator and the NMT predictor 

(Eukaryota setting) produced similar numbers of high confidence predictions whilst the 

fungi setting predicted a lower number. However, unanimous predictions were only 

http://mendel.imp.ac.at/sat/gpi/gpi_server.html


Table 4.5 The analysis of experimentally verifie4d N-myristoylated proteins present in all 5 biological 

replicates using Myristoylator and both settings of the NMT predictor. Proteins not predicted to start with 

MG are highlighted in red.  Number of proteins predicted at each confidence level listed below. 

UniProt accession Myristoylator NMT predictor 

(Eukaryota) 

NMT predictor 

(Fungi) 

Q4D7Y8 High No No 

Q4DZM9 Medium Twilight Yes 

Q4CW64 High Yes Yes 

Q4CV42 High Yes Yes 

K4E5Y1 High Yes Yes 

K4DT87 High Yes Yes 

K4E5P0 High Twilight Yes 

K4EAZ1 High Yes Yes 

K4E595 High Yes Yes 

K4E583 High No No 

Q4D0B9 Low No No 

K4DTB6 High  No No 

Q4E4N2 No prediction No No 

Q4DRI6 High Twilight Twilight 

Q4E2Z0 Low Yes No 

K4DWR5 High Yes Twilight 

Q4DPA5 High Yes Yes 

K4E955 High Yes Yes 

K4DJS2 High Yes Yes 

K4E1X7 High Yes Twilight 

K4DXD3 No prediction No No 

K4E189 No prediction No No 

K4E8V8 High Yes Yes 

K4E943 High Yes Twilight 

Q4DLX6 No prediction Twilight No 

K4DWF7 High  Yes Yes 

Q4DVL2 No prediction Twilight Twilight 

Q4DXG4 No prediction Twilight Twilight 

Q4DDD2 High  Yes Yes 

K4DQN8 No prediction Twilight Twilight 

K4DZS1 No prediction Yes Yes 

K4E5N2 High  Yes Yes 

Q4CWV8 No MG No MG No MG 

K4E0P3 No MG No MG No MG 

K4E0J9 No MG No MG No MG 

K4DX27 No prediction No No 

K4E3X3 No prediction No No 

K4EE92 No prediction Yes No 

High confidence 21 19 16 

Med/low/twilight 3 7 7 

No prediction 11 9 12 
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made in 51% of cases, of which 14% of this subproteome was consistently predicted 

not to undergo this modification (Table 4.5).  Taking into account all confidence level 

predictions, the NMT predictor (Eukaryota setting) had the highest rate of predictions 

that were consistent with the experimental evidence. 

A consensus N-myristoylation sequence was generated using the 35 proteins that 

started, or were predicted to start with an MG using WEBLOGO 

(http://weblogo.berkeley.edu/logo.cgi) (Figure 4.12B http://weblogo.berkeley.edu/).  

Analysis of this motif revealed several amino acids were tolerated at positions 2-4 with 

serine being the most common at position 5, followed by K, R or S at position 6.  

Similarly, a diversity of amino acids were tolerated after this position.  Below is the 

consensus sequence for the N-myristoylome of the epimastigote.  

                                G-X-X-X-S-(K/R/S)-X-X-X 

The most tolerated amino acids at position 7 suggests that the substrate specificity of 

TcNMT may be more similar to that of higher eukaryotes due to the presence of a basic 

residue at position 6 and proline at position 7 (Figure 4.1).  It is also worth noting that 

similar to higher eukaryotes, a marginally higher percentage of substrates did not have 

serine at position 5 in T. cruzi.  However, rather than having a positively charged amino 

acid in the second position, TcNMT substrates were found to have a glutamine and 

serine was found to be under-represented in comparison with all eukaryotes.  Further 

work is required to ascertain if this is the case. 

Just over two thirds (69%) of the proteins identified that form the T. cruzi N-

myristoylome are currently annotated as uncharacterised.  These proteins were searched 

against the Pfam database (version 27.0), in an attempt to assign putative functions for 

these proteins (Finn et al., 2014).  Only Pfam A matches were counted for this analysis 

(See Table S3).  Functional domains that were assigned to already annotated proteins 

http://weblogo.berkeley.edu/
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appeared to match their respective annotations, with the exception of the dynein heavy 

chain which appears to be an uncharacterised protein by blast searching.  For example, 

the flagellar calcium binding protein was predicted to have 2 calcium binding EF hands, 

despite experimental evidence from a crystal structure showing there to be 4 EF hands 

(Wingard et al., 2008).  Interestingly, the Pfam prediction for the uncharacterised and 

missannotated protein K4EE92 identified an AMP-activated kinase (AMPK) ß subunit 

domain, something that is known to be N-myristoylated and to plays a role in the 

regulation and localisation of the enzyme in mammalian cells (Oakhill et al., 2010).  

BLAST searching also identified putative functions for enriched proteins such as 

K4DWF7 that has homology to the N-myristoylated frequinin homolog (FRQ1) in yeast 

(20% identity).  The small myristoylated proteins 1, 2 and 3 (SMP) were also identified, 

proteins that are known to be N-myristoylated in Leishmania major (Tull et al., 2010; 

Tull et al., 2004).  As this modification is known to help promote membrane 

interactions, the solubility of these proteins was predicted using the Sosui server.  While 

the majority of proteins were predicted to be soluble, four proteins were predicted to 

have transmembrane helices, but these were for uncharacterised proteins with no Pfam 

prediction.  This would require further experimental work to determine the accuracy of 

these predictions however, the acylation of transmembrane proteins has been reported in 

the literature previously (Moriya et al., 2013).        

Studies with NMT inhibitors in T. brucei have found these molecules to be 

highly potent against the parasites.  The process of genetic validation in T. cruzi is an 

extremely lengthy process taking approximately 3 months to produce a cloned SKO cell 

line.   To see if any N-myristoylated proteins may be important, the homologs in T. 

brucei were identified from a genome-wide RNAi phenotypic screen (Alsford et al., 

2011).  Of the 35 proteins in the N-myristoylome, homologs could only be identified for 

33 (Figure 4.12 C).  A small proportion of homologs (4 out of 36) were identified to 
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produce a growth defect by RNAi in all 4 stages assessed suggesting that these 

homologs may be the most N-myristoylated proteins in T. brucei.  The stages assessed 

by their study were the differentiation between procyclic and bloodstream form 

parasites, PCF parasites and BSF parasites at 3 and 6 days post-induction of the RNAi 

library.  Overall, the majority of proteins enriched in all experiments had a growth 

phenotype in at least one of the assessed stages indicating that the homologs of the T. 

cruzi N-myristoylome and three unexplained proteins appear to be important for the 

proliferation of T. brucei parasites.  Whilst these gene products appear to be biologically 

important for T. brucei, further work is required to assess their importance in T. cruzi.  

However, they provide a starting point for the assessment of future drug targets in this 

parasite.  

 

4.11 Localisation studies 

With the identification of more than 30 N-myristoylated proteins in these parasites with 

conflicting predictions, as determined using the currently the available programs, six 

proteins were chosen to see if the N-terminal 24 aa were enough to influence the 

localisation of GFP in these parasites as has previously been observed for the flagellar 

calcium binding protein (Godsel and Engman, 1999; Maric et al., 2011).  Several 

proteins were selected from the N-myristoylome to determine if the first 24 aa were able 

to influence the localisation of eGFP in comparison with their G2A mutants.   The 

protein phosphatase 2C that was predicted not to be N-myristoylated, AFR1, the RPT2 

homolog, a putative nitrate reductase, and an uncharacterised protein were selected in 

addition to the FCaBP to act as provide a control.  The first 72 bp if these genes were 

amplified by PCR and cloned into pTEX containing a c-terminal eGFP coding 

sequence.  The mutants containing alanine at position 2 were made by altering the 
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nucleotide a position 5 from G-C in the primers leading to a G2A change at the protein 

level and ligated into the pTEX-eGFP plasmid.   After selection, parasites were 

analysed by fluorescence microscopy and the GFP distribution assessed.  Despite 

transfection of the 6 localisation constructs and their G2A mutants, fluorescent parasites 

were only recovered for the Arf1, RPT2 FCaBP and an uncharacterised protein.  

Analysis of the GFP distribution of the FCaBP-eGFP and G2A mutant revealed a 

similar localisation as to what has already been reported in the literature (See Figure 

4.13 A+B) (Godsel and Engman, 1999).  Similarly, a differential localisation pattern 

was observed between the ARF1 and G2A mutant fusion proteins (Figure 4.13 C+D).   

The ARF1G2A mutant was observed to have a more diffuse distribution that also 

appears to associate with outer membrane of the cell.  Conversely, the wild-type ARF1 

fusion protein showed a perinuclear localisation in addition to localising to an unknown 

vesicle posterior to the nucleus and kinetoplast.  Studies of T. brucei ARF1 find the WT 

sequence to localise to the golgi complex, while the G2A mutant abolished this 

localisation (Price et al., 2007a).  This difference may be due to only having used a 

truncated sequence for the localisation of the T. cruzi sequence.  Meanwhile the failure 

of the RPT2 and uncharacterised proteins to differentially localise, in comparison with 

their respective G2A mutants requires further investigation, but most likely suggests 

that there are additional factors that play a role in the localisation of these proteins.  

Alternatively, the overexpression of these fusion proteins may lead to their miss 

localisation.  This could be caused by a higher rate of protein expression than possible 

for NMT to myristoylate, leading to an accumulation of the un-modified fusion protein. 
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5.1 NMT as a drug target in T. cruzi 

5.1.1 Genetic validation 

There are very few instances reported in the literature of the genetic validation of drug 

targets in T. cruzi (Caler et al., 1998; Ekanayake et al., 2011; Manning-Cela et al., 

2001; Xu et al., 2009).  This, in part, is due to a scarcity of genetic tools available for 

use in this parasite, unlike the related parasite T. brucei, which has a large range of 

constructs for the conditional overexpression, in-situ tagging and down-regulation of 

specific genes.  Despite the absence of an RNAi pathway in T. cruzi that could be used 

to knock-down specific genes (DaRocha et al., 2004; Ullu et al., 2004), there is a range 

of overexpression vectors available for use (Bouvier et al., 2013; Kelly et al., 1992; Ma 

et al., 2012; Martinez-Calvillo et al., 1997; Taylor and Kelly, 2006; Vazquez and Levin, 

1999; Xu et al., 2009).  Only two of these vectors could potentially be any use in 

generating a conditional knockout, which is considered the gold standard for genetic 

essentiality studies.  Despite the availability of the tetracycline inducible expression 

vector pTcINDEX for almost a decade, it has yet to become widely adopted within the 

community with only 3 out of the 26 citations to this vector having actually used it in 

their studies to generate an overexpression cell line.    Personally, we were unable to 

generate a pTcINDEX-TcNMT rescue plasmid despite multiple attempts by several 

members of the lab.  Therefore, the benchmark adopted for the genetic essentiality in T. 

cruzi is the same used in Leishmania parasites, which also have a similar lack of genetic 

tools available (Price et al., 2003; Tovar et al., 1998; Wyllie et al., 2013), to generate 

conditional null parasites (Beverley, 2003).  The alternative approach taken by 

researchers is to switch to T. brucei and assess the RNAi phenotype in this parasite. 

In the studies presented here, it was not possible to generate a TcNMT null 

mutant in the absence of constitutive NMT expression, a trait that has been observed in 
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Leishmania (Price et al., 2003).  There was also evidence of a genomic rearrangement 

in T. cruzi false DKO cells, adding further evidence that this gene is essential in the 

epimastigote.  A similar genomic rearrangement has been observed when attempting to 

generate a trypanothione reductase null mutant in Leishmania parasites, which retained 

an endogenous copy of the gene despite the correct replacement of the two alleles 

(Tovar et al., 1998).  Although overexpression of NMT (>10-fold) in Leishmania major 

has been demonstrated to be lethal (Price et al., 2003), in T. cruzi the observed ~8-12-

fold overexpression was not, as determined by western blot and drug sensitivity assays.  

The activity of the overexpressed TcNMT in the parasite was inferred by the decreased 

potency of DDD85646.  It may be that T. cruzi tolerates a greater range of NMT 

expression in this parasite than Leishmania.  In summary, the genetic replacement 

studies in this parasite demonstrated that TcNMT is an essential gene for the 

proliferation of these parasites in axenic culture.  This is in-line with the results of 

genetic studies carried out in other organisms (Lodge et al., 1994; Price et al., 2003; 

Weinburg et al., 1995; Yang et al., 2005).   

 

5.1.2 Biochemical validation 

The characterisation of recombinant TcNMT found it to be highly similar to the 

reported values of the homologs in other species, with respect to the size, oligomeric 

structure and kinetic behaviour.  The turnover rates (kcat) for both the Tb and TcCAP5.5 

were similar to reported values for substrates of other homologs, admittedly at the lower 

end of the range (Boisson and Meinnel, 2003; Panethymitaki et al., 2006; Seaton and 

Smith, 2008).  During the kinetic characterisation of this enzyme, DDD85646, which 

was originally designed to inhibit the T. brucei enzyme, was also found to be a potent 

inhibitor of T. cruzi NMT in vitro.  Using the coupled enzyme assay, it was found to 
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have a Ki of 22.8 nM, some 23-fold less potent than its reported value of 1 nM against 

TbNMT (Frearson et al., 2010).  Using the same scintillation proximity assay used to 

determine the TbNMT Ki, this value decreases to 12.7 nM (value provided by Dr Leah 

Torrie DDU, University of Dundee) (Roberts et al., 2014).  The differences in values 

may be explained by the different assay buffers or the temperature at which the assays 

were carried out.   While DDD85646 is potent against the purified enzyme, it does not 

maintain the same level of activity against the epimastigote stage.  Although a decreased 

potency from the enzyme to the cellular level has been documented for several 

organisms, the notable exception to this rule is in T. brucei, where BSF parasites are 

only 3-fold less sensitive to DDD85646 (Devadas et al., 1997; Frearson et al., 2010; 

Wright et al., 2014).  Meanwhile, the 276-fold decrease observed from TcNMT to 

epimastigotes is at the extreme end of the scale.  This reduction could be explained in 

several ways. 

1. T. cruzi may display differential sensitivity to NMT inhibition as the parasite 

progresses throughout its life cycle.  Several examples of varying potencies 

against different developmental stages have already been documented in this 

parasite, with inhibition values ranging 2-250-fold (Ciccarelli et al., 2012; Frank 

et al., 2013; Lane et al., 1996).  Another instance of this behaviour is the 

differential requirement of the NTR gene in T. cruzi, as it is not important in the 

epimastigote, but becomes essential in producing infective trypomastigotes 

(Wilkinson et al., 2008).  To investigate if this is the mechanism, more potent 

and selective compounds against TcNMT are required to be able to test in the 

intracellular amastigote.  As mentioned previously, this is due to DDD85646 

being highly potent against the host Vero cells used for the assay.  

2. One hypothesis is that T. cruzi may have greatly elevated levels of NMT 

expression than T. brucei, which may act in tandem with the reduced potency of 
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DDD85646.  An initial trial of the antiserum generated against TcNMT found it 

to recognise purified recombinant TbNMT, however, against whole cell lysates 

the antiserum was found to be non-specific.  To assess the concentration of 

NMT in T. brucei and Leishmania parasites, specific antibodies would need to 

be generated against each recombinant protein. 

3. The overexpression of specific transporters in T. brucei produced cell lines that 

are resistant to suramin and melarsoprol (Shahi et al., 2002), two current drugs 

used in the treatment of HAT.  Higher activities of P-glycoprotein efflux pumps 

(PGP) have been associated with resistance generated in vitro to benznidazole in 

T. cruzi (Campos et al., 2013).  PGP overexpression has also been identified in 

two antimony resistant Leishmania spp. cell lines when compared to the parental 

cell line (Moreira et al., 2013).  Interestingly, in the same study, PGP was not 

overexpressed in resistant Leishmania infantum and was not detected in 

Leishmania braziliensis parasites, which were found to have an increase in the 

transcript of an ABC transporter called MRPA.  In three out of the four strains 

used in their study, the uptake of antimony was found to be lower than WT 

parasites.  Overall, this suggests that the modulation expression of transport 

proteins is only one of many possible mechanisms that leads to an increased 

resistance of Leishmania spp. to a drug (Callahan et al., 1994; Coelho et al., 

2003; El Fadili et al., 2005; Gourbal et al., 2004; Maharjan et al., 2008).  To 

assess the contributions of the uptake and efflux of this compound in T. cruzi, 

further studies would be required using radiolabelling or metabolomic strategies 

to determine the kinetics of drug uptake and efflux.  This can also be assessed by 

comparing the levels of PGP in T. cruzi with other trypanosomatid parasites by 

western blot.  Alternatively, if a resistant cell line were generated, its genome 
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and transcriptome could be sequenced to find alternate transport proteins that 

may be involved in the generation of resistance.  

 

4. The inhibitor DDD85646 which was originally designed to target TbNMT is 

only 2-fold less potent against the human enzyme, despite there being a 200-fold 

difference in potency at the cellular level (Frearson et al., 2010).  This indicates 

the different biology between human cells and T. brucei BSF parasites plays a 

role in the differential potency.  The RNAi mediated depletion of NMT led to an 

impairment in the endocytic pathway in these parasites, a process that is known 

to involve the N-myristoylated protein ARF1 (Price et al., 2010; Price et al., 

2007a).  In this organism, both endo and exocytosis occur at a small 

invagination in the membrane near the base of the flagellum known as the 

flagellar pocket equivalent to 5% of the surface area (Engstler et al., 2004).  T. 

brucei has been reported to turn over the entirety of the variant surface 

glycoprotein coat that is anchored into the plasma membrane within 12 min.  

This is between 3-5 times quicker than a macrophage or fibroblast is able to 

turnover its plasma membrane (Engstler et al., 2004).  However, treating T. 

brucei with DDD85646 led to a massively enlarged flagellar pocket, a different 

phenotype than observed by the depletion of NMT alone, in which multi-

flagellated and rounded parasites were observed in addition to the long and 

slender forms (Frearson et al., 2010; Price et al., 2003). The protein ADP-

ribosylation factor 1 (ARF1) is known to play a role in endocytosis and 

trafficking in this parasite, the depletion of which by RNAi led to an 

accumulation of multi-nucleated parasites and parasites with the big eye 

phenotype (Price et al., 2007b).  The different phenotypes may be explained by 
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differing levels of NMT inhibition, as chemical inhibition may be more efficient 

at inhibiting N-myristoylation than the depletion of the enzyme by RNAi.  The 

authors concluded that the effect of this compound is partly due to the higher 

rate of endocytosis in T. brucei BSF parasites.  This may be a viable explanation 

of the observed drop in potency from T. brucei to T. cruzi. 

 

5.2 T. cruzi N-myristoylome 

5.2.1 N-myristoylation in T. cruzi 

The pattern of N-myristoylation in this parasite appears to be consistent with other 

eukaryotes, in particular, lower eukaryotes.  The notable exception to this behaviour 

was the identification that post-translational N-myristoylation may occur in this parasite. 

Although further work is required to validate if this is the case, an alternative 

explanation may provide the answer.  The fold decrease observed in cycloheximide 

treated cells was roughly proportional with the length of labelling with AzMyr.  

However, in L-[
35

S]-methionine labelled epimastigotes, longer exposures found that 

virtually all protein synthesis was abolished, thus potentially ruling out this theory.  This 

could be further investigated by comparing the band intensities in cycloheximide-treated 

and un-treated parasites at several time points, to determine if they remain similar.   

Several studies have reported N-myristoylated proteins for every stage of the T. 

cruzi life cycle (Godsel and Engman, 1999; Martins et al., 2010; Okura et al., 2005).  

Whilst the results of this work show that there are multiple N-myristoylated proteins 

expressed in each lifecycle stage, the majority of definable bands were observed in both.  

The choice to purify amastigotes liberated from infected vero cell monolayers may have 

artificially selected for a specific population of parasites.  If I were to repeat this study 
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again, I would label vero cell monolayers with azidomyristate and purify the 

intracellular population of parasites, as this would provide the most robust N-

myristoylome of the amastigote.  

5.2.2 The theoretical and experimental N-myristoylomes 

Even with the minimal use of the reference T. cruzi proteome (UniProt) in this study, a 

number of artefacts have been identified including the misannotation of this predicted, 

reference proteome (Silvio X10/1).  Comparison with the reference T. brucei brucei 

(927) proteome revealed that there were significantly more proteins not annotated to 

start with methionine (6.1 vs 0.19%) in T. cruzi X10/1.  Meanwhile, no mis annotations 

of this type were identified in the L. major proteome.  In summary, this reference 

proteome requires more accurate curation before it can reach its potential as a resource 

for bioinformatic studies of protein modifications or putative targeting sequences.  This 

could readily be achieved if the genome of Silvio X10/1 was fully assembled and a 

splice leader mapping transcriptomic study carried out, as has been reported in T. brucei 

where they found a diversity of alternatively spiced transcripts depending upon lifecycle 

stage (Nilsson et al., 2010). 

The consensus N-myristoylation motif that has been observed in eukaryotes to date has 

been used to generate several prediction programs to date.  The program Myristoylator 

was found to have the lowest false positive rate of 2.1% in comparison with PROSITE 

and a similar rate to the NTM predictor (2.7%).   The authors of this study note that 

their false negative rate was marginally higher than the NMT predictor due to use of 

different set of rules (Bologna et al., 2004).  The choice to use Myristoylator in this 

study over the NMT predictor was purely due to a higher compatibility with the 

workflow and being able to use UniProt accession codes for the analysis.  Previous 

work by Mills and colleagues used only the high confidence predictions for the 
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predicted N-myristoylome of Leishmania with Blast results for the other trypanosomatid 

parasites (Mills et al., 2007).  The lower number of N-myristoylated proteins predicted 

in Silvio X10/1 was congruent with their hypothesis of overrepresentation of proteins 

due to multiple isoforms in the hybrid strain CL-Brener.  Known N-myristoylated 

proteins from the trypanosomatid parasites were identified in both the high and medium 

confidence predictions.  

Studies of N-myristoylation in other organisms have utilised a variety of 

techniques to identify proteins comprising the N-myristoylomes of their respective 

species.  This ranges from bioinformatic predictions, screening of cDNA libraries, cell 

free approaches, such as in vitro transcription and translation using tritiated  myristic 

acid and the enrichment of bio-orthogonal labelled proteins (Cordero et al., 2009; Mills 

et al., 2007; Suzuki et al., 2006; Suzuki et al., 2010; Takamitsu et al., 2014).  In theory, 

the bio-orthogonal labelling strategy coupled to the direct pull-down approach opted for 

in this study, should have yielded a very clean enrichment of proteins.  However, in 

practice, this was not observed and percentage of proteins starting with MG varied ~2-

fold, with increasing specificity observed in the later enrichments, especially with the 

use of SILAC labelled parasites.  Several factors may have contributed to this low level 

of enrichment. 

1. Individual replicates were carried out on separate days over the period of several 

months.  Although the experimental protocol was adhered to on each occasion, 

minor differences in the timings and sample handling or wash buffers cannot be 

ruled out.  It is not possible to assess the individual contributions of these 

factors.   

2. Despite the copper-catalysed azide-alkyne cycloaddition being highly specific, 

there are instances of non-specific interaction of the alkyne, such as the alkyne 



98 
 

 
 

hydrothiolation reaction, were a alkyne reacts with a thiol (Hoogenboom, 2010).  

The most likely source of this reaction in these experiments is the presence of 

free radicals in lysates or exposure to UV light (Lowe, 2014).  However, it is not 

possible to determine the relative contribution of this to the enriched proteomic 

datasets that we collected.  

3. Despite the low occurrence of non-specific interactions advertised for the 

agarose slurry supplied with the kit, the lack of repeatability for the majority of 

proteins identified, suggests that this may be a significant contributing factor. 

4. Base treatment of N-azidomyristoylated proteins in T. cruzi did not produce a 

noticeable difference in the number or intensity of the bands seen by in-gel 

fluorescence.  Hydroxylamine treatment of the resin was designed to remove S-

azidomyristoylated proteins.  The incomplete removal of this form of 

myristoylation or the presence of myristate in the GPI anchors of less abundant 

proteins may explain the identification of proteins not conforming to the typical 

myristoylation motif. 

5. Fifth, stage-specific, alternative splicing events, similar to reports in T. brucei, 

may account for some, but not all proteins identified that do not have an N-

terminal glycine (Nilsson et al., 2010).  A similar splice leader trapping 

transcriptomic study in this parasite would help identify if this is the case, 

particularly for the consistently enriched proteins that do not conform to the 

traditional rule of N-myristoylation. 

The use of multiple biological replicates refined the list of identified proteins, with the 

vast majority of the remaining sequences conforming to the universal rules of N-

myristoylation, or could be alternatively explained by several of the points discussed 

above.  Despite the introduction of SILAC in kinetoplastid organisms in the past couple 

of years (Brotherton et al., 2013; Chawla et al., 2011; Guther et al., 2014; Silverman et 
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al., 2008; Urbaniak et al., 2012; Urbaniak et al., 2013) it has yet to be widely adopted, 

especially in T. cruzi, where to my knowledge, this is the first reported use.  The 

identification of multiple known N-myristoylated proteins validates the quantification 

approach taken.  Both the label free and SILAC approaches had their merits, such as 

reduced chances of including contaminants, while label free is more physiologically 

relevant and the myristic acid analog was found to be less toxic.  The increased toxicity 

of AzMyr observed in the SILAC medium and with the longer doubling period when 

compared to RTH/FBS this may have hampered the labelling of low-turnover proteins.  

This in turn, may have reduced the number of enriched proteins and thus quantifiable 

peptides, despite these enrichments identifying the highest percentage of 
Δ
MG proteins.   

In retrospect, the ideal strategy would have been to incorporate some form of 

cleavable linker for the selective release of enriched proteins, an approach successfully 

used in P. falciparum (Wright et al., 2014).  Despite a variety of options available, all 

have drawbacks.  For instance, disulphides linkers were not suitable, as there are reports 

of protein complexes stabilised by disulphide bridges and this type of linker would not 

be compatible with the reductive alkylation required for mass spectrometry (Bischerour 

et al., 2003; Newhall and Jones, 1983; Toichi et al., 2013).  An alternative option would 

be the incorporation of a protease cleavable tag such as TEV, but this option was not 

selected as could have further complicated the identification of peptides by mass 

spectrometry due to off-target cleavage of the protein in addition to the tag.  This 

artefact would not be a problem if a trypsin cleavable linker was used.   Lastly, 

enrichment could be achieved with a biotin-functionalised azidomyristate.  However, 

probing T. cruzi lysates with streptavidin shows there to be a number of biotinylated 

proteins in this parasite complicating the analysis by having to remove the biotinylated 

proteins from the proteomics data.  In addition to identifying the biotinylated proteins of 

T. cruzi, there would also be many non-specific proteins that bind to streptavidin coated 
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beads.  This is seen frequently with pull-downs; but, the use of isotopically labelled 

parasites would have helped to circumvent this problem.   

The original aim of the predicted N-myristoylome was to provide a reference to 

highlight the differences between theory and experimental evidence.  To ensure the 

maximal number of proteins identified from the enrichment experiments, the complete 

proteome was used ruling out the direct comparison of the experimental and theoretical 

results.  Although proteins with annotated functions were evident in the hypothetical 

and observed N-myristoylomes, the bioinformatic predictions for the experimental 

subproteome, reveals the lack of consensus between the predicted and observed 

proteins, only achieving this for ~50% of proteins.  The individual performances of the 

prediction programs revealed Myristoylator to have the highest number of high 

confidence predictions matching the observed dataset.  The best results were obtained 

by considering the results from the three predictors, requiring one high confidence 

prediction to be counted as a positive result.  Using this approach, 70% of the 

experimentally determined N-myristoylome was predicted to be N-myristoylated with a 

high confidence.  In taking an Occam’s razor view to the experimental N-myristoylome, 

the experimental approach has been highly effective at identifying the N-myristoylated 

proteins in this parasite, with ~90% of proteins identified or predicted to have a glycine 

at position 2.  This is the most comprehensive experimental N-myristoylome identified 

in T. cruzi, surpassing the previous study by Cordero (Cordero et al., 2009), which 

reported multiple accession codes for protein isoforms with the same function.  This 

significantly reduces the number of predicted proteins from 27 down to 8 unique 

proteins.  Despite this study identifying multiple proteins from enriched membrane 

fractions, the assignment of N-myristoylation as a modification of these proteins was 

based upon the bioinformatic prediction and not on experimental observation; however, 

several proteins were cross-identified in the dataset presented here.  This in tandem with 
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the identification of known N-myristoylated proteins increases the confidence that the 

enriched proteins undergo myristoylation in this parasite.  

5.2.3 Comparison of N-myristoylomes  

Protein myristoylation has been studied since 1985, however while there are many 

known N-myristoylated proteins in eukaryotes, only the N-myristoylomes of 

Arabidopsis thaliana and Plasmodium falciparum have been experimentally defined 

(Boisson et al., 2003; Wright et al., 2014).  It has long been known that NMT homologs 

have divergent peptide substrate specificities, even between closely related species.  

This is further complicated by differences in the N-termini of N-myristoylated proteins 

between the species, which was highlighted in the kinetic characterisation of TcNMT 

with peptides derived from TbCAP5.5 and TcCAP5.5.  This complex nature of species-

specific substrate recognition made the experimental identification of the T. cruzi N-

myristoylome the clear choice.  Taking into account proteins enriched in all of the 

biological experiments, a similar number of proteins were identified as to the reported 

N-myristoylome of P. falciparum. The list of N-myristoylated proteins common to both 

studies was very low with only the ADP-ribosylation factor 1, ADP-ribosylation factor 

like proteins, protein phosphatase 2C and a kinase regulatory subunit present in both.  

There are several possible explanations for the apparent differences in the N-

myristoylomes of these parasites.   

1. The labelling of P. falciparum was carried out in parasites cultured in red blood 

cells.  Thus, the N-myristoylome has been determined in the erythrocytic cycle, 

the clinically relevant stage of the disease (Kooij et al., 2006).  Both 

transcriptomic and quantitative proteomic studies have shown there to be stage 

specific regulation of both protein and mRNA expression throughout the life 

cycle of the parasite (Bozdech et al., 2003; Le Roch et al., 2004; Nirmalan et al., 
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2004).  It may be that the homologs of the Plasmodium proteins are expressed 

only in the clinically relevant stages.  This lifecycle-dependant change in protein 

and transcript levels has also been reported in T. cruzi (Atwood, III et al., 2005; 

Minning et al., 2003; Minning et al., 2009).  Despite minor differences in N-

myristoylation by in-gel fluorescence across the lifecycle, it could be that there 

are many more changes below the detection level of this technique.  To directly 

compare the N-myristoylomes of these parasites, the N-myristoylomes of the 

clinically relevant trypomastigote and amastigote stages need to be elucidated.   

2. Despite only a few, known proteins identified to be common to both P. 

falciparum and T. cruzi proteins implicated in similar process have been 

identified.  In both parasites, regulatory subunits of their respective proteasomes 

have been identified to be N-myristoylated, but not the same subunits.  Although 

one would expect homologs of proteins between species to have similar 

functions, this is not always the case.   An example of this is the proteasome 

regulatory ATPase subunit 2, RPT2, in both S. cerevisiae and T. brucei, which 

have both been found to be essential.   However, reconstitution of ScRPT2 into a 

TbRPT2 deficient cell line failed to rescue the lethal phenotype in T. brucei, 

showing the incompatibility of these homologs (Li et al., 2002).  It may that the 

different homologs identified may play similar roles in the different parasites.  

Genetic studies in T. cruzi would help to identify if N-myristoylation is 

important for the function of these proteins by knocking out the T. cruzi genes in 

the presence of a G2A mutant, or the homolog from another organism. 

3. In contrast to P. falciparum, the labelling efficacy of the N-myristoylome in T. 

cruzi, and the chemical capture of these proteins was not assessed.  It has not 

been possible to determine if the identified sub-proteomes have been affected by 

the turnover of these proteins, or differential expression levels.  The direct 
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inhibition of N-myristoylation in epimastigotes by DDD85646 demonstrated 

differential rates of AzMyr incorporation in these (Figure 3.12).  In particular, 

the band at ~20 kDa was found to be significantly affected by the inhibition of 

TcNMT.  A pulse-chase labelling strategy could allow the turnover of these 

proteins to be assessed in T. cruzi and this technique could be used to compare 

turnover rates with other parasites. In particular, T. brucei has been shown to be 

highly sensitive to NMT inhibition (Brand et al., 2012; Frearson et al., 2010) 

and it may be that the proteins with the highest turnover rates, in T. brucei 

produce the observed big eye phenotype. 

4. These differences in the N-myristoylomes of these parasites may simply reflect 

the divergent nature of this process in the different parasites.  If this is the case, 

then the N-myristoylomes may provide a promising list of species-specific drug 

targets to be assessed in the individual parasites.  This would require the 

extremely time consuming process of the biochemical and genetic validation of 

these proteins individually.  

 

5.3 Prospective mechanisms of DDD85646 against T. cruzi epimastigotes 

This study has shown that by inhibiting N-myristoylation in T. cruzi, proliferation of 

epimastigotes also became impaired.  Despite using the same inhibitor as reported for T. 

brucei, the resulting phenotypes whilst initially appearing similar by light microscopy 

were found to be markedly different.  It has been postulated that the “Big-Eye” 

phenotype observed in T. brucei is related to the interruption of endocytosis, as the 

phenotype was similar when clathrin is knocked down in this parasite (Allen et al., 

2003; Frearson et al., 2010).  A point worth bearing in mind is that in T. cruzi 

epimastigotes, the site of endocytosis is a small invagination known as the cytostome 
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(Porto-Carreiro et al., 2000) rather than the flagellar pocket, which may explain the lack 

of the big eye phenotype in drug treated parasites.  The DDD85646 mediated inhibition 

of cytokinesis and the identification of the N-myristoylome in this study has allowed for 

a unique perspective into the mechanism by which this compound affects the division of 

these parasites.  A literature review of the proteins identified in this study suggests that 

the cytokinesis defect may be caused by one or several proteins from this study.    

 

FRQ1 and its interaction partner 

The frequinin homolog in yeast FRQ1 is a small N-myristoylated calcium-binding 

protein that was found to associate with phosphatidylinositol-4-OH kinase (PIK1) 

(Hendricks et al., 1999).  Domain deletion experiments found that the N-terminus of 

PIK1 which contains a lipid kinase domain was required for the association of FRQ1, in 

a calcium independent manner.  The presence of both myristoylated and non-

myristoylated Frq1 was found to increase the activity of PIK1 in vitro.  Nevertheless, 

studies in S. cerevisiae found the N-myristoylation of FRQ1 to be important for 

rescuing growth, as the G2A mutant was unable to restore proliferation.  This 

demonstrates that the N-myristoylation is essential for its biological function.  Gene 

knockout studies in S. cerevisiae found Frq1 to be essential for the growth of the 

organism, as proliferation ceased after 3-4 divisions in Frq1 null mutants (Hendricks et 

al., 1999).  Similarly, the RNAi mediated depletion of this homolog in T. brucei 

revealed a growth phenotype in all lifecycle stages assessed (Alsford et al., 2011).  This 

would indicate that correct function of this gene product is essential for the proliferation 

of the both organisms and thus could be essential in T. cruzi.         

As discussed above, FRQ1 plays a role in the activation of the kinase Pik1.  A 

null mutant S. cerevisiae strain is rendered completely inviable (Flanagan et al., 1993).  
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The authors of the same study also note that the overexpression of Pik1 makes them 

more sensitive to growth arrest by the yeast growth inhibitory pheromone that is known 

to be involved with mating of yeast.  However, a second study found this effect to be 

marginal and not reproducible (Flanagan et al., 1993).  In addition, this enzyme was 

found to sediment with the nucleus rather than the cytoplasm which they attribute to the 

isolation methods used (Garcia-Bustos et al., 1994).  It was noted by this study that the 

phenotypes for PI-PLC and Pik1 overlapped as both produce cytokinesis defects (Flick 

and Thorner, 1993; Payne and Fitzgerald-Hayes, 1993; Yoko-o T et al., 1993).   Loss of 

gene function studies in S. pombe were consistent with Pik1 playing an essential role in 

this yeast but was not found to localise to the nucleus in this strain (Park et al., 2009).  

The use of fission yeast in this latter study more closely resembles the replication events 

that occur in T. cruzi.  Loss of Pik1 was associated with an increase in the presence of 

bi-nucleated cells.   Pik1 is known to interact with several proteins in both 

Saccharomyces sp.  One is CdC4 a contractile ring protein required for cytokinesis in 

the pombe strain (Desautels et al., 2001).  Interestingly, the overexpression of Pik1 was 

lethal in S. pombe in some cases with further studies indicating that an inability to 

associate with cdc4 was the largest contributing factor. 

Clearly, the roles that FRQ1 and Pik1 play in the regulation of cytokinesis in cell 

division are not yet fully understood.  Nevertheless, without further functional studies of 

these homologs in T. cruzi, it is not possible to ascertain the relative contributing factors 

of the individual components to the observed cytokinesis defect.   

 

CAP5.5 

There are two forms of CAP5.5 in T. brucei, CAP5.5 and CAP5.5V both are 

differentially expressed in bloodstream and procyclic stages (Olego-Fernandez et al., 
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2009).  The RNAi mediated depletion of CAP5.5 in the procyclic form was found to 

produce abnormal cytokinesis artefacts leading to the accumulation of 2K1N, 2K2N and 

1K0N parasites (Olego-Fernandez et al., 2009).   Nuclear mis-positioning was also 

identified in 2K2N cells in relation to the position of the cleavage furrow that forms part 

of the cytokinesis event.  This relationship was also maintained in bloodstream form 

parasites when the variant protein was depleted (Olego-Fernandez et al., 2009).  Closer 

analysis of these abnormal parasites by electron microscopy have indicated that the 

abnormal morphologies are accompanied by a loss in microtubule organisation (Olego-

Fernandez et al., 2009).   The authors of this study postulate several possible 

mechanisms to account for the formation of zoids 1K1N parasites, but fail to provide a 

suitable hypothesis for the accumulation >2K2N cells.   Regardless of this, it is hard to 

dispute that “646” treated epimastigotes resemble the CAP5.5 RNAi phenotype in T. 

brucei, making this a credible cause for this phenotype.     

 

ARF1 and ARL1 

The depletion of ARF1 in T. brucei BSF parasites leads to an accumulation of multi-

nucleated parasites, with the predominant big eye phenotype is present in 86% of 

parasites 24 h after induction of RNAi (Price et al., 2007a).  At the same time point, 

almost no change was observed in the number of multi-nucleated parasites.  Despite the 

same producing one aspect of the phenotype in T. brucei, is not as extreme as observed 

in T. cruzi, which after 48 hours the number of normal parasites decreases by 25 and 

50% respectively in the two parasites (Price et al., 2007a).  Given the longer doubling 

time of epimastigotes (16-20 h) it would be expected that a higher percentage of T. 

brucei parasites would display this abnormal nuclear phenotype at this stage, rather than 

the opposite way around.  A similar phenotype is also observed by the depletion of the 
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ARF1-related protein ADP-ribosylation factor like-protein 1 (ARL1).  Similar to ARF1, 

~25% of cells display the abnormal phenotype (Price et al., 2005).  Similarly, in T. cruzi 

there is an increase in 2K2N parasites followed by a decrease, prior to an increase in 

abnormal parasites (>2K2N) rising to ~70% at 96h of DDD85646 treatment.  This effect 

is not limited to T. brucei as an ARF activating protein is also implicated in cytokinesis 

of a species of Dictyostelium (Dias et al., 2013). 

 

While the individual depletion of these homologs provides a convenient 

explanation for the mechanism of DDD85646 observed in these studies, these proteins 

listed above account for ~10% of the N-myristoylome.  Therefore, it is just as likely that 

the effect cause by this compound is due to the cumulative miss-localisation of multiple 

proteins, some of which have yet to be characterised.  The contribution of these proteins 

to the observed phenotype could be assessed by the individual overexpression of each 

protein in the presence of DDD85646 to determine which if any, abolish the phenotype.  

This would be under the assumption that the overexpression of these proteins is not 

lethal, which is the case with TbARF1, but not for the G2A mutant (Price et al., 2007a).   

Although this work has been carried out on the epimastigote stage, it may provide an 

insight as to the mechanism of NMT inhibition in the clinically relevant amastigote 

stage, which also undergoes cell division.  As mentioned above and in our publication, 

DDD85646 does not have a high enough selectivity for the intracellular parasite over 

the host Vero cell (Roberts et al., 2014).  To elucidate the mechanism of action in the 

clinically relevant stages, NMT inhibitors with both a higher potency and a greater 

selectivity for the T. cruzi enzyme first need to be identified.  To assess if the 

cytokinesis defect was also present in the amastigote stage, immune fluorescence on 

infected Vero cells with an antibody targeting an amastigote-specific surface protein 
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may answer this question.   An alternate approach is that the intracellular amastigotes 

could be purified by anion exchange chromatography and analysed by scanning and 

transmission electron microscopy.  

 

5.4 The suitability of NMT as a drug target in T. cruzi 

Having found genetic, biochemical and mechanistic evidence to show that N-

myristoylation is an essential process in these parasites, it is clear that NMT is a drug 

target in the clinically irrelevant stage.  However, more potent and selective inhibitors 

need to be developed to determine it essentiality in the mammalian stages of the 

lifecycle.  The development of better inhibitors would be greatly aided by a crystal 

structure of the enzyme and DDD85646-NMT complex.  A new inhibitor-screening 

program to identify new starting points for the development of TcNMT specific 

inhibitors would help achieve this, in addition to comparing the potency of WT and 

SKO parasites.  Without useful genetic tools or more potent tool compounds, it is not 

possible to draw reliable conclusions about the essentiality or druggability of this 

enzyme in the mammalian lifecycle.  Nonetheless on the basis that this process has been 

shown to be important in all eukaryotes studied in to date (Sections 1.4.2 and 1.4.3) it is 

highly likely that N-myristoylation is essential in both the amastigote and 

trypomastigote stages also, with the essentiality in the trypomastigote being the easiest 

to assess.   

In T. brucei, the inhibition of N-myristoylation has been associated with the 

formation of a big-eye phenotype, similar to results obtained by the interruption of 

clathrin (Allen et al., 2003).  However, no extensive investigations into the mechanism 

of action of this drug were ever undertaken in this parasite.  RNAi studies in T. brucei 

of homologs found to be enriched in all experiments found the depletion of more than 
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50% to affect the proliferation of these parasites, suggesting that they are important in 

proliferation.  Several of these proteins were found to negatively affect proliferation in 

all four stages assessed, raising the possibility that these proteins could be potential drug 

targets in the future.  Targeting an enzyme responsible for the modification of multiple 

essential proteins has many benefits of allowing for based drug design.  Whilst this can 

aid the development of highly potent inhibitors, this target-based drug discovery 

approach has the drawback of an increased risk of resistance arising.  Alternatively, the 

use of compounds with multiple targets can reduce this risk, but not necessarily entirely 

abolish it.  In summary, it is likely that N-myristoyltransferase is a drug target 

throughout the lifecycle of the parasite, but more work is required to determine its 

druggability in the clinical stages.  

 

5.5 Future work 

The work undertaken in this study has opened the possibility of the N-myristoylome for 

drugs to treat Chagas disease.  The need for more potent and selective inhibitors that 

target T. cruzi NMT has been highlighted at several stages in this research.  The 

continuous spectrophotometric assay that has been used through the study has routinely 

generated robust kinetics data for both the kinetic characterisation of the enzyme and its 

inhibition by DDD85646.  Further optimisation of this assay into a 96 well or 384 well 

assay would allow a compound library to be screened against the recombinant enzyme 

and may provide a new starting point for the development of potent new inhibitors of 

TcNMT.  This would be carried out in tandem with the optimisation of crystallisation 

conditions for the enzyme, with the aim of solving the structure to aid rational drug 

design.  This would be followed up by the assessment of NMT in the clinically relevant 

amastigote stage and mechanism of action studies to determine if NMT inhibition 
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merely inhibits cytokinesis, or if it is lethal in the amastigote.  It is evident that the N-

myristoylome is important for the proliferation of these parasites, at least in axenic 

culture.  The homologs of several N-myristoylated proteins have been implicated to be 

important in the growth of T. brucei parasites.  The genetic and biochemical assessment 

of these proteins may provide a range of alternative targets for drug development 

against T. cruzi.  Lastly, a high quality omic study needs to be carried out in one 

parasite strain (comprising a proteome, a genome and a transcriptome) in order to 

provide a useful resource to the trypanosome community. 
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Supplementary tables 

Table S1 Table of peptides identified from polymyxin acylase treatment.  Proteins 

highlighted in green are also consistently enriched.  

Leading razor protein First amino acid PEP SILAC exp 

K4E0X7 D 0.041281 2 

Q4CU61 E 1.43E-32 2 

Q4DM59 G 0.057287 2 

K4E583 G 0.000659 2 

Q4DA14 G 0.030335 2 

Q4DTH5 R 0.058326 2 

Q4DHT7 A 0.037163 1 

Q4CVR9 D 2.27E-35 1 

P60712 D 5.02E-99 1 

K4DVI8 G 1.73E-08 1 

K4DPM9 G 0.00761 1 

Q4DM75 M 1.15E-44 1 

Q4D7R3 Q 0.058931 1 

K4DT87 R 1.21E-11 1 

Q4E469 T 0.006293 1 
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Table S2 N-myristoylated peptides identified from whole lysates 

Accession Sequence PEP Modification 

K4E527 GEEFFVR 0.018545 N-azidomyristoylated 

Q4DKH5 GVDDTMSSANMDDVWRTAR 0.049755 N-azidomyristoylated 

Q4CW64 GCGASSKPSTVEYK 0.026783 N-myristoylated 

K4E5P0 GGIISTIMDMR 0.03173 N-myristoylated 

Q4CQA8 GSQAESEMHR 0.057294 N-myristoylated 
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Table S 3 Pfam searches of consistently enriched proteins identified from the N-myristoylome.  Only 

significant A family matches were included 

Accession Protein ID Pfam family E value 

Q4D7Y8 ADP-ribosylation factor 1, putative Arf  4.00E-78 

Q4DZM9 ADP-ribosylation factor-like protein, putative Arf  6.60E-49 

Q4CW64 Calpain-like cysteine peptidase, putative DUF1935 1.10E-38 

Q4CV42 Calpain-like cysteine peptidase, putative DUF1935 7.50E-33 

K4E5Y1 Cytoskeleton-associated protein CAP5.5 Peptidase_C2 3.20E-43 

K4DT87 Dynein heavy chain, putative NO  

K4E5P0 Fatty acyl CoA synthetase 2, putative AMP-binding 1.60E-76 

K4EAZ1 Flagellar calcium binding protein EF-hand_7 6.50E-07 

K4E595 Nitrate reductase, putative Cyt-b5 4.10E-13 

K4E583 Phosphatase 2C, putative PP2C 1.10E-49 

Q4D0B9 Proteasome regulatory ATPase subunit 2, putative AAA 6.30E-42 

K4DTB6 Protein phosphatase 2C, putative PP2C 3.10E-72 

Q4E4N2 Protein phosphatase, putative PP2C 2.90E-55 

Q4DRI6 Putative uncharacterized protein Snf7 7.60E-28 

Q4E2Z0 Uncharacterized protein Cmc1 1.70E-06 

K4DWR5 Uncharacterized protein zf-C3HC4_3 5.50E-15 

Q4DPA5 Uncharacterized protein NO  

K4E955 Uncharacterized protein NO  

K4DJS2 Uncharacterized protein NO  

K4E1X7 Uncharacterized protein NO  

K4DXD3 Uncharacterized protein SpoIIE  8.00E-13 

K4E189 Uncharacterized protein NO  

K4E8V8 Uncharacterized protein NO  

K4E943 Uncharacterized protein NO  

Q4DLX6 Uncharacterized protein Rhodanese  4.30E-13 

K4DWF7 Uncharacterized protein EF-hand_7 5.60E-08 

Q4DVL2 Uncharacterized protein NO  

Q4DXG4 Uncharacterized protein NO  

Q4DDD2 Uncharacterized protein NO  

K4DQN8 Uncharacterized protein NO  

K4DZS1 Uncharacterized protein NO  

K4E5N2 Uncharacterized protein NO  

Q4CWV8 Uncharacterized protein   

K4E0P3 Uncharacterized protein   

K4E0J9 Uncharacterized protein   

K4DX27 Uncharacterized protein NO  

K4E3X3 Uncharacterized protein NO  

K4EE92 Uncharacterized protein (Fragment) AMPKBI 2.60E-17 

  

http://pfam.xfam.org/family/PF00025.16
http://pfam.xfam.org/family/PF00025.16
http://pfam.xfam.org/family/PF09149.5
http://pfam.xfam.org/family/PF09149.5
http://pfam.xfam.org/family/PF00648.16
http://pfam.xfam.org/family/PF00501.23
http://pfam.xfam.org/family/PF13499.1
http://pfam.xfam.org/family/PF00173.23
http://pfam.xfam.org/family/PF00481.16
http://pfam.xfam.org/family/PF00004.24
http://pfam.xfam.org/family/PF00481.16
http://pfam.xfam.org/family/PF00481.16
http://pfam.xfam.org/family/PF03357.16
http://pfam.xfam.org/family/PF08583.5
http://pfam.xfam.org/family/PF13920.1
http://pfam.xfam.org/family/PF07228.7
http://pfam.xfam.org/family/PF00581.15
http://pfam.xfam.org/family/PF13499.1
http://pfam.xfam.org/family/PF04739.10
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Biochemical and genetic characterization of Trypanosoma cruzi
N-myristoyltransferase
Adam J. ROBERTS*, Leah S. TORRIE*, Susan WYLLIE* and Alan H. FAIRLAMB*1

*Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.

Co- and post-translational N-myristoylation is known to play a
role in the correct subcellular localization of specific proteins in
eukaryotes. The enzyme that catalyses this reaction, NMT (N-
myristoyltransferase), has been pharmacologically validated as a
drug target in the African trypanosome, Trypanosoma brucei. In
the present study, we evaluate NMT as a potential drug target in
Trypanosoma cruzi, the causative agent of Chagas’ disease, using
chemical and genetic approaches. Replacement of both allelic
copies of TcNMT (T. cruzi NMT) was only possible in the presence
of a constitutively expressed ectopic copy of the gene, indicating
that this gene is essential for survival of T. cruzi epimastigotes.
The pyrazole sulphonamide NMT inhibitor DDD85646 is 13–23-
fold less potent against recombinant TcNMT than TbNMT (T.

brucei NMT), with K i values of 12.7 and 22.8 nM respectively,
by scintillation proximity or coupled assay methods. DDD85646
also inhibits growth of T. cruzi epimastigotes (EC50 = 6.9 μM),
but is ∼1000-fold less potent than that reported for T. brucei. On-
target activity is demonstrated by shifts in cell potency in lines that
over- and under-express NMT and by inhibition of intracellular
N-myristoylation of several proteins in a dose-dependent manner.
Collectively, our findings suggest that N-myristoylation is an
essential and druggable target in T. cruzi.

Key words: Chagas’ disease, click chemistry, drug target,
N-myristoylation, Trypanosoma cruzi, validation.

INTRODUCTION

The protozoan parasite Trypanosoma cruzi is the causative agent
of Chagas’ disease, which is endemic in Latin American countries.
There are an estimated 8–10 million infected individuals
worldwide, with an annual death toll of ∼10000 per annum
[1–3]. Migration from endemic countries has also led to the
worldwide distribution of Chagas’ disease [1]. The acute stage
of this disease often has very mild and non-specific symptoms
that occur 4–8 weeks post-infection, resulting in only 1–2 %
of all infected individuals being diagnosed in this stage [4].
Approximately 30% of infected individuals go on to develop the
chronic disease, most often characterized by heart abnormalities,
and to a lesser extent, mega-organ disease affecting the digestive
tract [2]. To date, benznidazole and nifurtimox are the only
approved drugs available for the treatment of Chagas’ disease.
Prolonged treatment with these nitroimidazoles during the acute
stage cures up to 70% of individuals; however, the efficacy
of these drugs significantly decreases in the chronic stage [5].
Both therapies have been associated with severe toxic side
effects that can lead to the interruption or discontinuation of
treatment in as many as 30% of cases [6,7]. At present, there
are two drugs being clinically assessed for the treatment of
asymptomatic chronic Chagas’ disease, posaconazole (Merck;
ClinicalTrials.gov Identifiers NCT01377480 and NCT01162967)
and E1224 (Eisai; ClinicalTrials.gov Identifier NCT01489228).
However, bearing in mind the high levels of drug candidate
attrition in the clinical trials process, there remains an urgent
need to identify new drug targets and better drugs to treat this
disease.

The enzyme NMT (N-myristoyltransferase; EC 2.3.1.97)
catalyses the co- and post-translational addition of myristic acid

(C14:0) on to the N-terminal glycine residue of specific proteins
[8,9]. This irreversible modification plays an important role in
the correct cellular localization and biological function of the
modified proteins. This enzyme has been extensively studied in
a number of organisms including the trypanosomatid parasites
Trypanosoma brucei and Leishmania major [10–15]. In these
parasitic organisms, NMT has been demonstrated to be essential
for viability either by classical gene knockout with episomal
rescue or by RNAi, indicating that the N-myristoylation of
certain proteins is a key biological process. Moreover, in the
African trypanosome, NMT is now pharmacologically validated
with compounds such as DDD85646 that specifically inhibit
the enzyme and are curative in the mouse model of stage one
African sleeping sickness [13]. Amino acid sequence comparisons
indicate that the T. cruzi enzyme is approximately 60% identical
to those of Leishmania spp. and various African trypanosomes.
Although metabolic labelling studies in the parasite have
confirmed that multiple proteins are N-myristoylated [16], T. cruzi
NMT has not been characterized biochemically or assessed for
essentiality or druggability. With this in mind, in our present
study, we utilize both genetic and chemical approaches to assess
the essentiality of the enzyme in T. cruzi.

MATERIALS AND METHODS

Parasite and mammalian cell culture

T. cruzi epimastigotes from the Silvio strain (MHOM/
BR/78/Silvio; clone X10/7) were grown at 28 ◦C in RTH/FBS
[RPMI 1640 medium supplemented with trypticase, haemin,
Hepes and 10% heat-inactivated FBS (PAA Laboratories; now
GE Healthcare)] [17]. {The Silvio strain, originally isolated

Abbreviations: CAP5.5, cytoskeleton-associated protein 5.5; DIG, digoxigenin; DKO, double knockout; DMEM, Dulbecco’s modified Eagle’s medium;
HYG, hygromycin phosphotransferase; NMT, N-myristoyltransferase; NMTOE, NMT overexpressor; PAC, puromycin N-acetyltransferase; RTH/FBS, RPMI
1640 medium supplemented with trypticase, haemin, Hepes and 10% heat-inactivated FBS; SKO, single knockout; TbNMT, Trypanosoma brucei NMT;
TCEP, tris-(2-carboxyethyl)phosphine; TcNMT, Trypanosoma cruzi NMT; TcTryR, Trypanosoma cruzi trypanothione reductase; WT, wild-type.

1 To whom correspondence should be addressed (email a.h.fairlamb@dundee.ac.uk).
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Table 1 Primers used in the present study

Complementary sequences to ORFs are capitalized. Restriction sites are underlined.

Primer Sequence

TcNMT-pTREX_s 5′-gaattcATGGCAGAAGAGGGTTCAGGTTTACATCAG-3′

TcNMT-pTREX_as 5′-ctcgagCTATAGCATGAACAATCCCACGTCACTTGG-3′

TcNMT-pET15b-TEV_s 5′-catATGGCAGAAGAGGGTTCAGGTTTACATCAG-3′

TcNMT-pET15b-TEV_as 5′-ggatccCTATAGCATGAACAATCCCACGTCACTTGG-3′

5′-UTR-NotI _s 5′-ataagaatgcggccgcGTGATCTTCTCAACAACAAAAATGGATGA-3′

5′-UTRHindIII/PmeI_as 5′-gtttaaacttacggaccgtcaagcttTCCTTCAAAAGGCGATCAAGTCCA-
AAATTAC-3′

3′-UTR-PmeI/BamHI_s 5′-gacggtccgtaagtttaaacggatccGATGCGGGCGGAATTTAGGAGAGA-
AGT-3′

3′-UTR-NotI_as 5′-ataagtaagcggccgcCCGCATCCAGCAGATGGATTAATCACCGT-3′

from a 19-year-old male patient (Silvio B.S.) living in Pará,
Brazil [18], is also incorrectly referred to as the Sylvio strain
in the literature.} Clone Silvio X10/7A, used in subsequent
experiments, was generated by limiting dilution. Stationary-phase
epimastigote cultures containing metacyclic trypomastigotes
were used to infect Vero cells. Trypomastigotes were recovered
from Vero cell monolayers infected with Silvio X10/7A at 5–
6 days post-infection [19]. For infectivity studies, Vero cells
were infected with transgenic T. cruzi trypomastigotes using a
multiplicity of infection of 5:1. Free-swimming trypomastigotes
were washed off after 12 h and the infected cells were re-
plated into 384-well plates (Corning® CellBIND®). After 72 h
the cells were fixed in PBS containing 1% formaldehyde
before staining with 5 μg·ml− 1 Hoechst 33342 in PBS containing
0.01% Triton X-100. Plates were imaged using a high content
microscope (Operetta, PerkinElmer), and the images captured
were processed using an automated image analysis software
(Columbus, PerkinElmer) to determine the percentage of infected
cells and the mean number of parasites per infected Vero cell. Vero
cells (Cercopithecus aethiops kidney cells; ATCC® CCL-81TM)
were cultured in DMEM (Dulbecco’s modified Eagle’s medium;
Lonza) supplemented with 10 % heat-inactivated FBS at 37 ◦C
with 5% CO2 [20].

Cloning, expression and purification of recombinant TcNMT (T.
cruzi NMT)

The NMT ORF was identified from the Silvio X10/1 genome by
BLAST, using the CL-Brenner sequence (TriTrypDB accession
number TcCLB.511283.90) as a search template [21]. Primers
designed against this sequence, TcNMT-pET15b-TEV_s and
TcNMT-pET15b-TEV_as (Table 1), were used to amplify
the NMT ORF from Silvio X10/7A genomic DNA using
Pfu DNA polymerase (Promega). The resulting PCR product
was cloned into Zero Blunt® TOPO® and sequenced. TcNMT was
excised from Zero Blunt® TOPO®-TcNMT by digestion with the
appropriate restriction enzymes and ligated directly into linearized
pET15b-TEV.

The resulting pET15b-TcNMT expression construct was
transformed into RosettaTM (DE3)pLysS competent cells and
recombinant expression was carried out in auto-induction media
[22] at 20 ◦C for 48 h with agitation at 200 rev./min. The cells
were harvested (20 min, 4 ◦C and 5020 g), resuspended in lysis
buffer {25 mM Tris, 500 mM NaCl, 25 mM imidazole, 1 mM
TCEP [tris-(2-carboxyethyl)phosphine]/HCl, pH 8.5, DNAse I
(Sigma) and cOmplete EDTA-free protease inhibitors (Roche)}
and lysed at 30000 psi (1 psi = 6.9 kPa) using a Constant Systems
cell disruptor. Soluble protein was recovered by centrifugation

(30 min, 4 ◦C and 40000 g) and filtered (0.2 μm Sartorius) before
loading on to a pre-equilibrated HisTrap HP 5 ml column (GE
Healthcare). The protein was eluted using a gradient of 25–
500 mM imidazole. Fractions containing NMT were identified
by SDS/PAGE (4–12% gel), pooled and dialysed into buffer
A (25 mM Tris, 25 mM NaCl and 1 mM TCEP, pH 8.5). The
dialysed protein was loaded on to a 5 ml HiTrap Q HP column (GE
Healthcare) and eluted with a gradient of NaCl (25–500 mM) in
buffer A. Pooled fractions containing NMT were further purified
by size exclusion on a Superdex 75 26/60 column equilibrated
in buffer B (25 mM Tris/HCl, 150 mM NaCl and 1 mM TCEP,
pH 8.5). The purity and mass of the recovered recombinant NMT
was assessed by SDS/PAGE and MALDI–TOF carried out by
the FingerPrints Proteomics service at the University of Dundee.
The oligomeric structure was characterized by size-exclusion
chromatography using a Superdex 200 300/10 GL column (GE
Healthcare) equilibrated with buffer B.

GENERATION OF KNOCKOUT, OVEREXPRESSION AND RECOVERY
CONSTRUCTS

The primers used to generate constructs for genetic manipulation
were designed using the TcNMT X10/1 and flanking sequences in
TriTrypDB as a template (Table 1). The accuracy of all assembled
constructs was verified by sequencing. NMT gene replacement
cassettes were generated by amplifying a region of DNA
encompassing 449 bp of the 5′-UTR, the ORF and 449 bp of
the 3′-UTR of TcNMT from genomic DNA with primers 5′-UTR-
NotI_s and 3′-UTR-NotI_as, using Pfu DNA polymerase. This
sequence was then used as a template for the amplification of the
individual regions used in the assembly of replacement cassettes
containing the selectable drug resistance genes PAC (puromycin
N-acetyltransferase) and HYG (hygromycin phosphotransferase),
exactly as described previously [23]. To generate a construct
for use as both a recovery and NMT-overexpressing vector in
knockout and WT (wild-type) parasites, NMT was amplified
from genomic DNA using the primers TcNMT-pTREX_s and
TcNMT-pTREX_as and cloned into the constitutive expression
vector pTREX [24] using the EcoRI and XhoI cloning sites.

Generation of transgenic T. cruzi cell lines

Transfections of T. cruzi epimastigotes were carried out using
an Amaxa NucleofectorTM electroporator, as described previously
[25]. A total of 5–10 μg of DNA was transfected into early-
to mid-log epimastigotes (1×107), suspended in Human T-cell
NucleofectorTM solution (100 μl; Lonza), using the program U-33.
At 24 h following transfection, 10 μg·ml− 1 puromycin (Sigma),
250 μg·ml− 1 G418 (Gibco®) or 500 μg·ml− 1 hygromycin
(Roche) was added to cultures of transgenic parasites. Following
drug selection, the parasites were cloned on to semi-solid agar
plates [1% Agar Noble (DifcoTM) and RTH/FBS] containing
20 μg·ml− 1 puromycin, 500 μg·ml− 1 G418 or 750 μg·ml− 1

hygromycin, as appropriate. After 2–3 weeks at 28 ◦C, colonies
were picked and grown in fresh RTH/FBS plus the appropriate
drug.

In vitro drug sensitivity assays

To examine the effects of test compounds on growth, triplicate
epimastigote cultures were seeded with 1×105 cells·ml− 1.
Parasites were grown in 10-ml cultures in the presence of
drug for 120 h. Cells were fixed in PBS (137 mM NaCl,
2.7 mM KCl, 10 mM Na2HPO4 and 1.8 mM KH2PO4) containing

c© 2014 The Author(s) The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which
permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.
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1% formaldehyde and manually counted using a Neubauer
haemocytometer. Data were processed using GraFit (version
5.0.4; Erithacus software) and fitted to a 2-parameter equation
(eqn 1) to obtain the effective EC50:

y = 100

1 +
(

[I]
EC50

)m (1)

In this equation, [I] represents inhibitor concentration and m is
the slope factor. The data are presented as the means +− S.D.

Quantification of cellular levels of NMT in lysates

Epimastigotes and trypomastigotes were harvested by centrifuga-
tion (15 min, 20 ◦C, 1620 and 2000 g respectively) and washed
twice in PBS. Amastigotes were purified from a mixed population
of trypomastigotes and amastigotes released from an infected Vero
cell monolayer [25a]. Briefly, parasites were collected by centri-
fugation (10 min, 20 ◦C, 4000 g) and the pellet incubated for 3 h at
37 ◦C overlaid with DMEM/FBS. Motile trypomastigotes released
into the supernatant were removed and the pellet was resuspended
in DMEM/FBS. This process was repeated twice to produce a
pure population of amastigotes (∼95%). Cells (5×107) were re-
suspended in Laemmli buffer (Bio-Rad Laboratories) and heated
at 95 ◦C for 10 min. The equivalent of 1×107 cells were separated
by SDS/PAGE on a 4–12% NuPAGE® gel. Cellular proteins were
transferred on to ProtranTM nitrocellulose membrane (Whatman)
by electrotransfer. Membranes were probed with primary rat
antisera generated against either TcNMT or TcTryR (T. cruzi
trypanothione reductase) [26] (both 1:500 dilution) before probing
with an HRP (horseradish peroxidase)-conjugated rabbit anti-rat
polyclonal secondary serum (1:10000; Dako). TcNMT-specific
polyclonal antiserum was raised against the recombinant His6–
TcNMT (CL-Brenner) in adult male Wistar rats, as described pre-
viously [27]. Immunization protocols were approved by the Uni-
versity Welfare and Ethical Use of Animals Committee and were
performed under the Animals (Scientific Procedures) Act 1986
in accordance with the European Communites Council Directive
(86/609/EEC). The blot was developed using ECL detection re-
agent kit (GE Healthcare) and exposed to Amersham HyperfilmTM

ECL (GE Healthcare). The developed film was scanned and the
protein bands were quantified by densitometry with ImageJ (NIH).

Southern blot analyses of transgenic T. cruzi cell lines

The ORFs of TcNMT , PAC and HYG were amplified by PCR
(using the primers described previously for the cloning of
TcNMT and knockout constructs) using the PCR DIG Probe
Synthesis Kit (Roche). The resulting DIG (digoxigenin)-labelled
products were used as probes. Samples of genomic DNA
(5 μg) from WT and transgenic cell lines were digested with
appropriate restriction endonucleases, the digestion products
were then separated on a 0.8% agarose gel and transferred to a
positively charged nylon membrane (Roche). The membrane was
hybridized overnight in DIG Easy Hyb solution (Roche) at 42 ◦C
with the DIG-labelled probes (2 μl of PCR product). Following
hybridization, membranes were washed twice in low stringency
conditions (25 ◦C, 5 min, 2× SSC buffer with 0.1% SDS) and
twice in high stringency conditions (68 ◦C, 15 min, 0.5× SSC
with 0.1% SDS), where 1× SSC comprises 150 mM NaCl and
50 mM sodium acetate, pH 7.0. The bound probe was detected
using the DIG immunological detection kit (Roche) as per the
manufacturer’s instructions.

Detection of cellular N-myristoylation

Mid-log epimastigotes were harvested by centrifugation and
resuspended at 1×107 cells·ml− 1 in fresh RTH/FBS. Various
concentrations of DDD85646 (0, 12.5, 25, 50 and 100 μM) were
added to epimastigote cultures 30 min before the addition of
50 μM Click-IT® myristic acid (Invitrogen) and cultures were
then incubated for a further 5 h. Following incubation, cells
were washed (three times in PBS), the resulting cell pellet was
resuspended in lysis buffer (150 μl, 50 mM Tris/HCl, pH 7.4,
150 mM NaCl, 1% sodium deoxycholate, 0.1% SDS, 1% Triton
X-100 and a cOmplete mini EDTA-free protease inhibitor cocktail
tablet) and incubated on ice for 1 h. Lysates were clarified by
centrifugation (10 min, 4 ◦C and 14000 g) and quantified with
the Bio-Rad Laboratories protein assay using BSA as a standard.
IRDye® 800CW alkyne (LI-COR Biosciences) was ligated to
Click-IT® myristic acid using the Click-IT® protein reaction
buffer set (Invitrogen) and methanol/chloroform precipitated,
according to the manufacturer’s instructions. Treated lysates
(12 μg) were separated by SDS/PAGE, fixed in 10 % acetic acid
and 40% methanol. The fixed gel was washed in 0.2 M NaOH
for 1 h before washing briefly in H2O and imaged by in-gel
fluorescence using an Odyssey Sa infrared imaging system (LI-
COR Biosciences). Quantification of band intensities was carried
out using Image Studio Lite (version 3.1; LI-COR Biosciences).
Cells not labelled with azidomyristate were used for a background
fluorescence measurement to correct the values obtained for N-
myristoylated proteins. Intensities are expressed as a percentage
of the no drug control.

Metabolic labelling

Parasites were incubated in a methionine-free RTH/FBS medium
that was supplemented with 10 μCi·ml− 1 L-[35S]methionine
(PerkinElmer). After incubating with the same concentrations of
inhibitor and azidomyristate as mentioned above, the parasites
were washed three times in PBS and boiled in Laemmli buffer
for 10 min. A total of 5×106 parasites per lane were separated
by SDS/PAGE and stained with Coomassie Blue. The gel was
incubated in EN3HANCETM solution (PerkinElmer) as per the
manufacturer’s protocol and then gel dried. The gel was exposed
to BioMax MS film (Kodak) using a BioMax TranScreen LE
(Kodak) for 8 h.

Kinetic analysis of TcNMT

Kinetic analysis [Km(app) and kcat values] of TcNMT activity
was performed at 30 ◦C using a previously published coupled-
enzyme spectrophotometric assay monitoring the increase in
absorbance at 340 nm [28]. Each 0.25 ml assay contained
50 mM Tris, 0.5 mM EDTA, 0.5 mM EGTA, 1.25 mM DTT,
0.1% Triton X-100, 40 mM pyruvic acid, 0.125 units·ml− 1

pyruvate dehydrogenase, 0.2 mM thiamine pyrophosphate,
40 μM myristoyl-CoA and 2.5 mM NAD+ , adjusted to pH 7.4
with HCl. Km(app) values were determined for a biotinylated
peptide substrate derived from amino acids 2–15 of T. brucei
[13] and T. cruzi CAP5.5 (cytoskeleton-associated protein
5.5) (TcCAP5.5 GCCASKEKQPRPGAK[biotin], TbCAP5.5
GCGGSKVKPQPPQAK[biotin], custom synthesized by Pep-
ceuticals) and for myristoyl-CoA (Sigma). The IC50 value of
DDD85646 for recombinant NMT was determined using this
coupled-enzyme assay. The K i(app) was determined by fitting the
resulting data to the Morrison equation (eqn 2), allowing the true
K i value to be determined using eqn (3). In a comparative study,
the kinetic parameters of TcNMT (5 nM per assay) were also

c© 2014 The Author(s) The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which
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Figure 1 Genotypic analysis of WT, SKO and rescue DKO cell lines

Southern blot analysis of AgeI and XmnI digested genomic DNA (∼5 μg) from WT T. cruzi (clone Silvio X10/7A) cells (lane 1), NMT SKO (PAC) cells (lane 2), NMT SKO (HYG) cells (lane
3), NMT SKO (PAC) cells constitutively expressing NMT (lane 4), NMT DKO (PAC and HYG) cells constitutively expressing NMT (lane 5) and ‘pseudo’ NMT DKO (PAC and HYG) cells (lanes
6–8). The maps show the predicted fragment sizes for the WT and for correct replacement with drug resistance markers. Southern blots were probed with (A) NMT ORF, (B) HYG and (C)
PAC.

determined using a scintillation proximity method, as described
previously [13,29]. The myristoyl-CoA Km(app) was determined
using CAP5.5 at 600 μM or 50 μM in the coupled-enzyme and
scintillation proximity assays respectively. The CAP5.5 Km(app)

values were determined using either 40 μM or 125 nM in the
coupled-enzyme or scintillation proximity assays.

vi

v0

=
(
[E]T − [I]T−K i(app)

) +
√(

[E]T − [I]T −K i(app)

)2 +4 [E]T [I]
T

2 [E]T

(2)

K i = K i(app)(
1 + [S]

Km

) (3)

RESULTS

Generation of an NMT ‘rescued’ DKO (double knockout) cell line

Restriction enzyme digestion and Southern blotting analysis of
T. cruzi X10/7A DNA indicated that NMT is a single copy gene
per haploid genome (results not shown). DNA sequencing of
PCR products gave identical amino acid sequences apart from a
serine or proline residue at position 150, probably due to allelic
variation. The essentiality of NMT in T. cruzi epimastigotes
was then assessed using a classical two-step gene replacement
strategy where NMT is sequentially replaced by homologous
recombination with drug resistance genes and drug selection
(Figure 1). The first gene copy of NMT could be successfully
replaced with either hygromycin (HYG) or puromycin (PAC)
resistance genes resulting in two independent SKO (single
knockout) cell lines (Figures 1B, lane 3, and 1C, lane 2). Loss of

a single allelic copy of NMT did not markedly alter the growth
rate of SKO parasites. Several attempts were made to directly
replace the remaining allelic copy of NMT in the SKO-PAC
clone with HYG. In two out of three attempts, epimastigotes
that were resistant to both hygromycin and puromycin were
recovered following transfection. On the remaining occasion, no
live parasites were recovered. Southern blot analysis of genomic
DNA isolated from clones of putative DKO parasites revealed that
in all cases an endogenous copy of NMT was retained (Figure 1A,
lanes 6–8) along with a copy of PAC at the NMT locus
(Figure 1C, lanes 6–8). Moreover, probing these blots with
the HYG probe showed that this drug resistance gene had not
integrated into the T. cruzi genome (Figure 1B, lanes 6 and 7).
PCR of these failed DKO attempts suggest that the HYG resistance
gene is present as a multicopy episome. In another of these clones,
HYG was not only present as an episomal copy, but also integrated
at the NMT locus with retention of a copy of NMT (Figures 1A
and 1B, lane 8). We have not investigated whether the latter is due
to amplification of all or part of the NMT chromosome resulting
in aneuploidy, as has been observed in Leishmania spp. [30].

Owing to the failure to directly produce NMT DKO
epimastigotes, a ‘rescued’ DKO cell line was generated. First,
a constitutively expressed ectopic copy of NMT was targeted to
the ribosomal locus of SKO-PAC parasites (Figure 1A, lane 4).
Only then was it possible to replace the last allelic copy of NMT
in cells, due to the presence of an episomal copy of the gene
(Figure 1A, lane 5). These findings provide strong evidence that
NMT is essential for growth and survival of T. cruzi epimastigotes
in vitro.

Infectivity of transgenic parasites

The ability to infect Vero cells was quantified to determine
whether the presence of an ectopic copy or the deletion of a
single allele of TcNMT affected the virulence of these parasites.
Representative images of uninfected and infected Vero cells are
shown (Figures 2A and 2B respectively). The deletion of a single

c© 2014 The Author(s) The author(s) has paid for this article to be freely available under the terms of the Creative Commons Attribution Licence (CC-BY) (http://creativecommons.org/licenses/by/3.0/) which
permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/3.0/


Essentiality of T. cruzi N-myristoyltransferase 327

Figure 2 Infectivity of transgenic T. cruzi parasites

(A) Uninfected Vero cells stained with Hoechst 33342. (B) Vero cells infected with WT T. cruzi. (C) The percentage of Vero cells infected with WT, SKO-PAC, SKO-HYG and NMTOE transgenic
parasites. Differences in the percentage of WT compared with SKO-PAC and SKO-HYG parasites were confirmed to be statistically significant (*P < 0.01) using an unpaired Student’s t test. (D)
The mean number of amastigotes per infected Vero cell of WT, SKO-PAC, SKO-HYG or NMTOE parasites. Differences in the percentage of WT compared with SKO-PAC and NMTOE parasites were
confirmed to be statistically significant (P < 0.01) using an unpaired Student’s t test (*P < 0.05, ***P < 0.001). A total of 24 measurements were made for each parameter. Data are shown as
means +− S.E.M. NS, not significant.

allele in both cases led to a very minor increase in the percentage
of infected cells compared with the WT, whereas the presence
of an ectopic copy [NMTOE (NMT overexpressor)] had no effect
(Figure 2C). Absolute numbers of parasites per infected Vero
cell were also monitored (Figure 2D). Vero cells infected with
SKO-PAC and NMTOE parasites were found to have marginally
reduced parasite loads compared with WT. Despite the statistical
differences between some, but not all, cell lines, these changes
are not relevant biologically as all lines showed similar infection
profiles.

Expression of NMT in T. cruzi life-cycle stages

For technical reasons, it is not possible to genetically validate
NMT in the clinically relevant non-dividing trypomastigote stage
and intracellular amastigote stage by gene knockout. However,
we were able to confirm that NMT is expressed in all stages of the
parasite’s life cycle by probing an immunoblot of crude lysates
with a TcNMT-specific antiserum (Figure 3). Single bands of
approximately 53 kDa, close to the predicted molecular mass
of NMT (51.4 kDa), were detected in all three lysates indicating
that NMT is expressed at all stages of the parasite life cycle. The
cellular concentration of NMT in each of these parasite stages
was determined by densitometry and previously published cell
volumes [31]. Using this information, NMT concentrations in
each stage of the parasite were estimated to be within a 2-fold
range; 1.2, 2.1 and 2.5 μM in the epimastigote, trypomastigote
and amastigote respectively.

Sensitivity to DDD85646 shifts with NMT expression levels

The pyrazole sulphonamide DDD85646 has been shown to
specifically inhibit TbNMT (T. brucei NMT) in vitro and cure
the stage 1 murine model of human African trypanosomiasis
[13]. To establish whether this inhibitor can also chemically
target the T. cruzi enzyme, the comparative sensitivity of WT
epimastigotes and transgenic cell lines with different levels
of NMT to DDD85646 was determined. In the first instance,
altered levels of NMT expression in transgenic parasites were
confirmed by Western blot, using TcTryR as a loading control
(Figure 4A). Cellular levels of NMT were analysed in WT
parasites, the SKO cell line generated previously (SKO-PAC)
and in an NMT overexpressing cell line (NMTOE) which was
generated by transfecting pTREX-NMT into WT epimastigotes.
Densitometry revealed that SKO-PAC parasites contained NMT
protein levels ∼2.5-fold lower than the WT, with levels in the
NMTOE epimastigotes ∼7.6-fold higher. Varying the cellular
levels of NMT within these parasites was found to markedly
alter their sensitivity to DDD85646 with WT, SKO-PAC and
NMTOE cell lines having EC50 values of 6.3, 2.9 and 78.6 μM
respectively (Figure 4B). The clear relationship observed between
the levels of NMT expression and the sensitivity of the
parasites for this compound confirms that TcNMT is specifically
targeted by DDD85646 and thus may be druggable in T.
cruzi. There was no selectivity between the amastigote and
Vero cells with DDD85646 [EC50 values of �8.7 +− 0.8 μM and
6.7 +− 1 μM (n = 4) respectively]. The actual EC50 value for the
amastigote may be higher as the parasite cannot replicate in
the absence of the host cell.
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Figure 3 Cellular levels of NMT in T. cruzi life-cycle stages

Immunoblots of whole cell extracts (equivalent of 1×107 parasites in each lane) from T. cruzi
epimastigotes, trypomastigotes and amastigotes were probed with TcNMT-specific polyclonal
antiserum. Known amounts of purified recombinant TcNMT were loaded as standards for the
quantification of the cellular levels of NMT. The difference in size between recombinant and
cellular NMT is due to the His6-tag on the recombinant protein.

DDD85646-mediated inhibition of N-myristoylation

To confirm DDD85646-mediated inhibition of N-myristoylation
within T. cruzi epimastigotes, parasites were pre-treated
with a range of inhibitor concentrations for 30 min. N-
azidomyristoylated proteins were detected by in-gel fluorescence.
It is evident that there is some non-specific interaction of the
dye with an unlabelled 49 kDa protein (Figure 4A, upper panel,
lane 1). Labelling parasites with this myristic acid analogue led to

the NMT-mediated incorporation of azidomyristate into multiple
T. cruzi proteins (Figure 4A, upper panel, lane 2). In parasites
treated with DDD85646, we observe that six bands were depleted
in a dose-dependent manner which was confirmed by quantifying
the fluorescent intensities of the bands (Figures 5A, upper panel,
and 5B). The most prominent effect was observed for a ∼20 kDa
band, where the N-myristoylation of this protein decreased to
40% of the untreated control, at the lowest inhibitor concentration
tested (∼2×EC50). The remaining bands are insensitive over 5.5 h
exposure to DDD85646 at the range of concentrations tested.
Labelling parasites with L-[35S]methionine revealed no inhibition
of nascent protein synthesis (Figure 5A, lower panel), indicating
that the observed inhibition of N-myristoylation is due to the
direct inhibition of cellular NMT. These data further demonstrate
the on-target activity of the inhibitor DDD85646 in T. cruzi.

Kinetic characterization of recombinant TcNMT

In order to facilitate kinetic studies of TcNMT, the recombinant
enzyme was expressed and purified to homogeneity. Escherichia
coli RosettaTM (DE3)pLysS cells transformed with pET15b-
TEV-TcNMT produced soluble and active protein. TcNMT was
purified following three chromatographic steps to obtain a yield of
2.5 mg·l− 1 (Figure 6A). Analysis of the recombinant protein by
size-exclusion chromatography revealed that His6–NMT elutes
primarily as a monomer at ∼47.4 kDa, close to the predicted
molecular mass of 53.7 kDa (Figure 6B). This was confirmed
by MS to be 53.7 kDa for the tagged recombinant protein by
MALDI–TOF analysis.

Multiple assays already exist for the kinetic characterization
of NMTs using HPLC, ELISA, scintillation proximity assay or
spectrophotometric methodologies [9,29,32,33]. In the present
study, we have compared the scintillation proximity assay with a
modified version of a coupled-enzyme spectrophotometric assay
[28]. The basic kinetic parameters of TcNMT [Km(app) and kcat]
were measured in these assays for CAP5.5, a protein known to
be N-myristoylated in T. brucei [34] (Table 2). Synthetic peptides
based on the amino acids 2–15 of CAP5.5 from both T. brucei and
T. cruzi were used as substrates in these assays. In the coupled-
enzyme assay, the Km value determined for TbCAP5.5 was
∼21-fold higher than observed for TcCAP5.5, but the catalytic

Figure 4 Effects of NMT modulation on DDD85646 susceptibility

(A) Immunoblots of whole cell extracts (equivalent of 1×107 parasites in each lane) of WT, NMT SKO and NMT-overexpressing epimastigotes were probed with TcNMT-specific polyclonal antiserum.
A duplicate blot was probed with antiserum against TcTryR to act as a loading control. (B) EC50 values were determined for DDD85646 against WT (closed circles), SKO (PAC) (open circles)
and NMT-overexpressing parasites (open squares). EC50 values of 6.3 +− 0.1, 2.9 +− 0.04 and 78.6 +− 4.6 μM were determined for DDD85646 against WT, SKO and NMT-overexpressing cell lines
respectively. Data are shown as means +− S.D. for triplicate cultures.
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Figure 5 DDD85646-mediated inhibition of cellular N-myristoylation

Mid-log epimastigotes were pre-treated with varying concentrations of DDD85646 (0–15×EC50) for 5.5 h. (A) N-myristoylated proteins were detected by click chemistry ligation of an alkyne
fluorescent dye on to azidomyristate-labelled proteins (upper panel) and protein synthesis assessed by L-[35S]methionine labelling of parasites (lower panel). Circles highlight bands that are sensitive
to NMT inhibition that were quantified in (B). (B) Reduction in fluorescence intensity as a function of DDD85646 concentration.

Figure 6 Purification of recombinant TcNMT

(A) SDS/PAGE of purification of recombinant TcNMT. Lane 1, insoluble fraction of RosettaTM 2 (DE3)pLysS [pET15b-TcNMT], induced; lane 2, soluble fraction of RosettaTM 2 (DE3)pLysS
[pET15b-TcNMT], induced; lane 3, pooled fractions from Ni2 + -affinity chromatography; lane 4, pooled fractions from anion exchange chromatography (Q Sepharose); and lane 5, pooled fractions
from size-exclusion chromatography. (B) Gel filtration profile of the His6-tagged TcNMT. The inset shows a plot of V e/V 0 against the log molecular mass (Mw) of a standard protein mixture (open
circles), where V e is the elution volume and V 0 is the void volume of the column. The closed circle represents the elution volume of NMT.
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Table 2 Kinetic characterization of recombinant TcNMT

Data for the TbNMT column are taken from [13,29]. n.d., not determined.

Parameter
Coupled-enzyme
assay

Scintillation
proximity assay TbNMT

K m(app) (μM)
Myristoyl-CoA 6.2 +− 0.6 5.3 +− 1.0 1.78
TbCAP5.5 250 +− 28 2.2 +− 0.2 11.3
TcCAP5.5 12.1 +− 1 1.6 +− 0.15 –

k cat (s− 1)
Myristoyl-CoA 0.34 +− 0.01 n.d. –
TbCAP5.5 2.11 +− 0.05 n.d. –
TcCAP5.5 0.15 +− 0.003 n.d. –

k cat/K m (M− 1·s− 1)
Myristoyl-CoA 54.8×103 – –
TbCAP5.5 8.44×103 – –
TcCAP5.5 12.4×103 – –

Inhibition by DDD85646
K i(app) (nM) 41.2 +− 5.4* 16.6 +− 4.4† 1.44
K i (nM) 22.8 12.7 1.04

*Determined using 150 nM TcNMT, 200 μM TbCAP5.5 and 40 μM myristoyl-CoA.
†Determined using 5 nM TcNMT. 0.5 μM TcCAP5.5 and 0.125 μM myristoyl-CoA.

efficiencies (kcat/Km) of both substrates were found to be similar.
For reasons of cost, it was not possible to determine the Km values
in the presence of saturating concentrations of myristoyl-CoA
using the scintillation proximity assay, allowing only a Km(app)

value to be determined for each peptide. Using this assay, the
Km(app) values for the peptide substrates were very similar at 1.6 and
2.2 μM. In the coupled-enzyme assay (in the presence of 600 μM
TbCAP5.5), the Km(app) value of the myristoyl-CoA substrate was
6.2 +− 0.6 μM, which is not statistically different from the value of
5.3 +− 1.0 μM determined in the scintillation proximity assay (in
the presence of 50 μM TcCAP5.5) (P = 0.252) Student’s t test.

Inhibition of recombinant TcNMT by DDD85646

DDD85646 is a potent inhibitor of T. brucei recombinant NMT
[K i(app) = 1.44 nM] and inhibits the growth of T. brucei blood-
stream parasites in vitro at similar concentrations (EC50 = 2.1 nM)
[13]. In comparison, we noted that DDD85646 was far less potent
against T. cruzi epimastigotes (EC50 = 6.3 μM) (Figure 4B).
Since we have demonstrated that DDD85646 specifically inhibits
TcNMT in vitro, the drop-off in cellular potency could be in
part explained by differences in active site architecture leading
to a decreased affinity for the inhibitor. To test this hypothesis,
the K i value of DDD85646 was determined against the T. cruzi
recombinant enzyme using both the scintillation proximity assay
and coupled assay (Table 2). Under both sets of assay conditions,
the K i of DDD85646 was calculated to be ∼12.7–22.8 nM, which
is 13–23-fold less potent than against the T. brucei enzyme. In
contrast with T. brucei, there is a drop-off in culture potency of
two orders of magnitude between target and cell activity.

DISCUSSION

The paucity of validated drug targets in T. cruzi has severely
hampered the search for better and more effective treatments for
Chagas’ disease. Previous studies have shown that the enzyme
encoded by the NMT gene is essential for the survival of
many eukaryotic organisms [10,12,35,36], including the related
trypanosomatids L. major and T. brucei [12]. Metabolic labelling
studies in T. cruzi have already revealed that N-myristoylation

occurs in this parasite and plays a role in the correct cellular
localization of the flagellar calcium-binding protein [16,37]. The
genetic studies investigated in the present study indicate that
TcNMT is an essential gene in the epimastigote stage of the
parasite, since we were unable to directly replace both endogenous
copies of NMT , except in the presence of an ectopic copy
of the gene. Although we have carried out genetic validation of
TcNMT in the epimastigote stage of the parasite, there is clear
evidence to show that the enzyme is also present in the clinically
relevant stages. Therefore it is likely that N-myristoylation is
also an essential cellular process during the trypomastigote and
amastigote stages of development.

The comparative profiling of NMT substrate specificities from
multiple organisms has revealed that there are subtle species-
specific differences in the N-myristoylation motif of protein
substrates recognized by each homologue. These differences have
already been exploited to generate inhibitors which are up to 560-
fold more potent against a fungal enzyme than the human enzyme
[38]. Several high-throughput inhibitor-screening programmes
have been carried out in recent years with the aim of identifying
both potent and selective inhibitors of NMT from the target
species [13,39,40]. One such campaign led to the development
of DDD85646, a highly potent inhibitor of T. brucei and human
NMT [13]. Despite selectivity at the target level being only 2-
fold, this increases to 200-fold at the cellular level. The reason
for biological selectivity is not fully understood and may involve
pleiotropic biological effects. Depletion of NMT by RNAi in
this parasite leads to impairment of the endocytic pathway [41],
a process that is known to involve the N-myristoylated protein
TbARF1 (T. brucei ARF1) [42]. Endocytosis and exocytosis
in T. brucei occurs exclusively from a specialized invagination
of the plasma membrane known as the flagellar pocket. Owing to
the high endocytic/exocytic rate, the entire plasma membrane of
the parasite is turned over in approximately 12 min, considerably
faster than that of mammalian macrophages or fibroblasts [43].
Treatment of T. brucei with DDD85646 causes a massively
enlarged flagellar pocket or ‘big eye’ phenotype [13], as found
by RNAi knockdown of either clathrin heavy chain [44] or
ARF1 [42], suggesting that endocytosis, but not exocytosis, is
inhibited. Curiously, knockdown of NMT itself does not produce
this phenotype, despite inhibiting endocytosis [41]. Nonetheless,
the marked sensitivity of the T. brucei bloodstream parasite to
NMT inhibition can be attributed at least partly to the high rate
of endocytosis/exocytosis and the consequent high turnover of
plasma membrane in the flagellar pocket [13].

Although DDD85646 is a potent inhibitor of the T. cruzi
enzyme, there is a considerable drop off in potency against the
intact parasite (epimastigote or amastigote), in marked contrast
with T. brucei where DDD85646 is equipotent against both
the enzyme and the parasite [13]. The reason for this is not
clear, but could be due to differences in the rate of plasma
membrane turnover, differences in other essential biological
functions requiring N-myristoylation or due to differences in
cellular pharmacokinetics of drug uptake or efflux. The kinetics
of endocytosis has not been studied in T. cruzi. However, it is
worth noting that endocytosis in T. cruzi epimastigotes occurs
principally via another membrane invagination adjacent to the
flagellar pocket (the cytostome) and not the flagellar pocket itself
[45].

Our studies clearly demonstrate that NMT is an essential
and druggable enzyme in T. cruzi, thus it is entirely plausible
that parasite-specific N-myristoylated proteins may also be
potential drug targets in their own right. To date, only
two T. cruzi proteins (flagellar calcium-binding protein and
phosphoinositide-specific phospholipase C) have been defin-
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itively confirmed to be N-myristoylated [16,37], although
two studies have predicted many proteins may undergo this
modification [46,47]. Although our studies identify at least
ten distinct bands, treatment of epimastigotes with DDD85646
was only able to specifically block the N-myristoylation of
six in vitro under the experimental conditions used in the
present study. Although it is possible to theoretically predict N-
myristoylated proteins from any completed genome [46,48], these
bioinformatics and predictive approaches have several drawbacks.
Most notably, using known N-myristoylated motifs from various
organisms to inform our identification of N-myristoylated proteins
in T. cruzi may well lead to difficulties, since previous studies
have shown a degree of variability in this motif across different
organisms [49–51]. With this in mind, work is underway to
identify directly the N-myristoylated proteins comprising the T.
cruzi N-myristoylome using a click chemistry approach.

In conclusion, we have demonstrated that NMT from T. cruzi
is both an essential and druggable target. However, discovery of
more potent and selective inhibitors will be required to achieve a
suitable therapeutic window for the treatment of Chagas’ disease.
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