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Abstract 

Diabetic retinopathy is a microvascular complication of type 1 and type 2 diabetes, 

affecting the retinal vasculature of the eye. In the Scottish diabetic retinopathy grading 

scheme (version 1.1), the severity of diabetic retinopathy is classified as no retinopathy, 

mild background, observable background, severe non-proliferative and proliferative 

retinopathy. In the GoDARTS (Genetics of Diabetes Audit and Research Tayside) cohort, 

we have longitudinal data of retinopathy in diabetic patients since 1990. 3,734 and 3,673 

GoDARTS patients were genotyped in the Affymetrix Genome-wide Human SNP Array 

6.0 and Illumina HumanOmniExpress BeadChip, respectively. As the pathophysiology of 

diabetic retinopathy remains elusive, the aim of this thesis is to use the GoDARTS 

phenotype and genotype data to study clinical and genetic determinants for diabetic 

retinopathy.  

 

The first part detailed the longitudinal analysis of diabetic retinopathy data, using the multi-

state Markov model. This methodology permitted us to infer the rates of transitions across 

retinopathy states under the influence of common population risk factors. We observed a 

consistent risk effect of HbA1c on the progression (no-retinopathy to mild background 

diabetic retinopathy, BDR, hazard ratio per standard deviation of HbA1c (HR): 1.42, 95% 
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confidence interval (CI): 1.32, 1.52; mild BDR to observable BDR HR: 1.32, 95% CI: 1.08, 

1.60; observable BDR to severe non-proliferative/proliferative DR (non-PDR/PDR) HR: 

2.23, 95% CI: 1.16, 4.29). Similarly, systolic blood pressure (SBP) and diastolic blood 

pressure (DBP) increased the risk for the transition from the asymptomatic phase to mild 

BDR (HR: 1.20; 95% CI: 1.11, 1.30) and the mild BDR to observable BDR (HR: 1.87; 95% 

CI: 1.46, 2.40), respectively. Regression from mild BDR to no DR was associated with 

lower SBP (HR: 0.79; 95% CI: 0.64, 0.97) and lower HbA1c (HR: 0.76; 95% CI: 0.64, 

0.89). Our results provided the evidence that glycaemic exposure and blood pressure are 

strongly associated with progression and remission of diabetic retinopathy. 

 

The second part studied narrow-sense heritability and genetic correlations of retinopathy 

and related risk factors in type 1 and type 2 diabetic patients explained by common 

genome-wide SNPs using a novel variance components methodology. We found that up to 

34% of phenotypic variation of diabetic retinopathy was attributable to total additive 

genetic effects in the GoDARTS 1000 Genomes imputed genetic data. The narrow-sense 

heritability explained by the study data was 49% for BMI (body mass index), 20% for 

cholesterol, 23% for serum creatinine, 21% for HbA1c (glycaemic exposure), 40% for 

HDL (high-density liproprotien), 18% for SBP (systolic blood pressure), 31% for 

triglycerides. Due to the wide credible intervals, the inference of genetic and residual 

correlations between retinopathy and the clinical risk factors was limited.  

 

The last part of the thesis described genome-wide meta-analysis of retinopathy in type 1 

and type 2 diabetic patients in the SUMMIT collaborative cohorts. This study analysed 

9,508,089 genetic variants in 5,422 diabetic retinopathy cases and 4,302 controls. We 
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identified the most significant signal SNP rs10746970 (P value of 2.22×10
-7

). In this study, 

we found diabetic retinopathy risk loci 1q43, 2q32.1, 6q16.1 13q32 identified in this study 

are in close proximity to regions of 1q13-42, 2q31-47, 6q22-27 and 13q14-32 previously 

reported in smaller scaled genome-wide association studies. We discovered previously 

unreported retinopathy risk loci of 1p34-p32, 2p12-p11.1, 2q11.2, 3p24.3, 3q24, 4q28-q32, 

5p14, 5q31.3, 6p21, q13-q21.2, 11q21, 12p11.22, 17q25.1 and 19q13.11. The identification 

of extensive susceptibility loci is suggestive of polygeneic effects contributing to the 

development of diabetic retinopathy. The closest genes to these loci have been implicated 

in multiple physiological processes including carbohydrate/lipid metabolism, functional 

activity in the neuronal and glial cells, and transcription regulation.  

 

This series of studies reported novel insights into the clinical and genetic susceptibility of 

diabetic retinopathy, and provided the scientific basis of informed clinical decisions on 

diabetic retinopathy prognosis and treatment. The findings are valuable to further studies of 

diabetic retinopathy.  
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Chapter 1  

Introduction 

 

1.1 Diabetic retinopathy 

1.1.1 Clinical features and classification 

The development of type 1 and 2 diabetes mellitus increase patients’ risk for developing a 

wide range of chronic complications. Macrovascular complications are identified by severe 

atherosclerosis in large blood vessels, and diabetic macroangiopathy affects the heart 

(coronary artery disease), the brain (cerebrovascular disease) and the lower extremities 

(peripheral vascular disease). In contrast, microvascular complications are characterised by 

weakening of capillary walls, leading to bleeding and a reduced blood flow. Diabetic 

microangiopathy affects the kidney (nephropathy), peripheral nerves (neuropathy) and the 

retina (retinopathy).  
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Diabetic retinopathy (DR) is a range of microangiopathies that can affect the retina of both 

eyes (Figure 1-1 and Figure 1-2), influenced by prolonged hyperglycaemia. Progression of 

diabetic retinopathy is sight threatening. Diabetic retinopathy is diagnosed by the methods 

of digital imaging photography or ophthalmoscopy (Figure 1-3), and in Scotland, clinical 

classification is based on the latest Scottish grading schemes for diabetic retinopathy and 

maculopathy (Table 1-2 and Table 1-3). The initial phase of diabetic retinopathy can be 

asymptomatic. The development of diabetic retinopathy is broadly classified into non-

proliferative and proliferative stages [1]. The non-proliferative or background stage is 

characterised by damages to retinal endothelium and the resultant capillary occlusion 

leading to retinal ischaemia, and related clinical features include microaneurysms, 

haemorrhages and cotton wool spots in the retinal periphery (Table 1-1,  Table 1-2 and 

Figure 1-4) [2]. The advanced proliferative stage develops with the proliferation of new 

blood vessels (neovascularisation) on the interface between the retina and the vitreous 

cavity [1,2]. Rupture of fragile blood vessels causes a large retinal haemorrahage [2]. 

Patients with a vitreous haemorrhage may experience obscured vision, and patients 

suffering from a preretinal haemorrhage may notice a moving visual blockage influenced 

by gravity [3]. When retinopathy affects the macula at the posterior pole of the retina, 

diabetic maculopathy develops (Table 1-3), and the loss of central vision becomes 

imminent [4]. Diabetic maculopathy is prevalent in type 2 diabetic patients [5]. Macular 

oedema and macular ischaemia are two sub-classes of diabetic maculopathy, and these two 

conditions can be concurrent [4]. Macular oedema is characterised by intraretinal fluid 

accumulation and swelling at the macular area [4], and the hallmark of macular ischaemia 

is macular vascular occlusion leading to cell death [4].   



19 

 

 

 

Figure 1-1 Human eye anatomy adapted from [6]. The wall of eyeball consists of three 

layers: the outermost connective tissue layer formed by cornea and sclera, the 

vascular tissue layer, the uvea composed of the iris, ciliary body and choroid; and the 

innermost neuronal tissue, the retina. The retina receives 65% to 85% of the blood 

supply from the choroid for nourishing photoreceptor cells [7].  
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Figure 1-2 The microstructure of human retina adapted from [8]. Light is transmitted 

through several transparent cellular layers before reaching photoreceptor cells (rods 

and cones) at the posterior of the retina. 
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Figure 1-3 A fundus photograph showing central retinal blood vessels radiating from  

the optical nerve in a healthy eye adapted from [4].  The fovea is seen as a red spot at 

the centre of the macular area free of blood vessels. 
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Table 1-1 Ophthalmic features associated with diabetic retinopathy summarised from 

[3].  

 

Microaneurysms: 

 Red dots, caused by protrusion of retinal capillaries. 

Haemorrhages: 

 Extravasation of retinal blood vessels.  

 Flame-shaped haemorrhages: haemorrhages in the nerve fiber layer of the retina.  

 Dot or Blot-shaped haemorrhages: haemorrhages deep in the connecting neuron 

layers of the retina.  

Exudates: 

 Yellow-white lesions, caused by deposits of plasma leaked from retinal capillaries.  

Cotton-wool spots: 

 Pale spots, caused by swellings of ischaemic nerve fibers.  

Intraretinal microvascular abnormalities (IRMA): 

 Burgundy-colored area, caused by dilatation of retinal capillaries.  

  



23 

 

 

 

Figure 1-4 Ophthalmic features of background diabetic retinopathy adapted from [9]. 

FH: flame-shaped haemorrhages; CWS: cotton wool spots; HE: hard exudates. 
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Table 1-2 Clinical diagnosis of diabetic retinopathy according to the Scottish diabetic 

retinopathy grading scheme 2007 v1.1. IRMA: intraretinal microvascular 

abnormalities.  

 

Retinopathy Description 

No visible 

retinopathy 

No diabetic retinopathy anywhere 

Mild background The presence of at least one of any of the following features 

anywhere 

 dot haemorrages 

 microaneurysms 

 hard exudates 

 cotton wool spots 

 blot haemorrages 

 superficial/flame shaped haemorrhages 

Observable 

background 

Four or more blot haemorrhages in one hemi-field only (Inferior and 

superior hemi-fields delineated by a line passing through the centre 

of the fovea and optic disc) 

Severe non-

proliferative 

retinopathy 

Any of the following features: 

 Four or more blot hameorrages in both inferior and superior 

hemi-fields 

 Venous beading 

 IRMA 

Proliferative 

retinopathy 

Any of the following features: 

 Active new vessels 

 Vitreous haemorrhage 
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Table 1-3 Clinical diagnosis of diabetic maculopathy based on the centre of the fovea 

in macula according to the Scottish diabetic maculopathy grading scheme 2007 v1.1. 

 

Maculopathy Description 

No maculopathy No features ≤disc diameters from the centre of the fovea sufficient to 

qualify for observable or referable maculopathy as defined below. 

Observable 

maculopathy 

Lesions as specified below within a radius of > 1 but ≤ 2 disc 

diameters the centre of the fovea. 

 Any hard exudates 

Referable 

maculopathy 

Lesions as specified below within a radius of ≤ 1 disc diameter of the 

centre of the fovea. 

 Any blot haemorrhages 

 Any hard exudates 
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1.1.2 Treatment 

Patients with early-stage diabetic retinopathy are regularly monitored for signs of severe 

non-proliferative/proliferative retinopathy or maculopathy, but effective therapeutic 

interventions for early-stage diabetic retinopathy remain limited [4]. Patients with 

proliferative retinopathy and diabetic macular oedema are referred for laser 

photocoagulation [4].  In the course of the treatment, an ophthalmologist administers 

flashes of laser beams to peripheral retina or fovea, aiming to reduce the size of ischaemic 

retina or to impair macular thickening respectively for proliferative retinopathy or macular 

oedema [3]. Multiple sessions of laser treatment are required for patients with proliferative 

retinopathy [3]. A study of laser photocoagulation in patients with proliferative retinopathy 

showed a 95% success rate in preventing further neovascularisation and improving visual 

acuity [3]. In contrary, a 60% visual improvement was reported for laser treatment in 

patients with diabetic macular oedema [3].  

 

If an extensive haemorrhage occurs in or behind the vitreous cavity or a fibrous mass 

threatens to detach from the retina, patients with proliferative retinopathy may undergo 

vitrectomy surgery [4]. This technique removes abnormal tissues and replaces the vitreous 

by clear fluid [4]. Despite of this surgical intervention, vitreous haemorrhages are likely to 

recur [4]. 

 

New treatment including intravitreal administration of anti-VEGF (vascular endothelial 

growth factor) is recommended for patients with proliferative retinopathy [3]. However, 

effectiveness of this intervention remains unclear. 
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1.1.3 Diabetic retinopathy screening 

Long-term follow-up studies showed that retinal screening is crucial for detecting onset or 

progression of diabetic retinopathy [4]. In Tayside, patients with diabetes were screened in 

a retinal exam using ophthalmoscopy or slit lamps, in a hospital by ophthalmologists and 

diabetologists or by hospital and community based optometrists [10,11]. Since 1986, non-

mydriatic (without dilation of the pupil) Polaroid photography has been shown as an 

effective method for identifying retinopathy in the diabetic population [12–14].  In 1992, a 

mobile unit mounted with a retinal camera was set up for systematic diabetic retinopathy 

screening in the Tayside diabetic population [15]. From 2003, digital retinal photography 

has been integrated into diabetic retinopathy screening, replacing Polaroid photography for 

a higher image quality and the ease of data storage [16]. In the same year, a Scotland-wide 

diabetic retinopathy screening program was established with an independent retinal grading 

scheme recommended by the Health Technology Board Scotland (HTBS) [17]. Currently, 

all type 1 and type 2 diabetic patients aged 12 years or older in Scotland are offered an 

annual retinal examination through the National Health Service (NHS) diabetic retinopathy 

screening program, or more frequently if required [4].  

 

1.1.4 Epidemiology 

Diabetic retinopathy is a prevalent microvascular complication in patients with diabetes. 

Nearly all type 1 diabetic patients develop diabetic retinopathy within 20 years of diagnosis 

[1]. Other previous studies have reported the prevalence of retinopathy in type 1 diabetic 

patients varies from 10% to 50%, stratified by the diagnostic procedure, ethnicity, 

population, the patient age, and the duration of diabetes [18].  
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At the diagnosis of diabetes, up to 21% of type 2 diabetes sufferers have clinical features 

for retinopathy [19], and exceeding 60% of type 2 diabetic patients develop retinopathy 

within 15-20 years [1]. The prevalence of diabetic retinopathy in European ancestry 

patients with type 2 diabetes ranges from 5% to 52% [18]. Leese et al [20] found in Tayside, 

Scotland, the prevalence of diabetic retinopathy in type 2 diabetic patients of an urban area 

is 7%, whereas in a rural area, the prevalence rises to 13%. 

 

Population risk factors for diabetic retinopathy includes diabetes duration [19], glycaemic 

exposure [21], blood pressure [22], serum total cholesterol [23], triglyceride [23], body 

mass index (BMI) [23], pregnancy [24] and cigarette smoking [25]. Management of 

diabetes by achieving glycaemic, blood pressure and lipid targets (glycated haemoglobin, 

HbA1c, 6.5% or 48.0 mmol/mol [26]; diastolic/systolic blood pressure, DBP/SBP, 140/80 

mm Hg; total cholesterol, 4.0 mmol/l, or low density lipoprotein cholesterol, LDL, 2.0 

mmol/l [27]) is the recommended primary prevention for retinopathy.  

 

Despite the optimal control of diabetic risk factors, patients with over 20 years’ diabetes are 

at risk for developing retinopathy. These population risk factors explain limited variations 

in the risk of diabetic retinopathy. The Diabetes Control and Complications Trial (DCCT) 

discovered 11% of variation in diabetic retinopathy susceptibility was accounted for by 

glycaemic exposure and diabetes duration [28–30]. Similarly, in the Wisconsin 

Epidemiologic Study of Diabetic Retinopathy (WESDR) study, the effect of glycaemic 

exposure, blood pressure and serum total cholesterol contributed 9-11% of variance 
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towards diabetic retinopathy risk [31]. These findings suggest a role for non-environmental 

risk factors for diabetic retinopathy. 

 

Increasing evidence suggests genetic variation can influence the susceptibility to diabetic 

retinopathy. For example, diabetic retinopathy shows patterns of familial aggregation, and 

higher prevalence of diabetic retinopathy was observed in siblings than in genetically 

unrelated individuals [32].  

1.1.5 Pathogenesis 

Although the pathogenic mechanism of diabetic retinopathy has not been fully elucidated, 

diabetic retinopathy studies have identified retinal microvascular abnormalities [33]. 

Sustained hyperglycaemia increases vascular permeability, accompanied by decreased 

synthesis of vasodilators (nitric oxide), elevated production of vasoconstrictors (angiotensin 

II, endothelin-1), with the release of vasopermeability-inducing cytokines (vascular 

endothelial growth factor, VEGF), resulting in programmed cell death (apoptosis) of retinal 

endothelial cells [33]. These retinal vascular abnormalities are linked to biochemical 

changes underlying multiple metabolic pathways (Figure 1-5 and Figure 1-6), and 

hormonal alterations in the endocrine system (Figure 1-7).  
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Figure 1-5 Multiple interconnecting pathways in glucose metabolism, leading to 

vascular tissue damage adapted from [33]. P: phosphate; NAD+/NADH: nicotinamide 

adenine dinucleotide; NADP+/NADPH: nicotinamide adenine dinucleotide phosphate; 

GAPDH: glyceraldehyde 3-phosphate dehydrogenase; DHAP: dihydroxyacetone 

phosphate; DAG: diacylglycerol; PKC: protein kinase C; AGE: advanced glycation 

end product; GFAT: glutamine fructose-6-phosphate amidotransferase; Gln: 

glutamine; Glu: glucose; UPP-GlcNAc: uridine diphosphate N-acetylglucosamine. 
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1.1.5.1 Polyol pathway 

The sorbitol-aldose reductase or the polyol pathway has been implicated in several diabetic 

complications including retinopathy, nephropathy (microangiopathy in kidney) and 

neuropathy (microangiopathy in neuronal tissues). The energy source molecule glucose 

enters cells through glucose transporter proteins (GLUT) by diffusion [34], and five 

subtypes differ in enzyme kinetics and insulin dependency, enabling a differential use of 

glucose in a diverse range of tissues [34]. GLUT1 primarily expressed in retinal, neuronal 

and renal tissues is insulin independent [34]. In diabetes, excessive intracellular glucose 

saturates glycolysis, the ubiquitous glucose metabolic pathway, and the build-up of glucose 

is metabolised in the polyol pathway (Figure 1-5) by the enzyme aldose reductase reducing 

glucose into sorbitol and oxidising the co-factor nicotinamide adenine dinucleotide 

phosphate (NADPH) [35]. In hyperglycaemia, the burden for aldose reductase for glucose 

is increased, leading to the accumulation of sorbitol and deprivation of NADPH for other 

cellular processes including nitric oxide and glutathione synthesis [33]. Acquired 

glutathione deficiency promotes oxidative stress. Imbalance of these metabolites causes 

cellular damages [33].  

 

1.1.5.2 Advanced glycation end product (AGE) pathway 

In the normal metabolic state, nonenzymatic protein glycation occurs at a low and constant 

rate [35], and in the diabetic state, high availability of intracellular glucose markedly 

accelerates the formation of AGEs from sugars reacting with free amino groups of proteins, 

lipids, and nucleic acids (Figure 1-5) [35]. A feature of AGEs is the formation of 

inappropriate protein cross links, leading to impaired protein structure and functions [35]. 
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The main influence of AGEs on diabetic retinopathy susceptibility is mediated by AGE-

binding receptors including the receptor for advanced glycation endproducts (RAGE) [36], 

activating proinflammatory signals [35]. AGEs were detected in retinal tissues, and 

blockade of AGE pathway retarded the development of retinopathy in diabetic patients [33]. 

 

1.1.5.3 Protein kinase C (PKC) pathway 

Hyperglycaemia triggers a profusion of glucose reflux through glycolysis, and in turn an 

increased synthesis of an intermediate metabolite diacylglycerol (DAG), a second 

messenger for activating nine of eleven identified isoforms of PKC (Figure 1-5) [35]. 

Hyperglycaemia also stimulates the PKC pathway via AGE [37] and polyol [38] mediated 

pathways. PKC-β isoforms are expressed in retinal and renal vasculature, and the PKC-β 

activity inducesactivation of endothelin-1 and inhibition of nitric oxide synthesis, causing 

blood circulation aberration [39]. PKC also activates expression of VEGF in vascular 

smooth muscle cells [40], inciting angiogenesis and endothelial permeability. 

 

PKC-β inhibitor (ruboxistaurin mesylate) was reported as an effective therapeutic drug in 

prevention of progressive vision loss amongst diabetic retinopathy patients [35]. 

Nevertheless, owing to versatile regulatory roles of PKC-β in cell signalling, inhibition of 

PKC-β has adverse effects [35], and hence, PKC-β has not been recommended as a 

therapeutic target for diabetic retinopathy.  
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1.1.5.4 Hexosamine pathway 

In diabetes, the build-up of intracellular glucose causes overproduction of fructose-6-

phosphate, a glycolytic metabolite, which is also a substrate for synthesis of N-

acetylglucosamine (GlcNAc) in the hexosamine pathway (Figure 1-5). GlcNAc 

glycosylation of the intracellular transcription factor Specificity Protein 1 (Sp1) reduces 

competitive phosphorylation at the same regulatory domain [33]. Dephosphorylation of Sp1 

is associated with increased transcription of the plasminogen activator inhibitor-1 gene 

(PAI-1), leading to vascular endothelial dysfunction and related alterations, consistent with 

retinal vascular damage observed in patients with diabetic retinopathy[33].  

 

1.1.5.5 Oxidative stress 

In hyperglycaemia, when glucose is oxidised, superfluous electron donors (NADH and 

FADH2) generated in the tricarboxylic acid or citric acid (TCA) cycle oversupply the 

downstream electron transport chain (Figure 1-6). Consequently, an overactive electron 

transport chain generates excess free radical by-products, exhausting cellular antioxidants 

and subsequently, causing oxidative stress [41]. Reactive oxygen radicals are known to 

destroy cellular functions, and have been implicated in diabetes [42]. Studies demonstrated 

the link between oxidative stress and diabetic retinopathy severity [43]. Attenuation of 

reactive oxygen species production suppresses polyol, AGE, PKC and hexosamine 

pathways, providing strong evidence for a unifying theory of oxidative stress-mediated 

pathological pathways in hyperglycaemia [44].   
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Figure 1-6 Biochemical pathways underlying glucose metabolism in humans adapted 

from [45], highlighting intra-mitochondrial reactions in the citric acid cycle and 

electron transport chain. NAD+/NADH: nicotinamide adenine dinucleotide; ATP: 

adenosine-5'-triphosphate; ADP: adenosine diphosphate; AMP: adenosine 

monophosphate ; HSCoA/CoA: coenzyme A; PPi: pyrophosphate; Pi: orthophosphate; 

CO2: carbon dioxide; FAD+/FADH2: flavin adenine dinucleotide; GTP: guanosine-5'-

triphosphate; e-: electron; H+: proton; O2: oxygen; H2O: water, OH-: hydroxide. 
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1.1.5.6 Renin-angiotensin system 

The renin-angiotensin system (RAS, Figure 1-7) is an endocrine system regulating blood 

pressure and volume of body fluid (blood plasma, lymph and tissue fluid), and has an 

implication for proliferative diabetic retinopathy. In the classical pathway, granular cells in 

the kidney, a group of specialised smooth muscle cells located in glomerular arterioles, 

synthesize and release the enzyme renin into blood circulation, in response to a drop in 

blood pressure. Plasma renin catalyses the cleavage of the oligopeptide angiotensinogen 

synthesized in liver, forming angiotensin I. Angiotensin-converting enzyme (ACE) are 

glycoproteins present in the lung, endothelial and renal cells, where both the membrane 

bound and secretory forms of ACE were found [46]. ACE mediates cleavage of angiotensin 

I. The resulting active hormone angiotensin II influences vasoconstriction and electrolyte 

homeostasis, restoring blood pressure balance.  
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Figure 1-7 The renin-angiotensin system influences an array of physiological functions 

in the human body adapted from [47]. 

 

 

 

However, further studies extended RAS to include additional focal angiotensin II-releasing 

circuits in neuronal [48], cardiovascular [49], renal [50,51] and adrenal [52] tissues. The 

precise mechanism for exacerbation of diabetic retinopathy by angiotensin II under a 

hyperglycaemic state is still enigmatic. Compelling evidence suggests that angiotensin II 

receptors in retina mediate the release of VEGF, inciting angiogenesis [53], and the 

inhibition of ACE suppresses neovascularisation [54].  

 

1.1.5.7 Hypertension-induced mechanical stress 

Hypertension is a known modifiable risk factor for diabetic retinopathy, and frequently 

concomitant with hyperglycaemia [55]. A series of studies applied mechanical stress to an 

in vitro cellular environment to investigate retinal responses to hypertension in vivo. The 
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results indicated that mechanic stretch up-regulated the expression of VEGF, a biomarker 

for proliferative retinopathy, in retinal pigment epithelial [56], endothelial and pericyte 

cells [57] through singling pathways involving phosphatidylinositol 3-kinase and protein 

kinase C [58]. Additionally, there was proof that mechanical stretch increased oxidative 

stress and apoptosis in porcine [59] and bovine [60] retinal pericytes, which was further 

exacerbated by hyperglycaemia [60]. The loss of retinal pericytes undermines the blood–

brain barrier in the retina, characteristic of diabetic retinopathy [55].        

 

1.1.6 Heritability 

1.1.6.1 Estimation methods 

The premise that many complex traits are heritable is crucial to many genetic epidemiology 

studies. Determining the degree to which a trait is heritable is a critical first stride towards 

deciphering the underlying genetic architecture and pertinent to designing appropriate gene-

mapping strategies. Heritability is a measure that quantifies the fraction of phenotypic 

variations due to genetic effects. Phenotypic variations (
pV  ) in a population are attributable 

to the variability in environment effects ( eV  ) and genetic components (
gV  ) including 

allelic interactions within a locus (dominance, dV  ), across loci (epistasis, 
epV  ) and additive 

allelic effects within and/or across loci ( aV  ). Heritability in the broad sense ( 2
H ) is the 

ratio of the total genetic variance to the phenotypic variance, i.e. 
2

g pH V V . Although 

phenotypic variations are directly measureable from a population sample, the total genetic 

variations are frequently unobserved and challenging to gauge. In the past, animal and plant 

breeders discovered that close resemblance between relatives was due to the additive 
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genetic effects [61], and by considering phenotypic values within genetic related samples, it 

became feasible to attain approximations for the variance of the total additive genetic 

effects and the narrow-sense heritability ( 2
h ), which is the ratio of the total additive genetic 

variance to the phenotypic variance, i.e. 
2

a ph V V . Owing to its vital role in breeding 

programs and quantitative genetics, hereinafter, the discussion is dedicated to narrow-sense 

heritability, unless otherwise stated.  

 

A number of heritability estimation techniques are commonly utilised, and the adoption of 

such an approach is on the basis of practical limitations such as the genetic relationship of 

samples, the sample size and/or the nature of genetic data. Historically, parent-offspring 

regression outcompeted the rivals by multiple counts. First, the parent-offspring 

relationship can be identified with ease. For example, in farm fields, the origination of 

seeds from the corresponding maternal crops can be established with certainty, whereas 

other types of relations such as full-sibship, half-sibship or paternity may not be accurately 

identified in a natural population. Second, the regression was statistically simple to perform. 

Third, the covariance of phenotypic values across a familial generation is considered as 

influenced by additive genetic effects at the absence of dominance or epistasis effects [62], 

and thus, the  narrow-sense heritability can be estimated from the coefficient of the 

regression [62]. However, the parent-offspring information may not always be available. 

For instance, generations may not overlap for some species, and therefore the lineage 

becomes impossible to establish. Sibship-based estimation methods were considered as a 

compelling alternative. In this analysis, analysis of variance (ANOVA) is applied to attain 

phenotypic covariations within- and between-family, which heritability can be estimated 

from the intraclass correlation [62]. In addition, the familial relationship of twins is 
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common in human populations [62], and as in Falconer's formula [63], the broad-sense 

heritability is estimated by  2 2 mz dzH r r   , where mzr  is the concordance of monozygotic 

twins (derived from the same embryo); dzr   is the concordance of dizygotic twins (derived 

from two embryos). Finally, large-scaled human population cohorts frequently consist of 

largely genetically unrelated individuals and a small number of relatives that may be within 

a generation or across-generations. With the availability of genome-wide variant data, 

genetic similarities between samples can be estimated to facilitate the estimation of narrow-

sense heritability using a linear mixed model [64]. 

 

Owing to the paucity of densely genotyped data for quantitative genetics studies, 

conventional methods for estimating heritability in relatives were based on inherent 

assumptions in respect to the expected genetic and environmental resemblance of relatives. 

For example, the phenotypic resemblance across monozygotic and dizygotic twins was 

assumed to be attributable to common environmental effects [64], which from the current 

perspective is questionable. Furthermore, heritability estimates for a trait are likely to be 

variable, reflective of temporal and spatial fluctuations in the underlying genetic and 

environmental effects. For instance, heritability for first lactation milk yield in dairy cattle 

was 25% in the 1970s, and 40% at the present time [64]. Environmental variance may 

differ between non-identical study populations or in an identical study population but 

sampled at different times [64]. Genetic variance can be altered by allele frequencies, the 

emergence or the extinction of variants [64]. Thus, heritability of a trait is specific to a 

population at a study time.  
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1.1.6.2 Heritability of diabetes and diabetic retinopathy 

The clinical phenotypes of diabetes and diabetic retinopathy are both categorical in nature, 

and to estimate heritability, these categorical phenotypes are transformed to underlying 

unobserved liability on a continuous scale [65]. The heritability estimate was 88% for type 

1 diabetes, in the Finnish Twin Cohort, which included 44 monozygotic and 183 dizygotic 

twin pairs with type 1 diabetes in a 22,650 population-based twin pairs [66]. In the Danish 

Twin Register where 62 twin pairs out of 606 were type 2 diabetic, the heritability estimate 

was 26% for type 2 diabetes [67]. It was suggested that the heritability estimate of type 2 

diabetes was reflective of heritable components of obesity, a major risk factor for type 2 

diabetes [68]. The broad-sense heritability was 27% for background and proliferative 

diabetic retinopathy in the FIND-Eye study, where most patients were diagnosed with type 

2 diabetes [69]. Heritability estimates were 25% and 52% for proliferative retinopathy 

respectively in the FIND-Eye cohort [69] and the FinnDiane study (a type 1 diabetes cohort) 

[70]. 

 

1.1.7 Genetics of diabetes 

Type 1 diabetes is characterised by autoimmune-mediated chronic destruction of insulin-

secreting beta cells in the pancreas. Through studies of candidate genes and a limited set of 

genome-wide nonsynonymous variants, 6 susceptibility genes for type 1 diabetes were 

successfully identified between 1974 and 2006, including HLA (major histocompatibility 

complex, class I), INS (insulin), CTLA4 (cytotoxic T-lymphocyte-associated protein 4), 

PTPN22 (protein tyrosine phosphatase, non-receptor type 22), IL2RA (interleukin 2 

receptor, alpha), and IFIH1 (interferon induced with helicase C domain 1) [71]. Since 2007, 
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several genome-wide association studies (GWAS) [72–74] reported a number of 

association genes for type 1 diabetes, including ERBB3 (v-erb-b2 avian erythroblastic 

leukemia viral oncogene homolog 3), RAB5B (RAB5B, member RAS oncogene family), 

SUOX (sulfite oxidase), RPS26 (ribosomal protein S26), CDK2 (cyclin-dependent kinase 2) 

and UBASH3A (ubiquitin associated and SH3 domain containing A). An independent study 

confirmed the association of UBASH3A with chronic autoimmune destruction and type 1 

diabetes [75]. To date, 59 susceptibility loci were identified with more than 40 associated 

genes implicated for type 1 diabetes [71] (Figure 1-8).  

 

Figure 1-8 Suscpetiability genes for type 1 diabetes, adapted from [71].  

 

 

The pathogenesis of type 2 diabetes is underscored by the interplay between impaired beta-

cell function and insulin sensitivity [76]. Despite of the extensive efforts for years, linkage 
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and candidate-gene studies only identified PPARG (peroxisome proliferator-activated 

receptor gamma), KCNJ11 (potassium inwardly-rectifying channel, subfamily J, member 

11) and TCF7L2 (transcription factor 7-like 2, T-cell specific, HMG-box) as susceptibility 

genes for the polygenic form of type 2 diabetes [77]. The advent of GWAS accelerated the 

detection of susceptibility loci for type 2 diabetes. It was suggested that published GWAS 

more frequently mapped susceptibility genes for beta-cell dysfunction compared to genes 

for insulin resistance [78]. For example, ADCY5 (adenylate cyclase 5), PROX1 (prospero 

homeobox 1), GCK (glucokinase, hexokinase 4), GCKR (glucokinase/hexokinase 4 

regulator), and DGKB/TMEM195 (diacylglycerol kinase, beta/ transmembrane protein 195) 

were implicated for fasting glucose/beta-cell dysfunction , whereas GCKR was the only 

gene significantly associated with insulin resistance in the MAGIC (Meta-Analyses of 

Glucose and Insulin-related traits Consortium) study [79]. In the DIAGRAM+ 

(DIAbetes Genetics Replication and Meta-analysis plus additional cohorts) study, 10 

genes including MTNR1B (melatonin receptor 1B), SLC30A8 (solute carrier family 

30/zinc transporter, member 8), THADA (thyroid adenoma associated), TCF7L2, KCNQ1 

(potassium voltage-gated channel, KQT-like subfamily, member 1), CAMK1D 

(calcium/calmodulin-dependent protein kinase ID), CDKAL1 (CDK5 regulatory subunit 

associated protein 1-like 1), IGF2BP2 (insulin-like growth factor 2 mRNA binding protein 

2), HNF1B (HNF1 homeobox B), and CENTD2 (ArfGAP with RhoGAP domain, 

ankyrin repeat and PH domain 1) were associated with beta-cell function, whereas only 

PRARG, FTO (fat mass and obesity associated), and KLF14 (Kruppel-like factor 14) 

showed association with insulin sensitivity [80].  
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1.2 Aim of this thesis 

As aforementioned, despite the extensive research efforts, the pathophysiology of diabetic 

retinopathy remains elusive, as a multitude of questions in respect of the retinopathy 

development were unexplored. One of the salient features of the chronic development of 

retinopathy is manifested in the clinical diagnosis as the classification of retinopathy into 

multiple severity stages. However, so far there have been few epidemiological studies 

aiming to uncover the progression and remission of retinopathy during the duration of 

diabetes, and the influence of population risk factors on this development. Additionally, in 

genetics studies, the heritable components underlying the severity of retinopathy with the 

consideration of the multi-state development were rarely addressed. Finally, studies to date 

that assessed genetic determinants for diabetic retinopathy were weakly powered in the 

study sample size and variants ([28,81–83]), with a large fraction of genetic susceptibility 

for diabetic retinopathy remaining unexplained.    

 

Thus, the corollary to these neglected questions was the birth of this thesis, which , focused 

on answering three clinically important questions: (1) given the longitudinal nature of the 

GoDARTS (Genetics of Diabetes Audit and Research in Tayside Scotland) study cohort 

and the categorical feature of retinopathy data, can we decipher determinants that affect 

changes in retinopathy severity over the duration of diabetes? (2) With the abundance of 

genomic data for the GoDARTS cohort, can we estimate heritability and genetic 

correlations explained by common SNPs for diabetic retinopathy and related risk factors? 

(3) With the additional independent retinopathy data available from IMI-SUMMIT 

(SUrrogate markers for Micro- and Macro-vascular hard endpoints for Innovative diabetes 

Tools; a pan-European research consortium funded by the Innovative Medicines Initiative; 
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www.imi-summit.eu), can our study with an increased sample size compared to any of the 

published GWAS [28,81–83], be more successful in detecting and replicating risk loci for 

diabetic retinopathy?  

 

Three studies were included in this thesis to answer these questions.  

(1) The influence of population risk factors on diabetic retinopathy severity over the 

duration of diabetes. The project plan was to capture the longitudinal data of retinopathy 

including intermediate retinopathy events during the follow-up in GoDARTS diabetic 

patients, and model the patient data in a multi-state Markov model for the inference of 

covariate effects.  

 

(2) Heritability and genetic correlations explained by common SNPs for diabetic 

retinopathy and related risk factors. The project plan was to utilise the Gibbs Sampling 

algorithm for the Bayesian inference of variance components in the analysis of narrow-

sense heritability and genetic correlation captured by common genome-wide SNPs for 

diabetic retinopathy and population risk factors.  

 

(3) The SUMMIT genome-wide meta-analysis of diabetic retinopathy. The project plan was 

to identify diabetic retinopathy risk loci in human genome by association mapping in the 

GoDARTS cohort and additionally with independent diabetic retinopathy samples from 

SUMMIT collaborators.  

 

Together, these three projects form a coherent and comprehensive investigation of clinical 

and genetic basis for the development of diabetic retinopathy, and should provide an 



45 

 

 

 

increased understanding of diabetic retinopathy pathogenesis and prognosis for scientists 

and clinicians.  
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Chapter 2  

Methods 

 

2.1 Description of clinical data 

The Health Informatics Centre (HIC) of the University of Dundee manages and supplies the 

anonymised patient data owned by the National Health Service (NHS) Tayside, in 

accordance with the Standard Operating Procedures approved by the Caldicott Guardians, 

for medical research purposes. Patients registered with a general practitioner (GP) in 

Scotland are allocated a unique 10-digit identification number, a Community Health Index, 

which is used for identifying patients’ information including the address, the GP 

registration status and the date of death for a deceased patient. Community Health Indices 

for Tayside patients are centralised in the Community Health Master Patient Index database 

held by the Tayside Health Board. The Community Health Index as a unique patient 
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identifier is in use of all heath care activities, and is useful in medical research for patients’ 

record linkage.  

 

2.1.1 DARTS database 

The diabetes audit and research in Tayside Scotland (DARTS) database is a comprehensive 

and up-to-date register of diabetes in Tayside, and it includes electronic records assimilated 

from multiple independent sources including the regional biochemistry and diabetes eye 

screening data [84]. The DARTS register has been shown as an enriched source \ in 

identifying diabetes in the Tayside population with high sensitivity and positive predictive 

value (0.96 and 0.95 respectively) [84].  

 

2.1.2 GoDARTS database 

Since October 1997, registered DARTS patients have been invited to give informed consent 

to DNA in the Genetics of DARTS (GoDARTS) study, supported by the Wellcome Trust 

United Kingdom Type2 Diabetes case control collaborative study and approved by the 

Tayside Committee for Medical Research Ethics. Between December 1998 and May 2009, 

17,602 patients (including 9,829 type 2 diabetic patients) of European ancestry were 

recruited in Tayside. Patients’ blood samples were collected for DNA (deoxyribonucleic 

acid) extraction and genotyping. Participants were allocated a unique anonymised system 

identifier. Clinical characteristics of participants were recorded at recruitment.  
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2.1.3 Diabetes eye screening data 

As of June 2011, the diabetes eye screening data originated from the SCI-DC (the Scottish 

Care Information – Diabetes Collaboration; that is, the Scottish national diabetes disease 

database) system includes the diagnosis since 1990 of diabetes-related eye conditions 

including cataract, glaucoma, laser photocoagulation treatment, diabetic retinopathy and 

maculopathy for 8,910 Tayside patients. The diabetes eye screening database is a 

constellation of ophthalmology data collated from multiple sources including national and 

regional retinopathy screening programs, diabetes clinics and regional hospitals, since the 

diagnosis of diabetes in patients. The diabetes eye screening data documented techniques 

and specialists for ophthalmic diagnosis. Diabetic retinopathy and maculopathy severity 

stages (Table 1-2 and Table 1-3) are determined from grading of single-field 45 degree 

retinal photographs for both eyes where staged mydriasis is given.  

 

2.1.4 Clinical phenotype data 

The Tayside laboratory system documents the outcome from clinical pathology tests 

performed in regional surgeries, clinics and hospitals. The clinical pathology data is dated 

from 1992 and available in biochemistry, haematology, microbiology, virology and 

serology sections. Measures of total cholesterol, serum creatinine, glycatedhaemoglobin 

(HbA1c), high-density lipoprotein cholesterol (HDL-c) and triglycerides that are relevant 

population risk factors in this study were ascertained from the Tayside laboratory 

biochemistry database. As of June 2011, biochemistry data for 17,575 GoDARTS patients 

has been available through the Tayside laboratory database. 
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Additional Tayside-based longitudinal patient data for blood pressure (BP including 

diastolic and systolic BP, or DBP and SBP), body mass index (BMI) and HbA1c variables 

has been available through the SCI-DC network. As of June 2011, the SCI-DC system 

included data from 9,498 GoDARTS individuals for BP, 9,509 individuals for BMI and 

9,510 individuals for HbA1c.  

 

In addition to the routinely collected clinical data, common clinical variables including 

BMI, total cholesterol, serum creatinine, BP, HbA1c, HDL-c, triglycerides and smoking 

status were measured in the participants at the GoDARTS recruitment time. As of June 

2011, 16,131 patients’ recruitment data is available. This number is lower than the total 

GoDARTS cohort as baseline phenotypic data was not collected between 1997 and 2004. 

  

2.1.5 Demographic data 

As of June 2011, 17,602 Tayside patients’ demographic data including the gender, the date 

of birth, the recruitment date of GoDARTS and the date of death if a patient is deceased, 

has been available through HIC.  

 

2.2 Description of genetic data 

In the GoDARTS study, Genomic DNA was extracted from blood specimens following the 

Promega Wizard or Qiagen procedures at Professor Colin Palmer’s laboratory at Ninewells 

Hospital and Medical School. DNA samples were normalised and tiled to 96 and 384 well 

plates for genotyping. 
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2.2.1 Affymetrix Genome-wide Human SNP Array 6.0 

The Affymetrix Genome-wide Human SNP Array 6.0 provides the genomic coverage for 

906,600 single-nucleotide polymorphisms (SNPs) of the human genome build 36, 

constituting of 482,000 historical SNPs an unbiased selection from Affymetrix Genome-

wide Human SNP Array 5.0 and 424,000 additional SNPs that are tag, mitochondrial, or 

sex chromosomal SNPs, or SNPs newly added to the dbSNP database or in recombination 

hotspots [85]. 4,000 GoDARTS diabetic patients that had received statin treatment since the 

recruitment were genotyped on the Affymetrix Genome-wide Human SNP Array 6.0 at the 

Affymetrix Service Laboratory, California. Prior to genotyping, DNA samples were quality 

assessed in order to eliminate experimental errors. Genotyping data intensities were 

normalised, and genotypes were called using the CHIAMO algorithm [72]. The Affymetrix 

Service Laboratory also provided preliminary quality control (QC) assessment on the 

genotype data. Further QC on this data was performed by the Wellcome Trust Case Control 

Consortium 2 (WTCCC2) study group as described in [86,87].  

 

2.2.2 Illumina HumanOmniExpress BeadChip 

The Illumina HumanOmniExpress BeadChip provides the coverage for over 700,000 tag 

SNPs of the human genome build 37, spanning up to 90% genomic regions for European 

and Asian ancestry populations of the International HapMap Project [79]. Supported by the 

SUMMIT consortium, additional 4,000 GoDARTS diabetic patients that mostly had not 

been genotyped on the Affymetrix Genome-wide Human SNP Array 6.0, and with serious 

retinal, renal and cardiovascular complications were genotyped on the Illumina 
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HumanOmniExpress BeadChip at the Diabetes Centre of the University of Lund, Sweden. 

Data normalization and genotype calling was implemented in the GenomeStudio Software 

(Illumina, Inc.) environment. 

 

2.2.3 1000 Genomes reference data 

The 1000 Genomes Project was initiated in 2008 with the aim to catalogue most of the 

genome variants with frequencies of 1% or higher in the populations studied. Given the 

high cost of deep sequencing for whole genomes and the limited number of haplotypes in 

any specific genomic region, the plan of the 1000 Genomes Project was to sequence 2,500 

samples from diverse ethnic populations at low-coverage (4X; that is, the amount of DNA 

sequence equivalent to 4 times across the genome), and the remaining unidentified variants 

for each individual can be frequently inferred from the sequence data for the overall sample 

[89,90]. 

 

To inform whether the strategy of light sequencing is adequate in meeting the goal of the 

project, three pilot studies were carried out: low-coverage (2-4X) sequencing of 179 

individuals from four demographic regions; high-coverage (20-60X) sequencing of a pair 

of mother–father–child trios; and sequencing of exomes (50X) in 697 individuals from 

seven populations [89]. The pilot studies published in October 2010 characterised 15 

million SNPs, 1 million short insertions and deletions, and 20,000 structural variants [89]. 

The pilot data and methods supported the design of the full-scale project [89]. 
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In October 2012, the 1000 Genomes Project Consortium published low-coverage genome-

wide and exome sequence data for 1,092 individuals from 14 populations [90]. The study 

identified 38 million SNPs, 1.4 million short insertions and deletions, and over 14,000 

larger deletions, with the promise for sequencing additional 1,500 individuals from 12 

different populations in the last phase of the project [90]. 

 

We utilised 1000 Genomes phase 1 integrated haplotype data version 3 (released in March 

2012) for genotype imputation and the assessment of population structure in the genotyped 

GoDARTS sample.  

 

2.3 The influence of population risk factors on diabetic 

retinopathy severity over the duration of diabetes 

2.3.1 Study sample 

We performed a prospective cohort study of diabetic retinopathy in the GoDARTS 

population sample. The ophthalmology data used in this study were from the complete 

calendar years 1990 to 2011. GoDARTS is a study of patients with a diagnosis of type 2 

diabetes, but we further reduced the chance of including misclassified type 1 diabetes 

patients by only considering subjects who were diagnosed with diabetes at 35 years of age 

or older. The cohort included patients who had at least two longitudinal retinal records. We 

observed that the numbers of diabetic retinopathy events and the distributions of follow-up 

time collected for both eyes were comparable, and to preclude the artefacts reflected as 

observed remission and recurrence of the proliferative phase of diabetic retinopathy, 



53 

 

 

 

produced from compounding longitudinal data from both eyes, we collated and analysed 

retinopathy data from the same eye. 

 

The primary start point for this study obtained from this data set was the first retinal record 

indicative of no retinopathy within one year from the date of diabetes diagnosis. Patients 

were followed until either the onset of severe non-proliferative/proliferative diabetic 

retinopathy, their date of death, or 16 years duration of diabetes. Intermediate retinopathy 

observations were included in this study.  

 

Additional independent data sets (e.g., demography and regional biochemistry database) 

were integrated through electronic record linkage. Population risk factors extracted were 

sex, smoking status (ever smoked against never smoked) and longitudinal records of age, 

BMI, total cholesterol, serum creatinine, DBP, HbA1c, HDL-c, SBP and triglycerides. 

Non-high density lipoprotein cholesterol (non-HDL-c) was estimated from total cholesterol 

and HDL-c measurements recorded on an identical date. As low-density lipoprotein 

cholesterol (LDL-c) measurements were often missing, throughout this study, non-HDL-c 

was considered as a valid surrogate for LDL-c estimation based on the Friedewald formula 

(LDL-c ≈ total cholesterol – HDL-c – k*triglycerides, where k is 0.20 if the measurements 

are in mg/dl and 0.45 if in mmol/l). The concordance was shown in this study as the 

Pearson’s correlation coefficient (0.987) we attained using weighted means of longitudinal 

non-HDL-c and LDL-c measures in the overall GoDARTS sample (16,928 patients). Time-

variant covariates were matched to a retinal event that occurred at the closest time point. 

Covariates measured on a quantitative scale were standardised by sample mean and 
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standard deviation (SD). In this study, we only included patients with the complete set of 

covariate data. 

 

2.3.2 Statistical analysis 

2.3.2.1 Multi-state Markov model 

A multi-state Markov model was fitted to the panel data of diabetic retinopathy in this 

study. The multi-state Markov model depicts the movement across a series of categorical 

states over the observational time. The detailed description of this statistical framework for 

the model was published elsewhere [91,92]. In brief, suppose at an arbitrary time t, an 

individual is observed in the discrete state i.  The movement into a state j (i ≠ j) at a later 

observational time t t    is dependent on the instantaneous propensity of moving from 

state i to j (the instantaneous incidence rate, or formally the transition intensity), time 

elapsed and additionally, time-dependent explanatory variables. Formally, the transition 

intensity is described by:  

 
0

{ ( ) | ( ) }
( ) limij

t

P S t t j S t i
q t

t 

  



   0.1 

where S(t) is the state observed at time t. Considering all possible state transitions, the 

corresponding transition intensities form the entries in a transition intensity matrix, where 

by convention rows sum to 0 and the transition intensities for no state change is 

conventionally defined as 

 ( ) ( )ii ij

j i

q t q t


    0.1 

In the model specification, a non-feasible or non-permitted instantaneous state transition is 

pre-set to 0.  
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In contrast to a transition intensity measure, which expresses an instantaneous propensity, 

given an elapsed time period, the probability of a state transition observed at two time 

points can be estimated from the matrix exponential operation of the scaled transition 

intensity. Formally, the transition probability of being in state j at time t + u given the state 

at time t is state i is represented as pij(t, t+u). The probability of a state transition does not 

suggest the number of transitions occurred for an observed state change during a time 

period, and the process may have passed through other states between time t and t + u.  

 

In a multi-state hidden Markov model, true underlying states are considered as unobserved 

and observed states are assumed to be reflective of hidden true states. For a patient at an 

observational time, the observed state is generally conditioned on the true state according to 

a categorical distribution.  

 

Covariates are introduced as proportional to the baseline transition rate expressed as 

 ( ) exp( )T

ij ij ijq x q x    0.1 

where βij is the vector of regression coefficients associated with the vector of covariables x 

for the transition between the states i and j; T denotes the transposition of a matrix.  

 

In the process of parameter estimation, the estimates are iteratively updated until the 

likelihood for observing the data given a set of parameter is maximised. The “msm” 

package (version 1.1.1) in the R (version 2.14.2) programming environment includes 

maximum likelihood estimation (MLE) methods for a number of observational schemes 



56 

 

 

 

including intermittent observation time, observations from a hidden Markov process, censor 

states, or a mixture of these schemes.  

 

2.3.2.2 Likelihood ratio test and Akaike’s information criterion (AIC) 

To identify the better fitted model from the null and the alternative models in the study 

sample, the likelihood ratio test and the AIC statistic were considered. The likelihood ratio 

test statistic (D) is formally defined as 

 2log Null

Alternative

Likelihood
D

Likelihood

 
   

 
  0.1 

The probability distribution of the test statistic D is approximated by the chi-squared 

distribution with (df2 – df1) degrees of freedom, where df1 and df2 are numbers of 

parameters in the null and alternative models, respectively. Thus, the likelihood ratio test 

provides a p-value based statistical framework for hypothesis testing. However, the 

likelihood ratio test is applicable to nested models only, where the complex alternative 

model can be simplified into the null model by imposing constraints on the model 

parameters [93]. 

 

With more parameters in the fitting of a complex model, it is possible to inflate the 

likelihood of the parameter values given the observed data, with the consequence of 

overfitting (that is, when the model fitting is unduly complex, and the statistical inference is 

inaccurately based on the noise instead of the true relationship between variables). The AIC 

statistic penalises a model’s likelihood by the number of parameters involved, and is 

commonly used in model selection. The AIC is defined as 

 2 2log( )AIC k L    0.1 
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where k is the number of parameters, and L is the likelihood of a model. With multiple 

candidate models fitted to the same data, the most suitable model is selected from the 

lowestAIC value. The AIC measure is not restricted to the comparison of nested models 

[94].  

 

2.3.2.3 Model fitting and comparison 

The discrete, non-overlapping stages of diabetic retinopathy were translated into distinctive 

states in the multi-state model. The effect of explanatory variables on diabetic retinopathy 

development is modelled in an adapted form of proportional hazard model (Equation 0.1) 

[92]. Patients' diabetic duration at retinal examination was considered in the model. 

Between follow-up visits, patients' diabetic retinopathy development is usually 

unmonitored, and the exact time of transition from one state to the other is unknown. Thus, 

we specified a relevant sampling scheme to accommodate an intermittently-observed 

disease process.  

 

We postulated two baseline multi-state models, which together aimed to decipher the 

process underlying the development of diabetic retinopathy from the observed retinal event 

data by modelling distinct putative transition paths between states. In the first model, 

diabetic retinopathy development is modelled as one-way progression (Figure 2-1a; 

Equation 0.6), and misclassification was allowed to occur between adjacent states except 

for the absorbing state (Equation 0.7). The second model is specified by a two-way 

transition intensity matrix and an identical mis-classification probability matrix (Figure 

2-1b; Equation 0.7 and 0.8). The best-fitted model was selected from the likelihood ratio 
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tests and AIC statistic. The selected model was then used for assessing covariate effects.  

Covariate model selection procedures also utilised LR and AIC measures. 
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Figure 2-1 (a) A base multi-state Markov model describes one-way transition of four 

states of diabetic retinopathy. (b) A second base model describes two-way transition of 

four states of diabetic retinopathy. The process of entering the final absorbing state is 

irreversible. Rates of transition (or, transition intensities) are specified as qij, where 

transition occurs from the current state i to the future state j. 
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2.3.2.1 One-way transition with mis-classification 

The matrix of transition intensities is specified by 
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where each entry qij denotes the instantaneous risk of transition from state i to state j, and  

ii ij

j i

q q


   for i = 1,2,3,4. The matrix of classification probabilities is of the form 
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where each entry eij gives the probability of observing state j given that the true state is i, 

and 1ii ij

j i

e e


    for i = 1,2,3,4. 

 

2.3.2.2 Two-way transition with mis-classification 

The matrix of transition intensities is defined by 
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Entries of matrix Q2 are similarly defined as in matrix Q1. The classification probability 

matrix is specified identically as in E1. 
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2.4 Heritability and genetic correlations explained by 

common SNPs for diabetic retinopathy and related 

risk factors 

2.4.1 Study sample 

The study sample was ascertained from the GoDARTS cohort, which includes genetically 

unrelated individuals and some families with diabetes. Diabetic patients underwent a 

complete ophthalmologic examination in diabetes eye screening, as previously described. 

The worst eye grade of diabetic retinopathy for each patient up to the GoDARTS 

recruitment time was collated. Severity of diabetic retinopathy was classified as none, mild 

background retinopathy, observable background and severe non-proliferative/proliferative 

retinopathy based on the Scottish diabetic retinopathy grading scheme (Table 1-2). The 

diagnosis of severe non-proliferative/proliferative retinopathy was also identified from the 

evidence for laser photocoagulation treatment. Retinopathy samples were pooled from both 

type 1 and type 2 diabetic populations.  

 

We additionally extracted demographic data and biochemistry measurements taken 

immediately prior to or on the GoDARTS recruitment date. We log-transformed and 

subsequently standardised BMI, total cholesterol, serum creatinine, HbA1c, HDL-c, SBP 

and triglycerides. 
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2.4.2 Genotype data 

2.4.2.1 Typed SNP data quality control 

SNP data for 3,734 GoDARTS patients typed on the Affymetrix Genome-wide Human 

SNP Array 6.0 was included in this analysis. We included biallelic autosomal SNP markers 

based on the quality control (QC) criteria: missingness < 0.03, Hardy-Weinberg 

equilibrium (HWE; P > 10
−3

) and minor allele frequency (MAF) > 0.005. SNP alleles were 

aligned to the forward/+ strand, and the rs numbers and genome positions of SNPs were 

uplifted from the human genome build 36 to build 37. This retained 732,651 SNPs for the 

Affymetrix genotype data.  

 

Study subjects were checked for the match between clinical reported and genotype genders, 

and additionally were filtered based on the missingness threshold of 0.035, heterozygosity 

(the false discovery rate, or FDR, at level 0.01, following the Benjamini-Hochberge 

controlling procedure [95], or BH95). Population stratification was assessed in the 

multidimensional scaling analysis by integrating with SNP data of 1000 Genomes reference 

populations.  

 

2.4.2.2 Imputation 

We used the imputation technique to augment genome-wide SNPs in this study. Imputation 

is a statistical method for predicting unobserved genotypes in the study sample based on the 

correlation of observed study haplotypes guided by the reference haplotypes of a similar 

genetic population [96] (Figure 2-2). To reduce the computational burden, prior to 

imputation, insertions and deletions, structural variants, singletons (these are, SNPs that 
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have only one copy of the minor allele in the sample genotype data) and monomorphic 

SNPs (these are, SNPs with a single form of allele in the population studied) were removed 

from the 1000 Genomes Project European CEU data (phase 1 version 3; 379 individuals), 

resulting in over 12.3 million SNPs retained in the reference panel. To reliably impute our 

genotype data that includes genetic related individuals, we utilised the MaCH-Admix 

program (version beta 2.0.185), which has been developed with the capabilities of imputing 

individuals independently based on preceding calibration of model parameters [97]. More 

than 12.3 million SNPs were successfully imputed for the Affymetrix genotyped sample. 
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Figure 2-2 The method of genotype imputation applied to a genetically unrelated 

sample [98]. The study sample consists a set of genotypes that are present in a more 

densely genotyped reference panel (panel A). The haplotypes of the study samples are 

compared to that in the reference panel for a match (panel B). Missing genotypes are 

imputed to the study sample based on the genotypes in the matched haplotype (panel 

C).  
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2.4.2.3 Post-imputation genetic and sample data quality control 

We included imputed SNPs based on the MACH 2r̂  measure (that is, the estimate for the 

squared correlation between imputed and true genotypes; [99]) ≥ 0.5 and MAF ≥ 0.01. We 

assessed minor allele counts for each imputed SNP, and none was below 10. We excluded 

SNPs that have triple alleles reported in the dbSNP database, and common SNPs (MAF   

0.05) with a HWE P value < 10
-3

 or less common SNPs (MAF < 0.05) with a HWE P value 

< 10
-6 

in diabetic retinopathy controls (these are defined as patients with four years’ 

duration of diabetes but without retinopathy, maculopathy, or evidence for laser 

photocoagulation treatment).  

 

We filtered out imputed SNPs with the MACH 2r̂  measure   0.98, and used the most 

probable genotypes of these SNPs only for the estimation of identity-by-descent (IBD). We 

identified individuals marked by the same identifier but with the IBD estimate < 0.80, far 

less than the expected IBD estimate of 1.00. Additionally, we identified individuals with 

non-identical birth dates but strongly closely related (IBD > 0.80). We removed these mis-

identified individuals from the sample, resulting in a final sample of 3,701 individuals.  

 

2.4.3 Statistical analysis 

Owing to the intractability of the published software for estimating heritability of a 

polychotomous trait (for example, retinopathy) and genetic (or residual) correlation 

between polychotomous and quantitative traits (for example, retinopathy with one of the 

described risk factors) from genome-wide SNP data, we used Gibbs sampling for 
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estimating variance components. The strategy for Bayesian inference in multivariate 

models using Gibbs sampling was previously published [100,101], and thanks to the work 

of Dr. Minghui Wang, Birmingham University, the efficient implementation of these 

models was made feasible by reducing the computational time for Henderson's Mixed 

Model Equations in Gibbs sampling. We leveraged his software for the analysis of 

heritability and genetic correlations in common genome-wide SNPs for diabetic retinopathy 

and related risk factors. We briefly describe the basis for these models.  

 

2.4.3.1 Phenotype correlations 

Phenotype correlations between a pair of quantitative traits, a single ordinal trait with a 

continuous outcome, and two ordinal traits, namely, Pearson, polyserial and polychoric 

correlations respectively, were estimated using the “polycor” package (version 0.7.8) in the 

R programming environment (version 3.0.0). Confidence intervals were estimated from 

Fisher transformation as follows [102] 
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where r is the sample correlation coefficient. The z statistic is approximately normally 

distributed with mean and variance [102] 
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where ρ is the population correlation coefficient; N  is the sample size.  
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2.4.3.2 Genetic similarity matrix estimation 

The genetic similarity matrix is estimated from the sum of products of SNP correlation 

coefficients for pairs of individuals in Fortran 90 programming environment, which enables 

efficient computation with millions of SNPs. We used whole genome imputed SNP dosage 

data to construct the relatedness matrix ( Ĝ ) from standardised genotypes [103] as follows: 
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( 2 )( 2 )1ˆ
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where individuals i and j can be the same or different individuals, and xil (xjl) is the 

genotype dosage based on the minor allele in individual i (j) at locus l with allele frequency 

lp  and 1l lq p  , where there are L loci in total under consideration. This pairwise 

relatedness measure can be either positive or negative in value, and thus, the term of 

“similarity” is prevailing in literature instead of “relationship” in describing this matrix.  

 

To ensure allele frequencies used in computing the genetic similarity matrix was unbiased 

by sample structure, we kept 6,830,657 imputed autosomal SNPs with minor allele 

frequencies more than 0.01 in the genetically unrelated sample (IBD less than 0.05) for the 

estimation of the genetic similarity matrix.  

 

Several related estimation approaches with slight modifications for the genetic similarity 

matrix have been published, including a relatedness matrix constructed from cantered 

genotypes 
1

1ˆ ( 2 )( 2 )
L

ij il l jl l

l

G x p x p
L 

    [103] and an adjustment in estimating the 

standardised genotype relatedness matrix for the same individuals using 
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  
   , in order to minimise sampling noise [104]. These 

matrices performed similarly in modelling of narrow-sense heritability [103]. However, 

occasionally one or more of these matrices may not be invertible, rendering the modelling 

process intractable, and thus any matrix that is positive definitive [105] is preferred.  

 

2.4.3.3 Analysis of a single trait 

With the estimated genetic similarity matrix, we used univariate mixed models to partition 

phenotypic variations of single quantitative or polychotomous traits into genetic and 

residual variations, and the theoretical strategies were previously presented [100,104,106]. 

For a quantitative trait, the linear mixed model relating phenotypes to genetic relatedness is 

described by 

 2 2
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 
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where y is a vector of single-trait quantitative measures for n individuals; β is a vector of 

regression coefficients of fixed effects for the overall mean and covariates; g is an n-vector 

of total additive genetic effects, and is treated as random effects normally distributed with 

variance 2

g  and correlation structure represented by additive genetic relatedness matrix Gn; 

X is a design matrix relating fixed effects to individuals; ε is an n-vector of residual terms 

normally distributed with variance 2

  and correlation structure represented by identity 

matrix In. MVNn represents multivariate normal distribution of order n. Therein, the 

variance structure of the response variable (V) is  

 2 2

n g nV G I      0.1 
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The coefficient of heritability 2

gh   is estimated by  2 2 2
/g g    . 

 

An ordered categorical trait in the studies of quantitative genetics is considered as discrete 

observed classes derived from an underlying risk gradient that is often unobserved, through 

fixed thresholds [107]. This latent quantitative variable is named liability (l) in genetics 

studies [107]. For example, considering hypertension versus non-hypertension, the 

observation would be in the hypertensive category, if the blood pressure measurement 

(SBP/DBP) at the rest state exceeds the threshold of 140/90 mmHg. The liability model is 

defined as [107] 
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l g MVN X g I 

 
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where l is an n-vector of liabilities which are multivariate normally distributed with mean  

Xβ + g and variance-covariance matrix 2

nI  ; by convention, residual variance for liabilities 

is parameterised as 2 1   [107]; other terms are identically defined as in the linear mixed 

model, but are quantified on a liability scale. 

 

In the liability model, individuals with observed ordinal categories (y = {yi} where i 

indexes the ith individual) have liabilities bounded by a pair of threshold values in the set 

( min 1 2 1 maxct t t t t      where there are c + 1 hypothetical thresholds for c mutually 

exclusive but exhaustive categories; the extreme thresholds  min 0t t  and max ct t ) [107]. 

For example, if a liability value is between 0t  and 1t , the assignment is into the first 

category . Formally, the categorical assignment is described by 

 
1( | , , ) ( | , , )i j i jP y j g t P t l t g t       0.1 
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where j is the categorical response (j = 1, 2, …, c) for individual i, and 0 1( , ,..., )ct t t t  is a 

vector of thresholds; other terms were described before. It is the convention to fix 0t   , 

1 0t   and ct    so as to centre the liability distribution [107]. In the threshold model for 

categorical traits, an unselected sample that reflects the prevalence of categories in the 

population is required for unbiased inference of heritability.  

 

2.4.3.4 Analysis of correlated traits 

With the estimated genetic similarity matrix, we also applied multivariate mixed models to 

partition phenotypic variations for a pair of related traits to genetic and residual variations 

and covariance for genetic and residual effects. In this analysis, each individual has 

measurements for two different traits such that in the matrix form,  

 
(1) (1) (1) (1)(1)

(2)(2) (2) (2) (2)

0

0

gX

X g

  

  

        
                 
        

  0.1 

where the subscripts are used to differentiate the two traits; each of 
(1)  and 

(2)  represents 

the observed quantity if the trait is continuous, or the measure of liability if the phenotype 

is polychotomous; other terms have been previously described, and are expressed on the 

same scale as the variable η. In this form, the variance-covariance matrices are 

 
(1) (1) (2)

(1) ( 2) (2)

2

(1)

2
(2)

( )
g g g

n

g g g

g
G Var g Var G

g

 

 

  
           

  0.1 

 
(1) (1) ( 2)

(1) ( 2) ( 2)

2

(1)

2
(2)

( ) nR Var Var I
  

  

 


  

  
           

 0.1      

where    is the kronecker product operator; G is the variance-covariance matrix of 

additive genetic effects across two traits; R is the variance-covariance matrix of residual 
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terms of two traits; 
( )

2

ig  (
( )

2

i ) is the genetic (residual) variance for the ith trait, and 
(1) ( 2 )g g  

(
(1) ( 2 )  ) is the genetic (residual) covariance between the two traits; other term were 

previously described. The genetic (residual) correlation coefficient rg (re) is defined as 

(1) ( 2)

(1) ( 2)

g g

g

g g

r


 
   ( (1) ( 2)

(1) ( 2)

r
 



 



 
 ).  

 

2.4.3.5 Bayesian Markov chain Monte Carlo (MCMC) inference 

Analysis of single and joint quantitative traits to estimate model parameters including 

variance and covariance for genetic and residual components can be readily implemented 

using the restricted maximum likelihood (REML) method [104,108]. However, the analysis 

of single polychotomous trait or the joint analysis of ordinal and quantitative traits becomes 

intractable with the REML estimation procedure, and thus at the current time, no REML-

based software is available for this analysis. The Bayesian MCMC approach provides an 

alternative strategy for estimating variance components in the analysis of variations of 

single or joint traits of quantitative and/or polychotomous nature. In this study, ten 

independent Markov chains were run for each trait or combination of traits based on 

random initials for genetic and residual variance, with starting values for fixed effects and 

random effects set to zero. To ensure stochastic sampling, random seeds were set for these 

independent chains. For the univariate mixed model, a single MCMC chain was run for 3 

million iterations, with first 0.5 million samples discarded (burn-in), and thereafter samples 

were saved every 100 iterations. For a bivariate mixed model where both phenotypes were 

quantitative, a pair of chains was run according to the same specification. Either stationary 

chain was used in this study. If an MCMC diagnostic indicates more MCMC samples 
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required for either chain and both chains passed the stationarity test, samples from both 

chains were combined. If only one chain reached stationarity but more MCMC samples 

required, ten short MCMC chains were run in parallel, using the last sample of the 

stationary chain as the initial parameter values. Each of these short chains was run with 

random seeds for 0.1 million iterations without burn-in, and samples were saved every 100 

iterations. Short chains were merged with the long chain. These strategies aimed to 

augment MCMC samples without re-implement MCMC sampling from the start, which 

was computationally intensive. As we anticipated intense compute time for a bivariate 

mixed model where at least one phenotype was ordinal, four chains were run for 1 million 

iterations, with first 0.5 million samples burnt in, and thereafter sampling at the interval of 

100 iterations. These MCMC samples were assessed for stationarity, and were combined.  

 

In contrast to the REML method, which evaluates the probability of observed data given a 

set of parameter values (that is, the likelihood), the Bayesian approach estimates the 

probability of a set of parameter values given observed data (that is, the posterior 

probability). In Bayes’ theorem, the posterior probability is proportional to the product of 

the likelihood and the prior probabilities for the set of parameters. In combination with the 

Bayesian approach, MCMC methods construct a Markov chain for each model parameter 

and sample from the target distribution [107]. Gibbs sampling algorithm is a special case of 

MCMC methods, in which the joint posterior probability distribution is unknown, and each 

model parameter is sampled from the conditional posterior probability distribution [107]. 

 

In the analysis of single quantitative trait, the joint posterior probability based on model 0.1 

is written as 
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2 2 2 2

2 2 2 2 2 2

( , , , | , , , , , , )

( | , , , ) ( ) ( | , ) ( | , ) ( | , )

g n g g

n g g g g

p g y X G v S v S

p y X g p p g G p v S p v S

  

   

  

     
  0.1 

where 2( | , , , )p y X g    is the likelihood function; ( )p  , 2( | , )n gp g G  , 2 2( | , )g g gp v S  and 

2 2( | , )p v S    are prior distributions for model parameters β (regression coefficients for the 

fixed effect), g (total additive genetic effects), 2

g  (additive genetic variance) and 2

  

(residual variance), respectively; other terms are defined identically as in Model 0.1. The 

prior distribution for  regression coefficients β is a uniform distribution [100], and total 

additive genetic effects g are sampled from multivariate normal distribution as specified in 

Model 0.1. The prior distribution for genetic and residual variance is inverse-gamma 

distribution with probability density function [100]  

 

2

(( /2) 1)2 2 2

2

2
(( /2) 1)2 2 2

2

( | , ) ( ) exp( )
2

( | , ) ( ) exp( )
2

gv g g

g g g g

g

v

v S
p v S

v S
p v S   

   



 


 


 

 

 

 

  0.1 

where 
gv  and 2

gS   ( v  and 2S ) are hyper-parameters for genetic (residual) variance. We 

specified slightly informative prior parameters with 3gv v   and 2 2 1gS S  . The Gibbs 

sampler updates conditional posterior probabilities for each of the model parameters (β, g, 

2

g  and 2

 ) sequentially through  

 2 2 2( , | , , ) ( | , , , ) ( | , )n gp g y X p y X g p g G        0.1 

 2 2 2 2 2( | , , ) ( | , ) ( | , )g g g g n g g gp g v S p g G p v S     0.1 

 2 2 2 2 2 2( | , , , , , , ) ( | , , , ) ( | , )p g y X v S p y X g p v S              0.1 
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In the analysis of a single polychotomous trait, joint posterior probability distribution for 

Model 0.1 is similar to that for based on a single quantitative trait (Model 0.1) 

 

2 2 2 2

2 2 2 2 2 2

( , , , , , | , , , , , , )

( | , ) ( | , , , ) ( ) ( ) ( | , ) ( | , ) ( | , )

g n g g

n g g g g

p g l t y X G v S v S

p y l t p l X g p t p p g G p v S p v S

  

   

  

     
 0.1 

where l is a vector of liabilities; t is a set of thresholds previously defined for Model 0.1; 

( | , )p y l t  is the likelihood function; 2( | , , , )p l X g   , p(t) are prior distributions for 

parameters l and t, respectively; other terms have been described previously. 

2( | , , , )p l X g    is a multivariate normal density function, and p(t) has a uniform 

distribution [100]. Parameter values were iteratively updated through a conditional 

posterior probability density function derived from (Model 0.1) by the Gibbs sampler, and 

these formulae were omitted here.  

 

In the analysis of a pair of quantitative traits, based on Model 0.1, if we let  (1) (2)( , )T T T    

and (1) (2) (1) (2)( , , , )T T T T Tg g    , where T denotes transposition and η represents quantitative 

outcome y for the two traits, the joint posterior distribution is described by 

 ( , , | ) ( | , ) ( | ) ( ) ( )p G R y p y R p G p G p R     0.1 

where p(y|θ,R) is the likelihood function, and p(θ|G), p(G) and p(R) are prior probabilities 

for model parameters θ, G and R, respectively; for simplicity, genetic similarity matrix (Gn), 

the design matrix for fixed effects (X) are omitted; other terms have been previously 

described in Model 0.1. In the analysis of a pair of quantitative and ordinal traits jointly, η 

simultaneously represents quantitative outcome for the quantitative trait and liability for the 

ordinal trait, and joint posterior distribution is written as 
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p y G R t p R p G p G p R p t

p y t p R p G p G p R p t
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    

   





 0.1 

where yc and ηc are observed categorical outcome and liability respectively for the ordinal 

traits in the bivariate model; other terms were previously described. Prior uncertainty about 

genetic and residual covariance matrix G and R is an inverse Wishart distribution of order 3 

(that is, genetic variance for the two traits respectively and covariance between these two) 

specified by [101] 
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    
   
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  0.1 

where | G |  (| R |) is the determinant of the genetic (residual) covariance matrix; tr denotes 

the operation of trace for a square matrix; 
gv  and 2

gS  ( v  and 2S
) are parameters for the 

genetic (residual) variance matrix, and were set as slightly informative prior parameters 

with 5gv v   and 2 2

2gS S I  ; tr denotes the trace operation.  

 

2.4.3.6 MCMC stationarity diagnostics 

The “coda” package (version 0.16.1) in the R programming environment (version 3.0.0) 

provides utilities for diagnosing convergence of MCMC chains. In this study, quality 

control (QC) for MCMC chains was based on the Geweke and Heidelberg-Welch 

diagnostics, and additionally, the Gelman-Rubin multi-sequence diagnostic was applied to 

assess the stationarity of multiple MCMC chains.  We only used MCMC data that passed 

through the stationarity diagnostics.  
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The Geweke test estimates the difference of means for a model parameter sampled from 

two non-overlapping parts (by default, the initial 0.1 and final 0.5 portions) in the same 

Markov chain [109]. When the Markov chain is convergent, no difference in the means is 

observed (the null hypothesis) [109]. If MCMC chain reaches stationarity, the Geweke’s 

standard Z-score should be between -1.96 and 1.96 in keeping with alpha level (the false 

positive rate) of 0.05.  

 

Additionally, we used the Heidelberg-Welch diagnostic for assessing whether a sequence of 

parameter values or a proportion of this sequence converged to a stationary distribution 

(that is, the target probability distribution, described fully in [110]). The Heidelberg-Welch 

diagnostic also provides the assessment whether an MCMC chain should be run for longer 

to have narrow halfwidth (half the width of the credible interval around the mean). The 

halfwidth test statistic is the halfwidth normalised by the posterior mean, and to pass the 

halfwidth test, the test statistic should be smaller than a target value (0.1 by default). If the 

posterior mean of MCMC samples is close to 0, the halfwidth test statistic is substantially 

large, resulting in the failure of the halfwidth test. In this case or the case where multiple 

parallel MCMC chains were run, the halfwidth test was not necessary and therefore not 

applied. 

 

The Gelman-Rubin multi-sequence diagnostic estimates the within-chain and between-

chain variances [111]. If the chains have reached stationarity, these are unbiased estimates 

of the variance of the stationary distribution. Otherwise, the within-chain variance is an 

underestimate for the variance of the stationary distribution, and the between-chain 
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variance is an overestimate for the same parameter. The potential scale reduction factor is 

the reflection of the overdispersion of the stationary distribution variance compared to the 

within-chain variance. If this test statistic is larger than 1.2, we consider these parallel 

MCMC chains have not reached stationarity.  

 

2.5 The SUMMIT genome-wide meta-analysis of diabetic 

retinopathy 

2.5.1 Study sample 

In the GoDARTS cohort, the data has been based on diabetic retinopathy, maculopathy data 

and the evidence for laser photocoagulation treatment ascertained from the June 2011 

release of the SCI-DC diabetes eye screening data set. Observable background, severe non-

proliferative and proliferative retinal events (Table 1-2) are registered in the national and 

regional retinal screening service or the validation database, and these programs have 

vigorous adherence to the national clinical guidelines. Evidence for laser photocoagulation 

treatment, diabetic maculopathy and data of no-retinopathy were included from all retinal 

examinations documented in the diabetes eye screening data. Diabetic retinopathy was 

defined as the diagnosis of observable background, severe non-proliferative and 

proliferative retinopathy, or the evidence for laser photocoagulation treatment based on the 

worst affected eye. Individuals with diabetes duration of at least 4 years (Figure 2-3), free 

of any retinopathy or maculopathy (Table 1-2 and Table 1-3) and if alive, with available 

retinal records within between January 2006 and June 2011 were included as controls. This 

definition aimed to ensure the case-control selection was robust. 
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Figure 2-3 Duration of diabetes for genotyped retinopathy cases (n = 2447) and 

controls
*
 (n = 2968) in the GoDARTS cohort prior to the SUMMIT whole-genome 

meta-analysis. Negative duration of diabetes is likely to be noise associated with 

primary retinopathy data. *No restriction on patients’ diabetes duration or the last 

date of retinopathy data.  
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In addition, we had the support from the SUMMIT cohorts for genome-wide meta-analysis. 

The SUMMIT study of retinopathy meta-analysis in type 1 and type 2 diabetic cohorts 

included the EURODIAB (Epidemiology and Prevention of Diabetes) IDDM (Insulin-

Dependent Diabetes Mellitus) complications study [112], the FinnDiane (Finnish Diabetic 

Nephropathy) study [70] and the SDR (Scania Diabetes Registry) cohort [113].  

 

The EURODIAB cohort is a cross-sectional study of microangiopathy and acute 

complications in 3,250 type 1 diabetic patients recruited from 16 nations in Europe [112]. 

Patients aged 15-60 stratified by age, diabetes duration and gender were invited for 

enrolment [112,114]. Two-field retinal photographs were taken for both eyes, and graded 

with reference to standard photographs [114].  

 

The FinnDiane cohort is a cross-sectional study of genetic and environmental influences for 

nephropathy in 4,800 adults with type 1 diabetes recruited across Finland [70,115]. Cohort 

subjects were diagnosed before age 35 and offered insulin treatment from the first year of 

diagnosis [70,115].  

 

The SDR cohort is a longitudinal study of diabetes and chronic complications in southern 

Sweden since 2000 [113,116]. At the time of the study, the SDR cohort recruited 1,264 

type 1 and 5,123 type 2 diabetic patients [113].  

 

In the SUMMIT meta-analysis, diagnosis of diabetic retinopathy was based on information 

on fundus photography, ophthalmoscopy or laser treatment for diabetic retinopathy. To be 

informative for the definition of proliferative retinopathy, the specification for the fundus 
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photograph was at least 45-degree coverage of the retina or 30-degree coverage of the 

macula. Diabetic retinopathy was defined as type 1 or type 2 diabetic patients with at least 

moderate background retinopathy (ETDRS>40, NSC, SDRGS=R2), mild background 

retinopathy (ESDRS=30-39, NSC) with duration of diabetes at retinopathy assessment < 10 

years, or treated with panretinal laser therapy. Controls were defined as individuals with no 

recorded background retinopathy, maculopathy or panretinal laser therapy. These 

individuals should have at least 4 years duration of diabetes. If retinal photographs were 

unavailable but positive evidence of no laser treatment was available, individuals with 

duration of diabetes > 20 years were also included in the study as controls. Individuals with 

maculopathy were excluded from the control sample. 
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Table 2-1 Equivalence of diabetic retinopathy coding in differeent clinical 

classification systems, tabluated by Professor Colin Palmer and Dr Alex Doney, 

University of Dundee. ETDRS: the Early Treatment Diabetic Retinopathy Study; 

NSC: the National Screening Committee; SDRGS: the Scottish Diabetic Retinopathy 

Grading Scheme; BDR: background diabetic retinopathy; NPDR: non-proliferative 

diabetic retinopathy; PDR: proliferative diabetic retinopathy. 

 

ETDRS NSC SDRGS 

10 None R0 None R0 None 

20 Microaneurysms only R1 Background R1 Mild BDR 

35 Mild NPDR 

43 Moderate NPDR R2 Pre-proliferative 

 

 

R2 Moderate BDR 

47 Moderately Severe NPDR 

53 A-D Severe NPDR R3 Severe BDR 

53 E Very severe NPDR 

61 Mild PDR 

65 Moderate PDR 

R3 Proliferative 

 

R4 PDR 

 

71, 74 High risk PDR 

81, 85 Advanced PDR 

 

2.5.2 Genotype data 

This study constitutes of Work Package 1 that focussed on genetic markers for type 1 and 2 

diabetes complications in SUMMIT, and Natalie Van Zuydam, Oxford University, kindly 

offered to perform pre-imputation quality control and imputation in GoDARTS samples 

typed on Affymetrix Genome-wide Human SNP Array 6.0 and Illumina 

HumanOmniExpress BeadChip for SUMMIT project use within GoDARTS research 

groups. Harshal Deshmukh (Dundee University), Niina Sandholm (Helsinki University) 
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and Emma Ahlqvist (Lund University) performed genome-wide association scans of 

diabetic retinopathy for the EURODIAB, FinnDiane and SDR cohorts, respectively. 

 

Genome-wide genotyping information is provided in Table 2-2. Standard quality control 

filters were applied (Table 2-3). In this study, bilallelic autosomal SNPs were included, and 

the coding of SNPs was aligned to the forward/+ strand of the human genome build 37. 

 

Study subjects were reviewed for the match between clinical reported and genotype genders, 

and additionally were filtered for heterozygosity. Population stratification was assessed in 

the multidimensional scaling analysis (plotted with 1000 Genomes reference populations).  

 

Genome-wide SNP markers were imputed to 1000 Genomes reference data (phase 1 

version 3; 379 individuals). SHAPEIT (version v1.ESHG, [117]) was used for inferring 

haplotypes in the study samples, and IMPUTE (version 2, [96]) was employed for genotype 

imputation in haplotype data. The resulting imputed data is in genotype probabilities. In the 

FinnDiane and SDR studies, MACH (version 1.0, [118]) was also used for genotype 

imputation, and the resulting genotypes are expressed in dosages, which was suited for 

association analysis, where genotype dosages was required. Genotype probabilities can also 

be transformed to dosages in custom scripts following the formula as in [119]: 

2

0
(G x)* x

x
P


 where x is the additively coded genotype value; G is the variable for 

genotype; (G x)P  is the genotype probabilities. Imputed variant data that failed the quality 

control procedures (Table 2-3) are not reported. 
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Table 2-2 Genotyping information for the meta-analysis study cohorts. 

 

Cohort Genotyping chip(s) 

EURODIAB Illumina HumanOmniExpress BeadChip 

FinnDiane Illumina 610Quad chip 

GoDARTS Affymetrix Human SNP Array 6.0 and Illumina HumanOmniExpress 

BeadChip 

SDR Illumina HumanOmniExpress BeadChip 

 

 

Table 2-3 Quality control (QC) filters applied to genome-wide meta-analysis study 

cohorts.HWE-P: Hardy–Weinberg equilibrium P value; INFO: the IMPUTE software 

quality control measure [99]; SCR: sample call rate; MAC: minor allele count; 

MACH r2: the MACH software quality control measure [99]; MAF: minor allele 

frequency; VCR: variant call rate. 

 

Cohort Pre-imputation QC Post-imputation QC 

EURODIAB HWE-P>10
-6

; 

MAF>0.01; VCR>0.95 

HWE-P>10
-6

; INFO>0.40; MAF>0.01 

FinnDiane HWE-P>10
−7; 

MAF> 

0.01; SCR>0.95, 

VCR>0.90 

HWE-P>10
-4

 for MAF<0.05; HWE-P>5.7×10
-7

 

for MAF>0.05; INFO>0.40 or MACH r
2
>0.30; 

MAF/MAC>0.01/10 

GoDARTS HWE-P>10
-6

; 

MAF>0.01; VCR>0.99 

HWE-P>10
-6

; MACH r
2
>0.50; MAF>0.01 

SDR HWE-P>10
−7

; 

SCR>0.98; VCR>0.95 

HWE-P>10
-4

 for MAF<0.05; HWE-P>5.7×10
-7

 

for MAF>0.05; INFO>0.40 or MACH r
2
>0.30; 

MAF>0.01 
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Table 2-4 Imputation software employed for the whole-genome meta-analysis study 

cohorts. IMPUTE2 (version 2.3.0); MACH (version 1.0); SHAPEIT (version 2). 

 

Cohort Imputation software 

EURODIAB SHAPEIT with IMPUTE2 

FinnDiane SHAPEIT with IMPUTE2; MACH 

GoDARTS SHAPEIT with IMPUTE2 

SDR SHAPEIT with IMPUTE2; MACH 
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2.5.3 Statistical analyses 

The genetically unrelated sample was defined by an IBD estimate <0.05 between any pair 

of individuals, and the genetically mixed sample was inclusive of related and unrelated 

samples. Genome-wide association analyses were performed in each study cohort, and the 

whole genome meta-analysis of diabetic retinopathy was analysed by Dr. Niina Sandholm, 

Helsinki University. Subsequently, I annotated and summarised the data of genome-wide 

meta-analysis was annotated and summarised for this study. Genome-wide association 

analysis methodologies in each study are provided in Table 2-5. We used SNPTEST 

(version 2.4.1) for the genome-wide association analysis of the unrelated sample, and the 

genotype uncertainty was accounted for in the likelihood score test. In the analysis of the 

genetically mixed sample, EMMAX (version beta, [120]) or GEMMA (version 0.93, [121]) 

was used for efficient implementation of linear mixed models for genome-wide variants, 

accounting for population structure in the genetically mixed sample.  

 

As EMMAX or GEMMA provides P values as the test statistic as opposed to the log odds 

ratio as the effect estimate in SNPTEST, genome-wide meta-analysis for the genetically 

mixed sample was implemented in METAL (released on 2011-03-25, [122]) based on the Z 

score approach. In this approach, P values were transformed into Z scores according to the 

standard normal cumulative distribution function, and the sign of the Z score is reflective an 

increased or decreased risk associated with the reference allele [122]. Z scores were 

combined across studies in a weighted sum, and the weights are proportional to the square 

root of study sample sizes [122]. In the genetically unrelated sample, fixed effect meta-

analysis of genome-wide variants was implemented in GWAMA (version 2.1, [123]). This 
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methodology is based on the inverse variance weighting, in which the effect estimates 

weighted by the inverse of squared standard error were combined across studies [123].  

 

Heterogeneity of effect sizes across studies were assessed by Cochran’s Q test and I
2
 index 

[124]. Cochran’s Q statistic is the weighted sum of squared difference of study effects and 

the pooled effect in the meta-analysis. The weights are identically defined as in the Z score 

method or the fixed effect inverse variance model [124]. Cochran’s Q statistic follows the 

chi-square distribution with the degree of freedom being the number of studies subtracted 

by one. I
2
 index depicts the variation across studies attributable to heterogeneity rather than 

by chance, and the estimation equation is described in [124].  

 

With the use of the CaTS (version 0.01) [125], we estimated power for each additive 

association test of single markers in the genome-wide meta-analysis of diabetic retinopathy, 

assuming the prevalence rate of 9.59% as in GoDARTS with a variability of relative risks 

and SNP minor allele frequency. Relative risk and odds ratio is interconvertible by [126] 

 
   1 ref ref

OR
RR

P P OR


  
  0.1 

where OR  is the odds ratio;
refP  is the baseline prevalence in the non-exposed group; RR is 

the relative risk. 
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Table 2-5 Genome-wide association analysis information of each cohort. EMMAX 

(version beta); GEMMA (version 0.93); SNPTEST (version 2.4.1). PC1: the first 

principal component; PC2: the second principal component.  

 

Cohort Analysis software Covariates 

EURODIAB SNPTEST and EMMAX Age, diabetes duration, PC1, PC2, sex 

FinnDiane SNPTEST and EMMAX Age, diabetes duration, HbA1c, PC1, PC2, sex 

GoDARTS SNPTEST and GEMMA Age, HbA1c , sex  

SDR SNPTEST and EMMAX Age, diabetes duration, HbA1c, sex 
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Chapter 3  

The influence of population risk factors on 

diabetic retinopathy severity over the 

duration of diabetes 

 

3.1 Introduction 

The multi-stage clinical classification of diabetic retinopathy development has prompted 

the wide use of categorical data analysis strategy in clinical studies. Commonly, cross-

sectional studies use diabetic retinopathy case and control samples in logistic regression 

analysis and/or contingency tables for modelling population risk factor effects [127–130]. 

Other studies have utilised the longitudinal nature of diabetic retinopathy progression in 

proportional hazard models [131,132]. To date, however, only one study [92] has included 
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intermediate states from longitudinal, multi-state diabetic retinopathy data in the analysis, 

an approach which provides an increased ability to decipher the stage-wise development of 

retinopathy compared with a simple survival analysis.  In the Genetics of Diabetes Audit 

and Research in Tayside Scotland (GoDARTS) database, we have ongoing, longitudinal 

collection of diabetic retinopathy clinical outcome from 1990 for Tayside patients with 

diabetes, and additionally we have access to all biochemistry measurements for these 

patients. These rich data resources enable us to investigate changes in patients’ retinal 

status over the duration of their diabetes. A multi-state Markov model was developed to 

analyse panel data of a complex, multi-staged disease process in continuous time [133]. 

This longitudinal analysis approach has recently been applied in a wide range of medical 

fields, including hepatic cancer [134], diabetic complications [92,135], breast cancer 

screening [136] and liver cirrhosis [137]. The early study [92] on diabetic retinopathy using 

the multi-state Markov approach was not able to assess the clinical effects of relevant risk 

factors on diabetic retinopathy state transitions, possibly owing to insufficient 

computational power back in the mid-1990s. In this study we have used the GoDARTS 

database to incorporate longitudinal measures of multiple risk factors and assess their role 

in the specific developmental stages of diabetic retinopathy. 

 

3.2 Results 

3.2.1 Characteristics of the study sample 

Overall 49,959 retinal measurements were studied in 4,758 diabetes patients who were 

retinopathy free at diagnosis of diabetes. At the end of this study, 100 patients developed 
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severe non-proliferative/proliferative diabetic retinopathy. The raw data on clinical 

characteristics, observed state transitions, numbers of retinal events over duration of 

diabetes, and the prevalence of diabetic retinopathy with and without stratification by first-

year DBP, SBP and HbA1c is shown in Table 3-1, Table 3-2, Table 3-3, Figure 3-1 and 

Figure 3-2.  

  



91 

 

 

 

Table 3-1 Death, diabetes treatment, cardiovascular (a constellation of coronary 

artery disease, ischaemic stroke and lower extremity arterial disease) and chronic 

kidney disease (estimated glomerular filtration rate < 60) profiles for diabetic 

retinopathy patients included in the longitudinal study.  

 

Diabetic retinopathy 

patients n (%) 

4758 (100%) 

Death n (%) 711 (14.9%) 

Diabetes treatment (n, %) Diet only (1285, 27.0 %), Insulin (428, 9.0 %), Oral agents 

(2444, 51.4 %), Oral agents and Insulin (148, 3.1 %) 

Cardiovascular disease n 

(%) 

1427 (30.0 %) 

Chronic Kidney Disease 

n (%) 

1171 (24.6 %) 
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Table 3-2 Frequency counts of the transition across states in successive clinical visits 

and the longitudinal diabetic retinopathy events (in parentheses). State 1: no-

retinopathy; State 2: mild background retinopathy; State 3: observable background 

retinopathy; State 4: severe non-proliferative/proliferative retinopathy. Interval 

censored retinal states 21, 31 and 32 were defined to represent multiple observed 

states on the same record date, which were either state 1 or 2, either of state 1 and 3, 

and one of the set of state 2 and 3, respectively. A right censor was considered to be 

state-unknown (either state 1, 2, 3 or 4). 

 

 To 

From State 1 State 2 State 3 State 

4 

State 2 

or 1 

State 

3 or 

1 

State 

3 or 

2 

Right 

censor 

 (39282) (4478) (1011) (100) (561) (64) (143) (4320) 

State 1 32198 2273 549 34 338 13 63 3619 

State 2 1640 1777 190 30 91 3 21 611 

State 3 442 187 243 30 3 19 32 49 

State 2 or 

1 198 170 2 4 126 2 1 38 

State 3 or 

1 18 6 3 0 3 26 8 0 

State 3 or 

2 28 65 24 2 0 1 18 3 
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Table 3-3 The numbers of individuals occupying each observed state (non-censored 

state) at one year interval in the GODARTS panel data of retinopathy. A prior 

retinopathy event recorded the latest in relation to the time point specified was used in 

the estimation, even if more than one retinal event was recorded per year. The last 

observed retinal event for each patient were summed at the closest, later time point, 

and with a non-absorbing retinal event, the last observed retinal event was not 

accumulated into the estimation at a later time interval. The diagnosis of severe non-

proliferative/proliferative retinopathy, an absorbing retinal event, was accumulated 

into the later estimations till 16 years. 

 

Year 

No-

retinopathy 

Mild 

background 

retinopathy 

Observable 

background 

retinopathy 

Severe non-

proliferative/proliferative 

retinopathy Total 

1 4662 44 50 2 4758 

2 4485 175 81 10 4751 

3 4256 260 89 15 4620 

4 3984 318 89 21 4412 

5 3630 348 88 24 4090 

6 3202 356 91 30 3679 

7 2796 329 84 39 3248 

8 2344 344 67 50 2805 

9 1906 349 58 58 2371 

10 1526 335 58 64 1983 

11 1215 303 39 81 1638 

12 894 261 28 89 1272 

13 675 232 20 94 1021 

14 480 198 14 96 788 

15 323 148 13 99 583 

16 196 117 6 100 419 
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Figure 3-1 Prevalence of diabetic retinopathy in the GODARTS panel data by 

duration of diabetes. This shows the retinopathy state as a percentage of the sample, 

recorded at each year of duration of diabetes from 1 to 16 years of diabetes duration. 
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Figure 3-2 Prevalence of diabetic retinopathy states in the GoDARTS panel data, 

stratified by first-year DBP, SBP and HbA1c respectively. Sample sizes for DBP: 

tertile 1 (n = 1573), tertile 2 (n = 1690), and tertile 3 (n = 1495). Sample sizes for SBP: 

tertile 1 (n = 1609), tertile 2 (n = 1853), and tertile 3 (n = 1296). Sample sizes for 

HbA1c: tertile 1 (n = 1668), tertile 2 (n = 1514), and tertile 3 (n = 1576). DBP tertile 

cutoffs: 77.0 mmHg and 86.0 mmHg; SBP tertile cutoffs: 132.0 mmHg and 150.0 

mmHg; HbA1c tertile cuffoffs: 45.0 mmol/mol (6.3%) and 57.0 mmol/mol (7.4 %). 

State 1: no-retinopathy; State 2: mild background retinopathy; State 3: observable 

background retinopathy; State 4: severe non-proliferative/proliferative retinopathy. 
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3.2.2 Baseline model without risk factor adjustment 

Initial unadjusted modeling demonstrated the better fit of the two way transition model 

(one-way transition model AIC = 32042.2; two-way transition model AIC = 31574.2, p < 

0.0001). A comparison between the observed and model-predicted prevalence indicated a 

close fit of the model to the DR data and so supported the internal validity of the model 

(Figure 3-3). This model indicated that the rates of remission from mild background 

diabetic retinopathy to diabetic retinopathy free state and from observable background 

diabetic retinopathy to mild background diabetic retinopathy were significantly faster than 
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the rates of progression (2.0 times faster and 4.2 times faster respectively), with the 

remission from observable to mild being almost double the rate of that observed for mild to 

no retinopathy (Table 3-4). The expected total length of time for diabetic retinopathy free, 

mild background retinopathy, observable background and severe non-

proliferative/proliferative retinopathy states were 12.6 (95% confidence interval or CI: 

12.41, 12.83) years, 2.91 (95% CI: 2.70, 3.11) years, 0.37 (95% CI: 0.27, 0.48) years and 

0.11 (95% CI: 0.06, 0.19) years, respectively. For the maximum follow-up time (16 years), 

the estimated transition matrix showed 26%, 4.3% and 2% probabilities that a patient free 

of diabetic retinopathy will progress to mild background, observable and severe non-

proliferative/proliferative retinopathy, respectively (Table 3-5). In the two-way transition 

model, the probabilities for correctly classifying retinopathy-free, mild background, 

observable, pre-proliferative/proliferative states were 0.971 (95% CI: 0.941, 0.986), 0.656 

(95% CI: 0.503, 0.781), 0.613 (95% CI: 6.16 × 10
-2

, 0.974) and 0.438 (1.53 × 10
-4

, 1.000), 

respectively (Table 3-6). To investigate whether the maximum likelihood estimates of the 

two-way transition model converged to reliable values, we ran the base model using 

multiple sets of initial values randomly generated from the standard uniform distribution. 

For eight out of nine models used random initial values, the point estimates of transition 

intensities and classification probabilities were close to the estimates derived from the 

default crude initial values generated by the “msm” package (Table 3-7 and Table 3-8).  
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Table 3-4 Estimated ratios of transition intensities, with standard errors (SE) and 

lower (L) and upper (U) bound of 95% CI estimated from the delta method, in the 

two-way transition base model. State 1: no-retinopathy; State 2: mild background 

retinopathy; State 3: observable background retinopathy; State 4: severe non-

proliferative/proliferative retinopathy. 

 

Transitions intensities Estimates SE L U 

State 2 → State 1 vs. State 1 → State 2   2.04 0.17 1.74 2.40 

State 3 → State 2 vs. State 2 → State 3   4.20 0.70 3.04 5.82 

State 1 → State 2 vs. State 2 → State 3 1.05 0.15 0.80 1.38 

State 2 → State 3 vs. State 3 → State 4 0.84 0.35 0.37 1.92 

State 1 → State 2 vs. State 3 → State 4 0.88 0.34 0.42 1.86 

State 2 → State 1 vs. State 3 → State 2 0.51 0.09 0.36 0.73 
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Table 3-5 The estimated transition probability matrix for 16 years’ time interval and 

95% CI (in parentheses) for the two-way transition base model. State 1: no-

retinopathy; State 2: mild background retinopathy; State 3: observable background 

retinopathy; State 4: severe non-proliferative/proliferative retinopathy.  

 

 To    

From State 1 State 2 State 3 State 4 

State 1 0.677  

(0.654,0.700) 

0.260  

(0.237,0.281) 

0.043  

(0.031,0.057) 

0.020 

(0.011,0.035) 

State 2 0.531  

(0.481,0.581) 

0.329  

(0.286,0.370) 

0.071  

(0.047,0.099) 

0.069  

(0.037,0.116) 

State 3 0.368  

(0.288,0.442) 

0.296  

(0.224,0.356) 

0.079  

(0.041,0.127) 

0.257  

(0.139,0.424) 

State 4 0  

(0,0) 

0  

(0,0) 

0  

(0,0) 

1  

(1,1) 
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Table 3-6 The maximum likelihood estimates of the probability classification matrix 

and 95% CI (in parentheses) for the two-way transition base model. State 1: no-

retinopathy; State 2: mild background retinopathy; State 3: observable background 

retinopathy; State 4: severe non-proliferative/proliferative retinopathy. 

 

 Observed State    

True State State 1 State 2 State 3 State 4 

State 1 0.971  

(0.941,0.986) 

0.019  

(0.017,0.022) 

9.62×10
-3

  

(8.56×10
-3

,0.011) 

4.4×10
-4

  

(2.14×10
-4

,9.07×10
-4

) 

State 2 0.311  

(0.267,0.360) 

0.656  

(0.503,0.781) 

0.026  

(0.018,0.037) 

7.51×10
-3

  

(4.66×10
-3

,0.023) 

State 3 0.145  

(0.100,0.205) 

0.232 

(0.136,0.369) 

0.613  

(0.063,0.974) 

0.010 

(4.28×10
-4

,0.196) 

State 4 3.12×10
-3

  

(3.39×10
-6

,0.743) 

9.26×10
-3

  

(6.44×10
-6

,0.576) 

0.550  

(0.032,0.978) 

0.438  

(1.53×10
-4

,1.000) 
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Table 3-7 Point estimates of transition intensity modelled in the diabetic retinopathy 

two-way transition base model using initial parameter estimates calculated from the 

“crudeinits.msm” function and random deviates generated from standard uniform 

distribution. State 1: no-retinopathy; State 2: mild background retinopathy; State 3: 

observable background retinopathy; State 4: severe non-proliferative/proliferative 

retinopathy. 

 

 

Transition intensities estimates 

Log-

likelihood 

 

S1=>S2 S2=>S1 S2=>S3 S3=>S2 S3=>S4  

Crude initial  0.048 0.099 0.046 0.194 0.055 -15770.1 

Random initial 1 0.048 0.100 0.047 0.173 0.032 -15773.5 

Random initial 2 0.048 0.099 0.046 0.193 0.055 -15770.1 

Random initial 3 0.048 0.099 0.046 0.176 0.035 -15773.9 

Random initial 4 0.048 0.099 0.046 0.175 0.027 -15774.2 

Random initial 5 0.048 0.099 0.046 0.194 0.053 -15770.3 

Random initial 6 0.053 0.113 0.056 0.137 0.102 -15731.5 

Random initial 7 0.048 0.099 0.046 0.192 0.053 -15770.2 

Random initial 8 0.048 0.099 0.046 0.193 0.054 -15770.2 

Random initial 9 0.048 0.099 0.046 0.193 0.053 -15770.2 
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Table 3-8 Point estimates of classification probability modelled in the diabetic retinopathy two-way transition base model using 

initial parameter estimates calculated from the “crudeinits.msm” function and random deviates generated from standard uniform 

distribution. State 1: no-retinopathy; State 2: mild background retinopathy; State 3: observable background retinopathy; State 4: 

severe non-proliferative/proliferative retinopathy. 

 

 

Classification probability estimates 

 
S1=>S1 S1=>S2 S1=>S3 S1=>S4 S2=>S1 S2=>S2 S2=>S3 S2=>S4 

Crude initial  0.971 0.019 0.010 0.000 0.311 0.656 0.025 0.008 

Random initial 1 0.971 0.019 0.010 0.001 0.313 0.657 0.026 0.005 

Random initial 2 0.971 0.019 0.010 0.000 0.312 0.656 0.025 0.007 

Random initial 3 0.971 0.019 0.010 0.000 0.311 0.657 0.026 0.006 

Random initial 4 0.971 0.019 0.010 0.000 0.310 0.658 0.027 0.006 

Random initial 5 0.971 0.019 0.010 0.000 0.312 0.656 0.025 0.007 

Random initial 6 0.974 0.016 0.010 0.000 0.365 0.613 0.018 0.004 

Random initial 7 0.971 0.019 0.010 0.000 0.311 0.655 0.026 0.008 

Random initial 8 0.971 0.019 0.010 0.000 0.311 0.656 0.025 0.007 

Random initial 9 0.971 0.019 0.010 0.000 0.311 0.656 0.025 0.008 

 
S3=>S1 S3=>S2 S3=>S3 S3=>S4 S4=>S1 S4=>S2 S4=>S3 S4=>S4 
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Classification probability estimates 

Crude initial  0.145 0.232 0.613 0.010 0.003 0.009 0.550 0.438 

Random initial 1 0.132 0.207 0.621 0.039 0.008 0.360 0.001 0.630 

Random initial 2 0.145 0.233 0.612 0.010 0.003 0.010 0.552 0.435 

Random initial 3 0.133 0.208 0.626 0.033 0.011 0.109 0.109 0.772 

Random initial 4 0.133 0.204 0.626 0.037 0.012 0.016 0.028 0.944 

Random initial 5 0.144 0.233 0.611 0.012 0.007 0.014 0.555 0.424 

Random initial 6 0.163 0.188 0.597 0.052 0.000 0.861 0.111 0.028 

Random initial 7 0.145 0.231 0.613 0.012 0.007 0.007 0.553 0.433 

Random initial 8 0.145 0.232 0.612 0.011 0.003 0.011 0.557 0.428 

Random initial 9 0.145 0.233 0.611 0.012 0.008 0.004 0.565 0.423 
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Figure 3-3 Expected prevalence modelled by the two-way transition base model, compared to the observed prevalence. State 1: no-

retinopathy; State 2: mild background retinopathy; State 3: observable background retinopathy; State 4: severe non-

proliferative/proliferative retinopathy. 
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3.2.3 Assessment of tradition risk factors 

We standardised values of BMI, cholesterol, creatinine, DBP, HbA1c, HDL-c, SBP, 

triglycerides and non-HDL-c (Table 3-9). As we have the full longitudinal medical record 

of each patient we adjusted each specific retinal event using risk factor data that was 

measured as close to that event as available. We found that BMI, DBP, HbA1c, SBP 

provided generally very close measures for each retinal assessment, probably due to their 

measure by diabetes specialists (Table 3-9). However, measures of vascular risk such as 

cholesterol, creatinine, HDL-c, triglycerides and non-HDL-c were measured more distally 

to the retinal screening events (Table 3-9). 

 

In a univariate analyses there was a significant effect on progression rates for age of 

diagnosis, age, cholesterol, DBP, HbA1c, SBP, triglycerides, and non-HDL-c, even after 

Bonferroni correction (threshold 0.0038) (Table 3-10 and Table 3-11). In contrast, there 

was no significant effect of BMI, serum creatinine, HDL-c, sex and smoking status (Table 

3-10 and Table 3-12). We then examined the effects of the risk factors on the individual 

transitions between disease states.  An increase in HbA1c level by one standard deviation 

(SD) (15.83 mmol/mol, 1.4%) had a 42% increased risk of progression from the no 

retinopathy state to mild background retinopathy, a 32% increased risk of progression from 

mild background retinopathy to observable background retinopathy, and a 123% increased 

risk in progression from observable background retinopathy to severe non-

proliferative/proliferative retinopathy (Table 3-11). Conversely, a reduction in the HbA1c 

level by one SD was associated with a 24% increased possibility of recovering from mild 

background retinopathy to the retinopathy free state (Table 3-11), but the HbA1c level was 
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unrelated to the regression from observable background retinopathy to mild background 

retinopathy in this cohort. A raised level of DBP by one SD (10.41 mmHg) elevated the 

risk for developing observable background retinopathy from the mild background 

retinopathy by 87% (Table 3-11). SBP was also significant risk factor for progression to 

mild background retinopathy from the initial retinopathy-free state (Table 3-11), and the 

reduction in SBP by one SD (17.28 mmHg) was associated a 20% increased chance of 

regression back to the retinopathy-free state (Table 3-11). The risk effect of cholesterol and 

non-HDL-c on the progression from the mild background retinopathy to observable 

background retinopathy reached statistical significance in the univariate models (Table 

3-11), but was insignificant after adjustment in the multivariate model (Table 3-11). In the 

multivariate analysis, at the 5% significance level, triglyceride values influenced the 

transition from the retinopathy-free state to mild background retinopathy (Table 3-11), 

which however was statistically insignificant in the univariate assessment (Table 3-11). 
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Table 3-9 Mean and standard deviation (SD) of longitudinally measured covariates, 

and time difference between a covariate measurement date and the closest date of 

retinal events.  

* The lower quartile, median and upper quartile of the time difference (in days). A negative 

value in time difference indicates a covariate measured prior to a retinal event. 

 

 

 

 

 

 

 

 

  

Longitudinal covariate Mean SD Record time
* 

BMI (kg/m
2
) 30.77 5.43 0,0,0 

Cholesterol (mmol/l) 4.57 1.05 -50,0,31 

Serum creatinine (µmol/l) 89.81 24.31 -57,0,39 

DBP (mmHg) 77.01 10.41 0,0,0 

HbA1c % (mmol/mol) 7.2% (54.94) 1.4% (15.83) 0,0,0 

HDL-c (mmol/l) 1.27 0.35 -60,0,29 

SBP (mmHg) 139.60 17.28 0,0,0 

Triglycerides (mmol/l) 2.14 1.08 -182,0,90 

Non-HDL-c (mmol/l) 3.26 1.04 -78,0,29 
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Table 3-10 Likelihood ratio tests of single-covariable model against the two-way 

transition model (base model AIC: 31574.2).  

 

Covariate  LR Statistic D DF P AIC 

Diabetes diagnosis age 61.786 5 5.19 × 10
-12 31522.4 

Age  60.317 5 1.05 × 10
-11 31523.9 

Sex 3.451 5 6.31 × 10
-1 31580.8 

Smoking 7.333 5 1.97 × 10
-1 31576.9 

BMI 3.119 5 6.82 ×10
-1 31581.1 

Cholesterol 71.054 5 6.18 × 10
-14 31513.1 

Serum creatinine 6.981 5 2.22 × 10
-1 31577.2 

DBP 84.247 5 1.11 × 10
-16 31500.0 

HbA1c 196.379 5 0.00 31387.8 

HDL-c 14.135 5 1.48×10
-2 31570.1 

SBP 51.344 5 7.35×10
-10 31532.9 

Triglycerides 25.141 5 1.31×10
-4 31559.1 

Non-HDL-c 80.744 5 5.55×10
-16 31503.5 
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Table 3-11 The estimates and 95% CI (in parentheses) of hazard ratios (HR) for diabetic retinopathy progression (state 1-2, 2-3, 3-4) 

and regression (state 2-1, 3-2). State 1: no-retinopathy; State 2: mild background retinopathy; State 3: observable background 

retinopathy; State 4: severe non-proliferative/proliferative retinopathy. Covariates were z-transformed in relation to the mean and 

standard deviation presented in Table 3-9, and all hazard ratios refer to per standard deviation of covariate. Risk factors 

statistically significant in the single-covariate test after the Bonferroni adjustment (the statistical significance level: 0.0038) are 

shown. 

 

 Cholesterol DBP HbA1c SBP Triglycerides Non-HDL-c 

 Single-covariate analysis (HR,95%CI) 

State 1 - State 2 0.99  

(0.92,1.06) 

1.09  

(1.01,1.17) 

1.41  

(1.32,1.51) 

1.17  

(1.09,1.26) 

0.93  

(0.87,1.00) 

0.98  

(0.92,1.05) 

State 2 - State 1 0.95  

(0.78,1.15) 

0.85  

(0.70,1.03) 

0.75  

(0.64,0.88) 

0.76  

(0.63,0.92) 

0.85  

(0.70,1.03) 

0.93  

(0.77,1.12) 

State 2 - State 3 1.99  

(1.63,2.44) 

2.20  

(1.77,2.74) 

1.60  

(1.32,1.94) 

1.35  

(1.07,1.70) 

1.30  

(1.11,1.52) 

2.02  

(1.67,2.45) 

State 3 - State 2 0.95  

(0.69,1.31) 

0.91  

(0.63,1.31) 

0.86  

(0.64,1.14) 

1.00  

(0.71,1.40) 

0.84  

(0.59,1.20) 

0.98  

(0.71,1.35) 

State 3 - State 4 1.33  

(0.87,2.03) 

1.12  

(0.64,1.96) 

2.46  

(1.57,3.84) 

0.76  

(0.43,1.33) 

1.48  

(1.06,2.07) 

1.28  

(0.94,1.74) 
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 Cholesterol DBP HbA1c SBP Triglycerides Non-HDL-c 

 Multi-covariate analysis (HR,95%CI) 

State 1 - State 2 0.99  

(0.82,1.19) 

0.98  

(0.90,1.07) 

1.42  

(1.32,1.52) 

1.20  

(1.11,1.30) 

0.92  

(0.85,0.99) 

0.98  

(0.81,1.19) 

State 2 - State 1 1.11  

(0.70,1.78) 

1.01  

(0.82,1.25) 

0.76  

(0.64,0.89) 

0.79  

(0.64,0.97) 

0.95  

(0.76,1.18) 

0.91  

(0.55,1.50) 

State 2 - State 3 0.86  

(0.40,1.86) 

1.87  

(1.46,2.40) 

1.32  

(1.08,1.60) 

0.96  

(0.76,1.22) 

0.99  

(0.78,1.24) 

1.94  

(0.84,4.45) 

State 3 - State 2 0.84  

(0.44,1.58) 

0.86  

(0.58,1.29) 

0.88  

(0.66,1.16) 

1.14  

(0.78,1.67) 

0.91  

(0.62,1.33) 

1.19  

(0.58,2.45) 

State 3 - State 4 1.69  

(0.62,4.55) 

0.92  

(0.53,1.58) 

2.23  

(1.16,4.29) 

0.87  

(0.52,1.46) 

1.27  

(0.89,1.81) 

0.72  

(0.26,1.99) 
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Table 3-12 The estimates and 95% CI (in parentheses) of hazard ratios (HR) for 

statistically insignificant (Bonferroni threshold: 0.0038) covariates modelled in the 

two-way transition process in a single-covariate analysis. Quantitative covariates were 

z-transformed in relation to the mean and standard deviation presented in Table 3-9, 

and all hazard ratios refer to per standard deviation of covariate. State 1: no-

retinopathy; State 2: mild background retinopathy; State 3: observable background 

retinopathy; State 4: severe non-proliferative/proliferative retinopathy.  

 

 

Sex (Male) Smoking BMI Creatinine HDL-c 

State 1 - State 

2 

1.05 

(0.91,1.20) 

0.91 

(0.78,1.07) 

0.97 

(0.91,1.04) 

1.05 

(0.97,1.13) 

1.03 

(0.96,1.10) 

State 2 - State 

1 

0.95 

(0.68,1.32) 

1.22 

(0.81,1.84) 

0.89 

(0.74,1.07) 

1.10 

(0.92,1.30) 

1.07 

(0.91,1.25) 

State 2 - State 

3 

0.76 

(0.50,1.14) 

1.53 

(0.93,2.52) 

0.91 

(0.75,1.11) 

1.16 

(1.01,1.33) 

0.69 

(0.54,0.89) 

State 3 - State 

2 

0.93 

(0.51,1.67) 

1.14 

(0.58,2.25) 

0.88 

(0.65,1.18) 

1.08 

(0.83,1.40) 

1.05 

(0.76,1.43) 

State 3 - State 

4 

1.51 

(0.60,3.80) 

1.34 

(0.40,4.43) 

1.14 

(0.72,1.79) 

0.72 

(0.39,1.34) 

1.15 

(0.68,1.93) 
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3.3 Conclusions 

Our analysis has demonstrated that in the development of diabetic retinopathy, the initial, 

asymptomatic phase was stable, followed by transient mid-stages, and that substantial rates 

of disease regression could be observed. The risk of diabetic retinopathy progression from 

the retinopathy-free state to mild background retinopathy, from mild background 

retinopathy to observable background retinopathy and from observable background 

retinopathy to severe non-proliferative/proliferative retinopathy was strongly positively 

associated with glycaemic exposure. We also found a significant risk effect of DBP on the 

progression of mild background retinopathy to observable background retinopathy and of 

SBP on the state transition from the retinopathy-free state to mild background retinopathy. 

There was no evidence in this study that the risk effects for diabetic retinopathy state 

transitions were influenced by sex, smoking status, BMI, serum creatinine or HDL-c. We 

did not find the evidence for independent risk effects of cholesterol, triglycerides and non-

HDL-c on diabetic retinopathy state transitions with the adjustment for blood pressure and 

glycaemic control. This study has provided the first evidence to show that better HbA1c 

and SBP are strongly correlated with the regression from mild background retinopathy back 

to the retinopathy-free state. 

 

One of the strengths of this study is the 15-fold greater overall sample size compared to an 

earlier study on diabetic retinopathy using an identical approach and a substantially 

extended follow-up time. A potential limitation in this longitudinal study of historical 

events remains the paucity of follow-up data on the study subjects that were recruited more 
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recently. Also, half way through the follow up screening was switched from Polaroid films 

to digital images, although a similar grading category was followed. 

 

In this study, our data yielded an important novel estimation about the time spent in each 

state in this cohort. To date, most longitudinal studies on diabetic retinopathy development 

have been directed at estimating incidence and/or progression rate in a study sample, and 

few have examined the average length of time spent in each stage of diabetic retinopathy. 

In the late 1980s, the Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR) 

reported 0.4% of patients with diabetes diagnosed at 30 years of age or above and without 

retinopathy at the first retinal examination progressed to proliferative diabetic retinopathy 

within four years [138]. The United Kingdom Prospective Diabetes Study (UKPDS) 

identified 0.2% of 2,316 type 2 diabetic patients with no retinopathy at baseline required 

photocoagulation treatments at 3 years, 1.1% at 6 years and 2.6% at 9 years [139,140]. A 

recent study on 16,444 patients with type 2 diabetes without retinopathy at the first retinal 

examination found the cumulative incidence of non-proliferative retinopathy, severe non-

proliferative retinopathy and proliferative retinopathy was 36%, 4% and 0.68%, 

respectively after 5 years follow up, and after 10 years follow up, these estimates rose to 

66%, 16% and 1.5% respectively [141]. These findings broadly support the estimated total 

length of time in the retinopathy-free state reported in this study. .   

 

Extensive evidence from published randomised clinical trials [21,142,143], prospective 

[144–150] and retrospective [151] studies support our findings on HbA1c as an important 

risk factor on diabetic retinopathy progression (Table 3-11). The Diabetes Control and 

Complications Trial (DCCT) [21] reported a hazard rate of 1.63 (P<0.001) for the risk 
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effect of one SD of  HbA1C in type 1 diabetic patients. UKPDS [143] has found per one 

SD increase in the HbA1c variable a hazard rate of 1.48 (95% CI: 1.40, 1.61) and 1.96 (95% 

CI: 1.79, 2.16) respectively for microvascular complications in patients with type 2 diabetes. 

These results broadly support the hazard ratios we found in this study for HbA1c on 

diabetic retinopathy. Additionally, we demonstrate that lower HbA1c is associated with 

regression of retinopathy from mild background retinopathy to no retinopathy. However, 

once a more severe retinopathy state e.g. observable BDR is reached, the protective effect 

associated with lowering HbA1c is not observed, suggesting that good glycaemic control 

only facilitates retinopathy remission at an early stage.  

 

Previous studies have shown mixed results on the association between blood pressure and 

diabetic retinopathy. The UKPDS [140] demonstrated that the incidence of retinopathy was 

associated with SBP values in top vs. bottom tertiles and lowering blood pressure resulted 

in a marked reduction in development or progression of diabetic retinopathy. In one of the 

WESDR reports [145], in which a prospective cohort of type 1 diabetic patients was 

followed up for 14 years, the baseline DBP variable was a significant predictor of 

progression to PDR. A study in the late-1980s [152] showed no association of SBP and 

DBP variables in the highest and lowest quartiles with the incidence or the progression of 

retinopathy in type 2 diabetic patients. In contrast, it was shown in the same study that in 

type 1 diabetic patients, SBP and DBP were correlated with the progression of retinopathy.  

Our study firmly supports a role for blood pressure in diabetic retinopathy progression in 

individuals with type 2 diabetes. 
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In this study, we have applied an innovative approach for the analysis of population-based 

longitudinal retinopathy cohort data. Our findings delineated state-by-state transitions 

underlying diabetic retinopathy development, and our assessment of population risk factors 

influencing progressive and regressive state transitions yielded the evidence for the role of 

blood pressure and glycaemic control in diabetic retinopathy development. Furthermore, 

the analytical approach utilised in this study holds the potential to be extended for 

investigating the additional independent effect from anti-diabetic oral agents on the course 

of diabetic retinopathy, or the interaction between anti-diabetic medications with HbA1c on 

the development diabetic retinopathy. These lines of interest on the front of 

pharmacoepidemiology may deserve a separate, thorough investigation, with additional 

input from population prescribing data sets. However, we have the confidence that the 

strategy we applied here will become the cornerstone for increasingly more clinical studies.  

  



Chapter 4  

Heritability and genetic correlations 

explained by common SNPs for diabetic 

retinopathy and related risk factors 

 

4.1 Introduction 

Diabetic retinopathy and the related metabolic traits are highly heritable [69,70,143,153–

156]. Uncovering the genetic influences underlying these traits and the genetic correlation 

between these related traits is the area of clinical interest. Recently, high-throughput array 

scans including genome-wide association studies (GWAS) identified putative genetic 

signals for diabetic retinopathy . However, significant genetic variants discovered in 

GWAS for a number of clinical traits explain only a limited fraction of the phenotypic 
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variance, substantially lower than the expected narrow-sense heritability, a genetic measure 

for the ratio of additive genetic variance over phenotypic variance. Yang et al [104] 

discovered that the missing proportion of heritability for GWAS may be linked to 

incomplete linkage disequilibrium (LD) between causal variants and genetic markers, and 

small effects associated with genetic variants against a stringent genome-wide significance 

P value threshold. Simultaneously, common GWAS SNPs explains a considerable portion 

of “missing” heritability [104,157].  

 

The restricted maximum likelihood (REML) analytical approach for decomposing 

phenotypic variation has been developed to study narrow-sense heritability for quantitative 

or dichotomous traits only based on common genome-wide SNP data, and additionally 

genetic and residual correlations between two quantitative traits or two binary traits 

[104,108,157]. However, clinically relevant phenotypes are frequently measured as an 

ordinal trait, as with the diabetic retinopathy phenotype. In studying narrow-sense 

heritability and genetic/residual correlations, a feasible analytical strategy is also needed for 

ordinal traits. Here, we explored the Bayesian Markov chain Monte Carlo approach, and 

uncovered the heritable proportion of the phenotypic variance for diabetic retinopathy and 

related risk factors in the GoDARTS cohort, and for the first-time, estimated the pairwise 

genetic and residual correlations for diabetic retinopathy and related risk factors.  
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4.2 Results 

4.2.1 Characteristics of the study data 

In this study, our base population consists of the GoDARTS sample genotyped on the 

Affymetrix 6 chip, which had random selections of retinopathy patients from the diabetic 

population. This study consisted of separate samples for genetically related individuals with 

identical by descent (IBD) estimates more than 0.05, and genetically unrelated individuals 

with IBD estimates less than 0.05. The clinical characteristics of the study population are 

provided in Table 4-1, and these characteristics were similar between genetically related 

and unrelated samples. Phenotypic correlations of body mass index (BMI), cholesterol 

(CHL), serum creatinine (CRE), glycosylated haemoglobin/HbA1c (HBA), high-density 

lipoprotein cholesterol/HDL-c (HDL), systolic blood pressure (SBP), triglycerides (TG) 

and retinopathy (RET) estimated in both samples are provided in Table 4-2 and Table 4-3. 

Here, we report consistent correlations observed in genetically related and unrelated 

samples of diabetes. We found positive phenotypic correlations of BMI-HBA, CHL-HBA, 

HBA-TG, BMI-TG, CHL-TG, CHL-RET, CRE-RET, HBA-RET and negative phenotypic 

correlations of BMI-HDL, HBA-HDL and HDL-TG (Table 4-2 and Table 4-3). The point 

estimates of phenotypic correlation coefficients of CRE-HDL were almost the same (Table 

4-2), but with the adjustment for multiple testing, this correlation in the genetically related 

sample was insignificant with P>0.05, owing to the smaller sample size.  

  



Table 4-1 Characteristics of the related sample (the IBD estimate between at least one 

pair of individuals > 0.05) and the unrelated sample (the IBD estimate between any 

pair of individuals   0.05). Retinopathy category 0: no-retinopathy; category 1: mild 

background retinopathy; category 2: observable background retinopathy; category 3: 

severe non-proliferative/proliferative retinopathy. 

 

(a) Quantitative traits.  

 Related sample Unrelated sample 

Trait Mean SD n Mean SD n 

Age (years) 64.2 10.8 1255 65.5 10.7 3039 

Diabetes duration 

(years) 7.0 6.6 1255 7.8 7.1 3039 

BMI (kg/m
2
) 31.0 5.6 1193 30.8 5.6 2970 

Cholesterol (mmol/l) 4.7 1.1 1193 4.6 1.1 2970 

Serum creatinine 

(µmol/l) 95.0 25.7 1193 96.5 25.4 2970 

HbA1c % (mmol/mol) 

7.5 

(58.9) 

 1.4% 

(15.4) 1193 

7.5% 

(58.3)  

1.4% 

(15.2) 2970 

HDL-c (mmol/l) 1.3 0.4 1193 1.4 0.4 2970 

SBP (mmHg) 141.6 18.5 1193 141.6 18.3 2970 

Triglycerides (mmol/l) 2.4 1.4 1193 2.2 1.3 2970 

 

(b) Dichotomous traits.   

 

 Related sample Unrelated sample 

Trait Counts (n, %) Counts (n, %) 

Sex F (601, 48%) M (654, 52%) F (1401, 46%) M (1638, 54%) 

 



(c) Polychotomous traits. Retinopathy categories: 0 (without retinopathy), 1 (mild background retinopathy), 2 (observable background 

retinopathy), 3 (severe non-proliferative/proliferative retinopathy). 

 

 Related sample Unrelated sample 

Trait Counts (n, %) Counts (n, %) 

Retinopathy 0 (372, 30%) 1 (442, 36%) 2 (267, 22%) 3 (158, 13%) 0 (806, 27%) 1 (1091, 37%) 2 (657, 22%) 3 (432, 15%) 
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Table 4-2 Pearson correlation coefficients and 95% confidence intervals (separate lines below) for quantitative risk factors of 

diabetic retinopathy in the GoDARTS related (n = 1193) and unrelated (n = 2970) sample. BMI: body mass index; CHL: cholesterol; 

CRE: serum creatinine; HBA (HbA1c): glycosylated haemoglobin; HDL (HDL-c): high-density lipoprotein cholesterol; SBP: systolic 

blood pressure; TG: triglycerides. 
*
Significance at the 0.05 level adjusted for 21 hypotheses using Fisher-transformed correlation 

coefficients. 

 

 Related sample Unrelated sample 

  BMI CHL CRE HBA HDL SBP BMI CHL CRE HBA HDL SBP 

CHL 0.019      0.007      

 -0.037      -0.029      

 0.076      0.043      

CRE -0.007 -0.046     -0.071
*
 -0.108

*
     

 -0.064 -0.103     -0.106 -0.143     

 0.050 0.010     -0.035 -0.072     

HBA 0.113
*
 0.099

*
 -0.027    0.110

*
 0.131

*
 -0.046    

 0.057 0.042 -0.084    0.074 0.096 -0.082    

 0.169 0.155 0.029    0.145 0.166 -0.010    

HDL -0.116
*
 0.093

*
 -0.070 -0.112

*
   -0.181

*
 0.153

*
 -0.071

*
 -0.067

*
   

 -0.172 0.037 -0.127 -0.167   -0.216 0.117 -0.107 -0.102   
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 Related sample Unrelated sample 

  BMI CHL CRE HBA HDL SBP BMI CHL CRE HBA HDL SBP 

 -0.060 0.149 -0.014 -0.055   -0.146 0.188 -0.036 -0.031   

SBP 0.054 0.001 -0.011 -0.017 0.097
*
  0.025 0.100

*
 -0.010 0.021 0.096

*
  

 -0.003 -0.056 -0.067 -0.074 0.040  -0.011 0.065 -0.046 -0.015 0.060  

 0.110 0.058 0.046 0.040 0.153  0.060 0.136 0.026 0.057 0.132  

TG 0.113
*
 0.391

*
 0.004 0.214

*
 -0.295

*
 0.012 0.196

*
 0.292

*
 -0.009 0.185

*
 -0.372

*
 0.052 

 0.057 0.342 -0.052 0.159 -0.346 -0.045 0.161 0.259 -0.045 0.150 -0.403 0.016 

 0.169 0.438 0.061 0.267 -0.242 0.069 0.230 0.325 0.027 0.219 -0.341 0.088 
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Table 4-3 Phenotypic correlation coefficients and 95% confidence intervals (separate 

lines below) between diabetic retinopathy and related quantitative risk factors in the 

GoDARTS related and unrelated sample. CHL: cholesterol; CRE: serum creatinine; 

HBA: HbA1c; RET: retinopathy; TG: triglycerides. 
*
Significance at the 0.05 level 

adjusted for 7 hypotheses using Fisher-transformed correlation coefficients.  

 

RET BMI CHL CRE HBA HDL SBP TG 

Related sample 

n = 1178 

-0.080
*
 0.058

*
 0.239

*
 0.189

*
 -0.052 0.022 -0.013 

-0.137 0.001 0.184 0.133 -0.109 -0.035 -0.070 

-0.023 0.115 0.292 0.243 0.005 0.079 0.045 

Unrelated sample -0.036 0.110
*
 0.123

*
 0.201

*
 0.031 0.060

*
 -0.060

*
 

n = 2903 -0.072 0.074 0.087 0.166 -0.005 0.024 -0.096 

 0.001 0.146 0.159 0.236 0.068 0.097 -0.023 
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4.2.2 Heritability explained by common genome-wide SNPs for 

diabetic retinopathy and related risk factors 

We estimated heritability explained by common genome-wide SNPs with the adjustment 

for age, sex and duration of diabetes in the genetically related and unrelated samples using 

the Markov chain Monte Carlo (MCMC) sampling strategy. The heritability estimate is the 

total additive genetic variance normalised by total phenotypic variance. MCMC data is 

valid (mixed) or formally described as having reached stationarity if it approximates the 

unknown target distribution of the parameter of interest. In this study, MCMC data for each 

trait passed through the Geweke and Heidelberg-Welch stationarity tests. The trace plots 

provide a visual tool for inspecting parameter values sampled. Any systematic upward or 

downward trends indicate poor mixing of MCMC data. The traces of MCMC data in this 

study showed small fluctuations, suggesting of good mixing of MCMC chains (Appendix 

Figure A-1). In the density plots, genetic variance parameter estimates were positively 

skewed (Appendix Figure A-1), because values for variance are always non-negative. As a 

convention, the residual variance was pre-defined to be 1 for any categorical trait in the 

liability threshold model. Autocorrelations of MCMC data is an assessment for the 

efficiency of mixing. The autocorrelation plot suggests higher autocorrelations of MCMC 

samples in the genetically unrelated sample compared to the related sample (Appendix 

Figure A-1), owing to a larger sample size and more total additive genetic effect parameters 

sampled in the MCMC algorithm. We obtained 25,000 MCMC samples for the heritability 

estimation for each trait in the related and unrelated samples.  
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Long-range linkage disequilibrium blocks that span known SNP markers and unknown 

genomic variations were anticipated in the genetically related sample, and thus it was 

probable that estimates of heritability and genetic correlation may be higher in the 

genetically related sample, even with a smaller sample size compared to that in the 

unrelated sample. The heritability estimates were close in both samples for CHL, CRE, 

HBA and SBP (Table 4-4). BMI and TG showed higher heritability in the genetically 

related and unrelated samples, respectively (Table 4-4). 22% and 34% of phenotypic 

variations of diabetic retinopathy were heritable in the genetically related and unrelated 

samples, respectively (Table 4-4). 

 

As aforementioned, densities of variance parameter estimates were positively skewed, and 

thus, the posterior median was used as the posterior estimator. The other alternative 

posterior estimator, the posterior mode, required the mathematical integration of joint 

posterior probabilities, which became an intractable mathematical problem with this model. 

Since the posterior distribution were non-symmetric, we used 95% highest posterior density 

(HPD) interval, which is the credible interval in parameter space that has 95% posterior 

probabilities, with the minimal density in the interval greater than or equal to the density of 

any point outside of the interval. In simple terms, the HPD interval can be interpreted as the 

range of parameter values that occur 95% of time with repeated sampling of probable 

parameter values for a given data, where the true parameter values are considered as 

dispersed following a distribution. In contrast, the frequentist confidence interval estimation 

involves no sampling, and it is interpreted as the range of parameter values that cover the 

true, fixed parameter value for 95% of time, if the study data is hypothetically repeatedly 

sampled from the population. P values are associated with the frequenstist hypothesis 
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testing, whereas in Bayesian inference, the Bayes factor is used in comparing competing 

models for the same data for the better-fitted model. The Bayes factor is analogous to the 

frequentist likelihood ratio, and it provides a means for assessing the strength of evidence. 

However, the Bayes factor is difficult to compute for mixed models we described here, and 

thus, it was not feasible to estimate P values adjusted for multiple testing in this study. A 

comprehensive review on MCMC Bayesian inference is provided in [107]. 
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Table 4-4 Genetic (Vg) and residual (Ve) variance that have been used for estimating 

heritability (hg
2
) explained by common genome-wide SNPs in the GoDARTS sample. 

1,193 (2,970) genetically related (unrelated) subjects’ data were used in the 

heritability estimation of BMI, CHL, CRE, HBA, HDL, SBP and TG; 1,236 (2,985) 

genetically related (unrelated) subjects’ data were used in the heritability estimation 

of RET. BMI: body mass index; CHL: cholesterol; CRE: serum creatinine; HBA 

(HbA1c): glycosylated haemoglobin; HDL (HDL-c): high-density lipoprotein 

cholesterol; RET: retinopathy; SBP: systolic blood pressure; TG: triglycerides. 

**
Residual variance is a pre-specified parameter for categorical traits.  

 

 Related sample Unrelated sample 

Trait Vg Ve hg
2
 Vg Ve hg

2
 

BMI 

0.47 (0.22, 

0.72) 

0.50 (0.27, 

0.72) 
0.49 (0.24, 

0.72) 

0.30 (0.12, 

0.49) 

0.65 (0.47, 

0.82) 
0.31 (0.13, 

0.51) 

CHL 

0.17 (0.07, 

0.32) 

0.77 (0.62, 

0.89) 
0.18 (0.07, 

0.33) 

0.19 (0.08, 

0.33) 

0.75 (0.62, 

0.87) 
0.20 (0.08, 

0.34) 

CRE 

0.18 (0.08, 

0.33) 

0.62 (0.49, 

0.74) 
0.23 (0.09, 

0.40) 

0.15 (0.07, 

0.26) 

0.65 (0.54, 

0.74) 
0.19 (0.08, 

0.32) 

HBA 

0.18 (0.07, 

0.33) 

0.76 (0.61, 

0.89) 
0.19 (0.07, 

0.34) 

0.20 (0.08, 

0.36) 

0.74 (0.59, 

0.86) 
0.21 (0.08, 

0.37) 

HDL 

0.38 (0.17, 

0.61) 

0.57 (0.37, 

0.77) 
0.40 (0.19, 

0.62) 

0.21 (0.08, 

0.37) 

0.73 (0.59, 

0.86) 
0.23 (0.09, 

0.39) 

SBP 

0.17 (0.06, 

0.32) 

0.81 (0.66, 

0.94) 
0.18 (0.07, 

0.32) 

0.13 (0.06, 

0.24) 

0.85 (0.74, 

0.94) 
0.14 (0.06, 

0.24) 

TG 

0.23 (0.08, 

0.43) 

0.76 (0.58, 

0.92) 
0.24 (0.09, 

0.42) 

0.30 (0.13, 

0.49) 

0.68 (0.50, 

0.84) 
0.31 (0.14, 

0.50) 

RET 

0.29 (0.06, 

0.78) 

1.00 (1.00, 

1.00)
**

 
0.22 (0.07, 

0.45) 

0.51 (0.08, 

1.35) 

1.00 (1.00, 

1.00)
 **

 
0.34 (0.10, 

0.59) 
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4.2.3 Genetic correlation explained by common genome-wide 

SNPs for diabetic retinopathy and related risk factors 

We estimated pairwise genetic correlations for diabetic retinopathy and related risk factors 

in the bivariate mixed model with the adjustment for age, sex and duration of diabetes, 

using MCMC sampling (Appendix Figure B-1 and Appendix Figure B-2). The genetic 

(residual) correlation coefficient is the additive genetic (residual) covariance of a pair of 

traits normalized by genetic (residual) standard deviation of each trait. The number of 

MCMC samples collected for each pair of traits is provided in Appendix Table B-1.  

 

In the related sample, we identified negative genetic correlation of HDL-TG (Table 4-5), 

and significant residual correlations of HDL-TG, BMI-TG, CHL-TG and HBA-TG (Table 

4-5). Genetic and residual correlations of diabetic retinopathy with related risk factors were 

insignificant at the 0.05 significance level in the related sample (Table 4-7). In the unrelated 

sample, we identified significant residual correlations at the 0.05 significance level of BMI-

HBA, BMI-HDL, BMI-SBP, CHL-HDL, CHL-SBP, CHL-TG, CRE-HDL, HBA-TG and 

HDL-TG (Table 4-6). Diabetic retinopathy showed positive residual correlation with 

cholesterol in the unrelated sample (Table 4-7). Out of all pairs of traits studied, significant 

residual correlations of CHL-TG, HBA-TG and HDL-TG were consistently observed in the 

related and unrelated samples. However, we could not preclude the existence of genetic and 

residual correlations for pairs of traits that were insignificant in this study due to the wide 

credible intervals.  
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Table 4-5 Posterior median and 95% highest posterior density intervals of the genetic (upper triangle) and residual (lower triangle) 

correlation coefficient in the genetically related sample for retinopathy-related population risk factors. Sample size: 1,193 patients. 

BMI: body mass index; CHL: cholesterol; CRE: serum creatinine; HBA (HbA1c): glycosylated haemoglobin; HDL (HDL-c): high-

density lipoprotein cholesterol; RET: retinopathy; SBP: systolic blood pressure; TG: triglycerides. 
*
Significant at the 0.05 level. 

 

 

Related sample 

 

BMI CHL CRE HBA HDL SBP TG 

BMI 

 

-0.36 

(-0.74, 0.12) 

0.39 

(-0.06, 0.74) 

0.20 

(-0.31, 0.64) 

-0.29 

(-0.68, 0.13) 

0.16 

(-0.35, 0.64) 

-0.19 

(-0.64, 0.29) 

CHL 0.07 

(-0.15, 0.32)  

0.15 

(-0.36, 0.60) 

0.05 

(-0.46, 0.54) 

0.34 

(-0.16, 0.74) 

0.18 

(-0.33, 0.65) 

0.07 

(-0.46, 0.56) 

CRE -0.02 

(-0.28, 0.22) 

0.03 

(-0.12, 0.16) 

 

0.20 

(-0.30, 0.64) 

0.27 

(-0.18, 0.68) 

0.10 

(-0.40, 0.57) 

0.07 

(-0.44, 0.55) 

HBA 0.04 

(-0.20, 0.26) 

0.04 

(-0.10, 0.17) 

-0.06 

(-0.22, 0.08) 

 

-0.34 

(-0.73, 0.14) 

-0.05 

(-0.54, 0.46) 

0.03 

(-0.49, 0.52) 

HDL 0.00 

(-0.30, 0.31) 

0.05 

(-0.19, 0.23) 

-0.21 

(-0.46, 0.00) 

-0.04 

(-0.23, 0.17) 

 

0.10 

(-0.42, 0.57) 

-0.48
*
 

(-0.80, -0.02) 

SBP 0.09 

(-0.16, 0.30) 

0.01 

(-0.13, 0.14) 

-0.10 

(-0.24, 0.04) 

0.03 

(-0.09, 0.17) 

0.07 

(-0.12, 0.26) 

 

0.14 

(-0.38, 0.63) 

TG 0.28
*
 

(0.04, 0.53) 

0.42
*
 

(0.28, 0.56) 

0.08 

(-0.08, 0.24) 

0.27
*
 

(0.12, 0.41) 

-0.39
*
 

(-0.56, -0.20) 

0.02 

(-0.13, 0.17) 
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Table 4-6 Posterior median and 95% highest posterior density intervals of the genetic (upper triangle) and residual (lower triangle) 

correlation coefficient in the genetically unrelated sample for retinopathy-related population risk factors. BMI: body mass index; 

CHL: cholesterol; CRE: serum creatinine; HBA (HbA1c): glycosylated haemoglobin; HDL (HDL-c): high-density lipoprotein 

cholesterol; RET: retinopathy; SBP: systolic blood pressure; TG: triglycerides. 
*
Significant at the 0.05 level. 

 

 

Unrelated sample 

 

BMI CHL CRE HBA HDL SBP TG 

BMI 

 

0.18 

(-0.31, 0.62) 

0.17 

(-0.31, 0.61) 

-0.29 

(-0.69, 0.18) 

-0.26 

(-0.68, 0.23) 

-0.35 

(-0.72, 0.11) 

0.36 

(-0.09, 0.73) 

CHL -0.13 

(-0.31, 0.03)  

0.18 

(-0.29, 0.62) 

-0.06 

(-0.54, 0.43) 

0.22 

(-0.29, 0.65) 

0.13 

(-0.36, 0.59) 

0.38 

(-0.08, 0.75) 

CRE 0.02 

(-0.15, 0.16) 

-0.05 

(-0.18, 0.07) 

 

0.08 

(-0.42, 0.52) 

0.23 

(-0.24, 0.64) 

0.13 

(-0.35, 0.56) 

0.15 

(-0.33, 0.59) 

HBA 0.23
*
 

(0.06, 0.43) 

0.08 

(-0.04, 0.22) 

-0.06 

(-0.18, 0.07) 

 

-0.12 

(-0.61, 0.37) 

-0.05 

(-0.53, 0.43) 

0.16 

(-0.34, 0.62) 

HDL -0.18
*
 

(-0.35, -0.01) 

0.17
*
 

(0.03, 0.30) 

-0.16
*
 

(-0.31, -0.03) 

-0.09 

(-0.23, 0.06) 

 

0.04 

(-0.45, 0.51) 

-0.43 

(-0.76, 0.04) 

SBP 0.20
*
 

(0.04, 0.37) 

0.13
*
 

(0.02, 0.23) 

-0.09 

(-0.20, 0.01) 

0.06 

(-0.05, 0.18) 

0.08 

(-0.04, 0.19) 

 

0.19 

(-0.29, 0.64) 

TG 0.17 

(-0.04, 0.35) 

0.28
*
 

(0.12, 0.41) 

0.00 

(-0.16, 0.15) 

0.21
*
 

(0.04, 0.36) 

-0.44
*
 

(-0.57, -0.30) 

0.05 

(-0.10, 0.17) 
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Table 4-7 Posterior median and 95% highest posterior density intervals of genetic (residual) correlation coefficient, rg (re), between 

retinopathy and related population risk factors. BMI: body mass index; CHL: cholesterol; CRE: serum creatinine; HBA (HbA1c): 

glycosylated haemoglobin; HDL (HDL-c): high-density lipoprotein cholesterol; RET: retinopathy; SBP: systolic blood pressure; TG: 

triglycerides. 
*
Significant at the 0.05 level. 

 

 Related sample Unrelated sample 

Trait rg re rg re 

RET-BMI 0.33 (-0.30, 0.81) -0.25 (-0.68, 0.12) 0.19 (-0.46, 0.71) 0.00 (-0.29, 0.27) 

RET-CHL 0.10 (-0.51, 0.65) 0.17 (-0.05, 0.39) -0.46 (-0.81, 0.04) 0.37 (0.12, 0.64)
 *

 

RET-CRE 0.32 (-0.27, 0.77) 0.16 (-0.10, 0.36) 0.16 (-0.40, 0.67) 0.09 (-0.12, 0.28) 

RET-HBA 0.13 (-0.47, 0.65) 0.14 (-0.07, 0.34) 0.34 (-0.25, 0.78) 0.05 (-0.22, 0.27) 

RET-HDL 0.09 (-0.55, 0.68) -0.20 (-0.55, 0.10) -0.15 (-0.67, 0.47) -0.03 (-0.27, 0.21) 

RET-SBP -0.11 (-0.66, 0.50) 0.08 (-0.12, 0.31) 0.27 (-0.31, 0.72) 0.04 (-0.16, 0.20) 

RET-TG -0.06 (-0.66, 0.55) 0.13 (-0.11, 0.40) -0.10 (-0.67, 0.49) 0.10 (-0.18, 0.38) 
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4.3 Conclusions 

In this study, we analysed the narrow-sense heritability and genetic correlations captured by 

common whole-genome SNPs for the severity of retinopathy and related population risk 

factors in the GoDARTS diabetic population. Whilst the same methodology for analysing 

heritability and the genetic/residual correlation was also applicable to a genetically mixed 

samples, the partition of the study cohort into genetically related and unrelated samples 

permitted separate considerations for similar environment effects and stronger genetic 

similarities amongst related individuals compared to those unrelated. This study was based 

on MCMC Bayesian inference, which made the analysis of multi-categorical clinical data 

of diabetic retinopathy in univariate and bivariate mixed models feasible. We found 

statistically significant heritability estimates for BMI (49%), CHL (20%), CRE (23%),  

HBA (21%), HDL (40%), SBP (18%) and TG (31%) in the GoDARTS study data, and the 

estimates for BMI, HDL, SBP and TG were similar to the reported values using a 

comparable approach in a non-diabetic population [108]. We found that 34% of retinopathy 

phenotypic variations wereinherited additive genetic effects. In both related and unrelated 

samples, we identified positive residual (environmental) correlations for TG with CHL and 

HBA, respectively, and additionally confirmed negative genetic and residual correlation for 

TG with HDL, which was previously reported [108]. Residual correlation of diabetic 

retinopathy with CHL was observed in the unrelated sample. These residual correlations 

suggest shared environmental aetiology for the observed physiological relation between 

lipids and lipids with glycaemic exposure. We found no significant genetic correlation 

between any of the metabolic traits with retinopathy; however, the sample sizes we had in 

this study may be the limiting factor for the accurate determination of plausible genetic 
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correlations between retinopathy and related risk factors, using the MCMC estimation 

approach.  

 

We estimated the genetic similarity matrix based on 6,830,657 imputed autosomal SNPs, 

which was substantially a larger set of genetic variants compared to genotyped SNPs used 

in previous studies [104,108,157]. In one study [108], it was reported that extra SNPs had 

little additional effects on the heritability estimates, once analysed SNPs reached a certain 

size. The Gibbs sampling approach we applied was computationally intensive and required 

days and sometimes months of computation for bivariate mixed models, which may be an 

opportunity for further algorithm development to accelerating mixing of MCMC samples 

and reducing compute time.  

 

This study estimated narrow-sense heritability (34%) captured by genome-wide SNPs for 

the severity of diabetic retinopathy, which was analysed as an ordinal variable including all 

stages of retinopathy defined by the Scottish diabetic retinopathy grading scheme 2007 

v.1.1. This estimate was supported by previous evidence that the narrow-sense heritability 

of proliferative diabetic retinopathy was 0.52 ± 0.31 [70], and the broad-sense heritability 

estimate was 27% for the severity of diabetic retinopathy [69]. Few studies reported the 

heritability estimate for total cholesterol (CHL). Previous studies identified that the 

heritability estimates in the non-diabetic population for BMI, CRE, HBA, HDL, SBP and 

TG can be as high as 58% [158], 64.1% [159], 59% [160], 46% [161],  57% [159] and 36% 

[162], respectively. These results provided strong evidence for the heritability estimates in 

this study. 
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In this study, we estimated genetic and residual correlation for diabetic retinopathy and 

related risk factors. Negative genetic correlation (posterior median: -0.48; 95% highest 

posterior density/HPD interval: -0.80, -0.02) was observed for HDL-TG in the related 

sample. Although this result was not replicated in the unrelated sample of this study 

(posterior median: -0.43; 95% HPD interval: -0.76, 0.04) owing to a large credible interval, 

genetic correlations of HDL-TG were consistently observed in the non-diabetic related 

(unrelated) sample of Atherosclerosis Risk in Communities (ARIC) [108], with the 

maximum likelihood estimate/MLE: -0.59, 95% confidence interval/CI: -0.84, -0.34 (MLE: 

-0.57, 95% CI: -0.94, -0.20). The ARIC study included 530 related (the relatedness 

coefficient between 0.35 and 0.65) individuals and 5,647 unrelated (the relatedness 

coefficient less than 0.025) individuals. This large genetic correlation between HDL-TG is 

directly reflective of a known physiological relationship [163]. In the ARIC study [108],  

no significant genetic correlation was detected for BMI-HDL, BMI-SBP, BMI-TG, HDL-

SBP, SBP-TG, which is consistent with findings from our study. Compared to the ARIC 

study [108], we had approximately half of the size in the unrelated sample, and additionally, 

we had similarly ranged credible intervals. In this study, it is probable that the current 

sample size is not adequate in power to estimate genetic and residual correlations with 

modest effect sizes. 

 

We found large residual correlations for CHL-TG, HBA-TG, HDL-TG in the related and 

unrelated samples, and RET-CHL in the unrelated sample. Observed residual correlations 

for lipids are likely attributed to a known environmental aetiology [163].  The residual 

correlation of HBA-CHL shown in this study suggests shared environmental aetiology to 

hyperglycaemia and hyperlipidaemia, supported by studies of heart diseases and diabetes 
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[164], although the full explanation for this link remains elusive. We detected a strong 

residual correlation for RET-CHL, which suggests the increased susceptibility of 

retinopathy may be associated with hyperlipidaemia due to a common environmental 

exposure including diet and lifestyle. The physiological relation between HBA, CHL and 

RET may be further characterised in studies for common genetic and environmental 

aetiology underlying hyperglycaemia, hyperlipidaemia and retinopathy, in a single analysis 

using multi-variate mixed models.  

 

A drawback of this study lies within the use of clinical data unadjusted for the treatment 

effects of hyperglycaemia, hyperlipidaemia and hypertension. However, given the 

successful detection of known genetic and residual correlations between lipids, we consider 

the analytical approach applied here is robust for studying treatment-unadjusted clinical 

response data. 

 

In summary, this study found a large portion of phenotypic variation in retinopathy and 

related risk factors in the diabetic population is heritable, as captured by common genome-

wide SNPs. These findings are complementary to discoveries made in the population-based 

association studies for diabetic retinopathy and related risk factors using common genome-

wide SNPs [28,71–73]. This study provided the evidence for genetic and environmental 

correlations between metabolic traits in the diabetic populations, which has been previously 

observed in non-diabetic population [108]. This is consistent with the premise of the 

analysis of genetic correlated phenotypes in genome-wide association scans [165]. We 

detected positive environmental correlation of retinopathy with total cholesterol, and 

cholesterol with HbA1c, which prompts joint correlation analysis of retinopathy with lipids 
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and glycaemic exposure for improving clinical management of diabetic retinopathy. In 

agreement with a previous study using a similar approach [108], we found the precision for 

heritability and correlation estimates from genome-wide SNPs could be improved with an 

increased sample size in future studies.  
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Chapter 5  

The SUMMIT genome-wide meta-analysis 

of diabetic retinopathy 

 

5.1 Introduction 

As demonstrated in the previous chapter, mounting evidence suggests there is a strong 

heritable genetic contribution to the development of retinopathy in the GoDARTS 

population sample. To date, genome-wide association studies (GWAS) have been shown to 

be a fruitful strategy in identifying natural genetic variations and causal genes associated 

with type 1 and type 2 diabetes [72,80,166,167], pharmacoresponses in the type 2 diabetic 

population [86] and additional diabetes-related complex traits [168]. However, the  handful 

of diabetic retinopathy GWAS that are published have not identified any loci with genome 

wide significance [28,81–83]. These analyses are based upon limited sample sizes of 
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diabetic retinopathy cases and controls, and for example, the whole-genome meta-analysis 

of severe diabetic retinopathy, the largest retinopathy data analysis of all published 

retinopathy GWAS, included 937 cases and 1,856 controls. These sample sizes are 

underpowered to identify retinopathy risk loci with moderate effects. 

 

Compared to these previous analyses, in this study, the GoDARTS cohort contributed 1,942 

diabetic retinopathy cases and 2,014 controls in the discovery phase of a whole-genome 

association scan, and overall with collaborators in SUMMIT, the meta-analysis included 

5,422 cases and 4,302 controls in the GWAS analysis, which becomes the largest GWAS of 

diabetic retinopathy to date. In addition, this study analysed 1000 Genomes imputed genetic 

variants, which is the largest set of variants being studied for the association with diabetic 

retinopathy. Through these initiatives, we aimed at achieving adequate power to detect 

diabetic retinopathy susceptibility loci from genome-wide genetic variants, and robustly 

identify causal genes. 

 

5.2 Results 

5.2.1 Characteristics of the GoDARTS study sample 

Clinical characteristics of the GoDARTS study sample are provided in Table 5-1. Controls 

have minimally higher mean of age and lower mean of serum creatinine and HbA1c, but 

other clinical profiles are comparable. 
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Table 5-1 Clinical characteristics of retinopathy cases (n = 1942) and controls (n = 

2014) of the GoDARTS cohort.  

 

 Cases Controls 

Trait Mean SD Mean SD 

Age (years) 60.1 11.5 68.9 10.8 

BMI (kg/m
2
) 30.3 5.5 31.4 6.1 

Cholesterol (mmol/l) 4.7 1.1 4.5 1.0 

Serum creatinine (µmol/l) 100.3 28.9 89.7 27.2 

DBP (mmHg) 76.0 10.3 76.9 10.6 

HbA1c % (mmol/mol) 7.8% (61.4) 1.5% (16.4) 7.1% (54.5) 1.2% (13.4) 

HDL-c (mmol/l) 1.3 0.4 1.3 0.4 

SBP (mmHg) 142.8 18.8 139.2 18.0 

Triglycerides (mmol/l) 2.1 1.2 2.3 1.3 

Non-HDL-c (mmol/l) 3.4 1.1 3.2 1.0 

Sex (%) F (44.4%) M (55.6%) F (45.3%) M (54.7%) 
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5.2.2 Meta-analysis study data 

The meta-analysis study included 9,724 individuals from EURODIAB, FinnDiane, 

GoDARTS and SDR cohorts in 1000 Genomes imputed variants (Table 5-2 and Table 5-3). 

GoDARTS and SDR population samples comprised of genetically unrelated individuals 

and related relatives. Genome-wide meta-analyses were performed independently in 

genetically unrelated samples and mixed samples (section 2.8.3). 
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Table 5-2 Sample sizes for meta-analysis study cohorts. Sizes for genetically unrelated 

samples are shown in the brackets. 

 

Cohort Cases Controls Total 

EURODIAB (T1D) 201 249 450 

SDR (T1D) 490 (472) 142 (140) 632 (612) 

SDR (T2D) 1151 (1066) 865 (815) 2016 (1881) 

GoDARTS (T1,2D) 1142 (1022) 882 (778) 2024 (1800) 

GoDARTS-SUMMIT (T1,2D) 800 (725) 1132 (1020) 1932 (1745) 

FinnDiane (T1D) 1638 1032 2670 

Total 5422 (5124) 4302 (4034) 9724 (9158) 

 

 

Table 5-3 1000 Genomes imputed genetic variants included in the meta-analyses of 

genetically mixed  and genetically unrelated (numbers enclosed in the brackets) study 

samples. QC: quality control.  

 

Cohort Pre-QC genetic variants Post-QC genetic variants 

EURODIAB (T1D) 37,524,910 (37,524,910) 9,091,275 (9,091,275) 

SDR (T1D) 15,077,368 (15,091,253) 7,044,378 (7,051,662) 

SDR (T2D) 15,078,384 (15,092,269) 9,258,178 (9,267,780) 

GoDARTS (T1,2D) 13,658,156 (13,658,156) 8,364,025 (8,364,025) 

GoDARTS-SUMMIT (T1,2D) 15,005,754 (15,005,754) 9,037,594 (9,037,594) 

FinnDiane (T1D) 14,324,304 (14,337,518) 9,330,927 (9,344,876) 

Meta-analysis --- 9,508,089 (10,444,012) 
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5.2.3 Loci associated with diabetic retinopathy 

The resulting Manhattan plots of meta-analysis association results are shown in Figure 5-1, 

which showed top association signals clustered on chromosome 1 (1p34-p32 and 1q43), 

chromosome 2 (2p12-p11.1, 2q11.2 and 2q32.1), chromosome 3 (3p24.3 and 3q24), 

chromosome 4 (4q28-q32), chromosome 5 (5p14 and 5q31.3), chromosome 6 (6p21 and 

6q16.1), chromosome 9 (q13-q21.2), chromosome 11 (11q21), chromosome 12 (12p11.22), 

chromosome 13 (13q32), chromosome 17 (17q25.1), chromosome 19 (19q13.11) (Table 

5-4 and Table 5-5).  

 

The resulting quantile-quantile plots are shown in Figure 5-2, and the genomic inflation 

factor estimates are 1.00 and 1.01, respectively. The quantile-quantile plot of meta-analysis 

in the mixed genetic relatedness samples showed more associations with significant P 

values observed than expected (Figure 5-2b), although P values of both analyses were 

strongly correlated (Figure 5-3). P values of the top independent signal SNPs were close to 

the genome-wide significance (that is, 5.00×10
-8

) (Table 5-4). Top signal variants in 

independent regions of associations with P value < 10
-5

 are provided in Appendix Table C-

1, and the functional annotation of the closest gene is shown in Appendix Table C-2. Four 

independent signal SNPs had P values below 10
-6

, with the highest significant locus being 

rs10746970 (P value of 2.22×10
-7

). Heterogeneity of genetic effects was minimally small 

for top ranked SNPs in the meta-analysis (Table 5-4). In the regional association plots 

(Figure 5-4), the four top ranked SNPs each showed strong linkage disequilibrium with 

adjacent SNPs, suggestingthe association signal originated from a single region. We found 

that top signal SNPs are close to genes that are implicated in carbohydrate/lipid metabolic 

processes, function, activity of neuronal and glial cells, and transcription regulation (Table 



143 

 

 

 

5-5). As of 18 October 2014, none of these top independent association SNPs was 

previously reported in the database of published GWAS 

(http://www.genome.gov/gwastudies/) [169]. 

 

With the estimated prevalence (9.59%) of diabetic retinopathy in GoDARTS at the 

recruitment time, statistical power for achieving genome-wide significance in each single-

marker test of the genome-wide meta-analysis rose with increased relative risk and minor 

allele frequencies (MAFs) (Table 5-6 and Figure 5-5). With the current sample size, 

maximum achievable power at the relative risk of 1.1 or less was 0.025, and when the 

relative risk was 1.5 or more and MAF was 0.05 or greater, power was 0.973 or greater 

(Table 5-6).   

http://www.genome.gov/gwastudies/
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Figure 5-1 Manhattan plots of meta-analysis association results in the genetically 

unrelated samples (a) and mixed samples (b). The genome-wide significance threshold 

(P value of 
85 10 ) is shown as the horizontal line.  

 

(a) 
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(b) 
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Figure 5-2 Quantile-quantile plots of meta-analysis association results in the 

genetically unrelated samples (a) and mixed samples (b). 95% confidence intervals are 

shown as the shaded area.  

 

(a) 
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(b) 
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Figure 5-3 Correlations of meta-analysis P values, provided by Dr William Rayner, 

Oxford University, based on the genetically unrelated sample analysed by the 

SNPTEST software (version 2.4.1) and the genetically mixed samples analysed by 

EMMAX beta or GEMMA (version 0.93). 
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Figure 5-4 Regional association plots for top independent signal SNPs of (a) 

rs10746970, (b) rs1653654, (c) rs75125621 and (d) rs2657795 in the SUMMIT meta-

analysis of diabetic retinopathy. In the association region, neighbouring SNPs were 

coloured according to the linkage disequilibrium (r
2
) with the index SNP (purple). 

Blue spikes indicate loci of high recombination rates within the 400 K base pair (bp) 

either side of the index SNP.  

 

 (a) 
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(b) 
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(c) 
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(d) 
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Table 5-4 Top independent (defined by >100 Kbp) signal SNPs in the whole-genome meta-analysis of diabetic retinopathy. Chr: 

chromosome. 

 

Chr. Position
a
 SNP 

Effective 

allele 

frequency
 b

 

Effective/ 

alternative 

allele
c
 OR (95% CI)

d
 

Meta 

P value
e
 

I
2
 (%), 

P value
f
 

 

Effect 

directions
g
 

9 77817536 rs10746970 0.68 A/T 1.19 (1.11, 1.27) 2.22 × 10
-7

 0, 6.46 × 10
-1

 ++++++ 

2 81987573 rs1653654 0.03 A/G 0.63 (0.51, 0.78) 4.27 × 10
-7

 0, 8.32 × 10
-1

 ---?-- 

17 71368680 rs75125621 0.03 G/A 0.61 (0.49, 0.77) 6.13 × 10
-7

 60, 4.03 × 10
-2

 -+-?-- 

4 145350264 rs2657795 0.21 A/C 0.82 (0.76, 0.89) 8.25 × 10
-7

 2, 3.98 × 10
-1

 ------ 

2 184738091 rs1682430 0.89 C/T 1.24 (1.10, 1.39) 1.07 × 10
-6

 21, 2.71 × 10
-1

 +++??+ 

5 141158686 rs10072382 0.02 A/G 1.99 (1.52, 2.62) 1.30 × 10
-6

 28, 2.41 × 10
-1

 +?+?++ 

13 93033916 rs9516067 0.56 A/G 1.16 (1.09, 1.24) 1.81 × 10
-6

 51, 6.69 × 10
-2

 ++++++ 

1 35627132 rs6425936 0.50 A/G 0.76 (0.68, 0.85) 1.83 × 10
-6

 16, 3.08 × 10
-1

 -??--- 

6 37583911 rs810855 0.21 C/T 0.83 (0.77, 0.90) 1.98 × 10
-6

 0, 7.97 × 10
-1

 ------ 

1 80022362 rs55939932 0.02 T/C 0.48 (0.36, 0.65) 2.01 × 10
-6

 0, 8.98 × 10
-1

 ---?-- 

3 146324544 rs163757 0.36 A/T 0.86 (0.80, 0.93) 2.79 × 10
-6

 0, 9.99 × 10
-1

 ------ 

1 240674842 rs35428289 0.21 A/G 1.22 (1.12, 1.32) 3.11 × 10
-6

 0, 4.73 × 10
-1

 ++++++ 

12 27969088 rs10771375 0.44 G/A 0.87 (0.81, 0.93) 3.13 × 10
-6

 0, 8.48 × 10
-1

 ------ 

11 93564393 rs601711 0.64 T/C 1.17 (1.09, 1.25) 3.35 × 10
-6

 0, 4.55 × 10
-1

 ++++++ 

1 41835871 rs4660191 0.97 G/A 1.75 (1.38, 2.21) 3.71 × 10
-6

 6, 3.76 × 10
-1

 -+++++ 
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Chr. Position
a
 SNP 

Effective 

allele 

frequency
 b

 

Effective/ 

alternative 

allele
c
 OR (95% CI)

d
 

Meta 

P value
e
 

I
2
 (%), 

P value
f
 

 

Effect 

directions
g
 

6 93361564 rs7750013 0.94 C/A 1.45 (1.22, 1.73) 4.05 × 10
-6

 0, 7.35 × 10
-1

 ++++++ 

19 32473222 rs8113622 0.33 T/G 0.86 (0.80, 0.92) 4.06 × 10
-6

 0, 6.13 × 10
-1

 ------ 

3 22624716 rs73033654 0.08 T/C 1.30 (1.15, 1.47) 4.20 × 10
-6

 34, 1.78 × 10
-1

 +++-++ 

2 101346696 rs7579862 0.19 G/A 1.19 (1.08, 1.30) 4.22 × 10
-6

 0, 5.36 × 10
-1

 +++??+ 

5 26698737 rs72758936 0.03 A/G 0.63 (0.52, 0.77) 4.33 × 10
-6

 39, 1.61 × 10
-1

 +--?-- 

 

a 
Human genome build 37, assembly hg19. 

 

b, c & d 
Effective allele frequency, effective/alternative allele, odd ratio and 95% CI were extracted from the meta-analysis of the genetically 

unrelated samples, whereas in the genetically mixed samples, estimates of effective allele frequency and odds ratio may be biased. 

 

e & f 
Meta and heterogeneity P values were extracted from the meta-analysis of the genetically mixed samples, which included more 

individuals, but this modelling strategy does not provide the estimation of odds ratios. 

 

g 
Directions of effect (that is the sign of log odd ratio) were extracted from the meta-analysis of the genetically unrelated samples in the order 

of EURODIAB, GoDARTS Affymetrix and Illumina genotyped samples, SDR type 1 and 2 diabetes samples and FinnDiane. 
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Table 5-5 The closest gene and the gene functional annotation for top independent (defined by >100 Kbp) signal SNPs in the whole-

genome meta-analysis of diabetic retinopathy. The regulatory region of a gene is defined by <250 Kbp upstream from the 

transcription start site (TSS), and >250 Kbp upstream from TSS is characterised as intergenic.  

 

Locus SNP Region Closest Gene Gene Function 

9q13-q21.2 rs10746970 Regulatory OSTF1 Ossification 

2p12-p11.1 rs1653654 Intergenic CTNNA2 Structural constituent of cytoskeleton 

17q25.1 rs75125621 Intronic SDK2 Cell adhesion 

4q28-q32 rs2657795 Regulatory HHIP Carbohydrate metabolic process 

2q32.1 rs1682430 Intergenic ZNF804A Transcriptional control 

5q31.3 rs10072382 Regulatory PCDH1 Nervous system development 

13q32 rs9516067 Intronic GPC5 Carbohydrate metabolic process 

1p34.3 rs6425936 Regulatory SFPQ DNA recombination and repair, RNA splicing 

6p21 rs810855 Regulatory MDGA1 Neuron migration 

1p33-p32 rs55939932 Regulatory ELTD1 Neuropeptide signaling pathway 

3q24 rs163757 Exonic PLSCR5 Unknown 

1q43 rs35428289 Intronic GREM2 Regulation of cytokine activity 

12p11.22 rs10771375 Regulatory KLHL42 Regulation of microtubule-based process 

11q21 rs601711 Intronic VSTM5 Transmembrane protein 

1p34.2 rs4660191 Intronic FOXO6 Sequence-specific DNA binding transcription factor activity 
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Locus SNP Region Closest Gene Gene Function 

6q16.1 rs7750013 Intergenic EPHA7 Retinal ganglion cell axon guidance 

19q13.11 rs8113622 Intergenic ZNF507 Regulation of transcription 

3p24.3 rs73033654 Regulatory ZNF385D Regulation of transcription 

2q11.2 rs7579862 Regulatory NPAS2 Cellular lipid metabolic process, central nervous system development 

5p14 rs72758936 Regulatory CDH9 Cell-cell adhesion 
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Figure 5-5 Power estimates for a additive single-marker test in a genome-wide meta-analysis/association studty of diabetic 

retinopathy, with retinopathy prevalence of 9.59% estimated in the GoDARTS diabetic populaiton at the recruitment time. The data 

were stratified by minor allele frequencies (MAF) and the effect sizes (relative risk) displayed in panels from left to right. Power and 

the case/control size (assuming equally sized cases and controls) were shown on the y- and x-axes respectively.  
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Table 5-6 Power estimates for each addititive single-marker test of genome-wide 

meta-analysis of diabetic retinopathy (5,422 cases and 4,302 controls). MAF: minor 

allele frequency. The assumed prevalence rate was 9.59% as in GoDARTS at the 

recruitment time. 

 

Relative risk MAF Power 

1.1 0.05 0.000 

1.1 0.10 0.001 

1.1 0.20 0.006 

1.1 0.30 0.015 

1.1 0.40 0.023 

1.1 0.50 0.025 

1.2 0.05 0.011 

1.2 0.10 0.124 

1.2 0.20 0.545 

1.2 0.30 0.771 

1.2 0.40 0.838 

1.2 0.50 0.827 

1.3 0.05 0.209 

1.3 0.10 0.787 

1.3 0.20 0.994 

1.3 0.30 1.000 

1.3 0.40 1.000 

1.3 0.50 1.000 

1.5 0.05 0.973 

1.5 0.10 1.000 

1.5 0.20 1.000 

1.5 0.30 1.000 

1.5 0.40 1.000 

1.5 0.50 1.000 

2.0 0.05 1.000 
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2.0 0.10 1.000 

2.0 0.20 1.000 

2.0 0.30 1.000 

2.0 0.40 1.000 

2.0 0.50 1.000 
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5.3 Conclusions 

In this study, we performed the largest genome-wide meta-analysis to date of retinopathy 

from patients with type 1 and type 2 diabetes. This study considered genetic unrelated and 

mixed relatedness samples separately, as the unbiased estimation of odds ratio requires the 

study sample reflective the underlying population that consists of largely genetically 

unrelated individuals. Besides, so as to increase study power, linear mixed model was 

applied to the analysis of the genetically mixed sample, which in contrary to the logistic 

regression approach employed separately for the unrelated sample, does not provide an 

estimate for odds ratio. Thus, we included the statistics from these analyses. In the current 

study, we identified the most significant signal SNP rs10746970 (P value of 2.22×10
-7

). In 

this study, we found diabetic retinopathy risk loci 1q43, 2q32.1, 6q16.1 13q32 identified in 

this study are in close proximity to regions of 1q13-42, 2q31-47, 6q22-27 and 13q14-32 

that were previously reported in smaller sized genome-wide association studies of diabetic 

retinopathy [28,81–83]. Additionally, we discovered previously unreported retinopathy risk 

loci of 1p34-p32, 2p12-p11.1, 2q11.2, 3p24.3, 3q24, 4q28-q32, 5p14, 5q31.3, 6p21, q13-

q21.2, 11q21, 12p11.22, 17q25.1 and 19q13.11 (Table 5-9). The identification of extensive 

susceptibility loci is suggestive of polygeneic effects contributing to the development of 

diabetic retinopathy. The closest genes to these loci have been implicated in multiple 

physiological processes including carbohydrate/lipid metabolism, functional activity in the 

neuronal and glial cells, and transcription regulation.  

 

The strongest signal SNP rs10746970 is located in the intergenic region of OSTF1 

(osteoclast stimulating factor 1) at 9q13-21.2. Encoded OSTF1 is an intracellular protein, 

and its known function include the indirect stimulation of the formation of osteoclasts and 
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bone resorption, a continual bone renewal process involving bone breaking down by 

osteoclasts, releasing of minerals in the medium of bone fluid into the circulation [170]. 

The OSTF1 protein is expressed in brain, platelets and white blood cells including 

monocytes, neutrophils, and lymphocytes (based on the protein expression databases of 

MOPED [171], PaxDb [172] and MaxQB [173]). OSTF1 was studied in a SNP array of 

candidate genes for osteoporosis, an imbalance between the resorption and the formation of 

bone [174]. However, as of 18 October 2014, neither this SNP nor the closest gene OSTF1 

was reported in the GWAS Catalog. . Patients with the genetic disorder of 9q21 deletions 

showed mental retardation with speech delay, epilepsy and facial dysmorphy [175]. The 

physiological role of OSTF1 in the aetiology of diabetic retinopathy is currently unknown. 

 

The second strongest association signal rs1653654 is in an intergenic region of CTNNA2, 

catenin (cadherin-associated protein) alpha 2 at 2p12-p11.1. Catenin alpha-2 is a scaffold 

protein in the cytoskeleton, and its function is implicated in cell-cell adhesion, cell 

morphogenesis and differentiation of the nervous system. Catenin alpha-2 is highly 

expressed in the brain (based on the protein expression databases of MOPED, PaxDb and 

MaxQB). No reported association was found for rs1653654 in any published GWAS. 

However, the CTNNA2 gene was reported in the genome-wide association analyses of eye 

colours [176], bipolar disorder [177], Alzheimer’s disease [178], orthostatic hypotension 

[179] and excitement-seeking [180]. The connection of CTNNA2 with diabetic retinopathy 

awaits further investigations.  

 

These support suggestive functional associations of top ranked SNPs in the meta-analysis 

with diabetic retinopathy. However, statistically significant SNPs identified in this study 
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were novel (Appendix Table A-1). These variants and the nearest genes have not been 

reported in candidate polymorphism, genome-wide linkage or previous genome-wide 

association studies (Table 5-7, Table 5-8 and Table 5-9). None of the previous GWAS 

signals shown in Table 5-9 achieved the genome-wide significance in our meta-analysis 

after correction for multiple testing (data not shown). 

 

A major strength of this study is the deeply phenotyped data of retinopathy in the large, 

homogenous European diabetic cohorts. This should help control population stratification 

and reduce differential environmental influences. This study attained cohort samples 

overall close to 10,000 subjects, which increased the opportunity of discovering retinopathy 

susceptibility loci. Another advantage of this study is the utility of 1000 Genomes 

imputation which increased the size of genetic variants to several fold greater compared to 

Hapmap Phase II imputation. This should help increasing the probability of identifying 

association variants across the allele frequency spectrum, including relatively rare variants. 

In addition, this study analysed diabetic retinopathy associations in both genetically 

unrelated and mixed samples. Association data from the genetically unrelated sample 

provided an unbiased estimation of effect size for the genetic effect. The analysis of the 

genetically mixed sample enlarged the study sample sizes, resulting in a modest increase in 

the association results.  

 

In this study, we made every effort to standardise different clinical classification and 

grading systems for diabetic retinopathy between cohorts in SUMMIT. However, the 

complete compatibility of diabetic retinopathy phenotype definitions across studies may be 

difficult to attain. Additionally, the use of imputation to augment the number of genetic 
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variants in the study may introduce inaccurately predicted genotypes, as this is reflected by 

the mean correlation between imputed and true genotypes of 0.82 to 0.91 [181]. When this 

error rate is applied to the scale of several million variants, the size of inaccurately imputed 

genotypes may be substantial. Thirdly, we did not adjust retinopathy for the duration of 

diabetes, as negative durations were observed (Figure 2-3), despite of cross-validation of 

diabetes diagnosis dates with laboratory biochemistry records. Thus, the fidelity of dates of 

retinopathy screening in the database may be open to questioning, which however, was 

recognised as a drawback of an observational study in contrast to a prospective cohort, as 

the retinal screening was initiated in the early 1990s when the recording, entry, and 

annotation of the vast amount of retinopathy data was completely manual. In our data, we 

observed retinopathy cases declining over the durations of diabetes since the time of 

diabetes diagnosis, whilst the number of retinopathy controls peaked at approximately 5 

years of duration of diabetes. This was likely reflective of possible imprecision of diabetes 

diagnosis dates in the GoDARTS database, and a more probable justification is that patients 

with diabetes may be undiagnosed for years till the manifestation of secondary 

complications, such as retinopathy. Finally, population outliers were identified from 

multidimensional scaling of identity by descent (IBD) and subsequently removed. Thus, 

within the genetically unrelated sample, there was no further population stratification such 

as genetic relatedness to be accounted for, whereas in the genetically mixed sample, linear 

mixed model used in the analysis captured genetic relatedness simultaneously [121]. Thus, 

further adjustment by principal components was not imperative as exemplified by previous 

GWAS publications [182].  
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We estimated statistical power of each additive test of markers in the genome-wide meta-

analysis of diabetic retinopathy. This data was suggestive of a rapid rise in power for 

detecting genome-wide significant SNPs with an increase of the relative risk from 1.1 to 1.3. 

This trend was supported by a previous study (Figure 5-6) [87]. Additionally, the study 

power was 0.973 or greater for SNPs with MAF of 0.05 or greater, which was supportive of 

the proposition that diabetic retinopathy is a polygenic phenotype with each genetic variant 

conferring a small risk. These rare variants may remain undetected in this meta-analysis. 

Nevertheless,  power estimation assumed the same rate of diabetic retinopathy prevalence 

across study cohorts, and the actual power of this meta-analysis may be influenced by the 

prevalence rate within each cohort. 

 

In summary, this study utilised the whole-genome meta-analysis approach to investigate 

genetic susceptibility of diabetic retinopathy. We observed strong genetic associations with 

diabetic retinopathy across the genome, but none have achieved the stringent genome wide 

significance. A number of these association regions were confirmed by smaller-sized 

association studies of diabetic retinopathy. While the pathophysiology of diabetic 

retinopathy remains elusive, genes in the pathways of carbohydrate/lipid metabolism, the 

functional activity in the neuronal and glial cells, and transcription regulation are 

implicated in the development of diabetic retinopathy. We expect the addition of further 

cohorts to the genome-wide meta-analysis from the CHARGE (Cohorts for Heart and 

Aging Research in Genomic Epidemiology) and East Asia Eye consortiums where we hope 

to achieve over 10,000 cases versus 10,000 controls. This is likely to improve the statistical 

power for detecting variants with moderate effect sizes, and thus P values of diabetic 

retinopathy association results are more likely to attain the genome-wide significance.   
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Table 5-7 Genetic variants of candidate genes for diabetic retinopathy (DR) in the 

European heritage population reported in a systematic meta-analysis [183].  INDEL: 

insertion-deletion polymorphisms; PDR: proliferative DR. 

 

Gene  Variant Risk 

allele 

DR 

definition 

Type of 

diabetes 

P Reference 

ACE INDEL at 

intron 16 

287 bp 

deletio

n 

No DR vs. 

any DR 

Type 1 0.54 [184–189] 

    Type 2 0.92 [186,190–192] 

    Total  0.72  

   No DR vs. 

PDR 

Type 1 0.44 [184,185,187,188] 

    Type 2 0.56 [192] 

    Total  0.30  

   NPDR vs. 

PDR 

Type 1 3.0×10
-4 [187] 

    Type 2 0.19 [192,193] 

    Total 0.05  

NOS3 rs3138808 393 bp 

inserti

on 

No DR vs. 

any DR 

Type 1 3.6×10
-3 [194] 

    Type 2 0.62 [195] 

    Total  0.45  

VEGF rs2010963 G No DR vs. 

any DR 

Type 2 0.16 [196,197] 

AKR1

B1 

rs759853 T No DR vs. 

any DR 

Type 1 1.0×10
-4 [198,199] 

    Type 2 0.68 [200] 

    Total 0.21  

AKR1

B1 

microsatel

lite 

z No DR vs. 

any DR 

Type 1 0.38 [198,201,202] 

    Type 2 0.05 [203] 

    Total 0.81  
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  z No DR vs. 

PDR 

Type 1 0.20 [202] 

    Type 2 0.05 [203] 

    Total 0.79  

  z-2 No DR vs. 

any DR 

Type 1 0.12 [198,201,202] 

    Type 2 9.1×10
-3 [203] 

    Total 0.03  

  z-2 No DR vs. 

PDR 

Type 1 0.80 [202] 

    Type 2 9.1×10
-3 [203] 

    Total 0.42  

  z+2 No DR vs. 

any DR 

Type 1 0.07 [202] 

    Type 2 0.30 [203] 

    Total 0.04  

  z+2 No DR vs. 

PDR 

Type 1 0.88 [198,201,202] 

    Type 2 0.30 [203] 

    Total 0.46  
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Table 5-8 Human chromosome regions showing evidence of linkage to diabetic 

retinopathy (DR) (logarithm of odds, LOD > 1) [204]. NPDR/PDR: non-

proliferative/proliferative DR.  

 

Locus Closest 

microsatellite 

marker 

Diabetic retinopathy 

definition 

Population LOD 

score 

Reference 

1p36 D1S3669 Retinopathy score in 

worst eye  

Pima Indians 3.10 [153] 

1p36 GGAT2A07  Any DR Mexican 

Americans 

1.24 [205] 

2q37 AFM112yd4  Severe NPDR/PDR Mexican 

Americans 

1.11 [205] 

3p26 GATA22G12 Severe NPDR/PDR Mexican 

Americans 

1.29 [205] 

3q12 GATA68D03 Severe NPDR/PDR Mexican 

Americans 

1.40 [205] 

3q12 GATA68D03 Any DR Mexican 

Americans 

2.41 [205] 

3q26 D3S3053, 

D3S2427 

Presence of at least one 

microaneurysm, 

haemorrhage or PDR 

Pima Indians 1.36 [206] 

7p15 GATA41G07 Any DR Mexican 

Americans 

1.02 [205] 

9q21 D9S1120, 

D9S910 

Presence of at least one 

microaneurysm, 

haemorrhage or PDR 

Pima Indians 1.46 [206] 

12p13 GATA49D12 Any DR Mexican 

Americans 

2.47 [205] 

12q23 GATA85A04 Severe NPDR/PDR Mexican 

Americans 

1.03 [205] 

15q25 ATA28G05 Any DR Mexican 

Americans 

1.07 [205] 

15q26 GATA22F01 Any DR Mexican 

Americans 

1.16 [205] 
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Table 5-9 Diabetic retinopathy (DR) associated SNPs reported in GWAS to date. DR characterisation in references [81], [82], [83] 

and [28] is moderate-to-severe non-proliferative and proliferative DR (PDR) in type 2 diabetic patients, non-proliferative and PDR 

in type 2 diabetic patients, diabetic macular edema and PDR in type 1 diabetic patients, and PDR in type 2 diabetic patients, 

respectively.  

 

Locus SNP Population Reference 

allele 

OR (95% 

CI) 

P Closest 

Gene 

Function Reference 

6p12.1 rs6909083 Mexican 

Americans 

-- -- 1.80×10
-5 TINAG Nephrogenesis [81] 

6q22.31 rs17083119 Mexican 

Americans 

-- -- 2.76×10
-5 C6orf179 Unknown [81] 

1q23 rs1033465 Mexican 

Americans 

-- -- 4.50×10
-5 TNFSF18 T lymphocyte survival in 

peripheral tissues 

[81] 

1q13 rs11583330 Mexican 

Americans 

-- -- 5.35×10
-5 GNAI3 Transmembrane signaling 

pathways 

[81] 

1q42.11 rs3014267 Mexican 

Americans 

-- -- 6.58×10
-5 CDC42BPA Peripheral actin formation and 

cytoskeletal reorganization 

[81] 

15q13.3 rs11635920 Mexican 

Americans 

-- -- 7.18×10
-5 FMN1 Unknown [81] 

2q34 rs6726798 Mexican 

Americans 

-- -- 8.66×10
-5 FN1 Cell adhesion and migration 

processes 

[81] 

10q21.1 rs11812882 Mexican -- -- 8.85×10
-5 CISD1 Regulation of oxidation [81] 
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Locus SNP Population Reference 

allele 

OR (95% 

CI) 

P Closest 

Gene 

Function Reference 

Americans 

2q35 rs1106412 Mexican 

Americans 

-- -- 8.9×10
-5 USP37 Ubiquitin specific hydrolysis [81] 

3p24.2 rs11927173 Mexican 

Americans 

-- -- 9.4×10
-5 UBE2E2 Ubiquitin conjugation [81] 

8q22.3 rs3098241 Mexican 

Americans 

-- -- 9.7×10
-5 DCAF13 Signal transduction, pre-mRNA 

processing and cytoskeleton 

assembly 

[81] 

1p32.1 rs2811893 Taiwanese T 1.50 

(1.03:2.20) 

3.1×10
-7 MYSM1 Transcription regulation [82] 

4q32.1 rs4470583 Taiwanese A 1.16 

(0.70:1..92) 

4.3×10
-7 RPS14P7 Ribosomal protein [82] 

5q15 rs13163610 Taiwanese A 3.59 

(1.36:9.47) 

3.2×10
-16 KIAA0825 Unknown [82] 

10p12.31 rs12219125 Taiwanese T 1.62 

(1.02:2.58) 

9.3×10
-9 PLXDC2 Unknown [82] 

10q11.22 rs4838605 Taiwanese C 1.58 

(1.00:2.52) 

1.9×10
-9 ARHGAP22 Regulation of cell motility [82] 

10q21.1 rs4462262 Taiwanese C 1.54 

(0.79:2.99) 

9.2×10
-9 IPMK Nuclear mRNA export [82] 

13q32.1 rs2038823 Taiwanese C 2.33 

(1.13:4.77) 

4.7×10
-11 HS6ST3 Proliferation, differentiation, 

adhesion, migration, 

inflammation and blood 

coagulation 

[82] 
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Locus SNP Population Reference 

allele 

OR (95% 

CI) 

P Closest 

Gene 

Function Reference 

6q27 rs227455 Caucasian C 0.53 1.6×10
-7 C6orf118 Unknown [83] 

16p11.2 rs151320 Caucasian A 0.58 3.1×10
-6 CCDC101 Regulation of transcription [83] 

17p11.2 rs11871508 Caucasian A 0.27 4.8×10
-6 TVP23B Unknown [83] 

13q14.11 rs238252 Caucasian C 1.41 6.3×10
-6 AKAP11 Cell cycle control [83] 

16p12.1 rs11074904 Caucasian C 0.58 7.8×10
-6 SULT1A1 Sulfate conjugation of 

hormones, neurotransmitters, 

drugs, and xenobiotic 

compounds 

[83] 

10p12.31 rs17670074 Caucasian A 1.58 8.1×10
-6 PLXDC2 Unknown [83] 

13q22.2 rs9565164 Taiwanese C 1.7 4.4×10
-7 TBC1D4 Unknown [28] 

2q31.1 rs1399634 Taiwanese A 1.5 4.2×10
-6 LRP2 Cell signaling  [28]  

2q37.1 rs2380261 Taiwanese T 1.5 4.7×10
-6 ARL4C Cholesterol transport [28] 

 

The study by Fu et al. [81]: Reference allele and odds ratio were not represented for these imputed SNPs. 

The study by Huang et al. [82]: Genotypes were dominantly coded, in contrast to the additive coding of genotypes in other referenced 

studies. 

The studies by Grassi et al. [83] and Sheu et al. [28]: 95% confidence intervals of odds ratio were not reported.  
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Figure 5-6 Power (solid lines) and genome coverage (dotted lines) assuming increasing 

relative risks (above each plot) with a range of sample sizes and frequencies of relative 

risk allele (RAF) in the CEU and YRI Hapmap population samples, adapted from [87]. 
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Chapter 6  

Concluding remarks 

 

Deciphering the pathophysiology of diabetic retinopathy has been a long endeavour for 

research scientists. During the past two decades, the establishment and the growth of 

densely phenotyped diabetic retinopathy cohorts exemplified by GoDARTS raised the 

opportunity for studying common clinical risk factors for retinopathy at a population-wide 

scale [10,11,15,17,20]. Much of the aetiology of diabetic retinopathy remains elusive. Thus, 

the main objective of our research was to study clinical and genetic determinants of diabetic 

retinopathy in the GoDARTS cohort. Retinopathy risk factors adjusted in the current 

studies for this thesis did not form the exhaustive list, but rather the most common life style 

factors towards the development of retinopathy in the diabetic population. It is possible that 

other confounding factors with moderate risk effect may exist, and yet to be further studied. 

For example, pregnancy was one of the contributing factors towards the exacerbation of 

diabetic retinopathy in 10% of cases [218].  
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First, we utilised the multi-state Markov model for studying the influence of common 

population risk factors on the progression and remission of diabetic retinopathy by 

capturing longitudinal retinal events in 4,758 GoDARTS patients since the diagnosis of 

diabetes for up to 16 years’ follow up. As this statistical model was computational intensive 

for each single analysis, the application of this methodology to a genome-wide scale 

became futile. In the later study, we used one-time measures of diabetic retinopathy to 

investigate heritability and genetic correlation for diabetic retinopathy and related risk 

factors explained by common genome-wide SNPs. The estimated narrow-sense heritability 

for diabetic retinopathy captured by whole-genome SNP data was supportive of common 

genetic polymorphisms underpinning diabetic retinopathy. This provided a strong basis for 

the genome-wide meta-analysis of diabetic retinopathy with the SUMMIT collaborators 

(EURODIAB, FinnDiane and SDR cohorts).  

 

In the genetic study of retinopathy, we pooled samples from type 1 and type 2 diabetic 

populations, as we aimed to attain greater study power to detect moderate genetic effects. 

Despite that the clinical profiles of type 1 and type 2 diabetes may differ considerably, 

retinal vascular dysfunctions, such as haemorrhages, occlusion and retinal 

neovascularisation was previously shown to be common in both types of diabetes [207,208]. 

Akin to the previous studies [207,208], the sample pooling approach we adopted here for 

studying retinopathy was considered unbiased and sensitive in detecting retinal 

abnormalities. In the following sections, we will discuss the main conclusions for these 

studies. 
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6.1 The influence of population risk factors on diabetic 

retinopathy severity over the duration of diabetes 

As described in Chapter 3, in the GoDARTS, the severity of diabetic retinopathy of each 

patient was captured by a series of follow-up observations for the duration of diabetes. This 

enabled us to delineate the rates of transitions across retinopathy states dependent upon the 

influence of common population risk factors. The key finding was that glycaemic exposure 

and blood pressure were strongly associated with the progression and remission of diabetic 

retinopathy. This discovery was consistent with previously reported diabetic retinopathy 

studies in which case-control or time-to-event phenotypes were analysed [21,142–151,155]. 

In this study, we found that with the adjustment of glycaemic exposure and blood pressure, 

the evidence for independent associations with transition rates across retinopathy states was 

insignificant for cholesterol, triglycerides and non-HDL-c. Our data suggested that the 

evidence for BMI, serum creatinine, HDL-c, sex and smoking influencing diabetic 

retinopathy progression and regression may be weak in the single covariate analyses after 

the adjustment of multiple testing. 

 

There are a number of conflicting reports of the risk effect of cholesterol, triglycerides, 

non-HDL-c, BMI, serum creatinine, HDL-c, sex and smoking status [209–211]. We 

suggest that these disagreements may have arisen from sources including covariates 

adjusted in these analyses, the units of these covariates (direct measures or transformed 

scales), the sample sizes of these studies, the ethnicity of the study sample, and the study 

definition of retinopathy (case-control, ordinal categorical phenotypes, time-to-retinopathy, 

or time serial data of retinopathy as in this study). The analytical approach we presented 
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here is permissible in the future research to study the stage-by-stage development of 

diabetic retinopathy influenced by therapeutic medicine and genetic variants. Further work 

is required to optimise the computational performance of the methodology in order for its 

application to genome-wide association analysis of millions of genetic variants. 

Nevertheless, our results are valuable for clinical prognosis and treatment of diabetic 

retinopathy. Indeed the Scottish Diabetes Research Group is now investigating this 

methodology to optimise retinal screening intervals at the population level. Importantly, the 

long duration of diabetes for patients in the states of no-retinopathy and mild background 

retinopathy due to the tight regulation of blood pressure and glycaemic exposure provides 

the evidence for a stratified approach to personalise screening intervals. This may have a 

great impact on increasing the efficacy and decreasing the cost of the national screening 

programme. 

 

6.2 Heritability and genetic correlations explained by 

common SNPs for diabetic retinopathy and related 

risk factors 

The study presented in Chapter 4 was motivated by the observation that a large proportion 

of narrow-sense heritability and genetic correlations of metabolic traits in a non-diabetic 

population sample were captured by common genome-wide SNPs [108]. However, the 

methodology (the restricted maximum likelihood estimation) was only applicable to traits 

quantitative in nature, and it is computationally intractable for the analysis of ordinal traits 

such as diabetic retinopathy. Therefore, a Markov chain Monte Carlo (MCMC) sampling 
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algorithm was the only feasible method for a study of this kind. Dr Minghui Wang, 

Birmingham University, developed the software for running an efficient Gibbs sampler (an 

MCMC algorithm), and we applied it for the estimation of narrow-sense heritability and 

genetic correlation for diabetic retinopathy and related risk factors with the adjustment for 

age, sex and duration of diabetes in the GoDARTS Affymetrix 6 genotyped samples.  

 

In this study data, we found that up to 34% phenotypic variations of diabetic retinopathy 

were accounted for by total additive genetic variations. In the analysis of genetic and 

residual correlations, the wide credible intervals of our estimates limited our ability to make 

more meaningful inference. However, at the 5% significance level, retinopathy with 

cholesterol showed positive residual correlation in the genetically unrelated sample. Our 

data confirmed the negative genetic and residual correlation between triglycerides and 

HDL-c [108]. Triglycerides also showed residual correlation with total cholesterol and 

glycaemic exposure. 

 

We expect to discover more genetically correlated traits with diabetic retinopathy based on 

genome-wide SNP data with a larger sample. The main constraint with this plan lies within 

the slow convergence with the MCMC method, which took days and weeks to complete the 

analytical process at the current sample size. However, the utility of this methodology was 

vital, as the alternative, time-saving method remains applicable to pairs of numerical or 

binary traits [108]. In addition, for this methodology, it required an unbiased population 

sample, which is reflective of retinopathy prevalence in the population. Thus, due to this 

limitation, we did not include the GoDARTS Illumina genotyped samples that were 

selected for retinopathy. Future studies may be motivated to investigate an approach for 
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correcting ascertainment bias for ordinal traits in a non-random sample. The methodology 

we utilised here is also applicable to family data, where genome-wide variant data is 

unavailable, but trait phenotypes and familial relationship are known. In this case, the 

results of heritability and genetic correlations are accounted for by all genetic effects 

including additive, dominant, epistatic, maternal and paternal effects [63]. Future studies 

may also be interested in investigating pleiotropic effects of genome-wide variants [165]. 

Overall, this study may be the cornerstone of future studies of correlated clinical 

phenotypes.  

 

6.3 The SUMMIT genome-wide meta-analysis of diabetic 

retinopathy 

In Chapter 5, we presented the largest whole-genome meta-analysis of diabetic retinopathy 

to date, which included 9,724 retinopathy patients with either type 1 or type 2 diabetes. In 

this study, we identified top ranked association SNPs after the adjustment for age, sex and 

glycaemic exposure for diabetic retinopathy, and rs10746970 at 9q13-q21.2 was the 

strongest association signal (P value of 2.2 × 10
-7

). The association regions of 1q43, 2q32.1, 

6q22-27, and 13q14-32 were confirmed by previously published smaller-scaled association 

studies of diabetic retinopathy [28,81–83]. The closest genes are implicated in 

carbohydrate/lipid metabolism, functional activity in the neuronal and glial cells, and 

transcription regulation. These findings support the argument that a large number of genetic 

variants with moderate effects contribute to the development of diabetic retinopathy [212].  
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It is possible that SNPs with minor allele frequencies < 1%, un-genotyped loci with weak 

linkage disequilibrium with the genotyped/imputed SNPs, and copy number variants that 

have not been investigated in this study are also accountable for the predisposition of 

diabetic retinopathy [213]. It is increasingly likely that these challenges are solvable 

through the whole-genome sequencing technologies [214,215]. The plan for the next phase 

of this project is to seek the locus-based and whole-genome meta-analysis replication of 

diabetic retinopathy with the CHARGE (Cohorts for Heart and Aging Research in Genetic 

Epidemiology) [216] and East Asia Eye consortiums. With an increased sample size, it is 

hopeful that the top ranked association SNPs may be replicated to attain higher statistical 

significance. As the GoDARTS study is a source of high quality phenotype and genotype 

data of diabetic retinopathy, there may also an opportunity to integrate metabolomics and 

gene expression, when available, to investigate the complex system behaviour of diabetic 

retinopathy pathophysiology [217]. In conclusion, this study is the latest and the largest 

effort in mapping diabetic retinopathy susceptibility loci in the human genome. The follow-

up work may shed additional light on the pathological mechanism of diabetic retinopathy. 

 

6.4 Future studies 

This series of studies provided the stepping stone for future studies. For instance, research 

interest may arise from the study of the extreme phenotypes that may be retinopathy cases 

with good glycaemic control or progressed to retinopathy shortly after diabetes diagnosis. 

Wherever the dates of diabetes diagnosis were accurate, we would encourage the use of 

diabetes duration in the analysis. Despite of the unparalleled research efforts in the 

susceptibility of diabetic retinopathy, much of the genetic architecture linking 
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polymorphisms with cellular functions remains an under-explored area. Newer research 

motivation lies within the paradigm that genetic polymorphisms mediate functional impacts 

through differential gene transcription and mRNA translation. For example, the study by 

Pasquali et al. [219] formed the strong evidence that genetic polymorphisms of type 2 

diabetes are frequently mapped to non-coding regions of genes, and the observed risk 

alterations were attributable to the susceptibility loci differentially interacting with 

transcription factors regulating gene transcription (Figure 6-1). Similarly, the regulatory 

link between genetic polymorphisms and gene expression has been shown in other clinical 

phenotypes [220].  

 

In 2011, the study by Bixler et al. [221] showed that expression alterations of 5% genes in 

the retina under the diabetic state were not reversible by the insulin treatment in rats, 

implicating dysregulated gene expressions underlying the pathophysiology of diabetic 

retinopathy. In the following year, Kandpal et al. [222] identified transcriptomic signatures 

for diabetic retinopathy in mice and these differentially expressed genes were associated 

with a diverse range of cellular functions including inflammation, microvasculature and 

glucose metabolism. These observed expression changes were inhibited by attenuating the 

activity of RAGE or p38 MAP kinase [222]. In the same year, the study by Brondani et al. 

[223] became the first study to date investigating genetic polymorphisms (within the gene 

of uncoupling protein 1) associated with diabetic retinopathy through the correlation with 

differentially expressed genes (uncoupling protein 1 and superoxide dismutase-2) in human 

retina. However, few genetic polymorphisms and retina-expressed genes were examined in 

this study [223]. This offers the unprecedented potential for leveraging genome-wide 

polymorphism data in studying regulated gene expressions underlying the pathophysiology 
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of diabetic retinopathy. A study of this kind may demonstrate regulatome influenced by 

genetic polymorphisms associated with diabetic retinopathy, and also highlight possible 

interaction of genetic variants in the regulatory network. This may provide a detailed 

functional annotation of genetic polymorphisms underlying the susceptibility of diabetic 

retinopathy.  
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Figure 6-1 Alleles haboured at an enhancer cluster differentially regulate gene 

expression in the pancreatic islet [219]. In the pancreatic islet, the wild-type allele 

enhances the binding of transcription factor to the enhancer, and subsequently 

induces high-level transcription (the top panel). The type 2 diabetes risk allele inhibits 

the binding of transcription factor to the enhancer, leading to reduced gene expression 

in the pancreatic islet (to bottom panel). This was associated with pancreatic 

dysfunction.  

 

 

 

6.5 Publications 

The longitudinal analysis of diabetic retinopathy described in Chapter 3 was published 

[224]. We also participated in the replication of diabetic retinopathy risk loci for the 

Candidate gene Association Resource (CARe) study [225].  
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Appendix A MCMC data inspection tools: trace, density and 

autocorrelation plots 

A trace plot provides a visual tool for assessing the convergence of MCMC (here, Gibbs sampling) data. In a trace plot, sampled parameter 

values are plotted against the iteration number. Frequently, sampling data is collected after a period of software running, to ensure only non-

convergent data is filtered out. The MCMC sampling data is also named as a (Markove) chain, as this is sampled from population 

distributions guided by the Markov chain. The trace is informative of whether the data has converged to its stationary distribution (the 

unobserved distribution of true parameter values). An MCMC algorithm is efficient (mixed well), if it samples the space of parameter values 

rapidly. The trace plot is also informational of whether sampling is efficient. 

 

The sampled data may be convergent, if the distribution of sampled values does not show a systematic trend of upward or downward 

variations, as the iteration number increases. In a trace plot, this is recognised by a constant mean and variance.  
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Appendix Figure A-1 Traces [226] for (a) convergent MCMC data, (b) mixed convergence data with non-convergent initial values and (c) 

poor convergence data with unacceptable mixing. 
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(a) Sampled data appeared centred at 3, with very small fluctuations, suggesting that the MCMC chain may have converged. The example 

MCMC data traversed regions with low density. Therefore, it can be concluded that data is well mixed and converged. 
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(b) A chain with initial non-convergent values settled to convergence as sampling proceeded. The initial sampled data should be discarded. 
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(c) The trace explored very narrow range of parameter values within a period of iterations, indicating of poor mixing. The upward trend 

indicates the MCMC data is non-convergent. 
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MCMC data is a series of parameter values 1Y , 2Y , ..., NY  at equally spaced sampling time 1X , 2X , ..., NX . The lag k  autocorrelation is 

defined by 
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 [227]. It is anticipated that in a well-mixed MCMC data, autocorrelation would decrease with an 

increasing lag k . For example, the autocorrelation between the 1st sampled value of parameters and the 100
th

 value should be smaller than 

the autocorrelation between the 1
st
 value and 10

th
 value. Consistently high autocorrelations would indicate poor mixing, which is manifested 

in an autocorrelation plot as similarly heights of bars (values of autocorrelation).  

 

The density plot visually presents the distribution of sampled MCMC data, and can be used in inferring the statistical characteristics of this 

distribution (for example, the mode and the dispersion of the MCMC data). 
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Appendix B MCMC data plots for univariate mixed models 

 

Appendix Figure B-1 Trace, density and autocorrelation plots of genetic (Vg) and/or residual (Ve) variance, heritability (hg
2
) 

captured by common genome-wide SNPs for BMI and RET (an examplified sample) are shown. BMI: body mass index; RET: 

retinopathy.  
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Appendix C MCMC data plots for bivariate mixed models 

 

Appendix Figure C-1 Trace, density and autocorrelation plots of genetic (rg) and residual (re) correlation coefficients captured by 

common genome-wide SNPs for BMI-TG and HDL-TG (an examplified sample)are shown. BMI: body mass index; HDL (HDL-c): 

high-density lipoprotein cholesterol; TG: triglycerides.  
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Appendix Figure C-2 Density plots of genetic (rg) and residual (re) correlation coefficients captured by common genome-wide SNPs 

for RET-CHL and RET-CRE (an exemplified sample) are shown. CHL: cholesterol; CRE: serum creatinine; RET: retinopathy.  
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Appendix D The SUMMIT genome-wide meta-anlaysis of diabetic 

retinopathy 

 

Appendix Table D-1 Top signal SNPs in the indpendent regions (>100 Kbp) with the assocation significance (P value < 10
-5

) based on 

the SUMMIT genome-wide meta-analysis of diabetic retinopathy.  

 

Chr. Position
a
 SNP 

Effective 

allele 

frequency
 b

 

Effective/ 

alternative 

allele
c
 OR (95% CI)

d
 

Meta 

P value
e
 

I
2
 (%), 

P value
f
 

9 77817536 rs10746970 0.68 A/T 1.19 (1.11, 1.27) 2.22 × 10
-7

 0, 6.46 × 10
-1

 

2 81987573 rs1653654 0.03 A/G 0.63 (0.51, 0.78) 4.27 × 10
-7

 0, 8.32 × 10
-1

 

17 71368680 rs75125621 0.03 G/A 0.61 (0.49, 0.77) 6.13 × 10
-7

 60, 4.03 × 10
-2

 

4 145350264 rs2657795 0.21 A/C 0.82 (0.76, 0.89) 8.25 × 10
-7

 2, 3.98 × 10
-1

 

2 184738091 rs1682430 0.89 C/T 1.24 (1.10, 1.39) 1.07 × 10
-6

 21, 2.71 × 10
-1

 

5 141158686 rs10072382 0.02 A/G 1.99 (1.52, 2.62) 1.30 × 10
-6

 28, 2.41 × 10
-1

 

13 93033916 rs9516067 0.56 A/G 1.16 (1.09, 1.24) 1.81 × 10
-6

 51, 6.69 × 10
-2

 

1 35627132 rs6425936 0.50 A/G 0.76 (0.68, 0.85) 1.83 × 10
-6

 16, 3.08 × 10
-1
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Chr. Position
a
 SNP 

Effective 

allele 

frequency
 b

 

Effective/ 

alternative 

allele
c
 OR (95% CI)

d
 

Meta 

P value
e
 

I
2
 (%), 

P value
f
 

6 37583911 rs810855 0.21 C/T 0.83 (0.77, 0.90) 1.98 × 10
-6

 0, 7.97 × 10
-1

 

1 80022362 rs55939932 0.02 T/C 0.48 (0.36, 0.65) 2.01 × 10
-6

 0, 8.98 × 10
-1

 

3 146324544 rs163757 0.36 A/T 0.86 (0.80, 0.93) 2.79 × 10
-6

 0, 9.99 × 10
-1

 

1 240674842 rs35428289 0.21 A/G 1.22 (1.12, 1.32) 3.11 × 10
-6

 0, 4.73 × 10
-1

 

12 27969088 rs10771375 0.44 G/A 0.87 (0.81, 0.93) 3.13 × 10
-6

 0, 8.48 × 10
-1

 

11 93564393 rs601711 0.64 T/C 1.17 (1.09, 1.25) 3.35 × 10
-6

 0, 4.55 × 10
-1

 

1 41835871 rs4660191 0.97 G/A 1.75 (1.38, 2.21) 3.71 × 10
-6

 6, 3.76 × 10
-1

 

6 93361564 rs7750013 0.94 C/A 1.45 (1.22, 1.73) 4.05 × 10
-6

 0, 7.35 × 10
-1

 

19 32473222 rs8113622 0.33 T/G 0.86 (0.80, 0.92) 4.06 × 10
-6

 0, 6.13 × 10
-1

 

3 22624716 rs73033654 0.08 T/C 1.30 (1.15, 1.47) 4.20 × 10
-6

 34, 1.78 × 10
-1

 

2 101346696 rs7579862 0.19 G/A 1.19 (1.08, 1.30) 4.22 × 10
-6

 0, 5.36 × 10
-1

 

5 26698737 rs72758936 0.03 A/G 0.63 (0.52, 0.77) 4.33 × 10
-6

 39, 1.61 × 10
-1

 

6 79036864 rs1338321 0.63 G/A 1.16 (1.09, 1.25) 5.50 × 10
-6

 27, 2.32 × 10
-1

 

8 17983016 rs2739683 0.02 C/T 1.68 (1.36, 2.08) 6.10 × 10
-6

 0, 8.98 × 10
-1

 

1 35384605 rs6699355 0.87 T/C 0.78 (0.70, 0.87) 6.13 × 10
-6

 45, 1.02 × 10
-1

 

5 55643386 rs184989476 0.04 C/T 0.62 (0.50, 0.76) 6.33 × 10
-6

 21, 2.71 × 10
-1

 

8 127535431 rs10101440 0.87 T/G 0.80 (0.73, 0.88) 6.83 × 10
-6

 0, 4.23 × 10
-1

 

2 88720222 rs72929232 0.05 G/A 0.71 (0.62, 0.82) 6.87 × 10
-6

 29, 2.17 × 10
-1

 

22 21357602 rs396130 0.20 C/T 1.23 (1.13, 1.34) 7.45 × 10
-6

 0, 6.22 × 10
-1
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Chr. Position
a
 SNP 

Effective 

allele 

frequency
 b

 

Effective/ 

alternative 

allele
c
 OR (95% CI)

d
 

Meta 

P value
e
 

I
2
 (%), 

P value
f
 

14 86711866 rs186178322 0.02 A/T 1.74 (1.36, 2.22) 7.68 × 10
-6

 0, 8.28 × 10
-1

 

4 71430467 rs62323371 0.06 A/T 0.73 (0.64, 0.84) 8.03 × 10
-6

 0, 8.68 × 10
-1

 

3 95993574 rs1118907 0.14 G/T 0.79 (0.71, 0.87) 8.12 × 10
-6

 0, 6.65 × 10
-1

 

14 105239192 rs2494732 0.43 C/T 0.84 (0.78, 0.91) 8.22 × 10
-6

 0, 9.59 × 10
-1

 

14 65247373 rs8018785 0.18 C/T 0.82 (0.75, 0.90) 8.51 × 10
-6

 0, 7.53 × 10
-1

 

8 122124302 rs2196051 0.33 G/A 0.87 (0.80, 0.94) 8.75 × 10
-6

 0, 6.23 × 10
-1

 

5 1109646 rs139161838 0.02 A/G 0.50 (0.37, 0.67) 8.77 × 10
-6

 25, 2.54 × 10
-1

 

15 51827471 rs77245046 0.03 C/T 0.66 (0.54, 0.80) 9.12 × 10
-6

 38, 1.47 × 10
-1

 

2 121877105 rs11899778 0.23 C/T 1.21 (1.12, 1.30) 9.46 × 10
-6

 35, 1.69 × 10
-1

 

2 84852570 rs145123753 0.02 T/G 2.08 (1.49, 2.91) 9.65 × 10
-6

 0, 6.92 × 10
-1

 

13 86650174 rs17705805 0.20 T/G 1.18 (1.08, 1.29) 9.86 × 10
-6

 10, 3.48 × 10
-1

 

 

a 
Human genome build 37, assembly hg19. 

b, c & d 
Effective allele frequency, effective/alternative allele, odd ratio and 95% CI were extracted from the meta-analysis of the genetically 

unrelated samples, whereas in the genetically mixed samples, estimates of effective allele frequency and odds ratio may be biased. 

e & f 
Meta and heterogeneity P values were extracted from the meta-analysis of the genetically mixed samples, which included more 

individuals, but this modelling strategy does not provide the estimation of odds ratios. 
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Appendix Table D-2 The closest gene and gene functional annotation for top independent signal SNPs (>100 Kbp) with the 

assocation significance (P value < 10
-5

) based on the SUMMIT genome-wide meta-analysis of diabetic retinopathy. 

 

Locus SNP Closest Gene Gene Function 

9q13-q21.2 rs10746970 OSTF1 Ossification 

2p12-p11.1 rs1653654 CTNNA2 Structural constituent of cytoskeleton 

17q25.1 rs75125621 SDK2 Cell adhesion, retinal laminar neuron integrity 

4q28-q32 rs2657795 HHIP Carbohydrate metabolic process 

2q32.1 rs1682430 ZNF804A Transcriptional control 

5q31.3 rs10072382 PCDH1 Nervous system development 

13q32 rs9516067 GPC5 Carbohydrate metabolic process 

1p34.3 rs6425936 SFPQ DNA recombination and repair, RNA splicing 

6p21 rs810855 MDGA1 Neuron migration 

1p33-p32 rs55939932 ELTD1 Neuropeptide signaling pathway 

3q24 rs163757 PLSCR5 Unknown 

1q43 rs35428289 GREM2 Regulation of cytokine activity 

12p11.22 rs10771375 KLHL42 Regulation of microtubule-based process 

11q21 rs601711 VSTM5 Transmembrane protein 

1p34.2 rs4660191 FOXO6 Sequence-specific DNA binding transcription factor activity, glucose sensing 

6q16.1 rs7750013 EPHA7 Retinal ganglion cell axon guidance 
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Locus SNP Closest Gene Gene Function 

19q13.11 rs8113622 ZNF507 Regulation of transcription 

3p24.3 rs73033654 ZNF385D Regulation of transcription 

2q11.2 rs7579862 NPAS2 Cellular lipid metabolic process, central nervous system development 

5p14 rs72758936 CDH9 Cell-cell adhesion 

6q13 rs1338321 HTR1B Serotonin receptor activity 

8p22 rs2739683 ASAH1 Small molecule metabolic process 

1p35.3-p34.1 rs6699355 DLGAP3 Cell-cell signaling 

5q11.2 rs184989476 ANKRD55 Unknown 

8q24.21 rs10101440 MYC Cell cycle arrest 

2p12 rs72929232 IGK Unknown 

22q11.21 rs396130 THAP7-AS1 Non-coding RNA 

14q31 rs186178322 GALC Carbohydrate metabolic process 

4q13.3-q21.1 rs62323371 DCK Nucleotide biosynthetic process 

3q11.2 rs1118907 EPHA6 Ephrin receptor activity 

14q32.32 rs2494732 AKT1 Activation-induced cell death of T cells 

14q23-q24.2 rs8018785 SPTB Structural constituent of cytoskeleton 

8q24.1 rs2196051 ENPP2 Immune response 

5p15 rs139161838 SLC12A7 Cell volume homeostasis 

15q21.2 rs77245046 DMXL2 Cell junction 

2q14 rs11899778 GLI2 Cell proliferation 



224 

 

 

 

Locus SNP Closest Gene Gene Function 

2p11.2 rs145123753 DNAH6 Unknown 

13q31.1 rs17705805 SPRY2 Branching morphogenesis of an epithelial tube 

 


