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‘Well, in our country,’ said Alice, still panting a 

little, ‘you’d generally get to somewhere else – if 

you ran very fast for a long time, as we’ve been 

doing.’ 

     ‘A slow sort of country!’ said the Queen. 

‘Now, here, you see it takes all the running you 

can do, to keep in the same place. If you want to 

get somewhere else, you must run at least twice 

as fast as that!’ 

                   (Carroll 2000: 62) 
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Abstract 
 
 
 
 
The UK government has committed to challenging climate change and renewable 
energy obligations to 2020 and beyond. The renewable electricity sector remains a key 
focus in meeting these targets, given the critical need to decarbonise the power sector in 
the longer term. This has led to an ambitious renewable electricity sectoral target of 30 
percent of total electricity generation from renewable sources (RES-E) by 2020, 
corresponding to a deployment target of 35-40GW of installed capacity. In 2011, RES-E 
deployment stood at 12.3GW, resulting in the UK requiring 23-28GW of additional 
renewable electricity technology (RET) deployment in eight years. This requires a 
substantial amount of new RET capacity be adopted, the majority anticipated to come 
from a four large-scale (>5MW) technologies (onshore and offshore wind, biomass 
conversion and dedicated biomass).  
 
However, large-scale renewable deployment has consistently under-performed against 
previous targets and other policy objectives. There are a number of failures that 
historically and currently act as constraints to RET deployment. This thesis categories 
those constraints as either internal or external failures. Internal failures are due to the 
design of the subsidy mechanism used to promote renewable deployment (type of 
mechanism, how it operates, revenue risk, investment (lender) risk, subsidy support 
levels and mechanism complexity). External failures are those constraints out-with the 
direct control of the mechanism (planning, network, public participation and 
engagement and policy risk). These constraints need to be addressed.  
 
This thesis has carried out an evaluation of the current UK approach to large-scale RET 
deployment to 2020 and beyond by adopting a systemic framework approach to 
determine whether or not the UK will be successful in addressing the potential 
constraints – the internal and external failures – to deployment. The systemic approach 
is based on three key criteria regarding the potential constraints: a comprehensive set 
of constraints, analysed in-depth and taking into account the interaction of the 
constraints in a systemic fashion. In contrast, the government approach to dealing with 
these potential constraints has typically focused on failures in isolation; also 
government commissioned modelling and existing research does not take into account 
all of the internal and external failures and/or examine them in-depth. Critically, no 
research has analysed the systemic interactions. With this approach, this research aims 
to fill the gap in extant knowledge and analysis due to the absence of existing research 
meeting the key criteria. This thesis was carried out by a textual analysis of key policy 
documents and legislation that form the basis of the UK government’s current approach 
to addressing the barriers to RET deployment. The method of inquiry utilised here is 
that of the qualitative research approach. 
 
The results show that there are significant systemic interactions between the internal 
and external failures (internal>internal; external>external; and internal to external and 
vice versa). There are also a number of feedbacks, specifically between grid>planning 
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and public participation and engagement>planning. This creates systemic imbalances 
and unresolved tensions between the constraints. Importantly, the systemic 
interactions impact disproportionately on the key RETs, with a particular emphasis on 
onshore and offshore wind. By not addressing potential constraints from a systemic 
perspective, the current UK approach discriminates in favour of a system highly 
dependent on large-scale developments, of a few select RETs by a limited number of 
developers of a particular type (typically ex-utility, large-scale). This limits the focus on 
social and behavioural issues, particularly in terms of participation and engagement in 
ownership, decision-making and reducing the role of small-scale, independent and 
community group participation. In conclusion, under the current approach, decisions 
will be made on a separate ad-hoc basis leading to continual reform and adjustment 
with less clarity of where the risks lie. Increasing deployment year-by-year will only 
accumulate and intensify the potential constraints with limited options to address this. 
Effectively, government can only buy or control its way out of the constraints. In 
contrast, a systemic approach offers policy makers a way out of this. By providing an 
overview of the system and identification of systemic interactions in an early and novel 
way, this approach offers the opportunity for pragmatic decision-making at the systemic 
level leading to more predictable routes to solving problems via focused reforms, thus 
mitigating risks to a greater extent and redefining the system in a more optimal and 
resilient way. In other words, it allows government to connect the dots in addressing 
potential constraints to deployment. 
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Part I 

Introduction to the dissertation 
 
 
 
This thesis has carried out an evaluation of the current UK approach to large-scale 

renewable electricity technology deployment to 2020 and beyond by adopting a 

systemic approach framework to determine whether or not the UK will be successful in 

addressing the potential constraints – the internal and external failures – to 

deployment. This is approached by answering three specific research questions. What 

are the implications of the current UK approach to addressing potential constraints to 

renewable electricity technology deployment to 2020 and beyond? How would a UK 

response based on a systemic approach to renewable electricity technology deployment 

perform compared to the current UK Government’s efforts to address potential 

constraints? What could the systemic approach offer to policy makers? In brief, this part 

sets out the reasoning and justification underlying the subject matter of the thesis and 

the way in which the research has been conducted. The methodological approach used 

within the thesis is also set out along with the justification for this particular method. 

Further, a review of the extant literature is undertaken in order to provide both support 

for and the context within which this research is positioned. 

 

Chapter one introduces the subject area to be examined in the thesis and provides a 

rationale for why this topic has been chosen. In particular, this chapter highlights the 

critical gap in knowledge and analysis due to the absence of existing research and 

modelling incorporating a comprehensive and in-depth analysis of the constraints that 

takes into account the systemic interactions of the constraints. Building on this, this 

chapter questions the current UK government approach to addressing the constraints to 

deployment. 

 

Chapter two presents the research methodology utilised in this thesis and sets out the 

reasoning behind the methodology and the discrete stages involved in the research. 

Specifically, the internal and external failures and the systemic approach are described. 
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In particular, the identification of the set of internal and external failures is explained. 

This chapter also determines any potential problems with the adopted methodology. 

  

The final chapter in part one of the thesis presents a literature review of the way in 

which government has previously approached the barriers or constraints to large-scale 

renewable electricity technology deployment in the UK. As such, it draws on and 

develops the justification for the thesis in chapter one and sets the internal and external 

failures within the context of the approach adopted by the UK government to 

addressing constraints. This chapter incorporates a historical element, looking at both 

the previous subsidy mechanisms (the Non-Fossil Fuel Obligation (1990-1998) and the 

Renewables Obligation (2002-2009) along side wider changes to the electricity 

‘landscape’ in general and renewable electricity policy in particular. 
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Chapter One 
Introduction 
 
 
 
1.1 The PhD in context 

This thesis adopts a systemic approach to evaluating potential constraints (categorised 

as the internal and external failures) to large-scale renewable electricity technology 

deployment in the United Kingdom (UK). This thesis will provide a credible assessment 

of the UK Government’s current approach to renewable electricity deployment with 

regard to the 2020 renewable electricity sectoral target and beyond. 

  

The European Union (EU) 2009 Renewables Directive has set the UK a legally-binding 

target of supplying 15 percent of its energy consumption from renewable energy 

sources by 2020.1 In line with the sectoral approach, the UK has set non-binding targets 

with regard to the contribution of the electricity, heating and cooling and transport 

sectors towards the renewable target. Electricity generated from renewable energy 

sources (RES-E) is anticipated by the UK government to provide the greatest share of 

the overall 15 per cent target, equating to a sectoral target of at least 30 per cent of total 

UK electricity generation, or 49 percent of total UK renewable generation by 2020 

(Department of Energy and Climate Change [DECC], 2009).2 The UK government 

                                                             
1 The EU Renewable Energy Directive (RED) ‘2009/28/EC on the promotion of the use of energy from 
renewable sources’ established a mandatory target of a 20% share of energy from renewable sources in 
overall Community energy consumption by 2020 (Europa, 2009). The overall Community target is 
translated into individual targets for each Member State with the national targets determined by the 
existing level of energy from renewable sources, renewable energy potential and the energy mix. This 
approach was adopted is in order to deliver a fair and adequate allocation taking into account current and 
historical variations in Member State’s efforts with regard to the use of energy from renewable sources. 
Unlike the previous non-legally binding renewable directive ‘2001/77/EC on the promotion of electricity 
produced from renewable energy sources in the internal market’ (Eur-Lex, 2001), the 2009 RED target 
incorporates the three major sectors (electricity, heating and cooling and transport). It has been left to 
the Member States to determine the contribution of the various sectors to the overall target. Regarding 
the UK 15% target, the Directive also set interim targets: 4% for 2011/12, 5.4% for 2013/14, 7.5% for 
2015/16 and 10.2% for 2017/18.   

2 In contrast, the sectoral targets for heating and cooling and transport are 12% of UK heat demand (or 
30% of total renewable energy) and 10% of transport demand (or 21% of total renewable energy), 
respectively (DECC, 2009a). 
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document ‘UK Renewable Energy Strategy 2009’ (DECC, 2009a) translated the 15 per 

cent target into 239 terawatt-hours (TWh) with corresponding sectoral targets: 114 

TWh (electricity), 72 TWh (heating and cooling) and 49 TWh (transport). The electricity 

sectoral target corresponds to approximately 35-40 GW of renewable electricity 

technology deployment, compared to the 12 GW of current installed capacity with a 

generation output of 34 TWh in the UK as of the end of 2011 (DECC, 2009a). Critically, 

decarbonisation of the electricity sector is also viewed as essential with regard to 

transforming the UK into a low-carbon economy and to meeting the UK’s climate 

objectives as set out in the domestic Climate Change Acts: an 80 percent reduction in 

greenhouse gas emissions (GHG) from 1990 levels by 2050 (for the UK overall, and at 

the national administrative level for Scotland) with diverging interim targets for 2020 

(34 and 42 percent reductions on 1990 levels for the UK and Scotland, respectively) 

(Committee on Climate Change [CCC], 2010, 2011; National Archives, 2008, 2009).3 

 

In addition to the UK renewables targets, the devolved national administrations have 

also set ambitions and targets at the overall and sectoral levels (DECC, 2012a).4 Of the 

three devolved administrations, Scotland is of particular interest to the UK target. 

Scotland is the only nation within the UK to have adopted greenhouse gas emission 

reductions on a legal basis (see above). In particular, the Scottish Executive has 

consistently set higher targets for both renewable and RES-E generation. In 2011, the 

Scottish Executive declared a new target of 100 percent electricity demand 

                                                             
3 There are two domestic Climate Change Acts in the UK: the Climate Change Act 2008 (encompassing the 
UK overall) and the Climate Change (Scotland) Act 2009. The central pillars of the legislation are the 
legally-binding targets for reducing GHG emissions by 2020 and 2050 and a series of carbon budgets (5-
yearly and annually under the UK and Scottish legislation, respectively) which set maximum UK 
emissions on the trajectory for the targets. The UK Act also established the independent CCC primarily to 
advise the government on key matters under the Act and in monitoring and reporting on the 
government’s progress. Climate change targets are also driven at the international level via the Kyoto 
Protocol which set the UK an emissions reduction target of 12.5 % below 1990 levels by 2010 (United 
Nations [UN], 1998) and the EU integrated energy and climate change (20-20-20) programme which set 
Community-level targets for reducing its overall emissions to at least 20% below 1990 levels and 
reducing energy demand by 20% with both targets to be achieved by 2020 (Europa, 2011). 

4 Although the EU target, and therefore the sectoral targets are set for the UK, the establishment by law of 
the devolved national administrations in Scotland, Wales and Northern Ireland in 1998 has resulted in 
the increased relevance of the contribution the administrations can play with regard to meeting the target 
(McEwen et al., 2010). The level of these targets are not designed to equate to the share of the respective 
devolved administrations, rather they are complementary but parallel to the UK target. 
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(consumption) equivalent from renewable electricity technologies (RETs) by 2020 in 

conjunction with a new overall renewable energy target (all sectors) of 30 percent, also 

for 2020 (Scottish Government, 2011a,b).5 The 100 percent RES-E target is the most 

ambitious in the EU, and means that Scotland is anticipated to contribute over a third of 

the UK’s total RES-E target, approximately 16-17 GW in terms of installed capacity 

(Scottish Government, 2011c). This would have significant implications for the UK 

overall target. Scotland already makes a substantial contribution towards renewable 

electricity generation in the UK with approximately half of total installed capacity and 

40 percent of total UK RES-E generation output in 2010 (DECC, 2011a). Analysis has 

also shown that the UK requires between 6 and 11 GW of installed renewable capacity 

from Scotland in order to achieve the 2020 sectoral target (Electricity Networks 

Strategy Group [ENSG], 2009). Of all the devolved administrations, Scotland generates, 

consumes and exports the most electricity (including renewable electricity) and has 

considerable renewable energy reserves on a global scale (Offshore Valuation Group 

[OVG], 2010).  

 

That the renewable and overarching climate change targets are important, particularly 

when viewed in the context of the UK government’s commitment in moving towards a 

low carbon economy, is not in question. However, there are a number of additional 

reasons or drivers underlying the promotion of renewable energy in general and 

renewable electricity in particular. These include security of supply, fossil fuel 

dependency/depletion and benefits to the UK in terms of encouraging UK industry to 

develop capabilities for both domestic and export markets with resultant employment 

growth in a developing renewables sector. These policy objectives are clearly stated in a 

number of ‘Energy White Papers’ during the last two decades and form the current basis 

for energy policy in the UK. Importantly, these objectives or energy policy goals are to 

be achieved through the promotion of competitive markets and result in affordable 

energy for the consumer (Department of Energy, 1988; Department of Trade and 

Industry [DTI], 1994, 2003, 2007; DECC, 2011b).  

                                                             
5 As with the UK sectoral approach, the Scottish RES-E target is anticipated to contribute the greatest 
share of the 30% overall renewable target for 2020 (Scottish Government, 2011b). 
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The UK electricity sector has also been undergoing considerable change that will have 

significant and wide-spread implications for the future.6 In addition to the renewable 

and climate change targets and the requirement to accelerate the deployment of RETs, 

the main promotional tool to subsidise RES-E (the Renewables Obligation, or RO) was 

substantially reformed in 2009. The RO places a mandated obligation on electricity 

suppliers to source an annually increasing amount of RES-E. The 2009 reforms 

introduced differentiated subsidy levels (or ‘technology banding’) for the various 

eligible renewable technologies (Wood and Dow, 2010). In 2011, the government 

published the energy white paper ‘Planning our electric future: a White Paper for secure, 

affordable and low-carbon electricity’ as part of the on-going process of electricity 

market reform (EMR) (DECC, 2011b). Described as a fundamental reform of the UK 

electricity sector, the EMR is anticipated to be the main tool going forward to drive the 

decarbonisation of the electricity sector in order to meet RES-E and climate change 

targets whilst maintaining security of supply.  Amongst other proposals, the EMR 

proposes to introduce a Feed-in Tariff Contract for Difference (FIT CfD) mechanism.7 A 

novel variant of the existing small-scale FIT, the new mechanism is anticipated to 

operate along with the RO from 2014 until 2017 when the RO will be closed to new 

projects (vintaged). From 2017 onwards, the FIT CfD mechanism will be the main 

financial tool to promote large-scale RES-E generation in the UK.  

 

When introduced in 2002, the RO was envisaged to bring on the overwhelming majority 

of RES-E generation in the UK required to meet the 2020 RES-E sectoral target.8 

                                                             
6 As with many countries world-wide, the UK electricity (and energy) sector has experienced significant 
change since at least the late 1980s. The 1989 Electricity Act commenced the ongoing drive to change the 
electricity sector through the introduction of privatisation (the sale of state assets) and liberalisation (the 
introduction of competition) in order to create a market for energy (National Archives, 2011).  This 
represented a fundamental shift in energy systems, from direct government ownership to the need to 
establish regulators and regulations to enforce a system of competition whilst attempting to achieve the 
various energy policy objectives of the government (Helm, 2008). 

7 The other EMR proposals include setting a carbon price support (CPS) to underpin the current low 
carbon price, an emissions performance standard (EPS) to limit the amount of greenhouse gases (GHG) 
from fossil fuel generation and a capacity mechanism (CM) to address security of supply concerns. 

8 Originally this meant that the 2010 sectoral target of 10% of total electricity generated from RES-E 
established by the EU 2001 Directive (2001/77/EC) and later the UK Government’s aspirational 15% 
RES-E target by 2015 would be met by the RO. Although a small-scale FIT to subsidise renewable 
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Importantly, the proposed introduction of the new FIT CfD and the closure of the RO to 

new generation have resulted in a change in emphasis: the RO is now anticipated to 

account for around 80 TWh out of the 114 TWh sectoral target by 2017 or 

approximately 75 per cent of the target (DECC, 2012b). Therefore, although the EMR is 

anticipated to be the main tool going forward to drive the deployment of renewable 

electricity technologies, the RO is still anticipated to account for the majority of RES-E 

deployment and generation. Additional generation (the ‘shortfall’) is presumed to come 

from the new FIT CfD in addition to the existing small-scale FIT mechanism. However, 

the implementation of the FIT CfD and indeed the entire EMR proposals still require to 

be put into legislation, and numerous concerns have been voiced regarding the 

demanding legislative timetable for the EMR (Energy and Climate Change Committee, 

2012; Friends of the Earth [FoE], 2012; RenewableUK, 2012a). In addition, a number of 

issues regarding the design and implementation of the proposals regarding the FIT CfD 

remain vague: 

 
“… with many fundamental aspects of the CfD mechanism where thinking is at an 
early stage with concrete proposals to be developed. Our members are nervous that 
at this stage there is still little detail on many of the key aspects of the CfD 
mechanism” (Scottish Renewables, 2012). 

 

Of concern, opposition to the proposals appears to be growing.9 This means the 

possibility remains that the RO will be required to account for a higher share than 

currently envisioned if the target is to be achieved. Either way, the focus of this research 

on potential constraints to RES-E deployment in the UK will remain both pertinent and 

relevant even following the EMR (see below). 

 

                                                                                                                                                                                              
electricity deployment with an installed capacity of between 50 kW and 5 MW was introduced in April 
2010, the target aim for this mechanism was only 2 per cent of final electricity generation in 2020 (or 8 
TWh/year). In addition, the RO can also provide subsidy support to the same RETs as the small-scale FIT: 
onshore wind, hydro, anaerobic digestion. 

9 The House of Commons Select Committee on Energy and Climate Change recently announced in an 
investigation into the EMR proposals that “… arrangements have become so complex that the proposal has 
now arguably become unworkable.” (Energy and Climate Change Committee, 2012: 4).  The issue of the 
EMR and the FIT CfD mechanism will be examined in greater detail in Chapter Seven (section 7.5). 
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The UK electricity sector is also facing the projected loss of around a quarter of the UK’s 

current electricity generation capacity (the ‘generation gap’), mainly nuclear and coal-

fired power stations for operational age and environmental reasons (DECC, 2011b). 

However, it is unlikely that all of the projected closures will take place. In particular, 

there are plans to extend the operational lifespan for existing nuclear plant. In addition 

there are numerous proposed or recently adopted changes regarding both the planning 

system and the electricity transmission and distribution networks (both onshore and 

offshore) along with additional initiatives to develop and strengthen the supply chain 

and facilitate access to finance for low carbon and renewable technology deployment. 

The impact of these changes represents a potentially profound alteration to the policy, 

regulatory and legislative landscape. Whether or not they achieve their objectives 

depends in large part on their design and implementation (Toke, 2011). Importantly, 

given the ambitious targets and the sheer scale of the changes proposed or already 

adopted for increasing the deployment of renewable energy over the next decade and 

beyond, consideration of the implications of meeting the target has to extend to issues 

beyond the traditional dominance of technological and economic approaches. Such 

issues include public participation and engagement and environmental issues not just 

associated to climate change per se.10 

 

Importantly, the electricity or power sector has both historically and currently remains 

the main focus of policy and legislative effort regarding renewable energy in the UK, as 

                                                             
10 As Devine-Wright (2007: 3) notes: “Public acceptance is recognised as an important issue shaping the 
widespread implementation of renewable energy technologies and the achievement of energy policy targets. 
Furthermore, it is commonly assumed that public attitudes need to change to make more radical scenarios 
about the implementation of renewable energy technologies feasible.” This argument has also been put 
forward by other academics and organisations (Bell et al., 2005; Natural Research Council, 2008). Such an 
observation also holds true for climate change objectives: “But in order for policy to be truly effective, it 
must win public support.” (Environmental Audit Committee, 2007: 4). Regarding the second point, there 
appears to be a strong tendency to argue that the dangers of climate change mean that measures to 
combat it (e.g. renewable technologies) are somehow more important than other considerations. 
However, in a recent ruling at the Administrative Court regarding a wind farm planning proposal (Great 
Yarmouth, Sea Land and Power Ltd vs. Secretary of State for Communities and Local Government and 
Great Yarmouth Borough Council), Mrs Justice Laing stated: “As a matter of law it is not correct to assert 
that the national policy promoting the issue of renewable resources… negates the local landscape policies or 
must be given ‘primacy’ over them.” (Bailii, 2012). 
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evidenced by the operation of a specific delivery programme for RES-E since 1990.11 

There have been two main policy instruments to promote and subsidise renewable 

electricity generation technologies (RETs): the Non-Fossil Fuel Obligation (NFFO), a 

centralised bidding system that ran from 1990 to 1998, and the Renewables Obligation, 

a variant of the Renewable Portfolio Standard (RPS) – a tradable green certificate/quota 

system that came into effect in April 2002 (Mitchell et al., 2006; Wood and Dow, 2010). 

The under-performance of both mechanisms, however, is well documented (Butler and 

Neuhoff, 2008; Lauber, 2004; Lipp, 2007; Komor, 2004; Mitchell 1995; Mitchell and 

Connor, 2004; Ringel, 2006; Toke, 2005a, b; Toke and Lauber, 2007; Wood, 2010; Wood 

and Dow, 2010, 2011). 

 

Historically the UK has consistently failed to meet RES-E targets. Only 30 percent of all 

accepted NFFO projects actually reached the commissioning stage over a 14-year period 

(Edge, 2006). For the RO, this can be seen by comparing actual RES-E generation against 

the annual obligation targets (as a percentage): 2.4 contra 3 (2003), 3.6 contra 4.3 

(2004), 4.2 contra 4.9 (2005), 4.5 contra 5.5 (2006), 5 contra 6.7 (2007), 5.5 contra 7.9 

(2008), 6.6 contra 9.1 (2009) and 6.8 contra 10.4 (2010) (Department of Business, 

Enterprise and Regulatory Reform [BERR], 2008; DECC, 2010a; DECC, 2011e). The 2010 

target for UK renewable electricity generation established by the previous EU 

Renewables Directive (2001/77/EC) was 10.4 percent: the UK missed the target by 

approximately a third, despite two decades of effort. The current contribution of 

electricity generated from renewable sources stands at only 9.4 per cent in 2011 (DECC, 

2012c).12 This means that the 2010 target has still not been met. Put in perspective, 

                                                             
11 In contrast to the renewable electricity sector, the Renewables Heat Incentive (RHI), the subsidy 
support mechanism for the heating and cooling sector was only implemented in 2011 with full 
implementation recently delayed by a further year until at least summer 2013. The scheme has recently 
been renamed as the Renewable Heat Premium Payment (RHPP) (DECC, 2011c).  The Renewable 
Transport Fuels Obligation (RTFO) to subsidise renewable fuels commenced operation only in 2005 
(Department for Transport [DfT], 2012). When looking at the sectoral contributions to UK renewable 
energy, out of a total renewable generation output of 54 TWh in 2010, RES-E accounted for almost half of 
the total renewable output. Both the heating and cooling and transport sectors contributed approximately 
25% each (DECC, 2011d).  

12 This can also be seen when comparing UK RES-E performance with other EU countries efforts. In 2010, 
the EU (27 countries) average was 20%. At around 6.7%, RES-E as a percentage of total electricity 
consumption equated to the fourth lowest amount, only above Luxembourg (3.1%), Cyprus (0.7%) and 
Malta (0%). In contrast, the majority of EU states performed significantly better than the UK: Germany 



11 

 

 

 

with only nine years until the 2020 target deadline, the UK is required to more than 

triple renewable electricity generation output. 

 

As a result, the NFFO and RO have not delivered deployment at expected levels and 

energy policy objectives have either not been met (developing export and domestic 

market capabilities) or non-optimally (security of supply, fossil fuel 

dependency/depletion and environmental goals) (Wood and Dow, 2011). This is 

significant given recent analysis of terrestrial and marine renewable energy resource 

availability in the UK. The 2010 Offshore Valuation Group report ‘The Offshore 

Valuation: A valuation of the UK’s offshore renewable energy resource’ determined that 

potential marine resource reserves alone could provide over 2,100 TWh per year in 

renewable electricity generation output. In comparison, total electricity consumption in 

2010 was 336 TWh (DECC, 2011a). 

 

There is also the issue of the relative contribution of the different technologies to the 

2020 RES-E sectoral target and beyond. Although hydro power previously accounted for 

virtually all renewable installed capacity (measured in Mega-watts electricity, or MW) 

up to 2004, a legacy of the past construction of large-scale reservoir dams after World 

War II, onshore wind in particular and wind power in general have played the major 

role in driving new RET deployment capacity in the UK (DECC, 2012c). Over the period 

2001-2010, onshore wind consistently exhibited the largest annual installed capacity 

and cumulative capacity growth since 2005 of any individual renewable electricity 

technology (BERR, 2008; DECC, 2011e). At the technology ‘family’ level13, onshore and 

offshore wind accounted for 53 percent (+6,488 MW) out of a total installed capacity of 

+12,310 MW in 2011 with onshore alone accounting for 72 percent of total wind 

capacity. Overall, wind power capacity is over twice that of bioenergy and waste (26 

                                                                                                                                                                                              
(17%), Denmark (33%), Ireland (13%), Greece (17%), Spain (33%), France (15%), Italy (22%), and 
Portugal (50%). For a more complete dataset, see Eurostat (2012). 

13 A RET ‘family’ includes similar or associated technologies: for example, wind incorporates onshore, 
offshore and micro-wind. Offshore wind could be further categorised into fixed offshore and floating 
offshore. There are six major ‘families’ of RETs incorporating various sub-categories. For further 
explanation, see chapter two (section 2.5). 
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percent, or 3,167 MW) and almost four times as much as total hydro (1,676 MW, or 14 

percent). In terms of generation output (measured in Giga-watt hours, or GWh), 

however, bioenergy and waste has dominated output until 2011 when total wind 

generation surpassed all other RETs: 15,498 GWh (or 45 percent out of a total RES-E 

generation output of 34,410 GWh) compared to 12,973 GWh (37 percent) for bioenergy 

and waste and 5,686 GWh (17 percent) for hydro power. Again, in absolute terms, 

annual generation output from wind has increased around fifteen times during the 

period 2001-11, whereas bioenergy and waste has increased around 3 times. Hydro 

power has showed negligible increases overall due to insignificant growth in installed 

capacity.  

 

The UK Government has effectively singled out a number of RETs anticipated to 

contribute the majority of deployment to 2020 and beyond. The ‘UK Renewable Energy 

Roadmap – July 2011’ (DECC, 2011a: 13) concluded on the basis of an analysis of 

potential deployment to 2020 that four key renewable electricity technologies could 

account for the majority of deployment and generation output: onshore wind (from 4.6 

GW/10.3 TWh in 2011 to 13 GW/34 TWh by 2020), offshore wind (from 1.8 GW/5.1 

TWh in 2011 to 18 GW/45.5 TWh) and biomass electricity (from 2.5 GW/12.9 TWh to 6 

GW/39 TWh by 2020). The majority of growth in biomass electricity is anticipated to be 

met from biomass conversion and dedicated biomass.14 Based on the UK Government’s 

analysis, then, onshore wind would be required to increase by +8.4 GW, offshore wind 

by +16.2 GW and biomass electricity by 3.5 GW. Critically, these figures reveal the 

predominance of UK deployment on these four renewable technologies, in particular 

wind power. In contrast, independently commissioned analysis on potential renewable 

deployment rates by AEA (2010: (‘Analysis of Renewables Growth to 2020 – March 2010’) 

and ARUP (2011: ‘Review of the generation costs and deployment potential of renewable 

                                                             
14 These figures are modelled ‘estimates’ of central deployment ranges and do not represent technology 
specific targets of the level of UK Government ambition (DECC, 2011a). The full range for each of the four 
technologies is: onshore wind (10-19 GW, or 23-45 TWh), offshore wind (11-26 GW, or 33-58 TWh). 
Although the UK Renewable Energy Roadmap did not break down statistics for the various biomass 
electricity RETs, analysis by AEA (2010) for the Roadmap document did: dedicated biomass (central 
range 2.3 GW or 16.5 TWh, full range 1.8-4.1 GW or 12.5-28.8 TWh) and biomass conversion (central 
range 1.1 GW or 8 TWh, full range 0-2.6 GW or 0-18.4 TWh).  
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electricity technologies in the UK – October 2011’) concluded that all other technologies 

were not expected to contribute significantly to the 2020 sectoral target. These RETs 

include: marine renewables (wave, tidal stream), geothermal, biomass co-firing, waste 

(sewage gas, landfill gas, energy from waste, anaerobic digestion) and solar PV.15 

 

It is only in the last year (2010-11) that the dominant trends appear to change 

significantly (DECC, 2012c, d). Over the period 2001-2010, in both relative and absolute 

terms, wind power dominated annual installed capacity growth, accounting for around 

80 percent of annual new RES-E capacity growth on average. This is consistent with the 

anticipation that wind power, both onshore and offshore, will contribute the vast 

majority to the UK RES-E sectoral target. However, in 2010-11, the share of total wind 

dropped from 81 percent in the previous year to just 37 percent, the first time that wind 

power has experienced such a drop in annual growth in installed capacity. Although the 

share of onshore wind to annual installed capacity had been dropping in recent years 

due to a corresponding growth in the share of offshore wind, the primary reason is due 

to highly significant deployment growth in two RETs that had displayed very little 

growth overall: solar photovoltaic increased from 77 to 976 MW (+899 MW) and plant 

biomass from 330 to 1,159 MW (+829 MW), accounting for 30 and 27 percent of total 

installed capacity growth in the same period, respectively. In comparison, onshore and 

offshore wind grew by +614 and +497 MW, respectively. Marine (wave, tidal) and 

geothermal currently make no impact on deployment levels. 

 

The scale of the target is clear.16 But why has large-scale renewable electricity 

deployment, and hence generation output, consistently under-performed against the set 

targets so far? Critically, what are the implications of this going forward for the 2020 
                                                             
15 Marine renewable and geothermal technologies are at too early a stage to contribute significantly to 
deployment until post-2020. With the exception of anaerobic digestion, biomass waste RETs have limited 
opportunity to continue increasing deployment. It should be pointed out that none of these reports 
anticipated the significant growth in solar PV (see in text for further examination). See AEA (2010) and 
ARUP (2011) for a more detailed explanation. 

16 Indeed, the government has recognised this, as can be seen by the use of terminology in various official 
documents to describe the 2020 sectoral goal: ‘radical’, ‘very ambitious’ (DECC, 2009: 8), ‘challenging’ 
(DECC, 2011f: 9) and ‘a huge challenge’ (DECC, 2011b: 27). The Scottish Executive describes the 100% 
renewable electricity target as “a major challenge” (Scottish Government, 2012a: 29). 
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sectoral target and beyond? There are a number of barriers or failures that act as 

constraints to renewable deployment in the UK. In order to evaluate the potential 

constraints to the necessary levels of deployment required to achieve the 30 percent 

renewable electricity generation target, this thesis draws on the ‘internal and external 

failures’ approach developed in Wood and Dow (2010) and further elaborated in Wood 

(2010) and Wood and Dow (2011). This approach categorises those constraints as 

either an internal or external failure. Internal (or structural) failures are barriers due to 

the design of the financial (subsidy) mechanism used to promote renewable 

deployment. This category includes the type of promotional mechanism and how it 

operates, for example, what impact does the mechanism have on price/revenue and 

investment (lender) risk, mechanism operational lifetime (subsidy programme and/or 

subsidy duration), subsidy levels and mechanism complexity. External failures are those 

barriers out-with the direct control of the mechanism, including planning, electricity 

network, public participation and engagement and policy risk and uncertainty.17  

 

It is these potential constraints to the actual real-world deployment of those large-scale 

electricity supply technologies required to generate renewable electricity that are the 

primary focus of this thesis. In order to provide a valid evaluation of the potential 

constraints to deployment, and to answer the question of whether or not the current UK 

approach to addressing these constraints will facilitate meeting the sectoral target, 

there are a number of criteria that must be met. This is critical to ensure that any 

analysis is rigorous, credible and transparent. Firstly, the set of constraints included in 

the internal and external failures approach needs to be comprehensive: the internal and 

external failures have to at least capture the significant constraints that affect such 

deployment. Secondly, the constraints should be examined in sufficient depth; it is not 

enough to mention potential constraints without proper investigation and analysis. 

Thirdly, individual constraints can interact with each other in a way(s) that could 

aggravate the impact of the potential constraint(s) in a system-wide or systemic way. 

Therefore the systemic interaction of the constraints must be analysed. As Baker et al 

(2011: 5) point out:  

                                                             
17 The internal and external failures approach will be looked at in more detail in Chapter Two. 
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“In a perfect, first-best world, it should be possible to address and optimise 
individual elements of energy policy in isolation, with confidence that the overall 
policy outcome would also be optimised. However, the world is not perfect and 
measures designed to deliver desired outcomes in particular policy areas may lead 
to distortions in other areas, with a consequent need for compensating action.” 

 

In other words, efforts to address a particular constraint without taking into account the 

systemic interaction of that constraint on other internal and external failures could lead 

to the situation where not only is the problem shifted from one failure to another, or 

between the internal and external failures and vice versa, but also where efforts to 

address a barrier aggravates other barriers to the extent that they result in lower 

deployment levels than would otherwise be achieved. 

 

 

1.2 Justification for the PhD  

This thesis, then, will adopt a systemic framework to evaluating potential constraints 

(the internal and external failures) to large-scale renewable electricity deployment. 

Research has been conducted in recognition of the range of potential constraints to 

renewable deployment. This includes government commissioned modelling, academic 

and non-academic research and previous research carried out by the author of this 

thesis. 

 

1.2.1 Government commissioned modelling 

In light of the target, since 2008 the UK government has commissioned various 

modelling studies to assess the UK’s ability in delivering a major expansion of 

renewable electricity generation consistent with the sectoral target of the overall EU 

renewable energy target for 2020. In particular, there are two major analyses of 

relevance to this thesis regarding whether or not the UK will meet the sectoral target: 

‘Electricity Market Reform: Analysis of policy options’ (Redpoint Energy in association 

with Trilemma UK, 2010) and ‘Analysis of Renewables Growth to 2020’ (AEA Technology 

plc [AEA], 2010).18 These studies are of further relevance to this research because they 

                                                             
18 The Redpoint and Trilemma UK (2010) study is actually the third in a series of analyses led by Redpoint 
Energy working with various organisations. The previous studies are: ‘Implementation of EU 2020 
Renewable Target in the UK Electricity Sector: Renewable Support Schemes’ (Redpoint Energy, Trilemma 
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have contributed directly into major UK government renewable energy initiatives, from 

the development of the 2009 UK renewable energy strategy to the current EMR process. 

As such their analyses have credible influence over policy decisions.19 

 

A critical question with regard to these studies is to what extent they address the issue 

of potential constraints to renewable deployment. The Redpoint and Trilemma UK 

(2010) study set out to demonstrate that reforming to the Great Britain electricity 

market is required in order to replace the expected closure of around 20 percent of the 

UK’s electricity generation capacity and achieve decarbonisation of the electricity sector 

and meet domestic climate change targets while maintaining secure and affordable 

supplies for consumers. This was approached by modelling a business as usual 

evolution of the generation market under current policies (primarily the Renewables 

Obligation) and comparing this with modelling analysis of the proposals put forward 

under the electricity market reform white paper. In other words, the focus of the 

analysis is on the internal failures in general and the design/operation of the subsidy 

mechanism in particular. Despite such a focus, however, not one of the six scenarios 

modelled incorporated a realistic analysis of RES-E deployment. Supposedly “a ’business 

as usual’ evolution of the GB generation market under current policies” (Redpoint and 

Trilemma, 2010: 5), the baseline analysis assumed that the RES-E target would be met: 

 
“We have adjusted future ROC bands upwards in order to deliver 29% generation 
from all renewables by 2020, a figure consistent with DECC’s Renewable Energy 
Strategy to meet the total 2020 renewables target.” (Redpoint and Trilemma, 
2010: 22). 

                                                                                                                                                                                              
UK and the Electricity Policy Research Group [EPRG], 2008), ‘Implementation of the EU 2020 Renewable 
Target in the UK Electricity Sector: RO Reform’ (Redpoint Energy and Trilemma UK, 2009). All three 
studies examine various options with regard to their suitability in delivering the major expansion of RES-
E required by the 2020 target. Although the focus here will be on the most recent study (2010), where 
relevant the 2008 and 2009 analyses will also be examined.  

19 The analysis and findings of the Redpoint Energy and Trilemma UK (2009) study were used directly in 
support of the 2009 ‘UK Renewable Energy Strategy’ (DECC, 2009: 38) document: “…to understand how 
this target [the UK’s 15% renewable energy target by 2020] might be delivered… we have modelled 
different ‘scenarios’ using updated analysis about the costs, carbon savings and the potential for deploying 
these renewable technologies [from Redpoint Energy and Trilemma UK (2009)].” Redpoint Energy (in 
association with Trilemma UK) were also commissioned by DECC to conduct the analysis in support of the 
EMR proposals (DECC, 2010b; Redpoint Energy, 2010). The AEA (2010) study fed into the analysis 
supporting the 2011 ‘UK Renewable Energy Roadmap’ (DECC, 2011f). 
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The same fundamental assumption was used for the other five modelled scenarios 

analysing the proposals put forward under the EMR.  

 

Crucially, as a result, this analysis did not examine any external failures: 

 
“The analysis is focused on the different financial incentives under each of the EMR 
options and does not consider other factors that may affect the rate of new 
generation investment, such as resource potential, planning, connections and 
supply chain constraints. One key assumption, for example, is that these issues will 
be sufficiently addressed such that the 2020 renewables target could be met with 
the right level of financial support, whether under the Baseline or any of the 
proposed reform packages.” (Redpoint and Trilemma UK (2010: 19).20 

 

This is significant given that such constraints “[Can] have a major impact on the 

realisation of policy objectives.” (Platchkov et al., 2011: 12). Such an omission is 

surprising. The Redpoint and Trilemma UK (2010) report explicitly states that reaching 

the sectoral RES-E target is dependent on the assumption that the external failures are 

overcome (in addition to there being a sufficient level of projects suitable for 

development). The Redpoint and Trilemma UK (2009: 4) report goes further: 

 
“Our base modelling assumes that significant progress is made in [addressing 
planning issues, grid expansion and connection and supply chain growth] to enable 
a much higher deployment rate than is currently the case [under existing policies 
such as the RO]. Were this not to materialise, it is unlikely that renewable 
generation would exceed around 17% by 2020.”21 

  

                                                             
20 The absence of any analysis of the external factors and the held assumptions is a common one for the 
three Redpoint led studies. The Redpoint Energy, Trilemma UK and EPRG (2008: 4) study states: 
“Adopting an effective financial support scheme to stimulate the levels of investment required to reach the 
target generation from renewable sources within just a decade will form one component of the Government’s 
strategy. However, at least as important will be policies that address current constraints in planning and 
renewables supply chain, and that promote the efficient expansion of the grid… None of these additional 
policy considerations were within the scope of this study.” The Redpoint Energy and Trilemma UK (2009: 4) 
study also makes the same point: “There is a plethora of other considerations that will have a large bearing 
for the UK in meeting its target, including planning issues, grid expansion and connection, and supply chain 
growth. Our base modelling assumes that sufficient progress is made in these areas to enable a much higher 
deployment rate that is currently the case. “ 

21 The Redpoint Energy, Trilemma UK and the EPRG (2008: 5) study also repeats this warning, stating 
that “… failings in any of these areas could jeopardise the achievement of the targets, and could have other 
consequences such as unnecessarily increasing the costs to consumers.” 
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Another critique of the Redpoint led scenarios is the assumption of accelerated progress 

over the next decade towards meeting the sectoral target. This reveals a lack of 

consideration of issues such as the increased aggravation of potential constraints over 

time (including the depletion of the best wind resource sites for onshore wind, policy 

uncertainty, investment hiatus or fuel-stock sustainability issues for biomass) and does 

not take into account the potential impact of systemic failures on deployment. 

 

In contrast, the AEA (2010) report for DECC explicitly set out to investigate a 

comprehensive set of potential constraints to RES-E deployment regarding the 2020 

sectoral target. Primarily the report set out to assess industry’s view of the likely level of 

deployment by 2020, based on the measures presented in the 2009 Renewable Energy 

Strategy. This would be built onto the current state of deployment (taken from 2005 to 

2009) and would take into account the amount of capacity currently in the project 

development pipeline, defined as encompassing initial project planning, the planning 

application process and the subsequent period during which projects are financed and 

built prior to commencing energy production. As with the Redpoint led reports, in 

general the constraints categorised in the AEA report conform directly to those utilised 

in the internal and external failures approach. These include market incentives (subsidy 

level), planning, electricity network, supply chain, policy risk/uncertainty, institutional 

barriers, motivating investors to act and other constraints (public engagement and 

acceptability).22 The AEA study examines the technologies on an individual basis. 

Overall, the report concluded that out of three scenarios (low or ‘pessimistic’, central 

and high or ‘optimistic’), only the low scenario would miss the sectoral target of 114 

TWh per year: low (86.2 TWh), central (135.7 TWh) and high (185.3 TWh). In other 

words, although the other scenarios would comfortably meet the target, the low 

scenario would achieve only around 75 percent of the target. The report concludes that 

the target can be met but that there is no room for complacency. 

 

                                                             
22 The institutional barriers and motivating investors to act categories in the AEA study are combined 
within other categories within the internal and external failures approach (see chapter two). 
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However, there are a number of points of concern. The report attempted to gauge the 

likely level of deployment that could be stimulated based on the measures already in 

place or announced in the 2009 ‘Renewable Energy Strategy’ document. Therefore, the 

data cut-off point was from 2009, before the EMR/RO transition and vintage proposals 

and the substantial changes proposed or adopted since. The report was also prepared 

over one month (March 2010), an apparent condition of the government commission. 

As AEA (2010: 2) note: “We must stress that in the very limited time available it has only 

been possible to provide an initial view of the bottom-up assessment of the future 

deployment potential.” With regard to the primary aim of the report, to gauge industries 

view of the likely impact of the potential constraints on RES-E deployment to 2020, the 

report states (AEA, 2010: 9): “This is the area that is possibly the most subjective and 

therefore care needs to be exercised when interpreting the results.” Although this was a 

foreseeable concern given the approach adopted (and the consultation from the UK 

Government), the limitations are clear. It is based solely on the view of industry. 

However, no information is provided in the report regarding which companies or 

organisations are included within the term ‘industry’.  

 

In addition, although the list of potential constraints examined in the study is 

comprehensive, the analysis (level of depth or detail) of the constraints varies from 

constraint to constraint, technology to technology and there are significant assumptions 

incorporated into the report.  This is of particular concern when the three renewable 

energy technologies expected in the report to contribute the majority of RES-E 

deployment are examined. Onshore wind, offshore wind and biomass electricity are 

projected to account for over 80 percent of total RES-E generation by 2020 under all 

three scenarios.23 Whilst the analysis for offshore wind potential constraints is 

sufficiently robust with no major assumptions, in contrast the level of detail regarding 

constraints for onshore wind in particular and biomass electricity are sparse and based 

                                                             
23 Low estimate scenario: onshore wind (23 TWh out of a total of 86 TWh, or 27%), offshore wind 
(30TWh/86TWh, or 35%), biomass electricity (19/86 TWh, or 22%) would contribute 84% of total RES-E 
generation. Central estimate: onshore wind (35/135 TWh, or 26%), offshore wind (57/135 TWh, or 42%, 
biomass electricity (27/135 TWh, or 20%) would contribute 88% of total RES-E generation. High 
estimate scenario: onshore wind (45/185 TWh, or 24%), offshore wind (81/185 TWh, or 44%), biomass 
electricity (37/185 TWh, or 20%) would contribute 88% of total RES-E generation (AEA, 2010). 
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on unsubstantiated assumptions.24 For example, the report states that industry is 

‘reasonably optimistic’ that between 8-14 GW of onshore wind installed capacity will be 

achieved if there is adequate subsidy (financial) support, that planning is no more 

difficult than at present, capital becomes more available and that the majority 

constraints are addressed (including grid and  aviation). In short, the report merely 

assumes that all the major constraints will be resolved: it is assumed that planning 

issues will be somehow addressed by the Infrastructure Planning Commission (IPC) or 

an alternative body (the IPC will now be replaced), that the prospect of new grid 

connections will occur in a timely and appropriate fashion and that no changes in 

subsidy will occur between 2009 and 2020. The report highlights the importance of 

these assumptions, particularly for onshore wind and biomass electricity: 

 

“The main concerns are that if any of the policies or actions put in place change or 
fail to address the constraints as expected, this level of deployment [up to 8-14 GW 
in the Central estimate range] may not be possible.” (AEA, 2010: 15). 

 

In other words, according to this report, failure to address the potential constraints 

could result in the inability of the UK to achieve the RES-E sectoral target. Interestingly, 

in terms of deployment rates, onshore wind is estimated to increase deployment 

anywhere from 600 MW per year (low estimate) to 2,000 MW per year (upper 

estimate). Compared to average annual deployment rates, however, the AEA estimates 

appear quite high even in comparison to the low estimate rate: between 2003 and 2011, 

onshore wind has averaged annual growth of approximately 440 MW, with the highest 

single year increase of 737 MW in 2007-08 (DECC, 2011g).25 This means that the UK has 

to increase average annual capacity increases by around 50 percent in order to just 

meet the low estimate scenario. 

 

 

                                                             
24 For biomass electricity, it is assumed that the average planning success rate (2009-20) will be perfect, 
at 100 percent for projects greater than 50 MW installed capacity. 

25 The actual data from DECC (2011g; DECC, 2012c) is: 678.9 MW (2003), 809 MW (2004), 1,351 MW 
(2005), 1,651 MW (2006), 2,083 MW (2007), 2,820 MW (2008), 3,483 MW (2009), 4,036 MW (2010) and 
4,632 MW (2011). 
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1.2.2 Academic and non-academic research 

There also exists a substantial body of academic and non-academic literature from the 

early 1990s onwards highlighting the importance of the potential constraints omitted 

and assumed to be resolved from both the Redpoint led and AEA studies26 With regard 

to academic work on the constraints to large-scale renewable electricity technology 

deployment in the UK, even a cursory examination of the extant literature reveals an 

extensive body of work spanning at least the last two decades or so. This research 

covers both the Non-Fossil Fuel Obligation (NFFO) and the Renewables Obligation (RO) 

mechanisms. Typically, however, such research and analysis focuses on only a select 

few barriers involving either internal or external failures or a combination of both. 

Further, such research focuses in detail on a particular RET or more generally on a 

number of technologies. The objective, however, is normally specific, such as 

investigating the impact of the type and design of the RES-E subsidy mechanism, the 

planning system or policy risk on RES-E deployment levels, or carrying out a 

comparison of different subsidy mechanisms adopted in various countries (for example, 

the Renewables Obligation contra Feed-in Tariff mechanisms). Examples of such work 

include Connor (2003), Foxon et al., (2005), Komor (2004), Lauber (2004), Lipp (2007), 

Mitchell (1995, 1998), Mitchell and Connor (2004) and Mitchell et al., (2006). 

 

Regarding the use of a systemic approach to analysing potential constraints to RES-E 

deployment in the UK, there appears to be little specific work overall in this area. With a 

particular regard for large-scale RET deployment, such research focuses on onshore 

wind power in particular, and specifically in relation to the design of the subsidy 

mechanism, renewable energy technological maturity level and the planning system. 

For example, in an analysis of the RO mechanism, Woodman and Mitchell (2011: 3917) 

touch briefly but lucidly on the systemic approach: 

 

                                                             
26 26 Briefly put, academic work is peer-reviewed. Non-academic work is defined here as non-peer 
reviewed. In addition, although it can be from a variety of sources (Government, official bodies, 
organisations, committees, non-governmental organisations and any other such bodies) it can also be 
produced by academics. No assumptions are held in this thesis regarding the quality of academic and non-
academic research: all research utilised here will be checked for internal consistency, credibility and 
transparency.   
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“It would be wrong to suggest that the design of the RO was the sole reasons for the 
UK’s slow deployment of renewable [electricity] generation. Two other factors – 
the planning regime and access to the [electricity] network – also play an 
important role… While these two areas are clearly significant barriers to the rapid 
deployment of renewables, we would argue that they are in part a function of the 
design of the RO, rather than separate issues. The risks inherent in the mechanism 
and the consequent need to ensure a high rate of return on an investment mean 
that developers have tended to concentrate on sites with the highest available 
resources, rather than trying to develop projects in areas which may be less 
optimal but might also be more feasible.” 

 

Focusing primarily on the requirements for changing the overall UK energy system from 

a high to low carbon basis, Woodman (2008: 10, 56) highlights the need for a holistic 

approach in addressing the barriers to renewable energy: 

 

“Achieving a deliberate change of [energy] system… will require determined action 
from policy makers… in a much more holistic way than has so far been the case…  
[p.56] The need is therefore for a more integrated, holistic policy approach… 
Dealing separately with the various obstacles to the increased take up of 
renewables, and other low-carbon technologies, is to an extent artificial, in that 
such obstacles tend to be interrelated. In other words, their extent and impact are 
to a degree influenced by other system components.” 

  

Although focusing heavily on meso-scale and not large-scale renewable technology 

deployment, Watson et al., (2010) also highlight the lack of attention in the UK 

government approach to addressing the systemic barriers to deployment.27 

 

As with the modelling reports (see above), however, overall none of the academic and 

non-academic research considered here sufficiently fulfilled all three criteria deemed 

necessary in order to provide a rigorous and credible evaluation of the overall UK 

approach: comprehensive data set, in-depth examination of the potential constraints 

and the systemic interaction of the constraints.28  

                                                             
27 Meso-scale deployment is defined as “… between the end user and central provision” (Watson et al., 
2010: 12). 

28 It is important to point out that such omissions should not be construed as either criticism or failings of 
the academic work: it was not the aim of such research to fulfil the three criteria established in this 
research thesis, other objectives were set out. The same follows for the modelling reports (Redpoint, 
AEA). These reports carried out the consultation brief as set out under instructions from the government. 
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1.2.3 Previous research carried out by the author of this thesis 

It is also relevant to clearly set out previous research carried out by the author of this 

thesis. This is in-order to establish what research was undertaken and specifically to 

point out the limitations and differences between previous academic work and the 

research utilised in this thesis by the author. 

 

Wood (2010) and Wood and Dow (2010, 2011) have analysed the internal and external 

failures of the NFFO, the RO and the reformed (post-2009) RO in the UK and Scotland. 

These papers analysed a number of issues, including a re-examination of UK renewable 

energy policy from 1990 to 2010 to determine if the government had learnt from 

previous experience in reforming the RO and to assess the likely impact of reforming 

the RO in the UK and Scotland with regard to the 2020 RES-E sectoral target. These 

papers found that the failure to address such potential constraints despite a change of 

subsidy mechanism increased the risks, costs and uncertainty to renewable investors 

and generators and seriously limited the level of deployment that could otherwise have 

been attained, resulting in significant doubt over whether the objectives will be met and 

the requirement of future policy, regulatory and legislative changes. In summary,  

 

“Although the reformed RO will increase subsidy levels and has attempted to 
address the main external failures (planning, grid), by not addressing the issue of 
high price/financial risk and increasing overall mechanism complexity… the main 
internal failures have still not fully been resolved. In addition, the success of the 
mechanism will again be heavily dependent on a select few technologies and 
whether or not the measures to combat the external failures are successful.” (Wood 
and Dow, 2011: 2242). 

 

Importantly, Wood and Dow (2010, 2011) found that one positive and significant step 

was reforming both the planning system and electricity network more-or-less 

sequentially with the 2009 reform. This provided a ‘renewables package’ in the sense 

that it attempted to address the barriers and challenges to both the internal and 

external failures. This was in contrast to previous adjustments to single instances of 

                                                                                                                                                                                              
The research methodology and analytical framework (see chapter two) will clarify the approach to the 
extant literature review and choice of academic (and non-academic work) used in this research. 



24 

 

 

 

failure. However, as noted above, since 2010 there have been a plethora of changes 

resulting in a potentially profound alteration to the policy, regulatory and legislative 

landscape. The proposed subsidy mechanism change from the RO to the CfD FIT, 

including a transition period with both mechanisms operating in parallel (2014-2017) 

and the closure of the RO to new generation (2017) along with major reforms to both 

the planning regime and the electricity network result in changes (proposed or 

adopted) to all the internal and external failures. With hindsight, it can be concluded 

from Wood and Dow (2010, 2011) that a new approach by Government to addressing 

potential constraints to RES-E deployment would be required. Research into the precise 

relationship between the internal and external failures using the three criteria 

(comprehensive, in-depth and systemic) was essential in the development of renewable 

policy. Without this approach occurring, it was likely that additional reforms and 

adjustments to the policy, legislative and regulatory landscape would continually be 

required to address the failures. 

 

It is also important to clarify the limitations and differences regarding the previous 

research carried out by Wood (either singly or with Dow).  Previous academic research 

did not set out to meet the three criteria: not all of the internal and external failures 

were evaluated, and those failures examined were not analysed to the same level of 

depth. Of particular relevance, none of the previous research adopted the systemic 

approach utilised in this thesis. 

 

1.2.4 Justification for the PhD 

Thus, no research has taken into account all three of the criteria required to produce a 

credible evaluation of the potential constraints on RES-E deployment in order to answer 

the question of whether or not the UK will achieve the sectoral target by 2020. In 

particular, the studies commissioned by DECC (Redpoint, AEA) were based on the 

assumption that the issue of potential constraints, internal and external, would be 

resolved (or required to be resolved) in order that the target would be achieved. This is 

a critical gap with respect to both the methodologies used and the extant research 

currently available given the demanding target, in terms of the size of the challenge (9 

percent contra 30-35 percent) and the limited time in which to achieve it (less than 10 
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years). This thesis, by adopting the particular approach taken here, is unique in that it 

utilises a holistic or systemic evaluation of potential constraints on renewable 

electricity deployment, based as it is on a detailed and expanded data-set.  

 

The critique levelled at the modelling reports should not be taken to imply that the UK 

Government is not making any attempt to address the issue of the potential constraints 

to deployment. As stated previously, the UK has a relatively long-standing history of 

supporting RES-E and there are numerous changes proposed or recently adopted by the 

Government with the aim to achieve the sectoral target. This thesis seeks to assess the 

current UK approach to RES-E deployment by carrying out an evaluation of the 

potential constraints to large-scale renewable electricity technologies. Specifically, this 

research questions the way in which the UK approach attempts to deal with the barriers 

to deployment. As such, this work has implications not only with regard to answering 

the question of whether or not the current UK approach to addressing these constraints 

will facilitate meeting the target but also concerning the future operation of the 

proposed FIT CfD mechanism. 

   

Any investigation of whether or not the UK approach to renewable electricity 

deployment will meet the RES-E sectoral target will also undoubtedly touch on current 

discussions of wider issues facing not only renewable electricity but renewable energy 

and energy policy in general. As Kern and Mitchell (2010: 5) put it: “An important 

government goal in the context of making the energy system more sustainable is to deploy 

renewable energy technologies.” Taking this further, a sustainable energy system will 

form a core component in any transition to a sustainable economy. Such issues include: 

how much energy is actually required? What about energy efficiency/conservation and 

demand reduction? Should the energy system be decentralised versus centralised; 

small-scale versus large-scale generation? What about the role of the public in terms of 

participation, use and control of energy resources? Should energy be treated as just 

another commodity? These are complex issues that will necessarily involve behavioural, 

social, economic, regulatory, legislative, political and technical change. As such, these 

questions point towards a central issue that policy makers are increasingly required to 

at least acknowledge: What are the fundamental objectives underlying a move towards 
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a sustainable energy system? In other words, what type of system is ultimately 

envisaged and how will it be attained?29 These are pertinent concerns given that the UK 

renewable energy system is overwhelmingly dominated by large companies, wind 

power and increasingly larger, industrial-scale, centralised renewable electricity power 

stations.30  

 

 

1.3 Research objective 

The objective of this research is primarily to develop an enhanced understanding of the 

potential constraints to large-scale renewable electricity generation technologies in the 

UK. Specifically, this research adopts a systemic framework approach to evaluating an 

in-depth and comprehensive set of potential constraints – the internal and external 

failures – in order to carry out a detailed qualitative-based assessment of the UK 

approach to large-scale RES-E deployment in light of the 2020 sectoral target.31 An 

awareness of the limitations of the current regime is an essential precursor to more 

timely and effective action. With regard to the UK approach, a well designed and 

coherently coordinated approach to RES-E deployment could spur a cycle of more 

                                                             
29 Although it is not the function of this research to answer these questions, it is important to recognise 
that this is the wider context in which energy policy currently sits. 

30 The six vertically-integrated companies collectively known as the ‘Big Six’ supply over 99% of the 
electricity sold in Great Britain and own more than two-thirds of the total power stations. Four of these 
companies are at least partially state-owned: EDF Energy (France), E.ON (Germany), RWE npower 
(Germany) and Scottish Power (owned by Iberdrola, Spain). The two remaining companies are Scottish 
and Southern Energy and Centrica (owner of British Gas) (Friends of the Earth, 2011; Office of Gas and 
Electricity Markets [OFGEM, 2011a). Each of the ‘Big 6’ companies is essentially a group of companies 
with interests in generation, supply and often transmission/distribution (this is the meaning of vertically-
reintegrated). Regarding the size of RES-E plant, although 58% of current wind deployment (both 
onshore and offshore) consists of wind farms with an installed capacity of less than 50 MW, the planned 
growth in offshore wind would see farms in excess of 1 GW installed capacity. Some examples include: 
London Array (1 GW), Argyll Array (1.8 GW), East Anglia (7.2 GW), and Dogger Bank (up to 9 GW, 
covering around 6,500 km² or an area equivalent to Yorkshire) (RenewableUK, 2012b). Indeed, the 
Crown Estates has five offshore leasing rounds accounting for a potential of over 40 GW offshore wind 
installed capacity (Crown Estates, 2012). 

31 The aim of this research is not to produce a quantitative assessment of the exact deployment rate in the 
UK with regard to the 2020 RES-E sectoral target, as has been carried out in various modelling reports. 
Rather, the underlying objective is to carry out a textual analysis of key policy documents and legislation 
in order to carry out an evaluation of potential constraints on renewable electricity technologies with 
regard to determining whether or not the UK approach to the sectoral target will be met or not. 
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effective government policies, business investments and public engagement that has a 

more reasonable chance of achieving the target. 

 

 

1.4 The Research Questions 

In attempting to determine whether or not the UK approach will be successful in 

addressing and resolving the potential constraints to RES-E deployment, the research 

questions will be used to evaluate the policy implications of the potential constraints 

(the internal and external failures) for different renewable electricity technologies and 

the systemic consequences with regard to the UK approach in terms of the target. It 

should be noted that the method of inquiry utilised in this research is that of the 

qualitative research approach.  

 

Following from the considerations outlined above, this will be approached by answering 

three specific research questions: 

 
What are the implications of the current UK approach to addressing potential 
constraints to RES-E deployment to 2020 and beyond? 

How would a UK response based on a systemic approach to renewable electricity 
technology deployment perform compared to the current UK Government’s efforts 
to address potential constraints? 

What could the systemic approach offer to policy makers? 
 

 

1.5 Scope of the thesis 

The scope of this thesis concentrates on five particular areas. First, this thesis is focused 

on the United Kingdom of Great Britain and Northern Ireland. The UK consists of four 

countries: England, Northern Ireland, Scotland and Wales. The latter three of these are 

devolved administrations, each with varying powers. This has particular implications 

regarding energy policy in general and renewable energy in particular, along with 

associated areas including planning law. In addition, given the relative importance of 

Scotland with regard to overall deployment levels and contribution to meeting the 

sectoral target, this thesis also looks specifically at Scotland where relevant. Unless 
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explicitly stated otherwise, this thesis will discuss the situation in the UK overall. The 

primary reason for this is that the EU 2009 Renewables Directive (2009/28/EC) is set at 

the national level, meaning the UK. As such, the renewable electricity generation 

sectoral target is a part of this target. 

 

Second, clarification is also required over the precise use of the term ‘renewable 

electricity’. Currently there exist two scales of RES-E generation in the UK in terms of 

promotion, small-scale and large-scale. Both have dedicated support (subsidy) 

mechanisms that differ fundamentally in terms of mechanism design and the subsidy 

level offered for the various renewable energy technologies: the Renewables Obligation 

(RO) exists for large-scale installations with an installed capacity greater than 5 MW 

and the Feed-in Tariff (FIT) for small-scale renewable electricity generation with an 

installed capacity of 5 MW or less.32 For the purpose of this thesis, large-scale RES-E 

generation is considered.33 The reason for this is that large-scale generation is 

anticipated to provide the vast majority of RES-E in the UK at least to 2020. In 2010, 

when the small-scale FIT was implemented, the UK Government announced that sub-

5MW deployment could deliver approximately 2 percent of final electricity 

consumption in 2020, equating to around 8 TWh. This is in comparison to the sectoral 

RES-E target of 114 TWh, of which presumably roughly 108 TWh would come from 

large-scale, RO-subsidised generation technologies (DECC, 2010c).34  

                                                             
32 It is important to note that microgeneration technologies (defined as those technologies of 50 kW rated 
capacity or below) are supported under the RO scheme (DECC, 2011h). In addition, due to the transition 
arrangements put in place at the time of the original implementation of the small-scale FIT mechanism 
whereby a number of RETs were able to chose between accreditation under the RO or the small-scale FIT, 
certain renewable electricity technologies in the +50 kW to 5 MW (solar PV, wind, anaerobic digestion 
and hydro-electric projects) are currently supported under the RO (DECC, 2009b). However, there are 
plans to remove the eligibility of these RETs from the RO mechanism (see Chapter Six, page 192). 

33 There are a number of reasons for omitting small-scale installations from this thesis. The small-scale 
Feed-in Tariff means that there are different subsidy levels for these technologies in comparison to large-
scale installations, whether they are true micro technologies or small-scale installations (for example, 2 
onshore wind turbines with a 2 MW rated capacity) with concomitant impacts on investment decisions. In 
addition, although the potential constraints examined here could also be used in evaluating small-scale 
RES-E generation, differences between large and small-scale RES-E generation are arguably sufficient to 
warrant separate, albeit complementary research (including, for example, in planning, grid connection, 
access to finance, public engagement and opposition). 

34 A Briefing document for MPs by Friends of the Earth (2009: 2) highlighted the limited aims of the sub-
5MW mechanism target, stating “… overall Friends of the Earth is deeply disappointed by the lack of 
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Third, this thesis will focus on those renewable electricity technologies that are 

anticipated to account for the majority of deployment with regard to the 2020 target. 

This group of key RETs includes onshore wind, offshore wind and certain biomass 

electricity technologies such as biomass conversion and dedicated biomass. Where 

relevant, however, other renewable technologies will be examined. 

 

Fourth, this thesis emphasises the deployment of large-scale renewable electricity 

technologies in terms of installed capacity rather than generation output. Although the 

2020 RES-E sectoral target (and any interim targets) is set as a level of generation 

output, deployment capacity is relevant as this is what the internal and external failures 

(the potential constraints) act on.  

 

Finally, the 2020 target for electricity generated from renewable energy sources is 

important; however, it should be viewed as a useful milestone for two particular 

reasons: as a bench-mark by which to evaluate the progress of RES-E deployment 

capacity; and as a critical part of the longer-term process to achieve the legally-binding 

2050 emissions reduction target set out by the various domestic Climate Change Acts, of 

which electricity sector decarbonisation is seen as an essential requirement. This thesis, 

then, is interested in the overall approach to addressing potential constraints rather 

than simply whether or not the target is achieved and on time. 

                                                                                                                                                                                              
ambition of the feed-in tariff.” Indeed, research commissioned by DECC identified a maximum technical 
potential of 131 TWh from sub-5MW renewable sources in the UK (Pöyry and Element Energy, 2009). 
However, since the introduction of the FIT on 1st April 2010, over 1GW of total installed capacity has been 
deployed (equating to around 250,000 installations) (OFGEM E-Serve, 2012). This was driven primarily 
by two major reasons: a 30% plus reduction in installation costs of solar photovoltaic (the dominant 
deployed technology: 92% of the total) and mishandling of the proposed subsidy (tariff) cut for solar PV 
by the UK Government leading to an enormous rush in deployment before the cuts were implemented 
(Energy and Climate Change and Environmental Audit Committee, 2011). Although a significant 
deployment, this equates to less than 3 TWh, well below the original 8 TWh ‘target’ and preliminary 
evidence indicates that the deployment level post reductions in tariffs particularly for micro solar PV are 
falling substantially (BusinessGreen, 2012). In addition, the cut-off point for data for this research is 31st 
December 2010 when sub-5 MW FIT-eligible renewables accounted for just 68 MW (OFGEM E-Serve, 
2011b). Given that small-scale solar PV showed the largest increase in installed capacity during 2011-12 
of any renewable energy technology, where relevant to this research developments in small-scale RES-E 
generation will be taken into account (DECC, 2012c). This is particularly important since Gregory Barker, 
Minister of State for Energy and Climate Change (DECC) recently stated that central government 
estimates indicated that solar PV could amount to 22 GW of installed capacity despite the recent tariff 
cuts (Guardian, 2012). 
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1.6 Limitations 

Section 1.5 of this chapter set out the scope of this research. By doing so, this section 

effectively set out the design limitations of the study. In terms of potential limitations or 

weaknesses, there are two key limitations with regard to this thesis: (1) the data cut-off 

point, and (2) wider issues surrounding the topic.  

 

Firstly, the data cut-off point has been set as 31 December 2012. Renewable energy and 

indeed energy in general is a particularly fast-moving subject area; there has been a 

multitude of recent, current and proposed changes in policy, legislation and regulation 

as the government attempts to increase the deployment of renewable electricity 

technologies in light of renewable energy and climate change targets. The publication of 

data, however, particularly regarding levels of technology deployment (in installed 

capacity and generation output) lags behind actual deployment rates. Therefore, a cut-

off point of 2012 only enabled access to such data from 2011; data for the entire 2012 

year will only be published in December 2013 (DECC, 2012e). A number of problems 

with this deadline have been encountered, however: planning databases, information on 

electricity network infrastructure upgrades/extensions and the deployment level of 

community renewable projects, accessed by the author in late 2012/2013, contained 

data as of the date they were accessed. This has led to a disjunction in the data cut-off 

point.   

 

Regarding the second point, this thesis has focused on those large-scale renewable 

electricity technologies (>5 MW installed capacity) anticipated to contribute the bulk of 

deployment in the UK to 2020 and beyond with particular emphasis on Scotland and 

England. However, this ignores a number of related areas that interact with the focus of 

this thesis in a number of complex and interrelated ways. These include: small-scale 

renewable electricity technology deployment (sub-5 MW installed capacity); energy 

efficiency measures; the impact of non-renewable electricity and energy sources to 

deployment levels; the wider financial and political issues surrounding the UK 

government’s approach to deployment. This list is virtually inexhaustible. Although 

such issues have been touched on in this thesis (either as relevant background 

information, or to provide a defence regarding their omission) it is impossible given the 
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type of research carried out here to include these points (in terms of word count, focus 

and so on).   

 

These two points highlight factors or variables that are out-with the control of this 

research; however, they do not change the fundamental ‘story’ of this PhD which is 

concerned with evaluating the current UK approach to addressing the potential 

constraints to large-scale renewable electricity technology deployment to 2020 and 

beyond from a systemic perspective.  

 

 

1.7 Thesis structure 

The thesis is structured in four parts. Part I, of which this chapter forms a part, 

introduces the subject area to be examined in the thesis and provides a rationale for 

why this topic has been chosen and outlines the areas of concern within the research 

topic. Chapter Two presents the research methodology utilised in this thesis and sets 

out the reasoning behind the methodology and the discrete stages involved in the 

research. Specifically, the internal and external failures and the systemic approach are 

described. In particular, the identification of the set of internal and external failures is 

explained. This chapter also determines any potential problems with the adopted 

methodology and any alternative methodologies that were considered. Chapter Three 

presents a literature review of the way in which government has approached the 

barriers or constraints to large-scale renewable electricity technology deployment in 

the UK. This chapter incorporates a historical element, looking at both the previous 

subsidy mechanisms (the Non-Fossil Fuel Obligation (1990-1998) and the Renewables 

Obligation (2002-2009) along side wider changes to the electricity ‘landscape’ in 

general and renewable electricity policy in particular.  

 

Part II contains three chapters which set out the context regarding large-scale 

renewable electricity technologies in the UK. Chapter Four looks at existing definitions 

for renewable energy and examines the issue of why renewable electricity requires a 

level of government support currently unique within the wider approach to energy 
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technology deployment.35 Chapter Five first establishes the critical role of renewable 

electricity to longer-term renewable and climate change (decarbonisation) objectives 

before investigating and comparing the economic, technical, resource, social and 

environmental attributes of the various renewable electricity technologies, in order to 

develop an understanding of the options available for the various RETs particularly with 

regard to their deployment within the overall electricity system. Chapter Six analyses 

the historical and current trends in renewable electricity deployment (installed capacity 

and generation output) in the UK in order to both understand deployment trajectories 

and determine the level of deployment required to meet the 2020 renewable electricity 

sectoral target. This chapter also looks at deployment at the sub-national level with 

particular emphasis on Scotland. 

 

The analytical core of the thesis is contained in Part III and comprises three chapters. 

The first two chapters carry out an evaluation of the current UK approach to addressing 

potential constraints to deployment. Chapter Seven is concerned with evaluating the 

internal failures on renewable electricity technology deployment. This will be done by 

examining the reformed Renewables Obligation (2009 onwards) in order to determine 

what the internal failures are. Chapter Eight is concerned with evaluating the external 

failures on renewable electricity technology deployment. This chapter is split into four 

main sections reflecting the four external failures examined in this thesis and looks at: 

the planning system (Section 8.2), public participation and engagement (Section 8.3), 

the electricity network (grid) (Section 8.4) and policy risk (Section 8.5). Section 8.2 

focuses on the planning system in England and Scotland in light of recent legislative and 

policy changes. This section also examines the key issues relevant to the various 

renewable electricity technology options. Further, it carries out an analysis of the 

available planning data for four key technologies anticipated to contribute the 

overwhelming bulk of capacity to 2020 and beyond. Section 8.3 looks at the 

opportunities and barriers facing public participation and engagement, with a focus on 

                                                             
35 This situation might change with the introduction of the CfD FIT with support for both nuclear power 
and carbon capture and storage as part of the electricity market reform. Indeed, nuclear power received a 
similar support for renewables during the early operation of the NFFO subsidy mechanism (see chapter 
three, section 3.3). 
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meso-scale developments and community and locally-owned projects. This section also 

examines the current approach of using financial benefits as a means of securing public 

consent for onshore wind developments in the UK. Section 8.4 examines the issue of 

network capacity and the method of allocation and access to the electricity network 

with emphasis on the transmission network. This section will look in particular at both 

the onshore and offshore transmission systems in the UK overall with particular 

emphasis on Scotland. Section 8.5 focuses on policy risk with a particular emphasis on 

the various large-scale renewable electricity subsidy mechanisms (the Renewables 

Obligation and the proposed Contracts for Difference Feed-in Tariff in so far as it affects 

deployment under the RO mechanism). 

 

Chapter Nine utilises the analysis of both the internal and external failures presented 

in chapters seven and eight, respectively, to reveal the systemic interactions of the 

potential constraints examined here. This is carried out in order to evaluate the current 

UK approach to addressing the potential constraints to large-scale RES-E deployment 

from a systemic perspective. 

 

Part IV contains one chapter. Chapter Ten sets out the conclusions of the thesis with 

regard to the research questions. In addition, potential future research work emanating 

from this thesis will be provided. 

 

It should be pointed out that there will be a certain amount of unavoidable overlap 

between the chapters of this thesis. This is particularly the case for public participation 

and engagement and policy risk. Both of these external failures by their inherent nature 

are necessarily linked to a number of other failures examined in this thesis. As such, 

public participation and engagement will be examined with regard to both the internal 

failures (chapter seven) and external failures (chapter eight, sections 8.2, 8.4 and 8.5). 

In addition, chapters seven and eight (sections 8.2, 8.3 and 8.5) have previously 

evaluated policy risk with specific regard to the current subsidy mechanism, planning, 

public participation and engagement and electricity transmission networks, 

respectively. 

 



34 

 

 

 

References 

AEA, 2010. Analysis of Renewables Growth to 2020: Report to DECC March 2010 
[online] Available from 
http://www.decc.gov.uk/publications/basket.aspx?filepath=/assets/decc/11/meeting-
energy-demand/renewable-energy/2185-analysis-of-renewables-growth-to-2020-aea-
report.pdf&filetype=4&minwidth=true 
 
Bailii, 2012. Sea & Land Power & Energy Ltd versus Secretary of State for Communities 
and Local Government and Great Yarmouth Borough Council: Judgement: Case No: 
CO/12120/2010 – 29/05/2012 [online] Available from 
http://www.bailii.org/ew/cases/EWHC/Admin/2012/1419.html 
 
Baker, P., Mitchell, C. and Woodman, B. 2011. Project TransmiT: Academic Review of 
Transmission Charging Arrangements: A report produced on behalf of the Gas and 
Electricity Markets Authority (OFGEM): Final Report, April 18 2011 [online] Available 
from 
http://geography.exeter.ac.uk/catherinemitchell/FINAL_PDF_Baker_et_al_to_Ofgem.pdf  
 
Bell, D., Gray, T. and Haggett, C. 2005. Policy, participation and the social gap in wind 
farm siting decisions. Environmental Politics 14(4): 460-477. 
 
BusinessGreen, 2012. Feed-in tariff payments top £128m over two years: Subsidy 
scheme prompts 1GW rise in renewable energy capacity since April 2010 launch – 04 
July 2012 [online] Available from 
http://www.businessgreen.com/bg/news/2188822/feed-tariff-payments-gbp128m 
 
Butler, L. and Neuhoff, K. 2008. Comparison of feed-in tariff, quota and auction 
mechanisms to support wind power development. Renewable Energy 33(2008): 1854-
1867. 
 
Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., 
Lemonis, G., Lewis, T., Nielsen, K ., Petroncini, S., Pontes, M.T., Schild, P., Sjöström, B.O., 
Sørensen, H.C. and Thorpe, T. 2002. Wave energy in Europe: current status and 
perspectives. Renewable and Sustainable Energy reviews 6(2002): 405-431. 
 
Committee on Climate Change [CCC], 2010. The Fourth Carbon Budget: Reducing 
emissions through the 2020s – 7 December 2010 [online] Available from 
http://www.theccc.org.uk/reports/fourth-carbon-budget 
 
Committee on Climate Change [CCC], 2011. Meeting Carbon Budgets – 3rd Progress 
Report to Parliament – June 2011 [online] Available from 
http://hmccc.s3.amazonaws.com/Progress%202011/CCC_Progress%20Report%20201
1%20Single%20Page%20no%20buttons_1.pdf 
 
Connor, P. 2003. UK renewable energy policy: a review. Renewable and Sustainable 
Energy Review 7(2003): 65-82. 
 



35 

 

 

 

Crown Estates, 2012. Offshore Wind Energy – Our Portfolio [online] Available from 
http://www.thecrownestate.co.uk/energy/offshore-wind-energy/our-portfolio/ 
 
Department of Business, Enterprise and Regulatory Reform [BERR], 2008. Digest of 
United Kingdom Energy Statistics: 2008 [online] Available from 
http://www.berr.gov.uk/whatwedo/energy/statistics/publications/dukes/page45537.
html 
 
Department of Energy, 1988. Energy Paper 55: Renewable Energy in the UK – The Way 
Forward. HMSO. 
 
Department of Energy and Climate Change (DECC), 2009a. UK Renewable Energy 
Strategy [online] Available from 
http://www.decc.gov.uk/assets/decc/what%20we%20do/uk%20energy%20supply/e
nergy%20mix/renewable%20energy/renewable%20energy%20strategy/1_20090717
120647_e_@@_theukrenewableenergystrategy2009.pdf 
 
Department for Energy and Climate Change [DECC], 2009b. Consultation on Renewable 
Electricity Financial Incentives 2009 [online] Available from 
http://www.decc.gov.uk/assets/decc/Consultations/Renewable%20Electricity%20Fin
ancial%20Incentives/1_20090722165845_e_@@_ConsultationonRenewableElectricity
FinancialIncentives2009.pdf 
 
Department of Energy and Climate Change (DECC), 2010a. Press – Release: Statistical 
Press Release – Energy Statistics (Reference 2010/072) [online] Available from 
http://www.decc.gov.uk/assets/decc/statistics/publications/trends/1_201006211512
12_e_@@_pn10072.pdf 
 
Department of Energy and Climate Change (DECC), 2010b. Consultation on electricity 
market reform [online] Available from 
http://www.decc.gov.uk/en/content/cms/consultations/emr/emr.aspx 
 
Department of Energy and Climate Change (DECC), 2010c. Summary: Interventions & 
Options: Impact Assessment of Feed-in-Tariffs for Small-Scale, Low-Carbon, Electricity 
Generation (URN10D/536) – Final Version: 01 February 2010 [online] Available from 
http://www.decc.gov.uk/assets/decc/consultations/renewable%20electricity%20fina
ncial%20incentives/2710-final-ia-feed-in-tariffs-small-scale.pdf 
 
Department of Energy and Climate Change (DECC), 2011a. Energy Trends – December 
2011 [online] Available from 
http://www.decc.gov.uk/assets/decc/11/stats/publications/energy-trends/3917-
trends-dec-2011.pdf 
 
 
 
 



36 

 

 

 

Department of Energy and Climate Change [DECC], 2011b. Planning our electric future: 
a White Paper for secure, affordable and low-carbon electricity – July 2011 [online] 
Available from 
http://www.decc.gov.uk/en/content/cms/legislation/white_papers/emr_wp_2011/em
r_wp_2011.aspx 
 
Department of Energy and Climate Change (DECC), 2011c. Low Carbon Heat Plans 
Revealed – 26 March 2012 (Press Ref: 2012/029) [online] Available from 
http://www.decc.gov.uk/en/content/cms/news/pn12_029/pn12_029.aspx 
 
Department of Energy and Climate Change (DECC), 2011d. Renewable Heat Incentive 
(RHI) Scheme [online] Available from 
http://www.decc.gov.uk/en/content/cms/meeting_energy/renewable_ener/incentive/
incentive.aspx 
 
Department of Energy and Climate Change (DECC), 2011e. Digest of United Kingdom 
Energy Statistics (DUKES) 2010 [online] Available from 
http://www.decc.gov.uk/assets/decc/11/stats/publications/dukes/2312-dukes-2011-
-full-document-excluding-cover-pages.pdf 
 
Department of Energy and Climate Change (DECC), 2011f. UK Renewable Energy 
Roadmap – July 2011 [online] Available from 
http://www.decc.gov.uk/en/content/cms/meeting_energy/renewable_ener/re_roadm
ap/re_roadmap.aspx 
 
Department of Energy and Climate Change (DECC), 2011g. Digest of United Kingdom 
Energy Statistics 2011 [DUKES] [online] Available from 
http://www.decc.gov.uk/en/content/cms/statistics/publications/dukes/dukes.aspx 
 
Department of Energy and Climate Change (DECC), 2011h. Microgeneration Strategy – 
June 2011 [online] Available from http://www.decc.gov.uk/assets/decc/11/meeting-
energy-demand/microgeneration/2015-microgeneration-strategy.pdf 
 
Department of Energy and Climate Change (DECC), 2012a. Devolved Administrations 
[online] Available from 
http://www.decc.gov.uk/en/content/cms/tackling/saving_energy/what_doing/devolv
ed_admin/devolved_admin.aspx 
 
Department of Energy and Climate Change [DECC], 2012b. Government response to the 
consultation on the proposals for the level of banded support under the Renewables 
Obligation for the period 2013-17 and the Renewables Obligation Order 2012: July 2012 
[online] Available from 
http://www.decc.gov.uk/en/content/cms/consultations/cons_ro_review/cons_ro_revie
w.aspx 
 
 
 



37 

 

 

 

Department of Energy and Climate Change (DECC), 2012c. Digest of United Kingdom 
Energy Statistics 2012 [online] Available from 
http://www.decc.gov.uk/assets/decc/11/stats/publications/dukes/5949-dukes-2012-
exc-cover.pdf 
 
Department of Energy and Climate Change (DECC), 2012d. Energy Trends – June 2012 
[online] Available from 
http://www.decc.gov.uk/assets/decc/11/stats/publications/energy-trends/5627-
energy-trends-june-2012.pdf 
 
Department of Energy and Climate Change (DECC), 2012e. DECC’s timetable of 
statistical releases for twelve months ahead [online] Available from 
https://www.gov.uk/government/organisations/department-of-energy-climate-
change/about/statistics#deccs-timetable-of-statistical-releases-for-twelve-months-
ahead 
 
Department of Trade and Industry [DTI], 1994. Energy Paper 62: New and Renewable 
Energy: Future prospects for the UK. HMSO, London. 
 
Department of Trade and Industry (DTI), 2003. Energy White Paper: Our Energy 
Paper—Creating a Low Carbon Economy February 2003 [online] Available from 
/http://www.berr.gov.uk/files/file10719.pdfS 
 
Department of Trade and Industry [DTI], 2007. Meeting the Energy Challenge: A White 
Paper on Energy May 2007 [online] Available from 
/http://www.berr.gov.uk/files/file39564.pdfS 
 
Department for Transport [DfT], 2012. Renewable Transport Fuels Obligation [online] 
Available from http://www.dft.gov.uk/topics/sustainable/biofuels/rtfo 
 
Devine-Wright, F. 2007. Reconsidering public attitudes and public acceptance of 
renewable energy technologies: a critical review – Working Paper 1.4 – February 2007 
[online] Available from 
http://geography.exeter.ac.uk/beyond_nimbyism/deliverables/bn_wp1_4.pdf 
 
Edge, G. 2006. A Harsh Environment: The Non-Fossil Fuel Obligation and the UK 
Renewables Industry, in K. Mallon (ed), Renewable Energy Policy and Politics: A 
handbook for decision-making: 163-184. Earthscan.  
 
Electricity Networks Strategy Group [ENSG], 2009. ENSG ‘Our Electricity Transmission 
Network: A Vision for 2020’ Full Report [online] Available from 
http://www.ensg.gov.uk/assets/ensg_transmission_pwg_full_report_final_issue_1.pdf 
 
 
 
 



38 

 

 

 

Energy and Climate Change Committee, 2012. Draft Energy Bill: Pre-legislative Scrutiny: 
First Report of Session 2012-13: Volume I: Report, together with formal minutes – 17 
July 2012 [online] Available from 
http://www.publications.parliament.uk/pa/cm201213/cmselect/cmenergy/275/275.
pdf 
 
Energy and Climate Change and Environmental Audit Committee, 2011. Solar Power 
Feed-in Tariffs: Ninth Report of Session 2010-12 of the Energy and Climate Change 
Committee and Tenth Report of Session 2012-12 of the Environmental Audit 
Committee: Volume I: Report, together with formal minutes, oral and written evidence – 
14 December 2011 [online] Available from 
http://www.ofgem.gov.uk/Sustainability/Environment/fits/Newsletter/Documents1/
Feed-in%20Tariff%20Update%20Newsletter%20Issue%208.pdf 
 
Environmental Audit Committee, 2007. Beyond Stern: From the Climate Change 
Programme Review to the Draft Climate Change Bill – Seventh Report of Session 2007-
07: Report, together with formal minutes, oral and written evidence – Tuesday 10 July 
2007 [online] Available from 
http://www.publications.parliament.uk/pa/cm200607/cmselect/cmenvaud/460/460.
pdf 
 
Eur-Lex, 2001. Directive 2001/77/EC on the promotion of electricity produced from 
renewable energy sources in the internal electricity market [online] Available from 
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32001L0077:EN:NOT 
 
Europa, 2009. Directive 2009/28/EC of the European Parliament and of the Council of 
23 April 2009 on the promotion of the use of energy from renewable sources [online] 
Available from http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:EN:PDF  
 
Europa, 2011. The EU climate and energy package [online] Available from 
http://ec.europa.eu/clima/policies/package/index_en.htm 
 
Eurostat, 2012. Electricity generated from renewable sources – Last updated: 21-06-
2012 [online] Available from http://appsso.eurostat.ec.europa.eu/nui/show.do 
 
Foxon, T.J., Gross, R., Chase, A., Howes, J., Arnall, A., Anderson, D., 2005. UK innovation 
systems for new and renewable energy technologies: drivers, barriers and systems 
failures. Energy Policy 33, 2123–2137 
 
Friends of the Earth, 2009. MPs Briefing: Feed-in Tariffs for small scale renewable 
energy – December 2009 [online] Available from 
http://www.foe.co.uk/resource/briefings/feed_in_tariff_mps_briefing_dec_09.pdf 
 
Friends of the Earth, 2011. Report – The Dirty Half Dozen – October 2011 [online] 
Available from http://www.foe.co.uk/resource/reports/dirty_half_dozen.pdf 
 



39 

 

 

 

Friends of the Earth, 2012. Briefing: Electricity Market reform – Updated April 2012 
[online] Available from 
http://www.foe.co.uk/resource/briefings/electricity_market_reform.pdf 
 
Gross, R. and Heptonstall, P. 2010. Liberalised Energy Markets: An Obstacle to 
Renewables? In, I.Rutledge and P.Wright (eds) UK Energy Policy and the End of Market 
Fundamentalism. Oxford University Press: Oxford 
 
Guardian, 2012. Greg Barker: 4m homes will be solar-powered by 2020: The 
government has ramped up solar ambition, despite cut in subsidies available for 
households – 9 February 2012 [online] Available from 
http://www.guardian.co.uk/environment/2012/feb/09/solar-power-ambition-uk 
 
Helm, 2008. Energy, the State, and the Market: British Energy Policy since 1979 – 
Revised Edition. Oxford University Press: Oxford 
 
Kern, F. and Mitchell, C. 2010. Policy Paradigms as part of the landscape: How do policy 
paradigms influence attempts to govern transitions? [online] Available from 
http://www.irspm2010.com/workshops/papers/30_policyparadigms.pdf 
 
Komor, P. 2004. Renewable Energy Policy. The Diebold Institute for Public Policy 
Research. 
 
Lauber, V. 2004. REFIT and RPS: options for a harmonised Community framework. Energy 
Policy: 32: 1405-1414 
 
Lipp, J. 2007. Lessons for effective renewable electricity policy from Denmark, Germany 
and the United Kingdom. Energy Vol 35(2007): 5481-5495. 
 
McEwen, N., Bomberg, E. and Swenden, W. 2010. Pushing at boundaries of devolution: 
Energy and climate change policy in Scotland – Paper presented to the biennial 
conference of the PSA specialist group on Comparative Territorial Politics: University of 
Oxford: 7-8 January 2010 [online] Available from 
http://www.psa.ac.uk/spgrp/4/2010/Ppr/BaCTPSGC2_McEwenNicola_McEwen%20PS
A%20Oxford.pdf 
 
Mitchell, C. 1995. The renewables NFFO: A review. Energy Policy 23(12): 1077-1091. 
 
Mitchell, C. 1998. Renewable Energy in the UK: policies for the future. CPRE. 
 
Mitchell, C. and Connor, P. 2004. Renewable energy policy in the UK 1990-2003. Energy 
Policy 32(2004): 1935-1947. 
 
Mitchell, C., Bauknecht, D. and Connor, P. 2006. Effectiveness through risk reduction: a 
comparison of the renewables obligation in England and Wales and the feed-in system in 
Germany. Energy Policy: 34(3): 297-305. 
 



40 

 

 

 

National Archives, 2008. Climate Change Act 2008 (Chapter 7) [online] Available from 
http://www.legislation.gov.uk/ukpga/2008/27/pdfs/ukpga_20080027_en.pdf 
 
National Archives, 2009. Climate Change (Scotland) Act 2009 (2009 asp 12) [online] 
Available from 
http://www.legislation.gov.uk/asp/2009/12/pdfs/asp_20090012_en.pdf 
 
National Archives, 2011. Electricity Act 1989 [online] Available from 
http://www.legislation.gov.uk/ukpga/1989/29/contents 
 
National Research Council, 2008. Public Participation in Environmental Assessment and 
Decision-Making. The National Academies Press: Washington DC. 
 
Nolden, C. Regulating energy security through the diffusion of innovation – A 
community perspective [online] Available from 
http://www.exeter.ac.uk/energysecurity/documents/ese_resources_May2012/Colin_N
olden.pdf 
 
Office of Gas and Electricity Markets [OFGEM], 2011a. The Retail Market Review – 
Findings and initial proposals – Consultation – Reference: 34/11 – 21 March 2011 
[online] Available from 
http://www.ofgem.gov.uk/Markets/RetMkts/rmr/Documents1/RMR_FINAL.pdf 
 
Office of Gas and Electricity Markets [OFGEM], 2011b. OFGEM E-Serve Issue 3/February 
2011: Feed-in Tariff Update [online] Available from 
http://www.ofgem.gov.uk/Sustainability/Environment/fits/Newsletter/Documents1/
Feed-in%20Tariff%20(FIT)%20Update%20Newsletter%20Issue%203.pdf 
 
Office of Gas and Electricity Markets [OFGEM], 2012. OFGEM E-Serve Issue 8/June 2012: 
Feed-in Tariff Update [online] Available from 
http://www.ofgem.gov.uk/Sustainability/Environment/fits/Newsletter/Documents1/
Feed-in%20Tariff%20Update%20Newsletter%20Issue%208.pdf 
 
Offshore Valuation Group [OVG], 2010. The Offshore Valuation: A valuation of the UK’s 
offshore renewable energy resource [online] Available from 
http://www.offshorevaluation.org/ 
 
Pelc, R. and Fujita, R.M. 2002. Renewable energy from the ocean. Marine Policy 26(2002) 
471-479. 
 
Platchkov, L., Pollitt, M. and Shaorshadze, I. The implication of recent UK energy policy 
for the consumer: A report for the Consumer’s Association – ESRC Electricity Policy 
Research Group – University of Cambridge May 2011 [online] Available from 
http://www.eprg.group.cam.ac.uk/wp-
content/uploads/2011/05/ReportforCAFinal100511EPRG.pdf  
 



41 

 

 

 

Pöyry and Element Energy, 2009. Design of Feed-in Tariffs for Sub-5MW Electricity in 
Great Britain: Quantitative analysis for DECC – Final Report July 2009 (URN 09D/704) 
[online] Available from 
http://www.decc.gov.uk/assets/decc/consultations/renewable%20electricity%20fina
ncial%20incentives/1_20090715135352_e_@@_relateddocelementpoyryreportonquan
titativeissuesinfitsdesignfinal.pdf 
 
Redpoint Energy, 2010. Great Britain Electricity Market Reform [online] Available from 
http://www.redpointenergy.co.uk/images/uploads/Redpoint_Flyer_-_EMR_v1.pdf 
 
Redpoint Energy, Trilemma UK and the Electricity Policy Research Group [EPRG], 2008. 
Implementation of EU 2020 Renewable Target in the UK Electricity Sector: Renewable 
Support Schemes – A report for the Department of Business, Enterprise and Regulatory 
Reform, June 2008: Version: v1.0 Date: 23/06/08 [online] Available from 
http://webarchive.nationalarchives.gov.uk/+/http://www.berr.gov.uk/files/file46778.
pdf 
 
Redpoint Energy and Trilemma UK, 2009. Implementation of the EU 2020 Renewable 
Target in the UK Electricity Sector – RO Reform: A report for the Department of Energy 
and Climate Change, June 2009 – URN 09D/702: Version: 1.0 Date: 01/07/09 [online] 
Available from 
http://www.decc.gov.uk/assets/decc/what%20we%20do/uk%20energy%20supply/e
nergy%20mix/renewable%20energy/renewable%20energy%20strategy/1_20090715
120542_e_@@_redpointimplementationoftheeu2020renewablestargetintheukelectricit
ysectorroreform.pdf 
 
Redpoint Energy in association with Trilemma UK, 2010. Electricity Market Reform: 
Analysis of policy options – A report by Redpoint Energy in association with Trilemma 
UK, December 2010: Version: 1.0 Date: 15/12/10 [online] Available from 
http://www.decc.gov.uk/en/content/cms/consultations/emr/emr.aspx 
 
RenewableUK, 2012a. Energy and Climate Change Committee – Written evidence 
submitted by RenewableUK [online] Available from 
http://www.publications.parliament.uk/pa/cm201213/cmselect/cmenergy/275/275
we18.htm 
 
RenewableUK, 2012b. Offshore Wind Farms [online] Available from 
http://www.bwea.com/ukwed/offshore.asp 
 
Ringel, M. 2006. Fostering the use of renewable energies in the European Union: the 
race between feed-in tariffs and green certificates. Renewable Energy Vol 31(2006): 1-
17. 
  
Scottish Government, 2011a. Renewables revolution aims for 100% [online] Available 
from http://www.scotland.gov.uk/News/Releases/2011/05/18093247 
 



42 

 

 

 

Scottish Government, 2011b. 2020 Routemap for Renewable Energy in Scotland 
[online] Available from http://www.scotland.gov.uk/Resource/Doc/917/0118802.pdf 
 
Scottish Government, 2012a. Electricity Generation Policy Statement – Draft Electricity 
Generation Policy Statement for consultation – 06 Mar 2012 [online] Available from 
http://scotland.gov.uk/Resource/0038/00389294.pdf 
 
Scottish Renewables, 2012. Initial Response to Call for Evidence on the Draft Energy Bill 
– 5 June 2012 [online] Available from 
http://www.scottishrenewables.com/static/uploads/publications/initial_response_to_c
all_for_evidence_on_the_draft_energy_bill.pdf 
 
Toke, D. 2011. David Toke’s green energy blog [online] Available from http://realfeed-
intariffs.blogspot.com/search?updated-min=2011-01-01T00:00:00-08:00&updated-
max=2012-01-01T00:00:00-08:00&max-results=22 
 
Toke, D. 2005a. Explaining wind power planning outcomes: Some findings from a study 
in England and Wales. Energy Policy 33(12): 1527-1539. 
 
Toke, D. 2005b. Community wind power in Europe and in the UK. Wind Engineering 
29(3): 301-308.  
 
Toke, D., Breukers, S. and Wolsink, M. 2008. Wind power deployment outcomes: How can 
we account for the differences? Renewable and Sustainable Energy Reviews 12 (2008): 
1129-1147. 
 
Toke, D. and Lauber, V. 2007. Anglo-Saxon and German approaches to neoliberalism and 
environmental policy: The case of financing renewable energy. Energy Vol 38 (2007): 
677-687. 
 
United Nations, 1998. Kyoto Protocol to the United Nations Framework Convention on 
Climate Change [online] Available from 
http://unfccc.int/resource/docs/convkp/kpeng.pdf 
 
Watson, J., Scrase, I. and Stapleton, L. 2010. Transforming the UK’s Energy System: 
Policies for the 2020 Renewables Target and Beyond – A Report for Friends of the Earth 
[online] Available from 
http://www.foe.co.uk/resource/briefings/transforming_uk_energy.pdf 
 
Wood, G. 2010. Renewable energy policy in Scotland: An analysis of the impact of 
internal and external failures on renewable energy deployment targets to 2020 – 
CEPMLP Energy Series. University of Dundee: Dundee. 
 
Wood, G. and Dow, S. 2010. The Likely Impact of Reforming the Renewables Obligation on 
Renewables Targets. International Journal of Energy Sector Management Vol 4(2): 273-
301. 
 



43 

 

 

 

Wood, G. and Dow, S. 2011. What lessons have been learned in reforming the Renewables 
Obligation? An analysis of internal and external failures in UK renewable energy policy. 
Energy Policy 39(2011): 2228-2244. 
 
Woodman, B. 2008. Connecting the future: the UK’s renewable energy strategy – a 
report for Greenpeace [online] Available from 
http://www.greenpeace.org.uk/files/pdfs/climate/connectingthefuture.pdf 
 
Woodman, B. and Mitchell, C. 2011. Learning from experience? The development of the 
Renewables Obligation in England and Wales 2002-2010. Energy Policy 39(2011): 3914-
3921. 
 

 

 

 

 

     
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



44 

 

 

 

 
 

Chapter Two 
2.1 Introduction         45 

 2.2 Analytical framework       45 
 2.3 The internal and external failures       47 
 2.4 Research methodology       50 
 2.5 Adopting Approaches: A Systemic Approach to 

Evaluating Internal and External Failures     54 
 2.6 Limitations of the methodology      57 
  
  References         59 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



45 

 

 

 

Chapter Two 
Methodology 
 
 
 
2.1 Introduction 

This chapter introduces the research methodology and analytical framework used in 

this thesis. Section 2.2 sets out the analytical framework that guides the analysis of this 

thesis. Section 2.3 identifies and provides justification for the internal and external 

failures to large-scale renewable electricity technology deployment in the UK examined 

in this thesis. Section 2.4 discusses the research methodology, based on the systemic 

approach. In particular, this section sets out the reasoning underlying the choice of 

methodological approach, the discrete stages involved in carrying out this research and 

any problems arising from the methodology adopted. Section 2.5 further describes the 

underlying approach. Section 2.6 sets out the limitations of the methodology used in 

this thesis. 

 

 

2.2 Analytical framework 

Figure 2.1 (page 46) shows the analytical framework and graphically portrays the 

research issue that this thesis seeks to address. The first two parts serves to emphasise 

the scale of the sectoral target and the existence of the internal and external failures 

that act as constraints to large-scale renewable electricity technology deployment in the 

UK (Part A). Further, it highlights the gap in extant knowledge and analysis due to the 

absence of existing research and modelling meeting the three criteria required to 

produce a credible evaluation of whether or not the UK will meet the target (Part B).36 

This has potentially profound implications for the rigorous and credible basis of the 

projections 

                                                             
36 The approach underlying the internal and external failures (including what they are and justification 
for how the list was chosen and what other additional problems facing large-scale RET deployment were 
excluded) and the three criteria upon which it is based (comprehensive, in-depth and systemic) are 
discussed in more detail in section 2.3. 
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commissioned by the UK government. The key issue and the subject of this research 

then, regard what is being done to address this ‘gap’ in knowledge and analysis in 

evaluating whether or not the UK will meet the target (Part C). What is the UK 

government approach to addressing the constraints to large-scale renewable electricity 

technology deployment? In other words, what is being done to address the gap by way 

of addressing the multiple constraints? Will it be sufficient to address the potential 

constraints in order to increase deployment to the amount required? In a sense, this 

thesis is reassessing the modelling projections in light of changed assumptions. This is 

the focus of the PhD research (Part D). The substantial policy, regulatory and legislative 

changes that have been recently enacted or proposed to the ‘renewable electricity 

landscape’ also need to be taken into consideration.37 

 

 

2.3 The internal and external failures 

There are three criteria upon which the internal and external failures method and thus 

the systemic approach are based upon: 

 

(i) The set of constraints included in the internal and external failures needs 

to be comprehensive. They have to include the significant constraints that 

effect large-scale renewable electricity technology deployment.  

 

(ii) The internal and external failures need to be examined in sufficient and 

equal depth of analysis. 

 

The first two criteria (i and ii) form the basis that enables the third criteria to be met, to 

capture the systemic interactions of the internal and external failures: 

 

                                                             
37 Changes to the non-renewable electricity landscape can and do have significant impacts on renewable 
policy. As such, and where applicable, these are also considered in the thesis (see in particular Part II of 
the thesis). 
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(iii) Individual constraints can interact with each other in a way(s) that could 

aggravate the impact of the potential constraint(s) in a system-wide or 

systemic way. 

 

Table 2.1 (page 49) sets out the list of internal and external failures included in this 

thesis and provides a summary. Looking at the internal failures, these are derived from 

the overall type, design and operation of the subsidy mechanism, the Renewables 

Obligation. There are six internal failures that will be examined in this thesis: focus on 

low costs; complex mechanism, price/revenue risk; favours large companies; 

investment risk; and market chooses technology. These are analysed in chapter seven. 

In addition, there are four external failures: planning, grid, public participation and 

engagement and policy risk/uncertainty. These are analysed in chapter eight. The 

comprehensive and in-depth analyses of both the internal and external failures are then 

used to reveal the systemic interactions of the potential constraints in chapter nine of 

the thesis. This is carried out in order to evaluate the current UK approach to 

addressing the constraints to large-scale renewable electricity technology deployment 

from a systemic perspective. 

 

The method by which the set of internal and external failures are identified and selected 

for inclusion in this thesis in order to be comprehensive is also crucial since the 

conclusions of the thesis are strongly grounded in the use of these failures. It is not 

argued here that the set of constraints (the internal and external failures) analysed in 

this thesis is exhaustive in the sense that they capture every single barrier or problem 

facing large-scale renewable electricity technologies in the UK. However, the critical 

distinction is that the inclusion of the set of chosen internal and external failures (see 

Table 2.1) represents a list of those constraints that affect the actual deployment of the 

technologies in terms of installed capacity and not the operation of the technologies (at 

the point where renewable electricity generation occurs). As stated in chapter one 

(section 1.6), a focus on deployment is one of the key aims of the thesis. 

 

The selected set of internal and external failures are identified via three main initiatives. 

Firstly, during the research and analysis that constitutes the literature review that 
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identifies and analyses the internal and external failures on RET deployment from a 

historical perspective, covering the period 1990 to 2009 (chapter three). Secondly, from 

an investigation of extant research and modelling assessing the constraints to large- 

scale RET deployment including research published by the thesis author during the 

duration of the thesis (chapter one, section 1.2). In particular, the literature review 

chapter draws heavily on the authors published work. Thirdly, this research and 

analysis of the internal and external failures was carried out in more depth in chapter 

seven and eight (to meet the first and second criteria) and the systemic interaction 

between the constraints were identified and evaluated (to meet the third criteria) 

(chapter nine). These three initiatives enabled the identification of the potential 

constraints to large-scale RET deployment from both (i) the extant literature, and (ii) 

the analysis and evaluation of the extant literature and new research carried out during 

and as an integral part of this thesis. 

 

Other barriers excluded from the internal and external failures approach include issues 

of intermittency, flexibility of operation, the requirement of back-up generation and 

resource availability. Instead of acting on actual deployment, these types of barrier 

affect the operability of certain renewable electricity technologies within the wider 

electricity system. As such, they are not included in the set of internal and external 

failures. The significance of these issues is not under-estimated, however, and are 

analysed along with other factors in part II of the thesis. 

 

 

2.4 Research methodology 

The analytical framework developed in the previous section was then used to carry out 

an evaluation of the current UK approach to large-scale renewable electricity 

technology deployment to 2020 and beyond by adopting a systemic approach 

framework to determine whether or not the UK will be successful in addressing the 

potential constraints – the internal and external failures – to deployment. This is 

approached by answering three specific research questions. What are the implications 

of the current UK approach to addressing potential constraints to renewable electricity 



51 

 

 

 

technology deployment to 2020 and beyond? How would a UK response based on a 

systemic approach to renewable electricity technology deployment perform compared 

to the current UK Government’s efforts to address potential constraints? What could the 

systemic approach offer to policy makers? 

 

This thesis integrates the analytical research method with the systemic approach. The 

systemic approach adopted here is not a novel one, derived as it is from General System 

Theory in the 1940s (Bertalanffy, 2003) and later with the development of Systems 

Thinking (Bánáthy, 2000). In general, both approaches incorporate several similar key 

tenets: interdependence of objects and their attributes and holism. These provide the 

ability to reveal emergent properties not possible to detect by other types of analysis 

(Bertalanffy, 2003; de Rosnay, 1997; Lars, 2006). Particularly relevant to this thesis is 

the point that the systemic approach can be applied to problem solving by looking at the 

problems as parts of an overall system rather than reacting to specific parts, outcomes 

or events. Put simply, the systemic approach sets out that fully understanding why a 

problem occurs and persists can only be realised by understanding the parts in relation 

to the whole. This underlies the rationale for the methodological approach adopted in 

this thesis, as highlighted by the quote by Baker et al (2011) in chapter one. Although 

the systemic approach is not new, to this author’s knowledge it has not been previously 

used to investigate the research issues and questions of this thesis.  

 

The analytical research method involves the researcher having “… to use facts or 

information already available, and analyze these to make a critical evaluation of the 

material” (Kothari, 2004). Further, analytical research can be used to reveal the 

underlying causes, by suggesting or explaining why or how something is happening: “An 

important feature of analytical research is in locating and identifying the different factors 

(or variables) involved” (Bradford, 2007). An additional trait of the analytical method is 

that it first isolates and then concentrates on the individual factors. In other words, it 

enables the study of the nature of interaction. For the purpose of this thesis, this is 

important in order to separate and identify the internal and external failures. Further, 

each failure once determined can be analysed in-conjunction with the proposed solution 
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to address it. However, this particular method only allows this process to occur in 

isolation. 

 

The strength of the systemic approach to this thesis is that, in contrast to the 

reductionist approach of the analytical research method, the systemic approach unifies 

and concentrates on the interaction between the failures and the government’s 

initiatives to address them. By studying the effects of interactions, it avoids the typical 

response to such constraints embodied by the current approach which operates on the 

implicit assumption that each failure, once determined can be effectively addressed 

with its own ‘elegant’ solution in isolation. In other words, the integrated analytical 

research method and the systemic approach permit the teasing out of the systemic 

interactions of the individual internal an external failures and the evaluation of the 

current UK approach to addressing them. Importantly, the systemic approach 

understands problems in a contextual framework. Further, the analytical research 

method and the systemic approach are more complementary than opposed despite 

neither being reducible to the other (de Rosnay, 1997). 

 

The research methodology, then, involves the following stages: (1) An academic, 

scientific-based analysis of renewable energy and large-scale renewable electricity 

supply technologies; (2) Identification and assessment of the internal and external 

failures – the potential constraints; (3) A textual analysis of key policy documents and 

legislation and the decisions taken by government; and (4) the application of the 

systemic approach in order to carry out an evaluation of the UK approach to RES-E 

deployment. 

 

(1) An academic, scientific-based analysis of renewable energy and large-scale 

renewable electricity supply technologies: This will establish both the legal 

and non-legal definitions of renewable energy and place renewable 

energy in general and large-scale renewable electricity technology 

deployment in particular in the context of the overall electricity system. 

Current levels of RET deployment (in installed capacity and generation 
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output) is also analysed in order to determine the baseline contribution of 

RES-E with regard to the target. 

 

(2) An identification and assessment of the internal and external failures – the 

potential constraints: As discussed elsewhere in this chapter, this thesis 

draws on the ‘internal and external failures’ approach originally 

developed and elaborated in Wood (2010) and Wood and Dow (2010, 

2011). This approach has already been discussed in detail in section 2.3 of 

this chapter and chapter one. 

 

(3) A textual analysis of key policy documents and legislation: This stage 

involves the identification and critical analysis of key policy documents 

and legislation that form the basis of the UK Government’s approach to 

addressing the barriers to RES-E deployment and thus meeting the 2020 

sectoral target. This will include relevant material at the EU, UK and, 

where appropriate, the sub-national level. Crucially, the selected material 

has to be that which is actively utilised by the government. This will 

clarify what the UK approach entails with regard to addressing the 

potential constraints to deployment in order to reach the RES-E sectoral 

target. 

 

(4) The application of the systemic approach in order to carry out an 

evaluation of the UK approach to RES-E deployment: Drawing on the 

previous stages, the fourth stage will involve applying the systemic 

approach to evaluating potential constraints (the internal and external 

failures) to determine whether or not the gap between the modelling 

projections and the target will be addressed and thus whether or not the 

target will be met. This will establish how the internal and external 

failures relate to the attainment of increasing large-scale RET deployment 

by determining the relationship between the potential constraints and the 

UK approach to the sectoral target. 
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2.5 Adopting Approaches: A Systemic Approach to Evaluating Internal and  
External Failures 

This chapter has previously discussed both the benefits of adopting a systemic approach 

to internal and external failures in evaluating potential constraints to renewable 

electricity deployment and the need for such an approach. The focus of this section will 

be to describe the underlying approach. 

 

Renewable electricity supply technologies represent a distinctly heterogeneous 

category. Table 2.2 (page 55) shows the six major renewable energy technology 

‘families’ and associated sub-categories: wind power (onshore, offshore), marine (wave, 

tidal stream, and tidal range), hydro power (reservoir, run-of-river), biomass (landfill 

gas, sewage gas, co-firing, anaerobic digestion and other biomass), solar photovoltaic 

and geothermal (natural, geo-pressured, hot dry rocks and magma). In addition, a 

number of these technologies have been specifically developed for the small or micro 

(or pico) scale: onshore micro-wind, micro hydro reservoir and micro solar 

photovoltaic). With the exception of solar photovoltaic, the latter (small-scale) category 

is not examined in this research. In addition to small-scale (defined as <5 MW of 

installed capacity) and large-scale RETs (>5 MW installed capacity), there is also 

increasing attention on what is termed ‘meso-scale’ renewables defined as “between that 

of the end user [typically at the building level] and centralised provision [typically a 

larger-scale wind farm above 50 MW]” (Watson et al., 2010). Therefore, RETs exist at a 

number of scales. In general, RETs do not conform to the characteristics of the current 

energy system, dominated as it is by large-scale, centralised power stations situated 

within a transmission and distribution electricity network designed to enable the 

delivery of bulk quantities of electricity. In contrast to fossil fuel and nuclear power 

stations, renewables are small-scale and geographically dispersed. However, again, 

there exists considerable variation depending on the technology in question. 

 

RETs incorporate many different technologies and fuels with very different 

characteristics. Such technologies are typically long-lived assets, with operational life-

spans ranging from twenty to fifty plus years, although there is considerable  
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Table 2.2 Categorisation of the major renewable electricity technologies 
   

         Technology family   Technology sub-categories       

         Wind     Onshore wind   Micro-wind   

            Macro-wind   

                  

      Offshore wind   Fixed     

            Floating ¹     

         Marine     Wave ²     Shoreline Fixed 

            Nearshore Floating 

            Offshore   Tetherd 

                  

      Tidal     Stream     

            Barrage     

         Hydro     Hydro     Micro-hydro reservoir 

            Run-of-river   

            Macro-hydro reservoir 

         Solar PV     Solar PV     Micro-PV   Off-grid 

            Macro-PV On-grid 

         Biomass     Landfill gas         

      Sewage gas         

      Co-firing           

      Anaerobic digestion       

      Other biomass ³         

         Geothermal   Natural           

      Geo-pressured         

      Hot dry rocks         

      Magma           

                  

Note: ¹ Floating offshore wind turbines are still in the development stage with very few single unit devices 
deployed for testing in the marine environment. ² There are around 200 wave devices currently patented, 
highlighting the many different configurations available for wave energy converters. As such, there are a 
number of proposed classification systems based on location (fixed, floating, tethered) or geometry and 
orientation (terminators, attenuators, point absorbers) (Clément et al., 2002; Pelc and Fujita, 2002). ³ Other 
biomass includes municipal solid waste combustion (biodegradable part only), animal waste (including farm 
waste digestion, poultry litter combustion and meat and bone combustion) and plant biomass (including 
straw and energy crops). 
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uncertainty with regard to those relatively untested technologies lacking any real or 

significant deployment history. This is particularly the case for marine RETs and 

offshore wind. Not all technologies or fuels are limited to the electricity sector. Biomass 

can also be used in the heating and cooling and transport sectors, and such end-use 

flexibility can lead to conflict or sectoral prioritisation over utilisation, particularly as 

the non-renewable electricity sectors are under-performing in comparison to the 

electricity sector. Importantly, they are at different levels of research, development and 

deployment. This can also be the case at the sub-category level for technology types (for 

example, wind power). In any given time period, there will be those technologies that 

can contribute towards the renewable (or low-carbon) targets and those on the horizon 

that require more research, support and time in order to reach deployment at the scale 

required. Such differing levels of maturity and market penetration will play an 

important role in whether and when they will evidence strong uptake (pull) by the 

market. 

   
It is clear from the above that barriers to deployment will act upon individual 

renewable electricity technologies in a number of different and, importantly, 

technology-specific ways given the widely varying attributes of the technologies. Such 

potential constraints can also operate over different time-scales, with resultant short, 

medium or long lasting effects on the subsequent rate of deployment. In addition, 

constraints can have an aggravated impact over time, as has been evidenced in the UK 

particularly with regard to planning, or grid connection and policy risk. As discussed 

previously in this chapter, however, the constraints or barriers examined in this thesis 

do not act purely in isolation. The use of the systemic approach to evaluating the 

internal and external failures seeks to examine the interaction of potential constraints: 

assessing the cumulative or in-combination interaction of the various potential 

constraints can aide in revealing what options exist for choosing various renewable 

electricity supply technologies in increasing deployment capacity and/or the sectoral 

target. In other words, the adoption of this particular approach can, by examining the 

system, highlight where the internal and external failures lie and determine the trade 
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off’s that exists with regard to addressing the failures.38 Specifically, this approach can 

show not only where trade off’s should and could be made in the UK approach to large-

scale RET deployment but also, critically, justifies that such trade-off’s between various 

options is a valid course of action. 

 

Also the systemic approach to potential constraints utilised here does take into account 

how the target is reached. In other words, the approach taken is deemed important, 

rather than simply whether or not the target is attained. This contrasts with the EU 

2009 Renewables Directive (2009/28/EC) which is not required to do so: the important 

point is whether or not the target is reached at both the Member State (in this case, the 

UK) and the overall EU level. The approach adopted in this thesis, then, permits the 

exploration of whether or not the UK approach to deploying RETs (and thus increasing 

generation output, for example in line with the sectoral target) could have been done in 

a different way. In addition, this leads on to the following questions: What are the 

systemic implications of missing the target? What are the systemic implications for 

future (post-2020) targets if the current target is met? What are the policy implications 

for different technologies? Importantly, such questions could not have been examined if 

a focus on individual technologies or projects was pursued instead of a systemic 

evaluation of the overall system utilised in this research. 

 

 

2.5 Limitations of the methodology 

This thesis does not implicitly explore the issue of economics, and as such neither 

attributes values nor carries out a relative valuation of the various large-scale 

renewable electricity technology options.39 This is deliberate for two main reasons. An 

economic assessment is out with the scope of this thesis and the author’s key research 

                                                             
38 The internal and external failures will be different not only for different RETs but also for different 
mechanisms, including the NFFO, the RO and undoubtedly the proposed contracts for difference feed-in 
tariff (CfD FIT). 

39 This thesis does, however, look at these issues from a more systemic perspective (see in particular 
chapters five, seven, eight and nine). 
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strengths. Importantly, a focus on economics per se could obscure the aims of the thesis 

(see below). 

 

The Evaluations of energy policy focus on a number of rationale including the 

effectiveness or economic efficiency of a policy initiative against set objectives 

(International Renewable Energy Agency [IRENA], 2014; Schmalensee, 2011). The 

effectiveness of policy is typically carried out by 

 

“…measuring and benchmarking the outcomes renewable energy policies have 
delivered… The simplest indicators measure installed capacity or electricity output 
and growth rates thereof, either in absolute or percentage terms. More 
sophisticated approaches assess deployment against a country’s overall potential, 
measured over a period of time. Estimates of resources and technical and economic 
constraints are needed for calculating potential [alongside additional indicators 
including] progress towards targets, share of electricity generated and attempts to 
capture the maturity of the market for renewable energy.” (IRENA, 2014: 7). 

 

The economic efficiency of policy is defined as “… the ratio of outcomes to inputs, for 

example, renewable energy targets realised for economic resources spent.” (IRENA, 

2014: 20). Quantitative evaluation tools including cost-effectiveness analysis and cost-

benefit analysis are exemplified by the HM Treasury guidance document ‘Green Book: 

Appraisal and Evaluation in Central Government’ (HM Treasury, 2011). The ‘Green Book’ 

is “… designed to promote efficient policy development and resource allocation across 

government” (HM treasury, 2011: 1). The process for appraisal and evaluation are 

fundamentally based on two pre-requisites being met: a clearly identified need for 

policy intervention, and that the benefits out-weigh the costs. 

 

However, this focus on simple effectiveness proxy indicators and whether or not policy 

has been economically efficient in terms of the resource expended in delivering 

renewable energy runs the risk of failing to take into account the complexity of the 

overall ‘system’ and undervaluing important qualitative processes. In particular, it could 

obscure the teasing out of the systemic interactions of the internal and external failures 

on RET deployment. 
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Chapter Three 
Literature Review 
 
 
 
3.1 Introduction 

This chapter critically examines the extant literature in order to determine the context 

in which large-scale renewable electricity technology deployment has occurred, and the 

way in which government previously approached the barriers or constraints to 

deployment. As such, it is necessary to approach the literature review from a historical 

perspective covering the period from 1990 to 2009. This will highlight the issues of 

relevance to this thesis, and form the background to the analytical core of the thesis 

contained in Part III. Importantly, the literature review will contextualise the internal 

and external failures. Further, this chapter draws heavily on the justification for the PhD 

section in the introductory chapter to the thesis (chapter one, section 1.2) which 

identified the lack of research evaluating deployment constraints based on a 

comprehensive dataset, analysed in-depth that takes into account the systemic 

interactions of the constraints. 

 

Section 3.2 will look at the changing context and priorities in which renewable energy 

has and continues to operate. Section 3.3 and 3.4 will look at the Non-Fossil Fuel 

Obligation and the Renewables Obligation respectively.  

 

 

3.2 The Depoliticalisation and Repoliticalisation of UK energy policy 

Government led support for renewable energy sources, in terms of research and 

development, and providing policy to develop their potential, can be traced back to the 

oil crises of the 1970s (Connor, 2003; Wilson, 2012). Importantly, the renewable 

financial support mechanisms that were implemented from the early 1990s onwards 

have differed from previous support primarily due to four main factors that have 

significantly affected energy markets and energy politics worldwide. The four main 
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factors were and increasingly still are: privatisation, liberalisation, climate change and 

security of supply (Helm, 2008). These factors have resulted in a depoliticalisation 

(privatisation and liberalisation during the 1990s) and a subsequent repoliticalisation 

of energy policy (from approximately 2000 onwards, with climate change and security 

of supply concerns). 

 

The depoliticalisation of energy policy, whereupon energy was treated as just another 

commodity and left to market forces was becoming widespread from the 1980s 

onwards. This approach has been encapsulated by the then Secretary of State for 

Energy, Nigel Lawson’s ‘The Market for Energy’ speech in 1982: 

 
“I do not see the government’s task as being to try and plan the future shape of 
energy production and consumption. It is not even primarily to try to balance UK 
demand and supply for energy. Our task is rather to set a framework which will 
ensure that the market operates in the energy sector with the minimum of 
distortion” (Helm et al., 1989: 27). 

 

In other words, as Helm (2007: 1) states clearly:  

 
“The task of energy policy was to get the state out of the energy sector and the 
instruments were privatisation, liberalisation and competition.”  

 

In brief, liberalisation of the electricity markets entails breaking the natural 

monopolistic characteristics of electricity supply through vertical de-integration of 

generation, transmission, distribution and supply. Instead of controlling the energy 

sector by essentially fixing the price and quantities, the market determined both. As 

such, governments have had to establish regulators40 and regulations to enforce a 

                                                             
40 Established by the Utilities Act 2000, the Office of Electricity and Gas Markets (OFGEM), as a non-

ministerial Department, is the independent regulator of both the electricity and downstream natural gas 

markets and operates under the direction and governance of the Gas and Electricity Authority (GEMA) 

(National Archives, 2000). OFGEM was created through the merger of the previous regulators for 

electricity (Office of Electricity Regulation, OFFER) and gas (Office of Gas Supply, OFGAS) via the 1989 

Electricity Act and the Gas Act 1986, respectively (National Archives, 1986, 1989). Initially set up as an 

economic regulator with the primary duty to protect the interests of existing and future consumers 

wherever appropriate by promoting effective competition, OFGEM’s duties and core regulatory duties 

have been revised to include: to incorporate security of supply and climate change objectives explicitly 

into its primary obligation; Environmental and Social Guidance to balance the regulators conflicting 

duties; to protect vulnerable customers; and to administrate government programmes on behalf of the 
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system of competition. In the UK, the electricity restructuring process began with the 

Electricity Act 1989 coming into force (National Archives, 1989). The process initially 

commenced with the sale of state assets (privatisation) in 1990-91 with the 

incorporation of liberalisation and competition occurring throughout the 1990s. Indeed, 

liberalisation is an on-going process.41  

 

This has obvious implications for government support for renewable energy42: the 

liberalised and privatised energy market in which most countries created and continue 

to operate their policy instruments to support renewable energy sources represent a 

fundamental shift in energy systems – from regulated and direct government ownership 

to a competitive, open market. As a result, governments lost some control and influence 

over the resultant competitive energy system to the market (see Komor 2004; cf. Helm, 

2007). The main reasons for liberalisation were to introduce competition, lower prices 

for consumers, reduce subsidies and remove liabilities from government balance sheets 

(Helm, 2007). For renewables, this meant the creation of a new environment in which 

the various renewable electricity technologies, representing a broad range of 

technologies at different levels of maturity and exhibiting various attributes, must 

compete not only with more established technologies including coal, oil, gas and nuclear 

power but also, with other renewables (as will be seen in section 2.4) this was 

particularly the case for renewables under the UK’s Renewables Obligation mechanism). 

 

In addition, another outcome of the drive for a more market driven energy sector via 

the tools of privatisation, liberalisation and competition, has been the focus on cost-

cutting: 

                                                                                                                                                                                              
Department of Energy and Climate Change (DECC) such as the Renewables Obligation and the small-scale 

Feed-in Tariff (National Archives, 2004; National Audit Office [NAO], 2010; OFGEM, 2012; Oxford Energy 

Research Associates [OXERA], 2012). 

41 The first liberalisation directives were adopted in 1996 (electricity) and 1998 (gas) and transposed 
into Member State’s legal systems by 1998 (electricity) and 200 (gas). The second liberalisation directives 
were adopted in 2003 and transposed into national law by Member States by 2004 (with some provisions 
by 2007). The third liberalisation directive was adopted in 2007 and entered into force in 2009 (Europa, 
2012b; OFGEM, 2012b). 

42 The implication for all other energy technologies has been no less significant. 
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“For politicians and regulators, such markets were widely believed to be a one-way 
bet: prices could only go down towards marginal cost, as the sunk costs were 
expropriated for the benefit of customers… But such favourable conditions could… 
only last for as long as supply exceeded demand. As electricity prices fell in Britain, 
the industry vertically [re]integrated and concentrated. Then, eventually, as the 
assets aged and new investment slowed down, the capacity margin tightened… 
such an energy policy could not be assumed to deliver such a happy coincidence of 
outcomes permanently… By expropriating the sunk costs through more marginal 
cost pricing, and being seen to allow this to happen, investment was deterred and 
the credibility of the overarching energy policy framework was undermined. The 
focus on cost-cutting – sweating the assets – reduced the resilience of the system to 
shocks, and investment was limited to areas where there was some (typically 
artificial) protections… gas CCGTs… during the early years and … and then 
renewables.” (Helm, 2007:17-21). 

 

Given the importance of climate change and security of supply concerns (see below), 

both low carbon technologies, nuclear power and carbon capture and storage (CCS), 

along with gas (under the label of a ‘transition and lower-carbon fuel’) also look highly 

likely to fall within the protective sphere as the need to replace existing generation 

infrastructure becomes more critical. In other words, the evolving situation has opened 

the door to renewable and non-renewable electricity sources (Pollitt, 2008). 

 

Climate change and security of supply concerns are the other dominant factors of recent 

years and has led to a repoliticalisation of energy policy (Helm, 2007). The UK has 

signed up to the Kyoto Protocol, adopted in 1997, requiring a reduction in greenhouse 

gas emissions (GHG) of 12.5% by 2012 against the baseline of 1990 emission levels 

(United Nations Framework Convention on Climate Change [UNFCCC], 2007). 

Decarbonisation of the electricity sector is viewed as essential to meeting the UK’s 

climate objectives as set out in the domestic Climate Change Acts: an 80 percent 

reduction in greenhouse gas emissions from 1990 levels by 2050 (for the UK overall, 

and at the national administrative level for Scotland), with diverging interim targets for 

2020 (34 percent and 42 percent reductions on 1990 levels for the UK and Scotland 

respectively) (National Archives, 2008, 2009).43 Regarding the electricity sector, the UK 

                                                             
43 The Climate Change Act 2008 (encompassing the UK overall) was enacted on the 26 November 2008 

(National Archives, 2008). The central pillars of the legislation are the legally-binding targets for reducing 

GHG emissions by 2020 (the interim target) and 2050. These correspond with climate science and 

international and European Union (EU) commitments, and a series of five-yearly carbon budgets which 
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government has also set a legally-binding target of a 50 per cent reduction in GHG 

emissions by 2027 (Department of Energy and Climate Change [DECC], 2011). Both 

climate change and energy security concerns have also provided drivers for the 

repoliticalisation of energy policy. Two European Union (EU) directives (2001/77/EC 

and 2009/28/EC) have set renewable energy specific targets for Member States, the 

former directive focusing explicitly on promoting renewable electricity (RES-E) 

generation whilst the latter directive set an overall legally-binding renewable energy 

target of 15 percent of total energy to be generated from renewable energy sources for 

the UK (incorporating the electricity, heat and cool and transport sectors) (Eur-Lex, 

2001; Europa, 2009). This has been translated into a renewable electricity sectoral 

target of around 30 percent for the UK by 2020 (DECC, 2009) whilst the Scottish 

Executive has recently increased the level of ambition for 2020 to a 100 percent 

equivalent RES-E target for Scotland (Scottish Government, 2011). 

 

Climate change, however, provides a completely new dimension to energy policy. It not 

only requires a massive switch from carbon-intensive to low carbon economies but has 

driven governments to create policies to incentivise privatised energy companies (many 

of which have re-vertically integrated) to support renewables. This is a complex and 

difficult task because it requires renewable energy support policies (and other climate 

change mitigation measures) to become more integral parts of energy policy within a 

privatised-liberalised energy framework. Importantly, renewables are for the moment 

generally a less attractive proposition in comparison to conventional fuels (gas, coal and 

oil). 

 

                                                                                                                                                                                              
set maximum UK emissions on the trajectory to the 2020 and 2050 targets. The Act also established the 

independent Committee on Climate Change (CCC) primarily to advise the government on key matters 

under the Act and in monitoring and reporting on the government’s progress under the Act. The Climate 

Change (Scotland) Act received Royal Assent on the 4 August 2009 (National Archives, 2009). Apart from 

differences in interim targets, another major difference between the Climate Change Acts of the UK and 

Scotland are that, in contrast to the five-yearly UK carbon budgets, the Climate Change (Scotland) Act 

requires Scottish Ministers to set annual targets in secondary legislation for Scottish emissions from 2010 

to 2050 (Scottish Government, 2011a). 
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Security of supply concerns has also become an increasing concern for government. 

Security of supply is a complex issue, concerned not just with the physical access to 

energy but also includes what is termed energy security: consumer access to energy at 

prices that are both affordable and not excessively affordable. Indigenous supplies of 

gas and oil have been in decline for a number of years.44 The UK’s electricity (and 

energy) system is also undergoing considerable change: over the next decade around a 

quarter (around 20GW) of existing generation capacity will close. This is primarily due 

to the age of the assets (particularly nuclear) and EU-led environmental legislation 

including the Large Combustion Plant Directive (LCPD) namely coal.45 Although on the 

one hand this appears to increase the risk of tightening capacity margins, on the other 

hand it offers a ‘window of opportunity’ for the UK electricity generation landscape: the 

loss of such capacity needs to be replaced, particularly as electricity demand is likely to 

increase. Alongside the RES-E sectoral target, the UK government has initiated a 

programme to build a new civil nuclear power fleet and has ambitions to develop 

carbon capture and storage (CCS) in order to meet primarily climate change and 

renewable targets. However, it also opens up the possibility for the construction of new 

conventional generation partly due to concerns over capacity margins and partly due to 

the intermittent and typically low-load factors characteristic of renewable electricity 

technologies, particularly wind power. 

 

It is this context that has led to what has been termed the ‘Policy Trilemma’: how to 

square the competing objectives of: reducing greenhouse gas emissions (‘low carbon’); 

securing energy supply (‘secured supply’); and obtaining the lowest possible energy bills 

for consumers (‘low prices’) (DECC, 2009). This has led to the situation where 

 

                                                             

44 This does not necessarily reflect that domestic sources are ‘running out’: it is also a reflection of the 
level of investment in exploration, drilling, exploitation and storage, which are primarily dependent on 
demand and investment/regulatory and tax issues. 

45 The LCPD (Directive 2001/80/EC) aims to reduce acidification, ground level ozone and particulate 
matter pollution (sulphur dioxide, nitrogen oxides and dust) from large combustion plants (>50 MW 
installed capacity) amongst other plant and processes. As such the LCPD has established emission limit 
values which constrain the operating lifespan of the power station in question (Department for 
Environment Food and Rural Affairs, 2012). 
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“[Energy] Policy activity has accelerated almost breathlessly, with a succession of 
White Papers, consultations, Acts of Parliament and new institutions.” (Pearson 
and Watson, 2012: 2). 

  

Invariably, this has required significant policy, legislative and regulatory changes to the 

electricity ‘landscape’ in order to tackle the policy trilemma and to address the barriers 

to deployment that have arisen as the government has approached the challenge of 

meeting the various renewable targets. 

 

The context discussed above has also been further complicated by the devolution of 

powers to the constituent countries of the UK. The legislative framework for devolution 

is set out in the Scotland Act 1998, the Government of Wales Act 1998 and the Northern 

Ireland Act 1998 (Legislation, 1998a, b, c).46 Importantly, there is no devolution of 

powers to England. Significantly, there are different levels of devolved responsibilities 

due to the fact that the UK system of devolution is asymmetric. Critically, overall energy 

policy is reserved to the UK Government and DECC and the Treasury in particular, with 

control over the design of the overall system (including market support and electricity 

network). In practical terms, however, substantial areas of energy policy are devolved 

or under the control of the various national administrations. Regarding the formal 

distribution of powers, energy policy is only fully devolved to Northern Ireland. Under 

the Scottish Executive, devolved energy matters include the promotion of renewable 

energy (including importantly the power to set subsidy levels for renewable 

technologies under the Renewables Obligation Scotland only) and energy efficiency, 

consents for new electricity generating plant and transmission lines, planning and 

building regulations, environmental regulation, climate change, fuel poverty and 

transport (Scottish Government, 2009). The Welsh Assembly has the fewest powers, 

primarily concentrated on planning policy. In contrast to Scotland, Wales cannot adjust 

subsidy levels or decide on planning consents for major renewable generating 

developments. 

 

                                                             
46 There is also a non-legislative framework of concordats between Government departments and the 
devolved institutions, under a Memorandum of Understanding (Parliament and Constitution Centre, 
2003). 
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As such, since devolution in 1998, the various devolved administrations have 

increasingly adopted different strategies for renewable electricity (and energy). 

Although Scotland, Wales and Northern Ireland have set various (sub-national) 

renewable targets, the EU targets (and sectoral targets) are both negotiated and set at 

the UK overall level.47 Therefore, devolution will have particular implications for 

renewable deployment. 

 

 

3.3 The Non-Fossil Fuel Obligation 

The Electricity Act 1989 under which the electricity sector was privatised put in place 

the legal basis for the UK’s first ‘renewables obligation’ and renewable electricity target 

called the Non-Fossil Fuel Obligation (NFFO) (National Archives, 1989).48 The NFFO 

mechanism was a centralised bidding system that ran from 1990 to 1998 (or 1999, in 

the case of Scotland). It required the regional electricity companies to purchase 

electricity from the nuclear power and renewable energy sectors. In order to select 

which renewable projects were to be supported, the government called for project 

developers to bid for contracts in an auction for a specified allocation of capacity within 

each technology band. In total there were seven bands: biomass, hydro, landfill gas, 

municipal and industrial waste, sewage gas, wave (only in the SRO) and wind. 

Successful bids depended on the projects’ price per amount of energy generated and the 

cheapest proposals were selected first until the capacity allocation for each technology 

band was used up. 

 

                                                             
47 This does not subtract from the importance of the contributions of the devolved administrations. 

48 Section 32 contained the provisions for the NFFO and Section 33 contains provisions for the Fossil Fuel 
Levy (FFL), the mechanism by which the Regional Electricity Companies or RECs (a number of which 
were formerly Public Electricity Suppliers) (National Archives, 1989). The NFFO actually refers to a 
collection of orders requiring the electricity distribution network operators in England and Wales to 
purchase electricity from nuclear power and renewable energy. Similar mechanisms operated in Scotland 
(the Scottish Renewable Orders: SRO) and Northern Ireland (the Northern Ireland Non-Fossil Fuel 
Obligation: NI-NFFO) (OFGEM, 2011a). There were five rounds made in England and Wales (1990, 1991, 
1993, 1997 and 1998) and three rounds in Scotland (1994, 1997 and 1999). Unless specifically 
mentioned otherwise, the term NFFO will be used to include the three mechanisms. 
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The NFFO was primarily set up as a means to subsidise nuclear generation which had 

proved too difficult to privatise at that time. The inclusion of renewables into the 

definition of ‘non-fossil fuels’ meant that it was effectively bundled with nuclear power 

(see also chapter 4.2). This resulted in renewables being vulnerable to EU limitations 

under the EU Competition Directive (85/413/EEC): as a government financial subsidy 

for non-fossil fuels, this led to the sanctioning for support offered under the NFFO 

mechanism for only 8 years (until 1998) (Europa, 2012a). The short-term contract 

nature of the initial mechanism had a number of fundamental effects for renewable 

deployment: given the high capital up-front costs of the various renewable electricity 

technologies (RETs) and the concomitant payback period required, it severely limited 

the amount of time a contracted project could expect to get financial help, thus 

increasing the developers risk and limited available funding for new projects (Mitchell, 

1995).  

 

The competitive nature of the NFFO also impacted on the success of the mechanism 

(Mitchell and Connor, 2004). As a market-based mechanism, formulated during the 

most radical change to the management and ownership of the power sector 

(privatisation and liberalisation), the then Department of Trade and Industry (DTI) 

wanted to reduce the average price per kWh of each bidding round to signify success. 

This led to many bids being too competitive (too low) and the contracted projects not 

being built. Also, unrealistically low bids could be entered in-order to thwart more 

realistic (serious) competitors. Again this problem increased due to the absence of a 

penalty mechanism for the failure to take up a contract (Wood and Dow, 2011). The 

bidding nature of the NFFO also had adverse affects. Developers did not know when 

bids would occur (irregular and unannounced timetable: 1990, 1991, 1995, 1997 and 

1998 and 1994, 1997 and 1998 in Scotland), what capacity targets would be set for each 

technology band for each round and what other bid prices would be. This further 

increased the risk to developers. 

 

An additional outcome of the design of the NFFO mechanism was that, particularly in 

the case of onshore wind power, developers had to utilise the best resource sites in 

order to maximise their financial returns. Areas of particularly high wind resource are 
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typically located in upland and coastal regions, favoured for the lack of development 

and close to populated areas, respectively. Compounded by the problem that successful 

developers offered contracts in the bidding process generally applied for planning 

permission and started construction more or less all at the same time (hastened by the 

8 year cap on subsidy revenues and the focus on lowest costs), this led to the view of a 

‘wind rush’ leading to a backlash from the population concerned by the effects this could 

have on the environment (Edge, 2006; Wood and Dow, 2011).49 In addition, small-scale 

and community and community projects were basically excluded due to costs being 

typically more expensive in contrast to larger projects, leading to the marginalisation of 

local concerns and involvement. In turn, this exacerbated the problems of planning 

permission from the local planning authorities. 

 

This was the context in which the first two NFFO rounds (NFFO1 and NFFO2) occurred. 

The NFFO was reformed in 1993 in an attempt to address some of these failures. As the 

timetable for the privatisation of the nuclear industry kept slipping, the UK government 

made the decision to separate renewables from nuclear power. The reform of the 

mechanism extended the contract duration from 8 to 15 years, with yet another change 

in the application procedure: for NFFO round 3, contractors were offered the bidding 

price (as opposed to a strike price as offered in NFFO2) (Mitchell, 1995). The reforms 

also introduced a grace period (initially 4 years in 1994, thereafter rising to five years) 

where developers could apply for planning consent and grid connection in addition to 

cancelling a project if real cost reductions in technology, operation and maintenance 

failed to meet expected reductions. The UK government also clarified the policy 

objectives regarding renewable energy. Such objectives included: stimulating the full 

economic exploitation of UK alternative energy resources; to establish and develop 

options for the future; to encourage UK industry to develop capabilities for domestic 

and export markets; and to acknowledge the barriers to increased installation 

(Department of Energy, 1988; Department of Trade and Industry, 1994; Wood and Dow, 

2011). 

 

                                                             
49 It can be argued that this was the origins of what has been termed the ‘Not In My BackYard’ or NIMBY 
movement. 
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Critically, the inclusion of two clauses were introduced to NFFO3 contracts: the ‘levy out’ 

clauses whereby RECs would not be required to make up the shortfall between the pool 

and premium price; and the ‘supply out’ clause which essentially set a cap (25 per cent) 

on the amount of renewable electricity generation the RECs were obligated to take 

(Mitchell, 1995). Regarding the technology bands, although two new sub-bands were 

introduced (biomass gasification and small-scale wind), sewage gas was excluded and 

more costly options including solar photovoltaics, offshore wind, wave (except SRO3, 

see above), tidal stream and geothermal were effectively forced out through exemption 

from the mechanism (Komor, 2004). In addition, the government announced in 1993 

that there would be 3 more rounds but not when they would actually take place.50  

 

However, the damage was already done to some extent. Excessive policy change and the 

uncertainty of when bidding rounds would occur and which technologies would be 

included in addition to target capacity uncertainty exacerbated the stop-go nature of the 

mechanism whilst excessive competition adversely affected the number of contracted 

projects being commissioned (Sawin, 2004). This was particularly the case of the hiatus 

between NFFO2 and NFFO3 (2 years) and NFFO3 and 4 (4 years). In addition, the vast 

majority of the subsidy specified by the 1989 Electricity Act (the Fossil Fuel Levy which 

was placed on all sales of electricity from fossil fuel generators) went to nuclear.51 

Planning permission problems increased with local planning authorities receiving no 

real guidance with regard to renewable projects. This was further exacerbated by the 

complexity of the NFFO process that was only really accessible to professional 

developers and financiers, local communities and small independent companies were 

effectively shut out of the mechanism. This resulted in increased risk and thus also costs 

to developers (Mitchell, 1995; Mitchell and Connor, 2004). The excessive fiscal 

constraints (and the initial short-term contracts of NFFO1 and NFFO2) of the market-

based NFFO resulted in UK manufacturers being unable to meet demand and developers 

going abroad for equipment. Despite clarification of the government’s policy objectives 

                                                             
50 NFFO support for anaerobic digestion, energy crops and forestry waste did not occur until NFFO4. 

51 In 1990-91, 0.5% (£6 million out of a total of £1,175 million) went to renewables, increasing to 8% 
(£96 million out of £1,204 million available) in 1994-95 (Connor, 2003). 
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for renewable energy, the NFFO failed to encourage UK industry to develop capabilities 

for both domestic and export markets.  

 

Table 3.1 (page 73) shows that only 30 per cent (1,109MW) of total contracted capacity 

actually resulted in commissioned (operational) projects. Deployment under the NFFO 

was primarily driven by landfill gas (236MW or 43 per cent of total deployment), 

municipal/industrial waste (236MW or 21 per cent) and onshore wind (220MW or 20 

per cent). For wind power, less than 20% of a total of 1,153.7 MW DNC awarded 

contracts were built, representing the loss of a considerable market for this technology. 

In general the NFFO  

 
“... resulted in one of the lowest levels of RES-E in the EU… in one of the best-
endowed countries with regard to wind resource available.” (Lauber, 2004: 1409).  

 

 

Overall, by 2002, renewables supplied approximately 3% of electricity, a slight 

improvement on the level when the NFFO was implemented, which was just under 2% 

(Smith and Watson, 2002). 

 

One of the most successful elements of the NFFO was that it permitted some insights 

into the real pricing of renewables and did succeed in providing a pressure to keep bid 

prices as low as possible. There are a number of alternative reasons for price drop, 

however, not directly related to the way the mechanism operated: the largest drop in 

prices per kWh occurred between rounds 2 and 3, coincident with the increasing length 

of contracts and the introduction of the grace period; economies of scale; and increasing 

industry experience and technological advances driven by the existence of larger 

markets. 

 

It is clear that the NFFO underperformed, not only against the target (by almost 60 per 

cent) but also against the set policy objectives as stated by the government as early as 

1988: significantly low deployment rates; technology options concentrated on only 

three technologies (with only real success for landfill gas) and the exclusion of other
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Table 3.1 The capacity of contracted projects contra commissioned projects for the NFFO by 2004 (Edge, 2006).       

                      Contracted Projects   Commissioned Projects   

              

Technology     Number   Capacity   Number   Capacity   As a %   

              

Biomass    32  256  9  10  4  

Hydro    146  95  68  47  49  

Landfill gas   329  700  226  475  68  

Municipal/Industrial 
Waste 

 90  1,398  20  236  17  

Sewage gas   31  34  24  25  74  

Wave    3  2  1  0.2  0.1  

Wind    302  1,154  93  220  19  

              

Total       933   3,639   441   1,109   30   

Note: Capacity in MW Declared Network Capacity (DNC). The data includes all relevant projects for the NFFO, NI-NFFO and the SRO.   
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RETs; a failure to develop UK renewable industrial capabilities and supply chain; and an 

inability to address all but the most obvious barriers to deployment, both internal and 

external. It could be argued that where such barriers were addressed, this was the 

result of opportunism (for example, extending the contract period due to the inability to 

privatise the nuclear sector). Indeed, there was a complete lack of consideration in the 

UK approach to RES-E deployment from a systemic approach, despite an early 

awareness of the interaction between the competitive bidding system and planning and 

public participation and engagement as argued by Mitchell (1995). 

 
 
 
3.4 The Renewables Obligation 

In contrast to previous years where government support for renewables was largely 

opportunistic, the momentum to increase the deployment of renewable energy and 

renewable electricity in particular increased from the latter part of the 1990s onwards. 

At the international level, the UK signed up to the Kyoto Protocol, adopted in December 

1997, requiring a reduction in greenhouse gas emissions (GHG) of 12.5% by 2012 

against the baseline of 1990 emission levels (United Nations Framework Convention on 

Climate Change [UNFCCC], 2007). Just one month prior to the signing of the Protocol, 

the European Commission (EC) published a White Paper for a Community Strategy and 

Action Plan titled ‘Energy for the Future: Renewable Sources of Energy’ (EC, 1997). The 

1997 White Paper set out to boost renewable deployment within the EU by proposing a 

target of 12 per cent gross inland energy consumption from renewables for the EU-15 

by 2010, of which RES-E would represent 22.1 per cent.52 This led to the 2001 European 

Union Directive ‘2001/77/EC on the promotion of electricity produced from renewable 

energy sources in the internal electricity market’ which provided the first EU-wide 

renewable electricity target: the national indicative target for the UK was 10 per cent 

RES-E generation by 2010 (Eur-Lex, 2001).53  

                                                             
52 This represented a doubling of gross inland energy consumption from renewables at the EU-15 level 
(from 6% in 1997). From an individual Member State level, the figures ranged from 0.7% (UK) to 25.4% 
(Sweden). In 1995, the most recent year for RES-E data, at the EU-15 level 14.3% (or 337TWh) was 
produced (EC, 1997). Again, at the individual Member State, RES-E deployment ranged in 1997 from 1.1% 
(Malta) to 70% (Austria). For the UK, this figure was 1.7% (Eur-Lex, 2001). 

53 Although failure to attain the target would not entail a breach of the 2001 Directive, there are possible 
enforcement mechanisms: where Member States set targets too low (below reference figures set out in 
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In the same year as the Kyoto Protocol and the publication of the EC White Paper, the 

Labour Party won the general election. Although the then incoming government 

maintained the current NFFO, with NFFO4 and 5 (and SRO3 and 4), the government 

decided as early as 1999 to change the mechanism (Mitchell and Connor, 2004). By 

dissolving the regional electricity companies (RECs) into distribution and supply 

companies, the Utilities Act 2000 removed the legal basis of the NFFO and paved the 

way for a new RES-E subsidy mechanism: the Renewables Obligation (National 

Archives, 2000).54 Importantly, the UK would have to increase RES-E generation output 

from around 3 per cent to 10.4 per cent in eight years. In addition to attempting to meet 

the key policy objectives which remained essentially the same as those set under the 

NFFO, the replacement mechanism would also have to counter the defects of the 

previous regime. 

 

The RO commenced operation in April 2002. As with the NFFO, in practice the term 

‘Renewables Obligation’ refers to three complementary Obligations: one covering 

England and Wales, and one each for Scotland (Renewables Obligation Scotland: ROS) 

and Northern Ireland (Northern Ireland Renewables Obligation: NIRO) (OFGEM, 

2011b).55 Under the RO, licensed electricity suppliers are mandated or obliged to supply 

a set proportion of their sales from renewable generation. In 2002, the first year of 

operation, this target (as a percentage) started at 3 per cent and was initially set to rise 

to 10.4 per cent by 2010-11. The obligation was then set to remain at this level until 

2027. In order to successfully comply with the Obligation, the suppliers have to obtain 

Renewable Obligation Certificates (ROCs), a tradable instrument that qualifying 

generators are awarded in proportion to their output. One ROC is equal to one-

                                                                                                                                                                                              
the Directive without explanation) or fail to take appropriate steps including failing to set a 2010 RES-E 
target or where measures implemented would clearly be incapable of achieving the target (Johnston, 
2010). 

54 Sections 62 to 67 of the UK Utilities Act 2000 put in place the legal basis for the Renewables Obligation 
Order (National Archives, 2000). 

55 Unless specifically mentioned otherwise, the term RO will be used to include the three mechanisms. 
The particulars of the RO at the time of commencement are set out in ‘The Renewables Obligation Order 
2002’ (National Archives, 2002). 
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megawatt hour (MWh). This results in the guarantee of two revenue streams for 

renewable generators: the income from the tradable ROC sales and power (electricity) 

output sold at market prices.56  

 

Compliance is ensured by the buy-out price. If a supplier is unable or unwilling to obtain 

its obligated requirements for ROCs, it has to pay a buy-out price. This was set at 

£30/MWh in 2002/03 and rises annually at the rate of inflation. A novel feature of the 

RO is that the funds raised from the payment of the buy-out payment are recycled. In 

other words, they are redistributed pro-rata to those suppliers (the ‘competitors’ of 

those suppliers that failed for whatever reason to meet the obligation) that successfully 

met their obligation and thus obtained the required amount of ROCs. The secondary – 

and intention of the government – effect of the recycling mechanism is to effectively cap 

the cost of the RO. The closer the obligation target is to being achieved, the lower the 

ROC price will be. This acts to disincentive investors to build too much capacity and thus 

threaten the return on generating plant already built. 

 

From its inception, the Renewables Obligation was deliberately designed to be a 

more market-based mechanism than the previous Non-Fossil Fuel Obligation.57 The 

clear intention of the RO, in contrast to the NFFO, was to force renewable developers to 

participate in the electricity market (Mitchell and Connor, 2004). This was stated clearly 

before the implementation of the mechanism in ‘The Renewables Obligation Statutory 

Consultation’ document (National Archives, 1999: 7): 

 

                                                             
56 There is also the Climate Change Levy  (CCL) – a tax delivered on most energy users with the exception 
of domestic and transport sectors and equals 0.456 pence/kWh for 2008-09 in line with inflation (Climate 
Change Levy, 2008) – and the recycled buy-out premium. 

57 Indeed, the (then) incoming New Labour Government had indicated that it accepted the broad tenets of 
what is termed the ‘Lawsonian Paradigm’ (whereby privatisation and competition were viewed as the 
main pillars of UK energy policy, and in most other areas of the economy) although such a position was 
also to be tempered by a more interventionist approach to energy policy and its objectives (Helm, 2003; 
Rutledge, 2007). In particular, Rutledge (2007: 1) highlights the point that “… New Labour and its advisors 
have come to espouse a particularly ‘fundamentalist’ view of the role of ‘competitive markets’ in achieving 
energy policy objectives.” 



77 

 

 

 

“The RO moves away from the NFFO approach and reflects the Government’s belief 
that the way forward is to create the market conditions for a thriving, dynamically 
competitive renewables industry.” 

 

The primary reasons why the RO is viewed as a more market-based mechanism than 

the NFFO, particularly for developers/generators is that it leaves  

 
“… the price and technology choice (there are no requirements on what type of 
RES-E to be purchased) to the market whilst the Government sets the quantity (the 
Obligation level or target) to be achieved.” (Wood and Dow, 2011: 2230).  

  

In contrast to the NFFO there was no must-take (or priority access) contract for 

renewable electricity or indeed specified contract length due to the dissolution of the 

former Regional Electricity Companies (Mitchell and Connor, 2004). Another result of 

the market-based nature of the RO is that generators did not have any real knowledge of 

what they will be paid for each contract due to ROC and wholesale electricity price 

fluctuations as both revenue streams depend on supply and demand (Wood and Dow, 

2011). This led to the RO being a high-risk mechanism.58 It is difficult to obtain finance 

in large part due to price risk and the uncertainty that resulted from this: generators 

lacked the knowledge of what they would be paid beyond typically short-term contracts 

(no must-take contracts); the threat of supplier default (for example, the supplier TXU 

Europe failed with the result that the buy-out fund was less than expected); and the 

trading of ROCs was limited due to the fact that as most already large-scale generating 

companies became vertically re-integrated through mergers and acquisitions, selling to 

their in-house suppliers increased (Lipp, 2007). A further deliberate design feature of 

the RO was the introduction of volume risk to avoid over-performing with regard to the 

2010 target: the greater the progress towards the Obligation target the more the 

subsidy value (ROCs and the buy-out premium) decreased as demand dropped. This 

resulted effectively in creating an incentive not to meet the target. Two factors in 

particular contributed to this. The concentration of market share in terms of both 

supply and generation assets within the ‘Big Six’ vertically integrated electricity 

                                                             
58 By removing the must-take (or priority access) contracts placed on the former RECs – thought to 
separate renewable generators too much from the reality of the market – government policy removed the 
key reason why the NFFO was perceived as a low-risk environment. 
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companies and the dragging-out of the target process by the UK government (see 

below) (Friends of the Earth [FOE], 2011).  

 

The RO was specifically designed to be technologically blind because the DTI (2001: 3). 

 
“[Believed] that a banded obligation would segment the market unnecessarily, 
and would lead to the Government dictating the relative importance of each 
technology… that it is no longer the Government’s job to pick winners or to 
introduce artificial distortions in the marketplace”   

 

The creation of a single market for all the renewable electricity technologies, however, 

combined with an emphasis on costs and thus increasing market competition resulted 

in the RO primarily benefiting cheaper, more market-ready technologies. This meant 

primarily on-shore wind, landfill gas and co-firing, with more expensive technologies 

effectively being priced out of the mechanism. These ‘excluded’ technologies included 

offshore wind, wave power, tidal stream power, energy crops and solar photovoltaics 

(Foxon et al., 2005). 

 

This was despite the fact that a number of these RETs, the marine renewables and 

offshore wind in particular had already been singled out by government as having the 

potential to deploy at significant scale. As early as 2000, the Crown Estate (CE) had 

commenced the first round for offshore wind leasing agreements with further rounds 

planned for 2003 and beyond (Crown Estate, 2012a).59 In addition, just one year after 

the implementation of the RO, the 2003 Energy White Paper ‘Our energy future – 

creating a low carbon economy’ stated that offshore wind was 

 

                                                             
59 The CE is a property portfolio owned by the Crown and governed by an Act of Parliament (Crown 
Estate Act 1961) and managed by an independent organisation headed by the Crown Estate 
Commissioners. Surplus revenue is paid annually to HM treasury (Crown Estate, 2012b; UK Government, 
1961). The Crown Estate (CE) owns approximately 55 per cent of the UK’s foreshore and virtually the 
UK’s entire seabed from mean low water to the edge of the continental shelf and the 200 nautical mile 
limit (the exclusive economic zone). As such, the Crown Estate plays a major role in the development of 
the UK offshore wind, wave and tidal stream energy industry. In particular, it leases areas of the seabed 
for commercial development of offshore renewable electricity supply technologies. Since 2000, there 
have been five rounds (a tender-based process) of offshore wind which have increased in scale and 
technical complexity as the industry has developed (Wood and Taylor, 2012). 
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“… about to take off… We have more wind off our coasts than anywhere else in 
Europe… we should be able to expect offshore windfarms to make a strong 
contribution to our carbon aims.” (DTI, 2003: 54).  

 

The primary result of this has been to stifle rather than stimulate innovation and the 

necessary introduction of capital subsidies for certain technologies to combat the RO 

price cap that effectively excludes them. With the risk that a number of RETs and 

offshore wind in particular were being made permanently uncompetitive through a lack 

of market access, the government introduced a capital grants programme in order to 

increase momentum for deployment (DTI, 2003).  A substantial proportion of the 

capital grants (over the period 2002-05) were allocated to offshore wind, highlighting 

the fact that one of the UK Government’s preferred options could not be supported by 

the financial subsidy mechanism alone. 

 

So far, the discussion here has focused on the internal failures of the Renewables 

Obligation. There are also a number of external failures issues that have proven to be 

significant barriers to the deployment of renewables in the UK. Part 4 of the Utilities Act 

2000 established the New Electricity Trading Arrangements (NETA) in 2001 to replace 

the British electricity pool that had been set up with the privatisation of the electricity 

sector in 1989 (National Archives, 2000). The reasoning behind the introduction of 

NETA was to extend competition in the wholesale market and contribute to a more 

competitive market amongst electricity generators and suppliers. As such, NETA 

created a new regulatory framework that governed the way in which electricity was 

sold with the jurisdiction of the regime encompassing England and Wales. Although the 

regime remained largely unchanged, the geographical scope of NETA was extended in 

2005 to include Scotland with NETA becoming the British Electricity Trading and 

Transmission Arrangements (BETTA).60  

 

In summary, BETTA was designed to achieve the following objectives: to meet the needs 

of customers with respect to price, choice, quality and security of supply; enable 

                                                             
60 Part 3 of the Energy Act 2004 set out the legal basis for the BETTA (National Archives, 2004). This 
occurred despite resistance from many renewable generators and support groups (Komor, 2004). 
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demand to be met efficiently and economically; enable costs and risks to be shared 

efficiently; promote competition in electricity markets; avoid discrimination against 

particular energy sources; and are compatible with government policies to achieve 

diverse, sustainable supplies of energy at competitive prices and with wider 

government policy, including on environmental and social issues (OFGEM, 1999). 

However, BETTA was not designed to promote the use of electricity from renewable 

sources: it has an in-built preference for flexible and predictable sources of generation, 

leaving intermittent sources at a relative cost disadvantage (Smith and Watson, 2002). 

It is also a complex mechanism that imposes high costs on small generators (in terms of 

membership, personnel and information transfer) and places a high premium on 

flexibility and penalises intermittent and unreliable generation (NAO, 2003). An 

important point here is that whether or not  the costs incurred by intermittent (less 

predictable) generators, namely renewables, is disproportionate, NETA/BETTA has 

imposed new costs which will disproportionately impact on small-scale renewable 

generators in contrast to large-scale companies. In addition, small-scale renewable 

generators typically lacking a diverse portfolio of generation assets and/or do not act as 

electricity suppliers can not mitigate the impact of BETTA via self-balancing.61 As a 

result, many small generators avoid it and sell via a supplier. However, most grid supply 

areas (the distribution area generators sell into to avoid losing the distributed benefits 

of RES-E) only have one supplier thus constraining selling options. These risks are 

compounded by the fact that renewable energy is generally more expensive than 

conventional thermal generation (coal, gas and nuclear), does not taken into account 

external costs (apart from the CCL component) with its focus on the marginal cost of 

green technology (Lauber, 2004) and is typically very capital intensive and needs this 

capital upfront. 

 

Problems with the planning system originated early on in the operation of the previous 

subsidy mechanism. However, planning remained a contiguous barrier to renewable 

deployment under the RO. There were concerns that the planning system was too slow 
                                                             
61 Self-balancing allows a company, typically vertically-reintegrated with both generation and supply 
facilities, to balance electricity supply through the control of intermittent and non-intermittent 
generation owned by the company. 
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in granting consent, administratively burdensome in terms of complexity and cost, lead 

to uncertain results and failed to take into account national (and international) 

priorities set by legally-binding renewable and climate change targets, particularly at 

the local level. In addition, the planning system was often been perceived as frustrating 

local and central government’s key political objectives (British Wind Energy Association 

[BWEA; now Renewables UK], 2009; Innovation, Universities, Science and Skills 

Committee, 2008a, b; Jones and Eiser, 2010; National Audit Office [NAO], 2008; 2010; 

Scottish Government, 2005).  Despite the various national administrations introducing 

new renewable-specific guidelines for local planning authorities, there was no attempt 

to introduce significant reforms to the onshore planning system until immediately prior 

to the reform of the Renewables Obligation.62 Major reforms did not take place until 

2008 (the Planning Act 2008 in England) and although the Scotland Planning (Etc) Act 

was established in 2006 a significant number of key provisions did not come into force 

until 2009 (Wood, 2010; Wood and Dow, 2011).  

 

This can be seen by looking at planning statistics for onshore wind, one of the main 

RETs to have evidenced significant growth under the RO mechanism.63 In 2007, the 

average time taken from submission of a planning application to determination was 

over 41 months for >50MW onshore wind farms and over 16 months for <50MW.64 In 

comparison, by 2012 this had fallen to just 30 months and over 11 months, respectively. 

At the same time, however, approval rates either remained approximately the same as 

                                                             
62 The UK planning system, however, is not monolithic. Planning is largely a devolved issue and the 
Devolved Administrations set policy in their respective nations. Devolution has led to a divergence in the 
planning systems which operate within the various national administrations. Significantly, there are 
different levels of devolved responsibilities due to the fact that the UK system of devolution is 
asymmetric. Regarding planning specifically, this was devolved or placed under the legislative 
competence of the Scottish Parliament, the Northern Ireland Executive and the Welsh Assembly 
(Parliament and Constitution Centre, 2003). 

63 These statistics are taken from the Renewable Energy Planning Database (REPD) (DECC, 2012). See 
chapter seven, section 7.2 for a more detailed analysis of planning data. 

64 Onshore energy generation infrastructure with an installed capacity greater than 50MW typically lies 
under the control of central government whilst developments with an installed capacity lower than this 
fall under local authority control. Prior to 2011, hydro power was the key exception to this rule: the 
capacity cut-off point is 1MW of installed capacity. This is the same across the UK. The situation is 
different for offshore wind: in England the cut-off point is 100MW. For Scotland, it is 1MW. 



82 

 

 

 

that seen in 2012 for >50MW projects or was significantly higher for <50MW projects: 

74 per cent compared to 48 per cent at the UK level for the years 2007 and 2012, 

respectively (see chapter eight section 8.2 for a more detailed account). 

 

By design, the Renewables Obligation has resulted in a focus on onshore wind power. 

Onshore wind was and continues to be one of the most technologically mature and 

market-ready renewable technologies that can be deployed at the large-scale. Although 

this is a characteristic that onshore wind shares with other RETs, including offshore 

wind, wave power, tidal stream power and solar photovoltaics, these options were 

either not technologically mature and/or market ready. As with the NFFO, in order to 

maximise revenues (both subsidy and electricity) developers focused on those sites 

with the highest wind resource. Invariably, a number of locations were either close to 

where people lived or in areas that people favoured because there was a lack or absence 

of development. However, as the number of wind farms increased, along with the 

number of individual turbines per development and the size of the turbines, so did the 

pressure on the landscape. The particular characteristic of onshore wind turbines (tall, 

sited to obtain optimum wind availability and thus unable to be screened) aggravated 

the issues, with regard to both planning and public opinion. 

 

This has been further exacerbated for two key reasons: because of the increased price 

risk and resultant difficulties and extra cost in obtaining finance and the complex nature 

of the mechanism itself, the RO militates against small, independent and community-

based projects that could alleviate planning and acceptance barriers at least to some 

extent by promoting renewable projects from the bottom-up, by actively informing and 

involving the local population where such projects would be developed and the public 

in general  (Mitchell and Connor, 2004; Lipp, 2007). By design, then, the RO is a stronger 

supporter of large, usually multi-national companies with substantial assets that have 

vertically re-integrated – thus they can take on the RO risks themselves. The absence of 

a bottom-up approach led to a lack of public acceptance of renewable projects (mainly 

onshore wind – a major contributor to renewable deployment in the UK) and resulted in 

a high rate of renewable projects failing to get planning permission. 
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The UK’s approach to transmission and distribution issues also highlights policy 

inconsistency and contradiction. Despite the strong emphasis in the 2001 EU 

Renewables Directive for Member States to reduce regulatory and non-regulatory 

barriers to renewable energy (this includes planning permission and grid issues), there 

is no special treatment of renewable energy projects within current UK regulatory 

frameworks, and the rules that do apply to renewable generation projects apply to all 

other generation projects. Further, Scott (2007: ix) points out that 

 
“GB [Great Britain] appears generally reluctant in its promotion of renewable 
energy via grid related practices, achieving compliance only with mandatory 
articles and questionably in two cases – ‘non-discrimination of renewable 
energy in peripheral areas’ and ‘guaranteed transmission (and distribution) 
access.” 

 

Although the UK does provide one of the most competitive connection charging regimes 

in Europe with regard to physical grid connection charges (a super-shallow approach), 

it does not provide priority access for renewable projects, priority despatch of 

renewable energy, or implement a must-take policy. Under existing rules, thermal 

generators are effectively given preference over renewables in the connection queue, in 

particular when demand for network capacity exceeds supply (as is currently the case), 

and the ‘first come, first served’ approach compounds the problem by meaning 

renewable generators without planning permission or finance can occupy a place in the 

queue ahead of those who are ready. This has resulted in substantial delays (10 years or 

more) and is of concern given the 17 GW of renewable generation currently in the 

queue for connection to the transmission network (OFGEM, 2008). Critically, there is 

very little forward or strategic planning for renewables to be connected to the grid with 

regard to where electricity network reinforcement and/or upgrade is required. In turn, 

this is aggravated by the fact that onshore wind developments are typically deployed in 

areas lacking in either physical transmission infrastructure or have the capacity 

available to connect new generation infrastructure. 

 

UK renewable energy policy was still characterised by uncertainty, constant 

adjustments and significant change. In addition to the mechanism transition (from the 

NFFO to the RO), with the four year hiatus in government support resulting in virtually 
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no new deployment, there have been a number of examples of policy risk. Although 

optimistic and pro-renewables, the 2003 Energy White Paper increased uncertainty 

over the future of the RO only one year after its implementation by proposing a review 

of the mechanism (despite the RO having been intended to run until 2027) and by 

stating that carbon trading would be the main policy going forward (DTI, 2003). In 

addition, the White Paper dragged out the target process by failing to set new targets 

despite setting out the expectation that future targets would occur.65 

 

Although some of these failures are new or more significant to the RO (NETA/BETTA; 

price risk; volume risk; the scale of electricity transmission work required), many of the 

failures were known from the NFFO (focus on low costs; excessive focus on competition; 

planning; and policy risk). The low level of deployment and the lack of RET diversity 

highlights the point that lessons had not been learned by government despite almost 

two decades of operational experience (Wood and Dow, 2011). With regard to the 

policy aims of the RO, then, a low level of renewables deployment focused particularly 

on onshore wind, has failed to meet the targets, not reduced CO2 emissions as 

projected, failed to increase security and diversity of supply issues and hence alleviate 

security of supply concerns. And like the NFFO, the RO has failed to encourage UK 

industry to develop capabilities for both domestic and export markets and thus 

stimulate the full economic exploitation of alternative energy resources in the UK due to 

the emphasis on achieving reductions in the price paid for renewable energy precludes 

both many RETs and entry by smaller producers (Mitchell et al., 2006). 

 

When the actual RES-E generation output  obtained under the RO is examined (Table 

3.2, page 85), it is obvious that the RO is not working as intended: despite output (and 

deployment) having increased significantly in comparison to the NFFO, the RO has 

consistently under-performed with regard to the Obligation targets. The 2010 RES-E 

target was missed by a third, and has not been achieved as of the end of 2011. Although 

                                                             
65 The RES-E sectoral target of 15.4% by 2015 was only set out in ‘The Renewables Obligation Order 2005’ 
(National Archives, 2005). Even then, the target was merely aspirational. The 2020 renewable target 
(including the RES-E sectoral target) was only implemented in 2009 (Europa, 2009). 
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Table 3.2 RES-E generation output as a percentage under the Renewables Obligation           

              

 

 

 
 

NFFO RO rRO 

                  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011   

              Target 
 

- - 3.0 4.3 4.9 5.5 6.7 7.9 9.1 10.4  ¹  

  

            

Output 
 

1.6 1.9 2.4 3.6 4.2 4.5 5.0 5.5 6.6 6.8 9.4  

                                          

SOURCE: Department of Business, Enterprise and Regulatory Reform [BERR], 2008; DECC, 2010; DECC, 2012. 
    Note: ¹ There is no target between 2010 (10.4%) and 2020 (30-35%). 
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2010/11 exhibited the largest annual increase in output (under the rRO), generation 

output overall needs to more than treble in eight years. In addition, Wood and Dow 

(2011: 2241-42) point out the key deficiencies of the Renewables Obligation 

mechanism: 

 

“An examination of the internal and external failures of the NFFO and the RO 
reveal that despite the differences between the two support mechanisms, both 
share a number of internal and external failures... In particular, they created high 
levels of risk and uncertainty for investors/developers, due to an excessive 
emphasis on cost reduction, the unknown price of electricity and ROC values (for 
the RO), leading to the preferential uptake of the more mature least-cost 
technologies (e.g. primarily onshore wind) at the expense of increasing the 
deployment of other more expensive technologies that, although not fully mature in 
market terms, could have been developed with additional support. In addition, 
external failures were either not sufficiently addressed (planning, grid issues: both 
exacerbated by the focus on onshore wind), introduced (BETTA) or continued 
(policy uncertainty). These failures increased the risks, costs and  uncertainty to 
renewable generators/ investors and seriously limited the level of deployment that 
could have otherwise been attained, resulting in the added failure to meet stated 
UK renewable energy policy goals, including consistently under-performing with 
regard to renewable energy targets, developing the renewables sector (for 
domestic and export markets) with resultant employment growth, reducing carbon 
dioxide emissions and increasing diversity/security of energy supplies.”  

 
 
 

This is reminiscent of the state that occurred when the RO replaced the NFFO, indicating 

a failure of the Government to learn from past experiences at the NFFO/RO mechanism 

transition. Figure 3.1 (page 87) highlights this by portraying the key internal and 

external failures of both mechanisms. What is notable about Figure 3.1 is that, despite 

the obvious differences, it reveals a high degree of similarity between the two 

mechanisms with regard to both internal and external failures: finite and limited 

duration of subsidies due to limited mechanism lifespan, excessive focus on competition 

and low costs, mechanism uncertainty, unresolved planning and electricity grid 

network issues and policy uncertainty/excessive change. Those areas in which the 

mechanisms differ are also interesting. This is because it reveals that the RO introduced 

three new failures (two internal and one external) in contrast to removing only one 

internal failure: subsidy bundling (renewables and nuclear power were included under
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Figure 3.1 The key internal and external failures of the NFFO and RO (1990-2009) 
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the NFFO from 1990 to 1998 with the result that the vast majority of the subsidy was 

allocated to nuclear power). Importantly, the RO increased price/financial risk and 

policy risk, resulting in making it difficult to obtain finance. In addition, volume risk was 

introduced along with the NETA/BETTA. Despite the warning signs early on which 

government largely ignored or delayed addressing, a major implication of this is that it 

would lead to the prospect for more changes to the policy, legislative and regulatory 

landscape. 
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Part II 
Renewable electricity, targets and technologies 
 
 
 
Part II of the thesis sets out the context in which renewable energy in general and large-

scale renewable electricity technologies in particular operate within the electricity and 

wider energy landscape. This establishes the frame of reference by which large-scale 

renewable electricity technologies will be interpreted in Part III of the thesis. Chapter 

four looks at how existing academic and political definitions of renewable energy are 

constructed, and what this means with regard to the meaning of the term renewable 

energy in terms of naturally renewing or replenishment and the level of greenhouse gas 

emissions produced by the various renewable electricity technologies. The second part 

of this chapter questions the arguments underlying why renewable electricity is 

perceived as special and therefore required. 

 

Chapter five first establishes the critical role of renewable electricity to longer-term 

renewable and climate change (decarbonisation) objectives before investigating and 

comparing the economic, technical, resource, social and environmental attributes of the 

various renewable electricity technologies. This is carried out in order to develop an 

understanding of the options available for the individual technologies particularly with 

regard to their deployment within the overall electricity system. A particular theme of 

the first two chapters is to examine alternative large-scale low carbon technologies and 

compare them with renewable electricity technologies in order to highlight the latter 

technology group’s options and attributes with regard to deployment. 

 

Chapter six establishes the baseline contribution of renewable electricity in the UK and 

analyses the historical and current trends in renewable electricity deployment. The 

second part of this chapter determines the level of deployment required to meet the 

2020 renewable electricity sectoral target. This is done in order to determine the 

deployment trajectories of the individual technologies and clarify their relative 

positions in terms of deployment. Further, this permits the identification of the amount 
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of deployment required, and how that corresponds with regard to government 

assumptions about individual technology deployment particularly with regard to the 

2020 sectoral target. This chapter also looks at deployment at the sub-national level 

with particular emphasis on Scotland. 
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Chapter Four 
Renewable energy: definitions and contexts 
 
 
 
4.1 Introduction 

This chapter begins by exploring and unpacking the meaning of the term renewable 

energy with a specific focus on renewable electricity.  Section 4.2 looks at the existing 

definitions for renewable energy and discusses the particular implications for the 

various large-scale renewable electricity technologies. This is important as the 

definition of what constitutes a renewable source of energy determines those 

technologies that receive subsidies and those that do not. This section also investigates 

the potential issues that arise with regard to other related definitions such as 

sustainable energy and low carbon energy.  Section 4.3 examines the arguments 

underlying why renewable energy is perceived as special and therefore required, and 

looks at renewable energy in the wider context of the energy system. In particular, this 

section will examine the implications of renewable energy with regard to other critical 

issues facing energy policy including security of supply and climate change. The latter 

issue is highly pertinent given the GHG emission reduction targets at the international, 

European, UK and sub-national levels. In aiming to achieve such climate change targets, 

non-renewable energy sources, particularly the so-called low carbon energy sources 

become potentially important. Additionally, not all fossil fuels produce the same amount 

of emissions.  

 

 

4.2 What is renewable energy? A question of definition 

The use of renewable energy sources is not a recent development.66 Contemporary 

interest originated, however, with various states providing funding for renewable 

                                                             
66 The use of ‘renewable energy’ has occurred in parallel with the evolution of Homo sapiens, for example, 
in the use of fire for lighting and food preparation (biomass). More analogous with contemporary usage 
and understanding, water mills have been used for millennia as a form of power generation. Indeed, this 
form of renewable energy (hydro power) provided the energy to power the early industrial revolution in 
the UK, before being replaced by fossil fuels, primarily coal. 
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energy research design and development (RD&D) from the 1970s. Since 1989 the UK 

Government has set a number of targets for renewable energy and has provided 

financial support for its use ever since.67 Numerous reasons have been put forward 

highlighting the importance in promoting renewables, including security of supply, 

fossil fuel depletion, energy dependency (on fossil fuels such as oil and gas), 

encouraging domestic industries to develop capabilities for both domestic and export 

markets and environmental reasons (Wood and Dow, 2011).  

 

It is with regard to the latter, particularly the perceived threat of climate-damaging 

greenhouse gas (GHG) emissions contributing to climate change that has created the 

momentum for a large number of nations to develop and implement renewable energy 

strategies and targets. Indeed, the EU effectively made climate change its central policy 

focus in 2008, transferring environmental issues from the periphery to the core. The 

fact that the EU went much further than supporting the Kyoto Protocol by pursuing two 

parallel policies (the promotion of renewables through the 2009 Renewable Energy 

Directive (RED) which established the 2020 targets for renewable energy and the EU 

Emissions Trading Scheme (EU ETS) show how significant renewable energy has 

become at the international and national level (Helm, 2009). Critically, renewable 

energy is increasingly viewed as one of the main ‘pillars’ alongside energy efficiency in 

any transition to a future global sustainable energy system (Scrase and MacKerron, 

2009). Therefore, the current importance attached to renewable energy can be clearly 

seen. 

 

The use of the term ‘renewable energy’ appears to be credible, with a relatively long 

history of usage from the 1970s onwards68 and a legal basis in the UK for over two 

decades: in order to set renewable targets and operate a delivery programme to 

                                                             
67 Increasingly ambitious renewable energy targets have been consistently set from the 1990s onwards at 
the EU level, including a target 12 percent of gross energy consumption by 2010 (European Community 
[EC], 1997), 10 percent RES-E target also by 2010 (EUR-Lex, 2001). For information on renewable energy 
targets at the EU, UK and sub-national level, see Chapter Seven,). 

68 The distinction and thus categorisation of renewable and non-renewable energy sources most probably 
became widely used around 1973-1975 as one of the outcomes of work on energy security issues and 
sustainability (Gritsevskyi, 2010). 
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support the promotion and uptake of renewable energy, it is necessary to define on a 

legal basis what constitutes a renewable energy source in order to receive a subsidy or 

other special consideration. Prior to the implementation of the first EU renewable 

energy directive in 2001, the UK had already commenced operation of the Non-Fossil 

Fuel Obligation (NFFO) as the subsidy mechanism to support renewable energy in 1990 

as established by the UK Electricity Act 1989. Section 32 (8) of the Act defined a 

renewable source as  

 
“… sources of energy other than fossil fuel or nuclear fuel but includes waste of 
which not more than a specified proportion is waste which is, or is derived from, 
fossil fuel” (National Archives, 1989: 54).69 

 

Specific definitions of renewable energy sources (fuels or technologies) were contained 

in the actual NFFO Orders. These included wind, hydro, wave (only for SRO Order 3 in 

1999) and biomass, incorporating landfill gas, sewage gas, waste and other combustion 

(National Archives, 1994).  

 

Articles 2(a) and (b) of the 2001 EU Directive ‘2001/77/EC on the promotion of 

electricity produced from renewable energy sources in the internal electricity market’ 

(Eur-Lex, 2011) provided the first EU-wide renewable energy target and, importantly, a 

definition of renewable energy sources and expanded on the UK base to include, in 

addition, geothermal, tidal, solar and biogases. Article 2(e) in particular defined biomass 

to include the biodegradable fraction of products, waste and residues not just from 

vegetal (plant) materials but also from animal, industrial and municipal waste. For the 

purposes of the 2009 Directive ‘2009/28/EC on the promotion of energy from renewable 

source’, the definitions in the 2001 Directive applied.70 Replacing the NFFO in 2002, the 

UK Renewables Obligation (RO) maintained the same legal definition of a renewable 

                                                             
69 Fossil fuels were defined in section 32(8) as “coal, substances produced directly or indirectly from coal, 
lignite, natural gas, liquid petroleum, or petroleum products.” (National Archives, 1989 :53) 

70 Retaining a focus on renewable electricity, additional definitional inclusions basically expanded on 
previously accepted forms of renewable energy such as aerothermal (energy stored in the form of heat in 
the ambient air and hydrothermal (energy stored in the form of heat in surface water) renewable sources. 
Wave and tidal were amalgamated into ‘ocean energy’ to incorporate the broad range of technologies at 
the design and development stage (Europa, 2009: see Article 2(a), (b) and (d). 
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energy source as also set out in the legislation that formed the legal basis of the RO, the 

Utilities Act 2000 (National Archives, 2000, 2002; Office of Gas and Electricity Markets 

[OFGEM, 2011a).71 Curiously, the Renewables Obligation Orders (ROO) provides a 

definition of a hydroelectric generating station (for large scale and micro) but not for a 

RO qualifying generating station per se.72 Instead, the various ROO set out the various 

factors that are required to be taken into account when determining what constitutes a 

qualifying generating station: for the most part, these concern eligibility rules for 

technologies or fuel sources such as biomass, fossil derived bioliquids, waste and co-

firing stations (this will be looked at in more detail when the various renewable energy 

technologies are examined in chapter seven. 

 

These examples from the main UK and EU legislation do not, however, provide an 

answer to what a renewable energy source is. The legal-based definitions only define 

renewable sources as what they are not (nuclear, fossil fuels) or list the specific 

technologies or energy sources that are eligible for support under the 

legislation/Directives. In other words, on what basis is the term renewable energy 

actually specified? And how credible is the apparent consensus over the actual 

definition?  

 

There are numerous definitions of renewables in the literature, and for the most part all 

highlight the key issues with regard to a definition of renewable energy: the idea or 

concept of renewing or replenishing of the resource and the time horizon for the 

replenishment of the resource.73 The International Energy Association (IEA), 

                                                             
71 Section 62(8) maintained the same definition of renewable (and fossil fuel) energy sources (National 
Archives, 2000). 

72 The document ‘Renewables Obligation: Guidance for Generators’ (OFGEM, 2011b: 60) states that in the 
absence of such a definition, the ‘ordinary’ meaning of a generating station should be used, such as from 
the English Dictionary (“as a building and site for generating electrical current”) or Oxford English 
Dictionary (“as a power station for the generation of electricity”). Obviously such definitions exclude 
generation that falls under the small-scale Feed-in Tariff (FIT) and Renewable Heat Incentive (RHI) 
mechanisms. 

73 Interestingly, at the international level, the ‘United Nations Framework Convention on Climate Change’ 
text (UNFCCC) does not mention renewables once, referring indirectly only to “technologies… that 
control, reduce or prevent anthropogenic emissions of greenhouse gases” (United Nations [UN], 1992: 10; 
Article 4(c) or environmentally sound technologies (Article 5, page 11), whatever that means. Article 
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Organisation for Economic Co-operation and Development (OECD) and Eurostat 

document ‘Energy Statistics Manual’ (2004: 115) contains the following definition that 

best exemplifies this: 

 
“Renewable energy is energy that is derived from natural processes that are 
replenished constantly… There are various forms of renewable energy, deriving 
directly or indirectly from the sun, or from heat generated deep within the earth. 
They include energy generated from solar, wind, biomass, geothermal, hydropower 
and ocean resources, solid biomass [and] biogas (wood and wood wastes, landfill 
gas, sewage gas, industrial wastes and municipal solid wastes) and liquid biofuel.” 

 

Sorensen (2000: 3) defines renewable energy in a similar manner as “energy flows 

which are replenished at the same rate as they are used”. Significantly, none of the 

definitions of renewable energy specify that they have to be zero (or more realistically, 

low) carbon, yet this is a commonly held conception of what a renewable energy source 

is.74 

 

In contrast, at the UK level, the now defunct Department of Trade and Industry’s (DTI) 

document ‘New and Renewable Energy Prospects for the 21st Century’ provided a more 

specific non-legal definition of renewable energy that also encompassed the GHG 

emitting characteristics of renewables.75 The 1999 document (National Archives, 1999: 

7) stated that 

 

“Renewable sources of energy are those which are continuously and sustainably 
available in our environment such as wind and energy. These sources… in 
particular, … generally emit no greenhouse gases or are neutral over their lifecycle 
in greenhouse gas terms, for instance, energy crops [taken to mean here as 
including biomass in general].” 

 

                                                                                                                                                                                              
2(a)(iv) of the Kyoto Protocol document mentions “new and renewable forms of energy”, an obviously 
ambiguous term lacking any distinction between the two (UN, 1997: 2). 

74 Even a cursory examination of the literature on renewable energy highlights this assumption that 
renewable energy sources are, at the least, a form of very low carbon generation (see below). 

75 The document also provided a distinction between ‘new’ and ‘renewable energy’ that was lacking in 
definitions at the international level. The new energy sources category, however, only included fuel cells 
(DTI, 1999). 
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By 2001, however, this definition was watered down in the DTI’s Renewables Obligation 

statutory consultation document (also confusingly called ‘New Renewable Energy 

Prospects for the 21st Century’) to the following: “Renewable energy, at its most basic 

level, can be thought of as energy that occurs naturally and repeatedly in the 

environment.” (National Archives, 2001: 8).The key issues here are that the change in 

definition between the 1991 and 2001 documents means that technologies like landfill 

gas, sewage gas, energy from waste and biomass in general are provided for in the non-

legally based definition and that renewable energy should be zero or carbon neutral in 

terms of GHG emissions. 

 

Helm recognises the importance of these key issues, eloquently arguing that there is no 

consensus over what is a renewable energy source. Helm (2009: 233) states: 

 
“Curiously, the very notion of a renewable is ambiguous: there is no clear definition 
– indeed, the concept itself is at best a relative one. It is not just a matter of 
semantics: the precise definition determines what is inside the protected domain 
[receives subsidy] and what is outside.” 

 

Helm suggests that in order to reach a definition it is necessary to determine something 

intrinsic in a source of renewable energy, that is, the energy source in some way 

‘renews’ itself, and thus use does not reduce future availability. This, it is argued, 

includes all the major renewable energy sources such as solar, wind and water 

(including hydro, wave and tidal) whilst excluding biomass and biogas presumably due 

to the issue of sustainability. Although this agrees with the Oxford English Dictionary 

(2011) definition of renewables as ‘a source of energy that is not depleted by use, such 

as water, wind or solar power’, this interpretation of the issue over the definition of 

renewable energy ignores the possibility to utilise biomass-based renewable energy 

whilst restricting usage to a level that takes into account the renewing properties of the 

resource (incorporating an appropriate timescale for exploitation) and thus the 

sustainability of the resource in question. Indeed, such an approach is already adopted 

at least in the EU and within the UK. Rather, it comes down to the question of the rate of 

use of the resource: uncontrolled or over-exploitation would lead to a reduction in the 
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ability of the resource to renew itself.76 Such an approach would fit better with 

alternative definitions of renewable energy  (see above). 

 

There are, however, two main problems with this approach. First, biomass grown for 

energy generation (including energy crops) are not typical examples of a naturally 

(intrinsically) replenishing energy source. Hardly a natural process, modern industrial 

agriculture is a predominantly hydrocarbon based business, critically dependent on 

hydrocarbon-based products such as fertilisers, pesticides and mechanised farming 

practices. There would also be the critical question of sustainably sourcing the biomass 

(Committee on Climate Change [CCC], 2011). Second, a breakdown of the overall 

biomass category shows that there are a number of energy sources that have 

historically been classified as renewable energy sources yet are not naturally renewing 

in the way set out in the definitions. For example, landfill gas, sewage gas and many 

types of waste (in particular, industrial and municipal solid waste), as indirect products 

of human consumption, are not intrinsically or naturally renewing.77  

 

There is also the issue of greenhouse gas emissions, and this helps to establish what the 

real distinction between renewable and low carbon energy actually is. Helm is right to 

highlight the issue of ambiguity, but for different reasons. This is important because the 

terms ‘low carbon’ and ‘renewable’ are implicitly taken to mean that they emit 

significantly less greenhouse gas emissions than fossil fuels. Renewables are seen as 

natural and renewing, replenished by natural sources of clean energy (i.e. non-

polluting) whereas the term low carbon implies low emissions of carbon and other 

                                                             
76 This does not mean that such an approach will necessarily be successful, but what is obvious is that 
biomass resources have always been renewed or replenished naturally. Biomass resources, however, 
would only be able to renew itself back to a certain amount, dependent on the level of use. Renewable 
resources whose exploitation eventually reaches a level beyond which replenishment will become 
impossible are termed ‘conditionally renewable resources’, in contrast to ‘renewable natural resources’ 
that, after exploitation, can return to previous levels by natural process of replenishment or growth (UN, 
1997). This also has implications for hydro power.  

77 The inclusion of these particular energy sources is further complicated if the sources are constrained, 
and this is already the case at least in the EU (cf, the EU Waste Framework Directive 2006/12/EC (Eur-
Lex, 2006) and the Landfill Directive 1999/31/EC (Eur-Lex, 1999). The question then of whether or not 
they should be included in the definition becomes a valid one. Continuing this line of argument, it would 
be more accurate to discuss fast breeder nuclear reactors (see below).  
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greenhouse gases. All energy production and consumption involves some carbon or 

other greenhouse gas production, however, and this includes without exception all 

energy sources, whether low carbon or renewable. Such assumptions, then, require 

answers to the following questions: is there an agreed understanding (at the scientific 

and/or political level) of what the terms low carbon and renewables actually mean with 

regard to GHG emissions? Significantly, do low carbon and renewable sources emit less 

GHG than fossil fuels? These are critical questions for a number of reasons, not just with 

regard to combating climate change and meeting legally-binding GHG emission targets 

(of which the renewables targets are a component of), but also relating to issues of 

credibility, particularly with regard to technology subsidy.  

 

The literature is quite clear regarding which technologies are included in the renewable 

and low carbon categories, with the latter containing renewables, nuclear and carbon 

capture and sequestration (CCS) (CCC, 2010). With regard to ‘acceptable’ GHG 

emissions, the UK Government (as stated previously in this chapter) has stipulated that 

the level of GHG emissions from renewables should be zero or neutral over the lifecycle 

of the technology.78 In contrast, regarding low carbon energy sources, the 2006 

document ‘Carbon Footprint of Electricity Generation’ (Parliamentary Office of Science 

and Technology [POST], 2006: 4) provides a rare definition: “’Low carbon’ technologies 

have low life cycle carbon emissions (<100gCO₂eq/kWh)”. As will be shown below, and 

due to the lack of any supporting explanation, this appears to be a rather arbitrary limit: 

what would be the difference in setting the limit at 120, 150 or even 200gCO₂eq/kWh? 

79 

                                                             
78 This means that any generated GHG emissions should be fully offset for any RET from the ‘cradle to the 
grave’. In comparison to data that only takes into account emissions caused directly at the point of 
generation (for example, stack emissions), the life cycle assessment approach (LCA) aims to provide a 
more complete picture by accounting for total greenhouse gas emissions from all stages of the generation 
of power from electricity generation technologies. This includes construction, maintenance, capacity 
factor, site factor, fuel extraction, processing and transport, final use and decommissioning and disposal. 
Not all of these stages will apply to every technology, given the number and diversity of technologies both 
at the overall and sub-category level. It is expressed as grams of CO₂ equivalent (thus accounting for the 
varying global warming impacts of other greenhouse gases) per kilowatt hour (kWh) of generation 
(gCO₂eq/kWh). 

79 The updated version of this report in 2011 (POST, 2011) omits this definition, and no other definition 
was found by the author. Interestingly, the document omitted CCS but not nuclear power from inclusion 
in the section on low carbon technologies – instead, CCS was included in the fossil fuel technologies 
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Table 4.1 (page 107) details the greenhouse gas emissions for a number of technologies 

from the three main technology groups (fossil fuels, low carbon and renewables).80 

Three major points can be made from the data. Firstly, the range of GHG emissions from 

three technology groups potentially exhibit higher amounts than the 100gCO₂eq/kWh 

limit: CCS coal and gas (92-280 and 40-200gCO₂eq/kWh, respectively), solar 

photovoltaics (32-116+gCO₂eq/kWh) and biomass (14-580gCO₂eq/kWh). Secondly, the 

level of GHG emissions for biomass represents highly significant variation, with 

considerable potential overlap existing when compared to the lowest GHG emitting 

fossil fuel technology, natural gas. No other renewable or low carbon technologies 

exhibit potential overlap with any of the fossil fuels (although there are valid concerns 

regarding nuclear power, see below). Third, all other technologies classified within the 

renewables category exhibit GHG emissions below the 100gCO₂eq/kWh limit. 

Importantly, they consistently show emissions of 50gCO₂eq/kWh or less.81 

 

Renewable energy supply technologies represent a distinctly heterogeneous category, 

incorporating many different technologies and fuels with very different characteristics 

(Boyle, 2004). The overall biomass category exemplifies this, with technologies and 

fuels involved in the production of electricity, heat and transport and including waste, 

energy crops, biomass and algae. Focusing on large scale electricity generation, this 

wide range of technologies and fuel types subsumed within the biomass category 

therefore are characterised by very different GHG emission profiles: 

 

                                                                                                                                                                                              
section. It is also unclear whether or not the  limit for low carbon is based (and to what extent) on 
meeting climate change targets in addition to establishing a credible and useful difference between high 
carbon and low carbon emitting energy technologies. 

80 It should be pointed out here that a full resolution of the issues of GHG emissions from low carbon and 
renewable energy sources is out-with the scope of this dissertation. The point here is not to undertake an 
exhaustive analysis of the carbon footprint of electricity technologies per se, but rather to highlight the 
main trends and issues. 

81 Table 4.1 does highlight that even when biomass and solar photovoltaic are exempted there is still 
considerable variation in emissions according to different studies. There are a number of reasons for this, 
including site location, capacity factor, methodology (for example, examining one site or more, inclusion 
of more than one sub-category technology type). The important point of relevance to this chapter is that 
these particular RETs consistently exhibit low GHG emissions. 
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“For example, using short rotation coppice chips to generate electricity can 
produce 35 to 85 per cent less emissions than a combined cycle gas turbine power 
station per unit of energy delivered, whereas using straw can, in some cases, 
produce over 35 per cent more… Using formerly fallow land to grow bioenergy 
crops can reduce emission savings from a fuel by up to 10 per cent. Planting on 
permanent grassland is worse, with emissions savings significantly reduced and in 
some cases reversed.” (Environment Agency, 2011: iv). 

 

In other words, some but not all biomass RETs will produce GHG emissions that will 

overlap with fossil fuel emission characteristics (natural gas) or breach the 

100gCO₂eq/kWh limit. This will also be dependent on a wide range of issues including 

land-use, transport, fertiliser use (and type of agricultural practice) not to mention 

overall practice. However, if the greenhouse gas emissions for certain biomass 

RETs/fuels fall into the upper or even mid-range, designation as a renewable energy 

source viable for protection (subsidy) is clearly open to challenge. This is important 

because biomass is one of the few RETs that could play a critical role as a non-

intermittent, base-load renewable energy source (these issues will be examined further 

in chapter five).82 Further, the high GHG emissions profile of certain biomass 

technologies and fuel sources can lead to significant opposition particularly at the 

planning stage (see chapter eight, section 8.2). However, CCS is not just limited to fossil 

fuel technologies, but can also be utilised for biomass. 

 

Adoption of the life cycle assessment approach (LCA) also has interesting implications 

for CCS and nuclear power, the two low carbon energy sources. In the case of CCS, data 

at the lower end of the range, approximately around 100gCO₂eq/kWh or lower, 

represents stack emissions: 

 
“Carbon capture and storage (CCS) has higher lifecycle emissions [in general than 
renewable technologies]. Residual emissions from fuel combustion, assuming a 
90% capture rate, are around 50 and 110 g/kWh for gas and coal CCS respectively, 
with further potentially significant emissions from extraction and delivery of the 
fuel, related to energy use and related to its source.” (CCC, 2011: 47). 

 

                                                             
82 However, it is important to remember that despite uncertainty over the GHG emission characteristics of 
nuclear and certain biomass RETs, both are accepted sources of low carbon and renewable energy, 
respectively, in the UK and within the EU and abroad [National Archives, 1999].  
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The higher ranges for both technologies, shown by the use of lifecycle analysis, 

therefore represent more accurate accounts of GHG emissions, reducing the potential 

benefits of both coal and gas CCS in terms of GHG emission mitigation although both 

would still be lower than for unabated natural gas.83  An important point here, however, 

is that if fossil fuel use in the electricity sector continues to dominate or even account 

for a major proportion of electricity generation, as it historically and currently does, this 

would have the additional effect that CCS could play an important role in electricity 

sector decarbonisation by permitting traditional fossil fuels to continue to be utilised 

whilst acting as a low or, more realistically, lower carbon back up, particularly for the 

intermittent renewable technologies like wind, solar and marine power (this will also 

have implications for the GHG emissions profile of nuclear power, see below). With 

regard to solar photovoltaic, the highest figure (116gCO₂eq/kWh), representing a 

dominant technology (mono-crystalline silicon technology), is significantly less than for 

CCS when lifecycle emissions are taken into account and not all solar photovoltaic 

technologies exhibit such high GHG emission profiles. 

 

Table 4.1 also shows that, in general, nuclear power has a GHG emissions profile similar 

to that of the lowest emitting renewable energy technologies, for example wind (4-

30gCO₂eq/kWh), hydro (1-34gCO₂eq/kWh), marine (-25-50gCO₂eq/kWh) and certain 

biomass and solar photovoltaic technologies. This is in agreement with the acceptance 

of nuclear power as a low carbon energy source by the UK Government (BERR, 2008) 

and a number of prestigious organisations such as the World Energy Council [WEC] 

(2004), the Intergovernmental Panel on Climate Change [IPCC] (2007) and the UK 

Committee on Climate Change (2011). The status of nuclear power as a low carbon 

source of energy is important given that nuclear power, in comparison to CCS, is a 

mature technology with the potential to be currently deployed at scale in addition to 

acting as a significant source of low carbon base-load electricity generation.84 

                                                             
83 Given the current lack of commercial-scale experience, there still remains uncertainty over the actual 
life cycle GHG emissions associated with carbon capture and sequestration technology [POST, 2011]. 

84 There are, of course difficulties regarding the proposed new nuclear build in the UK but at the very 
least the potential is there unlike CCS which is still a relatively unproven (commercially) technology.  
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There are, however, apparently valid concerns over such a low greenhouse gas 

emissions profile for nuclear power. There are three main reasons for this: the quality 

(grade) of uranium reserves, uncertainty over decommissioning and long-term storage 

and the difficulties inherent in assessing the life cycle GHG emissions from nuclear 

power. In contrast to higher-grade uranium ores (with at least 0.1 percent uranium 

oxide, or yellowcake U₃O₈), lower-grade uranium ores (>0.01 percent U₃O₈) are at least 

ten times less concentrated than high-grade ores. This means that 

 

“… it takes 10tons of ore to produce 1 kg of yellowcake. Put another way, if 
uranium ore grade declines by a factor of ten, then energy inputs to mining and 
milling must increase by a factor of ten.” (Sovacool, 2008: 2945). 

 

Higher-grade ores also create significantly less radioactive waste to be transported and 

managed (Schrader-Frechette, 2009, 2011). In other words, use of lower-grade uranium 

ores can greatly skew estimates and increase the GHG emissions profile of nuclear 

power (Barnaby and Kemp, 2007; Lenzen, 2008; POST, 2011).85 The real issues, then, 

are as follows: what is the size and grade (quality) of global uranium reserves? How 

accessible are these reserves (in geographical, political, technical, economical terms)? 

Obviously, if higher-grade ore deposits are depleted or inaccessible for one or more of 

the above reasons, this will leave lower-grade uranium ore for nuclear power.86 

 

With regard to decommissioning and storage, there is little experience and therefore 

any data is mainly derived from estimates (Sovacool, 2008; Schrader-Frechette, 2011). 

                                                             
85 Focusing specifically on the UK, the government published ‘A White Paper on Nuclear Power’ in 2008 
(BERR, 2008) which stated that GHG emissions ranged from 7-22gCO₂eq/kWh. This document quoted 
figures from companies heavily involved in operating nuclear power stations such as Vattenfall 
(3.10gCO₂eq/kWh) and British Energy (5.05gCO₂eq/kWh). However, others have argued that these 
studies failed to take account of the impact of lower grade ore usage (in addition to failing to analyse all 
14 stages of the nuclear life cycle (Schrader-Frechette, 2011). 

86 However, if low carbon or renewable energy sources are utilised (at least on a greater scale than 
currently evidenced) throughout the nuclear life cycle, this would reduce the GHG emissions significantly. 
For example, although the study by Lenzen et al. (2008) included in Table 431 shows a higher GHG 
emissions profile (60-65gCO₂eq/kWh), a subsequent analysis showed that this high result was due 
primarily to a coal-dominated primary energy carrier mix (the study was carried out in Australia where 
around 92% of electricity generation is from coal). With an EU-mix, the overall GHG emissions profile was 
reduced to 33% (Beerten et al. 2009).  
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Critically, there are a number of difficulties in assessing the life cycle GHG emissions 

from nuclear power (although the same could be said for various other technologies). In 

addition to those already mentioned (uranium-ore quality, primary energy carrier, 

limited knowledge and experience in certain stages of the life cycle), there are also 

problems arising from the scope and methodologies utilised in the various studies, type 

of mining, enrichment process, reactor technology, site selection and operational 

lifetime. Additionally, nuclear power is also a highly emotive subject. As Sovacool (2008: 

2951) states:  

 
“Rather than detail the complexity and variation inherent in the greenhouse gas 
emissions associated with the nuclear lifecycle, most studies obscure it; especially 
those motivated on both sides of the nuclear debate attempting to make nuclear 
energy look cleaner or dirtier than it really is.” 

 

In other words, 

 
“… nuclear power has a long and complex lifecycle, with CO₂ emissions spread 
unevenly throughout… It is important to understand that the scale of the 
uncertainties is very large indeed, and that any claims that hard-and-fast figures 
for emissions over a nuclear plant’s lifetime can be calculated accurately should be 
treated with scepticism. Moreover, there are still too many unknowns, not least 
because no nuclear facility has ever been decommissioned.” (Porritt, 2012: 6). 

 

There is a need for a more accurate, accountable, comprehensive and transparent 

analysis of the lifecycle GHG emissions associated with nuclear power. This will improve 

the credibility of nuclear power as a low carbon source of energy, unless the emissions 

attributed to the use of lower-grade U₃O₈ or to the decommissioning and long-term 

storage substantially increase the GHG emissions profile of nuclear above what could be 

an acceptable level as some argue.    

 

The lack of a consensus of what constitutes a low carbon or renewable energy source in 

terms of GHG emissions, in particular the inclusion of certain biomass technologies 

within the definition of what is a source of renewable energy, thus appears to give 

credence to Helm and others claims that the definition of renewable energy is wrong, or 

at least ambiguous, on the one hand creating a very politically convenient flexibility but 

also creating uncertainty for investors (Helm, 2009) and that the distinction between 
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renewables and low carbon is thus artificial. But this ignores the fundamental 

distinction. Renewable energy sources are intrinsically renewing, dependent on the 

management of the resource in question, whereas low carbon sources such as nuclear 

power and carbon capture and storage (CCS) are not. Unlike biomass, which can be re-

grown, uranium and coal cannot. 

 

However, this in turn begs the question: Why is the renewing aspect of the definition of 

what constitutes a renewable energy source, particularly when biomass is included, so 

important? There appear to be two answers to this. Firstly, an energy source that 

intrinsically renews itself is infinite and thus more sustainable (including if the resource 

is properly managed in the case of biomass). It could also contribute significantly to 

issues of security of supply. Second, such a definition could be revised, varying what is 

inside (and outside) the protected domain. In other words, it has potentially significant 

political benefits in being ‘flexible’. Both answers have merit, with the former being 

more commendable. If the overarching aim is to meet the legally-binding climate change 

targets, however, then is the distinction between the energy source being renewing 

versus non-renewing more important than combating climate dangerous GHG 

emissions, at least in the short term? It is not unreasonable to assume that increased 

climate change would be a worse situation globally than the exploitation of nuclear 

power, until uranium ran out and one or more technologies became viable at the 

necessary scale and timeframe. At the very least, arguments for defining fast-breeder 

nuclear reactors out of the renewables definition begins to look weak (or political). 

Taking the argument about certain biomass energy sources, for example, such as landfill 

gas, sewage gas, municipal solid waste and so on, Cohen (1983) has argued that fast 

breeder reactors, fuelled by naturally-replenishing uranium extracted from seawater 

could supply energy for as long as energy sources traditionally defined as renewable (in 

other words, as long as the sun’s remaining expected lifespan of around five billion 

years). This would provide an example of a technology that fitted the definition of a 

renewable energy source.87 

                                                             
87 Although currently fast breeder nuclear power does not contribute to global energy at any scale, this is 
not the point: at the least this example shows how open to interpretation the definition of renewable 
energy currently is, and thus could either be included in the definition or the term renewable energy 



113 

 

 

 

The debate over the current definition of what constitutes a renewable energy source is 

not confined to whether or not to include nuclear power, or specifically fast breeder 

nuclear technology. During EU negotiations for what would become the RED (EU 

Directive 2009/28/EC), the then UK Government argued the case that carbon capture 

and sequestration, due to its potential role as a vital new low carbon technology of 

global significance on which the EU could lead the way, should be “taken into account in 

assessing Member States compliance with national renewable targets. Of course CCS is not 

a renewable, but this could be treated as a special case…” (Council of the European Union, 

2008: 3). This is highly significant, revealing how politically fluid the approach to the 

definition for renewable energy actually is, and how the target should be met. And this 

is not the first example of such an approach. In 2005, the then Parliamentary 

Undersecretary for the DTI, Lord Sainsbury of Turville, stated that nuclear power 

should be reclassified as a renewable energy source (Innovation, Universities, Science 

and Skills Committee [IUSS Committee, 2008a).88 Although nuclear power and CCS have 

not been defined as renewable in any sense, and are unlikely to be, the on-going 

electricity market reform (EMR) process appears to be attempting to side-step the issue 

by proposing long-term feed-in tariff contracts for difference (FIT CfD) for renewables, 

nuclear power and carbon capture and sequestration, with numerous and complex 

interactions likely to occur as a result. There is also the issue of whether or not the EU 

will adopt a post-2030 renewables-specific target, move towards a broader ‘low-carbon’ 

target. 

                                                                                                                                                                                              
changed (expanded) to renewable low carbon energy sources. However, this would not solve the 
problems associated with the inclusion of biomass within the definition. The other major technology 
category placed within the designation of low carbon energy sources, carbon capture and sequestration 
(CCS) on the other hand would not as coal is not renewing, at least on any satisfactory timescale of 
replenishment. These are not new arguments. Interestingly, the UN document ‘UN Glossary of 
Environment Statistics F-67E’ (UN, 1997: 51) containing the term ‘new and renewable energy sources’ 
included peat, oil shale and tar sands. A previous version of the document also included fast breeder 
nuclear reactors (Gritsevskyi, 2010). 

88 The actual quotation by Lord Sainsbury is as follows “… nuclear is a renewable source of energy, it 
clearly is so. I am very happy to agree that nuclear is a renewable source of energy.” (IUSS Committee, 
2008a: Ev190: 196). This was strongly rebutted by the committee in the same report ‘Renewable Energy 
Generation Technologies’: “We agree that nuclear energy is not a form of renewable energy, whatever its 
advantages in carbon-saving, as it relies on uranium as a fuel source.” (IUSS Committee, 2008b: 24). 
Former US President George W. Bush (senior) also referred to nuclear power as ‘renewable’ (IUSS 
Committee, 2008b). 
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4.3  Is renewable energy special? Renewable energy in the context 

  of the energy system 

By early 2010, more than 100 countries had some form of promotional support 

(subsidy) mechanism for renewable energy (mostly for renewable electricity 

generation, RES-E) commonly in association with some form of policy target 

(Renewable Energy Policy Network for the 21st Century [REN21], 2010).89 In addition, 

the share of renewables in global primary energy demand stands at almost 20 percent, 

with electricity generated from renewable energy sources at 19 percent (International 

Energy Association [IEA], 2010). It is clear, therefore, that renewable energy is playing 

an increasingly important role in the energy system, both at the national and global 

level. This can also be seen in the UK, particularly with regard to renewable electricity 

generation, which has increased from under 2 percent in 2001 to around 7 percent in 

2010 (Wood and Dow, 2010). This leads to the important issues of why it is that 

renewable energy, by being viewed as special or distinctive, is receiving so much policy 

and legislative attention.  

 

There are numerous reasons documented in the literature for why renewable energy 

could be regarded as ‘special’ in the sense that it confers alternative or additional 

benefits or helps to achieve goals or targets that would not be realised otherwise (either 

partially or at all). The previous section highlighted the case that by definition, 

renewable energy sources provide infinite sources of energy that is sustainable and that 

they should produce realistically very low levels of greenhouse gas emissions (in 

addition to other environmental pollutants). A number of important caveats are 

recognised, however, that reveal tensions in the definition and could weaken the 

argument that renewables should be viewed as special, especially in relation to low 

carbon technologies such as nuclear power: not all renewable energy sources are 

naturally (intrinsically) renewing, particularly if the exploitation of the resource is not 

managed properly (biomass). Other sources are not naturally renewing at all (some 

types of waste, including landfill gas and sewage gas), although there is logic in such 
                                                             
89 This compares with the figure of fifty-five countries with similar initiatives in early 2005. In 2011 there 
were 196 countries recognised. The number of countries with renewable energy policies in place is 
approximately equal between the so-called developed and developing world as of 2010 (REN21, 2010). 
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potential energy streams being utilised until the problems of resolving these waste 

issues are resolved. Importantly, there is evidence which shows that some renewable 

energy sources emit higher levels of greenhouse gases than non-renewable sources 

(biomass). An examination of the literature (cf. Boyle et al, 2003; Boyle, 2004; Elliott, 

2003, 2010; Komor, 2004), particularly UK Government documents from the 1990s 

onwards provide a fairly comprehensive list of reasons as to why renewable energy 

should be supported. The 2003, 2007 and 2011 ‘Energy White Papers’ and various 

energy policy documents include the following reasons: security of supply, fossil fuel 

depletion and energy dependency concerns (on fossil fuels such as oil and gas), energy 

diversity, encouraging domestic industries to develop capabilities for both domestic and 

export markets and environmental reasons (including putting the UK on a path to cut 

GHG emissions according to legally-binding targets and reducing other environmental 

pollutants) (cf. DECC, 2011a,b,c; DTI, 2006; National Archives, 1999, 2001). 

 

Leaving aside the issue of definition, can these reasons be used to argue for non-

renewable energy sources? Fossil fuels are not environmentally benign, accounting for 

significant emissions of not just GHG but also other environmental pollutants, increase 

problems of energy dependency as UK indigenous reserves decline, particularly in the 

North Sea or are constrained by environmental legislation. In addition, most fossil fuel 

technologies are mature and therefore offer no real options to encourage domestic 

industries to expand capabilities for domestic and export markets.90 The increase in 

gas-fired power stations has played an important role in increasing electricity 

generation diversity in the UK since the 1990s and will continue to do so with the 

planned increases in gas-fired generation over the next decade or so and has significant 
                                                             
90 Fossil fuels (and nuclear power) do, however, contribute to employment and economic performance. In 
the report ‘Powering the UK: The role of the power and gas sector in the wider economy’ (Ernst and Young, 
2011: 2), the energy sector is argued as one that “Punches above its weight… in terms of wider economic 
benefits.” Despite difficulties in separating the data depending on particular sectors, a number of broad 
trends can be observed: in 2010, the energy industries contribution to GDP (Gross Domestic Product) has 
declined since the 1980s (from 10.4% in 1983 to 3.4% in 2010). All energy sectors have shown significant 
decline. In 2010 the contribution to GDP by the oil and gas upstream industry was 1.8% (from nearly 7% 
in 1984), 1.3% for the electricity and gas sector (a decline of 50% from 1982). With regard to 
employment, all sectors showed a significant decline until 2008, primarily as a result of growth in the 
electricity sector (and gas) (173,000, +13.8% increase from 2009) (DECC, 2011d). However, the potential 
application of CCS could significantly alter the market options for coal and gas with regard to the 
economy. This would be dependent in part on the UK’s role in developing CCS.  



116 

 

 

 

benefits with regard to security of supply issues, although the high level of UK energy 

dependency on fossil fuels, particularly gas for electricity generation, in conjunction 

with reduced indigenous output could aggravate this issue (Wicks, 2009).91 Arguments 

have been proposed, however, that gas-fired power stations could be classified as a low 

or lower carbon energy source. The rationale for this is that gas produces 

approximately half the amount of GHG emissions of coal (IEA and the OECD, 1998). 

Although true in comparison to coal, on average current gas powered electricity 

generation has a carbon footprint of around 450-500gCO₂eq/kWh (POST, 2006, 2011). 

As Table 4.1 shows, this is a far higher carbon footprint than the 50gCO₂eq/kWh or less 

exhibited by the majority of RETs and nuclear power (although potential increases in 

GHG emissions from the utilisation of lower-grade uranium ore could affect the 

emissions profile of nuclear power), and is also higher than the current lifecycle 

emissions for CCS coal and gas. Critically, if the carbon footprint of certain biomass RETs 

do overlap with non-abated natural gas, then not only would this weaken the argument 

for such biomass receiving subsidy support but the potential climate change benefits of 

these technologies is also undermined. This does not, however, equate to an argument 

that gas would then become some form of low carbon energy source by default. 

 

In contrast, nuclear power is a low carbon energy source that has the ability to deploy at 

a scale large enough to play a significant role in UK electricity generation, not least in 

low carbon generation.92 Eight sites included in the updated (July 2011) ‘National Policy 

Statements for Energy’ document (DECC, 2011f) could result in around 10-16 GW of new 

installed nuclear capacity.93 Currently, around 10 GW of existing nuclear plant is to be 

                                                             
91 Security of supply is taken here as meaning not just a supply interruption of any fuel but also non-
physical impacts where supply disruption in global energy markets could also lead to higher energy 
prices. In electricity generation, around 75% is currently accounted for by fossil fuels with 16% from 
nuclear power (DECC, 2011e). 

92 In 2009 the UK set a non-legally binding target of 40% low carbon electricity by 2020 (incorporating 
the legally-binding UK RES-E target of 30%) (DECC, 2009). Nuclear power is expected (by the UK 
Government) to play a major role out with the contribution from renewable energy sources. The 
contribution provided from carbon capture and sequestration is currently less clear. 

93 This is based on only a single reactor built at each site. More than once reactor per site is feasible, and 
capacity would depend on the type of reactor technology chosen (DECC, 2011f).  
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decommissioned over the same time period, equivalent to the total current installed 

capacity in 2010 comprising 18 units at 10 sites (Department of Business, Enterprise 

and Regulatory Reform [BERR], 2008; DECC, 2011g; World Nuclear Association, 2011). 

Nuclear power could contribute in a credible manner to climate change goals and the 

2020 low carbon target, but the issue of waste disposal and decommissioning is a 

critical one, potentially countering the environmental (or rather, the climate change) 

benefits. Importantly, if there was no new nuclear build, this would be a loss to diversity 

overall. As with any energy source, there are potential benefits to security of supply. 

 

However, there are four main issues of concern over nuclear power’s role with regard to 

security of supply. Firstly, unless the proposed new build programme actually goes 

ahead, without extending the lifespan of certain existing nuclear power stations by 2025 

the UK will have no nuclear generation plant. Second, outages (planned and unplanned) 

occur regularly with significant corresponding losses in output94. Third, existing UK 

uranium and plutonium stocks are estimated to last for 60 years for three 1000 MW 

reactors (BERR, 2008). With regard to the last point, obviously 16,000 MW of nuclear 

power would not last so long. There is also the question of supply competition, with 

many countries planning to construct and operate new nuclear stations over the same 

period as the UK (thus requiring stocks of fuel in addition to construction materials and 

expertise). This last issue, it could be argued, will also impact on the proposed major 

expansion of renewable energy, in particular the dominant role of onshore and offshore 

wind to the target (see chapter six). 

 

This analysis shows that promoting renewable energy on the reasons discussed above is 

not as clear as generally assumed. Although a lot of the issues examined so far in this 

section indicate that renewable energy could be beneficial regarding these issues, this 

will depend on how renewable energy policy is implemented, especially over the next 

                                                             
94 For example, nuclear power output dropped by 10 percent between 2009 and 2010 due to 
maintenance outages alone corresponding to a drop of 7 TWh (from 69 TWh to 62 TWh) (DECC, 2011e). 
In 2008, nuclear power output fell to its lowest level since 1981 due to outages for repair and 
maintenance (DECC, 2010). Unplanned outages have also been disruptive to output: in June 2011 both 
units at Torness power station were closed after jellyfish were found in the seawater filters (Guardian, 
2011). 
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few years. This is a particularly salient point. It is important to recognise that as 

renewable deployment rates increase, the current energy system will have to be run 

differently primarily due to the issues of intermittency and back-up. This will impact on 

the electricity network infrastructure (amongst other reasons) as the locational ‘choice’ 

of an intermittent generator cannot be controlled: for example, wind generators are 

strongly influenced to locate to sites of highest resource potential (this is particularly 

the case in the UK, due in large part to the Renewables Obligation subsidy mechanism 

design, see below). There are, of course, more predictable intermittent generators (such 

as marine renewables) which will have a different impact on the energy system as well 

as non-intermittent renewable energy technologies such as hydropower and biomass 

(both of which have their own particular problems, see chapter five). 

 

But do these reasons actually mean that renewable energy is special? Helm (2009) 

argues against the need for what he calls a ‘special reserved quota’ for renewables. The 

main thrust of his arguments concerns the ‘infant industry’ argument. In addition to 

concerns over definition, Helm also argues that that the ‘infant industry’ argument 

(because renewables are new technologies subject to research and development (R&D) 

and costs will fall as deployment increases) is nonsense because there is little scope for 

R&D resulting in deployed assets by the 2020 EU target. This is misleading because the 

2020 target should be viewed as a stepping stone and not an end in itself. Also, R&D will 

play a particularly critical role in bringing certain RETs to full deployment potential 

around (or more likely) after 2020, such as marine technologies: but if such support in 

not forthcoming in the period up to 2020, there will be no results after the current 

target.  The problem then is the target, or rather, the failure to extend the target, not 

supporting renewable energy per se.95 

 

The previous discussion regarding whether or not renewable energy is special in the 

sense of deserving distinctive treatment (Helm’s ‘special reserved quota’), however, 

                                                             
95 Helm actually argued this point previously, as one of three options to improve the chances of the EU 
target being met: broaden the technology domain (by including nuclear power, CCS and coal-bed 
methane), widening the geography (to include generation from outside the EU) and increasing the time 
period of the target deadline (cf. Helm, 2008a: 2). 
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misses the principal point of the current state of the UK energy system. As discussed in 

greater detail in chapter three, the UK electricity system was privatised and liberalised. 

The electricity restructuring process commenced with the sale of state assets 

(privatisation) in 1990-91 with the incorporation of liberalisation and competition 

occurring throughout the 1990s and beyond to create a market for energy. This had and 

continues to have obvious implications for energy, including renewables. Instead of 

controlling the energy sector, the government has had to establish regulators and 

regulations to enforce a system of competition with the minimum of distortion, with 

energy produced and consumed in an economically efficient way. In other words, the 

UK has adopted a least-cost approach based on competitive and market-based policies. 

As Mitchell (2008: 7) puts it 

 

“The economic goal has de facto dominance… [there is] no choice other than by 
competitive means via the market… innovation should occur through competition, 
based on a choice by price within markets.” 

 

Such a system is designed to avoid ‘picking winners’. Choosing a particular technology or 

technologies would be considered as distorting (by intervening in) the market and 

therefore undermining the incentives of competition. This is critical in understanding 

the manner in which renewable energy has been supported in the UK from the 1990s 

onwards.  

 

The policy instruments to support renewable energy sources (both the Non-Fossil Fuel 

Obligation and the currently still operational Renewables Obligation) were designed 

and operated during the establishment of the privatisation and liberalisation of the 

energy market. This represented a fundamental shift in energy systems – from direct 

government ownership to a competitive, open market. As a result, governments lost 

some control and influence over the resultant competitive energy system to the market 

(Komor, 2004).96 For renewables, this meant the creation of a new environment in 

which each RET must compete not only with traditional fuels (coal, oil, gas) and nuclear 

                                                             
96 See Helm (2008b) for a more detailed explanation of the effects of liberalisation and privatisation on 
renewables and energy policy 
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power but also, with other renewables (as will be seen later, this was particularly the 

case for renewables under the UK’s RO mechanism). Renewable energy policy and the 

regulatory environment and mechanisms, however, have been designed as far as 

possible to conform to the principles and rules of the competitive market.  

 

Without the segmentation of the market offered by the promotional subsidy 

mechanism, it is clear that renewable electricity deployment would not have increased 

almost four-fold over the last few decades97. Renewable energy technologies as a whole 

are typically highly capital-intensive, requiring the capital upfront, and are more costly 

in comparison to conventional generation per kW of capacity installed, in particular coal 

and gas-fired generation. Despite being a generalisation, this holds true for renewable 

electricity generation as a whole, although it is important to stress that the renewables 

category is a heterogeneous one, including many different technologies and fuels with 

very different characteristics. Such characteristics include technological maturity, 

technology type, fuel source, in addition to non-technological reasons such as subsidy 

level (due to technology banding), planning legislative and electricity network issues, 

supply chain and raw materials.98 In a market-based energy system where cost-

reduction and economic efficiency are emphasised99, the result is that only the most 

technological mature technologies (those at or closer to market deployment) will 

evidence strong uptake by the market. This can be seen by the overwhelming 

dominance of onshore wind and certain biomass technologies in the UK, technologies 

that are already at the commercial deployment stage and not requiring significant R&D 

(although this is not the case currently for new biomass RETs and offshore wind to the 

extent of onshore wind power). In addition, marine RETs and solar photovoltaic are 

prime examples of RETs far from commercial deployment.  

                                                             
97 Without any form of subsidy support mechanism for renewables, this would result primarily in the 
increased deployment of gas (or coal, if not for environmental constraints such as climate change 
legislation and the LCPD) as both exhibit low capital and operational and maintenance (O&M) costs.  

98 See chapter five for a more detailed examination of the technological issues regarding renewable 
energy sources. 

99 Since the introduction of privatisation and liberalisation in the energy market, the goals of UK energy 
policy have continuously contained the aim “to promote competitive markets in the UK and beyond” (DECC, 
2011a: 11). 
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Unlike modern electricity generation from conventional and nuclear sources which 

benefitted from either being developed (nuclear) and deployed (nuclear, conventional 

thermal), contemporary renewable energy progress commenced at the same time as the 

market was established. After decades of a state-owned and state-managed electricity 

(and energy) system, the comparably short duration of the privatised and liberalised 

energy market can be viewed as an experiment still in process. Therefore, the 

segmentation of the market to protect, or more accurately promote renewables first 

under the NFFO and now under the RO, whether or not the reasons examined in this 

chapter is accepted, can not really be construed as special in any significant meaning of 

the word. 

 

Returning to the issue of subsidies, in 2010 global fossil fuel subsidies amounted to 

$406 billion, an increase of $110 billion more than in 2009 (IEA, 2011). Both mature 

technologies, approximately 50 percent supported the oil industry whilst almost 25 

percent went to natural gas (Business Green, 2011). In comparison, renewables 

received $66 billion (IEA, 2011). Such statistics are commonly used to show that fossil 

fuels are treated more favourably than renewables, or at the least, that subsidies are a 

common option globally. However, it is important not to confuse commodity and wire 

subsidies: a coal-fired power station cannot receive a ROC certificate (commodity 

subsidy) whereas most generators can use the transmission network infrastructure 

(wire subsidy). Renewable deployment (and output) is also currently significantly lower 

than that seen for fossil fuels. 
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Chapter Five 
Attributes and options for renewable electricity technologies 
 
 
 
5.1 Introduction 

The previous chapter set out the justification for government support for large-scale 

renewable electricity technologies and argued that government adopted a politically 

convenient definition of renewable energy. This enabled the inclusion of technologies 

that are not necessarily renewable (waste, certain biomass) or emit low GHG emissions 

(certain biomass). This chapter sets out the reasons underlying the importance of the 

UK electricity sector with regard to meeting renewable energy and climate change 

objectives. It also examines the role of large-scale renewable electricity technology 

deployment to decarbonising the sector. With the need to replace around a quarter of 

UK power generation capacity over the next decade and the EMR reforms to provide 

broader support for renewable and low carbon electricity technologies, it is also 

relevant to investigate the role of low carbon energy with a particular focus on nuclear 

power. 

 

Section 5.2 examines the role of large-scale renewable electricity technology 

deployment to decarbonising the sector. Section 5.3 analyses the resource potential of 

the various sources of renewable electricity. This will be carried out in order to 

understand the potential resource available and the implications this will have for 

specific renewable energy technologies. Building on the previous sections in this 

chapter, section 5.4 investigates and compare the key economic, technical, social and 

environmental attributes of the various renewable energy technologies in order to 

develop an understanding of the options available for the various RETs particularly with 

regard to their deployment within the overall electricity system. 
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5.2 The electricity sector and decarbonisation 

The electricity sector in the UK is the single largest contributor to greenhouse gas 

emissions (GHG), contributing around 28 percent of total emissions in 2008 (Committee 

on Climate Change [CCC], 2010). Critically, on-going decarbonisation of the electricity 

sector is viewed as essential to meeting the UK’s climate objectives as set out in the 

domestic Climate Change Acts: an 80 percent reduction in greenhouse gas emissions 

from 1990 levels by 2050 (for the UK overall, and at the national administrative level 

for Scotland), with diverging interim targets for 2020 (34 percent and 42 percent 

reductions on 1990 levels for the UK and Scotland respectively) (National Archives, 

2008, 2009). Beyond 2020, the UK recently legislated to cut GHG emissions by 50 

percent during the fourth carbon budget period (2023 to 2027) (Department of Energy 

and Climate Change [DECC], 2011a).100 Climate change targets are also driven at the 

international level via the Kyoto Protocol and the EU’s integrated energy and climate 

change 20-20-20 programme. 

 

Two European Union directives (2001/77/EC and 2009/28/EC) have also set 

renewable energy specific targets for Member States, the former directive focusing 

explicitly on promoting renewable electricity (RES-E) generation whilst the latter 

directive set an overall legally-binding renewable energy target of 15 percent of total 

energy to be generated from renewable energy sources for the UK (incorporating the 

electricity, heat and cool and transport sectors) (Eur-Lex, 2001; Europa, 2009). This has 

been translated into a renewable electricity sectoral target of around 30 percent for the 

UK by 2020 (DECC, 2009a) whilst the Scottish Executive has recently increased the level 

of ambition for 2020 to a 100 percent equivalent RES-E target for Scotland (Scottish 

Government, 2011b) (for further information on renewable energy targets see chapter 

six, section 6.3). 

 

                                                             

100 Although the UK Government agreed with the Committee on Climate Change’s recommendation to cut 
GHG emissions by 50 percent for the fourth carbon budget, the UK Government ignored the committee’s 
proposed indicative 2030 target of a 60 percent reduction in GHG emissions (CCC, 2011a; DECC, 2011a). 
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The electricity (or power) sector and not the heating and cooling or transport sectors 

has both historically and currently continue to remain the focus of much of policy and 

legislative effort in the UK.101 In addition, these different targets, on the one hand for 

climate change and renewable electricity on the other, reveal that decarbonisation of 

the electricity sector is not assumed to be wholly dependent on renewable technologies. 

Under the overarching challenge of climate change, both renewable and low carbon 

energy technologies are expected to play a significant role in reducing climate-damaging 

greenhouse gas emissions. This is also reflected in the UK Government’s non-legally 

binding low carbon electricity generation target of 40 percent by 2020, which 

incorporates the also non-legally binding RES-E sectoral target and government 

ambitions to encourage a programme of new nuclear build and develop four CCS plants 

at the demonstration level (DECC, 2009a). The key difference between renewable and 

low carbon electricity technologies in this respect is the fact that only renewable energy 

has a legally-binding target for 2020 established by the 2009 EU Directive, of which the 

RES-E sector is expected to play a critical role (DECC, 2009a). In contrast, the various 

climate change legislation do not set targets (volume or otherwise) for low carbon or 

renewable energy, and the UK low carbon target is merely anticipatory. 

 

With specific regard to the renewable electricity sectoral target, this requires that 

renewable electricity supply technologies (RETs) be adopted. Renewable electricity 

supply technologies represent a distinctly heterogeneous category, incorporating many 

different technologies and fuels with very different attributes. In particular, a number of 

renewable electricity technologies do not conform to the characteristics of the current 

energy system (Woodman, 2008). The intermittent generators, including onshore and 

offshore wind, wave, tidal stream and solar PV are notable examples. Importantly, the 

level of conformity varies depending on the technology in question. It is necessary to 

analyse the differing economic, technical, social and environmental attributes of the 

                                                             
101 This can be seen by the fact that there has been very little progress in the non-electricity sectors in 
comparison to renewable electricity generation (RES-E): in 2010, out of a total renewable generation 
output of 54 TWh, both the heating and cooling and transport sectors accounted for around 25 percent of 
total output each. In contrast, RES-E accounted for almost half of total renewable output in the UK (DECC, 
2011c). Further, the Renewables Heat Incentive (RHI), a specific subsidy mechanism for the heat sector, 
was only implemented as recently as 2011 with full implementation scheduled for 2012 (DECC, 2011d). 
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various RETs, and how these technologies will sit within the wider context of the 

electricity and energy sector, particularly in terms of degree of intermittency of power 

supply and back-up requirements as well as flexibility of operation. There is also the 

issue of resource potential or ‘renewable energy reserves’ to be taken into consideration. 

Importantly, they are at different levels of research, development and deployment, and 

such differing levels of maturity and market penetration will play an important role in 

whether and when they will evidence strong uptake by the market. 

 

Decarbonisation of the electricity sector has a critical role with regard to transforming 

the UK into a low-carbon economy and to successfully meet the climate change targets 

for 2020 and 2050 enshrined in the domestic climate change legislation for the UK 

overall and, separately for Scotland (CCC, 2010a; Department of Energy and Climate 

Change [DECC], 2011e, f; National Archives, 2008, 2009; Scottish Government, 2011a). 

The electricity sector is also viewed as vital in order for the UK to meet the legally-

binding EU renewable energy target of 15 per cent by 2020. This can be seen by a 

breakdown of the contributions of the three sectors towards the overall renewables 

target. Electricity generated from renewable energy sources (RES-E) is anticipated to 

provide the greatest share, 49 per cent (equating to the RES-E sectoral target of 30 per 

cent of total electricity generation) in contrast to 21 per cent and 30 per cent from the 

renewable transport and heat sectors, respectively (DECC, 2009b). Above and beyond 

these targets, however, electricity plays a fundamental role in virtually every aspect of 

modern life and is viewed as essential to economic and social wellbeing. As Laing and 

Grubb (2010: 2) put it 

 
“[Electricity] is a high-grade energy carrier that is used in buildings, across 
industry and increasingly in transportation. It is both a final good that consumers 
buy – to power light bulbs, computers, fridges etc – and also an input into almost 
all industrial process.” 

  

This has led the Committee on Climate Change (CCC), the government’s principal 

independent advisory body on climate change established by the Climate Change Act 

2008, to recommend average emissions limits in power generation on the trajectory 

towards the 2050 climate change target: current average emissions of around 
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500gCO₂/kWh should fall to approximately 300gCO₂/kWh in 2020 and 50gCO₂/kWh by 

2030 (CCC, 2010).102 In other words, the electricity sector should undergo early and 

radical decarbonisation. An examination of historical power sector emission trends 

serves to underline the radical nature of these targets in order to achieve such 

substantial sectoral decarbonisation. During the last two decades (from 1990 to 2010) 

power sector emissions have fallen below the current 500gCO₂/kWh on only two 

separate occasions, with the reasons for both due to extraneous reasons.103 Between 

1990 and 1998, emissions fell from around 770 to 490gCO₂/kWh, primarily due to the 

restructuring of the UK electricity sector via privatisation and liberalisation resulting in 

investment of around 10GW of new gas-fired capacity which substituted for coal-fired 

generation (the so-called ‘dash-for-gas’ period) (Helm, 2003). This was despite 

electricity demand growth averaging around 1.5 percent annually (CCC, 2010). The 

emissions intensity of power generation fell from 543 to 496gCO₂/kWh between 2007 

and 2010, primarily due to the effects of the recent global economic crisis and the 

recession in the UK and abroad (CCC, 2010). In particular, between 2008 and 2009, the 

emissions intensity fell by 13 percent due to a reduction in demand due to the above 

reasons and an increase in nuclear generation as two plants returned to operation after 

outages in 2008, a reduction in coal-fired generation due to low gas prices and a small 

increase in renewable generation (CCC, 2011b). However, although the emissions 

intensity of power generation has fluctuated on a year-by-year basis since 1999, the 

emissions intensity has remained more-or-less constant at around 500gCO₂/kWh. 

Therefore, although the CCC (2011a: 19) is basically correct when it stated that “The 

underlying trend is a move to a less carbon-intensive mix” this is only strictly accurate 

                                                             
102 There appears to be tension between the CCC recommendation that the electricity sector be almost 
entirely decarbonised to 50gCO₂/kWh by 2030 (the central objective behind the rejected 60% cut in GHG 
emissions target for 2030 (see footnote 1). The Electricity Market Reform (EMR) document models a 
100gCO₂/kWh by 2030 scenario (DECC, 2011f). The tension is due in large part to difference in the 
terminology used by the government: in contrast to the CCC’s recommendation that the sector be ‘almost 
entirely decarbonised’ (CCC, 2011a, b), DECC has stated that ‘To put us on this latter trajectory [80 per 
cent carbon reduction target by 2050], power sector emissions need to be largely decarbonised by the 
2030s.’ (DECC, 2011f: 5). These statements are completely different, particularly since the DECC position 
would lead to a higher UK electricity sector (and overall) emissions profile that the CCC is stating would 
be incompatible with the UK’s carbon budgets. 

103 Extraneous reasons are defined here as due to factors other than those due to efforts to deal with 
climate change (incorporating measures to promote renewable energy and energy efficiency). 
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when looking at the trends from 1990 with the overall decline due to extraneous 

reasons. Importantly, the period from 1999 onwards, also coincides with the 

commencement of the majority of the UK Government’s policy and legislative initiatives 

to address the issue of climate change (Freight Transport Association Limited, 2011).104 

 

Although tensions remain between the government and the CCC regarding the desired 

level of emission intensity by 2030 (and beyond), consensus remains that the electricity 

sector faces significant cuts. One of the reasons why the power sector has been and 

continues to remain so significant is that it has consistently contributed the single 

largest source of emissions of any sector.105 In 2010, total greenhouse gas emissions 

from all sectors equated to 590MtCO₂e, with the electricity sector accounting for 

156MtCO₂e, or 27 per cent of the total (DECC, 2011e).106 An examination of electricity 

sectoral GHG emissions reveals a similar trend to changes in the emission intensity of 

power generation. Although the overall trend between 1990 and 2010 has been one of 

decreasing emissions, from 204 to 156MtCO₂e, the sector has exhibited volatility for a 

number of reasons outlined above (CCC, 2011a). Electricity sector emissions fell by 28 

per cent from 1990 to 1999 (from 204 to 147MtCO₂e). Between 2000 and 2008, 

however, emissions exhibited an overall increase underlined at times by annual 

volatility (from 159 to 172MtCO₂e) before dropping significantly between 2008 and 

                                                             
104 Such initiatives include the adoption of the Kyoto Protocol and the first UK climate change targets 
(1997), the commencement of the UK climate change programme (2000), the Stern Review (2006), the 
launch of the Department of Energy and Climate Change [DECC] and the formation of the CCC (2008), the 
UK and Scottish Climate Change Acts (2008, 2009), the Renewable Energy Strategy (2008, 2009), the Low 
Carbon Transition Plan (2009), the Carbon Plan and Renewable Energy Roadmap (2011) and the 
Electricity Market Reform White Paper (2011). 

105 This parallels the increasing importance of electricity in the UK energy system. Between 1971 and 
2007 electricity increased by 275%. This increased the sectors share of total final energy use from 8 %to 
17% over the same period (Laing and Grubb, 2010). 

106 The basket of greenhouse gases covered by the Kyoto Protocol and domestic UK Climate Change 
legislation (carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons and sulphur 
hexafluoride) are weighted by each gases individual global warming potential (GWP) in order to facilitate 
consistency in total GHG emissions reporting. The GWP for each gas is defined as its warming influence 
relative to that of carbon dioxide, with GHG emissions represented in carbon dioxide equivalent units 
(CO₂e) (DECC, 2011b). The baseline year of 1990 used in the domestic Climate Change Acts equates to 
778MtCO₂e and the 2020 (34% for the UK) and 2050 (80%) reduction in GHG emissions equates to 
513MtCO₂e and 155MtCO₂e, respectively [DECC, 2011b]. 
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2009. Emissions fell by 13 per cent primarily (from 172 to 151MtCO₂e) as a result of the 

recession. As the UK temporarily moved out of recession in 2010, sectoral emissions 

increased slightly (from 151 to 156MtCO₂e). The current level of emissions from the 

electricity sector equates to the total level of greenhouse gas emissions permitted for all 

sectors across the UK under the 2050 targets for the domestic Climate Change Acts. 

 

Despite being the single largest sectoral source of greenhouse emissions in the UK, 

electricity sector demand is expected to increase. The document ‘2050 Pathways 

Analysis’ (DECC, 2010a), which presented a framework through which to consider some 

of the choices and trade-offs required over the next four decades in the transition to a 

low carbon economy, included a number of illustrative pathways to achieving an 80 

percent emissions target while ensuring that energy supply would still meet demand. 

With the exception of the ‘reference case’ (which assumed little or no attempt to 

decarbonise and exhibited only a small increase in electricity demand), the remaining 

six pathways exhibited significant increases in demand for electricity. These ranged in 

increases from the current level of around 380TWh/year up to over 1,000TWh/year. 

The conclusion from the report, which the CCC (2010) agreed with in the ‘Fourth Carbon 

Budget’ report, was that decarbonisation of the electricity sector may result in the 

requirement that supply may need to double by 2050. The reason for this increase, 

derived from the Pathways Analysis, is that  

 

“[A] substantial level of electrification of heating, transport and industry is needed. 
Decarbonised electricity can be used for a wide range of activities… and can be 
scaled up to meet demand. It therefore makes sense to switch to electricity where 
this is practical, despite the major technological and engineering challenges 
involved…. [Although other non-electrified technologies may be required for 
heating and transport]… some degree of electrification appears to be critical – 
analysis of alternative pathways shows that failing to at least partially electrify 
heating and transport would make the emissions target undeliverable unless very 
substantial demand reductions and technological breakthroughs were made and 
extremely large amounts of bioenergy were available.” (DECC, 2010a: 34). 

 

It should be noted, however, that the anticipated increases in both electricity demand 

and the contributions from the heating and transport sectors are only assumptions. 

Critically, although this shows that DECC is aware of the technological and engineering 
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problems to large-scale RET deployment, this quotation appears to ignore the majority 

of the internal and external failures or barriers to such deployment in the UK. This is 

despite the fact that these have been shown to have a major negative impact on 

renewable deployment (this will be examined in more detail in Part III of the thesis). 

Importantly, these assumptions are also apparently based on another assumption, 

namely that the  

 
“[T]he costs of reducing carbon-intensity in the power sector are generally lower 
than doing so in other sectors, and the least-cost path towards 2050 is therefore 
likely to involve early decarbonisation of electricity supply” (CCC, 2010; 243).  

 

In conjunction with the recommended cuts in emissions from the sector, the UK 

electricity sector is also undergoing considerable change that will have significant 

implications for the future. These changes include the projected loss of a sizeable 

proportion of the UK’s current electricity generation capacity (the ‘generation gap’) and 

the on-going process of electricity market reform (EMR). There is also the planned 

growth in renewable and low carbon electricity supply technologies, with a new nuclear 

programme and the proposal to construct carbon capture and sequestration (CCS) 

power stations. Regarding renewable energy technologies (RETs), the vast majority of 

capacity, currently and proposed for at least the near future, are expected to come from 

intermittent wind power sources (including both onshore and offshore wind). 

 

In particular, the on-going Electricity Market Reform (EMR) is the most major reform of 

the electricity market since the restructuring and privatisation of the sector that 

commenced with the enactment of the 1989 Electricity Act (Platchkov et al., 2011). 

Although the EMR will be examined in more detail in Chapter Seven, it is worth 

highlighting the key objectives underlying the reform process. As set out in the 2011 

EMR White Paper ‘Planning our electric future: a White Paper for secure, affordable and 

low-carbon electricity’ (DECC, 2011f: 16) the primary objectives are to: 

 
“[1] ensure the future security of electricity supplies; [2] drive the decarbonisation 
of our electricity generation; and [3] minimise costs to the consumer… The key to 
achieving these objectives will be to bring forward the level of investment needed in 
new low-carbon generation capacity and infrastructure at the required pace.” 
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In other words, the EMR will be the main tool going forward to drive the 

decarbonisation of the electricity sector in order to meet the domestic climate change 

targets whilst maintaining security of supply. The package of policies proposed by the 

EMR, including a Feed-in Tariff Contract for Difference (CfD FIT) to financially support 

(subsidise) large-scale low carbon electricity technologies including renewables, 

nuclear and CCS, a Carbon Price Support (CPS) to underpin the current low carbon price 

via the EU ETS and address carbon price volatility, an Emissions Performance Standard 

(to limit the emissions intensity of electricity generation) and a targeted Capacity 

Mechanism (CM) to ensure security of supply are therefore designed with the objectives 

of the process in mind.  

 

Currently around 75 percent of total electricity generation in the UK is generated from 

fossil fuel sources (coal, oil and gas). However, over the next decade “[The UK] will lose 

around a quarter (around 20GW) of our existing generation capacity as old or more 

polluting plant close.” (DECC, 2011f: 5).107 Whether or not these closures results in a 

security of supply (capacity) gap, the scale of the closures forecast represents both a 

looming generation gap and an opportunity to fill the gap with renewable and low 

carbon generation technologies such as nuclear power and CCS in order to meet both 

the renewable and climate change targets for 2020 and to put the UK on a trajectory to 

meet the 2050 target of reducing GHG emissions by at least 80 percent from 1990 

levels. Conversely, it also opens up the possibility for the construction of additional 

conventional generation. This will most likely be composed of gas-fired capacity. As 

with transmission and distribution infrastructure, electricity generation assets are 

typically capital intensive and long-lived, with the latter ranging from 20 to 50 years or 

more (Helm, 2003). Therefore, the type of technologies deployed now will have far-

reaching consequences for the ability to decarbonise the UK electricity sector by 2030 

and beyond: constructing more gas-fired capacity could lock-in the sector to a higher 

level of GHG emissions than recommended by the CCC. The key difference between 

                                                             
107 Of the plant expected to close over the next 10 years, old plant refers primarily to nuclear power 
stations as they reach the end of their expected lifespan. Polluting plant refers to coal-fired capacity that 
will be required to close under the EU Large Combustion Plant Directive (LCPD) (Department for 
Environment Food and Rural Affairs, 2012). 
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renewable and low carbon energy sources in this respect, however, is the ability to 

deploy by 2020,  the target deadline (which is the focus of this dissertation): there are 

valid concerns concerning both the government programme for new nuclear build and 

the demonstrative role of CCS by 2020.108 In addition, any new nuclear plant 

constructed and operational by 2020 will have to be seen in the context of the 

scheduled closures of existing nuclear plant during the same period.109 The limited 

ability of new nuclear and CCS capacity to meet this gap until post-2020 then leaves the 

generation gap potentially open to renewable energy technologies. The issue then 

becomes one not of technology ‘choice’ but rather whether or not renewable 

technologies will be able to do so or will other non-renewable and high carbon 

technologies deploy instead? This is significant for two major reasons: the sheer cost in 

terms of investment and the technical attributes of renewables, particularly given the 

current dominant role of intermittent, non-flexible wind power in the UK electricity 

                                                             
108 Of the proposed 16GW of new nuclear build in the UK, plans for 6GW of new plant proposed at Wylfa 
and Oldbury have been withdrawn on 29 March 2012 by Horizon Nuclear Power (a joint venture between 
RWE and E.ON) (Guardian, 2011a) and there are delays in preparatory work at the proposed 3.2GW 
Hinkley Point site owned by EDF (Guardian, 2011b). Significantly, the chief executive of Centrica, which 
has a 20% stake in EDF’s UK nuclear plans stated on 11 May 2012 that “The investment case for nuclear 
has yet to be proven.” (Daily Telegraph, 2012: 1) whilst Vincent de Rivaz, CEO for EDF highlighted that “In 
particular, it is absolutely critical that the government continues to make steady, tangible progress with its 
Electricity Market Reform plans.” (EDF, 2012: 4). Regarding CCS, the 4 year competition launched by the 
then Department for Business, Enterprise and Regulatory Reform (BERR) for industry to design, 
construct and operate the UK’s first commercial-scale CCS demonstration project by 2014 with 
government funding of £1 billion was cancelled on 19 October 2011. The National Audit Office (NAO, 
2012: 1) report ‘Carbon capture and storage: lessons from the competition for the first UK demonstration’ 
provided a damning account of the UK governments role in the project: “Four years down the road, 
commercial scale carbon capture and storage technology has still to be developed… DECC, and its 
predecessor [BERR], took too long to get to grips with the significant technical, commercial and regulatory 
risks involved… Lack of clarity over government finance for the project delayed the early stages of the 
competition… [and] there was no agreement on government funding for operational costs.” 

109 The planned lifetime of the UK’s operating nuclear power stations are: Wylfa (2012), Hinkley Point B 
and Hunterston B (2016), Dungeness B (2018), Hartlepool and Heysham 1 (2019), Heysham 2 and 
Torness (2023) and Sizewell B (2035) (Nuclear Industry Association, 2012) (Nuclear Industry 
Association, 2012). Interestingly, Charles Henry, the Minister of State for the Department of Energy and 
Climate Change indicated in February 2012 that existing nuclear reactors were likely to have their 
operational life-spans extended beyond the mid-2020s in order to tackle the looming electricity 
generation gap, thus providing more time for new low carbon capacity to be built and to address the fact 
that “The UK’s deregulated electricity market had not produced enough capacity to replace the fossil fuel 
and nuclear plants that are due to be switched off over the next 10 years.” (BusinessGreen, 2012: 1). 
Although strongly against new nuclear build in Scotland, the current Scottish National Party (SNP) led 
administration signalled as far back as July 2011 that the SNP were perfectly open to extending the life of 
Scotland’s two nuclear plants at Torness and Hunterston (Guardian, 2011c).  
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generation landscape up to 2020 and beyond (the technical attributes of electricity 

supply technologies will be looked at in more detail in section 5.4). 

 

 

5.3 Renewable energy reserves 

From the previous section, it is clear that the UK Government has focused on the 

electricity sector with respect to the twin objectives of the overarching climate change 

target for 2050 under the domestic climate change legislation and the EU renewable 

energy target for 2020. With regard to the 2020 target, electricity generated from 

renewable sources (RES-E) will shoulder the burden of total renewable generation: 50 

percent, equivalent to 30 percent of total UK electricity generation or approximately 

114 TWh (DECC, 2009b). Significantly, there is no guarantee that the amount required 

by the renewable electricity sector will remain at this level as the UK progresses 

towards the 2020 target.110 This means that an understanding of the potential resource 

base is therefore critically important for a number of reasons, including renewable-

specific targets that are both ambitious and demanding within a short timetable and the 

relatively limited experience in developing and deploying renewable energy 

technologies to utilise such resources, especially in the case of offshore RETs. Such an 

understanding of the type, availability and requirements of the energy resource in 

question has implications for policy decisions regarding which technologies could be 

the most suitable or capable of delivering the targets. There are also the associated 

benefits that could be accrued from gauging the full scale of the opportunity the 

successful adoption of those technologies can entail.  

 

Two of the major differences between renewable and non-renewable energy sources 

(including uranium as well as oil, gas and coal) concern the issues of resource 

geographical distribution and resource potential or ‘reserves’. At the global level, 

renewable energy resources are significantly more wide-spread geographically in 

comparison to non-renewable sources: virtually every nation has at least some reserves 

                                                             
110 The share of the burden could increase depending on future electricity demand in addition to energy 
efficiency measures and the level of success in developing the renewable heat and transport sectors. 
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of renewable energy resource, whether terrestrial, marine or a combination of the two 

(Renewable Energy Policy Network for the 21st Century [REN21], 2011). This is in stark 

contrast to non-renewable sources of energy.111 Such reserves, by the very definition of 

what constitutes a source of renewable energy, are also temporally infinite. Whereas 

fossil fuel and nuclear energy sources are non-renewable and finite (at least over any 

meaningful time-scale) and therefore will eventually run out at some point in time, 

renewable reserves are naturally and constantly replenishing.112 As Chapter Three 

showed, however, renewable energy sources can be broadly categorised into two main 

groups based on whether the resource can return to previous levels by natural 

processes of replenishment or growth after exploitation (such as solar, wind, marine 

and hydropower) or where the rate of replenishment and exploitation requires 

appropriate management (such as biomass, and including hydropower under certain 

conditions such as excessive water exploitation for other purposes or periods of 

drought).113 

 

Table 5.1 (page 140) provides an assessment and analysis of the extent of wind power, 

marine power, hydropower, solar photovoltaic and geothermal renewable energy 

resource availability in the UK from four major studies. When determining resource 

availability, however, it is important to clarify two major points: the use of definitions 

and methodologies in the four studies shown in Table 5.1, and what will be termed here 

‘the hierarchy of final resource utility’. Regarding the first point, although these studies 

were chosen due to the reason that they examined the practical resource of the major 

renewable energy sources, the precise definition differs between the reports. In general, 

“the practical resource is what is available after consideration of external physical  

                                                             
111 However, estimates of shale gas in the UK (and abroad) could force a revision of this, in addition to the 
recent increases in the number of licenses offered for conventional oil and gas exploration and 
exploitation. 

112 This could mean that the resource is physically depleted. The more likely scenario, at least for the 
foreseeable future, is that the resource could be depleted to such an extent that economic or technical 
issues limit resource availability or access to the resource. 

113 Although non-waste biomass sources could replenish naturally and thus return to pre-exploitation 
levels, the issue becomes one of time management in order for the resource to be available constantly 
given the growth rates required for many sources of non-waste biomass.  
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Table 5.1 Estimates of terrestrial and marine renewable energy resource availability in the United Kingdom         

               
   

Wind power 

 

Marine power 

 

Hydropower 

 

Other 

Source 
  

Onshore wind Offshore wind 
  

Tidal stream Tidal range Wave 
  

Hydro 
reservoir 

Hydro 
run-of-

river   
Solar PV 

Geotherma
l 

               Committee on 
Climate Change 
[CCC, 2010] 

 

74 TWh/y ¹ 405 TWh/y 

 

116 TWh/y ³ 44 TWh/y 40-50 TWh/y 

 

 

 

140 
TWh/y 

35 TWh/y 

               2050 Pathways 
Analysis [DECC, 
2010a] 

 

74 TWh/y ¹ 430 TWh/y ² 
 

>197 TWh/y ³ 50 TWh/y 50 TWh/y 
 

12 TWh/yr ⁴ 
 

140 
TWh/y⁵ 

35 TWh/y 

   
            

Arup [Arup, 2011] 

 

57 TWh/y⁶ 181 TWh/y⁷ 
 

18 TWh/y ₋  50 TWh/y 
 

~ 5 TWh/y ⁸ 
 

20 
TWh/y ⁹ 

32 TWh/y 

   
            

Offshore 
Valuation Group 
[OVG, 2010] 

 

₋  1,939 TWh/y ¹⁰ 
 

116 TWh/y 36 TWh/y 40 TWh/y 
 

 
 

₋  ₋  

                              

Note: All estimates of resource availability are based on 'practical' resource availability for the UK (see text for definition). Estimates also include existing generation output as of 2010. All 
offshore wind studies include data from fixed offshore wind turbines only. ¹ Based on 28 GW installed capacity with 30% load factor. ² Based on 140 GW installed capacity with load factor 
assumed at 35%. ³ Due to ongoing controversy around the correct physical method for estimating tidal stream resource the range of estimates varies from 18-197 TWh per year. ⁴ Based on 4 
GW installed capacity with load factor of 38%. ⁵ Based on maximum possible deployment of solar PV panels installed on south facing roofs and facades only. ⁶ Only looks at onshore wind 
with an overall installed capacity greater than 5 MW. Based on 23 GW installed capacity with load factor of 28%.   ⁷ Based on  51 GW installed capacity with a load factor of 40%. ⁸ Untapped 
hydro resource (at greater than 5 MW installed capacity) estimated to be nearly fully utilised (+122 GWh or 38 MW installed capacity with a load factor of 36.7%. ⁹ Based only on solar PV 
with an installed capacity greater than 5 MW. ¹⁰ Includes estimates of floating offshore wind technology. 
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constraints, therefore excluding areas due to conflicting uses” (Offshore Valuation Group 

[OVG], 2010: 32). This should include, for example, environmental, ecological or 

heritage-sensitive sites and competing uses (such as shipping, fishing, oil and gas 

extraction and existing renewable leases)114. The definition of what constitutes a 

practical resource can vary, then, depending on the level of analysis (such as how many 

constraints of this type are incorporated). It can also differ due to inclusion of issues of 

economics, an important factor given the currently higher costs of renewable energy 

technologies in comparison to conventional generation technology and the relative 

immaturity of the majority of RETs resulting in a lack of experience particularly in terms 

of deployment and operation and maintenance issues, and the timeframe for 

exploitation: in contrast to the other reports that examine resource availability up to 

2050, the Arup (2011) report set a 2030 deadline. Different methodologies can also 

result in contrasting estimates. For example, some reports omit certain renewable 

energy technologies whilst others include additional ones. 

 

Crucially, there are a number of barriers or constraints that act on actual real-world 

deployment rates with the result that it is highly unlikely that estimates of practical 

resource availability will translate into the level for installed capacity and generation 

output put forward in the reports analysed here. The conventional method of 

determining the potential renewable resource base by analysing the theoretical, 

technical, practical and economic resource ‘reserve’ is only the first step in determining 

the final or real-world deployment potential of those technologies and infrastructure 

required to make use of the resource reserve. As such, any proclamations of the UK’s 

renewable energy resources will rarely if ever translate with any level of fidelity into an 

amount consistent with such public declarations.115 The second step or stage of the 

                                                             
114 This is in contrast to the theoretical resource which covers the total energy available for the entire 
resource type excluding any constraints or barriers to extraction. The technical resource constrains the 
theoretical resource based on technology-specific limitations, including suitable siting, conversion 
efficiency, and load factor and power density. The economic resource narrows the practical resource by 
taking cost considered to be economic (but this judgement is subject to change over time) (OVG, 2010). 

115 For example, the First Minister of Scotland, Alex Salmond has repeatedly stated “Our potential for 
electricity generation from renewables is up to 60 GW – more than ten times our peak demand” (Scottish 
Government, 2009a: 1) and that “… it is estimated that we could meet our country’s own energy needs five 
to ten times over, from renewable sources alone” (Scottish Government, 2009b: 1). Indeed, the Pentland 
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hierarchy includes those barriers or constraints termed the internal or external failures, 

including subsidy mechanism design, planning, grid, investment, policy uncertainty and 

public opposition that can and do limit the actual exploitation of the resource in reality 

in terms of deployment level. Critically, none of the categories to estimate resource 

potential (theoretical, technical, practical and economic) incorporate such constraints to 

renewable deployment. This will also be the case for analyses of deployment rates that 

do not take into consideration the full range of such constraints, particularly from a 

systemic approach. The impact of the internal and external failures on renewable 

deployment levels will be examined in detail in Part III – Adopting the Systemic 

Approach. This could have significant policy implications: the ‘The Offshore Valuation: A 

valuation of the UK’s offshore renewable energy resource’ report states that the 

utilisation of 76 percent of the practical offshore renewable resource “would provide 50 

percent of UK electricity demand and just over a quarter of EU electricity demand [both by 

2050]” (OVG, 2010: 21). In context, this would equate to 1,610 TWh per year, more than 

the estimated projections for total energy consumption in 2020 of 1,590 TWh (DECC, 

2011g).  

 

As Table 5.1 shows, the focus is on the potential available resource for the different 

renewable sources based on what is practical (the practical resource) and therefore 

arguably the largest amount before taking into account other limitations. It is clear from 

all four studies that wind power provides the largest practical resource, with offshore 

wind providing the greatest share. The substantial difference between the OVG and the 

other three reports (1,939 TWh compared to over 400 TWh per year) is due to the 

inclusion of the floating offshore wind resource in addition to the fixed resource. 

Primarily at the design and prototype stage, with only two full scale devices deployed, 

the potential for this new variant of offshore wind is highly significant with an 

estimated total resource of over 1,500 TWh116. However, almost half of this resource 

                                                                                                                                                                                              
Firth, one of the sites for marine renewables, was described by Alex Salmond in 2008 as the ‘Saudi Arabia 
of marine energy’ (BusinessGreen, 2008:1). 

116 In 2009 Statoil Hydro deployed a 2.3 MW floating device in the North Sea, in 722 feet of water depth 
and 7.4 miles from the coast. In 2012, a 2 MW floating turbine was towed over 200 miles off the 
Portuguese coast into the Atlantic Ocean at a water depth of 35 metres (Power, 2012). 
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(660 TWh per year) of this is located beyond 100 nautical miles (nm), which could be 

unfeasible due to the distance from shore and logistical and economic issues concerning 

maintenance (OVG, 2010). This still leaves over 400 TWh per year of offshore fixed 

wind resource117, almost four times the amount required to meet the UK’s 2020 RES-E 

sectoral target and nearly double the total renewable target of 15 percent equating to 

234 TWh in 2020. Critically, this resource would be available continuously, year by year, 

in contrast to conventional energy sources.118 Although significantly less, the onshore 

wind practical resource still represents an additional 68 TWh per year by 2050 in 

addition to current output levels in 2011 of over 10 TWh which equates to almost 5 GW 

of installed capacity (see also chapter six, table 6.1). In other words, the practical 

resource is approximately equivalent to ten times current resource exploitation. Based 

on an installed capacity of 28 GW, when compared with the density of onshore wind 

farms in Denmark (MW per 1000km²), a country renowned for onshore wind 

deployment, DECC’s ‘2050 Pathways Analysis’ report estimated the total practical 

capacity could be around 16 GW. In contrast to the resource reserve size stated above, 

this would mean that there is only 10 GW of potential future installed capacity 

remaining in the UK, a significant reduction given that onshore wind currently 

dominates and drives UK RES-E deployment towards the 2020 target (see chapter six). 

 

For the marine renewables, there is a consensus over the total practical resource with 

wave power at between 40-50 TWh per year and tidal range ranging from 36 to 50 TWh 

per year (the OVG report examined less potential sites than the other reports that 

examined tidal range power). The tidal range resource, however, is heavily dependent 

on the inclusion of the Severn barrage proposal which is estimated to generate around 

                                                             
117 The difference between the Arup (2011) study and the CCC (2010) ‘Fourth Carbon Budget’ and the 
‘2050 Pathways Analysis’ (DECC, 2010a) reports is due to the former report looking out to 2030, twenty 
years less than the latter two reports. This also accounts for the difference between these reports for 
onshore wind and tidal stream power (see below). 

118 In contrast, non-renewable energy sources would require additional new resource sites to be located 
and developed in order to maintain increases in resource availability for exploitation. As the time-frame 
for hydro-carbon based sources is geologically slow, ultimately this would see a decline in resource 
availability over time. Indeed, many argue now that such a peak has already been reached or will be in the 
near future. 
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16 TWh per year.119 The variation in tidal stream resource (18 to >197 TWh per year) 

reflects uncertainty in the underlying methodology and the assumptions used to 

estimate this resource. It is likely that the tidal stream resource will be the largest of the 

marine energy sources, at over 100 TWh per year (CCC, 2010; DECC, 2010a; OVG, 2010). 

 

The practical resource availability estimated for geothermal is consistent across the 

three studies that examined it, at between 30-35 TWh per year. In contrast, solar 

photovoltaic estimates range from 140 TWh (CCC, 2010; DECC, 2010) to approximately 

20 TWh per year (Arup, 2010). The reason for this considerable discrepancy is 

primarily due to the inclusion of economic factors to the ARUP estimates and the cut-off 

date of 2030. Only two studies analysed hydropower, providing a significant range in 

estimates of between approximately 5 TWh (Arup) to 12 TWh (DECC) per year. Given 

that hydropower output already stands at around 5 TWh in 2010 (see Chapter Six), this 

means that there is either no further site availability or there is over twice as much as 

currently exists in the UK. The difference in resource estimates appears due primarily to 

the DECC report taking into account a number of studies that show that the remaining 

hydropower resource is between 900 MW to 2.4 GW by 2050. Although this again 

represents a significant variation in estimates, either way it can be argued that 

hydropower (unlike the other sources) will not play a critical contribution to meeting 

the targets in terms of renewable resource size. However, in contrast to the other 

renewable sources examined in Table 5.1, hydropower is a non-intermittent energy 

source that could play a critical role in balancing those sources which have larger 

practical resource potential but are intermittent. 

 

In addition to looking at estimates of renewable energy availability, it is also necessary 

to determine where the resources are specifically located: in other words, where are the 

best reserves geographically? This will have particular implications for the deployment 

of the different renewable energy technologies (for example, planning and grid issues 

                                                             
119 Although resource estimates showed that the Severn scheme could provide up to 5 percent of the UK’s 
current electricity generation, in October 2010 the UK Government rejected the scheme for a number of 
reasons, including high cost (as much as £34 billion) as well as investment and environmental issues 
(DECC, 2010b).  
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and public attitudes to renewable energy deployment). Figures 5.1 and 5.2 (pages 146-

147 and pages 148-149, respectively) graphically represent the geographical 

distribution of the major terrestrial (onshore wind, solar and biomass) and marine 

(offshore wind, wave, tidal stream and tidal range) resources in the UK. As expected, 

part A of Figure 5.1 shows that annual mean wind speeds are highest in the upland and 

mountainous regions of the UK (Scotland, Wales and North-West England). Overall, the 

geographical distribution of the onshore wind resource is overwhelmingly concentrated 

in Scotland (in terms of the best wind resource, highest speeds). South-East England, 

where the majority of the UK population reside, exhibits far lower annual resource. The 

reverse is true for solar photovoltaic (Part B) where the highest level of solar radiation 

occurs in the south-western parts of the UK and to a lesser extent in the South-East. Part 

C and D look at the non-waste biomass resource distribution and potential for Scotland 

and the UK, respectively.120 Showing total current biomass resource (including forestry, 

short rotation crops and energy crops), Part D illustrates that the lowland areas of the 

UK, concentrated primarily in England and to a significantly lesser extent on the eastern 

coastal lowlands of Scotland, represent the geographical distribution of non-waste 

biomass resources. When the potential future biomass resource (utilising temporary, 

permanent and rough grazing) is included, this would approximately correspond to the 

areas showing least current biomass resource (the area corresponding to <5,000 oven-

dried tonnes, ODT). Incidentally, this is also the area of best wind resource (see Part A of 

Figure 5.1). Although excluding agricultural land that could be used for biomass 

resources, the ‘yellow’ area corresponds closely to agricultural (arable) land (Scottish 

Government, 2011c). 

 

Part A of figure 5.2 reveals that the highest annual mean wind power density (in Watts 

per square metre, or W/sq m) is strongly concentrated (from 1,501 W/sq m to > 2,500 

W/sq m) off the west coast of Scotland, stretching out over 800 miles into the northern 

                                                             
120 The analysis of the geographic distribution of biomass resource (current and future) is not meant to be 
exhaustive, rather to illustrate the approximate location of the major resources. Waste biomass resources 
are excluded. 
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              Figure 5.1 Terrestrial renewable energy resources in the United Kingdom for onshore wind power (A) and solar radiation (B). 
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              Figure 5.1 (Cont) Biomass in Scotland (C) and the United Kingdom (D). 
Note: (A) Annual mean wind speed at 25m above ground level (m/s) (Energy Systems Research Unit, 2011). (B) Solar radiation (kWh/m²) (Šúri et al., 2001). (C) Suitable land for biomass 
crops (woodland, forestry, short rotation coppicing and short rotation forestry ). Although the map excludes agricultural land used for biomass (energy) crops the yellow area corresponds 
to agricultural land (Scotland & Northern Ireland Forum for Environmental Research [SNIFFER], 2010: 55). (D) UK current biomass availability (in oven-dried tonnes), transport 
infrastructure and urban conurbations (Department for Environment, Food and Rural Affairs [DEFRA], 2008: 56). 
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              Figure 5.2 Marine renewable energy resources in the United Kingdom for offshore wind power (A) and wave power (B)(DECC, 2011f). 
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              Figure 5.2 (Cont) Tidal stream (C) and tidal range (D) (DECC, 2011f). 
     Note: (A) Annual mean wind speed power density at 100m (W/sq m). (B) Annual mean wave power (kW/m of wave crest). (C) Annual mean tidal stream power (kW/sq m). (D) Mean 

spring tidal range (m).  
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Atlantic Ocean with the best resource furthest from the mainland. Away from the coast, 

the total wind resource over a given year is relatively uniform across very large areas, 

although both occurrence and strength of wind is dependent on meteorological factors 

(DECC, 2011g). At the gross overall scale represented in Part A, in comparison the 

offshore wind resource for the rest of the UK (meaning Wales and England) is 

substantially lower: in terms of power density, it is at least 1,000 W/sq m less and only 

if the Scottish resource is utilised closest to the mainland. Importantly, it appears that 

within the 12 nautical mile zone (the territorial waters designation) the offshore wind 

resource is less than 700 W/sq m. In general, the geographical distribution of the UK’s 

wave resource (Part B) is similar to that of offshore wind with the UK wave energy 

resource broadly concentrated to the west of Scotland, although there is a noticeable 

though less significant resource concentration around the South-West peninsular 

(Cornwall), particularly if wave devices are deployed further from the Scottish 

mainland, for example west of the Outer Hebrides. Part C shows that the UK tidal stream 

resource is more geographically constrained in comparison to offshore wind and wave, 

being localised around headlands and through straits between land masses. The tidal 

range resource shows similar geographical constraints, limited as it is to various 

estuaries and bays such as the Severn, Mersey and the Solway Firth (Part D). 

 

  

5.4 Attributes of renewable energy technologies 

Renewable electricity supply technologies represent a distinctly heterogeneous 

category. At the technology level there are six major ‘families’ and associated sub-

categories: wind power (onshore, offshore), marine (wave, tidal stream, tidal range), 

hydro power (small-scale, large-scale), biomass (landfill gas, sewage gas, co-firing and 

other biomass), solar photovoltaic (off-grid systems, grid-connected systems) and 

geothermal (natural hydrothermal, geopressured systems, hot dry rocks, magma, low-

grade heat pumps).121 RETs incorporate many different technologies and fuels with very 

                                                             
121 This is a list of actual technologies irrespective of stage of development or whether or not they 
currently generate RES-E in the UK. The sub-categories could be further broken down, for example, wave 
power includes: wave shoreline, wave near shore (less than 20 miles to the coast) and wave offshore.  For 
a detailed explanation of the technical aspects of the various technologies and associated sub-categories 
see Boyle, 2004. 
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different characteristics. Such technologies are typically long-lived assets, with 

operational life-spans ranging from twenty to fifty plus years, although there is 

considerably uncertainty with regard to those relatively untested technologies lacking 

any real or significant deployment history. This is particularly the case for marine RETs 

and offshore wind. Not all technologies or fuels are limited to the electricity sector. 

Biomass can also be used in the heating and cooling and transport sectors, and such 

end-use flexibility can lead to conflict or sectoral prioritisation over utilisation, 

particularly as the non-renewable electricity sectors are under-performing in 

comparison to the electricity sector. Importantly, they are at different levels of research, 

development and deployment. This can also be the case at the sub-category level for 

technology types (for example, wind power). In any given time period, there will be 

those technologies that can contribute towards the renewable (or low-carbon) targets 

and those on the horizon that require more research, support and time in order to reach 

deployment at the scale required. Such differing levels of maturity and market 

penetration will play an important role in whether and when they will evidence strong 

uptake (pull) by the market.  

 

Table 5.2 (pages 152-153) shows the key economic, resource, technical and 

environmental attributes of the major renewable, low-carbon and conventional fossil-

fuel technologies in order to help clarify and understand the options for the various 

renewable electricity supply technologies. With regard to the economic attributes, the 

UK’s technological options in respect to the stage of technological development (or 

technology maturity) can be broadly classified into four groups: the methodology used 

here is adapted from Jamasb et al (2008). The first group, RD&D (research, 

development and demonstration) includes early prototypes and installed full-scale 

working devices only deployed in single units or small numbers, largely financed 

through R&D-related grants.122 The second group, pre-commercial is the stage where 

multiple units are installed for the first time and/or where the first few multiple units 

                                                             
122 Those technologies at the purely R&D stage are usually categorised into a prior group, including both 
‘blue skies’ science and engineering and application-focused research (Jamasb et al., 2008). Examples of 
such technologies include novel (non-conventional) solar PV, some geothermal technologies, CCS and the 
next generation of nuclear reactors (nuclear generation IV). 
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Table 5.2 Attributes of key renewable, low-carbon and conventional electricity technologies         

              
Technology   Stage of development   Resource potential   Level of intermittency   

Flexibility of 
operation 

  Back-up   
Environmental 

(GHG/pollutants) 

              Renewable technologies 
          Onshore 

wind 
 

Supported commercial 
 

Infinite 
 

High 
 

Non-flexible 
 

Yes 
 

Low 

Offshore 
wind 

 

Supported commercial 
 

Infinite 
 

High 
 

Non-flexible 
 

Yes 
 

Low 

Marine 
  

RD & D 
 

Infinite 
 

Medium ¹ 
 

Non-flexible 
 

Yes 
 

Low 

Hydro 
  

Fully commercial 
 

Infinite - M 
 

n/a 
 

Flexible 
 

No 
 

Low 

Geothermal 
 

R & D 
 

Infinite 
 

n/a 
 

Flexible 
 

No 
 

Low 

Biomass 

  

Combustion: Fully 
commercial  

Infinite - M 
 

n/a 
 

Flexible 
 

No 
 

Low - High ³ 

Low-Carbon technologies           

Nuclear 
  

See text 
 

Finite 
 

n/a 
 

Non-Flexible 
 

No ² 
 

Low ⁴ 

CCS 
  

See text 
 

Finite 
 

n/a 
 

Flexible 
 

No 
 

Medium 

Fossil Fuel technologies           

Coal 
  

Fully commercial 
 

Finite 
 

n/a 
 

Flexible 
 

No 
 

High 

Oil 
  

Fully commercial 
 

Finite 
 

n/a 
 

Flexible 
 

No 
 

High 

Gas 
  

Fully commercial 
 

Finite 
 

n/a 
 

Flexible 
 

No 
 

High 

Note: Stages of development are taken from Jamasb et al (2008). However, categorisation of technologies into stages reflects data as of 2011. Infinite-M = a renewable resource where 
exploitation requires management in order that the resource can replenish itself over an appropriate timescale without risk of depletion. ¹ Although intermittent, marine renewable energy 
technologies (wave, tidal range, tidal stream) are more predictable than other intermittent renewables due to the nature of the resource. ² The number of unplanned outages of UK nuclear 
power stations, often around 1 GWe in size can cause significant problems for the electricity grid network and thus arguably require more back-up generation than renewables (Toke, 2011; 
see text below and chapter four, section 4.3). ³ Due to the diverse range of technologies and fuels subsumed in the overall biomass category in addition to other factors such as land-use 
change some exhibit low, medium or high GHG emission profiles. There are some reports that suggest that biomass lifecycle emissions could be far higher than assumed, potentially as high 
as some forms of fossil fuel generation (see text below and chapter four). ⁴ There are some valid concerns over the GHG emiss ions profile of nuclear due to lifecycle complexity, 
decommissioning inexperience and future uranium ore grade (see chapter four for further analysis). 
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Table 5.2 (Continued)                     

              Technology   Scale   Geographic dispersal   Plant size   Landscape impact ¹         

              Renewable technologies 
          Onshore wind 

 

S - M 
 

High 
 

High 
 

High 
    

Offshore wind 
 

M - L 
 

Very High 
 

Very High 
 

Medium - High 
    

Marine 
  

? 
 

Medium - Very High 
 

Very High 
 

? 
    

Solar PV 

  

S 
 

Very High 
 

Small 
 

Low 
    

Hydro 
  

S - M 
 

Low 
 

Small - Medium 
 

Low 
    

Geothermal 
 

? 
 

? 
 

Small 
 

Low 
    

Biomass 

  

S - M - L 
 

Low 
 

Small 
 

Low 
    

   
           

Low-Carbon technologies           

Nuclear 
  

M - L 
 

Low 
 

Small 
 

Low 
    

CCS 
  

M - L 
 

Low 
 

Small 
 

Low 
    

   
           

Fossil Fuel technologies           

Coal 
  

M - L 
 

Low 
 

Small 
 

Low 
    

Oil 
  

M - L 
 

Low 
 

Small 
 

Low 
    

Gas 
  

M - L 
 

? 
 

Small 
 

Low ² 
    

Note: ? refers to where there is insufficient data and/or analysis to date. Primarily this means that there is little or no deployment experience or research currently carried out. ¹ The 
information contained within this category is not fully established due in part to limited current research and can be argued to be at times subjective. However, the general nature of the 
data dealt with in this table is fairly robust under the assumptions provided (see text) . ² In the case of shale gas, there is a growing body of research indicating potentially significant problems 
with shale gas, including causing earthquakes and possible groundwater contamination although both issues are currently thought to be low risk (Energy and Climate Change Committee, 
2011a; The Royal Society and The Royal Academy of Engineering, 2012). It should be pointed out, however, that there are opposing points of view (see 'Shale Gas: Fifth Report of Session 
2010-12: Volume II: Additional written evidence, Energy and Climate Change Committee, 2011b). 
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move to much larger-scale deployment for the first time. The third group, supported 

commercial is the stage where technologies are rolled out in substantial numbers and 

by commercially orientated companies. The fourth group, fully commercial represents 

technologies that can compete unsupported. In comparison to both supported and pre-

commercial, technologies in the fourth category do not require some form of generic 

support (such as the UK Renewables Obligation). This is the stage where it is envisioned 

that such technologies can compete in the wider market without the support of the 

protected domain. 

 

It is clear from Table 5.2 that the major fossil fuel technologies including coal, gas and 

oil are all fully commercial, reflecting established histories of operational experience 

and deployment. The situation for low carbon technologies is not so simple. As with 

large-scale renewable electricity technologies, the low carbon category represents a 

number of different technologies at varying stages of development. Further, it is difficult 

to argue that existing nuclear power technologies, including generation II advanced gas-

cooled reactors (AGRs) and pressurised water reactors (PWRs) already operating in the 

UK and abroad are fully commercial. Although existing nuclear power technologies do 

not currently receive any state subsidy on the basis of generation output (in contrast to 

renewable electricity technologies), they do receive other subsidies in the form of 

decommissioning, insurance liabilities and public bailout.123 There are also a number of 

new generation nuclear technologies either poised for commercial deployment 

(generation III) or at the R&D stage (generation III+ and IV). Dependent on a decision on 

state aid rules, new build nuclear stations will also be eligible for state subsidies under 

the CfD FIT mechanism (on a generation output basis) alongside loan guarantees. 

Regarding CCS, many of the technologies and processes are already fully commercial 

but either at small-scale (shipping) or developed for application in other areas (pre-

combustion technology widely applied in fertiliser manufacturing, post-combustion 

technology in separating carbon dioxide in natural gas processing). In contrast, oxy-fuel 

                                                             
123 In 2005 the UK government had to bail out British Energy at a cost of around £5 billion. In addition, 
nuclear power received state subsidies for a limited time period under the NFFO (see chapter three, 
section 3.3). 
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technologies for CO₂ capture are at the RD&D stage whilst CO₂ storage, with the 

exception of use for enhanced gas or oil recovery, is at the supported commercial stage.  

 

Focusing on the renewable energy technologies, only two of the seven major technology 

families are either at the fully commercial stage of development or evidence 

technologies at that stage: hydro power and specific biomass RETs. As with the majority 

of the non-renewable technologies, hydro power also has a long history of deployment 

in the UK (Grubb and Vigotti, 1997). With regard to biomass, it is only really the thermal 

processing of biomass (combustion) to generate electricity that is at this stage, although 

there are a number of technologies included in the gross biomass category that fall 

within the other stages representing less mature options (see below). The next stage of 

development, the supported commercial stage, includes the sub-categories of wind 

power and conventional solar photovoltaic. In contrast to onshore wind, which can be 

viewed as being situated at the boundary between supported and fully commercial 

(particularly those wind farms or turbines located in the areas of best wind resource), 

offshore wind is a recent addition to the supported commercial stage. In 2008 offshore 

wind was categorised at the pre-commercial stage, reflecting the level of limited 

deployment shown only three years ago (Jamasb et al., 2008). There are a number of 

reasons for the differences between onshore and offshore wind, including the 

technological maturity of onshore wind turbines due to research and deployment over 

the last three or more decades in countries like Denmark and Germany (where most of 

the turbine manufacturers are based). Despite the apparent visual similarities between 

the two RETs, offshore wind faces considerable challenges not least with regard to the 

foundations and the significantly more severe marine environment around the British 

Isles. However, the fact that both technologies now fall within the supported 

commercial category is an indication of the political motivation behind wind power in 

the UK, evidenced by the subsidy level set through the RO. With the introduction of 

technology banding into the RO mechanism in 2009, offshore wind was initially 

allocated 1.5 ROCs per MWh output. Offshore wind was then temporarily banded-up to 

2 ROCs per MWh (DECC, 2009c). 
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Significantly, there are no renewable energy technologies currently at the pre-

commercial (third) stage, although there are a number of technologies at the boundary 

between RD&D and pre-commercial such as tidal barrage and biomass gasification 

which are related to technology types already at the supported commercial stage or 

above. In contrast, the major marine renewable technologies are all currently 

designated within the RD&D (fourth, or least technological mature) stage, and as such 

will continue to require substantial public support in the long term. Within this stage, 

wave and tidal stream RETs are less technological mature than tidal barrage. Other 

technologies at this stage include biomass gasification (such as anaerobic digestion), 

nuclear generation III+, and natural hydrothermal geothermal technologies.124 In terms 

of long-term future potential technological diversity, there is a particularly wide range 

of RET options of fundamentally different technologies within the R&D, RD&D and pre-

commercial stages. 

 

The first column of Table 5.2 shows, then, that some renewable energy technologies can 

be said to be ‘more ready’ than other technologies. This reflects in part the level of 

technological risk or perceived risk by the market with regard to the various RETs: less 

mature technologies will possess a higher risk profile in terms of development and 

deployment, and this in turn can affect investor/developer decisions over which 

technologies to adopt. As stated in Chapter Four, liberalisation of the electricity sector 

has had profound effects on the context within which technological progress and 

diffusion occurs, with mature technologies chosen first in order to minimise risk and 

maximise deployment and investment returns (Foxon et al., 2005). In other words, 

some RETs have a cost advantage over other options. Although there is nothing 

intrinsically wrong with categorising renewable energy technologies in this way (they 

are after all typically more expensive than non-renewable technologies and the overall 

aim is to achieve cost-competitiveness), such an approach does not take into account 

non-economic attributes that can and do vary significantly between the various RETs. In 

conjunction with the issues regarding the potential impact of the internal and external 

                                                             
124 This stage also includes technologies not examined here such as biomass pyrolysis, fuel cells and 
steam cells. 
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failures on deployment, Table 5.2 also examines key non-economic attributes including 

resource potential (see above), technical attributes related to operating renewable 

electricity supply technologies within the overall electricity system and environmental 

attributes (in terms of greenhouse gas/pollutant emissions and landscape disturbance 

and noise). 

 

Looking at the technical attributes, one of the major benefits of conventional (fossil fuel-

based) electricity technologies, in addition to reduced capital costs (construction) and 

increased technological maturity over renewable energy technologies, is that they can 

provide a stable, reliable source of electricity generation. This means that they are a 

non-intermittent source of power that does not require back-up generation plant to run 

when the resource is either not available or, more likely, when the available resource is 

reduced (for example, when wind speeds drop, rainfall is reduced or the sun is not 

shining). However, this does not mean that fossil fuel and nuclear power stations do not 

require back-up generation plant when they are offline, whether due to planned (for 

example, maintenance needs) and unplanned outages. The importance of this cannot be 

over emphasised, given that electricity cannot currently be stored at any meaningful 

scale at least economically.125 In addition, fossil fuel generating stations are also flexible 

in the sense that they can be turned on or off, or the output increased or decreased to 

meet changes in demand profiles when required.126 In contrast, renewable and low-

carbon technologies possess a variety of often conflicting attributes.  

  

An analysis of the data contained in Table 5.2 shows that, in general, renewable energy 

technologies can be divided into two gross overall groups with regard to the key non-

economic attributes highlighted. On the one hand, there are those RETs which exhibit a 

high-degree of intermittency, are non-flexible in terms of operation and require back-up 

during the periods when the resource is unavailable (or availability is constrained by 

reduced resource or in the case of wind power, over available due to wind speeds above 

                                                             
125 The main exception to this is pumped storage. 

126 There are differences in flexibility of operation within the fossil fuel (conventional) technology 
category. 
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the technical parameters). This category includes onshore wind, offshore wind, solar 

photovoltaic and marine RETs, and all of these RETs possess significant and infinite 

reserves of renewable energy, with the highest reserves for wind power in general and 

offshore wind in particular. Yet these RETs, in particular onshore and offshore wind are 

anticipated to contribute the overwhelming majority of RES-E deployment to 2020 and 

beyond. Onshore wind, currently one of the most economically competitive sources of 

renewable energy, is expected to play a major role in UK deployment at least to 2020, 

although the resource potential set out in the four reports analysed in Table 5.1 could 

be argued to over-estimate the resource, when constraints such as land-use and 

growing opposition to onshore wind power is taken into consideration. Also, offshore 

wind is expected to contribute significantly to renewable deployment to 2020 and 

beyond, with marine renewables to contribute significantly beyond 2020. However, one 

exception to this category, in terms of intermittency, is the marine renewables: although 

intermittent, they are more predictable in their intermittency due to the nature of the 

resource itself. 

 

In contrast, hydro power, geothermal and biomass RETs are more similar to the 

majority of fossil fuel technologies in that they are non-intermittent sources of energy, 

exhibiting operational flexibility and as a result not potentially requiring the same level 

of back-up. This is significant as maximising the utilisation of these resources could 

reduce reliance on conventional fossil fuel generation as a source of back-up (or base-

load) generation. The negative aspect of this category is that, with the exception of 

geothermal, the resource potential is constrained by the fact that reserve exploitation 

needs to be managed in order that the resource can replenish itself over an appropriate 

timescale without risk of depletion, and that there are significant sustainability, land-

use and greenhouse gas emission risks associated with a number of biomass 

technologies and fuels. There is also limited resource potential for hydro power in 

comparison to the majority of RETs. 

 

When the data is looked at in this way, it appears that those RETs with the largest 

infinite reserves are also the same technologies that exhibit those very attributes that 

create tension in the way they will function in the existing wider electricity system. On 
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the other hand, those renewable technologies with constrained resource reserves 

(infinite-M) appear to be more adapted to the way the electricity system in the UK 

currently operates, and could play an important if not critical role in replacing the use of 

conventional generation. Such an analysis of the conflictive attributes of the various 

RETs reveals not only the options that exist but the complex trade-offs that would 

require resolution. Deploying more RETs in the first category could require more 

conventional back-up or the construction of expensive electricity network 

infrastructure, including upgrading and reinforcement of the UK system and the 

development of an offshore and international interconnected system between the UK 

and third countries. Deploying more second category RETs could increase problems of 

sustainability but decrease reliance on the solutions required for wind, solar and marine 

renewable energy technologies. In addition, when the distinction between terrestrial 

and marine (or non-terrestrial) renewables is made, offshore RETs do not currently 

exhibit the same level of resource constraints as onshore technologies. However, this 

will be dependent on experience learnt as deployment for these technologies increases, 

for example resource competition from other users, potential environmental 

constraints, grid connection and technology issues (see Part III of the thesis). All land-

based renewable energy technologies face some type of constraint on resource usage 

and hence deployment (this will be examined further in Part III). When all the key 

attributes are taken into account, however, offshore wind is the only non-terrestrial 

technology that has the potential to deploy at the necessary scale, particularly in light of 

the 2020 target. 

 

There are, however, a number of additional characteristics more or less unique to 

renewable electricity technologies portrayed in the last five columns of Table 5.2. The 

first three columns examine those characteristics that revolve primarily around the 

issue of scale. RETs are often small-scale (in terms of both installed capacity and 

generation output) and are geographically widespread in their pattern of dispersal. This 

can be seen from Figures 5.1 and 5.2 which graphically portray the significant dispersal 

(although sometimes overlapping) geographical range of the various renewable 

resources. This issue is compounded by the concentration of the best available 

resources in particular or specific geographical locations and the reality that developers 
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will actively seek to locate their projects in these resource rich areas in order to 

maximise returns. In addition, renewable generating stations can be large-scale in terms 

of individual plant size. This is in contrast to conventional thermal and nuclear power 

plants which are compact units (small relative plant size), typically representing 

hundreds or thousands of MW of installed capacity with limited geographical 

dispersion. Importantly, the electricity transmission and distribution infrastructure was 

designed primarily to deliver large quantities of electricity from such generation 

technologies. As such, the electricity network was not meant to have a multitude of 

small-scale and often intermittent generating plant connected at different points all 

across the system. 

 

This results in considerable variation in the above characteristics for RETs in 

comparison to both low carbon technologies (including nuclear and CCS) and fossil fuel 

technologies. At one end of the scale there are RETs that are currently deployed as very 

small-scale, highly dispersed units with typically low installed capacity and generation 

output profiles. Examples of such technologies can include onshore wind, hydro and 

certain biomass and waste plant (for example, sewage gas and anaerobic digestion). The 

technology that best exemplifies this characteristic is solar photovoltaics in particular 

and small-scale and microgeneration technologies in general.127 These would usually 

exhibit small plant or unit size. However, some of the same RETs can also be scaled-up. 

For example, hydro and biomass plants can range up to hundreds of MW of installed 

capacity: Tilbury coal-fired power station was recently converted to a 750 MW biomass 

power plant in 2011.128 

                                                             
127 Although this dissertation looks at large-scale RETs supported under the RO (with a typical 
deployment of > 5MW installed capacity), the recent deployment rate of solar photovoltaics has 
implications for UK RES-E deployment rates: solar PV installed capacity grew by +899 MW between 2010 
and 2011. In 2011, then, solar PV accounted for the single largest growth in deployment in the UK (DECC, 
2012a). As such, this technology will be examined further from Chapter Five onwards. All other small-
scale or microgeneration technologies exhibited insignificant growth: solar PV accounted for over 90% of 
all FIT deployment and micro-wind accounted for only 20 MW (DECC, 2012b; Office of Gas and Electricity 
Markets [OFGEM], 2012).   

128 Due to the modular nature of most RETs, practically any such technology can be scaled up if the right 
conditions prevailed (e.g. financial, location, resource, etc). Typically the smallest-scale RET, solar PV can 
and has been scaled up in size: currently the largest solar PV plant in the world, the Perovo plant in 
Ukraine has an installed capacity of 100 MW (SolarPlaza, 2011). 
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This scaling-up is also exemplified by wind power. These technologies have the 

potential to deploy at sizes comparable or even larger than the biggest fossil fuel and 

nuclear plant. This is particularly the case for offshore wind where individual plant size 

(in MW installed capacity) is on average larger than that for onshore wind.129 Such 

differences between these two RETs can only be amplified by the projects proposed in 

the Crown Estate’s Round 3 offshore wind leasing programme. In contrast to Round 1 

(ranging from 62 to 194 MW installed capacity) and Round 2 (65 to 1,200 MW), Round 

3 projects range in size from 665 to 9,000 MW (Crown Estates, 2012; Renewables UK, 

2012). In comparison, the largest onshore wind farm is Whitelee wind farm in Scotland 

at 322 MW (Scottish Power, 2011). The size of the individual plant is also typically 

considerably larger than fossil-fuel and nuclear power stations. Whitelee onshore wind 

farm covers over 50 square kilometres (km²). In contrast, offshore wind farms can 

range up to 6,500 km², the equivalent size of Yorkshire (4coffshore, 2011). This is the 

largest example, however, and on average the proposed Round 3 offshore wind farms 

will be significantly smaller although still around a third to half that size in reality 

(Crown Estates, 2012). In contrast, coal, gas or nuclear power plant size is typically only 

a few square kilometres in size. As such, it can be argued that such renewable 

installations can be classified as ‘industrial-scale’ power stations, particularly in terms 

of their impact on the landscape and the wider electricity system. 

 

The significance of the issue of scale, then, is that different RETs will have different 

implications with regard to a number of potential constraints, including notably 

planning, grid and public acceptance (this will be examined further in Part III of the 

thesis). The discussion has so far centred around two specific scales, small and large-

scale renewable deployment, with the former scale supported under the FIT and the 

latter supported under the RO (although there is some overlap in RETs being able to 

accredit under either mechanism with an installed capacity of less than 5 MW due to the 

transition arrangements put in place when the FIT was implemented in April 2010). In 

                                                             
129 An examination of the size distribution of onshore and offshore wind reveals that 70% of onshore 
wind farms and only 28% of offshore wind farms are smaller than 100 MW installed capacity, with the 
opposite for farms > 100 MW. The same pattern holds for hydro plant (< 100 MW: 89%, > 100 MW: 11%) 
(DECC, 2012a). This will be explored further in Part III of the dissertation. 
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addition to small-scale (defined as < 5 MW of installed capacity) and large-scale RETs (> 

5 MW installed capacity), there is also the ‘meso-scale’ (>5 to 50 MW) (Watson et al., 

2010). The meso-scale has been argued to be more suitable for communities, co-

operatives and smaller firms and organisations including local authorities and farmers 

(and smaller energy companies as opposed to multinationals and former utilities) that 

are better placed to exploit renewables at this sub-industrial scale. Such decentralised 

power generation is also argued to be more acceptable to the public, encourage 

behavioural change towards energy in general and renewables in particular on the 

grounds of increasing public participation, empowerment and self-sufficiency and 

therefore play an important role in RES-E deployment in the UK (Greenpeace, 2005; 

Nolden, 2011; Watson and Devine Wright, 2011). Importantly, the benefits of both small 

and meso-scale technologies could also apply to the delivery infrastructure and 

resilience of the overall energy system. Unlike small-scale deployment, which benefits 

from both the FIT and the RO (although some RETs might be excluded from this, see 

Chapter Six), the meso-scale falls within the remit of the RO which is primarily a 

mechanism for truly large-scale installations and of particular technology types (see 

also Chapter Six). Therefore, the potential constraints can also impact on the various 

RETs in a number of different ways, particularly the financial (subsidy) mechanism. 

 

There is also the issue of ‘landscape’. A major concern that is consistently and 

repeatedly raised for different RETs at the local or national scale is that of the impact on 

the landscape (Nadaï and van der Horst, 2010). This is a very broad category containing 

numerous and often-linked and complex issues. An additional difficulty in the 

examination of these factors is that they are invariably subjective: for example, not all 

people dislike onshore wind turbines or are negatively impacted by the noise. Others 

believe that they ruin the landscape and damage the natural environment. Even at the 

smallest deployment scale, people can oppose or dislike the installation of a few square 

metres of solar photovoltaic panels on a residential roof (Devine-Wright, 2011).  

 

Although these issues will be examined in more detail when evaluating the planning 

system and renewable electricity technologies (see chapter eight, section 8.2.2), the 

purpose of including ‘landscape impact’ in Table 5.2 is primarily to highlight the gross 
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difference, perceived or otherwise, between renewable, low carbon and fossil fuel 

technologies. The key point here is that of scale, particularly in terms of the level of 

geographic dispersal and plant size (acreage under development). As mentioned 

previously, there are issues regarding even the smallest-scale RET installations, and this 

certainly applies to large-scale centralised power generating stations including low 

carbon and fossil fuel power stations. Such arguments typically focus on the local scale 

when non-GHG environmental factors are considered.130 The last column of Table 5.2, 

then, shows that onshore and offshore wind power have the highest impact on the 

landscape in contrast to other RETs, low carbon and fossil fuel technologies. This is 

primarily due to the high level of geographic dispersal, highest resource areas and plant 

size of these two technologies. Marine RETs, including wave and tidal stream, are an 

exception to this. Both technologies also have the potential to deploy at large-scale and 

exhibit potential plant size comparable to wind, in particular offshore wind power. 

However, the limited real-time deployment history and experience means that it is 

difficult to currently establish the potential impact of these technologies on landscape 

disturbance (and other issues such as noise, radar, biodiversity, visual impact and 

cumulative impact). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                             
130 It goes without saying that fossil fuel plant have environmental impacts beyond the local scale, not just 
regarding the issue of GHG emissions and the impact of climate change which is intrinsically global in 
nature but also due to the impact of exploration, extraction, transport, processing and waste (the latter 
issues also apply to nuclear power and renewables to varying extent). This is also the case for certain 
biomass electricity generating technologies including growing the fuels and their sourcing and 
sustainability, transport and conversion.  
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Chapter Six 
Trends in Renewable Electricity Installed Capacity and 
Generation Output in the United Kingdom 
  
 
 
6.1 Introduction 

The first two chapters of Part II of the thesis set out the context regarding large-scale 

RETs. This chapter establishes the baseline contribution of renewable electricity in the 

UK and analyses the trends in RET deployment in terms of installed capacity and 

generation output. This is important in order to evaluate constraints to RET 

deployment. Section 6.2 looks at the historical trends and current contribution of the 

individual renewable electricity technologies in the UK, including at the sub-national 

level with particular emphasise on Scotland out of the devolved national 

administrations. Linking with the literature review (chapter three) and the contextual 

data provided in chapter’s four and five, this analysis will be used to show which 

technologies dominate and those that have not deployed significantly despite over 

twenty years of government support. It can also reveal changes in deployment trends.  

Section 6.3 determines the actual level of renewable electricity deployment required to 

meet the sectoral target for electricity for 2020. This will indicate the required level of 

deployment required to meet the 2020 sectoral target for the various technologies. 

 

There are a number of sources providing data on energy statistics for the UK as a whole 

and at the sub-national level for England and the three national devolved 

administrations: Scotland, Wales and Northern Ireland. This thesis utilises a number of 

sources in order to construct an up-to-date, detailed and comparable baseline 

assessment of the contribution of RES-E in the four countries that constitute the UK. The 

key official government databases containing RET capacity and generation output are 

published by the Department of Energy and Climate Change (DECC). These include: the 

Digest of United Kingdom Energy Statistics (DUKES), Energy Trends and the Renewable 

Energy STATisticS database (RESTATS). In addition, there are a number of databases 

developed by other bodies including the renewable trade organisations (Renewable UK, 
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Scottish Renewables) and non-governmental organisations (WWF, Greenpeace, Friends 

of the Earth). Although there are some discrepancies in the way in which such data is 

collected or presented, all relevant data has been cross-checked to ensure accuracy. 

Further, the data cut-off point is the end of December 2011 unless otherwise stated. 

 

 

6.2 Historical and current trends in UK renewable electricity deployment 

Table 6.1 (page 174) provides a detailed breakdown of the installed capacity (MW) and 

generation output (GWh) for the main renewable electricity technologies from 2002 to 

2011 at the UK level. These include wind power (onshore wind, offshore wind), 

shoreline wave and tidal power, hydro power (large and small-scale) and biomass 

electricity (landfill gas, sewage gas, co-firing, other biomass). The data is also 

aggregated into the three major RET ‘families’. Pumped storage is excluded as it is not 

categorised as a renewable energy technology.131 In addition, solar photovoltaic is 

included despite all deployment so far being supported under the small-scale FIT 

mechanism. 

 

Table 6.1 shows the gross positive trend in UK renewable electricity deployment 

installed capacity and generation output between 2002 and 2011. Looking at installed 

capacity, Part A of Table 5.1 reveals that total installed capacity has increased four-fold 

during the period analysed, from 3,147 MW in 2002 to 12,648 MW in 2011. At the RET 

family level, wind power has driven growth in deployment. Accounting for around 17% 

of total RES-E installed capacity in 2002 (of which onshore wind accounted for 99.7 per 

cent of the total), wind power installed capacity now comprises just over half of all 

renewable electricity deployment in 2011 (+6,488 MW), more installed capacity than 

for all other renewable technologies combined (51 per cent). Total wind power capacity 

increased by around +1,217 per cent between 2002 and 2011. Historically, hydro and  

                                                             
131 Another distinction when discussing renewable energy in the United Kingdom is whether or not a 
renewable energy (electricity) technology is RO-eligible or non-RO eligible: when discussing hydro power 
in the United Kingdom, the distinction between small scale and large scale hydro is that the former is RO-
eligible (if under 20 MW installed capacity) whereas the latter, by definition being greater than the 20 
MW cut-off limit, is classified as a non-RO eligible technology, although it is a source of renewable energy 
and therefore counts towards any renewable targets.   
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biomass originally dominated RET deployment. Since 2002, however, hydro power has 

evidenced virtually no growth in deployment, falling from 51 to just 13 per cent of total 

installed capacity in 2011. In contrast, biomass capacity has continued to increase, 

albeit at a significantly lower rate than wind power (+342 per cent, or 28 per cent of 

total installed capacity in 2011). 

 

Total generation output of renewable electricity also increased, from 11,124 GWh in 

2002 to 34,157 GWh in 2011 (Part B). Wind power has exhibited the greatest growth, 

from 11 per cent of total output to 45 per cent (+14,242 GWh). This is a twelve-fold 

increase in nine years; in contrast, although biomass grew two and half-fold in the same 

period (+7,893 GWh), the share of total generation output fell from 46 to 28 per cent 

due to increases in total wind power output. However, despite wind power having twice 

as much capacity installed as biomass, the latter RET family has a significantly higher 

generation output; indeed, wind power only surpassed biomass in 2011. This serves to 

highlight the differences between the various technology options (this is emphasised 

further below; see also chapter five). As expected from installed capacity trends, the 

output from hydro has declined from 42 per cent to 17 per cent in 2011. Despite the 

gross positive trend in total RES-E installed capacity and generation output between 

2002 and 2011, Table 6.1 reveals a number of discrepancies, particularly for the years 

2003 and 2010, where output fell and virtually flat-lined despite continuous annual 

increases in installed capacity, respectively.   

 

In 2003 total generation output dropped for the first and so far only time at the UK level 

from 11,124 GWh in 2002 to 10,637 GWh whilst total installed capacity increased by 

+372 MW over the same period. Output reduced by 500 GWh due primarily to reduce 

rainfall affecting hydro power output. In the same year, onshore wind power output 

increased by just 3 per cent from 2002, despite capacity increasing by approximately 30 

per cent due to reduced wind speeds. A similar event also occurred between 2009 and 

2010. Although installed capacity increased by +1,207 MW generation output only 

increased by +541 GWh during 2009-10. However, the increase in output partially 

obscures the data: both hydro (-1,659 GWh) and onshore wind (-519 GWh) generation 

dropped significantly. This was the largest recorded reduction in hydro generation and 
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the first example of a reduction in onshore wind generation evidenced in the period 

examined here. In actual fact, the combined increase in generation of those RETs 

displaying positive growth amounted to +2,627 GWh132, but the decrease in hydro and 

onshore wind combined (-2,086 GWh) resulted in the stagnating rate of overall output.  

 

The implications of this are significant, particularly if wind deployment increasingly 

commands a dominant position in the UK’s renewable electricity (and energy) mix: 

because hydro and wind power are primarily dependent on rainfall and wind speed, the 

correlation between increasing installed capacity and generation output can be 

weakened or broken depending on the weather.133 Critically, at the UK level, this 

resulted in electricity generated from RES-E only increasing from 6.7 to 6.8 per cent and 

was a key reason explaining why the UK missed the EU-set 2010 sectoral target. 

 

Whilst the data can reveal declines in renewable generation between years, it can also 

highlight increases in generation. This can be seen for the years 2003-04 (+3,531 GWh), 

2008-09 (+3,614 GWh) and particularly for 2010-11 (+8,454 GWh). There are a number 

of reasons that can explain this. As previously stated in this chapter, this step-increase is 

due in part to the high proportion of hydro generation and higher rainfall increasing 

hydro generation for the latter years. The strong overall positive growth in wind power 

has also played a role in the step-increases in generation: deployment has continued 

even in the years with reduced wind, such as between 2009 and 2010. Therefore, in the 

following year a ‘rebound’ effect is to be expected as average wind speeds and rainfall 

pick up, there is more installed capacity to generate. This is the flip-side of the years 

evidencing declines in generation output. 

 

                                                             
132 In contrast, offshore wind increased by +1,306 GWh followed by co-firing (+702 GWh). Indeed, all 
biomass RETs showed positive growth. Overall, total biomass generated 46 per cent of UK total output in 
2010, with total wind comprising 40 per cent. Unlike 2011, however, solar PV and plant biomass showed 
no real growth in the period 2009-10 (see below). 

133 This will also have particular implications for Scotland: RES-E installed capacity and generation output 
are overwhelmingly dominated by wind and hydro power (see below). 
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Although total overall installed capacity has increased, when separate technologies are 

examined a number of observations can be made from Part A and B of Table 6.1. 

Onshore wind is the major RET contributor in 2011 in terms of both installed capacity 

and generation output (+4,650 MW, or 37 per cent of total and 10,372 GWh, or 33 per 

cent of total RES-E output). This was an increase of almost 900 per cent (+4,120 MW) 

between 2002 and 2011. However, offshore wind increased by almost 50,000 per cent 

(+1,834 MW) during the same period, to +1,838 MW (15 per cent of total installed 

capacity), reflecting a negligible level of deployment in 2002. In general, both onshore 

wind and offshore wind have shown significant year on year growth in installed 

capacity in comparison to the other RETs. Regarding the individual biomass RETs, 

landfill gas increased by +226 per cent (+595 MW, or 8 per cent of total installed 

capacity), sewage gas has increased by +206 per cent (+102 MW, or 2 per cent of total 

installed capacity) and co-firing has increased by +267 per cent (+246 MW, or 3 per cent 

of total installed capacity). However, none of these biomass RETs have shown 

significant deployment capacity growth since the early to mid-2000s. This is also the 

case for shoreline wave tidal power and large-scale and small-scale hydro power. 

 

Importantly, the period 2010-11 showed the highest annual increase in installed 

capacity: +3,187 MW, almost three times the previous annual average growth of all 

RETs (see Table 6.1). At the same time, the dominant trends in deployment appear to 

change significantly (DECC, 2012a, b). Figures 6.1 and 6.2 (pages 178-179) graphically 

illustrate the abrupt and significant change by showing the relative annual growth of 

key RETs as a percentage of total RET growth (Figure 6.1) and absolute growth in 

installed capacity in MW (Figure 6.2). Over the period 2001-2010, in both relative and 

absolute terms, wind power dominated annual installed capacity growth, accounting for 

around 80 percent of annual new RES-E capacity growth on average. This is consistent 

with the anticipation that wind power, both onshore and offshore, will contribute the 

vast majority to the UK RES-E sectoral target (DECC, 2011f). However, in 2010-11, the 

share of total wind dropped from 81 percent in the previous year to just 37 percent, the 

first time that wind power has experienced such a drop in annual growth in installed 

capacity. Although the share of onshore wind to annual installed capacity had been 
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dropping in recent years due to a corresponding growth in the share of offshore wind, 

the primary reason is due to highly significant deployment growth in two RETs that had 

previously displayed very little growth overall: solar photovoltaic increased from 77 to 

976 MW (+899 MW) and plant biomass (the key RET included in the ‘other biomass’ 

category) from 330 to 1,159 MW (+829 MW), accounting for 30 and 27 percent of total 

installed capacity growth in the same period, respectively.134 In comparison, onshore 

and offshore wind grew by +614 (20 percent) and +497 MW (17 percent), 

respectively.135 However, whether or not this trend will continue will depend on a 

number of factors including changes in subsidy level. This will be looked at further in 

Part III of the thesis. 

 

When the data for 2011 is broken down to provide a snap-shot of both installed 

capacity (Part A) and generation output (Part B) at the sub-national level, its is clear 

that England and Scotland dominate overall renewable electricity deployment and 

output in 2011 (Figure 6.3, page 181). Part A reveals that 65 per cent (+3,017 MW) of 

the UK’s onshore wind installed capacity and 89 per cent (+1,459 MW) of total hydro is 

found in Scotland. England contains 91 per cent (+1,678 MW) of the installed capacity 

for offshore wind and 89 per cent (+2,809 MW) of total biomass. In contrast to a 

significant amount of onshore wind capacity, by 2010 Scotland had managed to deploy 

only +10 MW of offshore wind136, and just 10% of the UK’s biomass capacity (+266 

MW). At the country level, England and Scotland dominate RES-E generation in the UK, 

with 48 per cent and 39 per cent, respectively. In contrast, both Wales (8 per cent, or 

+850 MW) and Northern Ireland (4 per cent, or +427 MW) combined only contain  

                                                             
134 The growth in plant biomass, and therefore ‘other biomass’ is due to Tilbury coal-fired power station 
(829 MW) being fully converted to biomass at the end of 2010. However, Tilbury biomass plant was 
closed on the 27 February 2012 due to a fire; plant closure for the majority of the year is reflected in the 
lower generation output for other biomass shown for the year 2011 in Table 5.1 (RWE npower, 2012). 

135 It should be pointed that Figures 5.1 and 5.2 do not analyse all RETs. However, the relevant data for 
the remaining RETs is taken into account in the statistics. The reason for the exclusion graphically was 
primarily for purposes of clarity and the fact that they accounted for around 10% or less of total 
deployment across the period. 

136 However, some renewable databases (e.g. RESTATS) allocate the Robin Rigg offshore wind farm (180 
MW) as a Scottish generation plant. The method of allocation for offshore renewables used here is where 
the cabling comes ashore, in this case, at Seaton in Cumbria, England (4COffshore, 2011). 
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              Figure 6.3 Sub-national renewable electricity installed capacity (A) and generation output (B) in 2011 (Adapted from DECC, 2011a, b, c; DECC, 2012a, b, 
c). Note: All data as of 31 December 2011. Offshore wind is allocated to the country where the cabling comes ashore (same method for determining installed capacity location). ¹ Other 

biofuels includes municipal solid waste combustion, animal biomass (excluding anaerobic digestion) and anaerobic digestion. Co-firing data cannot be shown at the sub-national level and 
therefore is not included in the other biofuels category. ² Solar PV installed capacity data does not includes 314 MWe at other sites not recorded at the sub-national level. ³ Onshore and 
offshore wind generation output data is not separated at the sub-national level. ⁴ Other biofuels generation output includes co-firing and plant biomass data. ⁵ Solar PV generation output 
data does not include another 106 GWh generated at other sites not recorded at the sub-national level. 
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around 12 per cent of the total installed capacity of renewable electricity technologies in 

the UK. As with Scotland, both nations are dominated by wind. In contrast, England is 

the only country at the sub-national level not dominated by wind power, despite 

possessing the vast majority of UK-wide offshore wind installed capacity. Of interest, 

Wales has +150 MW of offshore wind, the second highest in terms of installed capacity 

by country (the same is also true for hydro power in Wales, at +149 MW). The trends 

revealed in Part B are similar to those for installed capacity. With a combined total of 91 

per cent, England and Scotland dominate RES-E generation output, with 51 per cent and 

40 per cent, respectively. When RETs are examined at the sub-national level, England 

dominates biomass generation (85 per cent of the UK total), Scotland dominates hydro 

(94 per cent) whilst both countries generate 85 per cent of all UK wind output: 40 per 

cent for England (due primarily to offshore wind) and 45 per cent (due overwhelmingly 

to onshore wind). 

 

Table 6.2 (page 183) shows the installed capacity (Part A) and generation output (Part 

B) of renewable electricity technologies in Scotland for the years 2002 to 2011. As with 

the UK, Scotland generally follows the same trends (see Table 6.1): in 2011, onshore 

wind dominates both installed capacity and generation output, accounting for 63 and 51 

per cent, respectively. This trend has continued for the period examined here. However, 

Scotland bucked the 2011 UK overall ‘trend’ of low wind power deployment in both 

relative and absolute terms due to insignificant deployment of plant biomass (and 

biomass overall) and solar photovoltaic. Although hydro power is declining in relative 

terms, it is still significant in absolute terms, accounting for roughly a third of installed 

capacity and generation output in 2011. When the average amount of new annual 

installed capacity is examined at the technology level for the period 2002-11, 

approximately 86 percent of new installed capacity in Scotland is onshore wind; the 

figure is significantly higher for some years. In contrast to the UK overall, however, 

these trends have resulted in very little diversity in both RET capacity and output: 

insignificant biomass and offshore wind, although deployment of the latter should 

increase over the next decade or so. 
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Reflecting the dominant contribution of hydro power and onshore wind, RES-E 

generation output in Scotland is especially exposed to variations in rainfall and wind 

speed. This can be seen by the drop in total generation output for the years 2003 and 

2010, despite significant growth in deployment capacity. Although Scotland has 89 per 

cent of the UK’s total installed hydro power, output for this technology also declined 

significantly, from 4,877 GWh to 3,267 GWh (-1,610 GWh) between 2009 and 2010. In 

contrast, however, onshore wind increased output in 2010. Although the data at the 

individual wind technology level is aggregated, it is clear that the bulk of the increase 

(+303 GWh) will be from onshore wind, reflecting the minimal deployment of offshore 

wind in Scotland. Reflecting the domination of both hydro and onshore wind in 

Scotland, although total biomass showed growth in output (but only +92 GWh), overall, 

total increases in output in Scotland (+395 GWh) was significantly offset by the 

decrease in total hydro power, resulting in a net generation decline of -1,215 GWh. This 

resulted in generation actually declining from 10,730 GWh (2009) to 9,515 GWh in 

2010 despite net installed capacity increasing by +543 MW during the same period 

(Wood, 2010).  

 

Table 6.3 (page 185) clearly highlights these trends by showing overall RES-E 

generation as a percentage of total electricity generation in the UK, Scotland, England, 

Wales and Northern Ireland for the period 2003-11. Categorised together, renewables 

have consistently shown positive year on year growth in overall generation output 

before 2009.137 Post 2009, and as a consequence of the driest year since 2003, RES-E 

generation declined from a peak in 2009 of 20.9 to 19.1 per cent of electricity 

generation in 2010 (or 27.3 to 24.1 per cent of electricity consumption, the 

                                                             
137 There are two insignificant exceptions for Wales (2006) and Northern Ireland (2010) where 
generation output declined by 0.1%. 
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Table 6.3 Overall renewable electricity generation as a percentage for the period 2003 to 2011 
in the UK (Adapted from the Department for Business, Enterprise and Regulatory Reform 
[BERR], 2006; DECC, 2011a; 2012a; Scottish Government, 2011a; 2012) 

         

   
UK total Scotland Scotland ¹ Wales N Ireland England 

2003 
  

2.7 7.7   9 ² 2.6 1.6 1.9 

2004 
  

3.6 11.6      14.1 ² 3.1 2.0 2.3 

2005 
  

4.2 13.2 15.5 4.0 2.8 2.9 

2006 
  

4.6 13.3 16.9 3.9 3.4 3.1 

2007 
  

4.9 17.1 20.2 4.2 4.5 3.1 

2008 
  

5.5 18.0 22.0 4.3 6.4 3.6 

2009 
  

6.7 20.9 27.3 5.0 10.4 4.2 

2010 
  

6.8 19.1 24.1 5.1 10.3 4.7 

2011 
  

9.7 26.8 36.3    

                  

Note: ¹ The data in this column is different due to the fact that in Scotland, the renewables target is expressed as generation as a 
proportion of gross electricity consumption (defined as generation plus transfers into Scotland less transfers out of Scotland). The 
corresponding percentages for the UK as a whole are 4.2 (2005), 4.5 (2006), 4.9 (2007), 5.4 (2008), 6.6 (2009) and 6.7 (2010). ² The 
Scottish Government, 2009. ³ This is a provisionary figure using 2010's gross consumption as a proxy for 2011 as data for 2011 is not 
published until December 2012. 
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measurement used by the Scottish Executive).138 

 

 

6.3 Measuring the United Kingdom sectoral targets 

The 2009 Renewable Energy Directive has set the UK a legally-binding target of 

supplying 15 percent of its gross final consumption of energy from renewable sources 

by 2020 (Europa, 2009).139 In keeping with the sectoral approach adopted within the 

EU, the overall target has been split between the three major sectors: electricity, heating 

and cooling and transport. Table 6.4 (page 187) shows both the mandatory and 

indicative sectoral targets for the UK alongside the aspirational targets that the Scottish 

Government has set for Scotland. The UK government document ‘UK Renewable Energy 

Strategy 2009’ (DECC, 2009c) first established that the overall 15 percent target would 

equate to 239 TWh total final energy consumption in 2020. At the sectoral level, 

renewable electricity would contribute 30 percent (or 114 TWh) to final energy 

consumption, 12 percent (72 TWh) from heating and cooling and 10% from transport 

(49TWh). In terms of the 15 percent target, electricity would account for the greatest 

proportion, almost half of the total (49 percent) with heating and cooling (30 percent) 

and transport (21 percent) comprising the remainder.140 

 

                                                             
138 In contrast to the standard method utilised at the UK overall level and for the other countries to 
determine progress towards meeting the Renewables Obligation targets (renewable generation as a 
percentage of total electricity generation), RES-E generation in Scotland is alternatively measured as a 
proportion of gross electricity consumption when electricity transfers (imports and exports) are taken 
into account (the right-hand column of data for Scotland). This method results in significant differences 
between the two columns, given that Scotland can export over 10,000 GWh or 20-25 percent of total 
electricity generation in a year. It can also be particularly seen in the method by which the Scottish 
Executive expresses the Scottish RES-E targets (31 per cent in 2020 and 100 per cent equivalent in 2020). 

139 Section 15 of the Directive (2009/28/EC) on the promotion of the use of energy from renewable 
sources sets out the necessity of translating the European Community target of 20 percent for the overall 
share of energy from renewable sources into individual targets for each Member State due to variations in 
renewable energy potential and the energy mix of each Member State. The breakdown into national 
targets is set out in Annex 1 of the Directive. The Directive also established interim targets of 4 per cent 
(2011-12), 5.4 percent (2013-14), 7.5 percent (2015-16) and 10.2 percent (2017-18).  

140 These targets were further reiterated in the UK Low Carbon Transition Plan 2009 (DECC, 2009d), the 
UK Renewable Energy Roadmap (DECC, 2011f) and the UK Renewable Energy National Action Plan 
(DECC, 2010), the latter required under Article 4 of the European Renewable Energy Directive 
(2009/28/EC).  
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Table 6.4 Renewable energy and sectoral targets at the UK and sub-national level for 2020 

         
  

RED Target  
 

Sectoral Targets ² 

  
 

    Electricity   Heat   Transport 

United Kingdom        

     % of total energy  15% ¹ 
 

30% 

 

12% 

 

10% 

     % of renewable 
energy 

- 
 

49% 
 

30% 
 

21% 

              TWh 
 

239 
 

114 

 

72 

 

49 

         Scotland 
 

              

     % 
 

30% 
 

100% 
 

11% 

 

10% 

     TWh 
 

42 ³ 
 

36 ⁴ 
 

6.4 
  

     GWe 
 

⁻ 
 

16 
 

2.07 
  

                  

Note: ¹ This is the only legally-binding target. ² Sectoral targets are indicative only, and thus could potentially 
change over time. ³ Calculated using the target ambition of 139.5 TWh total energy consumption by 2020 in 
Scotland under the Energy Efficiency Action Plan 2010 (30% of 139.5 = 42 TWh) (Scottish Government, 2010a). ⁴ 
Estimate of the 100% RES-E target translated into TWh. 
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There are inherent difficulties in translating the target into installed capacity, 

particularly for those renewable electricity technologies that depend on the wind, solar 

or water resources. This is part of the reason underlying the variation for both the UK 

and Scottish targets when expressed as installed capacity. It is estimated that the UK 

requires around 35-40 GW of RET deployment capacity in order to achieve the sectoral 

target, equating to 30-34 percent of the target (DECC, 2009c). At the end of 2011, 

approximately 12 GW of RET capacity was installed. The equivalent Scottish target is 

between 16-17 GW, compared to around 5 GW of total current deployment in 2011 

(equating to between 29 to 31 percent of the Scottish target).141 Put in context, the UK 

and Scotland require between 22 to 27 GW and 11 to 12 GW, respectively. In order to 

meet the sectoral target, the required annual increase in deployment capacity for the UK 

is between 2.5 and 3.1 GW per annum. For Scotland, between 1.2 and 1.3 GW is required 

per annum. 

 

As stated previously, the key RETs anticipated by the government to account for the 

majority of deployment to 2020 are: onshore wind (13 GW, requiring an increase of 

+8.4 GW by 2020), offshore wind (18 GW, requiring an increase of +16.2 GW by 2020) 

and biomass conversion and dedicated biomass (6 GW of biomass capacity is 

anticipated to be needed, requiring an increase of around +3.5 GW by 2020 of which 

around 75 per cent (or 2.6GW) would come from biomass conversion and dedicated 

biomass). This would equate to around 37 GW towards the 2020 sectoral target. 

However, caution is required in interpreting these ‘capacity amounts’: they are modelled 

assumptions of potential deployment and not technology-specific targets nor indicative 

of the level of government ambition (although there is some uncertainty regarding this, 
                                                             
141 In contrast to the UK, over the last two decades the Scottish Government has set a series of 
increasingly ambitious targets for both total renewable energy and renewable electricity: from 18 percent 
by 2010 (set in 2003) to 31 percent of gross electricity consumption by 2011 (see section 5.2, page 163). 
With regard to the 2020 target, originally this was set in 2003 at 40 percent of electricity consumption 
from renewables by 2020. Since then the target has been increased from 50 percent in 2007 to 80 percent 
in 2010. In 2011, the Scottish Executive declared a new target of 100 percent electricity demand 
(consumption) equivalent from renewables by 2020 (Scottish Government, 2011b). Currently, there is no 
sectoral target for transport. For heating and cooling, however, the target stands at 11 percent. A new 
target of at least 30 percent overall energy demand from renewables has also been set for 2020, an 
increase from the previous target of 20 percent (Scottish Government, 2011c). Indeed, Scotland has 
always generated more than the proportionate share of renewable electricity due to the historical 
deployment of hydro power.  
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in particular see chapter seven, section 7.3.2). They are also dependent on falling costs 

and whether or not the government is successful in addressing the internal and external 

failures to deployment. The rest of deployment presumably would come from the 

remaining RET options142: omitting the key technologies, there is currently 4 GW of 

installed capacity from the non-key RETs as of 2011. 

 

Table 6.5 (page 190) shows the average annual deployment rates (in MW and as a 

percentage of total deployment) at the UK and Scottish level for the period 2002-11.143 

It is clear from Part A that average and actual annual deployment rates for the UK and 

Scotland both fall significantly short of this: the average annual deployment rate is 

+1,048 MW and +364 MW per annum for the UK and Scotland, respectively. This means 

that a step-change is required in terms of deployment. The UK has to almost treble the 

average deployment rate whilst Scotland has to quadruple its current average annual 

rate. Part A also highlights three main points: the required annual deployment has been 

achieved at the UK level only once (+3.1GW, in 2011); Scotland has never achieved the 

required amount, yet Scotland accounts for 41 percent of total UK annual average 

capacity; and deployment so far is heavily dependent on onshore and offshore wind 

(both RETs account for over two-thirds of total UK annual average deployment). 

Importantly, the 3.1 GW of deployment in 2011 was achieved due to increases in solar 

PV and biomass conversion, both RETs that had evidenced very little growth previously.   

                                                             
142 The remaining RETs exhibit insignificant average annual deployment (small and large-scale hydro, 
sewage gas, co-firing, landfill gas and shoreline wave and tidal stream). The exception is solar PV; 
however, virtually all growth in capacity has occurred only during 2010-11. 

143 The point in highlighting average annual installed capacity (deployment) rates separately at the UK 
and Scottish level is not to pro rata the individual sub-national and national targets. However, it serves to 
illustrate deployment levels to date and the additional new capacity required to meet both the UK and 
Scottish targets. Further, Scotland has gained a degree of control over renewable energy as part of the 
devolution process. As the sovereign state, however, it is the UK that is required to meet the sectoral RES-
E target as part of the legally binding EU 2020 renewable energy target. Sub-national differences in 
resource potential such as onshore wind in Scotland will have been taken into account in the setting of 
the UK target.  
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Table 6.5 Average annual deployment rates for key renewable electricity technologies at the UK and Scottish level  

              
A              
Country     2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 Overall Average 

UK (MW) 
  

371 386 931 492 600 1,007 1,247 1,207 3,187 1,048 

Scotland (MW) 
 

138 126 349 248 275 665 481 545 445 364 

Scotland as a % of UK deployment   37 33 37 50 46 66 39 44 14 41 

Total wind (MW)   207 191 632 389 523 930 1,018 954 1,110 662 

Total wind as a % of UK total deployment   56 50 68 86 87 92 81 79 35 70 

              
B              
              
Onshore wind   2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 Overall Average 

UK (MW) 
  

148 131 542 299 433 737 663 554 613 457 

Onshore wind as a % of  UK deployment 
 

40 34 58 67 72 73 53 46 19 51 

Scotland (MW) 
 

122 104 335 200 203 558 407 532 369 314 

Scotland as a % of UK deployment 
 

82 79 62 67 47 76 61 96 60 62 

              
Offshore wind   2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 Overall Average 

UK (MW) 
  

59 60 90 90 90 193 355 400 497 204 

Offshore wind as a % of  UK deployment 
 

16 16 10 19 15 19 28 33 16 19 

Other biomass ¹   2002-03 2003-04 2004-05 2005-06 2006-07 2007-08 2008-09 2009-10 2010-11 Overall Average 

UK (MW) 
  

27 1 27 40 83 58 101 93 1,020 161 

Other biomass as a % of UK total deployment 
 

7 0.3 3 8 14 6 8 8 32 7 

                            

Note: Data taken from Tables 5.1 and 5.2 (see text). ¹ Other biomass includes biomass conversion and dedicated biomass. 
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As stated previously, it is uncertain whether or not this trend will continue.144 In 

contrast, total wind only accounted for approximately a third of deployment in that 

year. 

 

Part B of Table 6.5 examines the average annual deployment of the key RETs. As 

expected from Part A, the average annual deployment rates for the key RETs fall 

substantially short of the required level: onshore wind (+457 MW per annum); offshore 

wind (+204 MW per annum); other biomass, including biomass conversion and 

dedicated biomass (+161 MW per annum). This equates to around +822 MW per 

annum.145 At this rate of deployment, the UK would miss the target by approximately 50 

percent. In other words, the UK needs to accelerate deployment of these key 

technologies up to 2020. This will depend on the UK government successfully 

addressing the internal and external failures that act to constrain deployment. 

Importantly, Scotland accounts for 62 percent of total UK onshore wind average annual 

deployment over the period 2002-11, emphasising the major role of onshore wind in 

that country and the critical contribution Scotland has with regard to the UK meeting 

the 2020 target. 

 

However, there are a number of inter-linked assumptions inherent in the generation-

based targets, both sectoral and overall. This has implications for the total installed 

capacity base required to meet the targets. Primarily, the targets are fundamentally 

based on the accuracy and therefore credibility that the 15 percent total renewable 

target will equate to 239 TWh in 2020. The most up-to-date projection for total energy 

consumption in 2020 is 1,590 TWh (DECC, 2010; DECC, 2011g), of which 239 TWh 

equates to 15 percent. With regard to the assumptions, firstly, there is no truly accurate 

way to establish the future level of consumption, due particularly to the variables upon 

which the projections are based, including but not exclusively, fossil fuel and carbon 

                                                             
144 Despite being beyond the data cut-off point for this thesis, it is worth pointing out that although solar 
PV deployment has increased by +713 MW in 2012, in contrast plant biomass has declined by -829 MW 
due to the closure of Tilbury power station in 2013 (Business Green, 2013). 

145 These RETs include small and large-scale hydro, sewage gas, co-firing, landfill gas and shoreline wave 
and tidal stream. 
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price projections, cost estimates for the power sector, growth projections and policy 

and legislative action (at the sub-national, national, regional and international levels). 

These variables will vary over time and interact in complex and critical ways (DECC, 

2011g). Second, the figure of 1,590 TWh is based on the UK achieving its ambitious 

energy efficiency targets across all sectors (DECC, 2010; Kelly, 2006). This means that 

the 15 percent target, or 239 TWh, equates to the actual minimum generation output 

from total renewables in the UK by 2020: if the energy efficiency measures are 

unsuccessful, and demand is not reduced, then renewable generation output will have 

to increase, proportionally. It is important to note, however, that the reasons mentioned 

above could also produce a positive effect on the target (for example, energy efficiency 

targets could be over-achieved), reducing the amount of renewable energy required. 

 

With regard to the electricity sectoral target, uncertainty is further increased by the 

observation that if either of the two other sectors under-performs with regard to their 

specific targets, there is the possibility that renewable electricity will have to over-

perform.146 Currently, and for the last two decades, attention has focused primarily on 

renewable electricity.147 In addition, in order for the current heating and cooling targets 

to be met, analysis has shown that a proportion of demand from both sectors will have 

to be met via the electricity sector (the electrification of heating and cooling and 

transport) with electricity demand expected to double (CCC, 2009; DECC, 2009c). Both 

points add uncertainty, and result in the fact that the sectoral targets, particularly for 

electricity, equate to the minimum possible target that must be achieved if the legally-

binding 15 percent target is to be achieved. 

                                                             
146 At the sectoral level, projections of total electricity consumption for 2020 are 377 TWh, with 599 TWh 
for heating and cooling and 486 TWh for transport.146 As can be seen from Table 5.4, electricity comprises 
the smallest sector. As with the overall target, the sectoral projections include the UK achieving its energy 
efficiency measures, and the impact of the various variables on energy demand into the future. 

147 Total renewable generation output stood at 54 TWh in 2010 (3.3 percent of UK total energy 
consumption). Renewable electricity accounted for the largest amount by sector (25.7 TWh), whilst 
heating and cooling accounted for 14.1 TWh with provisional data for transport indicating 14.1 TWh 
(DECC, 2011f). Although there has been significant progress, particularly for the heat sector (e.g. the 
introduction of the Renewable Heat Incentive), the UK government views renewable electricity currently 
as the easiest, least cost option especially with regard to the approaching 2020 target despite the 
relatively small size of the electricity sector overall (DECC, 2009d). 
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The proposals included in the most recent Energy White Paper ‘Planning our electric 

future: a White Paper for secure, affordable and low-carbon electricity – July 2011’ (DECC, 

2011h), however, appear to change the role of the Renewables Obligation with regard to 

the 2020 sectoral RES-E target. The RO is now proposed to be vintaged and replaced by 

a Feed-in Tariff Contract for Difference (FIT CfD) mechanism in 2017. In addition, 

during the period 2014-17, the RO is anticipated to operate alongside the new 

mechanism. The relevance of these proposed changes to the target is that the UK 

Government now expects that the RO will contribute part of the installed capacity and 

generation output (80 TWh of large-scale RES-E generation by 2017) required to 

achieve the sectoral target of 114 TWh (DECC, 2012d). In other words, if these changes 

go ahead and on time, the RO will no longer be expected to achieve the target largely by 

itself. However, the current subsidy mechanism is expected to account for the majority 

of RES-E deployment/generation, approximately 75 per cent of the 2020 sectoral target. 

As such, the RO still remains critical to the achievement of the target. Emphasising this 

point, the replacement mechanism has still not been established in legislation and there 

are currently significant concerns regarding both the design and operation of the 

proposals and whether or not they will be legislated on time given the demanding 

timetable (Energy and Climate Change Committee, 2012). 

 
As with the UK targets, the same critical assumptions and issues underlie the renewable 

energy targets set in Scotland. In contrast to the UK, however, the Scottish Executive has 

not translated the targets from percentages to a measurement of generation output, 

with the exception of renewable heat: 11 percent has been equated to 6.4 TWh (Scottish 

Government, 2011d). Targets for both renewable electricity and heat have, however, 

been translated into installed capacity, with 16 GW and 2 GW, respectively (Scottish 

Government, 2011c). Critically, the Scottish Executive has not established clear and thus 

credible projections for total energy demand in 2020.  A review of the extant literature, 

however, reveals a number of disparate estimates for the RES-E sectoral target.  
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Projections for gross electricity consumption for Scotland by 2020 range from 36 to 44 

TWh.148 An examination of the various projections, however, show that the figure is 

likely to be around 36 TWh by 2020. Although this figure correlates closely with 

average statistics over a ten year period from 2001 to 2010 (DECC, 2006; DECC, 2011e) 

it appears to be based on the unfounded assumption of a growth in total consumption of 

around 10 percent. In relation to the specific target of ‘100 percent electricity demand 

(consumption) equivalent from renewables by 2020’ this therefore means that this 

Scottish Executive is seeking to increase generation output to double that, to 

approximately 72 TWh by 2020. It is important to note that total renewable electricity 

generation for the UK overall in 2011 was around 33 TWh, of which renewable 

electricity generation in Scotland accounted for 13.7 TWh (although it should be noted 

that this was a record year due to higher than average rainfall and wind speeds 

increasing average generation output). This means that renewable generation will have 

to increase roughly three-fold over the next 9 years.149  

 

Currently undefined, what does the 30 percent total renewables target actually mean in 

terms of generation output? The Scottish Government (2010a) document ‘Conserve and 

Save: The Energy Efficiency Action Plan for Scotland’ states that the 2020 target 

maximum consumption of energy is 139.5 TWh. Providing a limit on total consumption, 

the 30 percent target would therefore equate to 42 TWh. Although the combined 

                                                             
148 At the lower end, AEA in their report ‘Energy Storage and Management Study’ (AEA, 2010) estimate 
gross electricity consumption by 2020 to be 36 TWh. In the report ‘Coping with High Renewables 
Penetration in Scotland’, Garrad Hassan (2010) estimate estimates a figure of 43.7 TWh (however their 
study uses incorrect data for the baseline year – 40.9 GWh in 2008 instead of the actual figure of 35.4 
TWh (see DECC, 2011e): utilising the same methodology onto the correct baseline data results in a figure 
of between 36-38 TWh, close to the AEA projections). In addition, the ‘Draft Electricity Generation Policy 
Statement 2010’ by the Scottish Government (2010b) provides a figure of 28.9 TWh based on the previous 
RES-E target of 80 percent – if this is scaled up to 100 percent, it would increase to approximately 35 
TWh. At the upper end, and in contrast to the draft electricity generation statement, in 2011 the SNP 
released a brochure clearly stating that total electricity consumption in Scotland by 2020 was estimated 
to be around 43.8 TWh (Scottish Government, 2011e). This represents a difference of over 8 TWh from 
the draft statement estimate and correlates closely with the erroneous figure by Garrad Hassan. 

149 Interestingly, a concomitant three-fold increase in renewable electricity installed capacity (from 4.8 
GW in 2011) would equate to around 15-16 GW, showing a close correlation to the set target of 
approximately 16 GW. This is reasonable as most installed capacity by 2020 is likely to remain onshore 
wind. The previous 2020 target of 50 percent was calculated to comprise approximately 8.3 GW (Wood, 
2010), with the interim target of 31 percent by 2011 equating to 5 GW (Scottish Government, 2008). 
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sectoral targets for electricity and heating and cooling equate to 42 TWh, the 30 percent 

overall target is defined as ‘at least’ meaning that if and when the transport targets are 

able to be defined on a Scotland-only basis, the overall target will we undoubtedly 

higher (Scottish Government, personal communication).   

 

As mentioned previously, the Scottish renewable energy targets are purely aspirational. 

They are not legislated for by the Renewable Energy Directive, and thus are not 

mandatory.  The real significance of the highly ambitious RES-E target is that if achieved 

more or less on time, Scotland could contribute over 30 percent towards the UK 

electricity sectoral target total. This is important given that recent research has 

concluded that the UK would need between 6.6 and 11.4 GW of renewable electricity 

from Scotland to achieve its 2020 targets (Electricity Networks Strategy Group [ENSG], 

2009). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



196 

 

 

 

References 

4COffshore, 2011. Offshore Wind Farms Project Database [online] Available from 
http://www.4coffshore.com/windfarms/robin-rigg-united-kingdom-uk20.html 
 
AEA, 2010. Energy Storage and Management Study: October 2010 [online] Available 
from http://www.scotland.gov.uk/Resource/Doc/328702/0106252.pdf 
 
Business Green, 2013. RWE npower halts Tilbury biomass development [online] 
Available from http://www.businessgreen.com/bg/news/2279576/rwe-npower-halts-
tilbury-biomass-development 
 
Committee on Climate Change, 2009. Meeting Carbon Budgets – the need for a step 
change. Progress report to Parliament Committee on Climate Change 12 October 2009 
[online] Available from http://www.theccc.org.uk/reports/progress-reports 
 
Crown Estate, 2011. Our portfolio – Rounds 1 and 2 wind farms [online] Available from 
http://www.thecrownestate.co.uk/energy/offshore-wind-energy/our-portfolio/ 
 
Department for Business, Enterprise and Regulatory Reform (BERR), 2006. Digest of 
United Kingdom Energy Statistics (DUKES) 2005 [online] Available from 
http://www.decc.gov.uk/assets/decc/statistics/publications/dukes/dukes06.pdf 
 
Department of Energy and Climate Change, 2006. Electricity generation and supply 
figures for Scotland, Wales, Northern Ireland and England, 2004 to 2005: Special 
feature- Renewable energy December 2006 [online] Available from 
http://www.decc.gov.uk/en/content/cms/statistics/publications/trends/articles_issue
/articles_issue.aspx 
 
Department of Energy and Climate Change (DECC), 2009a. Digest of UK energy 
statistics: 60th anniversary edition [online] Available from 
http://www.decc.gov.uk/assets/decc/statistics/publications/dukes/1_200907291356
38_e_@@_dukes60.pdf 
 
Department of Energy and Climate Change (DECC), 2009b. Energy Trends – December 
2009 [online] Available from 
http://www.decc.gov.uk/assets/decc/statistics/publications/trends/1_200912220833
26_e_@@_trendsdec09.pdf 
 
Department of Energy and Climate Change (DECC), 2009c. UK Renewable Energy 
Strategy [online] Available from 
http://www.decc.gov.uk/assets/decc/what%20we%20do/uk%20energy%20supply/e
nergy%20mix/renewable%20energy/renewable%20energy%20strategy/1_20090717
120647_e_@@_theukrenewableenergystrategy2009.pdf 
 
 
 
 



197 

 

 

 

Department of Energy and Climate Change (DECC), 2009d. UK low Carbon Transition 
Plan: National strategy for climate and energy [online] Available from 
http://www.decc.gov.uk/publications/basket.aspx?FilePath=White+Papers%2fUK+Lo
w+Carbon+Transition+Plan+WP09%2f1_20090724153238_e_%40%40_lowcarbontran
sitionplan.pdf&filetype=4#basket 
 
Department of Energy and Climate Change (DECC), 2010. National renewable Energy 
Action Plan for the United Kingdom [online] Available from 
http://www.decc.gov.uk/assets/decc/what%20we%20do/uk%20energy%20supply/e
nergy%20mix/renewable%20energy/ored/25-nat-ren-energy-action-plan.pdf 
 
Department of Energy and Climate Change (DECC), 2011a. Digest of United Kingdom 
Energy Statistics (DUKES) 2010 [online] Available from 
http://www.decc.gov.uk/assets/decc/11/stats/publications/dukes/2312-dukes-2011-
-full-document-excluding-cover-pages.pdf 
 
Department of Energy and Climate Change (DECC), 2011b. Energy Trends – September 
2011 [online] Available from 
http://www.decc.gov.uk/assets/decc/11/stats/publications/energy-trends/2871-
trends-sep11.pdf 
 
Department of Energy and Climate Change (DECC), 2011c. Renewable Energy and 
STATisticS database: Historical Regional Statistics – 2010 Regional Data [online] 
Available from https://restats.decc.gov.uk/cms/historic-regional-statistics/ 
 
Department of Energy and Climate Change (DECC), 2011d. Renewables: Renewable 
electricity capacity and generation [online] Available from 
http://www,decc.gov.uk/assets/decc/Statistics/source/renewables/et6_1.xls 
 
Department of Energy and Climate Change (DECC), 2011e. Energy Trends – December 
2011 [online] Available from 
http://www.decc.gov.uk/assets/decc/11/stats/publications/energy-trends/3917-
trends-dec-2011.pdf 
 
Department of Energy and Climate Change (DECC), 2011f. UK Renewable Energy 
Roadmap [online] Available from 
http://www.decc.gov.uk/en/content/cms/meeting_energy/renewable_ener/re_roadm
ap/re_roadmap.aspx 
 
Department of Energy and Climate Change (DECC), 2011g. Updated energy and 
emissions projections – October 2011: Central Scenario [online] Available from 
http://www.decc.gov.uk/assets/decc/11/about-us/economics-social-research/3120-
annex-e-total-electricity-gen-by-source.xls 
 
 
 
 



198 

 

 

 

Department of Energy and Climate Change [DECC], 2011h. Planning our electric future: 
a White Paper for secure, affordable and low-carbon electricity – July 2011 [online] 
Available from 
http://www.decc.gov.uk/en/content/cms/legislation/white_papers/emr_wp_2011/em
r_wp_2011.aspx 
 
Department of Energy and Climate Change (DECC), 2012a. Digest of United Kingdom 
Energy Statistics (DUKES) 2012 [online] Available from 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/658
81/5949-dukes-2012-exc-cover.pdf 
 
Department of Energy and Climate Change (DECC), 2012b. Energy Trends [online] 
Available from https://www.gov.uk/government/organisations/department-of-energy-
climate-change/series/energy-trends 
 
Department of Energy and Climate Change (DECC), 2012c. Renewable Electricity – DECC 

data: Energy Trends, September and December – December 2012 [online] Available 

from https://www.gov.uk/government/organisations/department-of-energy-climate-

change/series/energy-trends 

Department of Energy and Climate Change [DECC], 2012d. Government response to the 
consultation on the proposals for the level of banded support under the Renewables 
Obligation for the period 2013-17 and the Renewables Obligation Order 2012: July 2012 
[online] Available from 
http://www.decc.gov.uk/en/content/cms/consultations/cons_ro_review/cons_ro_revie
w.aspx  
 
Electricity Networks Strategy Group, 2009. ENSG ‘Our Electricity Transmission 
Network: A Vision for 2020’ Full Report [online] Available from 
http://www.ensg.gov.uk/assets/ensg_transmission_pwg_full_report_final_issue_1.pdf 
 
Energy and Climate Change Committee, 2012. Draft Energy Bill: Pre-legislative Scrutiny: 
First Report of Session 2012-13: Volume I: Report, together with formal minutes – 17 
July 2012 [online] Available from 
http://www.publications.parliament.uk/pa/cm201213/cmselect/cmenergy/275/275.
pdf 
 
Europa, 2009. Directive 2009/28/EC of the European Parliament and of the Council of 
23 April 2009 on the promotion of the use of energy from renewable sources [online] 
Available from http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:EN:PDF  
 
Garrad Hassan, 2010. Options for Coping with High Renewables Penetration in Scotland 
[online] Available from http://www.foe-
scotland.org.uk/sites/files/Garrad%20Hassan%20PoSS.pdf 
 



199 

 

 

 

Kelly, N. 2006. The role of energy efficiency in reducing Scottish and UK CO₂ emissions. 
Energy Policy 32(2006): 3505-3515. 
 
RenewableUK, 2011. United Kingdom Wind Energy Database (UKWED) Statistics 
[online] Available from http://www.bwea.com/statistics/ 
 
RWE npower, 2012. Flexible power from biomass [online] Available from 
http://www.rwe.com/web/cms/en/1295424/rwe-npower/about-us/our-
businesses/power-generation/tilbury/tilbury-biomass-conversion/ 
 
Scottish Government, 2008. News Release: Renewable energy targets [online] Available 
from http://www.scotland.gov.uk/News/Releases/2008/09/09103722 
 
Scottish Government, 2009. Renewables Action Plan [online] Available from 
http://www.scotland.gov.uk/Publications/2009/07/06095830/0 
 
Scottish Government, 2010a. Conserve and Save: The Energy Efficiency Action Plan for 
Scotland [online] Available from 
http://www.scotland.gov.uk/Publications/2010/10/07142301/16 
 
Scottish Government, 2010b. Draft Electricity Generation Policy Statement 2010: 
Scotland – A Low Carbon Society [online] Available from 
http://www.scotland.gov.uk/Resource/Doc/331717/0107930.pdf 
 
Scottish Government, 2011a. Energy Statistics Summary: December 2011 [online] 
Available from http://www.scotland.gov.uk/Resource/Doc/933/0124593.pdf 
 
Scottish Government, 2011b. Renewables revolution aims for 100% [online] Available 
from http://www.scotland.gov.uk/News/Releases/2011/05/18093247 
 
Scottish Government, 2011c. 2020 Routemap for Renewable Energy in Scotland [online] 
Available from http://www.scotland.gov.uk/Resource/Doc/917/0118802.pdf 
 
Scottish Government, 2011d. Renewable Heat Action Plan for Scotland: a plan for the 
promotion of the use of heat from renewable sources [online] Available from 
http://www.scotland.gov.uk/resource/doc/290657/0089337.pdf 
 
Scottish Government, 2011e. Renewables Overview [online] Available from 
http://www.scotland.gov.uk/Topics/Statistics/Browse/Business/Energy 
Scottish Government, 2012. Energy Statistics Summary: December 2012 [online] 
Available from http://www.scotland.gov.uk/Resource/0041/00411495.pdf 
 
Wood, 2010. Renewable Energy policy in Scotland: An analysis of the impact of internal 
and external failures on renewable energy deployment targets to 2020.CEPMLP Energy 
Series, CEPMLP: Dundee. 
 
 



200 

 

 

 

Part III 

Applying the Systemic Approach 

 

 

 
The analytical core of the thesis is contained in Part III and comprises three chapters. 

This part draws from both part I and II. Part I set out the rationale and justification for 

why this subject was chosen and the way in which the research has been conducted. 

This was to evaluate the current UK approach to large-scale renewable electricity 

technology deployment to 2020 and beyond by adopting a systemic approach 

framework to determine whether or not the UK will be successful in addressing the 

potential constraints – the internal and external failures – to deployment. In particular, 

the first two chapters of Part III build on the literature review in chapter three to 

investigate and analyse the recent policy, legislative and regulatory changes introduced 

to determine the internal (chapter seven) and external (chapter eight) failures of the 

current UK approach to addressing the constraints to deployment. Both chapters draw 

on Part II of the thesis which set out the context regarding large-scale renewable 

electricity technologies. Finally, in the third chapter of part III, the analysis of the 

internal and external failures is then synthesised to reveal the systemic interactions of 

the constraints. 

 

Chapter seven is concerned with evaluating the internal failures on large-scale 

renewable electricity technology deployment. This is done by examining the reformed 

Renewables Obligation (2009 onwards) in order to determine what the internal failures 

are. Chapter eight is concerned with evaluating the external failures on large-scale 

renewable electricity technology deployment. This chapter is split into four main 

sections reflecting the four external failures examined in this thesis. Section 8.2 focuses 

on the planning system in England and Scotland in light of recent legislative and policy 

changes. Section 8.3 looks at the opportunities and barriers facing public participation 

and engagement, with a focus on meso-scale developments and community and locally-

owned projects. Section 8.4 examines the issue of network capacity and the method of 
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allocation and access to the electricity network with emphasis on the transmission 

network. This section looks in particular at both the onshore and offshore transmission 

systems in the UK overall with particular emphasis on Scotland. Section 8.5 focuses on 

policy risk with a particular emphasis on the various large-scale renewable electricity 

subsidy mechanisms (the Renewables Obligation and the proposed Contracts for 

Difference Feed-in Tariff in so far as it affects deployment under the RO mechanism). 

 

To ensure the analysis is rigorous, credible and transparent, both chapter seven and 

eight follow the first two criteria set out in the methodology chapter (chapter two). It 

investigates a comprehensive set of internal and external failures that capture the 

significant constraints that affect deployment. Further, it analyses the constraints in 

sufficient depth. This will permit the identification of the systemic interactions of the 

internal and external failures in order to evaluate the current UK approach to 

addressing these constraints to large-scale renewable electricity technology 

deployment carried out in chapter nine. 

 

Chapter nine utilises the analysis of both the internal and external failures presented in 

chapters seven and eight, respectively, to reveal the systemic interactions of the 

potential constraints examined here. This will be done in order to evaluate the current 

UK approach to addressing the potential constraints to large-scale RES-E deployment 

from a systemic perspective. 

 
It is also important to keep in mind that renewable electricity technologies are also 

highly heterogeneous, exhibiting a range of different technical, economic, 

environmental, and social attributes that are strongly dependent on the type of 

renewable electricity technology down to the sub-category level. Therefore, each of the 

different technologies is affected by the internal and external failures in different ways. 

This has particular implications for the deployment of these technologies. 
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Chapter Seven 
Potential constraints I: Internal Failures 
 
 
 
7.1 Introduction 

This chapter is concerned with evaluating the internal failures on large-scale renewable 

electricity technology deployment. The focus of the chapter is to examine the RO and the 

changes introduced by the 2009 reform along with subsequent reforms to the subsidy 

mechanism.  

 

Section 7.2 provides a background to the current situation regarding large-scale 

renewable electricity technology subsidy mechanism support. This is done in order to 

highlight the recent changes to the promotion of small and large-scale renewable 

electricity technology deployment in the UK, and the proposal to replace the RO with 

the novel Contracts for Difference Feed-in Tariff mechanism. Section 7.3 provides an up-

to-date explanation of the state of the reformed RO and the proposed changes set out in 

the most recent banding review and subsequent reforms in order to determine the 

internal failures. This sets out the government’s current approach to addressing these 

potential constraints to large-scale renewable electricity technology deployment. 

Section 7.4 involves an evaluation of the internal failures with regard to deployment.  

 

 

7.2 Background to renewable electricity support mechanisms 

The UK has operated a specific subsidy delivery mechanism for the generation of 

electricity from renewable energy sources since 1990. There have been three main 

policy instruments: the Non-Fossil Fuel Obligation (NFFO) from 1990 to 1998, the 

Renewables Obligation (RO) from 2002 until 2009 and the reformed RO (rRO) from 

2009 onwards (Mitchell et al., 2006; Wood and Dow, 2011). Each mechanism ran more 

or less in isolation for a discrete period of time.150 In addition, there are parallel 

                                                             
150 In other words, at the end of the NFFO period (1998-99) all new contracts were awarded under the 
incoming RO mechanism, with the same occurring under the RO/rRO transition (Wood and Dow, 2011). 
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mechanisms now in operation. What is notable in terms of the operation of the parallel 

subsidy mechanisms is that they are either differentiated by type of sectoral support 

(for the heat/cool or transport sectors) or by scale. Regarding the latter, the small-scale 

feed-in tariff for RES-E generation is differentiated from support for large-scale 

generation by the determination of a cap in installed capacity of between 50 kWe and 5 

MW (DECC, 2010a).151 Large-scale renewable electricity policy in the UK, however, is 

moving towards a rather unique position.  

 

Currently the main financial mechanism by which to subsidise and therefore enable 

RES-E generation to compete with fossil fuel generation, the rRO is expected to close to 

new generation from 31 March 2017. After this date, new renewable generation will be 

supported by the proposed Feed-in Tariff Contract for Difference (FIT CfD) scheme for 

low carbon technologies (nuclear, carbon capture and storage and large-scale 

renewables). This contrasts with the previous renewables only approach. Although the 

UK has at least limited experience with feed-in tariff style mechanisms, the FIT CfD 

represents a novel variant of the more typical FIT mechanisms used for domestic small-

scale generation and for RES-E internationally. Furthermore, it is expected that there 

will be a lengthy transition period, between 2013/14 and 2017, where new generation 

will be able to choose between accrediting under the rRO or the FIT CfD (DECC, 2011a, 

b). Put simply, two mechanisms with the same purpose (to support large-scale RES-E 

generation) but fundamentally different design will be operating at the same time 

within the UK with the novel and untested mechanism ultimately anticipated to take 

over the role of promoting renewable generation just three years before the target 

deadline.  

 

                                                                                                                                                                                              
Of course, projects commenced under previous mechanisms would still obtain the level of subsidy agreed 
and would be bound by the particular design context of the mechanism in question. It should also be 
pointed out that the various mechanisms were not implemented contiguously: there was a hiatus 
between the NFFO/RO of around 4 years (Edge, 2006). 

151 Under the transition arrangements established with the introduction of the FIT mechanism for 
installations with an installed capacity of under 5 MW, certain RETs (onshore wind, hydro, anaerobic 
digestion and solar photovoltaic) could accredit under either the FIT or the RO mechanisms, 
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Importantly, according to what was initially meant to be a final consultation on the level 

of technology banding subsidy covering the final banding period (2013-17) after which 

it will be vintaged, the rRO is expected to contribute around 80 TWh/year of large-scale 

renewable electricity generation by 2017 (DECC, 2012a). In other words, despite the 

proposed change in mechanism, the rRO is anticipated by the government to account for 

the majority of RES-E deployment/generation, approximately 75 percent of the 2020 

sectoral target, with additional RES-E generation presumably coming from the new FIT 

CfD and the small-scale FIT mechanisms.152 

 

These fundamental changes to the way in which RES-E is subsidised will occur at the 

same time that the UK is poised to commence an unprecedented deployment of 

renewable electricity technologies within a very short space of time to meet the 2020 

sectoral target. There will also be an equally unparalleled requirement in major upgrade 

and extension of the electricity transmission (both onshore and offshore) and 

distribution networks, not only in physical infrastructure but also in the design and 

function of the network towards smart grid and metering (DECC, 2009a; DECC, 2011c; 

OFGEM, 2010).153 Analysis indicates that up to £110 billion investment in electricity 

generation and transmission is likely to be required by 2020 alone.154 Therefore, the 

operation of the subsidy mechanism in terms of delivering the scale of long-term 

investment needed at the required pace is critical to a number of policy goals, including 

                                                             
152 The anticipated contribution of the RO (around 80 TWh/year by 2017) is based on modelling by Pöyry 
(2011) in the report ‘Potential Impact of Revised Renewables Obligation Technology Bands’ commissioned 
by DECC. The data and assumptions in the report were derived primarily from the Arup (2011) review 
into the generation costs and deployment potential of renewable electricity technologies commissioned 
by DECC . 

153 The UK electricity (and energy) sector is also undergoing considerable change with significant and 
wide-spread future implications: in addition to the legally-binding renewable and climate change 
(decarbonisation) targets, there are requirements for a major energy infrastructure replacement 
programme with the closure of approximately 20% of the UK’s electricity generating plant over the next 
decade or so (DECC, 2011b). Such replacement could require as much as 20-30 GW new installed capacity 
dependent on the choice of technology (Helm et al., 2009).  However, not all of the new generating plant 
will be renewables, given investment in nuclear, gas and CCS technologies, and nor will all the network 
infrastructure be solely for renewable electricity usage per se.  

154 Analysis carried out by DECC (2011b) and OFGEM (2010) show that around £75 billion could be 
required for new electricity generation capacity and around £35 billion of investment in the overall 
electricity transmission and distribution networks. 
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renewable energy, climate change and domestic and export markets and employment 

growth.155 However, the success of the mechanism with regard to meeting the sectoral 

target will not be determined purely in terms of whether or not the internal failures will 

constrain deployment. This will also be determined by the external failures notably 

planning, grid, supply chain, policy risk/uncertainty and public participation and 

engagement (see chapter eight on the external constraints), and importantly, the 

systemic interaction between the internal and external failures (see chapter nine).156 

 

It should also be noted that renewable electricity technologies are a distinctly 

heterogeneous category. As chapter five showed, such technologies are at different 

levels of research, development and deployment and exhibit multiple characteristics 

that relate directly to their relative potential to contribute to the 2020 sectoral target 

(and beyond). What is currently clear is that RETs are typically more expensive than 

non-renewable electricity technologies. The result of this is that for the time being the 

subsidy mechanism is critical to enable uptake by the market. This chapter will 

therefore examine the ‘mechanics’ of the rRO in detail. Given the lengthy transition 

period, and the expectation that the proposed FIT CfD will replace the current main 

mechanism, where relevant the FIT CfD will also be examined in this part of the thesis. 

To reiterate, internal (or structural) failures are barriers due to the design of the 

subsidy mechanism used to promote renewable electricity deployment. This category 

includes the type of promotional mechanism and how it operates, for example, what 

impact does the mechanism have on financial/investment risk. Other constraints in this 

category include mechanism operational lifetime (subsidy programme and/or subsidy 

duration) and mechanism complexity (see chapter two, in particular section 2.3 and 

Table 2.1 for more detail on the internal failures). 

 

 

 

                                                             
155 Indeed, as discussed previously, the scale of the investment requirements is one of the major reasons 
for the electricity market reform process and, in particular, the proposed introduction of the new FIT CfD 
mechanism (see chapter one). 

156 The external failures will be looked at in more detail in chapter eight. 
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7.3 The internal failures of the reformed Renewables Obligation 

The Renewables Obligation came into force in 2002 in order to support the generation 

of electricity from renewable electricity sources in the UK (OFGEM, 2011a).157 Due to 

the substantial existing and expected contribution of RES-E in Scotland towards UK-

wide renewable electricity generation, it is also important to look not just at the UK 

Obligation but also the Scotland-specific ROS where relevant (DECC, 2011d; Electricity 

Networks Strategy Group [ENSG], 2009; Scottish Government, 2011a). Although overall 

energy policy is reserved to the UK Government, with regard to Scotland in practical 

terms substantial areas of energy policy is devolved or under the control of the Scottish 

Government. Devolved energy matters include the promotion of renewable energy and 

energy efficiency, consents for new electricity generating plant and transmission lines, 

planning and building regulations, environmental regulation, climate change, fuel 

poverty and transport (Scottish Government, 2009a). Decisions regarding the operation 

of the Renewables Obligation Scotland are for the Scottish Government. Under the ROS, 

the Scottish Government also has the power to offer technology banding subsidy levels 

that differ from the overall UK approach in addition to other powers (see below).158 

 

The current RO has not remained the same since its original implementation over a 

decade ago. Since 2009 there have been three major ‘waves’ of alterations to large-scale 

RES-E generation subsidy in terms of the overall RO mechanism design along with 

numerous revisions to both the structure of components of the mechanism and the level 

of subsidy offered to renewable electricity supply technologies: the consultation 

                                                             

157 The term RO will be used throughout the dissertation to encompass all three Obligations unless 
specified otherwise where appropriate. 

158 Regarding energy matters, Scotland has more devolved powers than Wales or Northern Ireland 
regarding the Renewables Obligation. For example, although nuclear power (and fossil-fuel power) is a 
reserved energy matter for the UK Government, decisions over new build ultimately lie with the Scottish 
Government due to the devolved planning powers, in particular Section 36 of the 1989 Electricity Act 
(National Archives, 1989). This means that the national administration can and has effectively vetoed 
new nuclear build in Scotland (Scottish Government, 2007). In contrast, Wales has no such equal power 
over planning: “While we continue to believe it is anomalous that consents for large power stations are 
executively devolved to Scotland and not Wales…” (Welsh Assembly Government, 2010: 11). However, the 
devolved administrations cannot change the type or the fundamental operation of the mechanism (for 
example, from rRO to FIT CfD or the introduction of changes such as banding or headroom mechanism). 
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document ‘Renewable Energy: Reform of the  Renewables Obligation – May 2007’ 

(Department of Trade and Industry [DTI], 2007) that came into effect on 1 April 2009; 

the 1 April 2009 reform of the RO, the subsequent changes as part of the ‘Consultation 

on Renewable Electricity Financial Incentives’ (DECC, 2009b, c) that came into effect on 1 

April 2010; and the on-going proposals in the ‘Planning our electric future: a White 

Paper for secure, affordable and low-carbon electricity – July 2011’ (DECC, 2011b) in 

conjunction with the ‘Consultation on proposals for the level of banded support under the 

Renewables Obligation for the period 2013-17’ (the Banding Review) (DECC, 2012a). In 

particular, the latter two documents will have substantial implications not only for the 

RO mechanism but the way in which RES-E is fundamentally supported in the UK in the 

future.  

 

Table 7.1 (pages 209-211) shows the current subsidy levels for those renewable 

electricity technologies supported under the rRO/ROS and the future levels for the 

period 2013-17 as set out in the first statutory banding review of the mechanism (DECC, 

2012a; Scottish Government, 2012a). The period covered by the review runs until the 

mechanism is proposed to be vintaged and no longer open to new projects.159 When 

technology banding was originally introduced in April 2009 to provide differentiated 

levels of support for different technologies, the reasoning underlying the design of the 

banding structure and the allocation of the individual RETs was based primarily by 

assessing the expected current and forward costs over the next few years for each 

technology (Wood and Dow, 2011). The principal costs were defined as capital and fuel 

costs and the findings of this cost-benefit analysis were then utilised in modelling the  

                                                             
159 Although the data cut-off point for this thesis is 31 December 2011 (see Chapter One, Section 1.7 for 
the reasoning behind this date), both the UK Government and the Scottish Executive recently published 
their responses and final decision on changes to the rRO/ROS mechanisms, respectively (DECC, 2012a, b; 
Scottish Government, 2012a). Given the importance and potential impact of such changes, the inclusion of 
this data beyond the 2011 cut-off point is deemed necessary and justifiable. It should be pointed out, in 
addition, that the governmental responses did not overall deviate significantly from the position 
proposed in the original consultations published in 2011 (DECC, 2011a; Scottish Government, 2011b).   
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electricity market.160 The consultation document ‘Renewable Energy: Reform of the 

Renewables Obligation – May 2007’ (DTI, 2007: 13) stated that: 

 
“We have found that these costs seem to fall into loose groupings which reflect at 
least in general terms the market and technological development that the 
technologies have reached to date. We are, however, also aware that there is a 
considerable degree of uncertainty over cost predictions… Given these 
uncertainties, the Government does not think it appropriate to make fine 
distinctions between the levels of support given to different technologies but rather 
to take groups of technologies and set support levels which reflect the general 
position of that group.” 

 
 
This led to the five banded (or seven technology bands in the case of Scotland) structure 

after the RO reform: Established Band 1 and 2 (low risk/mature technologies: landfill 

gas (band 1, 0.25 ROCs/MWh), sewage gas, co-firing of non-energy biomass (band 2, 0.5 

ROCs/MWh), Reference (1 ROC/MWh: relatively mature technologies but requiring 

significant capital investment: onshore wind, hydro-electric, co-firing of energy crops, 

energy from waste), Post-Demonstration (1.5 ROCs/MWh: relatively immature 

technologies with the potential to undergo large-scale deployment in the near future: 

dedicated regular biomass), Emerging (2 ROCs/MWh: very immature high-risk 

technologies: offshore wind, solar photovoltaic, geothermal, marine renewables (RO-

only), dedicated biomass energy crops and regular biomass with CHP, microgeneration) 

and Enhanced Band 1 and 2 (the same as Emerging but only operational under the ROS 

mechanism for wave and tidal stream technologies: tidal stream (band 1: 3 ROCs/MWh) 

and wave power (band 2: 5 ROCs/MWh).161 

 

                                                             
160 Ernst and Young (2007) carried out the initial analysis and informal consultation on current and 
future costs and Oxford Energy Research Associates [OXERA] (2007) undertook the modelling. Both were 
commissioned by the UK Government. 

161 The initial subsidy level for the technology bands set in 2009 is contained in Schedule 2 (Electricity to 
be stated in ROCs) Part 2 (covering Articles 27(4), (5) and 33(3) of the Renewables Obligation Order 
2009 (ROO 2009), the secondary legislation provided for in the Electricity Act 1989 as amended by the 
Energy Act 2008 (the primary legislation). Although examples of where RETs have had a subsequent 
change in subsidy level is examined later in this section, such examples are due to the triggering of 
emergency banding criteria or more recently under the scheduled banding review (see below). 
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It is clear from the number of current bands that the position has changed from a 

general, loose grouping of technologies to a more detailed distinction in the 

differentiated levels of support offered under the rRO. As of 2013-14 there will 

effectively be ten bands with the number changing throughout the period up to 2017.162 

With a limited number of exceptions, four significant points can be drawn from the data 

in Table 7.1: (1) Subsidy levels for the majority of RETs decline between 2012-17 or to a 

lesser extent remain constant over the period; (2) A cap in subsidy level linked to 

offshore wind has effectively been introduced with the exception of marine renewable 

technologies (see below); (3) Rules governing biomass electricity and waste have been 

tightened up, particularly in relation to sustainability and cost issues; and (4) There is 

the prospect for further changes to the RO mechanism. 

 

Regarding the first point, those technologies that are in effect being banded down 

during the overall period up to 2017 include onshore wind, offshore wind163, hydro 

power (although this is only for the RO and not the ROS where the subsidy level will 

remain unchanged), landfill gas, solar photovoltaic, advanced conversion technologies 

(only advanced gasification and pyrolysis), tidal barrage and tidal lagoon, geothermal, 

microgeneration and all biomass electricity and waste RETs with the exception of 

dedicated biomass with CHP (the subsidy level will remain constant until 1 April 2015 

when the band will close to new accreditation), energy from waste (subsidy level will 

remain constant) and biomass co-firing standard including solid/gaseous biomass (<50 

percent) and bioliquids (<100 percent) where the subsidy level will, despite  

temporarily fluctuating downwards, remain overall the same.164 Not all RETs, however, 

exhibit a reduction in subsidy at the same time or rate (see Table 6.1).   

                                                             
162 There will be effectively 13 technology bands as designated by differentiated levels of support for 
different RETs by the closure of the RO in 2016-17 (if no further changes occur which is unlikely given the 
number of new consultations proposed for RO-eligible technologies, see below). 

163 Although offshore wind is banded down during 2013-17, the Government previously consulted in 
2009 to reduce the subsidy from 2 to 1.5 ROCs per MWh output from 1 April 2015 (DECC, 2009b). 
Therefore, it can be argued that this technology has effectively been banded up. 

164 With the exception of wave and tidal stream and most co-firing technologies, it is notable that all the 
other RETs included in the ‘UK Renewable Energy Roadmap’ (DECC, 2012c) are effectively banded down 
in the period remaining until the RO is vintaged. This is despite the fact that the roadmap stated that such 
technologies (including onshore wind, offshore wind and non co-firing biomass electricity and waste 
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Alongside the reduction or stabilisation in subsidies for the majority of RETs, the 

government has set a cap on the maximum number of ROCs per MWh output linked to 

offshore wind (2 ROCs/MWh until 2014/15, 1.9 ROCs/MWh in 2015/16 and 1.8 

ROCs/MWh in 2016/17). In other words, offshore wind is the marginal cost of meeting 

the 2020 RES-E sectoral target: 

 
“As offshore wind remains the marginal technology, we would reduce the maximum 
ROC level for all technologies in line with the reductions for offshore wind – i.e. in 
2016/17 no new accreditations should receive more than 1.8 ROC.” (DECC, 2011a: 
11). 

 

Wave and tidal stream represent the only exception. At the UK level both marine RETs 

will be banded up to 5 ROCs per MWh output in line with the existing subsidy level 

under the ROS since 2009.165 This maximum subsidy level, however, is dependent on 

the generating capacity being installed and operational by 31 March 2017 and only for 

those installations with an installed capacity of up to 30 MW accredited from 1 April 

2012 to 31 March 2017. Those projects above the capacity cap will be awarded 2 

ROCs/MWh and thus will not be linked to changes in the subsidy level offered to 

offshore wind.  

 

With the exception of biomass co-firing standard (see above), all other co-firing 

technologies will evidence increases in subsidy during the period. This is in contrast to 

all other RETs except for wave and tidal stream (see above), and in a similar vein to 

these technologies, the increases are subject to a number of conditions that varies 

depending on the type of co-firing technology. Biomass co-firing enhanced high range 

(85-100%) will be subject to further consultation with the proposal to introduce a cost 

control mechanism with the intention by government to implement such a mechanism 

                                                                                                                                                                                              
technologies would account for the major contribution of the renewable energy required to meet the 
2020 sectoral target (see Section 7.3.2). 

165 In actual fact marine renewables received the equivalent support level of 5 ROCs per MWh output 
since 2006 under the Marine Supply Obligation (MSO). The MSO was closed with the introduction of 
technology banding as part of the RO reform in 2009 (Wood, 2010). 
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in time for the 2014/15 Obligation period.166 Where either biomass co-firing standard 

or enhanced RETs are deployed in-conjunction with CHP, the proposed increase in ROC 

uplift (from 1 to 1.5 ROCs/MWh) will only be available to new accreditations until 31 

March 2015. Thereafter, both bands will be closed from the start of the next Obligation 

year. Regarding biomass co-firing energy crops standard with and without CHP, the 

proposed increase in ROC uplift (the same as for biomass co-firing standard or 

enhanced with CHP) will not be available for mid and high range (50-100%) 

technologies. In addition, consultations are forthcoming with the proposal to close both 

such technology bands.  

 

As can be seen from the above discussion, both the UK Government and the Scottish 

Government have introduced new and at times diverging conditions on the use of 

bioenergy and waste. Such alterations to the mechanism are primarily due to reasons of 

sustainability and cost. As the ‘UK Bioenergy Strategy’ (DECC, 2012d: 58) states, the aim 

is that of “Promoting cost and carbon-efficient biomass electricity… through the 

Renewables Obligation Banding Review consultation.” Importantly, the co-firing cap 

which was initially set at the time of the 2009 RO reform will be removed for both the 

RO and the ROS.167 In addition, there are further proposals either in the process of 

consultation or proposed for future consultation (see below). This has driven the 

changes to co-firing: in general, higher subsidy levels have been offered to those 

technologies that use limited energy crops with or without CHP and those RETs that 

utilise increased percentages of biomass in the co-firing process. In contrast, although 

                                                             
166 Although not implicitly set out in the Government response (DECC, 2012a), the document does states 
the intention to take action to control spending on biomass conversion if the rate of uptake of this RET is 
higher than anticipated. This could take the form of the cost control mechanism suggested for biomass co-
firing enhanced high range. 

167 During the 2007 consultation on reforming the RO the Government initially intended not to impose a 
cap on co-firing. Instead an emergency banding review trigger was included in the event that co-fired 
ROCs surrendered accounted for more than 10% of the total Obligation at any given time (Department of 
Trade and Industry [DTI], 2007). This was retained but a 10% cap was implemented after further analysis 
and the fact that co-firing was banded up (from 0.25 to 0.5 ROCs/MWh output during the consultation 
process (Department of Business Enterprise and Regulatory Reform [BERR], 2008; Oxford Energy 
research Associates [OXERA], 2007). Subsequently the co-firing cap was increased to 12.5% (OXERA, 
2009). The primary reason for introducing the cap in the first place was potential volatility in the volume 
of co-firing and the effect this would have on other RETs and the stability of the ROC price overall (DTI, 
2007).  



216 

 

 

 

the majority of co-firing RETs have increased subsidy levels (though with strict 

conditions), most bands will either close from 1 April 2015 or are subject to 

consultations on whether or not the band in question should be closed. In addition, 

those co-firing technologies with the potential for significant and rapid deployment 

potentially face the implementation of cost control mechanisms at a later date. There 

are also changes to the definition of energy crops. The major difference between the RO 

and ROS is that of dedicated biomass. The UK proposal is whether or not to introduce a 

supplier cap and introduce new minimum emission standards. This would exempt 

qualifying CHP plants. In contrast, the Scottish approach is to propose to introduce a 10 

MW capacity ceiling for large-scale wood-fuelled stations without qualifying CHP plant.  

 

Both the UK Government and Scottish Executive decisions on the RO also include a 

significant number of future consultations to be carried out that will bring additional 

changes. The UK Government is re-consulting on 10 different areas including the 

closure of bands, introducing a supplier cap for dedicated biomass and a cost control 

mechanism for co-firing and biomass conversion, excluding solar PV from the RO for 

new projects at or below 5 MW installed capacity and changing the level of support for a 

number of RETs including standard co-firing, onshore wind and solar photovoltaic. The 

Scottish Executive is re-consulting on 8 different areas.168 Table 6.1 shows which 

technologies will be subject to further consultation under the RO mechanism. Despite 

the conclusion of the Banding Review in July 2012, the UK Government has already 

announced a U-turn on holding a consultation into excluding new small-scale 

generators from the RO mechanism from 1 April 2013. This would have left these RETs 

(including solar photovoltaic, anaerobic digestion, onshore wind and hydro with an 

installed capacity of between 50 kW and 5 MW) under the small-scale FIT (DECC, 

2012a). In the case of solar PV, however, the Government has announced its intention to 

re-consult on excluding only solar PV from sub-5 MW RO support. 

 

                                                             
168 Given the similarity between the three Obligations and the deliberate policy to keep the RO, ROS and 
NIRO as similar as possible, the majority of the Scottish Executive’s additional consultations are the same 
as those put forward for the RO. Differences are discussed in text. 
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Table 7.2 (page 218) summarises the major structural components of the reformed RO 

and the key differences in the ROS. An important component of the 2009 reform of the 

RO is the banding review process to determine changes in subsidy support levels over 

time to reflect changes in RE costs and other market developments and the process for 

setting the bands during future review periods (or emergency reviews, see below). Both 

of these are critical in order to maintain a stable and predictable system for investors 

and developers. The key point regarding the review process was that it was set to occur 

on a time basis rather than being triggered by the deployment of a particular volume of 

generation capacity being reached. Although the secondary legislation, in this case the 

Renewables Obligation Order 2009 (ROO 2009) (National Archives, 2009) legislates for 

the first banding review to occur in October 2010 and to occur at subsequent four 

yearly intervals169, changes to the level of support for RO-eligible RES-E are set out in 

primary legislation: Section 32D (4) of the Electricity Act 1989 as amended by Section 

37 of the Energy Act 2008 (National Archives, 1989, 2008). The statutory factors 

required by law when the Secretary of State carries out a banding review include: : 

taking into account full project costs (planning, construction, capital, transmission and 

distribution), income (wholesale price of electricity, avoided costs of the EU Emissions 

Trading Scheme (EU ETS), Climate Change Levy, Landfill Tax), the desirability of 

securing the long-term growth and economic viability of the industries associated with 

RES-E generation, supporting the aim to maximise deployment in a sustainable manner 

and the potential contribution of RES-E to the attainment of any energy target from the 

EU.170 

 

Section 33(3) of the ROO 2009 also provides for an (emergency) review of all or any 

banding provisions at any time if the Secretary of State is satisfied that the conditions

                                                             
169 The frequency of banding reviews was originally linked to planned changes in the EU ETS scheme, 
expected to be the 1 April 2013 and 1 April 2018 with any changes to be announced 18 months prior to 
the introduction of such changes specified in the banding review. With the proposed closure of the rRO to 
new capacity from 2017 in line with the Electricity Market Reform and the introduction of FIT CfD 
mechanism, however, the review process has been brought forward by almost a year (DECC, 2012a). 

170 See Part 2 – Electricity from renewable sources - Section 32D (1) to (4) for the relevant provisions in 
the Energy Act 2008 (National Archives, 2008). 
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established in Section 33(3) are met. Differing from the factors for regular banding 

reviews (see above), these emergency triggers include: if another major support scheme 

with an impact on renewables starts, ends or is subject to significant changes; over-

compliance of the obligation; other unforeseen event with a significant impact on the 

operation of the RO; significant changes in transmission/distribution charging for 

connecting/generating; demonstrated significant variation in net costs for a specific 

technology that changes the economic rationale for setting banding levels; and if a new 

technology with the ability for large-scale deployment arises. 

 

The success of the banded mechanism is also strongly dependent on the correct 

inclusion of the appropriate RETs to the appropriate band during the process for setting 

the bands during future review periods. A number of criteria have been established in 

order help achieve this. These criteria include: taking into account full project costs 

(planning, construction, grid issues), income (wholesale price of electricity, avoided 

costs of the EU Emissions Trading Scheme (EU ETS), CCL, Landfill Tax), supporting the 

aim to maximise deployment in a sustainable manner, taking into account net 

neutrality, taking into account the cost-effectiveness and long-term potential of various 

RETs in delivering the set targets (for renewable generation) and wider strategic issues 

(for example. sustainability, carbon emission reductions). 

 

One of the major effects of introducing technology banding to the RO was that the 

mechanism transitioned from a technology neutral to a differentiated support (subsidy) 

mechanism. As explained above, the levels of support for respective bands or more 

recently specific technologies can vary at the time of scheduled Banding Reviews (or 

emergency reviews) as set out in legislation. Alteration of the subsidy levels, however, 

could have a potentially negative impact on the position of companies that have made 

significant investments, particularly in the renewable electricity sector where most 

renewable electricity technologies have large upfront capital costs in contrast to more 

minimal operational and generational costs.171 This could conflict with one of the aims 

                                                             
171 This is not to say that the operational and generational costs (including maintenance costs) are 
insignificant per se. This will be true for those RETs with limited real deployment experience, particularly 
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of the RO, primarily “… to allow generators to finance the fixed costs of their 

developments over the lifetime of the project’s eligibility for RO support.” (Burges Salmon, 

2010: 1). Therefore the principle of grandfathering was introduced.172 Grandfathering 

essentially means that the level of RO support that a generator receives is fixed or 

‘grandfathered’ during the period that it is eligible for RO support from the point of 

accreditation. Importantly, the set level of support will not be reduced in any 

subsequent banding review. Grandfathering provides a guarantee of income to provide 

certainty and stability to the generator in order to secure third party debt and equity 

investment in the project. Sections 30 through to 32 of the 2009 Renewables Obligation 

Order established the legal basis of the principle of grandfathering (National Archives, 

2009).173 

 

Since the introduction of grandfathering in 2009, there have been a number of changes 

regarding which technologies are protected. In 2010, after consultation, the 

Government extended grandfathered RO support for Anaerobic Digestion, Energy from 

Waste, Dedicated Biomass (for non-fuel costs only) and Advanced Conversion 

Technologies. However, proposals to grandfather both bioliquids and energy crop uplift 

were rejected (DECC, 2010b, c). Although initially rejecting the proposal to grandfather 

dedicated biomass, the Scottish Government also decided after consultation to mirror 

                                                                                                                                                                                              
in the offshore (marine) environment or where they experience increasing component or deployment 
costs. 

172 Grandfathering was first discussed in ‘The Energy Challenge: Energy Review – A Report – July 2006’ 
document (DTI, 2006). Due to the aim of grandfathering (to provide a guarantee of income to provide 
stability to the generator and facilitate access to finance) and the fact that the idea was first published in 
the 2006 Energy Review, a transition arrangement was put in place: All generating stations (>50 kWe) 
except excluded RETs with full accreditation dates prior to 11 July 2006 would continue to receive 1 
ROC/MWh although additional capacity would be treated depending on the date of accreditation. If 
receiving accreditation between 1 April 2009 and full accreditation by 31 March 2011, those RETs to be 
banded up would move up into new band whilst RETs to be banded down or in receipt of capital grants 
would continue to receive 1 ROC/MWh (unless the capital grants were returned). All other generating 
stations would move to the allocated band (up or down) except those with capital grants which could 
continue to receive 1 ROC/MWh or repay the grant in question (BERR, 2008). 

173 Not all technologies and deployment scales were covered by grandfathering: Section 32(1) (ii) of the 
2009 Renewables Obligation Order removed microgeneration technologies and biomass or waste 
generating stations (including fuels produced from biomass or waste by means of gasification, pyrolysis 
or anaerobic digestion) from grandfathering. 
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the UK proposals for the above biomass and waste RETs (Scottish Government, 2010a, 

b). Further changes to grandfathering were consulted on as part of the 2011 Banding 

Review at both the UK and Scottish level. The result of these parallel consultations was 

that the grandfathering policy was extended to include biomass conversion, mid-range 

co-firing bands, high-range co-firing band, CHP uplift, energy crops uplift for dedicated 

biomass and bioliquids except where utilised for co-firing. With the exception of high-

range co-firing where grandfathering will come into effect on 1 April 2014, the 

extension of grandfathering to the remaining RETs is proposed to come into effect on 1 

April 2013 (DECC, 2011a; DECC, 2012a; Scottish Government, 2011b; Scottish 

Government, 2012a). 

 

A number of structural changes to the RO occurred directly after the 2009 reform as 

part of the ‘Consultation on Renewable Electricity Financial Incentives’ (DECC, 2009b, c). 

These alterations to the mechanism came into effect on 1 April 2010. As initially set out 

in the 2008 pre-budget report ‘Facing global challenges: Supporting people through 

difficult times’ the lifetime of the RO was extended by an extra 10 years to 2037 (HM 

Treasury, 2008).174 The duration of a maximum support period for projects was also set 

at 20 years for those projects which achieve accreditation on or after 26 June 2008 up to 

the 2037 end date for the RO, including any additional (new) or refurbished or replaced 

capacity. Originally introduced with the 2009 reform of the RO, the headroom 

mechanism was also increased from 8 to 10 percent. With the RO set to be vintaged 

from 2017 onwards, the headroom mechanism will operate until 2027 whereupon a 

‘Fixed ROC’ will be established (see below). Headroom works by providing a set margin 

between predicted generation (supply of ROCs) and the Obligation level (demand of 

ROCs) and is designed to increase industry certainty in the RO and ensure that the value 

of ROCs will be protected in the event that increased deployment will in turn increase 

the risk of over-compliance due to weather or market conditions in a given year. Indeed, 

one of the aims of introducing headroom is to stabilise ROC prices by preventing 

                                                             
174 The legal basis for the extension of the RO from 2027 to 2037 is article 17A(b) of the Renewables 
Obligation (Amendment) Order 2010 (for England and Wales) (National Archives, 2010a) and article 
17A(b) of the Renewables Obligation (Scotland) Amendment Order 2010 (for Scotland) (National 
Archives, 2010b). 
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fluctuations in value as has occurred where the gap between deployment and the 

Obligation level has varied considerably.175  

 

As was the case with the NFFO, the RO is an inherently complex mechanism for the 

government in terms of the administration of the mechanism by government and the 

independent energy regulator OFGEM. It also imposes requirements on 

developers/generators with regard to the level of knowledge and expertise necessary to 

operate within the mechanism. As can be seen from the discussion above concerning the 

evolution of the mechanism, particularly from the 2009 reform of the RO onwards, the 

complexity of the mechanism has increased. Subsidy mechanism complexity adds 

uncertainty and risk from the perspective of all potential investors, developers and 

operators of renewable generation plant.  However, large companies are better able 

than smaller generators to manage this complexity with in-house expertise and/or the 

ability to pay for such expertise. Mechanism complexity itself could act as a barrier to 

new entrants, particularly at the small, independent and/or community level. There is 

also the issue of lobbying and rent-seeking due to mechanism complexity, with 

numerous groups (for example, trade bodies, environmental organisations and within 

government) arguing for and against specific RET options against the back-drop of 

subsidy levels in particular. Indeed, the issue of mechanism complexity as an internal 

failure is set to increase with the next wave of reforms. 

 

The third wave of reforms to the Renewables Obligation centre around the ongoing 

process of electricity market reform in the UK.176  The most recent Energy White Paper 

                                                             
175 The 2009 reform also established the level of obligation at 20% in order to maintain RO levels above 
renewable generation up to 20%. This was subsequently removed in April 2010 as it would otherwise act 
as a barrier towards the 2020 RES-E target (around 30–35%) by placing an upper limit on the RO below 
what is actually required (Wood and Dow, 2011). 

176 The process of UK electricity market reform initially commenced with the reorientation of OFGEM’s 
duties in the Energy Act 2008 (National Archives, 2008: 77) to include “the need to contribute to the 
achievement of sustainable development.” (Section 83(2)(c) of the Act). This led to the energy regulator’s 
‘Project Discovery’ report from early 2009 to February 2010 (OFGEM, 2009; OFGEM, 2010).  At the same 
time the 2009 Pre-Budget Report (HM Treasury, 2009: 123) published the UK Government’s intention to 
“… take forward work to ensure the electricity market framework can most effectively deliver a fair deal for 
the consumer and the low-carbon investment needed in the long term.” This culminated in the previous UK 
Government publishing the ‘Energy Market Assessment – March 2010’ (HM Treasury and DECC, 2010) 
document which built on OFGEM’s analysis in conjunction with analysis from the recently convened 
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‘Planning our electric future: a White Paper for secure, affordable and low-carbon 

electricity – July 2011’ (DECC, 2011b) set out the proposals which include the 

introduction of a FIT CfD mechanism to ultimately replace the RO. It is not the intention 

of this thesis to evaluate the FIT CfD mechanism per se.177 Although the EMR and FIT 

CfD proposals have not yet been fully designed and/or implemented, and as such are 

considered here as external failures (specifically under policy risk/uncertainty, see 

chapter eight) they will obviously have implications for the current mechanism: what 

will be the duration of the new contracts? Will the new subsidy level be comparable or 

different to the RO? This is of particular importance in the decision-making process of 

developers seeking to deploy new assets over the next few years. In addition, there are 

specific changes to the RO mechanism regarding the transition arrangements being put 

in place with the aim to protect existing as well as future investments under the RO and 

provide confidence to developers/investors in order to prevent a hiatus in renewable 

electricity investment whilst the new market arrangements are put in place (DECC, 

2011b). This includes the acceleration of the RO Banding Review and the affect that has 

had on the setting of subsidy levels in addition to the changes proposed or already 

implemented under the recent RO review (see also  below). Both will be critical given 

the deployment levels required to meet the 2020 sectoral RES-E target and the short 

timeframe imposed on industry. 

 

The proposed transition arrangements fall broadly into two categories: (1) RO support 

to 31 March 2017 and (2) RO support from 1 April 2017 until 31 March 2037. In the 

                                                                                                                                                                                              
Committee on Climate Change’s first progress report towards meeting the legally-binding UK Climate 
Change Act 2008 (CCC, 2008). The first ‘Annual Energy Statement – 27 July 2010’ document (DECC, 2010e) 
stated the intention to issue the consultation document ‘Electricity Market Reform Consultation Document 
– December 2010’ (DECC, 2010d). This process led to the 2011 Energy White Paper (see above). 

177 As of the end of 2012 (the data cut-off point of this thesis), the Government had not released specific 
details of the proposed CfD FIT mechanism.  The 2011 White Paper set out the responses to the 
‘Electricity Market Reform Consultation Document’ and the rationale behind the government’s choice of a 
CfD FIT (DECC, 2010b, d). Published in December 2011, the ‘Technical Update’ (to the 2011 White Paper) 
focused on the institutional arrangements, the rationale for the Capacity Mechanism and the role of Final 
Investment Decisions during the transitional period. In addition, although the Government released the 
‘Energy Bill’ November 2012, this contained merely enabling legislation that permits the Secretary of 
State very broad powers to make regulations concerning the mechanism. In combination with the draft 
operational framework for the CfD FIT (also published in November 2012), both documents contain few 
critical details about both the mechanism and how it will operate.   
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period from the implementation of the FIT CfD (proposed for 2014) up to 2017, there 

will be a one-off choice of scheme for new RES-E projects, some limited grace periods 

and provisions for offshore wind phasing. The aim of grace periods is to ensure that 

projects that had invested on the expectation of receiving a certain ROC subsidy level 

could obtain this level upon commissioning.178 In particular, such grace periods will 

only cover grid connection and radar installation issues, the reason being that these are 

specific construction risks out-with developer control and normal managed business 

risk (DECC, 2011f). Where generators feel there is a significant risk of missing the 31 

March 2017 deadline due to factors out-with their control they will have the option of 

either choosing to accredit under the FIT CfD mechanism or to make use of a grace 

period. This will be a strictly controlled grace period for the reasons specified above and 

directed at those generators whose business case was based on RO support where 

accreditation was delayed beyond 31 March 2017. For those generators, the offer of 

grace periods will not affect the RO end date of 2037. The Government will put in place 

additional details, including evidence requirements for obtaining a grace period, closure 

to 2017. 

 

Under the Renewables Obligation (Amendment) Order 2011 (ROO 2011) (National 

Archives, 2011) generators of offshore wind stations are also permitted to phase their 

RO support (called offshore wind phasing). Due to the substantial expected increase in 

size of offshore wind farms, particularly those proposed for Round 3 and Scottish 

Territorial Water (STW) projects and the typically long timescales for offshore projects, 

generators are permitted to register up to five phases of turbines over a maximum 

period of five years (with the first phase being at least 20 percent of total accredited 

capacity). Each phase, like all other RETs, is eligible for up to 20 years support up to the 

RO end date. However, with the RO being vintaged in 2017 and closed to new 

accreditations and additional capacity, generators will be eligible to either accept 

support under the FIT CfD for any remaining turbines (phases) or register the 

remaining unregistered turbines under the RO before 31 March 2017 in order to avoid 
                                                             
178 Grace periods were originally introduced alongside technology banding in April 2009 for those RETs 
where support was decreased (DTI, 2007). Grace periods were also utilised in the recent banding review 
due to changes in subsidy level for certain RETs (DECC, 2012a).   
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receiving support split between the two mechanisms. As with the grace periods, the 20 

year support period will not alter the RO end date. 

 

Regarding the second category, the RO will be vintaged (it will no longer be open to 

accreditation for new stations resulting in a closed pool of capacity decreasing over time 

towards 2037), all RETs will be grandfathered at the rate set in 2017 (including those 

technologies not covered by grandfathering), the headroom mechanism will operate as 

normal until 2027 when a fixed ROC will be established until the end of the mechanism 

and provisions will be made for additional capacity (DECC, 2011f). 

 

 

7.4 An evaluation of internal failures as potential constraints on renewable 

electricity deployment  

In order to evaluate the potential performance of the Renewables Obligation, this 

section will analyse the internal failures of the mechanism on the deployment of 

renewable electricity technologies. As such, this section focuses on the way in which the 

UK Government financially promotes RES-E via the RO. This will include the wider 

implications of the design of the subsidy mechanism itself. 

 

Currently the single largest government policy instrument in terms of cost, the 

Renewables Obligation is the main financial mechanism by which to subsidise 

renewables in order to support their deployment (National Audit Office [NAO], 2008). 

As the NAO report ‘Government funding for developing renewable energy technologies’ 

(NAO, 2010: 20) states: “The Renewables Obligation is intended to provide a long-term 

and stable framework to support investment in renewable electricity generating 

technologies.” 

 

Before evaluating the internal failures on deployment levels, it is worth looking briefly 

at the reasoning behind the main changes to the RO.179 The main reason for reforming 

                                                             
179 For a more detailed account regarding the 2009 RO reform process cf. Wood and Dow, 2010.  
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the mechanism in 2009 was that the UK Government recognised that if the RO was left 

unchanged, renewable deployment levels would be insufficient for meeting already 

established RES-E targets of 10.4 per cent by 2010 and 15.4 per cent by 2015 (Wood 

and Dow, 2011). According to modelling commissioned by the UK Government, the non-

reformed RO would only attain 7.9 percent in 2010, 11.4 percent in 2015 and 12 

percent in 2020 (OXERA, 2007). During this time, the EU was also moving towards more 

ambitious renewable energy targets which resulted in the EU 2020 targets (European 

Commission, 2007). The intention behind the reform was that 

 
“It will provide the flexibility necessary to increase the deployment of renewable 
electricity generation in the years following 2009 and respond to the UK share of 
the EU 2020 target [by over-coming the] constraints on the availability and 
deployment of the cheaper forms of renewables which mean that, to meet the 
Government’s long-term targets for renewable energy, we will need a significant 
contribution from renewable sources that are currently more expensive.” (DTI, 
2007: 3).  

  

In order to meet the Government’s long-term RES-E target for 2020, the primary way to 

achieve this was through the introduction of technology banding to increase the 

contribution from currently more expensive renewable energy technologies with the 

potential for mass deployment such as offshore wind by providing appropriate levels of 

support and certainty for future investment through the RO. An additional benefit 

perceived by banding the RO was that it would effectively side-step the external failures 

that have acted as constraints on cheaper RETs such as onshore wind, increase total 

renewables growth and mechanism efficiency in terms of renewable capacity with only 

moderate increases in costs to consumers (BERR, 2008). 

 

 

7.4.1 Type of subsidy mechanism: The Renewables Obligation 

One of the critical failures of the current subsidy mechanism is that by its design the 

Renewables Obligation has led to increased financial risk for RES-E generators (Wood, 

2010; Wood and Dow, 2011). This is important because risk can be accorded a price. 

Under the RO, generators have two main sources of revenue: the sale of electricity and 

Renewable Obligation Certificates (ROCs), the latter capturing the ‘renewable’ (or 
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environmental) value of the electricity.180 A central problem is the considerable 

uncertainty surrounding the value of these revenue streams as they are traded on the 

market and thus are dependent on supply and demand.181 The RO, then 

 

“… (by design) passes regulatory risk to the private sector, which the private sector 
accordingly prices at a premium. This leads to leakage of the subsidy away from 
developers, as suppliers take a margin to deal with this risk and funding from 
financiers is therefore available on less favourable terms that it would otherwise 
be.” (L.E.K. Consulting and the Carbon Trust, 2006: 2). 

 

The added cost of the risk premium is not inconsequential: it could increase capital 

costs by up to 30 per cent (Johnston et al., 2007; L.E.K. Consulting and the Carbon Trust, 

2006). This is particularly significant given the currently expensive nature of renewable 

electricity and the high level of upfront capital costs required in constructing the RETs. 

Reducing risk for generators can increase the number of projects that are financially 

viable. An additional effect is that the mitigation of such risk can also facilitate access for 

other types of developers and/or investors seeking to develop renewable generating 

assets. 

 

In a liberalised market electricity prices are volatile and dependent on a multitude of 

factors that are often difficult to quantify and predict. As such, 

 
“… market players pay high premiums for converting fluctuating market prices into 
fixed revenue streams. Hedging can be done through a contract that limits the price 
fluctuation to a certain price band or fixed-price contract. The corresponding 
hedging fees reduce the risk, but at the same time represent an additional cost.” 
(Mitchell et al., 2006: 15). 

 

On the other hand, ROC values are also volatile due to regulatory risk. This has been 

aggravated by the introduction of technology banding as the government can and has, 

                                                             
180 The other revenues streams for a renewable generator are primarily the Climate Change Levy (CCL), a 
tax on the use of energy derived from fossil fuels introduced in April 2001 (with the exception of large-
scale hydro power and some energy from waste plants) and the Recycled Buy-out Premium from the RO 
(HM Treasury, 2012; Komor, 2004). 

181 Both electricity prices and ROC values are volatile for a number of reasons (see below). 
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albeit under specified circumstances changed the subsidy level offered to renewable 

electricity technologies and even replace the subsidy mechanism itself. By increasing 

the cost of finance through the addition of a risk premium on capital, the RO effectively 

militates against small, independent and community-based projects in favour of larger, 

typically multi-national energy utilities. The latter companies can reduce the risk 

through their ability to obtain cheaper finance due to their balance sheets or by 

managing the risks in-house (if they own both generating assets and supply companies) 

(Wood and Dow, 2011). This also highlights the issue of ownership of power generation 

in the UK. Six large multi-national companies (the ‘Big Six’) dominate both the electricity 

supply (99 per cent) and power station capacity (72 per cent) in the UK: E.On 

(Germany), EDF (France), Scottish power (Iberdrola, Spain), RWE npower (Germany) 

and Centrica and Scottish and Southern Energy (both British) (Friends of the Earth 

[FOE], 2011; Office for Gas and Electricity Markets [OFGEM], 2011b; Renewable Energy 

Association [REA], 2012a).  

 

Despite the advantages for the energy utilities, concern has been mounting over a 

number of years that the RO would constrain access to the level of investment required 

and that particularly in the current economic and fiscal context the energy utilities 

would be either unable or unwilling to provide the financial investment required. This 

means that other sources of investment would also be required (such as pension funds) 

and that the financial risks need to be contained. These are the primary reason for the 

introduction of a FIT CfD mechanism under the EMR (see Chapter Seven, Section 7.5). 

 

 

7.4.2 Subsidy Levels under the Renewables Obligation 

The aim in setting subsidy levels is to maximise the deployment of renewable 

technologies whilst keeping wider policy aims in mind (see below). Prest (2012: 26) 

succinctly highlights the major areas of concern relating to this: 

 
“If a [subsidy level] is set too high, then there will be a very strong market response 
and more support will be provided by electricity consumers than would have been 
necessary to incentivise significant levels of investment in generation capacity… 
generator profits will be more than a “reasonable” return on investment and the 
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costs that must be recouped from electricity consumers will be “excessive” [and 
could result in] drastic counter reaction by government… [This] in the longer term 
will lead to stop go markets in which investor confidence is undermined and longer 
term growth is impeded. Alternatively, if the [subsidy] is set too low there will be 
insufficient response and inadequate or even negligible levels of investment will 
follow, market growth will be impeded… If investing in renewable generation is not 
made sufficiently profitable, investors will invest in other energy businesses [or] 
other opportunities outside the energy sector.” 

 

This means that setting the support level is a critical enabling factor. However, it is only 

one of a number of enabling factors (see below). The appropriate setting of the subsidy 

level also has to take into account the heterogeneous characteristics of renewable 

electricity technologies, with the various individual technologies at different stages of 

development and deployment (see Chapter four). 

 

Section 7.2 examined the subsidy levels of the RO-eligible technologies for the period 

2013-17 set out in the recent Banding Review (see in particular Table 7.1). An 

evaluation of the subsidy levels reveals a number of trends with regard to RES-E 

technology deployment: (1) subsidy levels are being driven to a large extent by cost 

issues; (2) the RO offers the greatest level of support for offshore wind, onshore wind 

and co-firing; (3) certain RETs such as geothermal and solar photovoltaic are being 

effectively side-lined; (4) subsidy levels do not fully consider the issues of scale, 

developer/owner type or additional characteristics of RETs; and (5) regulatory 

uncertainty is increasing due to the RO/FIT CfD transition and replacement and the 

subsidy level is not stable for a number of important RETs due to the number of 

consultations already in the pipeline despite the conclusion of the Banding Review only 

a few months ago.  

 

The UK Government is attempting to balance controlling the costs of financially 

subsidising renewable energy through the RO while aiming to meet the renewable 

energy target.182 The issue of costs is of course important: consumers are particularly 

                                                             

182 This is also the case for the other subsidy mechanisms to promote not just RES-E deployment (the 
small-scale FIT) but for heat (the Renewable Heat Incentive) and transport fuels (the Renewable 
Transport Fuels Obligation). 
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sensitive to costs and renewable energy is typically more expensive than conventional 

forms of electricity generation (Komor, 2004; Mallon, 2007; Toke, 2011). Essentially 

this requires a trade-off in the particular approach adopted by the UK with regard to 

promoting RES-E deployment. This can be clearly seen by examining the aims for the RO 

mechanism set by the Government. As stated in the recent banding review that 

concluded in 2012, the aims of the RO are to ensure that (1) support levels under the RO 

will help meet the 2020 and interim RES-E sectoral targets; (2) support levels are 

suitable to deploy those RETs with the potential for mass deployment; (3) support 

levels are set as cost-effectively as possible to deliver good value for consumers; (4) 

ensure coordination with other DECC financial incentives schemes; (5) contribute to the 

effective delivery of wider energy and climate change targets to 2050 (including 

sectoral decarbonisation and security of supply); (6) to help provide long term energy 

security; and (7) to assist the UK renewables industry to become competitive in home 

and export markets, and in doing so, provide employment (DECC, 2011a; DECC, 2012a). 

As will be shown below, however, there are numerous points of conflict between the 

different aims of the RO. Over emphasising the reduction of costs, however, results in a 

number of implications for the deployment of a number of RES-E technologies. This will 

also have implications for the systemic interaction of the internal and external failures 

(see chapter nine). 

 

But what are the reasons underlying the change in emphasis towards RO subsidy levels 

being driven primarily by issues of cost over other considerations? These include the 

aims of the Banding Review and the specific capping of the subsidy level for RETs (with 

the exception of marine renewables) by linking it to offshore wind. The consultation on 

the recent Banding Review makes this clear: 

 
“In order to reduce excessive impacts on consumer bills and incentivise a sufficient 
level of deployment, we will need to reduce rents in the current banding levels, 
make use of the relatively cheap co-firing and conversion technologies, and drive 
down the costs of our marginal technology, offshore wind… By bringing down 
support for the most expensive technologies in line with the reducing costs of 
offshore wind, we ensure that we are not paying more than is necessary to get the 
deployment we need to meet our legally binding target.” (DECC, 2011a: 9). 
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The main reason for the emphasis on cost, however, is the Treasury operated Levy 

Control Framework (LCF) which sets an overall cap on the amount of money that can be 

levied on consumer bills over the current Comprehensive Spending Review (CSR) 

period – 2011-15 with the aim to support renewable electricity generation cost 

effectively. The LCF covers the RO, the small-scale FIT and will be extended to cover the 

FIT CfD when it becomes operational.183 In effect, it caps the money available for 

investment in renewables (and the money available for nuclear and CCS as well as 

renewables in the future as proposed for the FIT CfD) (HM Treasury, 2011). Introduced 

in the 2010 Spending Review, the LCF has set out the amount available to be spent over 

the period 2011-15 with a 20 per cent headroom mechanism of the total cap. 

 

The amount levied on consumer bills should be controlled to avoid excessive costs and 

thus rents paid and thereby improve the efficiency of the RO and other support 

mechanisms. However, the LCF can have a direct impact on energy investment 

decisions. The Energy and Climate Change Committee (ECCC] report ‘Draft Energy Bill: 

Pre-legislative Scrutiny: Volume I’ (ECCC, 2012a: 30) highlights a key problem with the 

LCF:  

 
“The Framework says that if forecast or out-turn spend for any policy varies 
beyond a 20% “headroom” of the cap, DECC must urgently develop plans for 
bringing them back into line – or the Treasury may seek a financial contribution.” 

  

This creates a new risk for deployment. By capping the amount of spending in any given 

year, there is the risk that if the number of investments exceeds the LCF cap deployment 

could be delayed at a cost to investors/developers. Yet modelling for the UK 

Government by Redpoint shows that renewable deployment will accelerate towards 

2020. This will be a particular problem for offshore wind given the scale of the projects 

now entering the development pipeline.184 Such projects exhibit lumpy investment 

coming through the market with a lot of developers aiming at the same timeframe to 

                                                             
183 The LCF also covers the Warm Home Discount scheme. 

184 In contrast to those offshore wind farms already operational which range in size (installed capacity) 
from 60 to 300 MW, new projects in development range from around 300 to 9,000 MW (Crown Estates, 
2012a). 
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have those built and developed. This is exacerbated by the short timeframe available for 

meeting the sectoral target. In terms of installed capacity (size) and the capital required 

these projects are typically 10-20 times the size of previous offshore wind farms (see 

Chapter Seven for further details on offshore wind deployment). However, DECC is 

required to take the LCF into account in setting the subsidy levels in the Banding 

Review, as can be seen in the impact assessment published alongside the Government 

response to the banding review consultation: 

 
“… bands were selected to ensure expected RO spend was less than the total RO 
budget for the four years of the Levy Control Framework (LCF) and that expected 
overspends in individual years did not exceed the 20% allowed flexibility on the 
overall LCF budget.” (DECC, 2012k). 

 

In other words, by controlling the amount available to be spent on renewables the LCF 

has arguably played a significant role in subsidy cuts under the RO. It is also a short-

term framework. As such there is a lack of understanding not only about how the LCF 

will operate but also about what will happen after 2015 in terms of whether it will be 

extended or not. Importantly, it leaves open another issue. The UK has statutory 

renewable and climate change targets and “the lights must be kept on”. This raises the 

issue of what is more important, the LCF or the targets. A four-year framework based on 

annual caps to manage an industry with 20-30 year investments horizons appears to be 

a mismatched solution to the issue of costs.  

 

With the publication of the UK Renewable Energy Roadmap, the government effectively 

prioritised four technologies that are anticipated to “… have either the greatest potential 

to help the UK meet the 2020 targets in a cost effective and sustainable way, or offer great 

potential for the decades that follow” (DECC, 2011e: 6). These include wind power 

(onshore and offshore), marine energy (wave and tidal stream) and biomass electricity 

(biomass conversion and dedicated biomass). However, the Roadmap ignored a number 

of other RETs, most notably solar PV which deployed almost 1 GW in 2011 in addition 

to a number of biomass electricity technologies including anaerobic digestion, energy 

from waste, landfill gas and sewage gas. As of the end of 2011, these technologies 

accounted for 80 per cent of total installed capacity (onshore wind 37 per cent; offshore 
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wind 15; and biomass electricity 28 per cent) and 82 per cent of total RES-E generation 

output (onshore wind 30 per cent; offshore wind 15; and biomass electricity 37 per 

cent). According to the Roadmap, these four RETs could contribute almost 90 per cent 

of the RES-E sectoral target by 2020 in terms of generation output.185 But what will be 

the impact of the type of mechanism used to promote RES-E on RETs in the UK as well 

as the changes introduced in the Banding Review? 

 

Although the 10 per cent reduction for onshore wind is evidence-based (to reflect long 

term cost movements), the Government has set this band (0.9 ROCs/MWh) for only one 

year, until 2014, pending the outcome of yet another review into the technology. This 

will have a number of repercussions not just for the technology but for the sector in 

general: the uncertainty could increase the financial risk on developers and lead to 

increases in the cost of capital (the risk premium) in addition to investors/developers 

waiting on the outcome of the new consultation. This could result in a hiatus in 

deployment. The political risk from the uncertainty over banding changes for the 

technology will also disproportionately impact on projects brought forward by small-

scale developers.186 This is because the subsidy reduction is based on the economics of 

larger-scale developments that are typically brought forward by larger companies such 

as the energy utilities in contrast to community or similar sized developers and the RO 

does not distinguish between the size of onshore wind projects with an installed 

capacity of 5 MW and above.187 This ignores the evidence that there are differences 

                                                             
185 However, when the Roadmap document was published in 2011, it stressed that the modelling “ranges 
do not represent technology specific targets or the level of our ambition.” (DECC, 2011e: 13, original 
emphasise (underline) retained). Since then, in the document ‘Renewables Obligation Banding review 
2013-17 – Public Consultation’, the Government appears to suggest that such deployment trajectories are 
now viewed at least within DECC as technology specific targets as set out in the individual technology 
chapters (DECC, 2012b).  

186 Small-scale in the context of the RO (as opposed to the small-scale FIT mechanism that supports 
projects with an installed capacity of between 50 kW to 5 MW) means projects with a deployed capacity 
greater than 5 MW but smaller than 50 MW – the meso-scale (Watson et al., 2010). 

187 The DECC-commissioned research ‘Review of the generation costs and deployment potential of 
renewable electricity technologies in the UK’ (ARUP, 2011) provided the data on the current and expected 
cost trajectory of onshore wind (and all other RETs) underpinning the changes to bands in the Banding 
Review.  However, rather than examine the economics of onshore wind farms at different scales (5-50 
MW and +50 MW projects) to take into account differences between meso and larger-scale deployments, 
ARUP consolidated the data into one scale (+5 MW). In contrast to the RO and ROS, higher support is 
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between meso and larger-scale onshore wind farm costs, with the former more 

expensive on average (Mott MacDonald, 2011).188 There are also likely to be the costs of 

community-scale participation (including lack of familiarity with the technology, policy, 

regulation and legislation). Indeed, the UK Renewables Roadmap states that the wide 

range of costs for onshore wind reflect, in part, the issue of scale (DECC, 2011e). In 

addition, there is concern that the subsidy cut could result in onshore wind 

development in peripheral and island areas being uneconomic despite higher average 

wind speeds due to the increased costs associated with the electricity network as well 

as supply chain and operation and maintenance issues.  

 

For smaller projects, in particular community-based or those that fit within the so-

called ‘meso-scale’ the reduction in revenue in conjunction with increased regulatory 

risks including revenue uncertainty will make it more difficult and expensive to secure 

finance. In other words, subsidy reduction will fall disproportionately on community-

based and meso-scale projects. A result of this is that a number of projects are likely to 

become unviable. This is despite the benefits that can accrue from this scale of 

deployment: reduced environmental impacts (locally-sourced supplies, reduced 

transportation), building supply chains, employment and industry growth at the local 

level particularly in rural areas in addition to mitigating planning and public acceptance 

and other barriers (see chapter eight, section 8.3) (DECC, 2012c). In addition, despite 

the specific aim of the reduction to deter poorly-sited projects, the subsidy cut will only 

serve to increase pressure on all developers to locate onshore wind farms in the areas 

of highest resource availability which has historically and continues to aggravate a 

number of external failures that have significantly constrained deployment in the UK 

(see chapter eight).  

 

                                                                                                                                                                                              
available for small-scale onshore wind under the Northern Ireland Renewables Obligation (NIRO). There 
are 3 bands for onshore wind: 250kW or below; >250kW to 5MW; and >5MW (Department of Enterprise 
Trade and Investment, 2012).  

188 Central costs for large and small unit wind farms are £1,350/kW and £1,450/kW, respectively (Mott 
MacDonald, 2011: 37). 
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In effect, offshore wind has been effectively banded up although future subsidy levels 

will also decrease during the period up to 2017 (by 10 per cent from 2015/16). In 

conjunction with the planned reduction in subsidy, the Government also made it clear 

that “… the cost of electricity from offshore wind would have to fall significantly by 2020 if 

we are to fulfil our ambitions, amounting to some 18GW of capacity” (DECC, 2012g: 3). 

This led to the establishment of the Offshore Wind Cost Reduction Task Force (CRTF) 

with the aim to reduce costs to £100/MWh by 2020.189 There is also currently around 

45 GW of offshore wind in the development pipeline (in construction, with planning 

consent, in planning pre-consent or development) (Crown Estates, 2012a, b). Offshore 

wind, then, is also expected to have a significant impact on RES-E deployment post-

2020. The important question is: What happens if offshore wind fails to achieve these 

cuts in the relevant timeframe? This is particularly relevant for a number of reasons. 

Contrary to previous expectations the cost of offshore wind development have escalated 

from the mid-2000s onwards rather than decreasing.190 Critically 

 
“… the trend downwards [in costs] is not likely to mirror the recent precipitous 
trend upwards. The period to the mid 2020s is most likely to see gradual 
reductions. And these can only be delivered if a range of key drivers can be aligned.” 
(United Kingdom Energy Research Council [UKERC], 2010: 97).191 

  

The Crown Estates report ‘Offshore Wind Cost Reduction: Pathways Study’ estimated that 

levelised costs would either increase (£150/MWh under the rapid progression model) 

                                                             
189 Currently the levelised cost (or lifetime cost of a project per unit of energy generated) of offshore wind 
is estimated at £149-191/MWh (DECC, 2011e). 

190 Between the late 1990s and mid-2000s the consensus was that offshore wind costs would fall 
significantly lower in the medium to long term. This premature conclusion was justified on the costs of 
the early deployment of the first two rounds of the Crown Estate’s Offshore Wind Leasing Programme 
(Rounds 1 and 2), contemporary deployment costs from other countries experiences with offshore wind 
and the historical trends evidenced from onshore wind. Instead, offshore wind capital costs had doubled 
between 2003 and 2008 whilst estimates of levelised energy costs had increased 50 % between 2006 and 
2009 (Ernst & Young, 2009; UKERC, 2010).   

191 Concern over increasing costs for offshore wind has been repeated by DECC, the CCC and the Crown 
Estates in various publications (Committee on Climate Change [CCC], 2012; Crown Estates, 2012c; DECC, 
2012g). The Crown Estate is a property portfolio owned by the Crown governed by an Act of Parliament 
(Crown Estate Act 1961) and managed by an independent organisation headed by the Crown Estate 
Commissioners. One of the largest property owners in the UK, it owns approximately 55 per cent of the 
UK’s foreshore and virtually all of the UK’s seabed from mean low water to the 12 nautical mile (or 2 km) 
limit. Surplus revenue is paid annually to HM treasury (Crown Estate, 2012d). 
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or remain relatively constant to 2014 before falling to between £115 to £134/MWh by 

2017 and £89 to £115/MWh by 2020 (Crown Estates, 2012c). This is dependent on the 

resolution of a number of key drivers that increase costs for offshore wind. 

 

These drivers include: gaps in the delivery schedule over the next few years; supply 

chain constraints and uncertainty; construction and technological risks; regulatory and 

financial incentive risks (RO/FIT CfD transition/replacement); planning issues; 

electricity transmission issues; component and material costs (steel, copper, turbines, 

etc); exchange rates (Crown Estates, 2012c; DECC, 2012g; UKERC, 2010; Wood and 

Dow, 2011). Not all of these drivers are exclusive to offshore wind. Indeed, a number of 

these issues are highly relevant to the potential performance of the UK RES-E 

deployment programme (see Chapter Seven). Costs are also expected to be higher for 

the later Crown Estates Rounds 3, Scottish Territorial Waters, Northern Ireland 

Renewable Energy Programme and Round 2.5 due to the difficulties associated with 

deploying the technology in deeper waters farther from shore (in contrast to the earlier 

rounds) (UKERC, 2010). Despite this, the UK Government has decided that there is not a 

sufficient case to provide different levels of support based upon these locational 

considerations due to the higher resource availability (DECC, 2012a). 

 

Linking the subsidy levels of more expensive RETs to offshore wind with the exception 

of marine renewables fails to take into account the different technological level of other 

non-offshore wind technologies. In addition, it does not take into account the benefits of 

scale or resource potential or additional beneficial characteristics such as providing 

renewable base-load capabilities, storage and flexibility of operation of certain RETs. 

Examples of such technologies include solar photovoltaic, anaerobic digestion and 

geothermal power. In particular, this will affect the latter technology. With a resource 

potential of 9.5 GW of installed capacity of a renewable base-load technology which 

could supply around 35 TWh/year, geothermal is currently at a similar stage of 

development to wave and tidal stream.192  In contrast to these two technologies, 

                                                             
192 9.5 GW is the equivalent of around 9 nuclear power stations. In addition, to power generation, a report 
published by Sinclair Knight Merz (SKM) found that the potential heat from geothermal could equal 100 
GW (SKM, 2012). By 2030 the global industry is expected to be worth around £30 billion (REA, 2012b). 
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however, subsidy support for geothermal will decline in line with offshore wind. This is 

despite the fact that although geothermal has been offered 2 ROCs/MWh since 2009, no 

deployment has occurred as of yet.193 In addition, it does not take into account 

additional beneficial characteristics such as flexibility of operation which is important in 

balancing the electricity system. Anaerobic digestion could also act as a base-load RET 

with a high level of flexibility of operation in addition to other environmental benefits  

including the reduction of landfill waste, providing bio-fertiliser as a waste product, 

conversion into biofuels, put into the gas grid and heat production(DECC and the 

Department for Environment, Food and Rural Affairs [DEFRA], 2011). However, 

although the technology is at an immature technological stage and there are varying 

costs depending on different types and sizes of plant (scale), the RO ‘one size fits all’ 

approach (also in evidence for onshore wind) will constrain the deployment of this 

technology despite such factors greatly varying the costs (DECC, 2012a). This means 

that the additional benefits of meso or community-scale ownership are also lost. 

Although a mature technology, hydro power is also another technology that could 

contribute primarily at the meso or community scale, and has the benefit of providing 

base-load and storable renewable electricity generation. There is a danger that the cut 

in subsidy from 1 to 0.7 ROCs/MWh could put in jeopardy around 300 MW of proposed 

capacity of 5 MW sites or above despite the benefits of this technology, including 

storage and frequency responses.194 These are key attributes as the UK increases the 

deployment of intermittent renewables. 

 

In 2011, almost 1 GW of solar photovoltaic was deployed under the small-scale FIT 

mechanism. This was the single largest increase in installed capacity for that year, and 

                                                             
193 The UK Government has provided funding of around £9.5 million to support the first two 
demonstration projects in Cornwall (Redruth and at the Eden Project) (DECC, 2012a). Interestingly, the 
UK and Iceland signed a Memorandum of Understanding that will explore the possibility of developing an 
electricity interconnector between the two countries to allow the UK to utilise Iceland’s geothermal 
power (DECC, 2012h). 

194 Scotland has the largest potential resource availability of new hydro power in the UK and has retained 
the current subsidy level (1 ROC/MWh) (Scottish Government, 2012a). 
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the first time onshore wind failed to lead in terms of deployment.195 In particular, solar 

PV has a number of benefits: it has a substantial resource base in the UK of up to 140 

TWh/year; strong growth in employment (estimates of around 25,000 with 3,800 PV 

installers accredited to the Microgeneration Certificate Scheme in 2011) (Parliamentary 

Office of Science and technology [POST], 2012); in the top ten high growth sub sectors 

in 2010 (Ernst & Young, 2011); can be deployed on-grid as well as off-grid; plays an 

important role in decarbonising the building stock; is suited to community-scale 

schemes (including housing associations and local authorities) (Energy and Climate 

Change Committee [ECCC], 2011a); and is a route for people to generate their own 

renewable electricity and be involved in the deployment of renewable energy.  

 

Deployment has been driven almost completely by the FIT to date. However, given the 

importance of this RET to overall renewable energy policy aims (in addition to the 

benefits listed above) there is the potential for large-scale (RO supported) solar PV. 

Under the RO, however, solar PV subsidy levels have also been linked to offshore wind, 

resulting in a reduction from 2 ROCs/MWh (2013/15) to 1.9 (2015/16) and 1.8 

(2016/17) (DECC, 2012a). However, despite the Banding Review only concluding a few 

months ago, a new consultation has been released indicating further reductions in RO-

eligible solar PV (DECC, 2012j). Proposals include resurrecting the removal of sub-5 

MW installations from the RO and further subsidy reductions for +5 MW installations: 

from the current 2 ROCs/MWh to 1.5 ROCs/MWh in 2013/14, 1.3 ROCs in 2014/15, 1.1 

ROCs in 2015/16 and 0.9 ROCs in 2016/17. These cuts mirror the scale of those that 

occurred for sub-5 MW installations supported by the FIT. Both are driven in large part 

by the introduction of the LCF in 2010.  

 

Such proposals act to increase uncertainty for solar PV developers due in part to the 

earlier cuts under the small-scale FIT mechanism196 and the number of consultations 

                                                             
195 Onshore wind came third with +614 MW and offshore wind fourth (+446 MW). Plant biomass was 
second with 850 MW. However, growth in solar PV has slowed dramatically due to the cut in FIT subsidy 
levels and the mishandling of the cuts by DECC (Business Green, 2011). In addition, further reductions are 
planned under the FIT (DECC, 2012i). 

196 Under the FIT, solar PV has faced repeated consultations (February 2011, October 2011, February 
2012) and evidenced significant reductions in subsidy (tariff) level at all scales within the scheme. The 
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that have focused on solar PV for the FIT and RO. As with other RETs already discussed 

previously, community solar power schemes face specific problems because of the 

Government’s proposals: 

 
“… they depend more acutely on the tariff income to finance the installations; they 
need longer to organise their projects; and they will be hit by even lower tariffs for 
‘aggregators’. Community schemes typically take longer to complete because 
securing the necessary funding and planning permission can take time. Many are 
run by volunteers and so they can take longer to organise.” (ECCC, 2011a: 14). 

 

Although this report looked primarily at FIT solar PV installations, the specific problems 

listed for sub-5 MW solar PV are the same for a number of RETs including hydro, 

onshore wind, anaerobic digestion and solar PV at the FIT and meso-scale deployment 

levels. Community-scale projects also require a sufficient financial return in addition to 

transparency and stability in subsidy levels in order to borrow capital at rates not 

prohibitive to development. Yet community-scale projects will typically find it harder to 

access capital as cheaply as larger companies would. The approach to solar PV (and a 

number of other RETs) is perplexing given the additional benefits of the technology and 

recent government-led aspirations for over 20 GW from the technology by 2020 (DECC, 

2012f). It also assumes that the cost reductions are indicative of a natural and 

sustainable fall and that the costs for sub-5 MW and +5 MW installations (and all the 

tariff bands/project sizes in-between) are the same.197 Although there are currently no 

                                                                                                                                                                                              
Government has been accused of mishandling the cuts (setting the new tariff levels prior to the end of the 
first consultation, retroactively cutting subsidies) with a resultant impact on the fledgling solar PV 
industry: “DECC’s own analysis shows the market could be cut by over 90%. The scale of uncertainty leaves 
the whole sector edging towards the cliff edge.” (Ares et al., 2012: 14).  Indeed, the High Court ruled on 21 
December 2011 that the setting the cut off date for the new tariffs two weeks before the end of the 
consultation was illegal. Both the Court of Appeal and the Supreme Court upheld the decision (BALILI, 
2012). For a full account of the reviews and reductions in subsidy under the FIT, see also the Inquiry into 
solar power feed-in tariffs (ECCC, 2011a, b; 2011c). 

197 There is some evidence that the costs of solar PV technologies will not maintain similar cost reductions 
due to the on-going trade dispute regarding solar ‘dumping’ (the selling of panels for substantially less 
than the cost of production) by China. On the 6 September 2012, the European Commission launched 
such an investigation into imports of solar panels and key components (solar cells, solar wafers) 
originating in China. Although the investigation is scheduled to take 15 months, it is possible according to 
trade defence rules to impose provisional anti-dumping duties (the imposition of import tariffs on 
Chinese solar PV equipment) within 9 months provided there is sufficient prima facie evidence of 
dumping which the EC has agreed exists (Europa, 2012). In a separate dispute, the US imposed import 
tariffs of up to 250% on Chinese exports (Mondaq, 2012). This is significant for solar PV in the UK and 
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+5 MW RO-eligible projects deployed in the UK, the impact assessment accompanying 

the new consultation shows that further reductions would cut deployment growth from 

720 MW to 0-80 MW by 2016/17 (DECC, 2012k). 

 

There are a number of reasons behind the decoupling of marine renewables from the 

offshore wind cap and the significantly higher subsidy level (5 ROCs/MWh). Although it 

is largely a symbolic gesture given the unlikelihood of any significant deployment for 

these technologies in the short-term it acts both as encouragement and an incentive to 

attract investors to the UK. The UK is currently a world-leader in wave and tidal stream 

technologies and the global focal point for their development. This can be seen by the 

concentration of R&D, testing and the Crown Estate leasing programmes. It is also 

relevant that this is heavily focused in Scotland which has offered a higher level of 

subsidy (ROCs and MSOs) for the longest period of time. The aim is to promote these 

technologies which have the potential to deploy at large-scale in the long-term (post-

2020) as well as benefits from domestic/export market growth and employment (DECC, 

2012a; L.E.K. Consulting and the Carbon trust, 2006). 

 

It is also necessary to enable wave and tidal stream energy to progress from the 

prototype testing stage to the deployment of single or small arrays in the marine 

environment in order to increase commercial and real-world experience and learning. 

As Wood (2010: 66) states: 

 
“Only by achieving this can wave and tidal power play a meaningful role with 
regard to the set targets for renewable energy deployment… for this to occur, there 
are five major challenges required to be overcome: financial support, planning, 
grid, infrastructure (including supply chain) and policy uncertainty.” 

  

Marine RETs are classed as an emergent technology. As such, they are a high-cost, high 

risk technology option (Forum for Renewable Energy Development [FRED], 2009). This 
                                                                                                                                                                                              
beyond for two reasons: China is the world’s largest producer of solar panels (61% of global production) 
and the EU accounts for approximately 80% of Chinese export sales (PVTech, 2012; Renewable Energy 
Policy Network for the 21st Century [REN21], 2012). Secondly, it can be argued that the proposed subsidy 
cuts in the UK are based on recent cost reductions in part due to the ‘dumping’ of Chinese equipment in 
the EU/UK market. Import tariffs can only increase the costs at a time when the UK Government is 
seeking to make deeper cuts for what are primarily budgetary reasons. 
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is true even in comparison to offshore wind which has significantly de-risked in terms 

of the market and technological level in recent years (Wood, 2010). The substantial RO 

support is important but only once generation begins and subsidies accumulate over 

time. One of the critical factors required to drive deployment to the deployment stage 

will be the provision of public funding from strategic funding bodies (Wood, 2010). 

Although the situation is improving the funding landscape has been described as overly 

complex with the potential for duplication and overlap between the schemes (at the EU, 

UK and devolved administration level), inefficiencies associated with projects having to 

apply to multiple schemes and the administrative costs associated (ECCC, 2012a; Wood, 

2010).198 Regarding revenue support, the increase in subsidy at the UK level will not 

occur until 2012/13 and will only run for five years. This is in contrast to Scotland 

where there has been an enhanced subsidy level for these technologies in operation 

since 2007.199 In addition, the 30 MW cap appears arbitrary, determined as it is on cost 

issues driven by the LCF (DECC, 2012a). 

 

Perhaps a greater risk to the marine renewables sector is the closure of the RO in 2017 

and the uncertainty regarding the proposed FIT CfD mechanism. There is a lack of 

continuity or long-term view concerning what happens beyond the deployment of the 

first (sub-30 MW) arrays (ECCC, 2012b). There is also the danger that if the LCF is 

extended beyond the current Spending Review, the higher costs of marine RETs will be 

constrained due to budgetary requirements. This position is not purely unique to 

marine RETs. All other renewable electricity technologies are currently faced with the 

same problem: the industry urgently needs clarity about the level of support it can 

expect to receive beyond 2017. It is all very well establishing the transition 

arrangements for the RO/FIT CfD switch, but it is difficult to take the position that 

                                                             
198 The UK government is also having to catch up with efforts in Scotland where there has been a number 
of funding initiatives to progress marine RETs from proof of concept RD&D to commercial deployment for 
a number of years (Wood, 2010). 

199 Prior to the introduction of technology banding in 2009, the Scottish Government established the 
Marine Supply Obligation (MSO) that ran from 2007 until 2009 (Scottish Government, 2008). In 2009, 
wave and tidal stream received 5 and 3 ROCs/MWh, respectively (comparable to the MSO support levels). 
In contrast to wave power, tidal stream will only increase to the same subsidy level in 2012/13 (Scottish 
Government, 2012a). 
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developers/investors will not wait and see what will happen regarding the new 

mechanism in terms of the details and possibly even the operation of the mechanism. A 

likely outcome would be a hiatus in deployment with subsequent implications for other 

policy aims, including the development of supply chains, industry and employment. 

Although this is the case with other renewable electricity technologies, marine RETs 

will be in the somewhat unique position of reaching the stage required for more 

substantial deployment. 

 

The situation for biomass RETs is more complex than before due to the changes that 

have been introduced for these technologies under the Banding review. Overall, in line 

with the UK Government’s aims to incentivise RES-E deployment whilst reducing costs, 

the UK Government is seeking to increase deployment from those technologies with the 

capacity to deploy significantly within a short timeframe in a cost-effective way (DECC, 

2012a). These technologies include dedicated biomass and sewage gas (previous 

subsidy level retained), biomass conversion (a new band although subsidy level has 

fallen by a third) and co-firing. Support for co-firing has been differentiated depending 

on the percentage of biomass (or bio-liquids) combusted with fossil fuels. In effect, 

support for co-firing has either been retained (with temporal decreases in subsidy 

between 2013/16 for standard co-firing) or increased for those bands with the highest 

proportion of biomass content (enhanced co-firing). Both standard and enhanced co-

firing with CHP and where energy crops are utilised have also had an increase in 

subsidy level, reflecting the benefits of heat production and using feedstock specifically 

used for biomass to build up the supply chain. Importantly, the cap on co-firing has been 

removed. With the exception of dedicated biomass, these biomass RETs represent the 

most cost-effective potential: co-firing of biomass is one of the cheapest and quickest 

ways to decarbonise electricity by switching from coal to biomass (DECC, 2012a). In 

contrast, eligibility for the dedicated biomass band requires new build power plants. 

This is the reason why the subsidy level has been retained at the previous level as 

analysis showed that this would only bring forward small-scale dedicated biomass 

plants below 50 MW (ARUP, 2011).  
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The UK Government anticipates that these biomass technologies will make a significant 

contribution towards the 2020 RES-E sectoral target. This can be seen by current and 

projected levels of biomass electricity in the UK. As set out in the UK Renewable 

Roadmap, biomass electricity is anticipated to deploy approximately 6 GW of installed 

capacity by 2020 (DECC, 2011e). At the end of 2011, the UK has around 2.5 GW of 

installed capacity of all biomass technologies already in operation. In addition, there is 

enough capacity in the development pipeline if historic planning approval rates are 

taken into account to meet the target which could provide between 32 and 50 

TWh/year (equivalent to 20-44 per cent of the RES-E sectoral target).200 The 

significance of this is that the focus on promoting more deployment of biomass 

electricity could result in increased deployment above the 6 GW target if future 

planning rates are equal to the historic failure rate. Another factor is the removal of the 

co-firing cap. In combination with the increased subsidy levels particularly for enhanced 

co-firing, this is expected to increase deployment significantly. However, the imposition 

of supplier and cost caps on the major biomass electricity bands and the reduction in 

the volume of coal capacity due to environmental legislation results in a fundamental 

constraint on co-firing post-2015. However, there are a number of problems with the 

promotion of biomass electricity in general and these RETs in particular. These include: 

sustainability issues and the proposed changes to a number of biomass bands, including 

proposals to introduce supplier and cost caps as well as band closures. 

 

While biomass energy is eligible for multiple public subsidies, including under the 

RO,201 there are substantial concerns over both the sustainability of biomass (in terms 

of greenhouse gas emissions and rate of resource renewal) and the inadequacy of 

current safeguards to ensure the fuel source is sustainable (Client Earth, 2012). As 

chapter four (section 4.2) showed, there are valid arguments that a number of biomass 

fuels and technologies produce significant greenhouse gas emissions. Although there is 

a high level of variation between technologies/fuel types used, some exhibit higher GHG 

                                                             
200 Generation output for 2020 also includes current generation in 2011. 

201 Biomass energy also benefits from an exemption from the European Union Emissions Trading Scheme 
(Client Earth, 2012). 



244 

 

 

 

emission levels than low carbon technologies and there is also considerable overlap 

with natural gas. Regarding GHG emissions, the CCC has stated that biomass should not 

play a role in power generation without CCS (CCC, 2011).202 In contrast to the UK 

position, the Scottish Government is in agreement with the CCC recommendations 

(Scottish Government, 2012a). There is also the issue of resource renewal and this is 

intrinsic to the debate of what constitutes a source of renewable energy. There is a 

growing awareness that biomass feedstock cannot support the current or required rates 

needed for the projected growth in energy generated from biomass (whether for power, 

heat or transport) (CCC, 2011). Although this is particularly the case for domestic 

biomass resources, there are also severe constraints on the import capabilities at the EU 

and global resource availability (Client Earth, 2012; Mantau et al., 2010). However, the 

UK Government has not differentiated support on whether or not the biomass is 

sourced domestically or internationally. Although there would be difficulties in this 

approach, they would also mitigate some of the problems of resource sustainability and 

contribute towards the development of a UK supply chain with resultant sustainability 

benefits (locally-sourced). Relying on an increased level of deployment for biomass will 

only exacerbate these problems. 

 

The UK Government is aware of these concerns, particularly the issue of sustainability 

of the biomass resource base. This has led, however, to a plethora of changes and a 

further round of consultations being placed on biomass RETs due to the need not only 

to increase but also, critically, to control the level of deployment/output from these 

technologies whilst remaining within the LCF cap. This has led to claims that the 

Banding Review has resulted in the biomass power sector becoming a ‘minefield’ for 

investors/developers due to the added complexity (National Non-Food Crops Centre 

[NNFCC], 2012). Such changes include the closure of technology bands as early as 1 

April 2015 for a number of biomass RETs. In addition, there are forth-coming 

consultations on proposals to change the level of support for standard co-firing in 

2013/14 and 2014/15, to introduce cost control mechanisms under the RO for the co-

                                                             
202 There are also other environmental, economic and social issues regarding the use of biomass for 
electricity production (see chapter four). 
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firing and biomass conversion bands and to introduce a supplier cap on dedicated 

biomass to limit the amount of new build supported under the RO.203 This means that a 

number of biomass technologies that are anticipated to contribute significantly to future 

RES-E deployment and generation face ongoing uncertainty which can only have a 

negative impact on industry confidence and deployment rates. This will also have 

additional implications for the development of a biomass supply chain given the 

uncertainty in subsidy levels and the supplier and cost mechanisms, in part due to the 

over-riding requirements of the LCF and the early closure of a number of bands. Apart 

from job growth and facilitating deployment, this could also potentially improve the 

sustainability of the biomass feedstock. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                             
203 The exact changes and forth-coming consultations  include: the closure of 7 biomass technology bands 
(open landfill gas on 31 March 2013, biomass conversion with CHP, dedicated biomass with CHP, co-firing 
standard with CHP, enhanced co-firing with CHP, standard co-firing of energy crops with and without 
CHP (from 1 April 2015); 8 new consultations (for dedicated biomass, both standard co-firing bands, the 
high-range enhanced co-firing band, co-firing of energy crops with and without CHP and sewage gas). The 
consultations on whether or not to impose a supplier or cost control mechanisms is for dedicated biomass 
and high-range enhanced co-firing and biomass conversion respectively (DECC, 2012a). 
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Chapter Eight 
Potential constraints II: External Failures 
 
 
 
8.1 Introduction 

The previous chapter evaluated the internal failures with regard to large-scale 

renewable electricity deployment. This chapter is concerned with evaluating the 

external failures on large-scale renewable electricity technology deployment. As such, 

this chapter examines the external failures in four sections: planning system, public 

participation and engagement, electricity transmission network (grid) and policy risk. 

As with chapter seven, the focus of the separate sections is to determine the external 

failures in these areas and evaluate them with regard to deployment. The external 

failures are not set out in any particular order.  

 

Section 8.2 focuses on the planning system in England and Scotland. Section 8.2.1 

analyses the available planning data for the key RETs in England, Scotland and the UK 

overall. In contrast to chapter six which provided capacity data for operational plant 

only, this section analyses the amount of large-scale renewable electricity technology 

capacity in the planning pipeline (under construction, awaiting construction, with 

planning consent, awaiting planning determination and withdrawn/refused planning 

consent). Section 8.2.2 examines the technology-specific attributes of the various 

technologies with regard to planning. In particular, this section will examine the key 

issues facing renewable technologies within the planning system. Finally, Section 7.2.3 

will examine the onshore and offshore planning systems in England and Scotland, 

respectively.  

 

Section 8.3 looks at the opportunities and barriers facing public participation and 

engagement, with a focus on meso-scale developments and community and locally-

owned projects. Section 8.3.1 examines the meaning of the term ‘meso-scale’ and the 

contribution from community renewable energy developments. Section 8.3.2 sets out 

the opportunities and barriers for public participation and engagement, with a focus on 
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community scale renewable energy projects. In particular, this section will focus on 

onshore wind, given the high level of interest in this technology and the amount 

anticipated by government to be deployed in order to meet the sectoral target. Section 

8.3.3 will look at the current approach to community benefits as a means of securing 

public consent for onshore wind developments in the UK. 

 

Section 8.4 examines the issue of network capacity and the method of allocation and 

access to the electricity network with emphasis on the transmission network. Section 

8.4.1 investigates the issue of upgrading the electricity transmission network with 

regard to connecting sufficient renewable energy generating infrastructure to meet the 

2020 target. This section will look in particular at both the onshore and offshore 

transmission systems in the UK overall with particular emphasis on Scotland. Section 

8.4.2 examines the recent or forthcoming reforms to the allocation and access to the 

transmission network. Both sections will focus specifically on onshore and offshore 

wind. As the bulk of RET infrastructure will likely connect to the transmission network, 

the focus of this section will be the UK electricity transmission section. 

 

Section 8.5 focuses on policy risk from a broader perspective with a particular emphasis 

on the various large-scale renewable electricity subsidy mechanisms (the RO and the 

proposed Contracts for Difference Feed-in Tariff in so far as it affects deployment under 

the RO mechanism).204 Section 8.5.1 examines policy reviews, reforms and policy risk 

facing large-scale renewable electricity technology deployment. In addition, chapter 

seven and chapter eight (sections 8.2 and 8.3) have previously evaluated policy risk 

with specific regard to the current subsidy mechanism, planning, public participation 

and engagement and electricity transmission networks, respectively. 

                                                             
204 It is important to keep in mind that renewable energy policy and the various technologies do not exist 
in a vacuum. For example, the energy sector includes fossil fuel technologies (coal, gas and oil), low 
carbon technologies (nuclear, carbon capture and storage) in addition to the diverse group of 
technologies that comprise the renewable energy category. Alongside the supply-side technologies there 
is the demand-side (storage, interconnectors, smart-grids, off-grid and embedded generation and demand 
management) and energy efficiency and conservation (including behavioural change). In addition, there 
are a multitude of other factors that influence renewable electricity policy and indeed any policy 
approach. Although these issues are discussed where relevant to the premise of this thesis, see chapters 
four and five (Part II) in particular. 
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8.2 The planning system 

The planning system is a critical enabling factor with regard to renewable energy and 

climate change targets. In 2011 the UK generated around 10 per cent of total electricity 

from renewable energy sources: by 2020, around 30-35 per cent is required to meet the 

sectoral target. Virtually all developments are required to obtain a priori planning 

consent. However, efforts to achieve these targets will invariably impact on the 

appearance and character of the physical landscape, particularly at the local level where 

people live (Nadaï and van der Horst, 2010). In addition, individual renewable energy 

technologies exhibit different attributes dependent not only on technology type but on 

the scale of development/deployment. These attributes include the generation output, 

level of geographical dispersal, plant size (in terms of acreage required for the power 

station) and resource availability and distribution.205 As such, this will have a number of 

implications for the planning process. 

 

The 2007 ‘Planning for a Sustainable Future White Paper – May 2007’ succinctly 

highlights both the importance of planning and the tension that exists between social, 

economic and environmental objectives: 

 

“Planning is of fundamental importance to the quality of people’s lives. When… 
done well it enables thriving, healthy, sustainable communities… It supports the 
economic development which is vital to create jobs and ensure our continuing 
prosperity as a nation. It helps us to protect our natural and historic environment 
and ensure everyone has access to green space and unspoilt countryside. It enables 
the delivery of essential infrastructure which allows us to travel and enjoy access to 
clean, affordable energy, water and waste facilities. Planning does all this by 
helping us to ensure development meets economic, social and environmental 
objectives in an integrated and sustainable way… But people have different views 
of, and different interests in, the way land is used. Planning is the forum for 
resolving those differences… [Also] Planning departments and committees are one 
of the parts of local government that people most frequently engage with because 
they take a strong interest in the future development of their neighbourhood and 
community.” (HM Government, 2007: 5). 

 

                                                             
205 These attributes are discussed in Table 4.2 and in text (see chapter four).  
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However, the planning system has continuously been viewed as a barrier to renewable 

deployment for over two decades under the Non-Fossil Fuel Obligation (NFFO), the 

Renewables Obligation (RO) and the reformed Renewables Obligation (rRO) (AEA, 

2010; ARUP, 2011; CCC, 2011; Department of Trade and Industry [DTI], 2007; Edge, 

2006; European Wind Energy Association [EWEA], 2009; Loring, 2007; Mitchell, 1995; 

Mitchell and Connor, 2004; Toke, 2005; Toke et al., 2008; Watson et al., 2010; Wood, 

2010; Wood and Dow, 2011; Woodman and Mitchell, 2011). But why is the planning 

system viewed as a barrier to renewable deployment. In other words, what are the 

major issues of the planning system with particular regard to renewable electricity 

technologies? Concerns exist that the planning system is too slow in granting consent, 

administratively burdensome in terms of complexity and cost, leads to uncertain results 

and fails to take into account national (and international) priorities set by legally-

binding renewable and climate change targets, particularly at the local level. In addition, 

the planning system has often been perceived as frustrating local and central 

government’s key political objectives (British Wind Energy Association [BWEA; now 

Renewables UK], 2009; Innovation, Universities, Science and Skills Committee, 2008a, b; 

Jones and Eiser, 2010; National Audit Office [NAO], 2008; 2010; Scottish Government, 

2005; Scottish Renewables, 2010a; 2012a, b). This highlights the fundamental tensions 

inherent within planning: speed versus quality; democracy versus efficiency; 

centralisation of priority or local priority; national priorities and local interests; 

certainty or flexibility and consensus or conflict (Ellis, 2008). How does acquiring the 

correct balance of these issues affect the acceptance of RET deployment? Critically, the 

interrelated question is ‘what kind of landscape do we want?’ (Nadaï and van der Horst, 

2010). 

 

Over recent years a number of surveys have shown that there are high levels of support 

for renewable energy in the UK. DECC’s (2012a) annual ‘Public Attitudes Tracker’ survey 

found that 77 per cent of people supported renewables for providing UK energy. The 

2011 YouGov survey also found comparable levels of support for RET deployment. 

There is, however, an apparent discrepancy between general public support for 

renewable energy and support within the planning process with emphasis on onshore 

wind: 
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“Local opposition to onshore wind development seems to be on the increase… The 
cause of the opposition notwithstanding, the problems for developers and the 
government alike is that opposition groups have been shown to inhibit the chances 
and speed with which planning permission is obtained.” (Jones and Eiser, 2010: 
3107). 

  

Opposition is not just confined to onshore wind power, although this is perhaps the 

most obvious focus of conflict: biomass and offshore wind are two further notable 

examples of such growing dispute (see section 8.2.2). This also highlights the 

importance of public participation and engagement as a critical factor (see section 8.3, 

page 335). In large part, local opposition in conjunction with both the concerns set out 

above and the view that the planning system is a barrier to development and economic 

growth per se, has provided the impetus behind the radical and rapid reform of the 

planning system across the UK in recent years (Department for Communities and Local 

Government [DCLG], 2011; Wood and Dow, 2011). The intention is to speed up and 

streamline the planning and decision making process and increase the deployment of 

RETs. This leads to a number of important questions that will be evaluated in this 

section: What are the implications of the recent reforms of the planning system for 

renewable technology deployment? Importantly, are the issues of local opposition and 

facilitating public participation and engagement being addressed?  

 

As stated previously, the UK planning system is not monolithic. Since the process of 

devolution started in 1997 there has been continuous divergence in the planning 

systems of the various national administrations. Importantly, planning is largely a 

devolved issue to various degrees and the Devolved Administrations set policy in their 

respective nations. The implications of devolution and planning divergence will be 

examined in more detail in section 8.2.3. Although this thesis examines the barriers to 

renewable electricity technology deployment in the UK overall, this chapter focuses 

primarily on the planning systems in England and Scotland. Accounting for almost 90 

per cent of total current (2011) deployment, both nations are anticipated to similarly 

provide the bulk of deployment required to 2020 and beyond (DECC, 2012b).206 In 

                                                             
206 The RES-E sectoral target has not been broken down into sub-national targets as the overall renewable 
energy target (including the heat, transport and electricity sectors) is set at the UK level. However, the 
various national administrations (with the exception of Wales and England) have set their own non-
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addition, despite its size, Scotland has the best onshore and offshore wind resources in 

Europe, with almost a quarter of the total resource and has one of the most ambitious 

RES-E targets in the world (Troen and Peterson, 1989; Scottish Government, 2011a). 

Analysis has also shown that the UK requires a disproportionate contribution in terms 

of population size from Scotland in order to achieve the 2020 sectoral target: between 6 

and 11 GW of installed renewable capacity from Scotland (Electricity Networks Strategy 

Group [ENSG], 2009). 

 

Different policies and legislation exist for different scales (or capacity thresholds) of 

renewable developments with regard to both the onshore and offshore planning 

systems. These capacity thresholds, also termed ‘local’ and ‘national’, differ between 

Scotland and England, as do the linkages and overall cohesion between the local and 

national planning regimes that deal respectively with local and national energy 

infrastructure developments. Importantly, it is the legislation which is the basis of 

decision-making. This set out what both developers and decision-makers have to do 

with regard to planning applications. On the other hand, planning policy is a material 

consideration. As such, it is up to the decision-maker to decide the weight of such policy. 

 

Table 8.1 (page 266) shows the main legislative and policy basis for planning in England 

and Scotland based on the capacity thresholds for both onshore and offshore 

developments. In England there are three key legislation processes: section 15 of the 

Planning Act 2008 for developments with an installed capacity of 50MW and above for 

onshore developments and 100MW and above for offshore developments. These are 

called Nationally Significant Infrastructure Projects (NSIP); and section 12 of the Marine 

and Coastal Access Act 2009 for below 100MW offshore developments and the Town 

and 

                                                                                                                                                                                              
legally binding targets. The Northern Ireland Executive has set a target of 40% RES-E by 2020. Scotland 
has introduced a target to deliver 100% electricity demand (consumption) equivalent from RES-E by 
2020. The sub-national contributions towards renewable deployment in terms of installed capacity and 
generation output in 2011 are: England (48% and 51%, respectively), Scotland (41% and 40%, 
respectively), Wales (8% and 6%, respectively) and Northern Ireland (3% and 3%, respectively) (DECC, 
2012b). 
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Table 8.1 Legislative and policy basis for onshore and offshore planning in England and Scotland         

             A     Onshore  
           

             

Development Country Consenting Regime     Decision Authority Key Policy Documents     

             

<50MW   England Town and Country 
Planning Act 1990 

 Local Authority National Planning Policy Framework (NPPF) 

  Scotland Town and Country 
Planning (Scotland) Act 
1997 

 Local Authority Scottish Planning Policy (SPP)  

             

>50MW   England Planning Act 2008   Major Infrastructure Planning Unit 
(MIPU)/Secretary of State (DECC) 

National Policy Statements (NPSs)  

  Scotland Electricity Act 1989   Scottish Minister National Planning Framework (NPF) 

             

B     Offshore 
           

             

Development Country Consenting Regime     Decision Authority Key Policy Documents     

             

<100MW  England Planning Act 2008   MIPU/Secretary of State (DEFRA) Marine Policy Statement (MPS)  

>100MW  England Marine and Coastal Access 
Act 2009 

 Marine Management Organisation 
(MMO)/Secretary of State (DECC) 

National Policy Statements (NPSs)  

             

<1MW  Scotland Marine (Scotland) Act 2010  Marine Scotland (MS)/Scottish Minister Marine Policy Statement (MPS)  

>1MW  Scotland Marine (Scotland) Act 2010  Scottish Minister National Planning Policy Framework (NPPF) 
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Country Planning Act 1990 for below 50MW onshore developments.207 There are also 

currently three key policy documents: the National Policy Statements (NPSs) for 50MW 

and above onshore developments and 100MW and above for offshore developments; 

the National Planning Policy Framework (NPPF) for below 50MW onshore 

developments; and the Marine Policy Statement (MPS) for offshore developments (this 

is a UK-wide policy statement). In Scotland there are also three different key legislation 

processes: section 36 of the Electricity Act 1989 for 50MW and above onshore 

developments; the Town and Country Planning Act 1997 for below 50MW onshore 

developments; and the Marine (Scotland) Act 2010 for all offshore developments. The 

>50MW onshore and >1MW offshore developments, classified as national developments 

are the Scottish equivalent of the NSIP. On the policy side, there is the National Planning 

Framework (NPF) for 50MW and above onshore developments and 1MW and above 

offshore developments; the Scottish Planning Policy (SPP) for below 50MW onshore 

developments; and the MPS for all offshore developments. 

 

This section will also focus on those RETs anticipated to contribute the majority of 

deployment to 2020 and beyond. Highlighted in the ‘UK Renewable Energy Roadmap – 

July 2011’ and subsequent documents, these include onshore wind, offshore wind, 

biomass conversion and dedicated biomass (DECC, 2011a). Taking 2011 as the baseline 

for deployment, onshore wind would be required to increase by +8.4 GW, offshore wind 

by +16.2 GW and biomass electricity by 3.5 GW, the vast majority assumed to be 

accounted for by biomass conversion and dedicated biomass. Although a proportion of 

this capacity requirement already has planning consent (see Section 8.2.1), an 

evaluation of the planning system as an external failure with regard to these four 

technologies will be particularly valuable given that a high volume of projects are 

required to gain planning consent. Where relevant, however, other RETs such as solar 

PV and other biomass RETs will be examined in this section due to developments 

including the recent RO Banding Review and the substantial growth in solar PV during 

the last two years (see chapter seven). 

 

                                                             
207 Other relevant legislation includes the Planning and Compulsory Purchase Act 2004 and the Localism 
Act 2011 (see Section 7.2.3, page 283). 
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This section will be set out as follows: Section 8.2.1 will analyse the available planning 

data for the key RETs in England, Scotland and the UK overall. Section 8.2.2 will examine 

the technology-specific attributes of the various RETs with regard to planning. In 

particular, this section will examine the key issues facing renewable technologies within 

the planning system. Finally, Section 8.2.3 will examine the onshore and offshore 

planning systems in England and Scotland, respectively.  

 

 

8.2.1 An analysis of planning data in England, Scotland and the UK 

This section will analyse the available planning statistics for onshore wind, offshore 

wind, dedicated biomass and biomass conversion. The Renewable Energy Planning 

Database (REPD) is the main UK governmental source of statistical information on 

renewable energy projects in the UK and the four national administrations (DECC, 

2012c). The REPD is managed by AEA (an independent consultancy) on behalf of DECC. 

As such, this section necessarily relies on the database. The cut-off date for the data 

utilised here is November 2012.208 However, additional sources of statistical 

information have been used where appropriate.209  

 

8.2.1.1 Onshore wind 

Table 8.2 (pages 269-270) shows the status of onshore wind planning data at the 

overall UK level and separately for England and Scotland. Looking at parts (a) to (d), at 

the UK level approximately 11 GW of onshore wind have received planning consent  

                                                             

208 This was the date when the databases were initially accessed; this is the reason for the difference 
between the statistics in chapter five and this section. 

209 The REPD and the Renewable Energy STATisticS database (RESTATS) which contains performance 
statistics on all relevant renewable energy sources in the UK are the two key government sources of 
statistical information. Both databases are managed by AEA (DECC, 2012c, d,; AEA, 2012). In order to 
ensure accuracy, statistical information from REPD is cross-checked with data from the RESTATS and 
other sources including Scottish Renewables, Renewables UK and the Renewable Energy Foundation 
(DECC, 2012e; Renewable Energy Foundation [REF], 2012; Renewables UK, 2012; Scottish Renewables, 
2012c). It is important to point out that there are omissions, errors and inconsistencies in data collection 
(methodology, date of source updating) in the REPD statistics used here although these do not affect the 
trends in deployment for the various RETs examined here. 
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Table 8.2: Status of onshore wind planning data in the UK, England and Scotland                

                 (a) 
        

(b) 
       

                 >50 MW installed capacity       
  

< 50 MW installed capacity       

Pre-consent UK Scotland England   Pre-consent UK Scotland England 

    
MW No. projects MW No. projects MW No. projects 

      
MW 

No. 
projects 

MW 
No. 

projects 
MW 

No. 
projects 

Application approved 4,715 42 3,962 33 443 7 
 

Application approved 6,201 719 2,694 247 2,193 323 

Application in process 2,571 30 1,956 22 54 1 
 

Application in process 3,570 619 1,771 213 805 120 

Application refused 1,829 15 1,656 12 116 2 
 

Application refused 3,632 326 1,662 123 1,613 173 

Application withdrawn 2,024 24 1,812 20 161 3 
 

Application withdrawn 1,671 180 815 66 597 89 

No application made 250 2 250 1 60 1 
 

No application made 184 16 119 7 65 9 

Connection applied for 977 9 977 9   
                                           

                 
                 
                 (c) 

        

(d) 
       

                 Post-consent UK Scotland England   Post-consent UK Scotland England 

    
MW No. projects MW No. projects MW No. projects 

      
MW 

No. 
projects 

MW 
No. 

projects 
MW 

No. 
projects 

Operational 1,623 16 1,378 12 191 3 

 
Operational 2,691 314 1,343 114 772 143 

Under construction 1,206 10 1,152 9 54 1 
 Under construction 1,102 71 394 25 518 34 

Awaiting construction 1,886 16 1,432 12 198 3 
 Awaiting construction 2,408 317 954 106 861 136 

  
       Abandoned 66 13 2.9 2 42 10 
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Table 8.2: Continued                             

                 (e)  
                

                 Average time (months) from submission to determination in the UK        

                 

 

UK Scotland England    
 

   
  

 

>50MW <50MW >50MW <50MW >50MW <50MW   
        

  

2007 41.1 (3) 16.1 (97) 43.8 (2) 21.9 (26) 35.7 (1) 11.7 (54)   
     

 
  

  

2008 34.6 (10) 15.2 (97) 36.1 (8) 18.8 (32) 28.5 (2) 11.1 (54)   
        

  

2009 31.8 (4) 15.6 (126) 31.7 (4) 15.6 (50) ¯ 12.3 (61)   
    

 
 

 
 

  

2010 36.7 (9) 13.8 (122) 38.6 (5) 16.7 (37) 37 (3) 8.4 (64)   
      

 
 

  

2011 42 (4) 15.3 (157) 42 (4) 15.5 (62) ¯ 10.6 (84)         
 

 
  

2012 30.1 (6) 11.7 (160) 30.2 (5) 10.7 (73) 31.8 (1) 11.2 (51)   
      

 
 

  

                                  

                                  

Note: Tables (a) to (d) use statistical information from when records began in 1991 onwards. * Data for Wales and Northern Ireland are subsumed within the UK data. 
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(‘application approved’ since records began; this category includes those projects 

‘operational’, ‘under construction’ or ‘awaiting construction’). In terms of scale, just over 

half of all consented projects fall under the local planning authority jurisdiction: 43 per 

cent (4,715 MW) of all projects consented are 50 MW or above and 57 per cent (6,201 

MW) below the 50 MW threshold capacity. When the number of projects (or individual 

wind farms) is examined, 94 per cent (702 wind farms) are under 50 MW with just 6 

per cent (42 wind farms) with an installed capacity of 50 MW or above.  

 

Almost two-thirds of all consented projects are either operational (4.3 GW, or 40 per 

cent of total consented projects) or under construction (2.3 GW, or 21 per cent of total 

consented projects) and thus will be operational in the near future. Although not all of 

the awaiting construction capacity will become operational, there is the equivalent 

amount of installed capacity awaiting construction as there is currently in operation 

(4.3 GW, or 39 per cent of total consented projects). The proportion of developments 

that fall within the <50MW and >50MW division is roughly the same for operational, 

under construction and awaiting construction categories as that found for ‘application 

approved’.210  

 

At the sub-national level, Table 8.2 (a) to (d) reveals a stark difference between Scotland 

and England (and Wales and Northern Ireland). Scotland dominates UK onshore wind in 

terms of both current capacity (2,720MW, or 63 per cent of total UK operational 

onshore wind capacity and over two-thirds of total UK capacity under construction) and 

potential capacity (2,386MW, or 56 per cent of total UK capacity awaiting construction 

and 3,727MW, or 61 per cent of total UK capacity in the planning process (planning 

application submitted but not yet determined). In contrast, England has just over a fifth 

of total UK operational capacity (964 MW, or 22 per cent). In addition, England accounts 

for only a quarter of total UK consented capacity both under construction (25 per cent, 

                                                             
210 At the UK level: Operational projects (57% <50 MW (non-section 36); Under Construction (52% 
<50MW); Awaiting Construction (44% <50MW). This is also the same for the 6,141MW of capacity in the 
‘applications in progress’ where planning applications have been submitted (58% <50MW). 
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or 572 MW) and awaiting construction (25 per cent, or 1,059 MW). In terms of the 

number of operational wind farms, despite accounting for significantly less installed 

capacity, 45 per cent (or 146 developments) are located in England in comparison to 38 

per cent (or 126 developments) in Scotland. The vast majority of the onshore wind 

farms in England are less than 50 MW installed capacity (80 per cent contra 20 per cent 

for above 50 MW of capacity). In Scotland, onshore wind farms are equally distributed 

across the capacity threshold (<50 and >50 MW), resulting in a larger average wind 

farm size than in England. However, Scotland accounts for 85 per cent of total UK above 

50 MW operational wind farms contra just 12 per cent in England and 50 per cent of 

<50 MW wind farms contra 29 per cent in England. Significantly, 83 per cent of total 

consented (applications approved) capacity in England is for projects that fall under 

local authority jurisdiction.  

 

In terms of the number of wind farms (or number of projects) operational and under 

construction, Scotland and England currently account for 83 per cent of the UK total. 

England accounts for 44 per cent (181) of the total UK wind farms contra 39 per cent 

(160 projects) in Scotland. The inclusion of projects in the awaiting construction 

category result in an increase in the number of onshore wind farms in England: (43 per 

cent, or 320 projects) contra 37 per cent (or 278 projects) in Scotland. In contrast, when 

applications in process (submitted) are included, Scotland accounts for more projects 

than England: 37 per cent (513) contra 32 per cent (442), respectively. Although highly 

unlikely that all projects awaiting construction or are applications in process will 

ultimately become operational, it is interesting to note that the combined total, when 

these two categories are added to the operational and under construction categories, 

declines to around two-thirds (69 per cent). In other words, the potential contribution 

of Wales and Northern Ireland is anticipated to increase in the future although this 

would depend on a number of critical factors including approval rates. 

 

There have been more onshore wind farms refused planning consent in terms of 

installed capacity and number of wind farms than there are operational sites: 5,452 MW 

(341 projects) contra 4,314 MW (330 projects). However, if the under construction 

category is added to the amount of operational wind farms, there would be more 
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installed capacity (6,622 MW) and wind farms (411). Scotland accounted for the largest 

proportion of refusals, with 3,318 MW or 61 per cent of the UK total refused consent. 

There was no statistical distinction between >50 MW and <50 MW projects in Scotland, 

although Scotland accounted for 91 per cent of total >50 MW refusals in the UK. In 

comparison, although England accounted for only 32 per cent of the total UK refusal 

rate, this equated almost double the current operational rate (1, 729 MW). Of this, 93 

per cent was attributed to onshore wind farms with an installed capacity of below 50 

MW. The withdrawal rate is also high, with 3,695 MW (or 204 projects) withdrawn at 

some point prior to determination. Decisions to withdraw a project are varied and 

rarely publicised; however, caution is required regarding such statistics as projects can 

be resubmitted at a later date and the development could change in terms of installed 

capacity and location. 

 

Part (e) of Table 8.2 shows the average time in months for an onshore wind project to 

obtain planning determination (whether consent or refusal) from submission. 

Importantly, this does not take into account the pre-application stage. Although front-

loading was introduced to increase certainty and confidence in the planning system by 

resolving as many issues as possible prior to submission, there are concerns that it 

could increase both costs and time. This is partly due to the hands-off role of PINS in 

advising developers, leading to difficulties in balancing speed and caution (Offshore 

Wind Cost Reduction Task Force, 2012).211 It is clear from part (e) that the overall UK 

average time taken to determination has declined over the period for both categories 

(<50MW and >50MW), with the rate of reduction roughly approximate (around a third 

of the time shorter between 2007 and 2012). Overall, then, part (e) shows that the 

length of time that developers are required to wait for a planning application decision is 

improving at the UK overall level, thus indicating improvement in this area. However, 

caution is required for two reasons: (1) the data for 2012 does not include part of 

November and the entire month of December for that year; and (2) for 2010 and 2011, 

determination times actually rose for both Scotland and England (and thus the UK 

overall). 

                                                             

211 This pre-application stage also applies to offshore wind (see also Section 8.3). 
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On average, however, it takes considerably longer to gain determination (planning 

decision) for onshore wind farm developments >50MW than it does for <50MW. This is 

to be expected: above 50MW projects are more complex (for example, in terms of 

landscape impact and the number of stakeholders and affected land users involved). 

Although the time taken from submission to determination is broadly comparable in 

2012 (Scotland is slightly quicker on average), this was not always the case: Prior to 

2012, project developers waited significantly longer in Scotland than they did in 

England for both >50MW and <50MW decisions, despite significantly less <50MW 

projects in the planning regime in contrast to England. In other words, Scotland has 

experienced a more dramatic reduction for both categories (<50MW and >50MW); 

indeed, the overall UK average reduction in time taken from submission to 

determination appears to be primarily driven by the planning experience in Scotland. In 

contrast, the time taken to reach determination in England has fallen insignificantly 

between 2007 and 2012, in particular for <50MW developments despite the vast 

majority of current (operational) and future (under construction and awaiting 

construction) deployment falling in this category. 

 

Figure 8.1 (page 275) shows the approval rates as percentages for onshore wind farms 

in the UK, Scotland and England for <50MW and >50MW developments by scheme 

(number of wind farms) and installed capacity (in MW). When looking at approval rates 

for >50MW (requiring central government consent), it is important to note that there is 

typically high annual variation due to the limited number of such large-scale 

applications in the planning process. This is particularly true for England, and is 

reflected in part (a). However, approval rates by both scheme and installed capacity 

(part c) are consistently above 60 per cent (except 2011 for England where no >50MW 

projects were approved). Scotland shows more variation as 80 per cent of all UK 

>50MW projects that have been approved are located here. Approval rates for <50MW 

(see parts (b) and (d), in contrast, show a decreasing trend overall during the period 

2007 to 2012 at the UK overall level and Scotland and England. Although Scotland 

shows a decline from 74 per cent in 2007 to 52 per cent in 2012, approval rates in 

England exhibit a more substantial decline from 72 per cent to 29 per cent over the 

same time period. 
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Figure 8.2 (page 277) shows the average size of onshore wind farms in terms of 

installed capacity for >50MW and <50MW categories over the same time period. 

Although it is difficult to determine trends in the data set due to the relatively few 

number of >50MW developments, a number of relevant points can be made. Looking at 

>50MW developments, part (a) shows that although there is significantly more annual 

variation in size (a reflection of the higher number of >50 MW developments located in 

Scotland), the average size of onshore wind farms is considerably larger than in 

England. In contrast, the analysis for England shows a relatively stable average size 

between 2007 and 2012. An examination of the average size of <50MW developments, 

however, reveals a different trend shared by both countries: the average size has 

dropped by around 50 per cent over the last six years. This can be particularly seen in 

Scotland, particularly due to the significantly larger average <50MW development size 

in 2007. Overall, however, <50MW onshore wind farms remain larger in Scotland in 

comparison to England. 

 
 
8.2.1.2 Offshore wind 

Table 8.3 (page 278) shows the status of offshore wind planning data at the UK overall 

level and separately for England and Scotland.212 As of November 2012, at the UK level, 

there are 20 projects operational (2,679MW, although this figure from REPD does not 

reflect that fact that not all turbines within offshore wind farms have been fully 

commissioned).213 In addition, there is a further 1,538MW (4 projects) and +2,017MW 

(7 projects) either under construction or awaiting construction, respectively. In total, 

there are 32 projects (6,342MW) with planning consent and a further 12 projects 

(6,092MW) in the process of obtaining planning consent. This shows that although 

                                                             
212 Wales is the only other country that has deployed and/or currently has offshore wind developments in 
the planning pipeline: 726MW (3 projects) with planning consent (‘application approved’). Of this, 
130MW (2 projects) are operational with a further 576MW (1 project) under construction. There is also a 
further 108MW (1 project) withdrawn. 

213 Typically offshore wind farm developments are carried out in phases, with a certain proportion of 
turbines connected to the grid and operational at different stages in the development of the entire farm. 
This is the reason why statistics released from DECC covering the period to December 31st 2012 show 
that there were only 2,530MW of offshore wind capacity installed in the UK. 
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Figure 8.2: Average size of >50 MW and <50 MW onshore wind in the UK, England and Scotland - 2007 to 2012         

                 

(a) Average size of onshore wind farm (>50 MW) 
   

(b) Average size of onshore wind farm (<50 
MW) 

   

 
 

                

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                                                   

 

 

 



278 

 

 

 

 



279 

 

 

 

offshore wind is a relatively recent newcomer to the UK renewable electricity 

technology deployment landscape, operational capacity is already approximately 60 per 

cent of total UK onshore wind capacity. Further, although not all capacity will become 

operational (see below regarding refusal, withdrawn and approval rates), there is 

around 12.4GW either with planning consent or currently under consideration 

(‘applications approved’ and ‘application submitted’, respectively). 

 

In contrast to onshore wind, England accounts for the overwhelming majority of 

offshore wind development in the post-consent planning regime: 90 per cent of 

operational capacity (2,394MW), 100 per cent of capacity under construction (962MW) 

and over 99 per cent of capacity awaiting construction (2,011MW). According to the 

REPD database, Scotland accounts for 190MW of offshore capacity (with just 6 MW 

awaiting construction): however, 180MW is actually designated to England due to the 

transmission cable connecting to the grid in England. When the ‘application submitted’ 

category is examined, however, Scotland accounts for a greater proportion of potential 

capacity coming through the planning pipeline: 66 per cent (3,997MW) in comparison 

to 34 per cent (2,095 MW) in England. However, as the large-scale Crown Estate Round 

3 projects progress, this is likely to change. Of relevance, there is also a further 35GW of 

offshore wind potential capacity coming through the various Crown Estate offshore 

wind leasing programmes (in the development pipeline).214 As with onshore wind, in 

particular >50 MW developments, caution regarding the interpretation of the offshore 

wind data set is required due to the small number of projects and the significantly large 

size (capacity) of the individual developments (see also below regarding the average 

time required for receiving planning determination and from determination to 

commissioning). 

 

According to the REPD database, only one project (540 MW, Docking Shoal) has so far 

been refused planning consent. The significance of this is that approval rates have been 

100 per cent with the exception of 2012 where it dropped to 43 per cent due to Docking 

                                                             
214 Round 3 (31,015MW), Scottish Territorial Waters or STW (3,385MW) and the Northern Ireland 
Offshore Renewable Energy Programme (600MW) (Wood and Taylor, 2012). 
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Shoal being refused planning consent. With a trend towards increasingly large 

developments with overall few actual projects, approval rates could fluctuate quite 

significantly on an annual basis even though capacity could increase substantially. 

Therefore, it is currently difficult to ascertain what the planning approval rates will be 

for offshore wind due to limited experience. However, the REPD refusal rate is also 

misleading: Scarweather Sands (108 MW, Crown Estates Round 1 leasing programme) 

was withdrawn from the planning process as it would have failed to gain planning 

consent if submitted (Wood and Taylor, 2012). Again, according to the REPD 392 MW of 

projects have been withdrawn: however, a more detailed analysis shows that almost 3 

GW have actually been withdrawn.215 Undoubtedly, a number of these projects would 

have been withdrawn for non-planning reasons (for example, financial and pre-

planning issues arising during the Crown Estates offshore wind leasing programme) but 

it is likely that planning issues would have affected at least some of the 3 GW in 

question.216 There is also the issue of downsizing. As issues arise as the development 

goes through the planning regime, it is fairly typical for the number of turbines (and 

thus overall capacity) to be reduced in order to address or counter problems including 

environmental, public opposition and landscape issues. So far, around 300 MW of 

capacity has been lost to downsizing; however, the Atlantic Array offshore wind farm 

project has recently had capacity cut by 20 per cent (from 1.5 to 1.2 GW) due to 

planning (environmental) concerns (Business Green, 2012a, b). 

 

In contrast to onshore wind, the average time taken from submitting an offshore wind 

planning application to receiving a decision (in months) has increased between 2002 

and 2012 (see Table 8.2). The time taken to obtain consent for round 2 projects is 

significantly longer than that experienced for Round 1 projects: all but one round 1 

                                                             
215 Withdrawn rates from the five Crown Estates offshore wind leasing programmes: Round 1 (498MW), 
Round 2.5 (147MW) and Round 4 (Scottish Territorial Waters or STW) (2,198MW) (Wood and Taylor, 
2012). 

216 Companies do not typically publish the reasons for why particular projects are withdrawn. Therefore, 
the amount actually withdrawn due to planning issues is virtually impossible to determine. Further, as 
projects progressed through the Crown Estates offshore wind leasing programme, it is to be expected that 
a proportion would be ‘withdrawn’ as problems arose prior to reaching a licensing agreement which in 
itself is not a guarantee of planning permission (Wood and Taylor, 2012). 
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project was determined within 15 months in contrast to only 2 out of 10 round 2 

projects as of the end of 2011. Indeed, round 2 projects are driving the increase in time 

overall. Although this should be expected due to the increasingly large projects coming 

into development, the overall complexity of an offshore wind farm application and the 

relatively limited experience in processing this type of planning application, one of the 

major reasons behind both reforming the Renewables Obligation and the planning 

regime was to side-step deployment constraints including planning that were 

increasingly being viewed as a significant factor in limiting onshore wind deployment in 

the UK (Wood and Dow, 2011).217  

 

8.2.1.3 Biomass conversion and dedicated biomass 

Table 8.4 (page 282-283) shows the status of two key biomass electricity technologies, 

dedicated biomass and biomass conversion. Co-firing is also included in the analysis 

here. As part (a) and (b) show, at the UK level there is 4,917MW (240 projects) in the 

‘application approved’ category at both the <50 and >50MW deployment scale. In terms 

of installed capacity, the majority of applications fall under <50 MW: 61 per cent 

(2,986MW >50MW, or 15 projects) whilst the majority of projects fall within the 

<50MW category (39 per cent, 1,931MW, or 225 projects). In relative terms, there is 

significantly less capacity under construction (204MW) in comparison to capacity 

awaiting construction (3,171MW, of which 78 per cent falls in the >50MW category). 

Indeed, there is over twice the capacity awaiting construction as there is currently 

operational (1,121MW). 

 

England has historically and continues to dominate dedicated biomass and biomass 

conversion deployment218 (and for other biomass RETs, including sewage gas and 

landfill gas) at both the >50 and <50 MW scale: 2,871 MW (or 96 per cent of total UK 

applications approved at >50 MW) and 953MW (or 50 per cent at <50 MW). Within the 

application approved category, England accounts for 88 per cent of total UK operational 

dedicated biomass and biomass conversion (94 per cent and 73 per cent at the >50 and  

                                                             
217 Table 7.5 also shows that the average time taken from receiving planning consent to commissioning 
the offshore wind farm is increasing between 2000 and 2012. 
218 This is also the case for other biomass electricity RETs including sewage gas and landfill gas (see 
Chapter Six, page 192). 
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Table 8.4 Status of dedicated biomass, biomass conversion and co-firing biomass planning data in the UK    

                   (a) 

                  

                   Section 36 (>50 MW installed capacity)                             

Pre-consent   UK England Scotland   Post-consent   UK England Scotland 

      
MW 

No. 
projects 

MW 
No. 

projects 
MW 

No. 
projects         

MW 
No. 

projects 
MW 

No. 
projects 

MW 
No. 

projects 

Application approved 

 

2,986 15 2,871 13 115 2 

 

Operational 

 

800 2 750 1 50 1 

Application submitted 

 

360 3   360 3 

 

Under construction 

 

65 1   65 1 

Application refused 

 

      

 

Awaiting construction 

 

2,480 13 1,831 11   

Application withdrawn 265 3 145 2 120 1 

 

Abandoned 

 

290 1 290 1   

                                      

   
     

           (b) 

  
     

           

                   Non-section 36 (< 50 MW installed capacity)                           

Pre-consent   UK England Scotland   Post-consent   UK England Scotland 

      
MW 

No. 
projects 

MW 
No. 

projects 
MW 

No. 
projects         

MW 
No. 

projects 
MW 

No. 
projects 

MW 
No. 

projects 

Application approved 

 

1,931 225 953 177 172 30 

 

Operational 

 

321 69 235 55 69 13 

Application submitted 

 

343 46 248 32 43 8 

 

Under construction 

 

139 26 92 20 47 5 

Application refused 

 

226 15 171 13 5 1 

 

Awaiting construction 

 

691 112 509 89 52 12 

Application withdrawn 150 12 132 9 3 2 

 

Abandoned 

 

148 18 132 15 5.5 2 
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Table 8.4 Continued     

                    (c) Average time (months) from submission to 
determination in the UK 

    

      (d) Average time (months) from determination 
to commissioning in the UK         

       
s36 non-s36 

          
      

s36 non-s36 
        

 2002 
  

 3 
 

    

2002 
  

 39 

     2003 
  

 4 
 

    

2003 
  

  

     2004 
  

 8 
 

    

2004 
  

  

     2005 
  

23 3 
 

    

2005 
  

 11 

     2006 
  

 8 
 

    

2006 
  

 19 

     2007 
  

14 4 
 

    

2007 
  

33 21 

     2008 
  

17 7 
 

    

2008 
  

 14 

     2009 
  

19 6 
 

    

2009 
  

 31 

     2010 
  

16 7 
 

    

2010 
  

 24 

     2011 
  

18 7 
 

    

2011 
  

 24 

     2012 
  

18 6 
 

    

2012 
  

10 21 

                                             

      
    

     
     (e) UK biomass approval rates as a percentage and in MW  

            
                      Year 2006 2007 2008 2009 2010 2011 2012 

 
         s36 MW  350  60 395 2050 615 

 
           %  100  100 100 100 100 

 
         non-s36 MW 52 24 98 134 251 106 150 

 
           % 100 71 100 71 96 79 97 
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<50 MW levels, respectively). The other category of interest here is awaiting 

construction. England again dominates projects with planning consent: 74 per cent of 

>50 and <50 MW capacity (1,831 MW and 509 MW, respectively). When the 

‘applications submitted’ category is examined, however, Scotland dominates the >50 

MW category with 100 per cent of applications although England accounts for 73 per 

cent of capacity <50 MW. At the UK overall level, there is only 703 MW awaiting 

planning determination. 

 

In particular, biomass conversion (whether partial or full conversion of existing coal or 

oil power station units to biomass) is a new development which most research has not 

anticipated until recently. As of 2013, planning permission has been granted for five 

coal-fired power stations to convert, either partially or fully to biomass: including 

Tilbury power station which commenced operation at the beginning of 2012, these 

stations has the combined capacity of 6 GW.219  

 

Part c of Table 8.4 shows the average time taken from submission of the planning 

application to determination in months for >50 MW and <50 MW developments. As 

with >50 MW onshore and offshore wind projects, >50 MW dedicated biomass and 

biomass conversion RETs take longer to reach a planning decision than <50 MW 

projects.  Although the time required has fallen for the >50 MW category, it has 

approximately doubled for <50 MW projects although this is still a third of the time 

taken for >50 MW in 2012. Of interest, although there is limited data (particularly for 

>50 MW), the average time from determination to the biomass plant becoming 

operational appears to decline between 2002 and 2012 (see Table 8.4, part d). When 

the approval rates for both capacity categories is examined (part e), it is clear that the 

large-scale projects have consistently experienced 100 per cent approval rates in 

                                                             

219 The five stations are: Tilbury (750MW, already operational as of early 2012); the other four are in the 
process of conversion (Ironbridge (1,000MW, full conversion in progress), Drax (3,960MW, partial 
conversion of 1,980MW in progress), Eggborough (2,000MW, full conversion not yet commenced) and 
Alcan Lynemouth (420MW, full conversion, decision to progress imminent) (Biofuelwatch, 2013; Drax 
Group Plc, 2012; Eggborough Power, 2013; E.ON, 2013). With the exception of Tilbury, these power 
stations are not included in the REPD database. When existing and potential future capacity from other 
biomass electricity RETs is combined, this could arguably be called a ‘dash for biomass’. 
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obtaining planning consent. In contrast, approval rates for <50 MW developments have 

been more varied annually although approval rates have consistently remained in 

excess of 70 per cent. 

 

 

8.2.2 The planning system and renewable electricity technology deployment 

There are a number of key issues facing renewable electricity technologies within the 

planning process. These issues centre on the ‘landscape’:  

 
“Whilst large sections of the population in developed countries are indeed in 
principle in favour of renewables, in practice proposed facilities have often given 
rise to considerable public concerns. Members of the public raise a multitude of 
issues, but the one concern that is raised time and time again across different 
renewable energy technologies, local or national contexts, is that of the impacts on 
‘the landscape’.” (Nadaï and van der Horst, 2010: 1).  

  

But what does ‘landscape impact’ mean in this context? A broad term that is often 

insufficiently unpacked, it includes visual impact, aesthetic, social, historical, political 

and emotional value of a particular landscape (or place attachment), issues of 

biodiversity and ecological loss and the industrialisation of previously non-

industrialised land (Ellis, 2008; Haggett, 2008, 2011; Wolsink, 2007). In a sense, these 

are generic in scope, with regard to not just renewable technologies but all 

developments to varying extent. However, there are certain attributes for particular 

RETs, primarily onshore wind power and biomass that aggravate these issues (see 

below). Specific issues for RETs include noise and radar/aviation disturbance (wind) 

and greenhouse gas and particulate/non-GHG pollution emissions for certain biomass 

and waste RETs. Critically, there are also the cumulative impacts of development across 

the landscape (Royal Society of Birds [RSPB], 2009). These are the key issues that play a 

role in the acceptance of such technologies in particular from a public 

acceptance/planning perspective.  

 

It is important to keep in mind that the key issues examined here are complex and often 

inter-linked:  
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“… [T]here are (at least) two sides in every case of dispute or conflict, and multiple 
actors are involved in every project development. Public responses are not 
developed in a vacuum or in the abstract, but rather in interaction with others who 
have an interest in a development – particularly those who are advocating and 
promoting it. Thus, rather than seeing people as predisposed to oppose or support 
particular developments, we might view local responses as ‘emergent, negotiated 
and shifting’ in relationship to a variety of contextual factors.” (Walker et al., 2011: 
4). 

 

It also becomes apparent that a number of the key issues are invariably subjective. With 

regard to RETs, there will be some people who like the actual technology or structure 

from an aesthetic point of view, or accept or believe the necessity for the technology 

over other considerations (for example, the global good versus local good or the need to 

transition from an unsustainable to sustainable energy source). Likewise, others will 

dislike the development for often contrasting reasons. The appropriate siting of RETs is 

of particular significance with respect to the above: the inappropriate siting of RET 

deployment in the landscape can mobilise hostility and opposition, can damage fragile 

wildlife and habitats through habitat loss, degradation, mortality and a range of 

different disturbance effects. This can particularly affect breeding populations of long-

lived bird and animal species, migratory species and environmentally important 

habitats such as feeding and over-wintering grounds, upland and blanket bog areas and 

peatland which is a significant source of stored carbon dioxide in the UK in general and 

Scotland in particular (RSPB, 2009). 

 

The heterogeneity of renewable electricity technologies and the scale of the proposed 

development is also an important consideration here. A number of RETs can be 

deployed at a range of scales, from pico or micro, to the small, meso and large-scale 

(Walker and Cass, 2011). As such, they can be scaled-up (large-scale) or scaled-down 

(meso-scale or smaller), and this has important implications for RES-E deployment for a 

number of internal (see Chapter Six) and external failures, including planning, grid and 

public participation and engagement. Regarding planning, meso-scale deployment has 

been argued to be more acceptable to the public in terms of acceptance than large-scale 

developments. The participation and engagement of various communities, co-

operatives and smaller firms and organisations (including local authorities, farmers and 
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small and independent energy companies as opposed to multinationals and former 

utilities) has also been argued to facilitate the obtaining of planning consent (Toke and 

van der Horst, 2010; Warren and McFadyen 2008; Watson et al., 2010).220 

 

Table 8.5 (page 288) shows the key planning issues and the relative impacts of a 

number of renewable electricity technologies with regard to their particular ‘set’ of 

attributes (see below). The assumption used in analysing the data here is that this is an  

evaluation of the overall impact of particular RETs with regard to planning, rather than 

examining the impact at the local (or individual project) scale. This is in keeping with 

the systemic approach adopted throughout the thesis (see Chapter One). Woodman 

(2008: 57) makes the important point that renewable energy is not special in the 

context of the planning system: 

 
“Of course, the planning process raises hurdles for all technology options, including 
delays in obtaining consent, the costs of participating in inquiry processes, and high 
degrees of uncertainty for developers and local communities about the prospects of 
any particular project proceeding.” 

 

There are a number of attributes more-or-less specific to renewable electricity 

technologies, however, that arguably make RETs unique with regard to the issue of 

planning. In contrast to fossil fuel and low carbon generating plant, RETs are generally 

small-scale in terms of generating output but exhibit significantly higher levels of 

geographic dispersal and individual plant size (acreage under or in development). This 

results in the need for a large number of geographically dispersed individual renewable 

generating stations not only required to ‘match’ conventional or low carbon output but 

also due to the significant deployment of RETs required to meet both renewable and 

climate change targets. Efforts to achieve the national and international targets will 

invariably impact on the appearance of the landscape. Accommodating the additional 

capacity required to meet the targets within a strict timetable will invariably increase 

the level of impact. Typically the siting of a renewable electricity generation station is 

determined by the quality of resource availability or access to the resource in the case of 

                                                             
220 Although there are a number of important caveats here, including the level and type of ownership. This 
will be looked at in more detail in Section 7.3 on public participation and engagement. 
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Table 8.5 Key issues for renewable electricity technologies and the planning system in the United Kingdom       

               

    

Wind power 
 

Marine 
 

     Key issues       Onshore Offshore   Wave Tidal stream   Solar PV Hydro Biomass Waste Geothermal 

               Landscape (visual) impact 

  

** ** 
 

? ? 
 

* * ¯ ** ² * * * 

Noise 

   

** * ¹ 
 

? ? 
 

* * ¹ * * * 

Biodiversity 

  

** ** 
 

? ? 
 

* * ¯ ** ² * ¯ ** ³ * * 

Radar disturbance 

  

** ** 
 

* * 
 

* * * * * 

Cumulative impact 

  

** ? 
 

? ? 
 

* * * * * 

Contested space 

  

** ** 
 

** ** 
 

* * * * ¯ ** ⁴ * 

Greenhouse gas emissions 

 

* * 
 

* * 
 

* * * ¯ ** ⁵ * * 

Particulate/pollution 
emissions 

 

* * 
 

* * 
 

* * * ¯ ** ⁵ * ¯ ** ⁵ * 

                              

Note: *equates to low or no impact. ** equates to high impact. ? - currently not enough data/research on marine RETs. ¹ Noise primarily due to construction and future decommissioning 
stages. ² High impact is attributed here to large-scale hydro power installations that require significant structures and reservoirs. ³ High impact here is attributed to potential biodiversity 
issues regarding the growing of biomass feedstock (such as land use change, clearance, use of biocides/pesticides) required for the plant rather than the generation plant per se. ⁴ Electricity 
generated from waste facilities can be either located away from where people live (e.g. landfill gas) or close/within towns and cities (e.g. incineration, etc). ⁵ The range for biomass and waste 
depends on the type of RET and fuel required. Some biomass RETs have negligible GHG emissions but others have substantial GHG emission profiles (see Chapter Three, Table 3.1 and text, 
page 98). There is also the issue of particulate and non-GHG pollution emissions including dioxins, furans and other toxins that have significant health risks (Friends of the Earth [FOE], 2011a). 
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biomass and waste technologies. Not all RETs show the same attributes, however, due 

to the varied range of renewable electricity technologies. 

 

It is clear from Table 8.5 that both onshore and offshore wind has the highest impact on 

the key issues examined here. As mentioned previously, there is little real-time 

deployment experience for marine technologies in the UK and abroad.  (ECCC, 2012). 

These technologies do, however, exhibit the same general attributes as wind power 

with regard to small generation output, large plant size and geographic dispersion 

rates.221 As deployment increases and the size of the developments increases, 

particularly post-2020, wave and tidal stream are likely to show at least comparable 

levels of impact on the key issues examined in Table 8.5. In contrast to wind power, all 

other RETs show a relatively reduced impact. Solar PV, geothermal and hydro exhibit 

relatively low geographical dispersal (as the resource distribution and/or quality is 

constrained compared to the UK’s wind resource base) and small plant size.222 

However, solar PV can be scaled up in terms of plant size. The concentration of the 

resource in the southern part of the UK in general and the southwest in particular and if 

solar PV deployment above the domestic/building scale increases, this is likely to lead 

to a higher impact on a number of the key issues although the technology is less visible 

and intrusive than wind power.  

 

Biomass has similar attributes to the previous three technologies; however there are a 

number of important differences. The difference is that biomass plants (and large-scale 

hydro) can exhibit generation output on a scale similar to conventional electricity 

                                                             
221 By design, however, the majority of wave and tidal stream devices will not be as prominent as either 
onshore or offshore wind turbines. Tidal stream will present different issues from wave power due to the 
particular resource-geography characteristics as there is limited high-resource sites located around the 
UK shores. As with offshore wind, both technologies will still require existing or new/reinforced onshore 
infrastructure (Engineering the Future Alliance, 2011) 

222 This is not to detract from arguments regarding the local impact of these generating stations. In 
particular, biomass and waste plants are often situated close to where people live. This can be especially 
the case for waste and biomass and concern additional critical issues including greenhouse gas emissions 
and particulate/pollution emissions (see below). 
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generation plant resulting in the requirement of fewer individual stations.223 This is 

particularly the case for biomass conversion and dedicated biomass (and also co-firing). 

It is the need for access to the resource, such as major transport infrastructure including 

road and port facilities that play an important role in determining the location of such 

plant and this can put them into conflict with other users.224 There is also the issue of 

GHG emissions and particulate/pollution emissions: although it depends on the type of 

feedstock and biomass technology, in general biomass is unique among RETs in that it 

exhibits a high impact on these particular sustainability concerns. These concerns also 

include the source and sustainability of biomass fuels (land use change, production, use 

of pesticides/fertilisers, harvesting, transporting, drying, processing and conversion) 

(RSPB, 2012a). 

 

This serves to highlight the point that the planning system cannot be viewed as a barrier 

to the deployment of renewable electricity technologies per se; RETs have quite varying 

attributes, technical specifications and design requirements that are more or less 

contentious with regard to obtaining planning consent. The majority of the issues 

highlighted in Table 8.5 are particularly acute for onshore wind. This technology has a 

very high level of geographic dispersal and large plant size. On the one hand, onshore 

wind sites are often located in remote, peripheral and undeveloped areas (in particular, 

rural, wild and island areas). These sites are quite often the same locations that people 

value due to the lack of development. On the other hand, onshore wind farms can also 

be located in close proximity to urban areas due in part to the ability to connect to the 

distribution grid (RSPB, 2009; Woodman, 2008). Due to project economics, in part 

strongly driven by the RO mechanism, onshore wind farms need to be located in the 

areas of highest resource quality. This is primarily due to the subsidy level being offered 
                                                             
223 Although there are large-scale hydro plants alongside towns (e.g. Pitlochry, Scotland) there is limited 
opportunity in terms of resource availability and acceptability for further large-scale plant to be deployed 
in the UK, particularly due to environmental and social issues. In contrast, there is apparently significant 
scope for small-scale hydro deployment, the majority in Scotland (DECC and Welsh Assembly 
Government, 2010; Palmer, 2005; Scottish Government, 2008). 

224 For example, Forth Energy (a joint venture between Forth Ports, the owner and operator of 7 
commercial ports and manager of 289 miles² of navigational waters in the UK and Scottish and Southern 
Energy) has plans to develop three wood fuel biomass electricity generation plants in Scotland with a 
combined installed capacity of 360 MW (Forth Energy, 2012). 
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on an output basis irrespective of the deployment location or the size of the 

development (see also chapter seven). The best wind resource availability areas are 

typically in elevated and flat coastal areas, resulting in the turbines being visible from a 

long distance. With around 326 operational wind farms (or approximately 3,162 

turbines) and a further 81 wind farms under construction, not to mention those 

awaiting construction (343 farms) and in the development pipeline (649 farms), the 

scale of onshore wind development is becoming increasingly important and this raises a 

number of key challenges: the easier large sites (those with few objections, low wildlife 

interest and good grid connections) have been developed (RSPB, 2011a). With 

increasing numbers of sub-50MW onshore wind farms under construction, awaiting 

construction or where planning applications have been submitted (1,007 contra 314 

currently operational), it is important to note that  

 
“These can still have the potential to result in significant harm to wildlife if poorly 
sited or designed and assessment is still time consuming. Overall, this could lead to 
an increase in processing time per MW installed. As more onshore wind [both >50 
MW and <50 MW] in particular is deployed, cumulative impacts on wildlife and 
landscape are becoming an increasing concern.” (RSPB, 2011b: 5). 

 

In addition, as onshore wind energy generation capacity is expected to continue to 

grow, “Planning authorities are more frequently having to consider turbines within 

lower-lying more populated areas.” (Scottish Government, 2012a: 1). In other words, 

onshore wind farms are increasingly likely to be located in areas with increased conflict 

over landscape and visual impact and thus land use.  Unlike a number of other RETs 

including solar PV and hydro (at the small-scale), onshore wind turbines cannot be 

screened from view as wind flows to the plant cannot be ‘blocked’. In other words, wind 

turbines produce the most blatant landscape changes of any renewable energy 

technology (Pasqualetti, 2011).  

 

The attributes of onshore wind, then, account for the high level of impact on the key 

issues examined in table 8.5, in particular for the issues of landscape and visual impact. 

This also has increased relevance for other key issues such as radar/aviation 

disturbance, biodiversity and noise. There are 5 GW of onshore wind and 7 GW of 

offshore wind projects in scoping, planning and awaiting construction that are impacted 
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by radar: almost 2 GW of onshore wind awaiting construction are being held up by the 

need for developers to meet planning conditions related to radar despite being 

consented over 2 years ago (DECC, 2011a). Given the importance of Scotland in meeting 

the UK overall sectoral target, radar/aviation concerns are especially sensitive due to 

the close proximity of three major airports (Glasgow International, Edinburgh and 

Glasgow Prestwick) (DECC, 2011a). The particular attributes of onshore wind in 

conjunction with the anticipated growth in deployment of the technology lead to 

conflicts over the siting of onshore wind farms in the UK. The UK terrestrial landmass is 

a highly contested landscape (see above). It also has one of the highest population 

densities in the world (260 people per km²), although this is heavily dependent by 

nation and specific area: England (383), Scotland (65), Wales (142) and Northern 

Ireland (125) (Barrow, 2012). 

 

Importantly, the marine environment is not as uncontested as has been previously 

perceived, particularly in comparison with the terrestrial environment and onshore 

wind (Wood and Taylor, 2012). This is despite the policy aim to shift renewable 

deployment to the marine environment specifically to avoid constraints including 

planning and public opposition (Wood and Dow, 2011). Offshore wind, wave and tidal 

stream technologies represent a relatively new and potentially significant spatial 

conflict in the use of the UK’s offshore region at a time when human activity in this area 

is increasing in type and intensity and larger portions of the seas are portioned off, 

dedicated for specific, often exclusive uses. These conflicts include fishing, tourism and 

recreational purposes, open sea/ocean aquaculture, dredging, shipping lanes, gas/oil 

industry, defence and aviation and environmental/landscape/birds and 

wildlife/conservation concerns. 

 

Offshore renewables also do not mean they will always have little or no impact onshore 

and the UK coastline is heavily inhabited and/or heavily contested. Currently, the 

majority of operational offshore wind farms are sited close to shore in shallow waters to 

facilitate learning through deployment experience and to keep costs down (European 

Wind Energy Association [EWEA], 2012; UK Energy Research Centre [UKERC], 2010). In 

addition, a significant number of projects already under construction or consented will 
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not be any further from the coast (4Coffshore, 2012a; Toke, 2011). Offshore wind farms 

are increasingly being built further from the coast in deeper waters via the Crown 

Estates Offshore Wind Leasing Programme (in particular Round 3, see below). In 

conjunction with the trend through time for substantially larger plant size on a scale 

significantly larger than for onshore wind with increased geographical dispersal, this 

will increase the impact of offshore wind on the marine and terrestrial environment 

with resultant implications for planning. There is also the issue of connecting offshore 

renewable assets to the electricity network, which will require both an offshore and 

onshore component. Additionally, constructing offshore (and later, wave) technologies 

further from shore in an attempt to mitigate planning concerns carries with it the 

danger of a trade-off in reducing the costs of such technology deployment at least in the 

short and possible medium-term. 

 

Critically, those technologies with the attributes most likely to aggravate the major 

planning issues for RETs are also the same technologies likely to be deployed the most 

to meet the targets. If deployment continues on the trends necessary for attaining the 

2020 sectoral target, and the deployment focus remains primarily on onshore and 

offshore wind, the issue of cumulative impact, which has particular implications for 

onshore wind, will only increase. 

 

 

8.2.3 The planning system in England and Scotland 

The planning system is undergoing the most radical and rapid change since the 1940s 

across the UK (Moore and Purdue, 2012). A devolved issue, there has also been a 

divergence in the both the terrestrial (onshore) and marine (offshore) planning systems 

in operation within the various national administrations. Although energy policy is 

overall a reserved matter for Westminster, in reality it sits on the dividing line between 

devolved and reserved powers for Scottish Ministers and UK Ministers, respectively. As 

seen in Chapter Six, Scotland has a degree of operational control over the Renewables 

Obligation Scotland (ROS), but only in so far as determining the subsidy level for various 
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RETs or ‘eligibility rules’ through the banding mechanism.225 Indeed, the area where 

Scottish Ministers can exert major influence over energy policy lies in the Scottish 

Government’s control over major energy generation and electricity transmission 

planning consents through the devolution process. Despite these divergences, the 

planning systems are based on the same original principles and a number of notable 

similarities exist between the two systems.  

 

8.2.3.1 The onshore planning system in England and Scotland 

Table 8.6 (see pages 295-297) shows the key onshore planning legislation and policy 

documents for England and Scotland. The Planning Act 2008 in England and the 

Planning Etc. (Scotland) Act 2006 created a new development consent regime for 

Nationally Significant Infrastructure Projects (NSIP) (called national developments in 

Scotland) with regard to energy. The aim of both Acts is to speed up and streamline the 

process for this scale of development. Section 15 of the Planning Act 2008 sets out the 

capacity threshold by which certain types of development are considered as NSIP: for 

renewable and all energy installations, this is more than 50 MW and 100 MW for 

onshore and offshore generating stations in England and Wales, respectively; section 16 

of the Act sets out the capacity threshold for above ground electric lines of 132 kilovolts 

(kV) or more in England and Wales (UK Government, 2009). In contrast to England, 

Scotland retained the power under the Electricity Act 1989: under section 36 of the 

Electricity Act applications for power stations are considered by Scottish Ministers 

where they are in excess of 50 MW for all onshore renewable energy developments (UK 

Government, 1989).226 There is also a transmission network voltage threshold  

                                                             
225 In contrast, market arrangements, the electricity network and broad policy approach operate at the UK 
overall level. Scotland also has some control over discretionary economic development spending and 
indeed has invested heavily in the funding of research and demonstration facilities for offshore wind and 
marine RETs. 

226 Prior to 2011 hydro power was the sole exception. Under the Electricity Act 1989 (Requirement of 
Consent for Hydro-electric Generating Stations (Scotland) Order 1990, the capacity threshold was set at 1 
MW. Hydro stations <1 MW were considered by the relevant local authority whilst stations above this 
limit were considered by Scottish Ministers (UK Government, 1990b). This was revoked in 2011 by The 
Electricity Act 1989 (Requirement of Consent for Hydro-electric Generating Stations (Scotland) 
Revocation Order 2011 (Scottish Government, 2011b). This brought hydro power and Scotland into line 
with the situation in England and Wales (Scottish Government, 2011c). 
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Table 8.6 Key planning legislation and policy documents for onshore renewable energy installations and associated infrastructure in England and Scotland 

              Key legislation/policy     Information                 

              (a) England 
            

              Town and Country Planning Act 1990 

 

Applications for renewable energy installations of 50 MW and below for onshore renewables are dealt with at local authority level 

              Planning and Compulsory Purchase 
Act 2004 

 

To abolish all structure plans, local plans, and unitary development plans and replace with a new single level of plan called the Local 
Development Plan Framework (or 'local development plans').  

              Planning Act 2008   To speed up and ensure a more efficient process for translating national policy objectives into decisions on Nationally Significant 
Infrastructure 

    Set out the threshold for renewable energy deployments over 50 MW onshore and 100 MW offshore and electricity lines at or above 
132kV 

    To establish National Policy Statements (NPS) to provide the basis for planning decisions on Nationally Significant Infrastructure 

    To establish the Independent Planning Commission (IPC) to take over responsibility for making decisions on Nationally Significant 
Infrastructure ( now abolished, see below) 

    A single consent regime - developers will generally only need to submit one application instead of the numerous applications which 
often had to be made under the previous regime 

    A new duty - and greater onus - on promoters to ensure that proposals are properly prepared and consulted on before they submit an 
application for development consent 

    Aim for decisions on projects to be typically made in under a year from the application date   

              Localism Act 2011  Abolishes the Regional Strategies 

    

Imposes a new 'Duty to Cooperate' on local authorities and other public bodies to work together on planning issues 

    

Abolish the IPC - the functions of examining applications taken on by a new Major Infrastructure Planning Unit (MIPU) within the 
Planning Inspectorate (PINS) and the function of determining applications on major energy infrastructure projects by the Secretary of 
State for Energy and Climate Change  (who would receive a report and recommendation on each such application from MIPU) 

    

Introduces Neighbourhood Development Plans which have to take into account national policy and the local plan 
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Table 8.6 Continued 

              National Policy Statements (NPS) 
(designated July 2011) 

 To provide the basis for rapid, predictable, coherent and accountable planning decisions on Nationally Significant Energy Infrastructure 
- 6 NPS (an overarching Energy NPS and one each for renewables, nuclear, fossil fuels, transmission networks and oil and gas pipelines) 
and integrate environmental, social and economic objectives and provide clarity on the need for infrastructure 

    

Sets out national policy for relevant energy infrastructure - the overarching energy NPS (EN-1) in combination with the relevant 
technology specific NPS (EN-2 to EN-6) provides the primary basis for decisions by the MIPU. The NPS is also likely to be a material 
consideration in decision making under the Town and Country Planning Act 1990 (as amended) and may be a relevant consideration 
under the Marine and Coastal Access Act 2009 (the NPS prevails for purposes of MIPU decision making in the event of any conflict with 
the Marine Planning documents (including Marine Policy Statements (MPS) and Marine Plans (MP) 

    

As energy policy is generally a matter reserved to UK Ministers, the energy NPS may therefore be a relevant consideration in planning 
decisions in Scotland 
 

              National Planning Policy Framework 
(NPPF) (March 2012) 

 

To replace the majority of the Planning Policy Statements (PPS), Planning Policy Guidance Notes, Minerals Policy Statements, Minerals 
Planning Guidance Notes into a single concise document covering all major forms of development proposals handled by local 
authorities. The NPPF must be taken into account in the preparation of local and neighbourhood plans, and is a material consideration 
in planning decisions 

              (b) Scotland 
            

              Town and Country Planning Act 
(Scotland) 1997 

 

Applications for renewable energy installations of 50 MW and below for onshore renewables are dealt with at local authority level 

              The Planning Etc. (Scotland) Act 2006 

 

Introduction of a 'hierarchy of planning' (development management) based strongly on the use of development plans to permit the 
planning system to be able to respond to different types of planning proposals. Four levels of development: national, major, local and 
minor 

    

To abolish the system of structure and local plans and replace with Local Development Plans (LDP) prepared by local authorities and 
Strategic Development Plans (SDP) in the city regions in addition to the relevant LDPs 

    

Establish a National Planning Framework (NPF) - a statutory based strategy for Scotland's long term spatial development and a 
statement of what Scottish ministers consider to be priorities for development. The NPF designates specified developments as national 
developments, thereby establishing the need for the development. Although not a development plan, LDPs and SDPs must take into 
account the NPF (the NPF is a material consideration). The Scottish Executive decides after consultation on which national 
developments should be included in the NPF 

    

Note: Scottish Ministers consider applications for renewable energy installations exceeding 50 MW, offshore renewables as well as 
overhead power lines 
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Table 8.6 Continued 

              

    

Note: Scottish Ministers consider applications for renewable energy installations exceeding 50 MW, offshore renewables as well as 
overhead power lines 

              Scottish Planning Policy (SPP) 
(February 2010) 

 

The Scottish Planning Policy (SPP) is a statement of Scottish Government policy on nationally important land use matters. SPP 
updates and consolidates previous Scottish planning policy documents into a single statement of the Scottish Government's strategy 
for Scotland's long term spatial development. SPP covers the purpose and operation of the planning system, provides statutory 
guidance on sustainable development and planning and gives subject-specific advice (for example, on renewable energy). The 
policies expressed in SPP should inform the content of development plans (LDPs and SDPs) - it is a material consideration in the 
determination of planning applications 

                                          

SOURCES: (a) Department for Communities and Local Government [DCLG], 2012; DECC (2011b, c); FOE (2010, 2011b, 2012); Moore and Purdue (2012); Sheate et al., 2011; UK Government 
(1990a, 2004, 2008, 2011). (b) Collar (2010); Scottish Government (2006, 2009a, 2010a); Slater (2010); Wood (2010). 
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difference between Scotland and England. Under section 37 of the Electricity Act 1989, 

an electric line in Scotland which has a nominal voltage exceeding 20 kV requires 

consent from Scottish Ministers and below this under the control of the local planning 

authority (National grid, 2011; UK Government, 1989).227 Developments below the 

threshold capacity set by the Planning Act 2008 and the Electricity Act 1989 are under 

the jurisdiction of the relevant local authority (UK Government, 1990a).228 

 

The abolishment of the Infrastructure Planning Commission (IPC) has brought 

arrangements in line with that found in Scotland where Scottish Ministers retain 

jurisdiction over national developments. Instead of NSIP being decided by an 

independent commission separated from the direct control of the relevant Secretary of 

State, the Localism Act 2011 introduced the Major Infrastructure Planning Unit (MIPU), 

an agency within the Planning Inspectorate (IP) on 6 April 2012 (UK Government, 

2011).229 This is the main significance of the replacement of the IPC for NSIP designated 

energy developments. Although the Secretary of State is legally responsible for 

accepting and examining applications, the UK Government has delegated this 

responsibility to the MIPU. The final decision on major infrastructure applications, 

however, reverts to the Secretary of State.230 Otherwise, the Localism Act retained most 

of the previous procedures for how the decisions will be consulted on and made despite 

                                                             
227 However, it is unlikely that this is a significant difference from England given that the majority of new 
onshore transmission infrastructure will be lower than the 128 kV threshold set under the Planning Act 
2008 (ENSG, 2009). 

228 However, there are a number of proposed changes at the local planning authority level (for sub-50 MW 
renewable developments) (see below). 

229 Section 128 of the Localism Act 2011 sets out the transition from the IPC to the MIPU, an existing 
agency of the Department of Communities and Local Government (House of Commons Library, 2012). 
The IPS was a body independent from Government with the power to give a unified consent order (to give 
planning decisions, compulsory purchase) and thus charged with making the final decisions about major 
or NSIP Projects. Significant opposition to the IPC focused around the following issues: the IPC was a non-
democratically elected commission that was not directly accountable to Parliament (an annual report was 
to be submitted to Parliament to account for money spent but not for the decisions made); and it had 
virtually complete discretion about whether and how the public could be heard within the planning 
process (removed public inquiries where the public could cross examine and produce witnesses) (FOE, 
2010a). 

230 Prior to the Planning Act 2008 decisions would have been taken by the Secretary of State following a 
public inquiry (House of Commons Library, 2012). 
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this being an area of contention under the IPC (DECC, 2011d). This includes an 

emphasis on the use of written representations and the aim to minimise the need for 

issues to be examined through cross-examination at public inquiries. A public inquiry 

can be held if there is an issue of local impact but the MIPU controls the examination of 

each application, including deciding the principal issues to be examined and has 

discretion to decide whether cross-examination of evidence will take place at hearings 

(Planning Help, 2012).  The MIPU must have regard to any local impact report 

submitted by a relevant local authority, any relevant matters prescribed in regulations, 

the Marine Policy Statement (MPS) and any applicable Marine Plan (MP) (see below on 

marine planning) (DECC, 2011d).    

 

The Planning Act 2008 also introduced a new system of issuing planning consent for 

NSIP to be administered by the MIPU. The National Policy Statements (NPS) provide the 

basis for planning decisions on NSIP by setting out national policy in relation to one or 

more specified descriptions of development.231 The importance and opportunity of the 

NPS is succinctly pointed out in a report by the Energy and Climate Change Committee 

[ECCC] (2011: 3): 

 
“The National Policy Statements will influence the development of a green economy 
in Britain and could accelerate progress towards greater energy security. 
Bottlenecks in the planning process have been extremely costly and prolonged in 
the past, as it has been necessary to debate national policy before large 
infrastructure projects could be consented. The NPSs offer an opportunity to state 
that policy clearly. If introduced correctly, the NPSs will help to make Britain an 
attractive place to invest in clean low carbon energy.” 

 

The reasoning behind the NPS are as follows: to speed up NSIP development by 

providing rapid, predictable, coherent and accountable planning decisions; to integrate 

environmental, economic and social objectives; and by providing justification for the 

need for energy infrastructure the NPS (DECC, 2011d). The six energy NPS covering all 

energy infrastructure including generating, gas and oil pipelines and the electricity 

network were designated by the Secretary of State with responsibility for the relevant 

                                                             
231 Part 2(5) provides the legal basis of the various NPS (UK Government, 2008).  



300 

 

 

  

policy (in this case DECC) on the 19 July 2011 (DECC, 2011c).232 In addition to the 

overarching energy NPS (EN-1), there are two specific NPS of relevance to renewable 

energy: EN-2 (renewable energy infrastructure) and EN-5 (electricity network 

infrastructure). For energy NSIP, EN-1, when combined with the relevant technology-

specific energy NPS, is a material consideration for decisions by the MIPU. However, as 

such they can be ignored as it is not binding. 

 

The suite of energy NPS form a new tier in the set of planning documents with the 

purpose to define government policy in order to make timely and necessary decisions 

on applications for planning consent for NSIP. In particular,  

 
“The NPSs are intended to help deliver that investment by streamlining the 
planning process for major infrastructure projects and providing certainty 
 for investors.” (ECCC, 2011: 31).233 

 

However, the role of the NPS is not just with regard to major infrastructure 

developments but also sits within the wider planning system, at most scales and for 

both terrestrial and marine planning. The linkage of the NPS to the wider planning 

system is problematic and the terminology regarding the role of the energy NPS, 

however, is at times vague: EN-1 ‘may be helpful’ to local planning authorities preparing 

their local impact reports; EN-1 ‘is likely to be’ a material consideration in decision 

making that fall under the Town and Country planning Act 1990 in England and Wales; 

EN-1, in combination with the technology-specific NPS (EN-2 to 6), ‘may be’ a relevant 

consideration for the Marine Management Organisation (MMO) when it is determining 

                                                             
232 There are 12 designated or proposed NPS setting out Government policy on different types of national 
infrastructure developments covering Energy, Transport (ports, transport networks (including rail and 
roads) and aviation) and Water, Waste Water and Waste NPS (water supply, hazardous waste and waste 
water treatment). The Energy NPS include: an overarching Energy NPS (EN-1) that sets out generic 
considerations for all energy infrastructure and five technology specific ones for fossil fuel electricity 
generating infrastructure NPS (EN-2), renewable energy infrastructure NPS (EN-3), gas supply 
infrastructure and gas and oil pipelines NPS (EN-4), electricity networks infrastructure NPS (EN-5) and 
nuclear power generation NPS (EN-6) (DECC, 2011c; The Planning Inspectorate, 2012).  

233 Section 19(2) of the Planning and Compulsory Purchase Act 2004 places a duty for local planning 
authorities to have regard to national policies when preparing development plans (UK Government, 
2004). This includes the NPS. However, “… the degree to which Government policy is relevant to any 
particular planning application and the weight to be attached to it is a matter for the decision maker 
according to the circumstances of the particular case.” (DECC, 2011f: 31). 
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applications in accordance with the MPS and MP (and the preparation of the marine 

plans) (DECC, 2011d). This has the potential to lead to disruption, uncertainty and 

conflict in the planning system rather than provide the certainty required to make the 

necessary investment in meeting the RES-E sectoral target and other objectives (see 

below). 

 

There is also the issue of the need for new energy NSIP. Modelling in the DECC 

publication ‘Updated Energy and Emissions Projections (UEP)’ (DECC, 2011e) indicates 

that up to 59 GW of new electricity generating capacity is urgently ‘needed’ by 2025: of 

this total, 18 GW is required from RES-E sources and 18 GW from non-renewable 

capacity.234 A number of reasons are put forward to justify this need: the closure of 

around 25 per cent of UK electricity generating plant by the same time period due to the 

closure (already and in the near future) of existing generating plant due to 

environmental and/or age constraints and the requirement of Government to meet its 

energy security, decarbonisation and climate change objectives. However, there are a 

number of significant concerns regarding the need case.  Although section 5(5)(a) of the 

Planning Act 2008 states that the NPS may 

 
“… set out, in relation to a specified description of development, the amount, type or 
size of development of that description which is appropriate nationally or for a 
specified area.” (UK Government, 2008: 3) 

 

In actual fact the energy NPS  

  
“… almost entirely duck this question. The conclusion is simply that we are likely to 
need a lot more of everything, and indeed that we should plan for significantly in 
excess of what we actually need because not all of it may come forward for 
development, or because there is a need for spare capacity. The [MIPU/Secretary 
of State]  is therefore not allowed to question this assumption or need, or that there 
may be more acceptable alternatives to any given proposal… this means that the 

                                                             
234 Currently there is a total of 85 GW of electricity generating capacity in the UK. UEP modelling indicates 
that around 113 GW will be required by 2025, of which 59 GW of new capacity is needed. This is the high 
estimate of the modelling. This is split into 33 GW of renewable capacity (or 18 GW once operational (13 
GW) and already under construction (2 GW) is taken into account) and 26 GW of non-renewable capacity 
(or 18 GW once the 8 GW already under construction is taken into account) (DECC, 2011e).  
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NPSs are a developers’ charter. They are also a blunt tool, establishing an 
overwhelming need for new infrastructure.” (Scrase, 2011: 11-12). 

 

It can be argued that the case for unlimited, ‘one-dimensional’ need for all forms of 

energy infrastructure has not been made (Campaign to protect Rural England [CPRE], 

2011).235 In addition, the UEP modelling does not take into account the number of 

projects already with planning consent that have not yet started construction (around 

10 GW in 2010) and the figure of 59 GW is the upper estimate derived from the UEP 

modelling (DECC, 2011e). In particular, EN-1 states that “It is for industry to propose new 

energy infrastructure projects.” (DECC, 2011f: 16). Critically, a failure to specify the 

amount, type or size of development could result in the inability of the MIPU to prevent 

the over-consenting of gas-fired capacity. This could result in a second ‘dash-for-gas’ 

scenario.236 There is also the issue of greenhouse gas (GHG) emissions in addition to 

non-GHG/particulate emissions from fossil fuel plant and certain biomass RETs (see 

Section 7.2.2, page 274). Indeed EN-1 states that: 

 
“The role of the planning system is to provide a framework which permits the 
construction of whatever Government – and players in the market – have identified 
as the types of infrastructure we need in the places where it is acceptable in 
planning terms.” (DECC, 2011f: 9). 

 

                                                             
235 The NPS, for example, do not fully take into account existing plant that will either apply for life 
extensions or undergo conversion: EDF, the owner of around 9 GW of UK nuclear generating plant 
recently confirmed that it would extend the lifespan of all the advanced gas cooled reactors (7.5 GW, 
excluding Sizewell B which is a Pressurised Water Reactor) by an average of seven years (Business Green, 
2012c). There are also coal-fired power stations that are either closing and converting to gas (Cockenzie, 
1 GW CCGT conversion) or converting to biomass (Tilbury, 850 MW; DRAX, 1,980 MW, proposed) (DRAX, 
2012; RWE npower, 2012; Scottish Power, 2013). The implications are that the UK will require less new 
plant, or rather that there is a reduced urgency for new generating plant at least in the short and medium 
term. 

236 Bloomberg New Energy Finance (2012:6) already reports that “… the UK is in the midst of its second 
dash for gas having already built 4.5GW of CCGTs since 2010 with a further two large projects (RWE’s 2GW 
Pembroke [already online] and EDF’s 1.3GW West Burton [already partial commissioning, total plant online 
2013] due online in 2012.” In the most recent ‘Seven year Statement’ National Grid (2011) expect around 
12GW to come online by 2016, including 6.8GW already with planning permission with 1.5GW of plant 
delayed until 2016. The UK Gas Strategy (DECC, 2012f) anticipates between 26-37GW of new CCGT plant 
online by 2030. 
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This is a fundamental shift in the role of the planning system established in ‘Planning 

Policy Statement 1 – Delivering Sustainable Development’ (PPS 1) that the planning 

system operates 

 

“… in the public interest to ensure the development and use of land results in better 
places to live, the delivery of development where communities need it, as well as 
protection and enhancement of the natural and historic environment and the 
countryside. The outcomes from planning affect everyone, and everyone must 
therefore have the opportunity to play a role in delivering effective and inclusive 
planning. Community involvement is vitally important to planning and the 
achievement of sustainable development.” (Office of the Deputy Prime Minister, 
2005: 15, paragraph 40). 

 

The primary implication of EN-1 is that it imposes the NSIP on local areas and local 

communities and favours development and developers. This could result in 

communities becoming disenfranchised and placed at the mercy of more powerful 

developers and landowners (National planning Forum, 2009). By limiting public 

engagement and participation the new system runs the significant risk of unjustifiably 

alienating support in those very projects that Government deems there is a critical need 

for. In combination with leaving technology choice and siting partly to industry (and a 

current Government strongly predisposed towards gas, see above), albeit within the 

planning system framework, this could result in unnecessary conflict and delays. This 

can only end in concomitant impacts on renewable and low carbon investment being 

challenged and even constrained with repercussions for statutory renewable and 

climate change commitments.  

 

This also leads directly to the issue that the energy NPS do not provide any direction on 

decarbonisation of the electricity sector. In particular, the MIPU does not have to take 

into account the greenhouse gas emissions of generating plant in general or the 

sustainability of biomass fuel sources in particular. Yet these are two key issues for 

biomass and waste technology developments with regard to planning, particularly due 

to concerns over the lifecycle GHG emissions of certain RETs and the environmental and 
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social impact of unsustainably sourced (or transported) feedstock from abroad.237 

Instead this is left to the Renewables Obligation, a financial subsidy mechanism 

designed to provide financial support to developers/investors (see chapter seven). 

 

Section (1)(5)(b) of the Planning Act 2008 also sets out the power for energy NSP to 

include criteria relating to specific locations. However, with the exception of EN-6 

(nuclear power generation) none of the other NPS take into account site-specific or 

‘strategic spatial planning’ (ECCC, 2011). This is partly due to the NPS leaving decisions 

(on amount, type, size and location) of NSIP to industry, but also due to the priority of 

the NPS over local plans. Such a market-led approach to major infrastructure 

development results in the NPS undermining a plan-led approach to energy 

development and the fact that there is little evidence of spatial planning in England in 

comparison to the devolved administrations. This is significant given that the NPS could 

have permitted the consideration of environmental considerations up front in the 

development of future infrastructure so that siting issues can be avoided or minimised 

(Scrase, 2011). 

 

Another issue of particular contention is the point that the planning system (in England 

and Scotland) does not establish any ‘no-go’ areas for developers to put forward 

planning applications. From a natural environment perspective, although there are a 

number of designated areas protected by law from the national and international level 

down to regional and local level,238 including ancient woodland and veteran trees in 

addition to the protection of species and habitats that receive statutory protection 

under a range of legislative provisions,239 there are a number of caveats that need to be 

taken into account. EN-1 (DECC, 2011d: 44) states that 

                                                             
237 Other key issues include the transportation of the feedstock to the plant and other non-GHG 
particulate pollution emissions. 

238 Such designations include National Parks, The Broads, Areas of Outstanding Natural Beauty (AONB), 
Green Belt, Natura 2000 sites (including Special Protected Areas (SPAs), Special Areas of Conservation 
(SACs) and potential Special Protection Areas (pSPAs), Ramsar sites, Sites of Special Scientific Interest 
(SSSIs), Regionally Important Geological Sites, Local Nature Reserves and Local Sites (DECC, 2011d). 

239 Examples of such protected species include Badgers, Bats, Seals, Whales and other Cetaceans (Reid, 
2009). 
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“Given the level and urgency of need for infrastructure of the types covered by the 
energy NPSs… the IPC [MIPU] should start with a presumption in favour of 
granting consent to applications for energy NSIPs. That presumption applies unless 
any more specific and relevant policies set out in the relevant NPSs clearly indicate 
that consent should be refused.” 

 

For example, although the National Parks, The Broads and Areas of Outstanding Natural 

Beauty (AONB) are afforded the highest level of protection in relation to landscape and 

scenic beauty240, development consent can be granted ‘in exceptional circumstances’: 

such circumstances include the need for the (energy infrastructure) development as set 

out in the NPS; the impact of consenting or not consenting it upon the local economy 

and the capacity to moderate any detrimental effect on the environment and landscape. 

An examination of the other designated areas also has exceptions where development 

can go ahead for various reasons: although proposed projects outside National Parks 

will be visible from within the designated area and thus may have an impact within 

them “… should not in itself be a reason for refusing consent.” (DECC, 2011d: 97).  

 

In other words, energy infrastructure deployment is examined in the planning system 

on a ‘criteria’ basis rather than a ‘no-go’ or exclusion basis through the designation of 

planning zones for energy infrastructure and zones free from such development. In 

essence, a criteria-based approach  

 
 “… involves study of whether the windfarm meets various standards, mainly 
environmental and safety criteria, rather than whether the proposed site is on the 
right or wrong side of what may be an arbitrarily drawn line on a map.” Toke 
(2010: 532). 

 

A criteria-based approach obviously has merits, being pragmatic and based as it should 

be on the particular case-by-case considerations of the proposed development from an 

evidence-based perspective. However, this approach has the potential to aggravate 

public fears of development being able to occur anywhere. This is particularly the case 

for onshore wind developments, given the attributes of this RET and the current and 

                                                             
240 EN-1 (DECC, 2011d: 96) states that: “The conservation of the natural beauty of the landscape and 
countryside [of these designated areas] should be given substantial weight by the IPC in deciding on 
applications for development consent in these areas.” 
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projected levels of deployment, and could lead to increased public hostility as 

deployment increases. 

 

A major change to planning in Scotland is the introduction of a ‘hierarchy of planning’ 

based strongly on the use of development plans. The aim of this is to permit the 

planning system to be able to respond to different types of development proposals in an 

appropriate way to their scale and complexity. There are four levels to the hierarchy: 

national developments, major developments, local developments and minor 

developments. Section 3A(4)(b) of the 2006 Act provides that the National Planning 

Framework (NPF) may describe a development and designate it, or a class of 

development and designate each development within that class as a national 

development (Scottish Government, 2009b). Scottish Ministers are responsible for the 

NPF. National developments are those projects considered of long-term national 

strategic importance that will be both proposed and debated in the context of the 

statutory NPF (Scottish Government, 2009c). Examples of such developments with 

regard to energy include electricity grid reinforcements and power stations. The latter 

could also theoretically include large-scale wind farms, in particular the proposals for 

significantly larger-scale offshore wind farms. The NPF 2 also recognises the strong 

spatial dimension of offshore wind in terms of the generating stations and the location 

of necessary supply chain and electricity transmission infrastructure. 

 

In addition, section 26A(2) of the 2006 Planning Act gives Ministers powers to make 

regulations to describe classes of development other than national developments and 

assign each class to either major or local developments. Major developments are those 

projects not considered of national strategic importance but are of a size and/or scale to 

be considered of major importance (as such they, like the other two hierarchy ‘levels’ 

are not within the scope of the NPF). All types of electricity generating stations 

including fossil fuel power plants and renewable generating stations an installed 

capacity of 20 MW or above are designated as major developments under the Planning 

etc. (Scotland) Act; sub-20 MW onshore developments are designated as local 

developments (Scottish Government, 2009b, d). Proposals at this level (as with all 

levels) should be identified in the relevant local authorities’ development plan, with an 
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emphasis on prioritisation and an agreement on a timetable for the application to be 

determined quickly and efficiently. Local developments, making up the vast majority of 

the 50,000 plus planning applications decided annually, will be decided at the local 

level. Because many local development projects will be consistent with the relevant 

development plan, these should be processed quickly thus allowing more focus and 

resources on more controversial or complex applications, including those not in 

accordance with the development plan and/or the subject of significant local opinion. As 

with the plan-led system in England, developments that are contrary to the relevant 

plan are not encouraged and obtaining planning consent will be more difficult (see 

below). Minor developments such as domestic microgeneration projects that meet 

certain conditions are given deemed planning permission.241 In addition, under the 

changes introduced by the Planning etc. (Scotland) Act, Scottish Ministers have the 

power to call-in any national or major development project to speed up decisions 

(Slater, 2010). The Scottish Government also decides (after consultation) on which 

national developments are included in the NPF. In addition, although the court acts 

during an appeal for national developments, Scottish Ministers can play a part in the 

appeal process for both major and local developments242. Under section 5(3) of Part III 

of the Planning etc. (Scotland) Act, Scottish Ministers can also direct that a particular 

local development is to be dealt with as if it were a major development (Scottish 

Government, 2006). 

 

The result of these changes in conjunction with the capacity thresholds means that the 

Scottish Minister has potentially significant influence over any projects for the first 

three levels of the hierarchy of developments (and offshore renewable energy, see 

section 8.2.3.2). SPP also emphasises onshore wind by requiring that planning 

authorities should set out in the development plan a spatial framework for onshore 

                                                             
241 Minor developments now fall within the Town and Country Planning (General Permitted 
Development) (Domestic Microgeneration) Scotland Amendment Order 2009. 

242 The Planning etc. (Scotland) Act 2006 introduced a Local Review Body (LRB) appeal procedure for 
local developments. Due to the fact that the Body is likely to comprise a group of councillors, although this 
will reduce costs and delays it raises concerns with respect to the effective removal of access to a truly 
independent arbiter for many applications: in effect the appeal is determined by those who made the 
original decision (Raeburn Christie Clarke & Wallace, 2009). 
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wind farms of 20 MW or above (major developments) and <20 MW onshore wind farms 

(local developments) if considered appropriate (Scottish Government, 2012b).243 This is 

significant because SPP 

 
“… provides a statement of the Scottish Government’s policy on nationally 
important land use matters and reaffirms that electricity generated from 
renewable sources is a vital part of the response to climate change.” (Scottish 
Government, 2010a: 38). 

 

In contrast, other onshore RETs are encouraged through SPP within the context of 

considering environmental and other constraints. This in itself has the effect that 

relatively immature high-cost technologies such as solar photovoltaics and those RETS 

that do not fall within the microgeneration scale or are currently not yet ready for large-

scale deployment will remain (potentially unnoticed) under the planning regime. This 

could have a particularly negative impact on the Scottish Government’s aim of 

expanding the mix of RETs with regard to improving future diversity and security of 

supply, and hence helping attain RES-E targets. 

The importance of this is that it could result in government imposing those projects in 

its interest on localities that might be against them, with particular implications for 

onshore wind. However, this will depend on whether Scottish Ministers refrain from 

involvement unless there were major objections against a project, a conflict in interest 

between the local authority and the development or reasons of national interest 

(Scottish Government, 2009e). In 2011-12, there were 53 onshore wind farm planning 

permission appeals received by  the Directorate for Planning and Environmental 

Appeals (DPEA) against a previous annual average of 14.7 (Scottish Government, 

2012c)244. In contrast there were only 2 planning permission appeals for all other RETs 

during the period 2004-12 (Scottish Government, 2012d). An increase in the number of 

onshore wind planning applications moving to appeal could be expected given the 

                                                             
243 There are concerns that relegating sub-20MW onshore wind farm developments to the local authority 
level results in a failure to incorporate the national significance of such projects despite the fact that they 
could still have substantial negative impacts on wildlife, habitats, landscape and local communities if 
inappropriately designed and located. 

244 Onshore wind farm planning permission appeals: 2004-5 (10); 2005-6 (13); 2006-7 (9); 2007-8 (14); 
2008-9 (14); 2009-10 (28); 2010-11 (15); 2011-12 (53) (Scottish Government, 2012c). 
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significant number of applications within the planning system. However, the substantial 

increase in 2011-12 could also arguably reflect the particular attributes and key issues 

of onshore wind in contrast to all other RETs. It is also suggestive of the current 

(political) dominance of onshore wind with regard to the Scottish RES-E sectoral target 

(Wood, 2010).  

 

At the local planning authority level, the current UK Coalition Government’s joint 

manifesto highlighted the commitment to a ‘radical devolution of power’ to the local 

level as one of its main aims (HM Government, 2010: 11): 

 
“The Government believes that it is time for a fundamental shift of power from 
Westminster to people. We will promote decentralisation and democratic 
engagement, and we will end the era of top-down government by giving new 
powers to local councils, communities, neighbourhoods and individuals.” 

  

This led ultimately to the Localism Act 2011. In particular, the Localism Act introduced 

Neighbourhood Plans (NP) to allow people to influence decisions and use power at local 

level. Although NP must have regard to national planning policy and be in general 

conformity with strategic policies in the local area development plan, there is concern 

that such a move will only act to frustrate overarching objectives including climate 

change and renewable energy which arguably require decisions on planning at a scale 

beyond that of local or indeed neighbourhood planning. This point is also relevant given 

that planning consent rates for onshore renewables have been significantly lower at the 

local authority level (<50 MW capacity) than for large-scale developments and the 

emphasis on the critical need for NSIP in order to meet such objectives. 

 

Further, there is concern that limited experience and/or time will slow the formulation 

of NP along with financial concerns. There is also the issue that more impoverished 

neighbourhoods will be unlikely to participate in this decentralisation of power in 

comparison to wealthier areas. Section 117 of the Localism Act 2011 sets out that the 

costs related to neighbourhood planning will be met by the relevant communities (UK 

Government, 2011). This raises concerns of creating a new planning system which is not 

equally accessible to all communities unless they can afford to pay for qualified, 
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impartial and reliable advice: the Department for Communities and Local Government 

estimates the cost of NP in the region of £5,000-250,000 each, and those communities 

unable to pay either lose out in participation or ask the developer to pay leading to fears 

over manipulation and control (FOE, 2010b) (this will be looked at in more detail in 

Section 8.3). 

 

There are is also evidence that Government will not actually ‘let go of the reins’ in 

devolving power to the local level. This links directly with the fundamental tensions 

inherent within planning discussed in section 8.2.2: speed versus quality; democracy 

versus efficiency; centralisation of priority or local priority; certainty or flexibility and 

consensus or conflict (Ellis, 2008).245 As a FOE briefing clearly states: “Historically, 

central government talk of devolving power tends to disguise the further centralisation of 

powers in Whitehall.” (FOE, 2011c: 3). In the case of the planning system in England, 

although planning at the local authority level has only recently undergone significant 

change (primarily through the NPPF and the Localism Act 2011), the UK Government 

has recently introduced a number of new reforms in the Growth and Infrastructure Bill 

that include substantial changes to the role of local planning authorities and hence the 

degree of centralisation of planning power. Of particular relevance here is clause 1 of 

the Growth and Infrastructure Bill (2012). This creates the option for developers to by-

pass local planning authorities and make an application directly to the Secretary of State 

                                                             
245 As argued previously, recently reform to the planning system in both England and Scotland for major 
developments has been increasingly centralised. Section 7.2.3.2 also argues that marine planning is highly 
centralised (see page 304). Importantly, this also ties in with the increasingly dominant discourse, 
particularly within the UK Government, that the planning system itself is a barrier to development and 
hence economic growth: “The planning system should act as a driver for growth. But if I am being 
completely frank with you, it’s the drag anchor to growth.” (Rt. Hon Eric Pickles, Secretary of State for 
Communities and Local Government speech to the Confederation of British Industry [CBI), Planning Blog, 
2011: 1); “… [F]or over a decade in this country the enemies of enterprise have had their way. So I can 
announce today that we are taking on the enemies of enterprise… The town hall officials who take forever 
with those planning decisions.” (Rt. Hon David Cameron, Prime Minister speech to Conservative Spring 
Conference, New Statesman, 2011: 1). However, according to statistics released by the Department for 
Communities and Local Government, the time to process planning applications has fallen over the last ten 
years and the number of approved applications has remained around 85 per cent over that time (DCLG, 
2010). 
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if a council has been designated by the Secretary of State as an authority which has a 

record of ‘very poor performance’.246 

 

This has a number of obvious implications for local planning authorities and renewable 

development and it is difficult to argue that it will address problems in the planning 

system at the local level: it arguably by-passes local democracy and the localism agenda, 

removing particular developments from contact with local people with resultant issues 

for public participation and engagement (communities could have a lesser and not 

greater say about wind energy development in their area); it centralises planning power 

within the UK Government and PINS in particular; the UK Government will likely face 

increasing numbers of planning applications for onshore wind farm developments 

under 50 MW (in addition to other RETs) with implications for whether or not PINS can 

cope with this work level in terms of staff and resources on top of recent changes to 

major infrastructure (see above); local planning authorities could expedite planning 

decisions at the cost of evidence-based decision making to improve ‘performance’.  

 

Of relevance to the above points, section 109 of the Localism Act 2011 seeks to abolish 

the Regional Spatial Strategies (RSS) that were put in place by the Planning and 

Compulsory Purchase Act 2004 (UK Government, 2004).247 The RSS bridge the gap 

between local and national planning issues in England, including the setting of regional 

(supra-local) renewable energy targets within a strategic planning system: all nine 

English regions had developed policies and targets supporting renewable energy by 

2009 (Ove Arup & Partners, 2009). In order to maintain coherence between national 

and local plans section 110 of the Localism Act 2011 introduced a legal ‘duty to co-

operate’ on strategic matters regarding sustainable development or land use that has or 

would have a significant impact on at least two planning areas in particular relating to 

                                                             
246 It should be noted that the Growth and Infrastructure Bill is still going through Parliament. As such, 
detail is still lacking (for example, the criterion for designating an authority has having a record of very 
low performance with regard to planning decisions is not included currently in the Bill. Although the 
proposals are too recent to be included in this thesis, due to the significant implications of the Bill with 
regard to renewable deployment and onshore wind in particular it is worth highlighting this in brief. 

247 Section 1 of the Planning and Compulsory Purchase Act provided for the establishment of the RSS (UK 
Government, 2004). 
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major infrastructure between local authorities in order to replace the demise of the 

regional tier of planning (UK Government, 2011). In contrast to the RSS, however, the 

new mechanism does not enable regional renewable targets and loses the long-term 

coverage of the RSS out to 2026 (RenewablesUK, 2011). The duty to co-operate could 

also legitimately delay and cause uncertainty if a council or identified public body 

cannot agree with other areas over ‘co-operative’ developments (Planning Advisory 

Service, 2012). 

 

Both England and Scotland have sought to simplify guidance for developments with the 

aim of speeding up the planning process at the local authority level: the National 

Planning Policy Framework (NPPF) in England and the Scottish Planning Policy (SPP) 

(Department for Communities and Local Government [DCLG], 2012a). Both provide 

guidance that all local authorities must have regard for in drawing up local plans and 

making decisions on planning applications. The NPPF and SPP are therefore of 

importance to renewable developments with a proposed installed capacity of less than 

50 MW. The reasoning behind the issue of such guidance on general and specific aspects 

of planning policy was to provide concise and practical guidance on planning policies in 

a clear and accessible form in order to inform local planning authorities about 

Government policy and to reduce the need for the relevant Secretary of State/Scottish 

Minister to utilise his powers with regard to planning appeals (Moore and Purdue, 

2012). By reducing planning guidance from 1,300 pages to around 65 pages, the NPPF 

runs the risk of losing the practical detail and critical wording and, importantly, the 

applicability of important relevant policies (Communities and Local Government 

Committee [CLGC], 2011). 248 Such loss and increased vagueness introduces the 

potential to lose impact and credibility and result in ambiguity, increased delays and an 

inconsistent decision-making process (FOE, 2011d). Although the ‘devil will really be in 

                                                             
248 The NPPF consolidates and replaces the majority of Planning Policy Statements (PPS), Planning Policy 
Guidance Notes (PPG), Mineral Planning Guidance Notes (MPG) and Circulars. The various guidance notes 
consolidated within the NPPF are listed in Annex 3 of the NPPF document (DCLG, 2012a). The 
consolidated SPP replaced the previously separate Scottish Planning Policy documents, National Planning 
Policy Guidance (NPPG) and some Circulars and PANs. Planning areas subsumed within the NPPF and 
SPP. These include diverse guidance on sustainable development, climate change, green belts, 
biodiversity and geological conservation, renewable energy and coastal planning. This is not a full list of 
such documents. 
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the detail’ here, it is difficult to argue that this will lead to less rather than more appeals 

in the planning system, despite this being one of the primary aims of such guidance. The 

SPP faces the same risk, by relegating some of issues to planning advice notes (PANs) 

which do not require the same level of consultation as an SPP. In addition, there is the 

potential for conflict between aims in the merged SPP, for example between flooding 

and renewables: paragraph 207 (page 43) states “where possible, natural features and 

characteristics of catchments should be restored so as to slow, reduce or otherwise 

manage flood waters.” This could potentially have serious financial and locational 

ramifications for hydro schemes, with a resulting negative impact on the plans to 

expand particularly small-scale hydro (Scottish Renewables, 2010b). 

  

In contrast to the draft NPPF, the revised version does not change the statutory status of 

the development plan as the starting point for decision making.249 However, the 

transition period set out in the NPPF ends in March 2013: local plans that are not up to 

date by this deadline will be subject to the full extent of the presumption in favour of 

sustainable development. In other words, they will have to grant planning permission 

for developments unless 

 
“… any adverse impacts of doing so would significantly and demonstrably outweigh 
the benefits, when assessed against the policies in this Framework [the NPPF] 
taken as a whole;” (DCLG, 2012a: 4). 

 

This will be the new decision making test on decisions on planning applications and the 

area for conflict and possible delays. Critically, as of April 2012, only 43 per cent of local 

planning authorities in England had plans adopted in conformity with the NPPF 

(Lainton, 2012).250 In addition to the problems discussed above regarding the abolition 

of the RSS and the new ‘duty to co-operate’, this could result in developments being 

perceived to be ‘forced’ through, undermining the plan-led system. It could also lead to 
                                                             
249 It should be pointed out that the final version of the NPPF was substantially altered from the draft 
version (DCLG, 2012b). The difference between the versions is not the point of this evaluation; however, 
where relevant, the implications deriving from such changes in policy will be examined in Section 7.5 on 
policy risk and uncertainty. 

250 The DCLG no longer maintains a database of plan progress in England. In terms of area, this has been 
calculated as equating to 42% of England being covered by such plans (Lainton, 2012). 
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legal challenges to the lawfulness of the NPPF presumption in favour of sustainable 

development (Out-law, 2012). 

 

Although the NPPF was never intended to be issued as a ‘spatial plan’, there are also 

legitimate concerns of the impact arising from the lack of strategic of spatial planning. A 

spatial, strategic policy framework is a useful way to reconcile rising population and 

associated development needs with finite space and environmental capacity: 

 
“Providing a degree of strategic oversight is particularly crucial for the natural 
environment which operates over wide spatial scales that will often transcend local 
authority boundaries.” (RSPB, 2011: 3). 

 

This is particularly relevant for onshore wind farms which exhibit large plant size and 

are sited primarily due to economic reasons based on resource quality and availability. 

The abolition of the regional tier of strategic planning (the RSS) will aggravate this 

problem and put additional pressure on the new (replacement) ‘duty to co-operate’ 

mechanism in order that the local plans together can be greater than the sum of their 

parts. This is important given that onshore wind is anticipated to account for a critical 

share of RES-E deployment out to 2020 and beyond whilst minimising conflict. 

 

8.2.3.2 The offshore planning system in England and Scotland 

The marine planning system is also undergoing extensive modernisation and reform.251 

Table 8.7 (page 315) shows the key legislation and policy for the offshore planning 

system in England and Scotland. The Marine and Coastal Access Act 2009 introduces a 

new system of marine management, including a new marine planning system, which 

makes provision for a statement of the UK Government's general policies, and the 

general policies of each of the devolved administrations for the marine environment 

and also for marine plans which set out in detail what is to happen in the different parts  

                                                             
251 The onshore planning system does not regulate offshore development, although it is essential that 
development plans take into account the infrastructure and grid requirements of offshore renewable 
energy generation industry such as offshore wind, wave and tidal power. This is the same for all the 
national administrations. 
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Table 8.7 Key planning legislation and policy documents for offshore renewable energy installations and associated infrastructure in England and Scotland 

              Key legislation/policy     Information                 

              (a) England 
                          Marine and Coastal Access 

Act 2009 

 

Introduces a new system of marine management, including a new marine planning system, which makes provision for a statement of the UK 
Government's general policies, and the general policies of each of the devolved administrations for the marine environment and also for marine plans 
which set out in detail what is to happen in the different parts of the areas to which they relate 

   
 

Includes provisions changing the licensing system for activities in the marine environment and the designation of conservation zones 

    

Establishes the creation of the Marine Management Organisation (MMO) an executive Non-Departmental Public Body. The MMO will be the strategic 
delivery body for marine-related functions in the wasters around England and in the UK offshore area for matters that are not devolved. The MMO will 
license offshore energy installations with a generating capacity under 100 MW and be a statutory party to the examination of projects over 100 MW 
under the MIPU regime in waters in or adjacent to England and Wales 

   

 

Establishes a new Marine Planning System - includes Marine Policy Statement (MPS) that sets out policies for contributing to the achievement of 
sustainable development in the UK marine area and Marine Plans (MP) 

   

 

The MMO must take authorisation and enforcement decisions in accordance with the Marine Policy Statement and applicable Marine Plans unless 
relevant considerations indicate otherwise 

              (b) Scotland 
                          Marine and Coastal Access 

Act 2009 

 

The Act provides executive devolution to Scottish Ministers of the new marine planning and conservation powers in the offshore region (12-200 
nautical miles), coinciding with the existing executive devolution of marine licensing and common enforcement powers (under the Marine (Scotland) 
Act 2010, see below) 

              Marine (Scotland) Act 2010 

 

Creates a new legislative and strategic management framework for the marine environment at the national and regional level (and more widely by 
working with a range of others within the UK and Europe). The main measures include a new statutory marine planning system including establishing a  
National Marine Plan (NMP), the delegation of marine planning functions in relation to Scottish Marine Regions (SMR), a simpler marine licensing 
system, marine conservation and enforcement powers 

    

To establish a National Marine Plan (NMP) - a strategic integrated framework for managing Scotland’s marine environment covering both inshore 
waters (out to 12 nautical miles - covered by the UK Marine and Coastal Act 2009) and offshore waters (12 to 200 nautical miles) to identify major 
strategic projects.     

    

To identify and designate a number of Scottish Marine Regions (SMR) through secondary legislation to implement marine planning at a regional level in 
Scotland. Scottish Ministers would delegate planning powers to the regional level through Marine Planning Partnerships (MPPs). SMRs have to take 
into account the NMP and direction from Ministers under Sections 12-14 of the Marine (Scotland) Act 2010. 

    

Establishes Marine Scotland (MS), a Directorate of the Scottish Government with direct responsibility for marine science, planning, licensing, policy 
development, management and compliance.  

                            
SOURCES: (a) UK Government (2009a). (b) Scottish Government (2010b; 2012e). 
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of the areas to which they relate (UK Government, 2009a,b).252 Part 3 of the Marine and 

Coastal Access Act 2009 established the requirement for a Marine Policy Statement 

(MPS) (HM Government, Northern Ireland Executive, Scottish Government and the 

Welsh Assembly Government, 2011). There is only one MPS for the UK marine area, 

jointly adopted by the Secretary of State (England), Scottish ministers, Welsh Ministers 

and the Department of the Environment in Northern Ireland. Published in March 2011, 

the MPS embodies a strategic, long-term approach to marine development in the UK 

marine area, and is the overarching policy framework for preparing planning in the UK 

marine area (EFRAC, 2011). As such, it will provide the high level policy context within 

which national and sub-national marine plans will be developed, implemented, 

monitored and amended whilst ensuring consistency across the UK marine area (HM 

Government, Northern Ireland Executive, Scottish Government and the Welsh Assembly 

Government, 2011). The Marine and Coastal Access Act 2009 requires all public 

authorities taking authorisation or enforcement decisions that affect (potentially or 

otherwise) the UK marine area to do so in accordance with the MPS unless relevant 

considerations indicate otherwise. 

 

Marine planning has also been executively devolved to Scotland. The Marine and Coastal 

Access Act provides executive devolution to Scottish Ministers of the new marine 

planning and conservation and enforcement powers in the offshore region (12-200 

nautical miles), coinciding with existing executive devolution of marine licensing.253 A 

number of these powers are brought forward under the Marine (Scotland) Act 2010. As 

with the onshore system, there are a number of similarities and differences between the 

English and Scottish marine planning systems. The overarching policy framework for 

                                                             
252 Previously development in the UK marine area occurred on an ad hoc, sector by sector, consent-led 
basis that failed to take into account the cumulative impact of decisions on the environment 
(Environment Food and Rural Affairs Committee [EFRAC], 2011). 

253 Key parts of the Marine and Coastal Access Act 2009 relevant to Scotland include the adopting of a 
Marine Policy Statement (MPS) – a framework for preparing Marine Plans and taking decisions affecting 
the marine environment (section 44), in particular marine planning. Jointly adopted by the Secretary of 
State, Scottish Ministers, Welsh Ministers and the Department of the Environment in Northern Ireland, 
the purpose of the MPS is to facilitate and support the formulation of Marine Plans by providing the high 
level policy context within which national and sub-national Marine Plans will be developed, implemented, 
monitored, amended in a consistent manner across the UK marine area (HM Government, 2011). 
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preparing planning in the UK marine area, the Marine Policy Statement is also of 

relevance to Scotland’s marine areas (EFRAC, 2011). 

 

Both nations have set up new bodies as the statutory strategic delivery body and 

regulator for marine-related functions in the relevant waters: the Marine Management 

Organisation (MMO) and Marine Scotland (MS) in England and Scotland, respectively. 

Both the MMO and MS have a number of similar powers and responsibilities. These 

include: implementing a new marine planning system; a new marine licensing regime; 

and managing a network of Marine Conservation Zones (MCZ) and European marine 

sites (MMO, 2012a; Scottish Government, 2010b).254 

 

As with the onshore planning system, there is a capacity threshold difference between 

England and Scotland for offshore renewables: offshore developments with a proposed 

installed capacity of more than 100 MW fall under the remit of the relevant Secretary of 

State, in this case for DECC, whilst proposals below this threshold are designated by the 

MMO; in contrast, under the Electricity Act 1989 the threshold is 1 MW in Scotland. 

Below this, developments are designated by Marine Scotland whilst >1 MW 

developments are decided by the relevant Scottish Minister. 

 

Regarding the new marine planning system in England, the MMO will be responsible for 

preparing the marine plans for the English inshore and offshore waters.255 In essence, 

the MP will set out how the MPS will be implemented in specific areas. For England, 

                                                             
254 The Marine (Scotland) Act also aims to streamline marine licensing by introducing a single consent 
license: the developer makes one application to Marine Scotland/Scottish Government for the marine 
license, section 36 consent and wildlife license if required, with all applications considered together in the 
second stage by Marine Scotland/Scottish Government before the third (final) stage where consents 
would be issued on approval (Scottish Government, 2009f). Prior to this a developer would apply to the 
Food and Environment Protection Act 1985 (Part II), the Electricity Act 1989 Section 36, the Coast 
protection Act 1949 and for a wildlife license where required, with applications considered separately 
and possibly at different timescales by the relevant bodies (second stage) before the third (final) stage of 
approval and consent (if the development is successful). 

255 The Marine and Coastal Access Act 2009 divide UK waters into marine regions with an inshore and 
offshore region under each of the four Administrations. In England, the Secretary of State is the 
responsible marine plan authority for both the inshore and offshore regions although power has been 
delegated to the MMO.  
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there are ten marine plans corresponding to ten inshore and offshore regions (DEFRA, 

2010). This will not be a rapid process. Individual MP are expected to take around two 

years for completion, and although different plans can be simultaneously developed and 

adopted so far this has not really been the case and it is expected that full marine plan 

coverage will be achieved around 2021.256 The adoption of the marine plans also 

represents a substantial amount of work: for example, the East Offshore area represents 

approximately 48,500 km², and although some proposed areas are significantly larger 

whilst others are smaller the scale of the combined MP is considerable (DEFRA, 2010). 

The scale of the endeavour has, however, led to concerns regarding the ability of the 

MMO to carry out its functions. DEFRA has cut MMO funding from £30.9 million (in 

2010-11) to £24.4 million (in 2014-15) leading to fears that the organisation will not be 

properly funded. There is also the issue that the MPS have been specifically designed to 

leave a significant number of ‘details’ to the individual MP level, including detailed 

policy and practical guidance and prioritisation. Although there is rational reasoning 

underlying this approach (it reflects the devolved nature of many aspects of marine 

policy and the devolved nature of the institutions that will deliver marine policy), in 

effect this loads the work onto the MP and reduces clarity between the various areas. 

 

The main provisions of the Marine (Scotland) Act  include that Scottish Ministers must 

prepare and adopt for the first time a National Marine Plan  (NMP) for the Scottish 

marine area (Scottish Government, 2010b). The Act also provides the power for Scottish 

Ministers to decide whether or not to prepare and adopt regional marine plans or RMP 

(by designating Scottish Marine Regions, SMR). Covering both the inshore and offshore 

marine regions257, the NMP sets out the Scottish Minister’s policies for the sustainable 

development of the Scottish marine regions, including marine planning, licensing, 

conservation and enforcement and any statements or information relating to the 

policies contained in the plan. Both the NMP and the RMP must set out strategic 

                                                             
256 The East Inshore and Offshore areas were first and second areas in England to be selected for marine 
planning in 2011, followed by the South Inshore and Offshore areas in November 2012 (MMO, 2012b). 

257 Therefore, the NMP is covered by both the Marine and Coastal Access Act 2009 and the Scottish 
(Marine) Act 2010, differentiated by inshore and offshore areas. Presumably, this will be the case for a 
number of RMP. 
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economic, social and marine environmental objectives as well as the mitigation and 

adaptation to climate change. Scottish Minister’s can also delegate the development of 

RMPs to a relevant local authority or a nominated group of stakeholders (known as 

Marine Planning Partnerships, or MPPs). Local interests and accountability is to be 

ensured through regional planning, which in turn is guided by the NMP and approved 

by Scottish Ministers. 

 

In addition, the NMP which was originally scheduled to be finalised in 2012 has recently 

been postponed until the end of 2014 (Scottish Environment LINK, 2012). The aim of 

the NMP was to provide forward-looking guidance to businesses seeking to develop the 

marine environment and ensure that marine activities develop alongside each other in a 

sustainable fashion. Another consequence of the delay is that the identification and 

designation of sensitive (environmental and historical) sites and the framework for 

their protection from development will also be postponed.258 Therefore, a strategic 

planning vacuum lacking an overall coordinated approach will exist at the same time 

that offshore renewable projects are developing at a rapid pace: 

 
“Unfortunately, this has the appearance of the tail wagging the dog, in this case 
development plans leading the national plan… without an overarching national 
marine plan in place, we remain in bureaucratic limbo and risk developing beyond 
environmental limits… Marine Protected Areas will be a critical tool to help protect 
and recover Scotland’s marine environment. The National Marine Plan will have a 
role to guide developers to ensure these sites are considered across the wider 
marine area.” (Scottish Environment LINK, 2012: 2). 

 

Delaying the NMP will also in turn likely delay the establishment of Scottish Marine 

Regions (SMR). Through SMRs Ministers would delegate planning powers to the 

regional level through Marine Planning Partnerships (MPPs), and it is these 

partnerships that would be charged with creating appropriate RMPs. Where national 

marine planning sets the wider context for planning within Scotland, RMP aim to allow 

more local ownership and decision making about the specific issues within a smaller 

                                                             
258 However, 33 Nature Conservation MPA proposals have been developed as of December 2012 and a 
further 4 MPA search locations remain to be fully assessed. If all these sites were designated this would 
account for 12% of the area of Scotland’s seas. Currently, there are 46 SACs, 45 SPAs, 61 SSSIs and  8 
fisheries management areas (Scottish Government, 2012f). 
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area but embedded within a system of regional marine plans for Scottish waters 

(Scottish Government, 2012g). It should also be pointed out that there is no statutory 

duty to implement RMPs, despite the bridging role they play between the national and 

local level with implications for public engagement, participation and acceptance of 

such developments. 

 

The major difference between the planning system for onshore and offshore renewable 

developments is the degree of centralised control (Toke, 2011). Marine planning 

consents are highly centralised in comparison to the situation for onshore renewables 

for three main reasons. Offshore renewable developments with a proposed installed 

capacity of more than 100 MW (in England) and 1 MW (in Scotland) fall under the remit 

of the relevant Secretary of State/Scottish Minister, and in contrast to the early 

deployment of offshore wind power all but one of the new developments are in excess 

of the threshold and as such are designated NSIPs (Wood and Taylor, 2012).259 Looking 

at current installed capacity, only 28 per cent of all offshore wind farms are 100 MW or 

below and thus 78 per cent fall under the control of the Secretary of State (or Scottish 

Minister) in comparison to 50 per cent of total onshore wind farms with an installed 

capacity of 50 MW or less (DECC, 2011c). The proportion will decline significantly as 

offshore wind deployment continues whilst the equivalent proportion for onshore wind 

will increase due to the increased amount of sub-50 MW developments in the planning 

pipeline compared to >50 MW developments. Secondly, regarding sub-100 or 1 MW 

developments, both the MMO and MS are not independent organisations. Despite being 

set up as an executive non-departmental public body (NDPB), the relevant Secretary of 

State (in this case for the Department for Environment, Food and Rural Affairs [DEFRA]) 

has significant control and influence over the MMO and thus essentially all offshore 

                                                             
259 The size range (in installed capacity) for the five offshore wind Crown Estate leasing rounds are: 
Round 1 (awarded in 2001): 60-180 MW (only 2 out of 11 developments exceeded the capacity 
threshold); Round 2 (awarded in 2003): 184-1,200 MW; Round 3 (awarded in 2010): 665-12,800 MW); 
Round 4 or Scottish Territorial Waters Round (awarded in 2009): 450-1,800 MW; and Round 5 or 
Extension to Rounds 1 and 2, also called Round 2.5 (awarded in 2010): 51-750 (only 1 out of 4 
developments fell below the threshold) (Wood and Taylor, 2012). 
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renewable deployment.260 A Directorate of the Scottish Government, MS is arguably less 

‘independent’ than the MMO. An additional consequence of this is that there is more 

centralised control over marine renewables in Scotland, not just for offshore wind (as is 

the case in England) but also wave and tidal stream power in the early stage of 

deployment given the initial small-scale developments expected in the near future. The 

third reason is that, again in contrast to onshore renewables and onshore wind in 

particular, the UK Government governs the overwhelming majority of the UK’s seabed 

assets. The Crown Estate (CE) owns approximately 55 per cent of the UK’s foreshore 

and virtually the UK’s entire seabed from mean low water to the edge of the continental 

shelf and the 200 nautical mile limit (the exclusive economic zone). As such the CE plays 

a major role in the development of the UK offshore wind, wave and tidal stream energy 

industry although it is not involved in the planning consent process. 

 

This raises concerns about the potential for a top-down imposition of offshore 

renewable projects (Wood and Dow, 2011). The marine planning system basically 

centralises power within the Government. Toke (2011) also points out that, in 

comparison to onshore renewables, there is increased emphasis on the strategic 

planning assessment of offshore renewables through Strategic Environmental 

Assessments (SEA). SEA is the process of appraisal through which environmental 

protection and sustainable development are to be evaluated and implemented into both 

national and local decisions at the Government and other (notably industry) plans for 

offshore developments, including offshore wind and marine renewable technologies. 

(DECC, 2012g).261 However, criticism levelled at the England SEAs highlights the point 

                                                             
260 The Secretary of State for DEFRA issues guidance and sets the overall objectives, priorities and 
performance indicators for the MMO. In addition, the Secretary of State’s responsibilities include 
approving the funding of the MMO, approving a person to be appointed the Chief Executive and Chief 
Scientific Adviser (and their terms and conditions of employment) and appointing the Board (Marine 
Management Organisation [MMO], 2012b). 

261 DECC has taken a proactive stance on the use of SEA with early SEAs carried out in accordance with 
the European Strategic Environmental Assessment Directive (2001/42/EC) some four years prior to the 
directives incorporation into UK law (DECC, 2012g). There have been 8 SEAs covering the UK continental 
shelf, carried out between 1999 and 2009. The Scottish Government has already carried out a SEA for 
wave and tidal developments off the north and west coasts in 2007 and has commenced a further SEA for 
all Scottish waters out to the 200 nautical mile limit – see also Section 7.2.2 (RSPB, 2012b). 
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that the Offshore Energy SEAs (Offshore Energy SEA (2008-09) and Offshore Energy 

SEA2 (2011) were not spatial (RSPB, 2012b). A major problem with the SEAs  

 
“… in England and Wales were that it was not spatially defined, unlike the parallel 
SEA in Scotland. It was so broad and shallow that it did not provide the direction 
for the industry in terms of where these technologies would be most appropriate 
spatially.” (Huyton, 2012: 66). 

 

In other words, there is a lack of detailed knowledge of the marine environment 

resulting in insufficient baseline data by which to direct developments to appropriate 

locations. Such an approach would have a number of benefits: avoiding damaging 

ecologically sensitive habitats and vulnerable bird and mammal species; reduce 

potential uncertainty for developers; and reduce potential conflict with environmental 

legislation. 

 

The provision of sufficiently detailed baseline data on the marine environment in UK 

waters would aid developers by reducing both the time and unnecessary cost of 

carrying out analysis of potential sites in inappropriate areas. The CE offshore 

renewable leasing rounds mitigates some of the concerns in this respect, but the work 

involved in this stage does not preclude the possibility of some developments failing to 

obtain planning consent based on the selected offshore renewable site. Although 

offshore wind deployment is in the relatively early stages, in contrast to the 1,800 MW 

of installed capacity of offshore wind, 540 MW (or 30 per cent of the total) has been 

refused planning permission, at least 500 MW of capacity has been lost via down-sizing 

due to environmental concerns and 180 MW was withdrawn because it was going to be 

refused planning consent.262 This is significant given that this loss of capacity derives 

directly from substantial offshore wind farms that were supposed to side-step such 

                                                             
262 Docking Shoal offshore wind farm (540 MW) was refused planning consent due to environmental 
reasons (Centrica, 2012; Business green, 2012a). The London Array development had to cut capacity by 
one third (from 1.5 to 1.2 GW) over environmental (planning) concerns (Business Green, 2012b). Shell 
Flats (180 MW), a Round 1 offshore wind development, was withdrawn due to environmental concerns 
and the fact that it was going to be refused planning permission; a subsequent, smaller proposal was also 
cancelled due to similar fears in addition to aviation safety and radar concerns (4coffshore, 2012b). So 
far, around 285 MW of offshore wind capacity has been lost through down-sizing (Wood and Taylor, 
2012). 
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constraints as planning. In addition, given the significant existing pipeline of offshore 

wind developments and the important contribution this RET is anticipated to make 

towards the RES-E target, such reductions and/or refusals will increase if these 

problems are not sufficiently addressed. 

 

There is a range of legislative measures in place or in the process of development and 

designation to protect important marine species and habitats. These include: Ramsar 

sites (Convention on Wetlands); Sites of Special Scientific Interest or SSSI (Wildlife and 

Countryside Act 1981); Special Protection Areas or SPAs (Birds Directive); and Special 

Areas of Conservation or SACs (Habitats Directive). Together SPAs and SACs make up 

the Natura 2000 network of protected areas that form the basis of the Marine Protected 

Areas (MPA) in UK waters (DEFRA, 2012a).263 Part 5 of the Marine and Coastal Access 

Act 2009 enables the relevant Secretary of State to designate new Marine Conservation 

Zones (MCZ) which will exist alongside the other protected areas to form an ecologically 

coherent network of Marine Protected Areas (UK Government, 2009). Currently, as 

MCZs are still being developed and selected, the marine protected areas network is not 

yet complete. Although the existing marine protected areas make a significant 

contribution, a number of protected species and sites are still not covered and/or 

sufficiently connected (DEFRA, 2012a). As DEFRA (2012b: 2) highlights: “A key 

challenge in the selection of MCZs has been the weakness of the evidence base.” In 

addition, although 127 MCZs were recommended in 2011 (covering 15 per cent of the 

English territorial waters and UK offshore waters adjacent to England, Wales and 

Northern Ireland), currently only 31 MCZs have been put forward for consultation with 

designation of the first tranche of sites expected in 2013 (DEFRA, 2012b). In addition, 

not one of the areas proposed where no activity would be permitted were included in 

the first tranche. 

 

This leads to a cyclical problem regarding offshore renewable deployment in the 

England and Scotland (and indeed the UK) marine areas: the statutory Marine Plans will 

                                                             
263 As of 2012, there are 37 inshore and 9 offshore SAC sites, 42 inshore and 1 offshore SPA sites, 113 SSSI 
sites and 1 MCZ site (Lundy Island) (DEFRA, 2012a). 
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take around a decade to be adopted and progress on adopting the statutory Marine 

Conservation Zones and European conservation areas (in particular the Natura 2000 

sites) is slow at best and politically constrained at worst primarily due to economic 

issues.264 Yet progress in both these areas is critically important if offshore renewables 

and offshore wind farms in particular are to be appropriately sited. This is crucial in 

avoiding one of the major problems of onshore wind, namely refused planning consent 

and public opposition. 

 

Currently some of the biggest offshore renewable projects in the world are in various 

stages of development and deployment in the UK. In addition to the approximately 10 

GW of offshore wind and 1.6 GW of marine renewable projects planned for Scottish 

waters, there are over 40 GW in the development pipeline (Wood, 2010; Wood and 

Taylor, 2012). In addition, a number of large-scale projects already have planning 

permission (Sound of Islay tidal stream array – 10 MW, the world’s largest tidal stream 

array) or are under consideration for planning permission (Moray Firth offshore wind 

farm - 1.5 GW). Therefore there are a number of risks facing the development of 

offshore renewables: uncertainty, delays, additional costs and the potential withdrawal 

or refusal for developments. In addition, this could have a potentially significant impact 

on the public perception regarding offshore renewables, given the already high cost of 

offshore wind and marine RETs in particular and the high level of centralised control 

over planning decisions. Given the particularly high cost of wave and tidal stream 

devices and the critically limited real-time experience of deploying these devices in the 

marine environment, such issues will have a disproportionate impact on these RETs at 

the point in time where risk is a major factor in whether or not they will be deployed 

(Wood, 2010). Finally, due to the sheer amount of potential renewable generation 

planned to apply for planning consent, adequate funding must be made available in a 

timely manner to avoid increasing planning delays due to constraint in a system only 

                                                             
264 The Environment Secretary Owen Paterson has been recorded as stating: “My absolute priority, with 
clear instruction from the prime minister, is to do everything I can to… generate wealth and jobs in the rural 
economy.” (Guardian, 2012: 1). This shows the emphasis on development over conservation in evidence 
in the current coalition government. 
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recently designed to be more streamlined. There must also be adequate resources put in 

place for planning to process all these renewable energy projects, especially as they are 

likely to apply at approximately the same time. 

 

In contrast to the spatial approach to offshore renewables adopted in countries such as 

Germany and The Netherlands where developments are prohibited from specified areas 

(notably for environmental reasons), the UK has largely adopted a criteria-based 

approach (Toke, 2011). Although such an approach will again largely benefit offshore 

wind power, there are a number of implications arising from this: a number of offshore 

wind farms located in existing and/or proposed environmentally protected areas are 

already either operational, in construction or proposed; as stated previously, a 

considerable amount (in installed capacity) of offshore wind developments have 

already been curtailed, and maintaining the criteria-based approach will continue this 

trend unless due care is given. Given the average size of offshore wind farms, the loss of 

one or more is significant to deployment trajectories and has the potential to lead to an 

increase in domestic and international conflicts. 

 

Regarding the issue, then, of the appropriate siting of offshore renewables the RSPB 

(2012b: 145) states that, 

 

“… marine renewables can be delivered at a scale and pace in harmony with the 
environment, provided that the right policy framework is in place. Critical to this is 
reducing uncertainty for developers in the marine environment by fully designating 
marine protected areas… and introducing a comprehensive and transparent 
marine biodiversity survey in UK waters. The absence of such measures has been 
seen to be a major source of uncertainty and risk in the deployment of, and 
investment in, offshore wind.” 

  

Such uncertainty and risk increases the cost of deployment and offshore wind is already 

one of the most expensive RETs in terms of deployment. There is also the question of 

the potential extent of spatial overlap between existing and future offshore renewable 

developments and marine protected areas and other uses of the marine environment. In 

a DECC commissioned study into this issue, ABPmer (2011) concluded that although it 

is difficult to ascertain with a high level of confidence the impact of this potential 
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conflict, management measures at a national level for all offshore renewables could be 

as high as £4.4 billion for the MCZ alone. The bulk of these costs would fall 

disproportionately on offshore wind, and include capital costs associated with 

relocating export and landfall point cables, habitat and species measures and associated 

issues regarding operation and maintenance. These findings are particularly significant 

due to two main reasons: costs will be focused on these sites and cable routes where 

such overlap occurs and therefore cost impacts will be substantially larger, leading to 

project delays and increased financing costs associated with the higher level of 

uncertainty; offshore wind has experienced very significant cost increases (see chapter 

seven). Yet at the same time the deployment of offshore renewables, in particular but 

not limited to offshore wind, is increasing rapidly in the UK and is anticipated to 

accelerate further to 2020 and beyond in order for the RES-E sectoral target (and 

climate change objectives) to be met. 
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8.3 Public participation and engagement 

So far, public participation and engagement has been examined with regard to the 

internal failures (chapter seven) and the planning system (chapter eight, Section 8.2). 

This has focused on the issues and barriers related to the structures of opportunity to 

participate in the process: in other words, how does the type and design of the subsidy 

mechanism and planning legislation and policy facilitate and encourage public 

participation and engagement in the process?265 An equally valid question that forms 

the focus of this section is: in which ways can or does public participation and 

engagement improve the decision making process and acceptance of such 

developments. Just as important is how these two spheres interact. This has a number 

of implications for renewable deployment across the UK. 

 

As discussed previously, renewable electricity technologies are a varying technical 

category in terms of form with very different attributes. They can be deployed at a wide 

range of scales: from the micro to the large industrialised scale. In addition, again in 

contrast to low carbon and fossil fuel technologies, renewable technologies exhibit a 

broad range of geographic dispersal, individual plant size and landscape impact (see 

Table 4.2). RET deployment can be located both close to/within urban areas and 

increasingly remote, as urban-industrial developments, rural installations or deep 

within the non-industrial, undeveloped natural landscape. As Walker and Cass (2011: 

46) state: 

 

“It then becomes increasingly difficult to generalize about the interaction of 
technologies with types of place/spaces, as their relational qualities can be quite 
distinct.” 

 

Increasingly, public participation and engagement is viewed as critical with regard to 

the deployment of RETs at all scales. There are a number of key reasons for encouraging 

                                                             

265 Public participation and engagement will also be examined with regard to the remaining external 
failures: Electricity networks (chapter eight, section 8.4) and Policy risk/uncertainty (section 8.5). 
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public participation and engagement regarding renewable energy. Wright (2011: 701) 

points out the fundamental importance of public participation and engagement: 

 

“If we do not have the public on board, I do not think that the targets are 
achievable… The same is true with planning: we will not see a higher consent rate 
without public support… That is too high a hurdle to overcome if we want to build 
the infrastructure quickly. It reflects high uncertainty among the public about 
projects that impinge on their local environment.” 

 

This is important. Although the focus has been on wind power in general and onshore 

wind in particular, most new developments require some level of public acceptance, 

with a concomitant role for engagement and participation in the process by members of 

the public.266 There are implications for those living or interacting in some way with 

these new facilities and significant deployment is required to meet statutory targets 

(Cowall et al., 2012). 

 

Focusing on large-scale renewables (>5 MW installed capacity), one scale of particular 

relevance to the issue of public acceptance and engagement is the medium-sized or 

meso-scale, generally defined as having an installed capacity of between 5-50MW. 

Although there are uncertainties regarding the meaning of meso-scale (see below), this 

scale of deployment has been argued to be more acceptable to the public. Additionally, it 

has been argued to be more suitable for communities, co-operatives and small (energy) 

companies and organisations including local authorities, farmers and individuals; 

termed community energy, this is the project scale that these groups can typically be 

involved, particularly in terms of bringing forward deployment. This has the potential to 

play an important role in RES-E deployment in the UK. As such, community and locally-

owned renewable electricity projects will be the focus of this section. 

 

 

                                                             
266 The focus on onshore wind, however, might more accurately reflect the scale of current deployment 
levels (both annual and cumulative) for this technology over recent years. A number of other RETS can 
and do face similar difficulties, particularly at the planning stage, for example biomass and waste 
technologies. 
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8.3.1 Meso-Scale Deployment and Community Renewable Projects 

Although meso-scale or medium-sized energy projects are clearly defined as consisting 

of developments with an installed capacity of between 5-50MW, a number of 

uncertainties exist around the actual meaning of the term, particularly with regard to 

community energy. Firstly, the scale appears to be somewhat arbitrary: there is a 

significant difference in scale between 5MW and 50MW; also, it is unclear what the 

difference is between a 45MW meso-scale and a 55 MW large-scale onshore wind farm. 

Secondly, meso-scale deployment is typically conflated with the term ‘local energy’ 

which can imply a number of meanings: energy generation occurs locally (but is the 

output used locally or fed into the national electricity grid?); developments at this scale 

can be termed ‘local’ with regard to the impacts particularly on the surrounding 

landscape and communities; that establishing a deployment locally results in social and 

economic benefits accruing to that community or communities. 

 

Currently no consensus exists in the extant literature on the definition of community or 

locally-owned energy: such a project can be wholly or partially-owned with non-local 

companies and organisations out-with the community, including multinationals and 

utilities. This leads to the issue of community involvement and to what extent local 

communities are involved in the project in question and in terms of public engagement 

and participation in the decision-making process (for example, where the development 

will be located; number and position of turbines; community benefits). Any discussion 

on this subject, therefore, needs to clarify and define what type of project is actually 

being examined. 

 

Graphically highlighting the size distribution of onshore wind farms in the UK as of 

August 2013, Figure 8.3 (page 349) shows that over half (58 percent, or 7,444 MW 

installed capacity) of all onshore wind either operational, under construction or 

awaiting construction falls into the sub-50 MW installed capacity category. Deployment 

can be further disaggregated: 15 percent (1,911 MW) is 0-10 MW; 20 percent (2,594 

MW) is >10-25 MW; and 23 percent (2,939 MW) are >25-50 MW. In comparison, there 

is just 42 percent (5,386 MW) of projects >50 MW installed capacity. In terms of  
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         Size range 0-10 >10-25 >25-50 >50-100 >100-150 >150-300 300 

MW 1,911 2,594 2,939 2,400 1,011 1,282 693 

                  

Figure 8.3 Size distribution of onshore wind farms in the UK as of August 2013 as a percentage and installed capacity (MW) 

Note: Data adapted from Renewable UK Wind Energy Database - UKWED (Renewable UK, 2013). Data includes wind farms operational, under 
construction, awaiting construction, under appeal and approved on appeal or judicial review. 
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installed capacity, there is also more sub-50 MW projects in the process of applying for 

planning determination than for >50 MW (see Table 8.2). 

 

In contrast, it is impossible to clarify the scope of community and locally-owned 

renewable deployment in the UK. Currently no such database exists.267 The reports that 

do exist provide conflicting levels of deployment; indicate problems with data collection 

(incomplete, inaccurate and/or double-count data), whether or not the technology is 

used to generate electricity or heat and/or do not separate data for <5 (small-scale FIT) 

and >5 MW (RO) projects. Estimates at the UK level range from: 60 MW at the UK level 

(ResPublica, 2013); 26.5 MW (Office of Gas and Electricity Markets [OFGEM], 2012); 

+1.2 GW (Co-operatives, 2012). The most complete database exists for Scotland. In 

contrast to the UK, Scotland has an up-to-date database (Energy Saving Trust, 2012).268 

As of the end of June 2011, Scotland has 147 MW of community and locally owned 

renewable projects; of this 64 MW is electricity capacity (or 163 GWh of electricity 

generation output) with 57 MW from onshore wind power. At the Scottish level, there 

are a further 666 MW in the development pipeline (under construction/consented but 

not built/in planning/in scope). This data is not broken down into heat or electricity 

and 205 MW (or 31 per cent) is due to the Shetland Charitable Trust’s portion of the 

Viking wind farm (Energy Savings Trust, 2012).  

 

Looking at projections of future community renewable projects, ResPublica (2013) 

estimate that there is around 5.27 GW of renewable electricity technology potential 

capacity in the UK. This is a significant potential contribution to the RES-E sectoral 

target, equating to around 13 to 15 per cent of the total installed capacity required to 

meet the UK sectoral target. 

                                                             
267 There is one online database but dates from 2005 and therefore is non-representative of the current 
situation for community renewable projects (Walker et al., 2005).The only accessible data is for the FIT 
(<5 MW) mechanism: out of a total installed capacity of 1,487 MW (September 2012), only 3% or 14.87 
MW is categorised as community owned. The vast majority was domestic (90%), followed by non-
domestic commercial (26%) and non-domestic industrial (3%) (OFGEM, 2012). 

268 Both the target and the database are broken down into: community based projects, other public sector 
and charity, farms and estates, local businesses, local authorities and housing associations (Energy Saving 
Trust, 2012). 
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8.3.2 The Opportunities and Barriers for Public Participation and Engagement 

Haggett (2011) points out that public participation and engagement can be used to 

more actively involve the public in the process and through their input not only 

potentially reduce conflict in decision making but also facilitate the appropriate siting of 

a renewable development. Local people may be ‘local’ experts, and this allows access to 

a detailed and contextualised knowledge of the local area into the planning process that 

would otherwise likely be inaccessible to developers and planning authorities. Members 

of the public also inherently deserve the right to actively participate in the planning 

system in order to improve accountability, transparency and democracy (Devine-

Wright, 2011). 

 

There are also a number of further advantages from emphasising public participation 

and engagement in planning, with particular emphasis at the community or locally-

owned scale. Increasingly acknowledged and accepted, such advantages include 

reduced environmental impacts269 (locally-sourced supplies, reduced transportation), 

development of local skills, the alleviation of fuel poverty, building supply chains, 

employment and industrial growth at the local level particularly in rural areas and grid 

issues with emphasis on off-grid applications again in rural or non-grid areas. (DECC, 

2012; Greenpeace, 2007; Watson et al., 2010). The potential for reduction in conflicts is 

also advantageous for developers in terms of both time and costs.270 Community and 

locally-owned energy projects can increase local engagement and promote behavioural 

change with regard to energy use, conservation and reduction local leadership, greater 

accountability and/or control and increased ownership. These benefits can only 

improve issues of local democracy. Local communities can also benefit from the location 

of a meso-scale energy project in their area by gaining direct access via some form of 

ownership (partial, full) to the subsidised revenue streams on offer rather than through 

the significantly reduced financial revenue via ‘community benefits’ or similar 

alternative offer including reduced energy bills (see below).  

                                                             
269 This would be in addition to reducing greenhouse gas emissions. 

270 It is important to stress that whilst these benefits exist, this is not always realised in reality. 
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However, it is currently unclear if and to what extent non-community and locally-

owned projects provide such additional benefits (except with regard to the high-level 

objectives including climate change and energy security). One point is clear: community 

ownership is central to what could be termed a cultural shift whereby the behavioural 

patterns of communities and people are changed from consumers to active energy 

producers through increased responsibility, participation and engagement. It is clear 

that not all of these advantages can be allocated to >50 MW (or larger industrialised 

projects).271 This also highlights the ownership of power generation in the UK. The ‘Big 

Six’ large-scale multi-national companies dominate both electricity supply (99 per cent) 

and total power station capacity (72 per cent) in the UK (FOE, 2011b; Office for Gas and 

Electricity Markets [OFGEM], 2011). For onshore wind, that figure for capacity rises to 

47 per cent and around 64 per cent for offshore wind power, the latter figure reflecting 

the scale and costs involved that are prohibitive to smaller companies (Centrica, 2012; 

EDF Energy Renewables, 2012; E.ON, 2012; Renewable Energy Association [REA], 2012; 

Renewable UK, 2013; RWE npower, 2012; Scottish and Southern Energy [SSE], 2012; 

Scottish Power, 2012). Regarding onshore wind, there are a number of other companies 

that although not vertically reintegrated like the ‘Big Six’ own a significant proportion of 

capacity: combined, the Big Six and the eleven next largest companies, each with over 

100 MW installed capacity (a number of them multi-national and/or located abroad) 

account for 73 percent of onshore installed capacity (Renewable UK, 2013).272 The 

remainder comes from smaller companies. Although there is uncertainty regarding the 

amount of community and locally-owned developments, it is highly likely that they 

account for around 1 percent of total deployment.  

 

                                                             
271 Such large-scale renewable energy deployments typically exhibit larger environmental footprints 
(however, both negative and positive in terms of potential GHG emission reductions, for example) and 
grid issues in terms of requiring new or upgraded capacity (Wood, 2010). 

272 The ‘Big Six’ account for 7,838 MW of installed capacity out of a total of 12,968 MW operational, under 
construction, awaiting construction or with planning consent: SSE (1,792MW); RWE npower (1,006MW); 
Scottish Power/Iberdrola (1,572MW); E.ON (1,114MW); EDF (576MW); Centrica has no onshore wind 
capacity. The eleven non-vertically integrated companies are: Vattenfall (445MW); RES (679MW); 
Ecotricity (160MW); Fred Olsen (418MW); Community Windpower (337MW); Infinis (261MW); Banks 
Developments (150MW); Falck Renewables (289MW); Infinergy (299MW); Peel Energy (173MW); Beinn 
Mhol Power (140MW) (Renewable UK, 2013). 
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As can be seen from the level of ownership, typically a high proportion of the equipment 

and expertise comes from these companies which are generally based abroad.273 This 

can impact on local supply chain growth and wider economic benefits and has 

implications for onshore wind development in rural areas where economic 

development outcomes surrounding such deployment to date have been questionable. 

Regarding offshore wind, around 90 per cent of the £1.5 billion cost of the 630MW 

London Array offshore wind farm went to foreign supply chain companies whilst the 

180 MW Robin Rigg offshore wind farm obtained 32 per cent of UK content (Marinet, 

2012). 

 

This leads to a critical question: do community based projects (ranging from 

community-owned to mixed community-developer based models) result in increased 

levels of ex-ante support for not only such projects but importantly for larger-scale 

and/or developer-based developments? And does this expedite the planning process? 

Currently there exists only a small amount of research examining the influences of 

different development models on attitudes to wind farms, namely community based 

contra developer-based projects.  Warren and McFadyen (2010: 209) showed that the 

promotion of a ‘more locally embedded approach to wind farms’ (community-owned) 

can help reduce the incidence of damaging conflicts which affects onshore wind 

deployment in the UK and help facilitate the achievement of renewable energy targets: 

 
“… community ownership is indeed associated with positive attitudes to wind 
farms, but support for wind power is not low in Kintyre [the developer based 
project in comparison to the community-based project at Gigha]… Arguably the 
most significant finding concerns the positive influence of ownership on the 
attitudes of communities towards wind energy projects, a finding which supports 
the long-held supposition that a change of development model could increase 
public support for windfarms in Scotland and other parts of the UK.” 

 

As stated above, there is some evidence to suggest that community ownership changes 

opinions about development although this requires further examination. In addition, 

this benefit in terms of both ownership and increased public participation and 

                                                             
273 For example, of the ‘Big Six’ energy companies only SSE is a British-owned company. In addition, a 
number of the other companies are based abroad: Vattenfall (Sweden); Falck Renewables (Italy). 
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engagement is recognised by the UK Government. The ‘UK Renewable Energy Roadmap’ 

states 

 

“Projects are generally more likely to succeed if they have broad public support and 
the consent of local communities. This means giving communities both a say and a 
stake, in appropriately-sited renewable energy projects like windfarms.” (DECC, 
2011: 35). 

 

Importantly, this leads to a number of additional questions that remain currently 

unanswered: to what extent does an increasing proportion of community or locally-

owned energy projects increase the acceptance of non-community or locally-owned 

projects amongst the public in general? This is particularly relevant for large-scale 

deployments (Cass et al., 2010; Cowell et al., 2011; Strachan and Jones, 2012; Warren 

and McFadyen, 2010). Perhaps an additional question to be considered here is the 

potential impact of such projects on planning decision-making. In other words, do such 

projects increase the chance of a project gaining planning consent? It would also be 

relevant to examine whether local acceptance equates to obtaining planning consent. 

 

These issues are highly relevant when looking at medium-scale energy projects as 

purely comprising developments of 5-50 MW installed capacity, analysing the REPD 

database provides interesting results on approval rates (in terms of installed capacity) 

for <50 MW projects: during the period 2007-12, there is a decreasing trend overall 

during the period 2007 to 2012 at the UK level and for Scotland and England. Although 

Scotland shows a decline from 74% in 2007 to 52% in 2012, approval rates in England 

exhibit a more substantial decline from 72% to 29% over the same time period. At the 

UK level, approval rates dropped from 74% to 48%. In contrast, approval rates over the 

same period were significantly higher for >50 MW projects at the UK, England and 

Scotland level. Without looking at the individual planning applications, it is difficult to 

determine the reasons for the decline in approval rates over this period, although issues 

of community will feature strongly in the decisions made given that <50 MW 

developments are determined at the local planning authority and not central  
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government.274 

 

This also highlights the issue of different deployment and ownership models: 

community and developer-based models arguably lie at opposing ends of the spectrum 

(Walker and Devine-Wright, 2008). In between, however, are a rich variety of options, 

combining elements and advantages of both: for example, the community of Fintry 

(Stirlingshire) owns one turbine of a nearby commercial wind farm (Warren and 

McFadyen, 2010). As can also be seen from the above quote, meso-scale renewable 

deployment also plays a role in not only increasing public acceptance and engagement 

but also in the diffusion of knowledge of, and an awareness and understanding of 

renewable energy technologies (Nolden, 2012).  

 

The principle of public participation and engagement is widely recognised but people 

face significant disadvantages when trying to engage with the planning system 

(Planning Democracy, 2012). The major thrust of the recent planning reforms in both 

England and Scotland focus on streamlining and speeding up the planning decision-

making process for large-scale developments (see Section 7.2); in general there has 

been very little concomitant effort for developments that fall under local planning 

authority jurisdiction and for community and locally-owned projects in particular. 

Critically, as with the subsidy system (the RO, see Chapter Six), the planning system 

does not take into account meso-scale deployment: the capacity thresholds (whether set 

under the Planning Act 2008 in England and Wales or the Electricity Act 1989 in 

Scotland) are either below 50 MW or above 50 MW.275 There is no in-between and no 

community or locally-owned-specific provisions despite the difficulties inherent at this 

stage (see below).276 The Coalition UK Government has clearly stated that it would 

                                                             
274 There are of course differences between England and Scotland due in large part to the divergence in 
planning system increasing over time since devolution in 1997 (see Section 8.2). In addition, the Scottish 
Executive has also been arguably more vociferous and consistently supportive of renewable and onshore 
wind deployment in particular than in England. 

275 This is also true with regard to the electricity network in the UK (see section 8.4). 

276 For example, planning applications for community renewable generation projects in Denmark, 
Germany and the Netherlands are often processed within three months. The reasons for this include: 
clearer rules and varying levels of community ownership are built in as preconditions. The advantages of 
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promote the radical devolution of power and greater financial autonomy to local 

government and community groups in large part via reform to the planning regime and 

the localism agenda, there has been very little progress in reforming the planning 

system with regard to community or locally-owned renewables. This is despite the 

visionary pledge in the Coalition Manifesto (HM Government, 2010:17) to  

 
“… encourage community-owned renewable energy schemes where local people 
will benefit from the power produced.” 

 

The NPPF, the cornerstone of sub-50MW developments in England, fails to mention 

public participation and engagement; indeed, there is only a rather weak provision 

regarding community renewable schemes: 

 
“In determining planning applications, local planning authorities should expect 
new development to …support community-led initiatives for renewable and low 
carbon energy.” (Communities and Local Government Committee [CLGC], 2011: 
22). 

 

In contrast, the SPP states that 

 

“Effective [community] engagement with the public can lead to better plans, better 
decisions and more satisfactory outcomes and can help avoid delays in the 
planning process. It also improves confidence in the fairness of the planning 
system.” (Scottish Government, 2010a: 5).277 

 

Indeed, one of the key actions of the 2020 Routemap is to “… lead the way in terms of 

supporting community ownership of renewables.” (Scottish Government, 2011b: 24).     

 

                                                                                                                                                                                              
this approach can be seen by the fact that around 20% of Germany’s 60GW of renewable installed 
capacity is owned by large-scale typically ex-utility energy companies: the rest is owned by communities, 
development trusts, farmers and households (Simpson and Read, 2011). 

277 This is backed-up by ‘PAN 81: Community Engagement’ and the ‘2020 Routemap for Renewable Energy 
in Scotland’ which set a target for community and locally-owned renewable energy for Scotland (see 
below) (Scottish Government, 2007b; Scottish Government, 2011). PAN 81 essentially looks at improving 
awareness and engagement in the planning process with emphasis on early engagement at both central 
and local levels. However, it fails to mention community and locally-owned renewable schemes and 
avoids proposing concrete definitions of terms including consultation, engagement, involvement and 
participation.  
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The benefits of community and locally-owned developments, however, are not reflected 

in the planning decision-making process. The planning system also does not take into 

account the difference between public consultation and public participation: the former 

is generally where members of the public are asked their opinion on carefully chosen 

questions in contrast to public participation, where members of the public are actively 

empowered to make decisions. A consequence of this disregard is the limited devolution 

of control to the public which in turn constrains the building of trust between 

developers and people (Institute for the Study of Science Technology and Innovation, 

2010). Additionally, although both the English and Scottish planning systems permit the 

involvement of third parties, neither system allows third party right of appeal. This is 

significant. It raises the question of who should be allowed to participate and engage 

and constrains people from doing so on the arbitrary basis of location. There is also an 

intrinsic imbalance between developers and the public in terms of expertise, time, 

awareness of the process, costs, transparency and access to information and lack of 

recognition of the value from public participation (Planning Democracy, 2012). Placing 

significant limitations on the ability of the public to participate properly in the planning 

system, such an imbalance will also disproportionately impact on poorer communities 

with the result of further feelings of disenfranchisement.  

 

This will be aggravated by the move towards the front-loading of the planning process. 

In recent years, the planning system in England and Scotland has emphasised the role of 

greater inclusivity. Both the Planning Act 2008 and the Planning etc Scotland Act 2006 

have introduced statutory requirements to engage with local communities, local 

planning authorities and those people/organisations directly affected by the project at 

the pre-application stage prior to the submission of the actual planning application.278  

It is correct to involve all participants, particularly local communities, as early as 

possible. In addition, such an approach could allow members of the public to influence 

the way projects are developed, how they are integrated into the community; obtain 

important information and an understanding of the development and critically, to 
                                                             
278 Provisions for pre-application consultation (PAC) are found in Part 5 Chapter 2 of the Planning Act 
2008 and Part 3(11)35(A)-(C) of the Planning etc Scotland Act 2006; in Scotland these procedures came 
into force from 3 August 2009 (Scottish Government, 2006; UK Government, 2008). 
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permit the early mitigation of measures via identifying problems prior to the official 

planning submission stage (Department for Communities and Local Government 

[DCLG], 2012). 

 

However, pre-application consultation is only a legal requirement for Nationally 

Significant Infrastructure Projects in England (>50 MW) and National (projects 

considered of long-term national significance) and Major (including >20MW onshore 

wind farms) Projects in Scotland (Scottish Government, 2006; UK Government, 2008). 

There is no such requirement for <50 MW projects in England or Local developments in 

Scotland, despite the impact that such developments can and do have. There is also 

valid concern regarding the incorporation of pre-consultation as a key element in front-

loading the system: it is the applicant or developer that will be the sole provider of a one 

way source of information (‘information provision’) concerning the proposed 

development to the public (Haggett, 2011). Importantly, the inclusivity of the 

consultation process is also dependent on the developer in question. The ‘Guidance for 

pre-application consultation’ states that 

 

“However, it is for the applicant to satisfy themselves that their consultation plan 
allows for as full public involvement as is appropriate for their project… Provided 
that applicants can satisfy themselves… it would be unlikely that their application 
would be rejected on grounds of inadequate public consultation.” (DCLG, 2012: 10-
11). 

 

In other words, there is very little government (or independent) control over the pre-

application consultation process. In contrast, planning authorities in Scotland will be 

responsible for checking the effectiveness of the pre-application consultation report and 

have the power to refuse to register the planning application if deemed inadequate 

(Scottish Government, 2010a)  

 

In addition, this approach results in respondents being forced to reply to existing 

proposals and as such does not reflect true participation and engagement where 

communities actively become involved in decisions such as location, type of technology 

and number of turbines. In other words, there is no consensus-building. This approach 
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also runs the risk introducing a strong element of bias with regard to the type and 

presentation of information; such pre-consultation is unlikely to build trust between 

developers and the public and will also normally involve abstract discussions of future 

developments that are by no means certain to go ahead in reality. Adding further 

pressure on time, costs and access to information (including an awareness of events), 

this raises the question of why communities should really get involved at that stage and 

whether they have the resources, given the intrinsic limitations mentioned above. 

 

There is also the difference in emphasis for this scale of development by the UK 

government and the National Administrations. As can be seen, there has been no 

concrete initiatives so far at the UK overall level. In contrast, Scotland has been more 

proactive. The Scottish Government has led the way with a number of initiatives: 

establishing in June 2011 a non-legally binding target of 500 MW of community and 

locally-owned renewable energy by 2020 (Scottish Government, 2011); the Community 

and Renewable Energy Loan Scheme (CARES) to support projects before they reach the 

planning stage (those projects considered too high risk for commercial loans). 

Individual projects can receive loans of up to £150,000 and free legal advice and 

support. CARES is open to community organisations, rural businesses and joint ventures 

between the two (Community Energy Scotland, 2012). At the UK level, however, the 

Chancellor announced in autumn 2012 a £15 million fund (the Rural Community 

Renewable Energy Fund, run jointly by DECC and DEFRA) to meet the upfront cost of 

developing renewable projects. These funds are in addition to various documents and 

toolkits provided by various governments to support community renewable 

developments (Community Energy Online [a part of DECC], 2012).279 

 

However, the efforts discussed here fail to address the fundamental barriers to 

community and locally-owned renewable electricity projects, including subsidy levels, 

planning, grid (see Section 8.4) and policy risk (see Section 8.5). Although the benefits of 

such a scale of development outweigh installed capacity and as such the target is 

                                                             
279 At the UK overall level the Department of Energy and Climate Change (DECC) published a consultation 
to explore the issue of community engagement and benefits for onshore wind in September 2012. In 
addition, DECC is currently preparing a Community Energy Strategy for publication in late autumn 2013. 
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commendable, when examined alongside the Scottish RES-E target which requires 

around 16-17,000 MW of renewable electricity capacity, the 500MW target is 

insignificant: 2.9 to 3.1 percent of the target. This is particularly the case when 

measured against the legally-binding UK target of 35-40 GW: 1.1 to 1.4 percent.  

 

 

8.3.3 Community Benefits: An Alternative Approach to Securing Public Support 

Aside from the opportunities within the planning systems and the advantages of public 

participation and engagement, there is another route used on the basis that it could 

potentially increase public participation and engagement in the planning process: 

‘community benefits’.280 These are voluntary agreements between the developer and 

local communities and as such are out with the planning system. There is no specified 

type or level of community benefit as such details are left to the agreement and depend 

on the community(s) and developer in question. The benefit is typically set as £/MW of 

installed capacity per annum (Cowall et al., 2011). Originating from the growing conflict 

over the siting of onshore wind developments near to where people live or visit, 

community benefits are the provision of financial (or material) benefits by developers 

to the area affected by the infrastructure. 

 

There are a number of objectives behind this approach, including to foster social 

acceptance, good neighbourliness and compensation. The underlying rationale is to 

somehow increase the social acceptability of wind farm development via a form of trade 

off. As the ‘2020 Routemap for Renewable Energy in Scotland’ (Scottish Government, 

2011: 59) states: 
                                                             
280 Community benefits are distinct from Planning Conditions (PC) and Planning Obligations (PO): Almost 
all planning permissions that are granted are subject to conditions. PCs may be imposed not over the 
question of whether the development should be permitted at all but on what terms it should be 
permitted, but to enhance the quality of the development and mitigate any adverse effects from the 
development being permitted (Moore and Purdue, 2012). PCs are typically site-specific. In contrast, POs 
are generally used to secure wider benefits from the development. Both have a statutory basis in planning 
law in both England (called ‘Section 106’ of the Town and Country Planning Act 1990) and Scotland(called 
‘Section 75’ of the Town and Country Act 1997) (Slater, 2010). Planning Obligations can be used for a 
variety of purposes including removing obstacles to a planning permission occurring, providing 
infrastructure and providing for long term after-care and to re-instate the landscape. However, POs can 
be used to provide a legal basis for community benefit agreements (Scottish Government, 2007b). 
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“… community benefits and the scope for local ownership of energy are key 
elements of public engagement in renewables, helping to change cultural attitudes 
to renewables as well as to generate local revenue as part of the green low carbon 
economy.” 

 

In practice, however, in contrast to community ownership 

 
“The available evidence indicates that [community benefits] are only playing a 
small part in winning wider community acceptance of wind power, and further in 
helping developers secure planning consent. Indeed, the available evidence 
indicates that the current system within which community benefit provision is 
agreed is actually acting as an additional source of tension, and this is likely to 
continue.” (Strachan, 2012: 3). 

 

There is concern that community benefits assume that opposition can be explained by 

localised, individual self-interest: in a sense, the impact of the deployment can be 

somehow bought off. This leads to claims that the planning process is being brought 

into disrepute (Ellis et al., 2009). 

 

There are additional issues of concern with the provision of community benefits. It is 

not an alternative to the issues of local (community) ownership or the active 

empowerment of such communities in the planning and decision making process. As 

such, it is contra the findings of the research by Warren and McFadyen (2010). As Bell et 

al (2005: 175) state: 

 
“The benefits of community ownership may have as much to do with local 
involvement in the development process as they do with the potential profits of 
ownership.” 

 

Such benefits are also arguably a poor alternative to communities owning renewable 

technologies and directly receiving the relevant subsidy stream from the Renewables 

Obligation mechanism. In addition, it fails to encourage communities to be not just 

consumers but energy producers. This highlights the difference between the rapid 

deployment of onshore wind in Denmark and Germany from the 1990s: the proportion 
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of community and locally-owned developments is significantly higher than in the UK.281 

This was due to the adoption of a feed-in tariff as the financial subsidy mechanism in 

these two countries enabling a lower level of entrants into the renewable market 

(communities and local people) by reducing investment risk via the guarantee of a fixed 

subsidy level in addition to reduced costs in accessing the electricity transmission and 

distribution network and a simplified planning system focusing on this scale of 

renewable technology deployment (Energy and Climate Change and Environmental 

Audit Committees, 2011). The main point, then, is that such lower level entrants could 

control the terms on which wind farm development took place. It is revealing that 

Devine-Wright (2010) shows that in the UK active public participation and engagement 

is only promoted at smaller scales in contrast to a more passive role promoted at larger 

scales. 

 

However, the key reason why it is unlikely that community scale renewables will not 

make a significant contribution to the target is that deployment is dominated by large-

scale companies that do not need community involvement to any great extent (Warren 

and McFadyen, 2010). Despite this, the value of community and locally-owned 

renewable deployment should not be under-estimated as the potential advantages 

could significantly out-weigh the level of installed capacity that is realised. 

 

 

 

 

 

 

 

 

 

 
                                                             
281 In Denmark, around 80% of all onshore wind turbines are community owned (Committee on Climate 
Change [CCC], 2011). For Germany, the proportion is around 50% (Energy and Climate Change and 
Environmental Audit Committees, 2011).  
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8.4 The UK Electricity Network 

The UK electricity network will need to undergo significant changes from now until 

2020 and beyond in order to facilitate the Government’s renewable energy and climate 

change targets.282 In the report ‘The Future of Britain’s Electricity Networks’ the Energy 

and Climate Change Committee [ECCC], 2010: 11) points out that 

 
“The transition to a low-carbon economy will require a fundamental change in the 
philosophy of power generation and supply, and the development and operation of 
a new, much larger and significantly more complex electrical energy system… [It] 
will transform the role of our electricity networks over the next 40 years. Whereas 
today the networks are seen as a means to an end in the transportation of 
electricity from generators to consumers, in the future they will play an integral 
and active role, enabling supply and demand to be managed in a much more 
complex and decentralised energy system. The market alone will not be able to 
deliver these changes—it requires strategic leadership from Government delivering 
a vision for the future that engages actively both consumers and the energy sector.” 

 

Meeting the 2020 RES-E sectoral target requires considerable growth in renewable 

electricity infrastructure deployment.283 Not all of the anticipated infrastructure will be 

generating assets.284 Growth in renewables requires connection to the electricity 

network. Of the estimated £110 billion in investment required, analysis carried out by 

DECC (2011a) and OFGEM (2010a) shows that around £35 billion will be required for 

the overall electricity transmission and distribution networks, both onshore (around 

£20 billion) and offshore (around £15 billion) (ECCC, 2010; OFGEM, 2012a).285 As with 

                                                             
282 The majority of the recent reforms to the UK electricity network (both transmission and distribution) 
were initially set out in the 2006 Department of Trade and Industry [DTI] report ‘The Energy Challenge: 
Energy Review’ (DTI, 2006). 

283 Non-renewable generating infrastructure deployment is also required. DECC has also stated that up to 
59 GW of new electricity generating capacity is urgently needed by 2025 (DECC, 2011b). 

284 Electricity network infrastructure can be divided into two main categories: transmission and 
distribution lines which can be carried on overhead pylons/towers, poles or alternatively underground or 
sub-sea cables and associated infrastructure (substations and converter stations) (DECC, 2011c). There 
will also be inter-array cables connecting the multiple arrays in a wind, wave or tidal stream 
development. 

285 There are uncertainties over the cost depending on whether or not particular 
reinforcements/upgrades or extensions will actually be required or developed. Such uncertainties are 
especially reflected in the case with the offshore transmission network that is still under development. 
Although a number of Crown Estate round 1 and 2 offshore wind projects have already connected, these 
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the generation supply side (see Chapter Six, page 191), it is clear that there is a need for 

unprecedented levels of investment to be sustained over a number of years against both 

a background of increased risk and uncertainty and the 2020 target deadline. This level 

of change requires new legal, technical, commercial and regulatory challenges to be 

overcome, particularly for the development of an offshore transmission network. 

 
As with the planning system, the UK electricity network has also been viewed as a 

barrier to renewable deployment for a number of years (Wood and Dow, 2011). But 

what are the reasons for the electricity network acting as a barrier to deployment? 

Currently the electricity network in the UK and most industrialised nations generate the 

majority of their electricity in centralised power stations. Such generating plant is 

typically characterised by a relatively small number of large-scale fossil fuel 

(predominantly coal and gas) and nuclear power stations connected to a high-voltage 

national transmission network built up over the last seventy years to accommodate 

these conventional power stations (Boyle, 2004). The siting of conventional and nuclear 

generating plant was dictated primarily by access to fuel resources (coal), water 

resources (coal, CCGT gas and nuclear power) and access to the electricity and/or gas 

grids. Electricity is transported to areas of demand from where it is delivered to 

consumers via low-voltage regional distribution networks. 

 

Renewable electricity technologies alter the status quo in a number of ways for both the 

transmission and distribution networks: as discussed in chapter four (section 4.4), RETs 

exhibit significantly different attributes in comparison to conventional and nuclear 

power stations. Although there are exceptions to this general rule, renewable electricity 

technologies exhibit high levels of geographic dispersal and are relatively small-scale in 

terms of generation output. One significant result of these attributes is that a large 

number of generating stations is required in contrast to conventional and nuclear 

generating technologies. The technology where this is most applicable is wind power, 

particularly onshore wind which can be connected to both the transmission and 

                                                                                                                                                                                              
developments are close to shore and projects coming forward will incur significantly higher costs as they 
are located farther from shore. 
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distribution networks. The problem for the former is that the decentralised attribute of 

onshore wind results in large numbers of wind farms widely dispersed throughout the 

UK requiring connection. As of November 2012, there were 330 operational wind farms 

in the UK with a further 81 under construction and 333 awaiting construction and a 

further 649 awaiting a planning decision (see Table 8.3). These numbers will rise 

substantially with onshore wind alone anticipated to increase from 4.6 GW in 2011 to 8-

13 GW by 2020 according to UK Government analysis (DECC, 2011d). 

 

In addition, the decreasing trend in the average size of onshore wind farms indicates 

that if this trend continues more developments will be required in the future as average 

projects become smaller in terms of installed capacity (see Figure 8.2). Currently, the 

transmission network is not designed for this format of multiple small-scale (in 

comparison to conventional and nuclear generation) connections with the result that 

there is currently not enough capacity and/or transmission infrastructure is absent in 

the locations where it is now or could be required. Although offshore wind and marine 

renewables exhibit similar characteristics there are two notable differences: these RETs 

could deploy individual generating plant at significantly larger scales in terms of 

generating output, thus reducing the overall number of developments in comparison to 

onshore wind (particularly offshore wind)286; and the geographic dispersal of these 

technologies in terms of deployment, is more constrained than onshore wind due to the 

centralisation of ownership primarily by the Crown Estate (Wood and Taylor, 2012).287 

Critically, there is no transmission network per se for offshore renewables and as 

deployment of both generating and transmission infrastructure progresses, onshore 

network development will be crucial (see below).288 

                                                             
286 As of November 2012 there were 20 operational offshore wind farms with 4 under construction, 7 
awaiting construction and 12 awaiting planning determination (see Table 7.3, page 268). 

287 As of June 2012, there were 15 offshore wind farms outside the Crown Estate licensing schemes 
accounting for approximately 330 MW installed capacity if all projects are commissioned (Crown Estate, 
2012; National Audit Office [NAO], 2012). 

288 Currently existing offshore wind farms are being connected separately via point-to-point transmission 
lines; in the near future a more connected or ‘holistic’ offshore transmission system is envisaged although 
there are problems with this proposed approach (NAO, 2012). 
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The distribution network is also not adapted to connecting large numbers of what is 

termed embedded or distributed generating plant. These are typically generating plant 

that are either too far away or are too small to be connected directly to the transmission 

network and include small-scale biomass including anaerobic digestion, hydro power, 

solar PV arrays (particularly if the latter start to deploy above the 5MW scale) and 

onshore wind. Despite the associated benefits of such ‘embedded generation’, including 

reducing the need to upgrade or reinforce the transmission network and a reduction in 

transmission (electricity) losses due to the physical connections being closer to demand 

sources, a major issue is that the distribution network is passive (Greenpeace, 2005). 

This means that at the moment there is very little generating plant connected to the 

low-voltage network.289 However, this is highly likely to change: since 2002 there has 

been a steady increase in the number of renewable deployments, mainly solar PV and to 

a lesser extent onshore wind, connecting to the distribution network. The RES-E target 

may drive further increases at this level. Although generation under the current FIT 

mechanism, and to a lesser extent microgeneration technologies, will account for a 

significant proportion of generating plant linked to the distribution network, there will 

also be a significant contribution from >5 MW meso-scale deployment: as of the end of 

2011, 25 per cent (1,036MW) of total UK operational onshore wind capacity was less 

than 25 MW installed capacity (DECC, 2012a).290 This will be compounded by the trend 

in the average size of onshore wind farms decreasing due to the utilisation of large-scale 

sites and other barriers (including planning). Incorporating increased levels of 

generating plant of different sizes and types at different locations will require new 

control systems and the integration of demand management (Watson, 2010). Increased 

renewable deployment at this scale will also require upgrade and possible extension of 

the distribution network. 

 

                                                             
289 In addition, power flows in one direction and is fairly predictable in terms of daily and seasonal 
demand fluctuations. The distribution network has largely been passive since the mid-1940’s onwards. 

290 This increases to 50% for 25-50MW onshore wind deployments. Looking at hydro power, 34% of total 
operational UK capacity is <25MW and 28% is 25-50MW. In contrast, only 2.5% of offshore wind farms 
are <25MW and 25% 25-50MW (DECC, 2012a). However, it should be pointed out that these statistics 
taken from DECC’s ‘Digest of UK Energy Statistics’ (DUKES) documents do not cover all such RET 
deployment: onshore wind (1,278 MW); hydro (232 MW). However, the reason for this is not made clear. 
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Another key characteristic of the UK electricity transmission system is, in broad terms, 

the transfer of power from the north (Scotland) to the south (England and Wales). This 

power flow from north to south also means from northern to central Scotland, from the 

central belt to southern Scotland and from the south to England and Wales, 

encompassing the Scottish Hydro Electric Transmission Limited (SHETL), Scottish 

Power Transmission (SPT) and National Grid Electricity Transmission (NGET) networks 

via the Scotland-England interconnector.291 In general terms, the disposition of demand 

and generation matches this, and the trend is highly likely to increase up to 2020 and 

beyond as the result of increased power export through Scotland and into England, due 

primarily to the anticipated contracted renewable energy deployment throughout 

Scotland (National Grid, 2009). 

 

As stated in chapter eight (see Section 8.2), Scotland currently accounts for 63 per cent 

of total UK operational onshore wind capacity, with over two-thirds of capacity under 

construction, 56 per cent of capacity awaiting construction and 61 per cent of capacity 

awaiting a planning decision. In contrast, England accounts for the overwhelming 

majority of offshore wind development in the post-consent planning regime: 90 per cent 

of operational capacity, 100 per cent of capacity under construction and over 99 per 

cent of capacity awaiting construction. When the ‘application submitted’ category is 

examined, however, Scotland accounts for a greater proportion of potential capacity 

coming through the planning pipeline: 66 per cent in comparison to 34 per cent in 

England although this will change if and when the substantially larger Crown Estate 

Round 3 projects come forward. The trend for key biomass electricity technologies is 

similar, with England dominating current and anticipated deployment. These statistics 

                                                             
291 The transmission network in England and Wales is owned and operated by National Grid Electricity 
Transmission (NGET). Subsidiaries of Scottish Power (Scottish Power Transmission, SPT) and Scottish 
and Southern Energy (Scottish Hydro Electric Transmission Limited, SHETL) each own and maintain the 
southern and northern parts of the transmission system in Scotland, respectively. Both Scottish 
transmission and distribution companies also own generating assets and supply companies: this is called 
‘vertical integration’ and is absent in England and Wales. National Grid, as the transmission system 
operator, has responsibility for overseeing and managing the flow of electricity across the whole British 
network. The 14 distribution networks across England, Scotland and Wales are owned and operated by 7 
distribution network operators (DNOs). Within Scotland, Scottish Power and Scottish and Southern 
Energy own the distribution (as well as the transmission networks) in their respective regions (ECCC, 
2010). 
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are not definite: there will be those projects that do not reach the operational stage for 

various reasons (including grid issues); additionally, new projects (including previously 

withdrawn/refused developments) will come forward. Offshore wind is a prime 

example: overall, there is around 46 GW of offshore wind projects and 1.6 GW of wave 

and tidal stream at all stages of the development pipeline, of which 11 GW of offshore 

and virtually all marine deployment are located in Scotland (Crown Estate, 2012a; 

Wood, 2010; Wood and Taylor, 2012). 

 

However, there are already constraints on the network in terms of capacity available 

now and into the future for new connections. The Electricity Network Strategy Group 

[ENSG] updated report ‘Our Electricity Transmission Network: A Vision For 2020’ (ENSG, 

2012)292 shows that although network constraints exist at various locations across the 

UK (North Wales-Mid-Wales, South West, East Coast and Anglia and London), such 

constraints are particularly acute both within Scotland (between the northern zone 

(SHETL) and the southern zone (SPT) and between Scotland and England (SPT/NGET 

interface). In addition, the Scottish Islands with particular reference to Shetland, Orkney 

and the Western Isles have excellent wind and marine resources. This is important for a 

number of reasons: Scotland has exceptionally high quality renewable resource levels 

for onshore wind, offshore wind and marine renewables; the bulk of onshore 

deployment is anticipated to come from Scotland, along with a significant proportion of 

offshore wind (around a third) and virtually all marine RET deployment currently; an 

estimated 65 per cent of the total spend required on the UK transmission network to 

accommodate the anticipated renewable and non-renewable generation plant will be in 

Scotland.293 This highlights the importance of Scotland towards meeting the 2020 RES-E 

sectoral target. In addition, the Scottish Government has set a demanding target of 16-
                                                             
292 ENSG is a high level forum bringing together key stakeholders (including network companies, 
generators, trade associations and devolved administrations) in electricity networks and is jointly chaired 
by both DECC and OFGEM. The broad aim is “… to identify, and co-ordinate work to help address key 
strategic issues that affect the electricity networks in the transition to a low-carbon future.” (DECC, 2012a: 
1).  

293 According to the latest ENSG report (2012), major work on the network required to accommodate the 
necessary generation deployment is expected to total £8,820 million: Scotland (5,740 million), Wales 
(1,260 million, 12%) and England (1,370 million, 21%) (ENSG, 2012). In the previous ENSG 2009 report, 
Scotland was estimated to account for 57% of the total UK spend (ENSG, 2009a).  
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17 GW of renewable electricity technology deployment by 2020. Onshore wind, and 

increasingly offshore wind, will account for the majority of Scottish deployment. 

 

Out of the UK total of 78 GW of prospective new projects (all generating types) awaiting 

connection to the onshore grid, 19 GW are renewable projects of which over 12 GW are 

located in Scotland (DECC, 2010). Around 17 GW of Round 3 offshore wind capacity at 

the UK level has also entered into connection agreements with National Grid (National 

Grid and the Crown Estate, 2011). Currently demand for network capacity exceeds 

supply. This can be seen by the fact that a number of renewable generating projects 

have been offered connection dates ten years or more into the future (House of Lord’s 

Select Committee on Economic Affairs, 2008). In addition, as of November 2012, there 

was almost 1,000 MW of onshore wind in Scotland applying for connection dates prior 

to submitting the relevant planning application (see Table 8.2). 

 

What does this mean for the electricity network? OFGEM (2008a: 1) states the issues 

clearly: 

 
“Enabling renewable and other low carbon generators to secure timely access to 
the electricity transmission network (the “grid”) is critical if we are to meet our 
climate change and renewable energy targets. To achieve this, we need access rules 
and commercial incentives on the Grid companies to make the best use of the 
existing transmission capacity and to invest as quickly as possible to deliver more 
capacity when it is required… This sets an unprecedented challenge for our 
electricity networks, creating an urgent need to have in place grid access 
arrangements that allow large volumes of new renewable and other essential low 
carbon and conventional generation to connect quickly. It requires generators to 
be offered connection dates, which are reasonably consistent with their project 
development timetables and for early steps to be taken to deliver essential 
investment in the grid.” 

 

The critical point here is that transmission and distribution infrastructure 

upgrade/reinforcement and extension needs to be consistent with generating asset 

deployment. It is not enough to simply upgrade/reinforce existing or construct new grid 

infrastructure for two main reasons: building sufficient grid capacity to meet all 

anticipated generation demand would be expensive, with the resultant impact on 

consumer costs; and the need to avoid developers delaying or deciding against 
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constructing renewable plant or the duplication of infrastructure and/or stranded 

assets.294 These issues are compounded by the fact that whilst it is recognised that a 

significant volume of primarily wind power will be required to connect to the electricity 

network over the coming years, the exact volume, timing and location are largely 

uncertain. As a result, connection of these generating assets presents a particular 

difficulty. In other words, to meet the RES-E sectoral target by 2020 there is a need to 

connect large volumes of renewable generation to the electricity network quickly (due 

to the demanding timetable) and in a timely fashion in order to match generation assets 

to grid infrastructure assets.295 

 

Transmission and distribution infrastructure also requires planning consent, although it 

should be noted that a developer can apply for connection prior to obtaining planning 

consent. As with renewable infrastructure, there are planning concerns: such 

infrastructure can in effect ‘industrialise’ the landscape with impacts on the landscape 

and visual amenity, biodiversity and public health (noise and electric and magnetic 

fields) (DECC, 2011c). The planning system, therefore, is another issue that could 

increase the difficulty in attempting to synchronise network and generating asset 

deployment (see below).   

 

Another major issue concerns the access and allocation of electricity network capacity. 

There are a number of ways in which this can be addressed (in addition to identifying 

likely transmission/generation scenarios and the associated investment costs): by 

bringing forward connection dates; introducing incentives to invest in capacity by 

network companies; and looking at alternatives to charging (locational and use of 

system costs) (Wood, 2010). As with increasing physical capacity infrastructure, such 
                                                             
294 This is where a particular infrastructure is constructed but has either no way to connect to the grid 
and thus generate renewable electricity or vice versa (operational grid with no power plants to connect). 
Again, this would have costs largely unacceptable to consumers and government. 

295 Of course other non-renewable generation assets will require connection to the electricity network. 
However, due to the different attributes of conventional and nuclear generation to renewable 
technologies, such plant is most likely to be sited where there is already existing grid infrastructure and it 
is anticipated that a large proportion will either replace existing assets (coal to biomass or gas, 
replacement nuclear plants in the same location as aging nuclear stations) or existing assets will have 
their lifespan extended (nuclear). 
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solutions also have its own challenges and problems: a regime for transmission access 

should ensure speed (quick connection), certainty (in terms of what the charges are 

going to be) and a low total cost. Such requirements will involve trade-offs, resulting in 

difficulty to deliver all three objectives (Lawton, 2009). Because of the lengthy delays in 

connecting to the transmission network, with some developments having to wait until 

after 2020 for connection and the resultant issues regarding the 2020 target, OFGEM 

and the UK Government have proposed and/or introduced a number of substantial and 

wide-ranging reforms. 

 

A number of the issues discussed above serve to highlight the fundamental tensions 

regarding the UK electricity network and ultimately, what vision exists for the future 

low-carbon network: should the UK keep a large-scale network or move towards a 

decentralised system? Maintaining the focus on a centralised network and by default 

large-scale generation runs the risk of emphasising this scale at the expense of smaller-

scale energy developments. Given the trends in current and anticipated renewable 

deployment towards meso-scale deployment, for onshore renewables and onshore 

wind in particular, this has implications for meso-scale deployment with an emphasis 

on community and locally-owned renewable deployment and increasing public 

participation and engagement on issues of energy and climate change. As such, the 

increasing adoption of a decentralised approach could alleviate or remove a number of 

the barriers that currently constrain renewable technology deployment.296 In addition, 

                                                             
296 Dr Pollitt makes the point succinctly: “I think this is potentially very important and very exciting. It plays 
to actually engaging with the public on issues of climate change and getting public acceptability for 
adjusting our energy, and I think it is an under-exploited opportunity at the moment to move more into local 
energy service company provision and to engage people with smaller companies and smaller investments, 
and to look to exploit local energy resources. Longer term, these are the sorts of experiments that we should 
be doing now because they may pay off very, very substantially later on. They are difficult—no one pretends 
it is easy—and if you talk to any of the incumbents they will probably tell you that this is all terribly difficult, 
and any interactions that we have had with small energy service companies raise questions about their 
competence and: “We think we can do it better”. But I think this is an area where we do need much more 
experimentation and where we have got the chance to actually get public support for doing something about 
climate change, because people can see and be engaged with it locally and engage with changing their 
behaviour because they are engaging with a local company. If it is a big national company telling you what 
to do you are very unlikely to do it. Also, I think, it offers the prospect of lots of innovation because different 
things will happen in different places; different technologies will be trialled, supply and demand will be 
traded off much more effectively; new ownership forms may come forward, so we may see customer-owned 
assets or public/private partnerships, which may all be necessary to achieve these very ambitious targets.” 
(Pollitt, 2010: 17-18). 



378 

 

 

  

what role is there for anticipation in the system? Although there are valid concerns 

regarding the matching of network and generation assets, this issue points to the need 

for a focus on the identification of strategic infrastructure investment planning (Watson 

et al., 2010). This has particular implications for the offshore networks required to 

connect both offshore wind and marine technologies and the critical reliance on the 

onshore system. What is clear is that a strategic ‘vision’ will be required at least in terms 

of delivering the required infrastructure in a quick and timely fashion. 

 

 

8.4.1 Upgrading the Electricity Transmission Network 

The information used here for the onshore transmission network is based primarily on 

the outputs from the various ENSG reports (ENSG 2009a; ENSG 2009b; and ENSG, 

2012).297 The aim of the ENSG reports is to identify and evaluate a range of potential 

electricity transmission network solutions that would be required to accommodate the 

level of RES-E generation sufficient to meet the 2020 sectoral target (ENSG, 2009). This 

is based on National Grid’s ‘Gone Green 2011’ scenario which envisages the generation 

mix installed capacity for 2020: 16.5 GW (17 per cent) offshore wind, 11.2 GW (10 per 

cent) onshore wind and 3.1 GW (3 per cent) other renewables.298 This level of 

deployment is expected to result in around 31 per cent of total electricity generation 

from renewable sources. It is interesting to note the difference between deployment 

estimates used by DECC and National Grid. This highlights the inherent uncertainty: 

 
“The potential reinforcements are phased to be delivered in line with the 
prospective growth of renewable generation in each region. It is recognised that 
there will continue to be a degree of uncertainty about the volume and timing of 
generation growth in any given area.” (ENSG, 2012: 7). 

 

                                                             
297 ENSG 2009 was the first report. ENSG provided an addendum report containing further analysis 
looking out to 2030. ENSG 2012 is an update of the previous reports. It is also worth noting the 
importance of the ENSG reports: “The Government believes that the ENSG work represents the best 
available overview of where the electricity networks will need to be reinforced and augmented in order to 
achieve the UK’s renewable energy and security of supply targets.” (DECC, 2011e). 

298 Gas would account for the largest contribution (35.5 GW, 36%), followed by coal (14.5 GW, 14%) and 
nuclear (12.3 GW, 12%) with other sources (9.3 GW, 9%) (National Grid, 2012). 
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In addition, there is uncertainty regarding which technologies will deploy, although 

wind power is anticipated to contribute the bulk of RES-E deployment.  This uncertainty 

also applies for the developing offshore transmission network.  

 

 

8.4.1.1 The transmission network options 

Table 8.8 (see pages 380-381) shows the key electricity transmission network options 

for Scotland and the Scotland-England interface in addition to currently authorised 

transmission work already in progress and/or under construction which includes the 

Beauly-Denny rebuild, Beauly-Dounreay upgrade, Beauly-Kintore re-conductoring and 

up-rating the interconnector between Scotland and England (from 2.2 GW to 3.3 GW) 

(Scottish and Southern Energy, 2012a, b; Wood, 2010). This work is termed the first 

SHETL phase of upgrades. Although these reinforcements are critical steps in 

developing sufficient capacity to accommodate renewable projects, they are just one 

step in the process. Further improvements to the mainland system are required to 

maximise the use of existing infrastructure and overhead line routes to connect the 

Scottish mainland to the islands (primarily the Western Isles, Orkney and Shetland) and 

provide the capacity required to bring the offshore generation onshore. The second 

SHETL phase includes the reinforcement of the Caithness to Moray line (from Spittal to 

Blackhillock) with an offshore 1200 MW HVDC hub in the Moray Firth which would link 

directly to a 600MW HVDC link to Shetland (at Kergord). 

 

There are three main elements to upgrading the system with regard to the linkage 

between the SHETL to SPT areas, and on to the north of England. These include: the 

‘Incremental’ upgrade involving reconductoring and reinsulation work on existing 

tower routes, and developing new and existing substations and the installation of series 

compensation). This would include the SHETL East Coast upgrade from 275 to 400kV 

(from Blackhillock to Kincardine with an extension from Blackhillock to Peterhead), the 

SPT East Coast upgrade (requiring three new 400kV substations at Kincardine, 

Grangemouth and Harbum and the up-rating of 40km of overhead line to 400kV 
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Table 8.8 Key electricity transmission network options for Scotland                 

               Status Name     Details               Earliest date of completion 

               ongoing Beauly-Denny  Install a 137-mile 400kV overhead electricity transmission line (to 
replace an existing 132kV overhead transmission line) 

 2014 

               
ongoing Beauly-

Dounreay 
 Reinforcement of the existing 153km 275kV overhead transmission line; 

upgrading the existing Dounreay substation and constructing 2 new 
substations at Fyrish and Loch Buidhe (both 275kV/132kV) 

 2014 

               
ongoing Beauly-Kintore  Refurbishment works to the existing transmission line including the 

replacement of existing conductors (wires) with modern conductors 
 2014-15 

               
proposed Caithness-Moray  Reinforcement of the Caithness-Moray line (from Spittal to Blackhillock) 

with a new 1200MW HVDC hub in the Moray Firth which would link 
directly to a 600MW HVDC link to Shetland (at Kergord) 

 2016 

               
proposed SHETL East Coast 

Upgrade 
 Upgrading existing transmission line from Blackhillock to Kincardine in 

the central belt via Aberdeen, Dundee and Alyth; line extension from 
Blackhillock to Peterhead 

 2016 

               
proposed SPT East Coast 

Upgrade 
 Up-rating 40km of overhead transmission line to 400kV; construction of 

three new substations at Kincardine, Grangemouth and Harbum 
 2017 

               proposed SPT East-West 
Upgrades 

 Install 2 new bays at Denny 400kV and Wishaw 400kV; establish 17km of 
400kV overhead line; up rate Bonnybridge substation to 400kV/132kV 
and modify associated connections 

 

2017 

               proposed Harker-
Quernore 

 Reconductoring existing double circuit overhead 
transmission line 

  2014 
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Table 8.8 (Continued)                           

               Status Name     Details               Earliest date of completion 

               proposed SPT/NGET Series 
Compensation 

 Compensation of Harker-Hutton route, Eccles-Stella West route and Strathaven-
Harker route; Shunt compensation at Harker, Hutton, Stella West and 
Cockenzie; East-West 400kV upgrade of overhead transmission line; Up rate 
Strathaven-Smeaton to 400kV double circuit operation and up rate 400kV 
cables at Torness 

 2015 

               proposed Western Subsea 
HVDC Link 

 New 400kV GIS at Deeside; 400km 1.8-2.1GW HVDC cable connection from 
Deeside (England) to Hunterston (Scotland) with submarine and land sections; 2 
DC converter installation at Deeside and Hunterston 

 2015 

               proposed NGET-SHETL East 
Coast HVDC Link 1 

 ~2GW HVDC cable connection from Peterhead (Scotland) to Hawthorn Pit 
(England); Associated AC network reinforcement works on the Peterhead 
network; Converter installation at Peterhead; Re-insulating existing 275kV 
Peterhead-Rothienorman overhead transmission line to 400kV 

 2018 

               proposed Western Isles 
HVDC Link 

 450MW HVDC link between Gabhair (Lewis) and Beauly (on the mainland)  2015 

            
   

proposed Orkney Islands AC 
Link 

 1 * 180MVA 132kV AC link between Dounreay (on the mainland) and West of 
Orkney (Orkney) 

 2015 

               
proposed Orkney Islands 

HVDC Link 
 600MW HVDC link between West of Orkney and Sinclairs Bay HVDC hub 

(Orkney); 1200MW link between Sinclairs Bay HVDC hub and Peterhead (on the 
mainland) 

 2020+ 

               
proposed Shetland Islands 

HVDC Link 
 600MW HVDC link between Kergord (Shetland) and the Moray Firth Offshore 

hub 
 2017 

                              

SOURCE: ENSG (2009a; 2009b; 2012) 
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capacity)299, the SPT East-West upgrades, SPT/NGET series compensation and NGET 

reconductoring at Harker-Quernmore. Together with the first proposed phase (SHETL 

area), this would provide a transmission system in the SHETL area capable of 

accommodating 5.5 GW of renewables (Stage 1 ENSG). The second element involves a 

Western Subsea HVDC 1.8-2.1 GW link between Hunterston and Deeside to provide 

additional capacity across the interconnector circuits and additional capacity across the 

upper north of England area. The third element involves a parallel Eastern Subsea HVDC 

~2.1 GW between Peterhead (SHETL, Scotland) and Hawthorn Pit (England, NGET) in 

order to provide additional capacity primarily across the Central Scotland/North of 

England key transmission boundary, particularly for the proposed offshore wind 

developments. The Eastern Subsea link, in combination with the two proposed phases 

within the SHETL area would be required to accommodate 6.9 GW of renewables (Stage 

2 ENSG). 

 

In summary, all three reinforcements (SHETL first proposed phase and the 

‘Incremental’ reinforcements, SHETL second phase and the Eastern Subsea HVDC link 

and the Western Subsea Link) are required by 2020 in order for connecting 11.4 GW of 

renewable projects in Scotland and any two reinforcements for 8 GW. According to the 

ENSG 2009 report, any single reinforcement project would have been sufficient to meet 

the Scottish Executive’s previous RES-E target of 50 per cent.300 However, the target has 

been increased to approximately 16-17 GW of renewable capacity by 2020. If achieved, 

this would require a substantially increased amount of transmission capacity.301 As 

such, there are also a number of additional transmission network upgrades proposed in 

                                                             
299 The ENSG 2012 report put forward an alternative to the East Coast upgrade: a possible second 2 GW 
NGET-SHETL East Coast HVDC Link (Link 2). This would require associated AC network reinforcement (at 
Peterhead) but could also provide possible offshore HVDC integration in the Firth of Forth area (for 
Round 3 and STW offshore wind farm developments). 

300 However this seems a very low amount to achieve the 50 per cent RES-E target: it is likely that over 8 
GW of installed capacity will be required to meet the 2020 RES-E target of 50 per cent. Therefore, in 
contrast to the ENSG 2009 report, it is possible that two major reinforcements would have been required 
if the target remained set at the same level (Wood, 2010). 

301 There is also concern that Scotland will have to make up for any deployment (and thus generation) 
shortfall from England and/or Wales (ENSG, 2009). 
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Scotland. In particular, these include links to three major Scottish Island groups: the 

Western Isles (450MW HVDC link between Gabhair on Lewis and Beauly near 

Inverness); the Orkney Islands (a 132kV AC link between Dounreay and West of Orkney, 

a 600MW HVDC link between West of Orkney and Sinclairs Bay HVDC hub and a 

1200MW link between Sinclairs Bay HVDC hub and Peterhead); the Shetland Islands (a 

600MW HVDC link between Kergord and the Moray Firth Offshore hub).302  

 

It is clear from Table 8.8 that the completion dates for a significant number of key 

transmission projects deemed necessary are now projected to be delayed. This includes 

the critical Beauly-Denny rebuild and upgrade with construction estimated to take an 

extra year. Such delays would affect 17 transmission reinforcements over 2-4 years and 

affect 21 potential contracted developers accounting for around 2.4 GW: 1 GW onshore 

wind (of which 640MW have planning consent); 1.1GW offshore wind (none consented) 

and 300MW of wave and tidal power (none consented) (ENSG, 2013). However, there 

are valid concerns that delays on generation due to the new delivery dates could affect 

more than 2.4GW of renewable deployment due to the impact of delays on the first 

deployment phases potentially impacting subsequent phases. As Round 3 and Scottish 

Territorial Waters (STW) offshore wind developments come forward this could 

significantly increase the amount of deployment delayed (see below).303 An important 

conclusion is that the key transmission works entail a sequence of key stages that 

consist of a number of individual works and that the connection of generation 

infrastructure is dependent on at least a number of such works being completed. This is 

particularly relevant for offshore renewables. 

 

                                                             
302 The transmission network projects discussed in text (actual and proposed) do not represent an 
exhaustive list of such proposals (e.g. the Kintyre-Hunterston AC Subsea link); however, these are the 
main works required in order to connect anticipated generation demand at least to 2020 and beyond 
(ENSG, 2009b, 2012). 

303 As of November 2012, there is 4,755MW of STW projects (5 sites: Argyll Array (1.8GW); Beatrice 
(1GW); Inch Cape (905MW); Islay 690MW; Neart na Gaoithe (450MW) and up to 5,000MW of Round 3 
projects (Moray Firth (1.3-1.5GW); Firth of Forth (3.5GW) located in Scotland with Crown Estate 
exclusive licensing agreements (Wood and Taylor, 2012). Regarding marine renewables, there is 
1,600MW (6 wave projects (600MW) and 5 tidal stream projects (1,000MW) (Crown Estates, 2012b). 
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An additional issue within Scotland is that of currently limited or no transmission 

capacity or where the capacity of proposed works is already contracted for. This is 

particularly the case for the peripheral (and island) areas of Scotland which have very 

limited or no capacity either with the mainland or within and between the various 

islands that comprise the major island groups: Shetland has no grid connection with the 

mainland with very limited capacity available for further generation; only 9 per cent of 

the proposed Western Isles HVDC link capacity will be available if the link is 

constructed and if all the generation assets already with connection agreements go 

ahead; Orkney is currently connected by a 33kV cable and existing generation capacity 

(66.7MW) is regularly curtailed due in part to grid capacity with the result that no 

generation (even microgeneration) can connect until proposed works are completed. 

The 600MW HVDC proposed link for Orkney is already potentially half-full (320MW 

have already submitted connection applications). Yet the Scottish islands have 

potentially around at least 3.5GW of installed capacity available (Redpoint and TNEI, 

2013; Wood, 2010).304 The delay in additional export capacity until 2018 at the earliest 

will essentially prevent the sale of electricity from the islands, with a particular impact 

on smaller-scale generation deployment such as marine renewables as they await a 

larger project (typically onshore or offshore wind) to provide the need justification for 

future transmission capabilities. Importantly, these links are also dependent on the 

mainland transmission works listed in Table 8.8 being completed (for example, the East 

Coast upgrade). 

 

The impact of the delays in key transmission work will impact both onshore and 

offshore renewables: 

 
“The delivery of offshore [renewable] generation projects is closely linked to the 
completion of the onshore transmission works outlined by ENSG (I.e. the onshore 
transmission works can be considered as an enabler for the offshore projects.” 
(Pöyry, 2009: 75). 

 

                                                             
304 Another example would include the Hunterston-Kintyre link to provide transmission capacity for 
Argyll and the Kintyre peninsula. 
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The same issues exist for the potential 11GW of offshore renewable projects. These 

include: offshore wind (Round 3 and Scottish Territoriality Waters) and wave and tidal 

stream power (Pentland Firth and Orkney Waters developments). As of November 

2012, there are 3,997MW of offshore wind and 300MW of tidal stream power awaiting 

planning determination in Scotland (Crown Estates, 2012b; Wood and Taylor, 2012). 

This means that there is still another 6GW of marine renewables anticipated to come 

forward in the near future, with roughly similar development timeframes for all three 

technologies (Wood, 2010). In particular, the location of the marine renewable projects 

already with Crown Estate licensing agreements means that these will be heavily 

dependent on the Orkney and Shetland connections in addition to being further 

dependent on the various stages or sequences of onshore transmission network being 

completed. 

 

However, Table 8.9 (page 386) reveals that the impact from the potential capacity 

anticipated from offshore wind might not be as significant as assumed. An analysis of 

the data for Round 1 and 2 of the Crown Estate’s UK-wide offshore wind leasing 

programme shows that the volume and timing of deployment is staggered. On the basis 

of whether or not a project is operational or not, only 12 per cent of all Round 1 and 2 

proposed projects were operational in 2010. Although almost all Round 1 projects 

announced in 2000 are operational (95 per cent over the last ten years, of which 

1,122MW are operational), Round 2 projects announced in 2003 have not been as 

successful: only one project with an installed capacity of 64 MW was operational 

representing just 0.9 per cent total installed capacity after seven years. By 2013, almost 

half (43 per cent) of all projects were operational.305 If the projects in the category ‘in 

construction’ are added to those operational, this would include 60 per cent of all 

licensed capacity. Of interest, 84 per cent of all projects have planning consent 

(although this figure does not take into account those projects withdrawn or refused

                                                             

305 Although this appears to be highly unrealistic, it was originally intended that most Round 1 projects 
would begin generating in 2005, with Round 2 projects coming online from 2007 (Mitchell, 2010). 
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Table 8.9 The Crown Estates offshore wind leasing agreements - Rounds 1 and 2           

     2010  2013 

Round 1 - announced 2000     Capacity (MW) Number of 
projects 

  Capacity (MW) Number of projects 

     
 

      
Operational    1,112 12  1,112 12 

In construction       62.1 1 

Not constructed    62.1 1    
            
Total         1,174 13   1,174 13 

Total installed capacity (as a %)   95%    95%   

            
Round 2 - announced 2003                   

            
Operational    64 1  2,180 7 

In construction    1,119 3  1,226 3 

Not constructed with planning consent  3,038 6  1,839 5 

Not constructed - in the planning 
process 

 3,080 6  1,200 1 

            
Total         7,301 16   6,445 16 

Total installed capacity (as a %)   1%    34%   

            
Round 1 and 2                     

            
Total in operation    1,030 13  3,292 19 

Total      8,475 16  7,619 10 
            
Total round 1 and 2 installed capacity (as 
a %) 

12%       43%     

                        

SOURCE: Crown Estates, 2010, 2013; Wood, 2010. 

Note: Total offshore wind capacity dropped between 2010 and 2013 due to developments withdrawn or refused planning consent  
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consent, see Table 8.3).306 This would appear to reduce the short-term impact on the 

electricity transmission network, and importantly, the need for the key works listed in 

Table 8.8 to be deployed as quickly as possible. It is not unreasonable to suggest that 

this could also apply to the Crown Estate’s wave and tidal stream programme. However, 

the sheer scale of the Round 3 offshore projects coming forward now and in the near 

future could negate this. In addition, this could result in less than predicted overall 

installed renewable capacity for the 2020 target. 

 

Offshore renewable projects also require connection to the onshore network. Prior to 

the deployment of the first offshore wind farm in 2003, there was no need for an 

offshore transmission network. As of November 2012, there are 20 operational offshore 

wind farms, with a further 4 under construction and one awaiting construction with a 

combined installed capacity of over 6GW out of the total 8GW offered under the first 

two CE rounds. The UK offshore transmission regime is currently in the early stages of 

development and is being delivered in two parts: a transitional and an enduring regime. 

Under the transitional regime, which commenced in June 2009, the necessary 

transmission assets are constructed by the developer of the offshore generation 

infrastructure (NAO, 2012). Under the enduring regime (from 31 March 2012), offshore 

developers have the flexibility to choose whether to design, finance, construct, operate 

and maintain the transmission assets themselves (‘Generator build’) or to leave this to 

an offshore transmission operator (‘OFTO build’). Regardless of the party constructing 

the offshore transmission assets, an OFTO will be ultimately responsible for the post-

construction ownership and operation of the assets (OFGEM, 2012b).307 

 

So far, there have been two transitional rounds with 6 offshore transmission networks 

fully operational, linking eight offshore wind farms to the onshore system. In addition, 

one other is partially complete with two more in progress with four more in the early 

                                                             
306 In 2010, 58 per cent of all Round 2 projects have already received planning consent with 100 per cent 
for Round 1. 

307 An OFTO is appointed through a competitive tender process facilitated by OFGEM. In essence, 
qualifying companies bid to become the OFTO for a particular network (National Grid, 2011). 
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stages (under the second transitional round).308 Designed and constructed by the 

offshore wind farm developer, and in conjunction with the small-scale, near shore 

characteristics of the early Round 1 and smaller Round2 developments, this has led to 

such infrastructure being connected separately via point-to-point transmission lines 

from an offshore substation to a suitable onshore substation utilising existing 

transmission technology (National Grid, 2011). The benefits of this approach include 

mitigating the economic and technological risk facing these early developments (see 

below) and helping to ensure that the generating assets are deployed on a similar 

timetable to the necessary transmission assets: this is critical for the wind farm to 

commence entering electricity into the grid and receive subsidy in addition to the sale of 

electricity. However, concerns with a ‘point-to-point’ dedicated wind farm approach are 

potential duplication of infrastructure (when wind farms are in close proximity) with a 

resultant increase in environmental and economic/social uses of an already congested 

‘marinescape’ (see Section 8.2.3.2).309 In addition, this approach would limit the 

subsequent development of a more coordinated and integrated offshore transmission 

system. 

 

It is the significantly larger-scale, farther from shore and thus increasingly complex 

Round 3 developments that have led lead to the questioning of the economic value and 

simplicity of the current connection approach. In particular, a number of the proposed 

Round 3 developments are clustered geographically (for example, the Dogger Bank, 

Hornsea and East Anglia wind farms with a combined capacity of 23GW in the East 

England and Anglia area alone, see below). In the joint OFGEM and DECC report 

‘Offshore Transmission Coordination Conclusions Report – 1 March 2012’, it is argued that 

a more coordinated approach would result in reduced overall capital and operating 

                                                             
308 Transitional Round 1: operational (Barrow (90MW), Robin Rigg East and West (180MW), Gunfleet 
Sands 1 & 2 (173MW), Ormonde (150MW) and Walney I (184MW) and II (184MW); partially complete 
(Thanet, 300MW); in progress (Sheringham Shoal (315MW) and Greater Gabbard (504MW). Transitional 
Round2 is split into 2 tranches: Transitional Round 2a: Lincs (270MW), London Array (630MW), Gwynt y 
Mor (576MW). Transitional Round 2b: West of Duddon Sands (389MW) (OFGEM, 2012c, d). 

309 An increased number of offshore cables and associated infrastructure could compound the problems 
around potential overlap between existing and future offshore renewable generating and transmission 
infrastructure and marine protected areas (see Section 8.2.3.2). 
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expenditure and thus costs; reduce environmental impacts (through the need for less 

transmission cables and potentially other associated infrastructure); reduce the impact 

on the onshore transmission system; and limit the number of planning and consenting 

issues (OFGEM and DECC, 2012).310 Additionally, a coordinated approach would both 

anticipate the connection needs of future offshore wind farms and potentially permit 

the early identification of supply chain requirements (such as HVDC cables) for the 

necessary transmission work. However, such an approach could result in stranded 

assets due to the number of different projects with different developers involved and 

not all the required technologies are either available or proven (such as 2GW HVDC 

cables and HVDC multi-terminal links).  

 

An important question is: why are a significant number of key transmission works being 

delayed? There is an urgent need for correlating the development of renewable and 

transmission projects. However, there are a number of potential issues with the 

proposed changes to the electricity transmission network that make this difficult. The 

requirement to obtain planning consent is one such issue. Figure 8.4 shows the project 

development times for an onshore wind farm, overhead transmission line and 

substation. These development times represent average or typical durations. With 

regard to Part B, planning permission and consents is approximately three years but 

overall, this timeframe assumes moderate levels of public reaction to the proposal and 

no significant environmental or local impact issues arising that require major revision 

to the project design (ENSG, 2009). This applies equally to renewable energy projects, 

with onshore and offshore wind being of particular importance. The duration in gaining 

planning consent is also dependent on the particular projects characteristics. 

 

However, two recent major extension/upgrades of the transmission network in both 

England and Scotland serve to highlight the difficulties involved: the 137 mile Beauly-

Denny transmission line has taken 6 years from planning application submission to 

determination; consent for the North Yorkshire transmission line has taken 6.4 years. 

                                                             
310 This report is based on two reports commissioned by OFGEM: See Redpoint (2011) and TNEI and PPA 
Energy (2011). 
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The planning application for Beauly-Denny was submitted on 28 September 2005 with 

a public hearing held from 6 February 2007 to 20 December 2007. Planning consent 

was awarded in January 2010 (Scottish Government, 2010). First conceived in 2001 and 

estimated to be completed in 2014, indicating an overall time of at least 9 years. The 

planning application for the North Yorkshire transmission line was submitted in 

December 1991. Two public inquiries were held (from May to December 1992 and 

March to April 1995) with planning consent determined in March 1998 (Communities 

and Local Government, Department for the Environment, Food and Rural Affairs, 

Department of Trade and Industry and the Department for Transport, 2007). Taking 4 

years to construct, in total the project required over 10 years to reach operation (Select 

Committee on European Union, 2008; Wood, 2010). Both developments, although 

ultimately successful in terms of gaining planning consent, faced significant public 

opposition and environmental hurdles (ECCC, 2010). 

 

As discussed before, the reform of the Scottish Planning system should make the 

process quicker: by allocating proposed nationally-significant transmission work to the 

current National Planning Framework (NPF 2), they should proceed more quickly 

through the planning system than before (See Section 8.2).311 The NPF 2 includes the 

islands reinforcements (Orkney, Shetland and the Western Isles), the Dounreay-Beauly 

upgrade, Beauly-Keith reinforcement, East Coast upgrade and the Scotland-England 

interconnector upgrade, which should help avoid other ‘Beauly-Denny’ situations. In 

addition, any projects which are designated as a major development (within the 

‘hierarchy of developments’) can be subject to call-in by Scottish Ministers to speed up 

the process. However, there are two main issues of concern here: this could lead to a 

top-down imposition of projects with a resultant currently unquantifiable level of 

opposition and backlash, and not all the transmission projects proposed are within the 

current NPF - in particular the Eastern and Western Subsea HVDC links. Although they 

could be added to the next National Planning Framework (NPF 3) scheduled for 2014, 

this could lead to unforeseen problems and the 2020 targets will be less than six years 

                                                             
311 Recent planning reforms in England (for example the National Policy Statements) are likely to have the 
same implications as Scotland (see Section 8.2.2). 
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away. This is significant since the ENSG (2009) report states that key works highlighted 

in Table 8.8 should have commenced immediately with a target completion date of 

2018.  

 

However, planning is only one of the reasons for such delay. Part A of figure 8.4 (page 

392) also highlights major constraints which have the potential to delay or even cause 

the with-drawl of renewable projects: three of the four constraints listed here 

(planning, grid, supply chain and financial) have acted as significant delays and/or 

barriers to renewable energy deployment in Scotland and the UK. In addition, Table 

8.10 (page 393) shows the average time taken from receiving positive determination 

(planning consent) to commissioning (operation) in the UK for onshore wind. This data 

is also broken down to the sub-national level (England and Scotland) and for >50 MW 

projects and <50 MW projects. In contrast to the time reduction over the same period in 

receiving a planning decision, the average time from receiving planning consent to 

commissioning in the UK has increased. As Table 8.10 shows, this has almost doubled 

for both <50 MW and >50 MW projects at the UK level during the period 2007 and 

2012. When Scotland and England are examined separately, although both show 

increases in the average time taken, the increase is significantly higher in England. The 

average trend in Scotland since 2008 is one of more-or-less stability around 30 months. 

In contrast, the trend for England since 2008 is more erratic, exhibiting annual 

variations although the overall trend is one of increasing time with a significant increase 

during 2012. A key point to be drawn from Table 8.10 is that there are additional 

barriers to large-scale RES-E deployment in the UK post-planning consent: the 

electricity network is certainly a barrier to deployment. In addition to the barriers 

discussed previously in chapter seven. Section 8.5 will examine policy risk and 

uncertainty as a barrier. 

 

There are two additional reasons for the delays in the proposed transmission work: 

technological risk and supply chain risk. Technology risk is important for both the 

transmission work and the generating technologies to be connected. This risk category 

is more significant for offshore deployment (Wood, 2010). Typically the electrical
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Figure 8.4 Average development timeframe for a 50 MW onshore wind farm (A) and average duration for the 
delivery of a transmission line or new substation (B) 

 
 
 
 
 
 
 
 



393 

 

 

  

Table 8.10 Average time (months) from consent to commissioning for onshore wind 
farms in the UK, Scotland and England – 2007 to 2012             

              

              
 

UK Scotland England 

       
 

s36 non-s36 s36 non-s36 s36 non-s36 

       2007 20.4 (1) 21.2 (27)  19.8 (14) 20.4 (1) 28.6 (7) 

       2008 25.1 (3) 29.1 (39) 36.3 (1) 29.5 (21)  27.2 (13) 

       2009 41.1 (2) 26 (39) 43.5 (1) 26.9 (13) 38.7 (1) 24.1 (16) 

       2010 26.9 (1) 32 (38)  28.4 (11) 26.9 (1) 33 (25) 

       2011 40.8 (3) 29 (47)  30.1 (24) 36.2 (2) 29.6 (14) 

       2012 49 (1) 38 (24)  30.3 (11) 49 (1) 46.4 (7) 

       

                                          

SOURCE: Renewable Energy Planning Database (REPD) (DECC, 2012b). 
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connection to shore from the offshore renewable development uses high-voltage 

alternating current (HVAC) technology at 132kV. However, as offshore wind farms 

move further from shore (later Round 2 and Round 3 projects located more than 60-

80km offshore), the longer cable distances required result in unacceptable losses. In 

contrast, with significantly longer cables permitted by reducing subsea transmission 

cable losses, high-voltage direct current (HVDC) technology has become the preferred 

offshore transmission technology (National Grid, 2010). There are, however, a number 

of issues: subsea HVDC technology is still being developed; such innovative technologies 

are associated with high capital costs and the market for HVDC cables and associated 

technology, including voltage source converters (VSC) and static var compensations 

(VAR) are still at an embryonic stage; HVDC systems are much heavier than alternative 

technologies, increasing the level of difficulty or risk in deploying in an offshore 

location; limited experience results in a lack of understanding of the technical, 

commercial and environmental issues associated with such technologies (ENSG, 2012; 

Wood and Taylor, 2012). Supply chain risk is also relevant, given the current and future 

scale of offshore transmission work required not just across the UK but in Europe and 

beyond with the increasing deployment of offshore renewables (Elliott, 2010). It is 

estimated that approximately 7,500km of HVDC cable will be required in the UK by 

2020 to connect up all the offshore projects planned: however, in 2010 current global 

HVDC cable production was around 1,000km per annum (ECCC, 2010). 

 

There are also technology and supply chain risks for offshore renewable technologies, 

particularly for wave and tidal stream devices. Marine renewables are at the emergent 

stage: they are typically small and medium-sized companies developing a specific device 

(although this is changing with the entry of large-scale companies, including multi-

national utilities). Actual marine deployment is associated with significant costs due to 

the harsh environmental characteristics which are typically found at the more optimum 

locations for wave and tidal devices. In addition, there are costs related to the need for 

specialised equipment and vessels, an appropriate weather window for installation and 

competition with other offshore industries (not just oil and gas, but increasingly from 

wind power). In summary, the marine renewables industry faces relatively high costs 

and high risk. Although some of these risks are faced by offshore wind development, 
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there are a number of critical differences between marine renewables and offshore 

wind, primarily the increased level of technological and finance risk: will the 

technologies come through quickly enough and de-risk enough to obtain finance? 

 

It is important to remember that currently within marine renewables, there are no clear 

‘winning’ devices, some of the technologies chosen to deploy commercially at the 

Pentland Firth and Orkney Waters are very small devices having only been connected at 

the European Marine Energy Centre (EMEC).312 Technical and financial problems 

resulted in the indefinite closure of what was the world’s first commercial wave power 

project at Aguçadoura in Portugal with 2.25 MW installed capacity of Pelamis devices – 

despite aims to increase capacity to 21MW (Clean Tech, 2009). Also, can the supply 

chain be ramped up enough? If Pelamis is to meet its proposed 400 MW capacity 

installation, this would require the construction of a machine every week until 2020 

(Andrew Scott, personal communication). Due to the level of high-risk for marine 

renewables, this could act as a major barrier. This is particularly the case given current 

economic conditions. In addition, with the massive program of offshore wind farms just 

starting (not to mention the growth of onshore wind farms occurring in close 

proximity), there is a danger that wave and tidal might lose out. If large-scale 

developments are deemed by investors to be too high-risk, this could see a leakage of 

finance to smaller projects as investors seek to gain more confidence in the sector. 

Because wind power does not have this level of technological risk, finance could also 

concentrate on this area to the expense of marine renewables. In short, it is likely that 

marine renewables are likely to be a victim of a high attrition rate with regard to 

projects. 

 

Key transmission network delays can also have further implications for renewable 

generators. Such delays could: negatively impact on investor/developer confidence with 

resultant impacts on both the access to, and the cost of finance for generating projects; 

push generation projects beyond the proposed 2017 cut off date for the Renewables 
                                                             
312 Established in 2003, EMEC is the first and only purpose-built, accredited open sea testing facility for 
developers of both wave and tidal energy converters. Based in Orkney, EMEC has 14 full-scale test berths 
with grid connection to the mainland transmission system (EMEC, 2012). 
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Obligation/Contracts for difference feed-in tariff. This would effectively remove the 

choice of subsidy mechanism support due to network delays beyond their control;313 

potentially increase the costs of compensation under the ‘connect and manage’ scheme 

(see section 8.4.22). Critically, delays could serve to increase the difficulty in attempts to 

correlate the development of both renewable and transmission network projects. 

 

The issues discussed above, although focused on Scotland and the interface with 

England, are equally valid for the development of the transmission network across the 

rest of England and Wales. Overall, in addition to the 11.3GW of additional generation 

that can be accommodated by the proposed or current transmission works in Scotland 

(see table 8.8), around 4.2GW and 23.8GW could be accommodated by similar 

transmission work proposals in Wales and England, respectively (ENSG, 2012). 

Although a sizeable proportion of this capacity is for non-renewable generation 

(primarily gas, interconnector capacity and potentially new nuclear), it is worth looking 

briefly in more detail at the renewable capacity anticipated for these two countries.314  

 

The Irish Sea Round 3 offshore wind farm (4.2GW) is licensed for Wales, requiring a 

2GW HVDC cable in addition to a number of key transmission works onshore: 

reconductoring of a number of existing lines, extension and modification of a number of 

substations (Pentir, Wylfa and Pembroke) and two new transmission lines (Pentir-

Wylfa double circuit and single circuit). The Mid-Wales transmission area currently 

does not have any existing transmission infrastructure. However, 400MW of onshore 

wind already have a signed offer to connect with an additional 360MW expected to 

connect by 2015/16. This would require the construction of three new substations and 

a new 400kV transmission link. The English East Coast and East Anglia area is of 

particular interest with regard to England due in large part to the proposed generation 

connections coming from the three largest potential offshore wind developments with a 

combined capacity of up to 23.2GW: Dogger Bank (9,000-12,000MW); Hornsea 

                                                             
313 However, this would depend on the grace period (see chapter seven). 

314 The following information for Wales and England is based primarily on the ENSG 2012 report. 
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(4,000MW); and East Anglia (7,200MW) (Wood and Taylor, 2012).315 This would 

require significant onshore and offshore transmission infrastructure deployment, 

including new transmission links (overhead and HVDC), new substations and the 

upgrading and/or reconductoring of existing grid. As with Scotland, this scale of work 

has significant implications with regard to the external failures examined here 

(planning, electricity transmission network, public participation and engagement and 

policy risk/uncertainty) in addition to issues of timing (with generation assets) and 

supply chain risk. 

 

 

8.4.2 The UK Electricity Transmission Network: Access and Allocation of 

Capacity 

Increasing the physical capacity of the transmission system, however, is not an 

immediate measure with regard to shortening the queue of generating plant awaiting 

connection. In addition, the option for generating infrastructure to connect is often 

dependent on a number of key stages being completed in the correct sequence. As 

discussed in the previous section, delays in improving transmission capacity are 

occurring with further delays projected. Such barriers impact on the need for renewable 

developments to be able to export their electricity to the market and, critically to 

receive subsidy via the RO mechanism. In other words, obtaining grid access can be said 

to improve the attractiveness to investors and developers. The Transmission Access 

Review (TAR) report set out a number of reforms to remove such access barriers for 

generators in order to both speed up the connection of new generation and to the 

deployment of new transmission capacity (OFGEM, 2008a). In particular, there are two 

reforms of interest: the ‘connect and manage’ (C&M) model and the 

‘Revenues=Incentives+Innovation+Outputs’ (RIIO) model for transmission price controls. 

 

The C&M model, initially introduced as a short-term or interim measure to allow faster 

connection of some renewable generation from May 2009 was adopted as an enduring 

                                                             
315 This is in addition to a number of smaller offshore wind farm developments (Round 2), proposed new 
gas-fired generation and potential new nuclear power stations. 
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solution from August 2010.316 The C&M model replaced and differed from the previous 

Invest and Connect (IC) model by allowing the temporary relaxation of connection rules 

to and use of the network without the need for generators to wait until wider system 

reinforcements are complete. NGET will manage any constraints issues this approach 

will cause to the network. As OFGEM (2008b: 2) states: 

 
“The underlying principle [of connect and manage] is that generation would 
acquire firm access rights from a particular date and be allowed to generate or 
receive compensation from that date, subject to local [enabling] works completion 
[and] generating plant commissioned and available.”317 

 

The C&M model is aimed at providing sustained and viable connection opportunities 

and firm connection dates reasonably consistent with project development timescales 

with all constraints costs including costs arising from the advanced connection to be 

socialised equally among all generators and suppliers on a per-MWh basis (DECC, 

2010b).318 The approach, then, would provide renewable developers the confidence to 

construct generating plant prior to the completion of the transmission works. 

 

In contrast, under the previous invest and connect system, new plant had to join the 

access queue on a first come first served basis and wait for all the relevant 

reinforcement of the wider network to be completed. On implementation of the C&M 

model, it was originally anticipated that at least 450 MW of renewable generation 

(basically small and large wind farms) would connect under I&C model over the next 2-

3 years in Scotland with the scope to advance a further 1.6 GW contingent on 

                                                             
316 The C&M model provides equal access rights for new and existing contracts for all types of generation 
(it is open to all types of electricity generating plant and not just renewables. 

317 Enabling works are the minimum transmission works needed to connect a generator to the 
transmission network. In contrast, wider system works refers to other transmission works associated 
with increasing the capacity of the network to accommodate large changes in generation or demand and 
to comply with security standards (OFGEM, 2012e). 

318 The C&M model also increases the amount of time users must commit to the network (at their current 
specified capacity) from one to two years, thus contributing to transmission investment more effectively 
and providing a stronger, more stable signal to support network investment which is the long-term 
solution to network constraint and constraint costs. In other words, the more projects are brought on to 
the transmission network, the more guarantee of long-term funding in order to improve confidence and 
thus capacity building of the transmission system. 
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developers to accelerate plans. As of the end of 2012, 129 renewable projects 

accounting for 28,478 MW have received advances in transmission connection dates 

averaging 6 years (National Grid, 2013). Of this, 490 MW (1.7 per cent of the total 

offered earlier connection dates) have already been connected early by an average of 7 

years. At the sub-national level, 53 per cent of all projects are located in Scotland with 

61 per cent of these in the SHETL (north of Scotland) area. Interestingly, 96 per cent of 

all projects are renewables.319 

 

It is clear that one of the benefits of the CM model, so far, is that it has reduced the 

average waiting time for developers although this is not a guarantee that the generation 

plant will be connected by that date. This leads to two major complementary concerns 

with this particular approach. Firstly, provided a developer has been offered a 

connection agreement under the C&M approach, the risk in not actually being connected 

is mitigated by the provision of compensation. This removes the element of anticipation 

between the location of the generation and transmission infrastructure due to the lack 

of an efficient investment signal. In other words, there is the risk that generation plant 

could be built in areas where transmission infrastructure will be delayed or not 

constructed. With particular emphasis on onshore wind, the C&M model also fails to 

take into account the attributes of different generation. Given the delays already in 

evidence, this should already be a significant and increasing concern.  

 

Secondly, the adoption of this approach would appear to be at the expense of achieving 

the connection uptake at total low cost: OFGEM point out the constraint costs (the 

compensation to generators if the transmission capacity is not provided on time) could 

be around £50 million for the first year of C&M operation (2009-10), out of total 

constraint costs of approximately £250 million (OFGEM, 2009a). However, if 

transmission investment does not keep pace with the growth in generation (and it is 

important to remember that the C&M model is already delivering accelerated 

connections at the cost of increased congestion and constraint costs, external barriers to 

                                                             
319 Interestingly, 96 per cent of all projects are renewables (out of a total of 32,126 MW offered earlier 
connection agreements. 
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the increasing transmission capacity could still delay or even stop required 

development (for example, planning).320 

 

Of concern, the bulk of C&M connection agreements are located within Scottish 

transmission network and the northern area in particular and this is one of the most 

heavily constrained UK network regions with the added pressure that a significant 

volume of renewable generation is required to be connected there in order for the 2020 

targets to be met. If the development of the transmission system in line with renewable 

aspirations is unable to keep pace with demands for new capacity, constraint costs are 

expected to rise significantly with customers picking up a substantial proportion of the 

additional constraint costs (OFGEM, 2009b). Additional studies modelling future 

constraint cost levels range from over £350 to £500 million per annum (Frontier 

Economics, 2009). This cost is dependent on whether the transmission companies 

deliver the key transmission works to the agreed schedule which has already evidence 

slippage to around £600 million per annum according to National Grid. Despite new 

transmission investment, costs are predicted to remain high until 2017/18 and beyond 

(Frontier Economics, 2009). In addition, under the new changes, if there are a number 

of new connections contingent upon the same enabling works they will be treated on a 

‘first come, first served’ basis. Therefore although many respondents to the consultation 

‘considered it logical’ to expect that the socialised C&M model would lead to higher 

constraint costs due to the inefficient siting of plant in network terms, it comes as no 

surprise that those with significant generation interests in Scotland tended to view the 

cost impacts of the SCM most favourably (DECC, 2009).  

 

Interestingly, although the C&M system has been shown, under modelling, to facilitate 

the UK to potentially meet around 30 per cent of RES-E generation by 2020 (in line with 

the government’s sectoral target for electricity) the level of constraints costs differs 

depending on the analysis and modelling considered. Redpoint’s report ‘Improving Grid 

Access: Modelling the Impacts of the Consultation Options’ for the Department of Energy 

and Climate Change (DECC, 2010a) showed constraints costs significantly lower than 

                                                             
320 The connect and manage system was only ever viewed as a temporary measure (i.e. interim). 
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expected in comparison to alternative studies by others (see above). Redpoint’s ‘central 

scenario’ of incremental constraint costs for the C&M is estimated at £195 million for 

the 2010-2020 period – or only £18 million per annum. In contrast, recent analysis by 

Frontier Economics on behalf of OFGEM stated potential total constraint costs of £3.5 

billion with National Grid’s estimates even higher (Frontier Economics, 2009).321 Even 

Redpoint’s ‘high scenario’ assuming maximum feasible wind deployment and a two-

year delay in network investment leads to constraint costs of around £1 billion by 2020 

or £1 per annum per household average electricity bill (DECC, 2010a). However, DECC 

has stated its confidence that the Redpoint modelling and analysis is more sound that 

those proposed by both OFGEM (the independent regulator) and National Grid, despite 

the Redpoint (DECC, 2010a: 6) report stressing that  

 
”our constraint cost results – even in the C&M Socialised High SG scenario [the 
C&M ‘high scenario’, see above] – should not be treated as an ‘upper bound’ on 
potential outrun costs... we have not attempted to model the impact of unforeseen 
external events, market power, strategic investment decisions or broader policy 
and regulatory changes on transmission congestion.”. 

 

Building on the ‘RPI-X@20’ review of energy network regulation, OFGEM has introduced 

the RIIO model for transmission price control (OFGEM, 2010b). The 

‘Revenues=Incentives+Innovation+Outputs’ (RIIO) model is essentially a stakeholder-

based model adopted to provide transmission and distribution companies with the 

incentives to invest in the provision of the transmission infrastructure necessary to 

meet energy sustainability and low carbon targets and at low cost for consumers 

(OFGEM, 2010c).322 In essence, the RIIO model will extend the transmission price 

control period from five to eight years with clear outputs (including secondary 

objectives) and in-built reward and penalty mechanisms depending on the performance 

of the transmission company with regard to the outputs. The first RIIO transmission 

price control period (RIIO-T1) will commence in 2013 and run until 2021/22. RIIO-T1 

                                                             
321 The disparities are acknowledged in DECC’s Impact Assessment ‘Proposals for improving grid access’ 
(DECC, 2010b). 

322 The RIIO model will apply across both the electricity and gas transmission and distribution networks 
(OFGEM, 2010c). 
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has recently set out £22 billion in investment plans, of which around £15 billion would 

include investment in the electricity sector in England and Wales and £7 billion in 

Scotland (OFGEM, 2012f). 

 

Although the RIIO model introduces strong elements of stakeholder involvement and 

sustainable energy objectives are ‘mainlined’ into the transmission price control process 

there are a number of concerns with regard to the challenge of substantially increasing 

network capacity in line with the renewable targets. Extending the price control period 

introduces an element of risk given the uncertainties involved. Although a mid-term 

review mechanism has been included, by increasing flexibility in the process there is the 

real risk that RIIO could incentivise the delivery of transmission assets that are either 

not required (stranded) or where the capacity is under-utilised. RIIO does adopt 

safeguard requirements to avoid this possibility (including the publication of up-front 

business plans and providing justification (the needs case) for proposed works:  

 
“Our proposals are intended to ensure there is enough flexibility and certainty in 
the price control settlement to allow NGET to meet any changes in the generation 
and demand background. At the same time our proposals will also protect 
consumers by ensuring they only pay for new infrastructure that is needed (i.e. 
reduced risk of stranded assets) and that NGET faces strong incentives to deliver 
WW [Wider-Works] outputs efficiently and innovatively. We believe these 
arrangements for WW outputs represent an appropriate balance of risk sharing 
between NGET and consumers.” (OFGEM, 2012e: 23) 

  

However, no matter the level of safeguards put in place, there is significant uncertainty 

involved with regard to the timing, volume and location of generation and renewable 

generation in particular. In addition, there are a number of barriers out-with the design 

of RIIO and the control of OFGEM that could delay the deployment of both transmission 

and generation infrastructure. These include planning, supply chain and public 

opposition. When the ‘connect and manage’ model is included in the system, there is a 

real concern that the situation might arise where transmission infrastructure is being 

deployed without generation assets to connect to, and vice-versa at least for an 

indeterminate period of time. This can and has occurred prior to RIIO and connect and 

manage; the issue is whether both models will aggravate the situation. 
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8.5 Policy risk 

Subsequent targets for renewable electricity generation (RES-E) have been set over the 

years, with each new target increasing the required level of generation (Gross and 

Heptonstall, 2010). In addition, the devolved administrations have established sub-

national targets. With a target to deliver 100 per cent of electricity equivalent to total 

electricity consumption by 2020 equating to around 16-17GW installed capacity, 

Scotland has by far the most demanding target (Scottish Government, 2011a).323 It is 

clear that the adoption of the various targets have increased the level of the scope, 

ambition and challenges facing renewable electricity deployment. This can be seen by 

the adoption of three subsidy mechanisms over the last two decades: the Non-Fossil 

Fuel Obligation (NFFO), the Renewables Obligation (RO) and the reformed Renewables 

Obligation (rRO). A new mechanism, the Contracts for Difference Feed-in Tariff (CfD 

FIT) is proposed to enter the renewable electricity generation landscape in 2014. As 

such, 

 
“The increasing evidence for anthropogenic climate change, together with concerns 
about the security of energy supplies had led many governments to re-examine 
their energy policies – and to make significant changes. The UK is no exception…  
Policy activity has accelerated almost breathlessly, with a succession of White 
Papers, consultations, Acts of Parliament and new institutions.” (Pearson and 
Watson, 2012: 2). 

 

UK renewable electricity policy needs to create the conditions conducive to attain the 

substantial level of investment required to meet the sectoral target. This requires a 

clear, stable and transparent long term signal to investors in order for them to invest in, 

and ultimately deploy and operate the various renewable generation assets and 

associated infrastructure such as transmission and distribution networks. Policy also 

needs to achieve this whilst alleviating the burden on consumers (both financial and 

non-financial). Changes in policy, whether new policy initiatives and/or interventions, 

are also necessary: there is always a need to refine current approaches in light of 

evidence derived from on-going programmes and lessons learnt (Wood and Dow, 2011; 

                                                             
323 Scotland has also set an overall renewables target (all sectors) of 30% by 2020 (Scottish Government, 
2011b). In contrast, the Northern Ireland Executive has a target to deliver 40% RES-E by 2010 whilst the 
Welsh Assembly have indicated a target of 4GW (DECC, 2011a). 



411 

 

 

  

Woodman and Mitchell, 2011). Circumstances also change, particularly in the energy 

sector.324 

 

In addition, policy is rarely designed on a blank slate. This is particularly the case in the 

energy sector where investment assets are typically long-lived. Generating plant (and 

network infrastructure) will be in operation through periods characterised by different 

circumstances, contexts and governments, and priorities will inevitably change. In 

particular, renewable electricity technologies require state support to varying degrees 

at least for the foreseeable future. With the plethora of policy initiatives and 

interventions, however, there is the issue of policy risk: 

 

“Where a project’s financial viability is reliant on policy interventions, such as… the 
Renewables Obligation, developers are exposed to the risk that policy may change 
and undermine the economics of their project.” (Committee on Climate Change 
[CCC], 2011: 64). 

 

In particular, policy uncertainty can derive from the occurrence of regulatory changes in 

policies, with regulatory changes affected by the economic efficiency and financial 

sustainability of the policy, the coherence of the policy and whether or not the policy 

objectives are likely to be successful (Agnolucci, 2008). In the UK, however, policy risk 

has been viewed as a significant and contiguous barrier to renewable deployment from 

virtually the inception of government-led support (Mitchell, 1995; Wood, 2010; Wood 

and Dow, 2011). In an analysis of policy risk almost ten years ago, Mitchell and Connor 

(2004: 1935 and 1946) stated that: 

 
“The UK’s renewable energy policy has been characterised by opportunism… and 
continuous adjustments… policies continue to require adjustments and renewables 
delivery continues to be undermined.” 

 

 

 

 

                                                             
324 The quote from Pearson and Watson (2012) highlights this: for a detailed account of the changes in UK 
energy policy in recent history, see Helm (2008). 
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8.5.1 Policy reviews, reforms and policy risk 

It is clear from Table 8.11 (pages 413-414) that there has been almost ceaseless 

modification to the two previous and the current subsidy support mechanism. The key 

policy risks highlighted here show that the opportunistic nature of UK renewable 

electricity policy continues. In addition, there have been both positive and negative 

policy decisions. In particular, there are three main categories of UK RES-E policy risk: 

priorities; targets; and reviews and reforms.  Although the previous NFFO and (non-

reformed) RO mechanisms have been previously discussed325, it is worth reiterating the 

key points relevant to policy risk, in particular for the Renewables Obligation in both its 

non-reformed (2002-2009) and reformed states (2009 onwards).  

 

8.5.1.1 Priorities 

Since the early 1990s, the UK has adopted a least-cost approach based on competitive 

and market-based policies. As discussed elsewhere in this thesis, this means that the de 

facto priority of UK energy policy was that decisions should be left to the liberalised 

energy market. Competition, then, would drive innovation and deployment of 

infrastructure based on the economic goal of choice by price within markets (Mitchell 

(2008). As Rutledge and Wright (2010: 18) put it: 

 
“Instead of regulation being used to control and circumscribe the operation of 
markets, henceforth regulation would be used to create markets – to inject markets 
and market-type mechanisms into every nook and cranny of the UK’s gas and 
electricity industries – to give it a name, we might call it ‘Regulation for 
Competition’” 

 

This approach has been repeatedly reiterated in various UK energy policy documents 

over the years, in particular: the Performance and Innovation Unit (PIU) 2002 ‘The 

Energy Review’; the 2006 ‘The Energy Challenge: Energy Review’;

                                                             
325 The previous NFFO and (non-reformed) RO mechanisms have been previously discussed (in particular 
see chapter three. 
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Table 8.11 Key policy risks for the Non-Fossil Fuel Obligation (NFFO), Renewables Obligation (RO) and reformed Renewables Obligation (rRO)   

              Non-Fossil Fuel Obligation (NFFO)             

              

1990  NFFO comes into force. NFFO round 1. Prices set by cost justification. Uncertainty over process (e.g. contract lengths; cost 
methodologies; confusion over management role (between Department of Energy, Regional Energy Companies, Non-Fossil Purchasing 
Agency and the Office of Electricity Regulation). 

1991  NFFO round 2. Prices set by competitive bidding (tender process) with contractors offered a strike price rather than bidding price. 
Competitive bidding resulted in waves of development and the perception of a 'wind rush' in addition to excluding small-scale and 
community projects (typically more expensive than larger projects). 

1993  Reform of the NFFO: Extended contracts from 8 to 15 years. Clarification of UK renewable energy policy. Contractors offered bidding 
price (not strike price as NFFO2). NFFO round 3: Included new sub-bands for biomass gasification and small-scale wind but excluded 
sewage gas for the first time. Inclusion of the 'levy out' clauses (Regional electricity companies not required to make up the shortfall 
between the pool and premium price) and 'grace period' (5 years to obtain planning permission after contract awarded). 

1997  NFFO round 4. Also supported renewable heat. New anaerobic digestion band and support for energy crops and forestry waste.  

1998  NFFO round 5.           

              

              

Renewables Obligation (RO)             

              

2002  RO comes into force.            

2003  UK Government declares intention to reform RO. Emissions trading to be the key environmental tool going forward.   

2004  RO (Amendment Order) to allow small-scale generators to qualify for RO subsidy.     

2005  Aspirational extension of RO from 2010/11 (10.4% target) to 2015/16 (15.4% target) .     

2006  First consultation on the reform of the RO (technology banding). Grandfathering put forward as an option.   

2007  Second consultation on the reform of the RO (technology banding).       

2008  Announcement that RO to be extended from 2027 to 2037.        
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Table 8.11 (Continued)                         

              

Reformed Renewables Obligation (rRO)           

2009  Reform of the RO (rRO). Technology banding, headroom mechanism and grandfathering (from 2006) introduced.   

2009  First banding review (offshore wind) announced.        

2009  Consultation on renewable electricity financial incentives. Options included: introduction of a small-scale feed-in tariff (FIT) 
mechanism (<5MW); extending the rRO to 2037; whether or not to change the offshore wind band support level; a price stabilisation 
mechanism (for subsidy level and/or electricity price). 

2010  OFGEM's 'Project Discovery' report published discussing various options for reforming the electricity sector (including: low carbon 
obligation; long term contracts; RO tender; capacity tenders). 

2010  Electricity Market Reform' Consultation and 'Energy Market Assessment' reports.      

2010  Introduction of the Levy Control Framework (LCF) in the 2010 Spending Review to cover the period 2011-15.   

2011  Publication of the Energy White Paper 'Planning our electric future' (including 4 key proposals: long term contracts form difference 
feed in tariffs (CfD FIT); carbon floor price (CFP); emissions performance standard (EPS); capacity market (CM). 

2012  Reformed RO banding review. Small-scale FIT banding review.       

2013  Additional banding review of onshore wind power subsidy level       

2013  Carbon floor price introduced 1 April (£16/tonne) rising to £30/tonne (2020) and £70/tonne (2030).    

2014 
 

Beginning of RO/CfD FIT transition period (generators have the option to choose to accredit under the rRO or CfD FIT). 
2017  RO vintaged (closed to new generation) and subsidy level grandfathered from 2017. 

              

Contracts for Difference FIT (CfD FIT)           

2014  CfD FITs proposed to come into operation. Start of administrative price setting period (2014-17). 

2017   CfD FIT operates as the sole subsidy mechanism for large-scale RES-E generation. Start of technology specific auctions (2017-mid 
2020s). 

mid-2020s  Start of technology neutral auctions (mid to late-2020s). 

late-2020s  Start of wholesale market and carbon price (late-2020s onwards). 

2029  End duration of first CfD FIT contract for renewables commenced in 2014. 

                           

SOURCE: DECC (2009a, b; 2010a; 2011b, c, d, e; 2012a, b); Gross and Heptonstall (2010); HM Treasury (2011); HM Treasury and DECC (2010); Mitchell (1995); Mitchell 
and Connor (2004); Office of Gas and Electricity Markets [OFGEM] (2010); Wood and Dow (2010, 2011).  
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and the 2003 ‘Our energy future – creating a low carbon economy’ and 2007 ‘Meeting the 

energy challenge’ Energy White Papers (Department of Trade and Industry [DTI], 2003, 

2006a, 2007a).  

 

This de facto priority in energy policy and renewable electricity policy in particular was 

one of the key reasons underlying the under-performance of the NFFO mechanism: the 

emphasis on reducing the average price per kWh of each NFFO bidding round to signify 

success leading to unrealistic (too competitive) bids constraining actual deployment 

levels. This internal failure of the NFFO was never addressed.326 Reliance on such a 

market-dominated approach also led to similar issues under the RO/rRO. This is 

summed up by Woodman and Mitchell (2011: 3914): 

 
“… the strategic emphasis on competition in the support mechanisms has played a 
key role in limiting renewable deployment… the mechanism has changed 
significantly since it was introduced. However, these changes… still do not address 
important elements of risk.” 

 

It becomes clear that the failure of the UK Government to address the main internal 

failures of the RO up to now, primarily price/financial risk and the resultant impact this 

has on developer/investor confidence and thus deployment levels is driving the 

successive waves of change in renewable energy policy (see Section 8.5.1.3 on policy 

reforms). In other words, subsidies are being used to compensate for the investment 

risks caused by deficiencies in the mechanism and thus renewable energy policy itself. 

Critically, the reform of the RO in 2009 failed to address this internal failure due in part 

to the overwhelming focus on a least-cost market approach (Wood and Dow, 2011). 

This is significant given the level of investment required for the UK to successfully meet 

the 2020 renewable energy targets. Importantly, this is one of the key reasons (in 

conjunction with carbon trading, see below) that have driven the successive waves of  

 

 

                                                             
326 There are other problems with the NFFO including poor mechanism design (see Chapter Three, 
Section 3.3 for a detailed examination of this and the non-reformed RO mechanism). 
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regulatory and policy adjustments to both the RO and the rRO.327 

 

It can be argued, however, that there has been a change in direction in UK government 

energy policy towards the end of the 2000s (Rutledge, 2010). Both DECC’s report 

‘Energy Security: A National Challenge in a Changing World’ and OFGEM’s ‘Project 

Discovery’ reports published in 2009 pointed clearly to the need to move away from a 

complete reliance on liberalisation/competition and the market-based approach 

adopted since 1989 in the UK: 

 
“My conclusion is that the era of heavy reliance on companies, competition and 
liberalisation must be re-assessed. The time for market innocence is over. We must 
still rely on companies for exploration, delivery and supply, but the state must 
become more active – interventionist where necessary.” (DECC, 2009: 1). 

 

The reasoning behind this was the increasing awareness that the ‘Policy Trilemma’, or 

how to square the competing objectives of reducing greenhouse gas emissions (‘low 

carbon’); securing energy supply (‘secured supply’); and obtaining the lowest possible 

energy bills for consumers (‘low prices’) was more difficult than previously assumed (if 

assumed at all) (DECC, 2009). If government intervention is desirable, the critical 

question is to what extent and to what degree is intervention actually possible? These 

are particularly relevant questions. Government and the regulator do not own any 

energy infrastructure assets, nor can they build and operate such infrastructure. In the 

UK this is primarily the domain of the ‘Big Six’ energy companies: this is where decisions 

on whether or not to invest in energy infrastructure, type of infrastructure, when and 

where to construct such infrastructure and the price of energy exist (albeit with some 

limitations). This can also at least partly explain the focus on large-scale RES-E 

deployment in contrast to the meso-scale and the problems that have constrained the 

operation of the small-scale feed-in tariff since its implementation in 2010. At the same 

time, in a very real sense, privatised energy companies are not required to be 

‘concerned’ about systemic issues such as renewable/low carbon and climate change 

targets or security of supply issues except where they are obligated to do so. In addition, 

                                                             
327 It could also be argued that this was also at least in part the reason behind reforming the RO (Wood 
and Dow, 2011). 
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government intervention has typically focused on some form of subsidy support. In 

other words, it is unlikely that any change in priority will occur with regard to the 

prevailing energy market orthodoxy (Rutledge, 2010). 

 

Returning to the change in direction, perhaps the clearest result of this shift in priority 

can be seen in both the title and context of the most recent 2011 Energy White Paper 

‘Planning our electric future: a White Paper for secure, affordable and low-carbon 

electricity’ (DECC, 2011c). The introduction of the Contracts for Difference Feed-in Tariff 

(CfD FIT) mechanism for large-scale RET deployment will result in government 

essentially deciding the price, type and quantity of renewable, nuclear and carbon 

capture and storage (CCS) deployment. In addition, the Capacity and the Emissions 

Performance mechanisms will provide support for unabated CCGT generation 

technologies. Although this will be looked at in more detail in section 8.5.1.3, in effect 

this will return some leverage to the government in terms of ‘planning’ the UK’s 

electricity landscape. However, this is likely to be short-term, given the proposals to 

move towards competitive auctioning as soon as government deems is possible (DECC, 

2011c). 

  

There is also the issue of carbon trading and the EU Emissions Trading Scheme (EU 

ETS).328 As Table 8.10 points out, the 2003 Energy White Paper highlighted the 

importance of carbon trading as the centre of environmental policy, just one year after 

the implementation of the mechanism. Carbon trading remains the key environmental 

policy tool for dealing with the issue of climate change, thus undermining confidence in 

the renewable-specific RO. Indeed the core strategy supported by the government to 

overcome the market failures to successfully tackle climate change and ensure security 

                                                             
328 Described as the cornerstone of the EU’s policy to combat climate change and reduce industrial 
greenhouse gas (GHG) emissions, the EU ETS works on the ‘cap and trade’ principle: a cap is set on the 
total amount of defined GHG emissions that can be emitted by certain installations (primarily factories 
and power stations). Over time, the cap is tightened in order to increasingly reduce such emissions over 
time. One particular feature of the EU ETS is that companies receive or buy emission allowances that can 
be traded amongst the participants of the scheme. Those companies that fail to surrender sufficient 
allowances to cover the emissions are penalised; any excess allowances can be retained or sold (Europa, 
2012). In essence, the EU ETS puts a price on carbon with the intention being to incentivise GHG emission 
reductions and to make typically more expensive low carbon and renewable generation financially more 
attractive to investors. 
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of supply involves putting a price on carbon emissions through the EU ETS (HM 

Treasury, 2010). The EU ETS is also an example of creating new markets as a means to 

achieve GHG emission reductions at the least-cost. The argument is that such a market-

based approach will be more cost-effective in comparison to directly subsidising low 

carbon technologies with the original aim of the scheme being to ultimately replace 

such mechanisms in the future once these technologies become mature and competitive 

with traditional generation plant (Freestone and Streck, 2009). However, the failure of 

carbon pricing alone to reduce emissions at the scale and pace required and incentivise 

the growth of renewables in conjunction with the internal and external failures of the 

mechanism itself have also driven the successive waves of regulatory and policy change 

to the RO and renewables in general in the UK.  

 

There has also been the issue of technology preference or prioritisation. Except for a 

relatively short period in the late 1990s and early 2000s, when the 2002 PIU ‘Energy 

Review’ and the 2003 White Energy Paper essentially stated that nuclear power was not 

needed, nuclear power has remained a priority for various UK Governments (DTI, 2002, 

2003). Prior to this period, renewable energy was effectively and opportunistically 

bundled with nuclear power to the detriment of the former category of technologies 

(see below). The most recent change in government priority for nuclear power, 

however, was kick-started by the 2006 ‘The Energy Challenge: Energy Review’ (DTI, 

2006). This was followed by the 2007 White Energy Paper and the publication of a 

nuclear-only White Energy Paper in 2008 titled ‘Meeting the Energy Challenge: A White 

Paper on Nuclear Power’ (Department for Business, Enterprise and Regulatory Reform 

[BERR], 2008a; DTI, 2007a). These documents effectively returned nuclear power back 

into the policy fold. However, it is the 2011 Energy White Paper that will potentially re-

bundle nuclear and power together, into the proposed Contracts for Difference Feed-in 

Tariff (CfD FIT) along with carbon capture and storage as the third low carbon option 

(DECC, 2011c). Although the particular details of the CfD FIT mechanism have not yet 

been established, this is arguably of concern for renewable electricity deployment for a 

number of reasons: the vast majority of subsidy when renewables and nuclear power 

were bundled together under the NFFO went to nuclear power between 1990-1998; a 

focus on a new and, if successful, substantial nuclear power programme could also 
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reduce the amount of available investment from renewable deployment in addition to 

the allocation of subsidy via the CfD FIT. This will be compounded by the absence of a 

post-2020 target as of yet (see below)  

 

8.5.1.2 Targets 

Whether at the EU, UK or sub-national level, particularly in the case of Scotland, targets 

for renewable energy and renewable electricity in particular have been a consistent 

feature in the UK. These targets have ranged from 3 per cent by 1998 (NFFO); 10 per 

cent by 2010 (RO); 15 per cent by 2015 (RO); and culminated in the most recent RES-E 

sectoral target of 30-35 per cent by 2020 (rRO) (Europa, 2009; Gross and Heptonstall, 

2010; Mitchell, 1995). However, there are historically and currently a number of issues 

with regard to the way in which targets have been set. The manner of target setting 

under the NFFO, based on irregular bidding rounds (UK: 1990, 1991, 1995, 1997 and 

1998; Scotland: 1994, 1997 and 1998) resulted in uncertainty with both developers and 

supply chain companies not knowing in advance what the capacity targets would 

actually be. In contrast, there has been more certainty and advance notice about the way 

in which targets have been set under the RO. Despite this, there have been a number of 

issues that have reduced investor confidence. Although the DTI set a target of 15.4 per 

cent RES-E generation by 2015/16, only the period up to 2010 was covered by the 

target set by the 2001 EU Renewables Directive. The 2015/16 target remained merely 

‘aspirational’. Critically, once the target was met, it would remain at the 2015/16 level 

until 2026/27. A long-term review of the energy options and challenges facing the UK, 

the 2002 PIU Energy Review recommended that the target should be increased to 20 

per cent by 2020. However, as set out in the 2003 Energy White Paper, this became 

another aspirational target. The preferred choice of aspirational over mandatory targets 

means that they do not have any impact on the application of policy instruments and 

investor/developer behaviour (Lauber, 2005). 

 

The only real certainty arising after the target set by the RO back in 2000 was the 

proposal in the 2006 Energy Review to introduce a headroom mechanism. This would 

ensure that the level of the Obligation would always stay above the level of renewable 

generation. However, this was a curious proposal for one key reason: it would be 
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capped up to the aspirational 20 per cent by 2020 target; critically, it was already clear 

that the UK RES-E target for 2020 was always going to exceed this level for a number of 

reasons including more demanding climate change targets, the need to decarbonise the 

electricity (power) sector first, the looming capacity gap and the increasing 

electrification of the heat and transport sectors in addition to EU climate and energy 

policy objectives (Wood, 2010). As such, although this was initially viewed as a positive 

step, this was arguably an unnecessary one that increased policy uncertainty. In the end, 

with the 2009 EU Renewables Directive and the setting of the sectoral RES-E target of 

30-35 per cent by 2020 (a core component of the legally-binding target of 15 per cent of 

total energy from renewable energy sources by 2020), the 20 per cent aspirational cap 

was removed and headroom maintained in the 2009 reform of the RO. 

 

In contrast, there has been a consistent and clear method in setting targets for 

renewable energy and RES-E in particular in Scotland. In contrast to the UK and the 

other devolved administrations, Scotland has led in setting new and higher targets and 

has so far been successful in meeting these targets: 

 
“In Scotland the setting of ambitious national targets has been a key feature of a 
policy agenda spanning successive governments... The Scottish Government was the 
first among the devolved governments to set a new target, back in 2000, of meeting 
17.5% of Scottish electricity consumption from renewable sources by 2010, and the 
next decade saw Scottish targets increased repeatedly. An important factor – and a 
distinctive facet of renewable energy policy dynamics within the UK – is that 
Scotland has actually managed to meet a succession of its own national targets set 
above the UK norm: targets to meet 31% of electricity demand from renewables by 
2011... It seems that successful implementation in turn is driving higher targets and 
the Scottish Government has gone on to establish the goal of matching 100% of 
Scotland’s electricity consumption from renewables by 2020.” (Cowell et al., 2013: 
15). 

 

However, increasingly ambitious targets results in the governance and societal 

challenges of meeting these targets increasing, with regard to attempts to address the 

internal and external failures. 

 

Currently there is no post-2020 renewables target at either a pan-EU or UK level. 

However, the European Commission (EC) recently published a Green Paper titled ‘A 
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2030 framework for climate and energy policies’ (EC, 2013). Critically, the UK 

government has made clear its position that it is not in favour of any post-2020 

renewables-specific targets. In particular, the Secretary of State for Energy and Climate 

Change [DECC], Edward Davey, has stated that 

 
“… we need a technology neutral approach to how individual countries meet their 
emissions targets. We want to maintain flexibility for Member States in the exact 
energy mix they use… We will therefore oppose a renewable energy target at an EU 
level as inflexible and unnecessary.” (DECC, 2013: 1). 

 

The position put forward by the UK government is for a more ambitious greenhouse gas 

emissions target: a 50 per cent reduction by 2030 on 1990 levels (DECC, 2013). 

Although this does tie in with the proposed UK CfD FIT that aims to provide support for 

all low carbon technologies, there is no proposal for any technology target, whether 

renewables-specific or low carbon. Regarding the proposed 2030 renewables target, the 

UK approach fails to recognise the both the importance of the previous targets (2010, 

2020) in driving renewable deployment and the limited impact of the EU ETS so far (see 

also section 8.5.1.1): 

 
“… the only thing that is driving real clean investment in Europe is the renewables 
target. It is not being driven by the carbon price. I think it is really important to 
distinguish that. The real driver for investment is the renewables legislation, not 
the carbon price. There is an implicit carbon price within that legislation, but it is 
not set by the ETS.” (Allot, 2010: 69). 

 

It is the absence of a post-2020 mandatory target in particular that would introduce a 

significant policy risk to investor confidence. Opposing a future renewables target, 

particularly in light of the fact that there is no alternative target (such as a low carbon 

target, legally-binding or otherwise), would result in slowing down at best and halting 

renewable deployment levels at worst. This is highlighted in DECC’s ‘Updated Energy 

and Emissions Projections – October 2012’ modelling. This shows that renewable 

deployment under all scenarios (low/high prices, low/high growth and central 

scenario) will essentially stagnate post-2020 under analysis that assumes there is no 
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future target (DECC, 2012c).329 In addition, this was precisely the same situation that 

would have occurred under the RO prior to mechanism extension to 2037. As Figure 8.5 

(page 423) shows, there was no anticipated RO-eligible generation after 2020/21 with 

an overall decrease in new generation from approximately 2015/16 onwards whilst the 

duration of the RO was set until 2026/27. This was a direct consequence of the finite 

duration of the RO impacting on investment decisions: there was no expectation of 

future ROC revenues after 2026/27 and the predicted remaining revenues from the sale 

of electricity were deemed insufficient by themselves to bring forward new deployment 

despite the subsequent upturn in ROC values for those technologies banded-up (Oxford 

Energy Research Associates [OXERA], 2007). 

 

There are a number of additional reasons why it is recognised as necessary to already 

set in place post-2020 targets to avoid a policy void. In addition to a narrow focus on 

greenhouse gas emission reductions, investment in renewable energy can stimulate 

economic growth (both domestic and export) in new and fast-growing global markets; 

reduce greenhouse gas emissions and other particulate pollution; reduce dependency 

on finite sources of energy, volatile imports of energy (in terms of price and geopolitical 

issues) and the permanent storage of energy waste (nuclear and potentially CCS); help 

improve the balance of payments (for most renewable sources particularly if properly 

managed).330 

 

8.5.1.3 Reviews and reforms 

As shown in Table 8.11, a major defining characteristic of UK renewable electricity 

policy has been that of constant reviews, reforms and adjustments. Although overall 

beneficial to RES-E deployment (primarily by extending mechanism duration from eight 

                                                             
329 At the EU-level, renewables deployment has been strongly correlated by target setting: renewable 
energy grew by 1.9 per cent per annum prior to any regulatory framework (1995-2000); by 4.5 per cent 
per annum following the introduction of indicative targets (2001-2010); and 5.6 per cent per annum with 
legally-binding targets to meet the 2020 target (2010-onwards). Despite this, growth still needs to 
increase to 6.3 per cent per annum if the target is to be achieved (EC, 2013). Of course, targets are not 
sufficient in isolation. 

330 A number of these reasons have been contiguously set out as UK energy policy objectives for over two 
decades (in particular, see chapter three). 
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Figure 8.5 Anticipated year-on-year levels of new renewable generation 2003/04 to 20227/28 (OXERA, 2007: 36). 

Note: The data utilised in this analysis is based on the RO mechanism ending in 2026/27. The base case represents the non-
reformed RO and scenario 6 represents the reformed RO. 
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to fifteen years), the NFFO mechanism was reformed within three years of initial 

implementation. It did little, however, to address key barriers to deployment (excessive 

focus on competition and achieving the least-cost approach in combination with the 

absence of a penalty mechanism for non-construction and the failure to address 

planning issues). The end result was that only around a third of contracted generation 

actually reached commissioning and ultimately the NFFO was replaced with the RO but 

only after a four year hiatus (Wood and Dow, 2011). Such policy risk resulted in 

negligible RES-E deployment during this period. 

 

Put in place in 2002, the 2003 Energy White Paper effectively questioned the 

effectiveness and purpose of the RO by setting up a review of the mechanism (for 

2005/06) and setting carbon trading as the cornerstone of energy policy just one year 

after implementation of the new scheme (Mitchell and Connor, 2004). Throughout the 

duration of the RO, both unreformed and reformed, there have been successive ‘waves’ 

of regulatory, legislative and policy reform. As discussed in chapter seven, section 7.2 

the continuous policy changes to large-scale RES-E include three ‘waves’ of change: the 

reform of the RO; the ‘Renewable Electricity Financial Incentives’ consultation process; 

and the proposal to introduce the CfD FIT mechanism and other proposals under the 

EMR process. The reasoning behind the changes in the first two ‘waves’ was primarily 

that they aimed to fundamentally re-orientate the RO to become more like a feed-in 

tariff, albeit a system that will remain an RO mechanism but with the added complexity 

of feed-in tariff like ‘bolt-ons’ as opposed to actually being a feed-in tariff.  

 

The reform of the RO was a long and drawn out process. Following from the DTI 2006 

‘The Energy Challenge: Energy Review’, itself originally proposed previously in the PIU 

2002 ‘The Energy Review’, the UK government published three consultations (2006, 

2007 and 2008) and two responses (January 2008 and December 2008) before 

publishing the ‘Renewables Obligation Order 2009’ setting out the legislation underlying 

the actual reform (BERR, 2006, 2008b, c, d; DTI, 2002, 2006b, 2007b).331 Although the 

RO reform (including the second wave of reforms) is discussed elsewhere in this thesis, 

                                                             
331 The reform of the RO is discussed elsewhere in this thesis: in particular, see chapter seven. 
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it is important to highlight that the major internal failures were not addressed: revenue 

uncertainty (price risk) remained and the 2026/27 end date was not extended at the 

same time as the introduction of technology banding (Wood and Dow, 2011). In 

addition, the technology banding introduced a further and significant policy risk: 

renewable technologies could be both ‘banded-up’ and ‘banded-down’. The recent 

experience of solar PV under the small-scale and the recent banding review of the RO 

(including the two consultations on the subsidy level for onshore wind in addition to 

other RETs) emphasises this risk for investors/developers (see chapter seven). The 

second wave of reforms centred on the 2009 ‘Consultation on Renewable Electricity 

Financial Incentives’ (DECC, 2009a). Essentially this was reforming the RO in the same 

year as the reform of the mechanism. In addition to a number of further adjustments to 

the RO332, the reforms included a number of structural changes to the design of the RO 

mechanism. As discussed above, the RO was extended to 31 March 2037. The 

consultation also contained two further proposals that had the potential to profoundly 

alter the way the RO operated and undermine key objectives of the scheme to bring 

forward and support UK-based renewable generation: The Price Stabilisation 

Mechanism (PSM) and permitting RES-E generation from stations out-with the UK.  

 

The idea behind the PSM was to stabilise revenue from electricity prices for renewable 

electricity generators, with the option to extend this to ROC price revenue (Wood, 

2010). A properly designed and implemented PSM could bring extra security for RES-E 

generators with regard to addressing revenue uncertainty, arguably the main internal 

failure of the RO mechanism. This is somewhat similar to the proposed CfD FIT; 

although there would undoubtedly be difficulties in designing a PSM as with the FIT, 

such an approach, embedded within the existing RO would avoid the added cost and 

complexity of introducing a new mechanism at a time when deployment is required to 

increase towards the approaching 2020 target deadline. On the other hand it could add 

further complexity and administrative costs (both of which would impact to a greater 

extent on smaller generators) to a mechanism already made more complex and 
                                                             
332 These adjustments included carrying out an emergency banding review for offshore wind, resulting in 
the temporary banding up of subsidy from 1.5 to 2 ROCS per MWh and limiting subsidy support to twenty 
years for new projects accredited on or after 26 June 2008. 



426 

 

 

 

administratively burdensome via the 2009 reform process, distort the electricity market 

(by effectively cutting generators off from the market and removing their ability to 

respond to market signals), reduce revenue and increase policy risk (by representing a 

fundamental mechanism design and operational change from a market-based 

mechanism towards a FIT system). There were also concerns over opening up the RO to 

RES-E generation out-with the UK. Although ultimately funded by the UK consumers, 

subsidy payments would no longer be focused on inward investment in UK jobs and 

infrastructure, with concomitant impacts on supply chain growth and domestic/export 

markets. In the end, although the government proposed a further round of consultations 

to examine these proposals in greater detail were planned for the next year both were 

dropped with the election of a new government in 2010 (DECC, 2009b). What was 

effectively a major example of a missed opportunity (the PSM) ended up being another 

example of policy risk introduced by the government, particularly alongside the 

proposal to open up the UK to RES-E generation from abroad. 

 

It becomes clear, however, that the failure of UK Government to address the main 

internal failures of the RO up to now, primarily price/financial risk and the resultant 

impact this has on developers/ investors and thus deployment levels is driving the 

successive waves of change in renewable energy policy. In other words, subsidies are 

being used to compensate for the investment risks caused by deficiencies in the 

mechanism and thus renewable energy policy itself. This is a critical example of policy 

risk: despite all the reforms, the internal (and external) failures were not addressed. In 

itself this increased the risk of further policy change. This is also significant given the 

level of investment required for the  UK to successfully meet the 2020 renewable energy 

targets – around £18–19 billion annually up to 2020 (OFGEM, 2010). What is important 

is that at this time the UK appeared to be attempting to introduce a feed-in tariff style 

system ‘through the backdoor’, via the successive waves of reform and adjustment. This 

leads to the question over whether or not it would have been better to switch to a FIT 

mechanism overall than propose further reforms and introduce a FIT constrained by 

the capacity cap. By the end of 2009, under a stable feed-in tariff mechanism, Germany 

had over 25GW of wind installed in comparison to just over 4GW in the UK, and around 

16% share of electricity in comparison to 6.6% in the UK. In addition, feed-in tariffs 
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have had more success in installing non-wind renewable technologies such as solar PV 

(Bundesministerium fur UMWlt and Naturschutzund Reaktorsicherheit, 2010). 

With regard to stated policy objectives, the retention of high price/financial risk and 

increased uncertainty looks set to remain a substantial barrier to UK renewable 

industry sector growth (domestic and export) and resultant employment uptake. Much 

of renewable energy generating technologies will continue to be imported from other 

countries, notably Germany and Denmark. Therefore, there is a very real risk that UK 

renewable policy will continue to subsidise other countries manufacturing and supply 

chain development, despite the concept that a move to a low-carbon economy will not 

just be costly but a substantial opportunity for the UK economy. 

 

The third wave of reforms can only be described as an overhaul of the current UK 

electricity system framework: 

 
“These reforms will yield the biggest transformation of the market since 
privatisation, securing our future electricity supplies and heralding the shift 
toward a low-carbon economy.” (DECC, 2011c). 

 

Whether or not such an approach to the large-scale renewable electricity landscape 

might prove beneficial in the long-term, there are a number of reasons why it increases 

policy risk as an external failure at least for the short and medium-term: it represents a 

major change for investors and developers. The adoption of a new mechanism and 

indeed a novel variant of the more traditional FIT mechanism used elsewhere will 

increase uncertainty at precisely the same time as the 2020 target is approaching. As of 

the end of 2012, the key CfD FIT details are still largely unknown.  

 

Regarding the RO, as early as 2010, the EMR process set an end date for the extant 

mechanism before publishing sufficient detail regarding how the proposed replacement 

mechanism would actually operate. Additionally, there are a number of critical time 

‘windows’ throughout this process where, according to government, RES-E deployment 

is not only expected to continue during this period but actually accelerate towards the 

2020 sectoral target: (1) under the RO but prior to the proposed operation of the CfD 

FIT in 2014 (where details will for the most part be unknown); (2) the transition period 
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2014-17 during which the RO and the CfD FIT will operate simultaneously (the bedding 

in period for the new mechanism which could lead to uncertainty over which 

mechanism to chose). This is further compounded by the fact that the EMR process, as 

with the NFFO/RO transition and the 2009 RO reform, has also been a long and rather 

convoluted (difficult) process (commencing arguably in 2009 with the publication of 

OFGEM’s ‘Project Discovery’ document). Importantly, the process is still on-going and 

the CfD FIT delivery timetable has been and continuous to be very demanding (DECC, 

2011e).  

 

It is very difficult to understand how investors/developers can make an  informed and 

timely choice given the above reasons.333 This could lead to a hiatus in renewable 

deployment at a critical stage as occurred at the previous NFFO/RO hiatus.334 It could 

also lead to increased investment and deployment in non-renewable technologies, and 

gas and shale gas in particular. In turn, this has particular implications for the 

development of a domestic supply chain in addition to the set targets. Further, from a 

systemic evaluation perspective, the CfD FIT only focuses on addressing the internal 

failures, in particular the price (revenue) risk and it is unclear if the remaining internal 

failures will be addressed: in its current manifestation, the CfD FIT is already as complex 

if not more so than the RO; there is no certainty on how long the mechanism will run or 

how it will change (only that the ambition is to move to technology-neutral auctions in 

the 2020s); and volume risk, particularly as there is no Obligation on suppliers to 

purchase RES-E generation and given that there is currently no post-2020 target, see 

above. As mentioned previously, there is also uncertainty regarding the bundling of 

renewables with nuclear and CCS. Critically, the new mechanism fails to address the 

external failures at all. This is in contrast to the traditional FIT mechanism adopted 

abroad (see above). 

                                                             
333 The EMR process itself very strongly indicates that the previous approach and all the constant reforms 
and adjustments was not effective in delivering the required level of RES-E deployment. It can be argued 
that this alone introduces uncertainty for investors/developers with regard to the EMR reforms, notably 
the CfD FIT. 

334 It is unlikely that the RO/CfD FIT transition will be as bad as the previous NFFO/RO transition which 
lasted for four years and saw virtually no deployment during this period (see chapter three). 
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However, the problem of such a plethora of policy change, both those enacted or merely 

proposed, bring a whole host of new problems and one growing area of concern that is 

possibly not being acknowledged properly is the impact that this will have on the 

renewables sector. Inevitably the point will come when the increased changes to the 

mechanism will out-weigh the benefits of any improvements –  possibly this point has 

already been reached with regard to the  impact on the renewables industry sector 

(although it should be noted that the RO favours large-scale companies and as such they 

will seek to maintain the status quo). What is apparent, though, is that the sheer number 

of changes mentioned here has the additional effect to increase policy uncertainty as an 

external failure. Indeed, it has the potential to become of critical importance in the near 

future. 
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Chapter Nine 
Evaluating Potential Constraints to Renewable Electricity 
Deployment: A Systemic Approach Perspective 
 
 
 
9.1 Introduction  

The purpose of this chapter is to utilise the analysis of both the internal and external 

failures presented in chapters 6 and 7, respectively, to reveal the systemic interactions 

of the potential constraints examined here. This will be done in order to evaluate the 

current UK approach to addressing the potential constraints to large-scale RES-E 

deployment from a systemic perspective. This chapter, then, will seek to look at the 

system as a whole. 

 

This chapter will be set out as follows: Section 8.2 will carry out an evaluation of the 

internal and external failures from a systemic approach perspective. Although this 

section will look at the internal and external failures in a particular order, it is important 

to emphasise that there is no single way to look at this: the potential constraints could 

be set out in any order or starting point, for example, starting with planning, or 

price/revenue risk. 

 

 

9.2 An evaluation of internal and external failures from a systemic approach 
perspective 

The key systemic interactions of the internal and external failures examined in this 

thesis are portrayed in Figure 9.1 (page 438). The use of a flow chart permits the 

documentation of the complex and inter-linked system and shows how the steps in the 

process work and fit together from a systemic approach perspective by mapping out the 

interactions between the potential constraints. It is clear from Figure 9.1 that the 

interactions cascade down through the flow chart; however, there are also a number of 

feedbacks within and between the internal and external failure categories (see below).  
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There are six internal failures that can be attributed to the type and design of the 

Renewables Obligation subsidy mechanism implemented by the government: Focus on 

Low Costs, Complex Mechanism, Price/Revenue Risk, Favours Large Companies, 

Investment Risk and Market Chooses Technology. The emphasis on Focus on Low 

Costs was aimed at forcing renewable electricity technologies to become increasingly 

cost-competitive with non-renewable technologies over time. The least-cost market 

ready RETs would be deployed first, with more expensive technology options (near 

market, further from market) assumed to be sequentially picked up by the market as 

costs declined. Higher levels of subsidy would be offered to bring forward non-market 

ready RETs, particularly where there is the potential for large-scale deployment. 

However, recent changes to the support offered by technology banding, largely driven 

by the Levy Control Framework (a Treasury-led initiative with the aim of constraining 

the costs of financially supporting RES-E deployment) has resulted in subsidy cuts over 

the remaining duration of the subsidy mechanism for the majority of the technology 

bands irrespective of the scale of the development; this includes both those RETs 

designated as key to meeting the RES-E sectoral target (including onshore wind, 

offshore wind and biomass conversion; the exception here is dedicated biomass that has 

had subsidy levels increased, albeit under capacity constraints) and technologies near 

or far from market ready (including solar photovoltaic, geothermal). 

 

This leads to two main consequences. It discriminates in favour of larger-scale 

developments that can gain from economies of scale. Further, by not taking into account 

the temporal dimension, the RO ‘picks’ cheaper technologies to the exclusion of more 

expensive, less market-ready options that could also bring additional systemic benefits 

including technologies that are less contentious to the planning system (see below) 

and/or could be located closer to existing grid infrastructure with or without sufficient 

capacity.335 There is also the issue of scale and the type of development/ownership 

model, again with systemic implications for planning and public participation and 

engagement. 

 

                                                             
335 There are additional benefits including providing base-load output and flexibility of generation. 
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This bias will be exacerbated as the cuts increase over the remaining duration of the 

mechanism. Additionally, if expected cost reductions are not achieved to the extent 

anticipated by government, this will have a detrimental affect. This is particularly the 

case for the deployment of offshore wind, a key technology for achieving the 2020 RES-

E sectoral target, as subsidy levels decline out to 2016/17. There is also the issue of 

linking a number of other RETs to the level of subsidy (and the planned subsidy cuts 

between 2014/17) offered to offshore wind, despite the differences between the 

different technologies. In terms of the systemic interactions of the potential constraints, 

therefore, the Focus on Low Costs exacerbates the mechanism to Favours Large 

Companies (see below). In addition, this level of fiscal constraint has led to domestic 

manufacturers and supply chain companies being unable to meet equipment/service 

demands.336 This has resulted in developers sourcing equipment and expertise from 

abroad, thus aggravating extant problems of the development and growth of a domestic 

renewable industry and supply chain sector with concomitant impacts for employment 

and export capabilities. 

 

The RO is also a Complex Mechanism in terms of design, administration and the level of 

knowledge and expertise required to operate within the mechanism. The introduction 

of technology banding has increased mechanism complexity, in addition to the constant 

reforms and adjustments to the mechanism design. This is particularly the case 

surrounding the rules regarding the various biomass technology options (for example, 

sustainability and fuel content rules). There are a number of reasons why the 

complexity of the RO can be said to exacerbate the internal failure Favours Large 

Companies (see below). A Complex Mechanism adds uncertainty from the perspective 

of all potential investors. However, large companies are better able than smaller 

generators to manage this complexity with in-house expertise and/or the ability to pay 

for such expertise. Mechanism complexity itself could act as a barrier to new entrants, 

particularly at the small, independent and/or community level. There is also the issue of 

lobbying and rent-seeking due to mechanism complexity, with numerous groups (for 
                                                             
336 Although this occurred under the small-scale FIT subsidy mechanism, the damage and subsequent loss 
of jobs/companies within the sub-5MW solar photovoltaic supply chain sector (and loss of deployment) is 
revealing. 
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example, trade bodies, environmental organisations and within government) arguing 

for and against specific RET options against the back-drop of subsidy levels in 

particular. 

 

The third internal failure directly attributed to the type and design of the RO is that of 

Price/Revenue Risk. Renewable electricity generators face uncertainty with regard to 

the value of the key revenue streams: ROCs, electricity and the buy-out premium. Such 

uncertainty, by increasing the cost of finance through the addition of a risk premium on 

capital, gives rise to Investment Risk as another internal failure. In addition, 

Price/Revenue Risk and Investment Risk both effectively Favours Large Companies: 

Large companies, typically vertically re-integrated former monopoly utilities can 

mitigate the risks through their ability to obtain cheaper finance due to their balance 

sheets or by managing the risks in selling both ROCs and electricity through trading 

between the generation and supply assets. Such in-house trading is effectively 

impossible for independent and smaller/community based developments. This also 

reduces liquidity in the ROC market with a further concomitant impact on non-vertically 

reintegrated companies. Favours Large Companies also affects the external failure 

Public Participation and Engagement (see below). 

 

An inherent feature of the RO is that the government sets the target or obligation whilst 

the market ‘chooses’ the technology and the price. From the discussion above, it is clear 

that the internal failure Market Chooses Technology essentially reinforces the other 

internal failures (Figure 9.1). The market up-takes the cheapest technology options first. 

Although this approach has been recently tempered with the introduction in 2009 of 

differential subsidy support levels for different technologies (or groupings of 

technologies), the outcome of this relatively new approach has been to retain the focus 

on concentrating deployment on a few select technologies. In other words, the RO has 

maintained support for onshore wind and increased support in particular for offshore 

wind, biomass conversion, dedicated biomass and co-firing. Banding also does not 

reflect the different sizes of developments. In addition, banding also emphasises the 

shift towards ‘picking winners’ by the government, albeit a move constrained by the 

emphasis on low cost.  
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This exacerbates both Planning and Grid as external failures. Regarding Planning, a 

significant amount of the RET deployment required to meet the sectoral target still 

needs to apply for planning consent. The overwhelming bulk of deployment in terms of 

installed capacity will come from onshore wind, offshore wind and, to a substantially 

lesser extent, the key biomass electricity technologies (see above). The RET options 

incentivised by the RO mechanism design are, however, particularly contentious to the 

planning system due to their technology-specific attributes. These include particulate 

pollution and sustainability issues for biomass. This is especially relevant for large-scale 

biomass conversion plant (in terms of installed capacity). Anticipated to account for the 

majority of new biomass capacity, such plant will require significant volumes of biomass 

fuels, with the overwhelming bulk coming from abroad. For wind power, the key 

attributes of relevance here are the very high geographical dispersal rate, very large 

plant size, relatively small generation output and the landscape ‘footprint’ of the 

technology itself. 

 

This is especially acute for onshore wind due to the high existing level of deployment 

(operational and under-construction) and the amount of capacity awaiting planning 

determination (and awaiting construction). This is further complicated for onshore 

wind by the reduction over time in the average size of projects (in MW), necessitating 

the need for more projects to enter the planning system. This can only increase the 

siting of onshore wind farms, proposed or actual, in novel locations that typically 

experienced limited if any such ‘industrial’ deployment previously. The same is true for 

offshore wind, with the exception that there is a substantially higher amount of capacity 

either awaiting determination or at some stage in the development pipeline. As this 

occurs, this will increase pressure on the planning system. Further, this is exacerbated 

by the need for wind developers to maximise revenue by opting to locate in the areas of 

highest resource which are typically in areas of contention. 

 

Recent legislative changes to the planning system in both England and Scotland have 

resulted in a concentration in control by central government. This has been particularly 

pronounced for the offshore planning system in both countries and across the UK in 

general. This has led to a top-down imposition of generation infrastructure on local 



443 

 

 

 

areas and local communities. This can be seen by the fact that approval rates for 

>50MW projects for at least for the last six years has on average remained at around 90 

per cent for the four RETs anticipated to contribute the majority of total installed 

capacity by 2020. Although offshore wind and biomass conversion projects are 

invariably large-scale projects, this figure is in stark contrast to the approval rate for 

sub-50MW onshore wind developments that fall under local planning authority 

jurisdiction over the same period. The increasing centralisation of power and decision-

making has resulted in the erosion of public participation and engagement in the 

planning system. In addition, the planning system does not take into account 

local/community-scale development or alternative development models of ownership. 

These are the key underlying reasons why Planning exacerbates the external failure 

Public Participation and Engagement.  

 

The systemic interaction between Planning and Public Participation and Engagement 

also involves a strong feed-back element as shown in Figure 8.1. Critically, there is no 

real involvement of the public in the actual planning decision-making process, in terms 

of the design and through some form of ownership of a project. Instead, the role of the 

public is typically channelled by a sequence of consultations, including the pre-

application consultation. Indeed, the current approach is rather to incentivise local 

people to accept developments through financial community benefits which are both 

divisive and further seek to limit the role of public participation and engagement in the 

process. Additionally, the system is dominated by large-scale, typically ex-utility multi-

national companies. This affect is shown by the arrow leading from Favours Large 

Companies to Public Participation and Engagement. In addition, the absence of so-

called ‘no-go’ areas for deployment has also increased the perception that developments 

could occur anywhere. Increasingly relevant to onshore wind deployment, this adds to 

public frustration with the planning system particularly when local communities find 

themselves in the position of repeatedly opposing developments in the same location 

despite previous such applications being refused planning consent.  These are 

important issues for two key reasons. Importantly, the planning system is the primary 

way in which the majority of the public ‘interfaces’ with renewable energy deployment. 

Secondly, there are significantly more sub-50MW renewable projects coming into the 
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planning process in terms of number of projects and installed capacity than >50MW 

projects; as such they fall within local planning authority jurisdiction where people have 

more representation. 

 

The same attributes for both onshore and offshore wind power also affect Grid. Both 

RETs necessitate significant upgrade and extension of the UK electricity network in 

order to increase network capacity and extend the network to be able to incorporate 

new onshore and offshore wind, in addition to non-wind (and non-renewable) capacity 

requiring such connection. For onshore wind, this includes the transmission and 

distribution network; offshore wind has required the construction of an entirely new 

offshore transmission system, with associated onshore links. This has led to a number of 

issues for deployment that also reveals the systemic interaction between Planning and 

Grid. Additional pressure on the planning system - growth in grid 

infrastructure/capacity requires planning consent at an unparalleled number of (often 

novel) locations across the UK. The growth in grid infrastructure falls 

disproportionately within Scotland. As of 2011, Scotland accounts for 64 per cent of 

total UK onshore wind installed capacity; onshore wind also accounts for 63 per cent of 

total RET installed capacity in Scotland. According to the UK Renewable Energy 

Planning Database, this trend will become more exaggerated over time. With an already 

heavily congested grid network, this is the reason why two-thirds of the anticipated 

spend on new onshore grid is allocated within Scotland alone. 

 

Further, there is also a need to match onshore grid and generation infrastructure and 

offshore grid and generation infrastructure to onshore grid and generation 

infrastructure developments in a timely fashion. This has proved difficult, particularly 

for onshore deployment. This can be seen by the recent adoption of both the Connect 

and Manage approach (to incentivise generation infrastructure) and the RIIO approach 

(to incentivise transmission infrastructure); although roughly complementary with 

regard to overall aims, neither approach is particularly joined-up with the danger of 

stranded assets. Given that the growth in onshore grid infrastructure is being primarily 

driven by new renewables (in particular, onshore wind), there is also the question of 

whether justification for the need for so much onshore work is required if the 
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substantial amount of offshore renewable deployment (offshore wind and marine RETs) 

occurs. This is also relevant given that the highest levels of grid constraint currently 

occur in Scotland and at the Scottish/English interface, and that the bulk of onshore 

wind deployment (actual and proposed) is located in Scotland.  

 

As pointed out previously, the interactions cascade down through the flow chart shown 

on Figure 9.1. In other words, all the internal and external failures drive Policy Risk to 

varying extent, and affect policy risk as an external failure that, in turn, impacts on the 

system as a whole.  
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Conclusions 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



447 

 

 

 

 
 

Chapter Ten 
10.1 Introduction        448  
10.2 Answering the research questions     448  
10.3 Original contribution to knowledge    453 
10.4 Future research work      445 

 
References         457 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



448 

 

 

 

Chapter Ten 
Conclusions 
 
 
 
10.1 Introduction  

This thesis has carried out an evaluation of the current UK approach to large-scale 

renewable electricity technology deployment to 2020 and beyond by adopting a 

systemic framework approach to determine whether or not the UK will be successful in 

addressing the potential constraints – the internal and external failures – to 

deployment. 

 

As derived from the considerations above, three specific research questions were posed. 

Each will be answered below. 

 

 

10.2 Answering the research questions 

  
 (1) What are the implications of the current UK approach to addressing  
  potential constraints to RES-E deployment to 2020 and beyond? 
 

At present, the deployment of renewable electricity technology is dependent on an 

acceptance of policy risk and uncertainty. As the scope, ambition and challenges facing 

deployment has increased, changes in policy are both required and necessary. However, 

a key implication of the current UK approach to deployment, namely by not taking into 

account the systemic interactions of the internal and external failures in attempting to 

address the potential constraints, is that it forces every decision to be made on a 

separate case-by-case basis, with the result that more changes to the system leads to 

less clarity of where the risks will fall.  

 

This is not to say that the reforms and adjustments have had no impact on deployment 

(see below). However, despite almost continuous reform over two decades and three 

mechanisms (NFFO, RO and rRO), there has been no fundamental change regarding the 
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overall UK approach. Government attempts to increase deployment in order to achieve 

the RES-E sectoral target remains largely based on ad-hoc decisions. As such, the 

reforms have had a narrow focus; their application has been to address individual 

constraints (either internal or external failures) or a specific problem and not from a 

holistic perspective. The reform of the Renewables Obligation in 2009 and onwards has 

provided   a ‘renewables package’ by comprehensively addressing both internal and 

external failures, but this was based on the realisation by government that the failures 

required addressing more or less at the same time, and not systemically. Importantly, 

this is also despite the fact that this is a heavily regulated sector and will continue to be 

so at least into the 2020s as the RO mechanism is replaced by the proposed Contracts 

for Difference Feed-in Tariff. 

 

Another implication of the current UK approach is that it is closely linked to the idea of 

the primacy of market solutions to addressing the potential constraints to renewable 

deployment. It is based on a de-facto dominance of economics, with deployment 

incentivised through a focus on least-cost and competition; the Renewables Obligation 

is driven by the relationship between regulatory return and the cost base, in light of the 

market price. In contrast, this has resulted in a system that has permitted little focus on 

social and behavioural issues, in particular the opportunity for participation and 

engagement in both ownership, decision-making and understanding for a variety of 

smaller-scale participants..  

 

The consequences of the current UK approach, then is that it strongly discriminates in 

favour of the following system characteristics: 

 

(i) A particular scale of development: predominantly large-scale; this is 

particularly relevant for onshore deployment. In 2011, only 25 per cent of 

onshore wind developments were ‘small-scale’, categorised as having an 

installed capacity of 25MW or less; approximately 3 per cent of offshore 

wind projects are of a similar scale. 
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(ii) A select few renewable technologies irrespective of the technology-

specific attributes: onshore wind, offshore wind, biomass conversion and 

dedicated biomass. 

(iii) An even fewer number of RETs that are anticipated to provide the 

majority of deployment capacity with regard to the 2020 sectoral target: 

In 2011, the key RETs accounted for approximately 70 per cent of 

installed capacity (onshore wind: 37 per cent; offshore wind: 15 per cent; 

biomass conversion: 16 per cent). By 2020, the overwhelming majority of 

deployment capacity is anticipated to come from onshore wind and 

offshore wind alone. 

 

(iv) A limited number of developers of a particular type:  former utility, multi-

national energy companies; the ‘Big Six’ companies alone own around 50 

per cent of renewable generating capacity. The remainder of the capacity 

is owned by other ex-utilities and, to a lesser extent, independents, with 

less than 1 per cent owned and operated (on a partial or full share basis) 

by small-scale non-commercial developers, organisations and individuals. 

 
 

As can be seen from the analysis of the internal and external failures carried out from 

both a historical (Non-Fossil Fuel Obligation and the Renewables Obligation: see 

chapter three) and a contemporary (reformed Renewables Obligation: see chapters 

seven and eight) perspective, the current UK Government approach has exacerbated the 

systemic interactions of the internal and external failures evaluated in this thesis (see 

section 9.2). In order to achieve the 2020 RES-E target and the longer-term electricity 

sector decarbonisation requirements post-2020, renewable electricity technology 

deployment in the UK will have to increase substantially. RET deployment has 

increased, particular with the introduction of the Renewables Obligation mechanism in 

2002 and due to the reform of the mechanism (although the reform benefitted offshore 

wind in particular) Given historical annual capacity growth to date, the trend in new 

installed capacity of the key technologies will have to follow the pattern of year-on-year 

accelerated deployment. 
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Indeed, this accelerated progress in new capacity additions to existing deployment 

levels is required under the modelling scenarios for the 2020 RES-E target to be 

achieved. However, this does not take into account the systemic interactions of the 

internal and external failures, particularly for those technologies anticipated to 

contribute the most. The required level of annual deployment growth at least to 2020, 

then, based on these particular RETs, primarily via large-scale developments by large-

scale developers will only serve to accumulate and intensify the systemic interactions of 

the potential constraints. This thesis shows that there are significant systemic 

interactions that already exist between the internal and external failures: 

internal>internal; external>external; and internal>external and vice versa. This creates 

systemic imbalances and unresolved tensions between the constraints. Critically, the 

current approach reduces the options available to addressing the systemic interactions 

of the internal and external failures. 

 
 
 

(2) How would a UK response based on a systemic approach to renewable 
electricity technology deployment perform compared to the UK 
Government’s current efforts to address the potential constraints? 

 

The first research question has defined the limitations and the consequences of the 

current UK approach. In terms of performance, however, caution is required in 

extrapolating the benefits of a systemic approach; there is always the danger of poorly 

implemented policy and unintended consequences. Critically, policy is rarely designed 

on a blank slate.  This question turns to the advantages of a systemic approach. These 

include: 

 

 (i) Permits an overview of the wider system 

 

(ii) Leading from (i), the systemic approach permits the identification of the 

systemic interactions and the constraints to deployment for individual 

technologies in a novel way. This approach also permits their 

identification in a timely fashion (early) 
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(iii) The ability to make decisions at the systemic or system-wide level and 

take into account the systemic interactions of the potential constraints on 

the various renewable electricity technologies 

 
(iv) Permits more targeted and focused reforms. As such, this should lead to 

the need for fewer interventions in comparison to the current UK 

approach 

 

(v) Mitigates the risks to the fullest extent possible (knowing that such risks 

cannot be fully eliminated) 

 

(vi) Helps to redefine the system in a more optimal and resilient way. The 

systemic approach offers a way to relieve the tensions inherent in the 

systemic interactions under the current approach 

 

 
 
 (3) What could the systemic approach offer to policy makers? 
 
 

The systemic approach set out in this thesis offers a number of opportunities to policy 

makers. These include: 

 

(i) The opportunity to interface across the system (or sector) rather than 

separate ‘yes-no’ decisions to individual potential constraints to 

renewable electricity technology deployment capacity. As such, the 

systemic approach offers a mechanism by which to provide sectoral 

influence rather than separate decisions for different renewable 

technologies 

 

(ii) Provides a deliberate tool in contrast to the current approach through 

individual decisions  

 



453 

 

 

 

(iii) Offers the potential to reduce the difficulties in matching the totalities of 

the project outcomes with the target 

 

(iv) The systemic approach offers a more straightforward and pragmatic 

method of policy implementation in order to remedy the problems of the 

current approach. Critically, the current approach to addressing the 

internal and external failures reduces the options available to government 

to deal with the constraints. In other words, it offers policy makers an 

alternative route from attempting to pay or control the required increases 

in deployment necessary to meet the 2020 RES-E sectoral target and any 

future targets beyond 2020. The systemic approach, then, offers more 

control. In addition, adopting this approach makes subsequent steps to 

solving problems more predictable. 

 

In other words, the systemic approach permits government to connect the dots in 

addressing potential constraints to deployment. With regard to the opening quote of the 

discussion between Alice and the Red Queen, the alternative is quite stark: continuation 

of the current business-as-usual UK approach will result in the government – like the 

Queen, having to run at least twice as fast in order to attempt to address the internal and 

external failures on a non-systemic basis. Even then, this will likely be insufficient. And 

ultimately, there is a limit to how long the renewable energy sector can hold its breath.  

 

 

10.3 Original contribution to knowledge 

This thesis provides an original contribution to the existing body of knowledge in four 

distinct ways: advancing current knowledge; methodology; an enhanced understanding 

of the research issue; and policy evaluation. 

 

First of all, this thesis makes an original contribution to knowledge by advancing 

current knowledge and understanding of both the constraints to large-scale renewable 

electricity technology deployment in the UK and the way in which government 

approaches addressing these constraints. This has been done by providing a rich set of 
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new and up-to-date data analysing the internal and external failures, including the type, 

design and operation of the existing subsidy mechanism, planning, electricity network 

(grid), public participation and engagement and policy risk (chapters seven and eight). 

Further, this thesis presents an in-depth, detailed analysis of the RO mechanism over a 

ten year period in terms of the actual deployment trends of the individual large-scale 

renewable electricity technologies (chapter six). In particular, this data set is based on 

the contextual investigation and analysis presented in chapters four and five of the 

thesis. One of the key contributions of this data set is that it can be used to evaluate the 

current UK approach to addressing constraints either individually (the current 

approach) or systemically (the systemic approach). As such, it both identifies and offers 

solutions on the impact of these constraints for a number of key large-scale renewable 

electricity technologies. 

 

Second, this thesis makes an original contributes to an understanding of the research 

issue by demonstrating the evolution of the problem. Efforts to address the constraints 

to large-scale renewable electricity technology deployment is a more sophisticated 

target driven problem than previously evidenced under the Non-Fossil Fuel Obligation 

and, to a large extent, under the non-reformed Renewables Obligation. A comparison of 

the literature review (chapter two) in conjunction with Part III of the thesis (chapters 

seven, eight and nine) reveals that the approach to addressing constraints faces 

significantly more systemic problems than under the previous two mechanisms. 

Further, this highlights the need to adopt an alternative approach to addressing 

constraints as argued in this thesis. 

 

Third, this thesis makes an original contribution to the area of policy evaluation by 

developing a novel way to evaluate the current UK approach to addressing potential 

constraints to large-scale renewable electricity technology deployment. In addition to 

highlighting short-comings in the current approach, this thesis provides an alternative 

option to policy makers based on the systemic approach (chapter ten). In contrast to the 

current approach which necessarily involves a number of trade-offs in attempts to seek 

solutions to individual constraints, the systemic approach does not require this, based 

as it is on a holistic or systemic approach. In other words, the systemic approach 
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permits government to connect the dots in addressing the internal and external failures 

to deployment. 

 

Finally, this thesis makes an original contribution to knowledge by developing and 

demonstrating the use of the systemic approach methodology based on the internal and 

external failures method to a novel topic: evaluating the UK government approach to 

addressing potential constraints to large-scale renewable electricity technology 

deployment. By showing the gap in extant research and modelling, the systemic 

approach builds on previous analysis and evaluation to reveal the existence of 

significant systemic interactions between the internal and external failures 

(internal>internal, external>external; and internal>external and vice versa) and a 

number of feedbacks between the constraints. The scope, application and limitation of 

the systemic approach are set out in chapter two of the thesis. 

 

 

10.4 Future research work 

There are a number of potential avenues for future research work deriving from this 

thesis. Whether or not the systemic approach is adopted in attempting to address the 

potential constraints to renewable deployment, this thesis has identified and offered 

tentative solutions to a range of constraints to large-scale renewable electricity 

deployment in the UK. These include the type and design of the existing subsidy 

mechanism, planning, electricity network, public participation and engagement and 

policy risk. By providing a rich set of new data on the impact of these constraints for a 

number of key RETs, this thesis offers researchers, policy makers and developers the 

opportunity to build on the research presented here. 

 

However, it is the explicit hope of this thesis that the systemic approach to renewable 

electricity technology deployment will be adopted in due course. By highlighting the 

interactions of the potential constraints – the internal and external failures – the use of 

the systemic approach can be viewed as a foundation for further research work to build 

on. In order to correctly implement a systemic approach, extensive research work 

would be critical prior to implementation. An important question for the 
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implementation of a systemic approach to addressing deployment constraints is: What 

would a systemic approach look like in terms of policy, legislation and regulation? This 

also leads on to the tentative examination of what a sustainable energy system should 

look like (see chapter one): What type of system is ultimately envisaged and how will it 

be obtained?  

 

In particular, this thesis effectively questions the governance of the on-going 

experiment towards transitioning the UK energy system onto a low carbon/sustainable 

basis, with a current focus on the significant deployment of renewable energy 

technologies. This is particularly with regard to defining expectations, the granting of 

power and verifying performance. This is another potential avenue for future research 

work. 

 

The systemic approach can also be utilised in additional ‘novel’ areas, including other 

countries that operate other types of subsidy mechanism alongside different policy, 

legislative and regulatory structure governing planning, grid access and public 

participation and engagement. This would offer the potential for a deeper 

understanding of alternative approaches to addressing the constraints to large-scale 

renewable deployment. The proposed CfD FIT is another important avenue. Anticipated 

to ultimately replace the Renewables Obligation, a systemic analysis of this novel 

mechanism is critical in attempts to understand how this untested mechanism will 

perform. 
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