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THESIS SUMMARY 

The transforming growth factor-β (TGFβ) pathway, including the bone 

morphogenetic protein (BMP), plays critical roles during embryogenesis and in 

adult tissue homeostasis. Hence, malfunctions in TGFβ/BMP signalling result in 

several diseases. Signalling is initiated by ligand binding to cell surface receptor 

kinases, which phosphorylate and activate the R-SMAD transcription factors. R-

SMADs translocate to the nucleus and regulate the transcription of hundreds of 

genes. The cellular responses to TGFβ/BMP signals are tightly controlled and 

highly regulated. TGFβ/BMP receptors and R-SMADs, as the intracellular 

mediators of TGFβ/BMP ligands, are key targets for regulation to control 

duration and potency of signalling. Reversible ubiquitylation of R-SMADs and 

TGFβ/BMP receptors is a key mechanism to control TGFβ/BMP signalling. 

Several E3 ubiquitin ligases have been reported to regulate the turnover and 

activity of TGFβ/BMP receptors and R-SMADs, however little is known about 

their cognate deubiquitylating enzymes (DUBs). A proteomic screen identified 

the DUBs OTUB1 and USP15 as potential novel regulators of the TGFβ and 

BMP pathways respectively. 

Endogenous OTUB1 was recruited to the active phospho-SMAD2/3 

complex only upon TGFβ induction and OTUB1 had a crucial role in TGFβ-

mediated gene transcription and cellular migration. OTUB1 inhibited the 

ubiquitylation of phospho-SMAD2/3 by binding to and inhibiting the E2 ubiquitin-

conjugating enzymes independently of its catalytic activity. Consequently, the 

depletion of OTUB1 in cells caused a rapid loss in levels of TGFβ-induced 

phospho-SMAD2/3, which was rescued by the proteasomal inhibitor 

Bortezomib. These findings demonstrated a novel signal-induced 
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phosphorylation-dependent recruitment of OTUB1 to its target. Hence, OTUB1 

could be exploited as a target to intervene against diseases that are provoked 

by an imbalance in TGFβ signalling.  

DUBs are highly regulated enzymes and recent reports have shed light 

into the molecular regulation OTUB1. The N-terminal region of OTUB1 harbours 

an ubiquitin binding domain, which is critical for its function to inhibit 

ubiquitylation. While investigating the role of OTUB1 in TGFβ signalling, it 

became apparent that OTUB1 itself could be post-translationally modified by 

phosphorylation. Two phosphorylation sites at the OTUB1 N-terminal region 

have been identified by mass spectrometry. S18 of OTUB1 was phosphorylated 

in vitro by the type I TGFβ receptor (ALK5), whereas S16 was phosphorylated 

by the constitutively active kinase CK2 in vitro and in vivo. Phosphorylation of 

the OTUB1 N-terminal region could affect its physiological function and requires 

further investigation.  

Although much is known about DUBs that target the type I TGFβ 

receptor, no DUBs that target the type I BMP receptors had been identified. 

USP15 was identified in a proteomic screen as an interactor of SMAD6, which is 

a negative regulator of the BMP pathway. USP15 also binds to and 

deubiquitylates the type I BMP receptor (ALK3), thereby enhancing BMP 

signalling. Consequently, USP15 impacts BMP-induced SMAD1 

phosphorylation, mouse osteoblastic differentiation and Xenopus 

embryogenesis. 

A proteomic approach identified O-GlcNAc transferase (OGT) as an 

interactor of SMAD2. SMADs have not been associated with O-GlcNAc 

modifications and the regulation of TGFβ/BMP signalling by O-GlcNAcylation 
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has not been investigated. Endogenous SMADs1-3 bound OGT and pulled 

down potential O-GlcNAc modified proteins. Furthermore, SMAD4 was possibly 

O-GlcNAcylated, which implies that O-GlcNAc modification could regulate 

TGFβ/BMP signalling. Further investigation is needed to decipher the precise 

molecular mechanisms of this potential regulation. 
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1 Introduction  

1.1 Post-translational modifications  

Most proteins undergo post-translational modifications (PTMs), which 

affect their cellular roles through modulation of their subcellular localisation, 

protein-protein interactions, transcriptional ability, stability and activity. PTMs 

include phosphorylation, ubiquitylation, acetylation, glycosylation, methylation, 

glycation, nitration, carbonylation, hydroxylation, palmitoylation, crotonylation, 

succinylation, hypusination and biotinylation (Markiv et al., 2012, Tan et al., 

2011, Weinert et al., 2013, Park et al., 1993, Hwang et al., 2014). Enzymatic 

generation of reversible PTMs, which are subject to feedback control, provide a 

dynamic basis for eukaryotic cells to respond to external stimuli and modulate 

signal transduction. The PTMs can be permanent or transient due to their 

reversibility, which allows for competition and reciprocal occupancy of different 

PTMs at the same residues. Certain PTMs on target proteins can trigger the 

formation of other PTMs at proximal residues, highlighting the interplay between 

them. The most studied PTMs are phosphorylation and ubiquitylation. 

 

1.1.1 Reversible Phosphorylation  

Protein phosphorylation is one of the most abundant PTMs and controls 

a wide range of cellular processes including transcription, trafficking and 

metabolism. Protein phosphorylation is catalysed by protein kinases, which 

represent one of the largest groups of enzymes with at least 550 reported so 

far. Protein kinases are responsible for the catalysis of the -phosphate from 

ATP to the hydroxyl group of a residue in the substrate protein. Primarily, 

protein kinases phosphorylate Serine, Threonine, or Tyrosine residues on target 

proteins. The human protein kinases can further be classified into distinct 
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groups according to their evolutionary divergences: AGC (containing the PKA, 

PKG and PKC families), CAMK (calcium/calmodulin-dependent protein 

kinases), CK1 (Casein kinase 1), CMGC (containing the CDK, MAPK, GSK3, 

CLK families), STE (containing the homologues of yeast Sterile kinases), TK 

(Tyrosine kinases), TKL (Tyrosine kinase–like) and the atypical kinases 

(Manning et al., 2002, Cohen, 2002).  

The majority of eukaryotic proteins are phosphorylated at multiple 

residues and each phosphate introduces a change in the local charge of the 

substrate. This can cause conformational changes in the modified protein, 

thereby directly altering its affinity or activity towards ligand or substrate (Figure 

1-1). The phosphorylated substrate can also be recognised by other proteins, 

which might then lead to a change in protein function, stability or localisation 

(Manning et al., 2002).  

The human kinome is now increasingly targeted for structure-based drug 

design to generate specific ATP competitive inhibitors or allosteric modulators, 

as kinase malfunctioning is found to drive various diseases (Cohen and Alessi, 

2013, Fang et al., 2013). 

Protein phosphorylation can be reversed by the action of protein 

phosphatases (Figure 1-1). Protein phosphatases hydrolyse the phosphoric 

acid monoesters into a phosphate ion and a molecule with a free hydroxyl 

group. They can be classified into three distinct groups based on sequence 

similarity, structure and catalytic activity: protein Tyrosine phosphatases, 

Serine-Threonine phosphatases and dual (S/T-Y) phosphatases (Cohen, 2009). 

Due to the limited number of phosphatases encoded in the human genome, 

phosphatases are likely to be more promiscuous with regards to their substrate 

specificity than protein kinases (Bruce and Sapkota, 2012).  
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Figure 1-1 Protein phosphorylation  

Protein kinases can phosphorylate their substrates in the presence of ATP. This 
mechanism can be reversed by the action of phosphatases. Protein 
phosphorylation can lead to conformational changes in the substrate leading to 
changes in activity (in case of enzymes), stability, localisation and interaction 
partners.  
 

1.1.2 Reversible Ubiquitylation 

 Ubiquitylation  1.1.2.1

Ubiquitylation is a reversible post-translational modification that is 

essential in many cellular regulatory mechanisms (Fraile et al., 2011, Frappier 

and Verrijzer, 2011). Discovered in 1975, ubiquitin is a 76 amino acid protein 

that is evolutionarily conserved from yeast to human (Hershko et al., 1979, 

Varshavsky, 2006, Schlesinger and Goldstein, 1975). Ubiquitin is part of a 

highly conserved family of small proteins that share homology in a common-fold 

structure. This family also includes ubiquitin-like modifiers (UBLs): small 

ubiquitin-like modifier (SUMO), neural precursor cell expressed developmentally 

down-regulated protein 8 (NEDD8), ubiquitin-like protein-5 (UBL5), ubiquitin-

related modifier-1 (URM1), interferon-α-stimulated gene-15 (ISG15), autophagy-
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8 (ATG8) and -12 (ATG12), human leukocyte antigen F associated (FAT10), 

ubiquitin fold-modifier-1 (UFM1) and Fau ubiquitin-like protein (FUB1) 

(Hochstrasser, 2009). 

During the ubiquitylation cascade, ubiquitin is attached to target proteins 

through the action of an E1 ubiquitin activating enzyme, an E2 ubiquitin 

conjugating enzyme and an E3 ubiquitin ligase. This cascade is initiated upon 

the ATP-dependent activation of ubiquitin by the E1. One of the two E1 

enzymes encoded in the human genome links the C-terminal Glycine residue of 

ubiquitin via a thioester bond to a Cysteine residue within its active site. The 

activated ubiquitin intermediate is then transferred to the catalytic Cysteine 

residue of one of the ~45 E2 enzymes (E2~ub). The E3 ubiquitin ligase then 

conjugates the C-terminal Glycine of ubiquitin via an isopeptide bond to the ε-

amino group of the target Lysine of the substrate (Figure 1-2). There are over 

600 E3 ubiquitin ligases, which are divided into two families based on their 

catalytic domain structure and mode of catalysis (Hershko et al., 1983, Pickart, 

2001, Ye and Rape, 2009, Hochstrasser, 2009, Schulman, 2011).  

The HECT E3 ligases (Homologous to E6-AP C-Terminus) bind E2~ub 

through a thioester bond formed with its catalytic Cysteine residue. The 

ubiquitin loaded HECT E3 can then directly ubiquitylate the target protein 

(Kamadurai et al., 2013, Kamadurai et al., 2009). The conserved HECT domain, 

which includes the catalytic Cysteine residue and E2 binding site, is located at 

the C-terminus, whereas the N-terminus is diverse and mediates substrate 

binding (Berndsen and Wolberger, 2014, Scheffner and Kumar, 2014, Metzger 

et al., 2012). HECT E3 ligases are further classified into three subfamilies, with 

the mammalian NEDD4 family comprising NEDD4, NEDD4L, ITCH, WWP1/2, 

SMURF1/2 and NEDL1/2. The N-terminal regions of the NEDD4 family contain 
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a C2 domain that regulates autoinhibition and sub-cellular localisation and two 

to four WW domains which are characterised by two highly conserved 

Tryptophans that associate with Proline-rich motifs and assist in substrate 

binding (Scheffner and Kumar, 2014, Rotin and Kumar, 2009, Wiesner et al., 

2007). 

The other class of E3 ubiquitin ligases with a RING (really interesting 

new gene) domain, or the closely related U-Box and PHD domain, catalyse 

ubiquitylation without accepting the activated ubiquitin. RING E3 ligases 

catalyse the direct transfer of ubiquitin from the E2 enzyme to the substrate, 

simultaneously binding both the E2~ub thioester and the substrate, thereby 

facilitating the positioning of the E2 enzyme in an orientation that assists the 

transfer of ubiquitin to the substrate protein (Plechanovova et al., 2012, Metzger 

et al., 2014). RING domain E3 ligases are usually found in large complexes 

(e.g. cullin RING ligases including SCF) or dimers; however some can also be 

single protein E3 ubiquitin ligases. The canonical RING finger is a two Zn2+ ion-

coordinating domain that binds a hydrophobic patch on the donor ubiquitin, E2 

enzymes and in some cases directly recognises substrates. Usually, 

interchangeable components of large RING E3 ligase complexes that contain F-

box, SOCS box, VHL box or BTB domain proteins assist in substrate 

recognition, in addition to alternative substrate recognition motifs (such as UBD, 

SH and PDZ). Some RING E3 ligases also have other domains that interact 

with the “backside” of E2s (Metzger et al., 2014, Deshaies and Joazeiro, 2009, 

Berndsen and Wolberger, 2014). 

The RBR family of E3 ubiquitin ligases comprise a canonical RING 

domain, an in-between RING (IBR) domain and a RING2 domain. Some ligases 
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belonging to this family act as RING–HECT E3 ligase hybrids (Deshaies and 

Joazeiro, 2009, Wenzel et al., 2011, Spratt et al., 2014).  

Target proteins can be monoubiquitylated, multi-monoubiquitylated or by 

repeated action of the E1, E2 and E3, ubiquitin can be added onto one of 

several Lysine residues or the α-amino group of the first ubiquitin to form 

unique polyubiquitin chains. Monoubiquitylation can alter protein sub-cellular 

localisation and function in signalling pathways. Polyubiquitin chains can have a 

distinct structure depending on which Lysine (K) residue within ubiquitin is 

utilised to anchor the subsequent ubiquitin molecule. These linkages can occur 

on K6, K11, K27, K29, K33, K48 or K63 as well as the N-terminus of ubiquitin 

(linear chains, M1). Branched chains and mixed linkage types are also possible. 

These different linkage types function as signals that can be identified by other 

ubiquitin-binding proteins (ubiquitin receptors) and ultimately determine the fate 

of the target protein. Ubiquitin-mediated protein degradation can occur through 

the proteasomal, lysosomal or autophagosomal pathway (Komander and Rape, 

2012, Pickart and Eddins, 2004, Kulathu and Komander, 2012, Husnjak and 

Dikic, 2012, Emmerich et al., 2013).  

The 26S proteasome is a multisubunit enzyme complex that has one 

or two 19S regulatory caps, which bind polyubiquitin chains. The 

ubiquitylated proteins are then degraded in the 20S proteolytic core, which 

is composed of two inner β and two outer α rings. The β rings contain 

proteolytic sites, which can be inhibited by various proteasome inhibitors 

(Figure 1-2). Bortezomib is a selective and potent proteasomal inhibitor that 

reversibly binds the Threonine residue in the β ring, which is essential for 

chymotryptic activity (Adams, 2003). Bortezomib confers antitumor activity 
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and is now approved in the treatment of multiple myeloma or relapsed 

mantel cell lymphoma (Grosicki et al., 2014).  

Two of the most commonly studied ubiquitin chain linkages are the 

K48-linked chains, which generally mark proteins for proteasomal 

degradation, and the K63-linked chains, which confer degradation via the 

lysosome or non-degradative fates of target proteins (Nathan et al., 2013). 

K63, K11 and linear chains are usually implicated in signal transduction. 

K63-linked polyubiquitin chains convey a signalling function, especially in 

the innate immune system, in response to DNA damage and in endocytosis 

(Deng et al., 2000, Duncan et al., 2006, Hofmann and Pickart, 1999). K11-

linked polyubiquitin chains are implicated in the regulation of cell cycle 

progression in eukaryotes and can mediate endocytosis, TNFα and Wnt 

signalling (Bremm and Komander, 2011, Wickliffe et al., 2011). Linear 

chains are implicated in the activation of NFκB by TNFα (Tokunaga et al., 

2009). The functions of the remaining chain linkages are not well established.  
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Figure 1-2 The protein ubiquitylation cascade 

To activate ubiquitin, a thioester bond between its C-terminus and the active 
site Cysteine of the E1 is formed in an ATP-dependent manner. Ubiquitin is 
then transferred from the E1 to the active site Cysteine in the E2. Either the E2 
then transfers ubiquitin to the HECT E3 ligase, which accepts ubiquitin onto its 
active site Cysteine residue and ubiquitylates the substrate directly, or the E2 
binds a RING E3 ligase, which then facilitates the transfer of ubiquitin to the 
substrate. An isopeptide bond is formed between the C-terminus of ubiquitin 
and the ε-amino group of a Lysine residue in the substrate. Substrate 
ubiquitylation can lead to various different outcomes. K48-linked 
polyubiquitylation of substrates usually results in proteasomal degradation of 
the target protein. The proteasome can be experimentally inhibited by 
Bortezomib. 
 

 Deubiquitylation 1.1.2.2

The removal of ubiquitin(s) attached to target proteins is defined as 

deubiquitylation, catalysed by deubiquitylating enzymes (DUBs). 

Deubiquitylation is implicated in fine-tuning the majority of cellular signalling 

processes including gene expression, genome regulation, DNA repair, cell cycle 

progression, kinase activation, endocytic trafficking and immune responses. 

Hence, the malfunctioning of DUBs is often associated with various diseases 

ranging from cancer to neurological disorders (Clague et al., 2012a, Singhal et 

al., 2008, Clague et al., 2012b, Emre and Berger, 2004, Mukai et al., 2012, 

Reyes-Turcu et al., 2009, Sun, 2008). 
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The DUBs encoded by the human genome are classified into five distinct 

functional and structural groups: the Cysteine proteases: ubiquitin-specific 

proteases (USPs), ovarian tumour proteases (OTUs), ubiquitin C-terminal 

hydrolases (UCHs) and Josephins, and the zinc metalloproteases 

JAB1/MPN/MOV34 (JAMM/MPN+). Similar to the DUBs that process ubiquitin, 

there are other ubiquitin-like proteases (ULPs) that selectively remove specific 

UBLs. For example, SUMO and NEDD8 are removed by ULPs that belong to 

the Adenain family of Cysteine proteases, whereas ISG15 is cleaved by a ULP 

that resembles the adenovirus protease (Komander et al., 2009, Reyes-Turcu et 

al., 2009, Nijman et al., 2005, Hay, 2007). 

As the human genome encodes less than 100 DUBs, it is highly likely 

that DUBs are intricately regulated in order to oppose the action of over 600 E3 

ubiquitin ligases in diverse signalling cascades. Overall DUB specificity is 

achieved by a combination of substrate and target recognition. Additionally, this 

is regulated by conformational/post-translational changes, subcellular 

localisation and interactions with regulatory partners. To ensure specificity 

even further, DUBs also distinguish between UBLs, isopeptides, linear 

peptides and different types of ubiquitin linkage and chain structure as well as 

exo- versus endo- deubiquitylation. Enzymatic activity of DUBs might be cryptic 

and regulated by occluding the substrate-binding sites of certain DUBs or by 

inducing conformational changes that activate the catalytic site (Amerik and 

Hochstrasser, 2004, Clague et al., 2012a, Katz et al., 2010, Komander et al., 

2009, Nijman et al., 2005, Reyes-Turcu et al., 2009). Apart from these 

substrate-induced conformational changes and post-translational modifications, 

activity can also be induced by scaffold or adapter proteins and allosteric 

interactions as well as transcriptional regulation of DUB expression (Amerik and 
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Hochstrasser, 2004, Clague et al., 2012a, Katz et al., 2010, Komander et al., 

2009, Nijman et al., 2005, Reyes-Turcu et al., 2009). 

In addition to their catalytic core, DUBs contain multiple domains that 

mediate protein-protein interactions. These domains include ubiquitin-binding 

domains (UBD), ubiquitin-like folds (UBL folds), ubiquitin-interacting motifs 

(UIM), ubiquitin-associated domains (UBA domain) and/or zinc finger ubiquitin-

specific protease domains (ZnF-UBP domain). The ubiquitin-binding domains 

contribute to the binding and recognition of different ubiquitin chain linkages, 

although some DUBs also display direct affinity for their ubiquitylated target 

proteins (Amerik and Hochstrasser, 2004, Clague et al., 2012a, Katz et al., 

2010, Komander et al., 2009, Nijman et al., 2005, Reyes-Turcu et al., 2009). 

 

1.1.3 Glycosylation (O-GlcNAcylation) 

Glycosylation is defined as the enzymatic attachment of glycans to 

proteins and lipids. Five types of glycosylation are distinguished: O-linked 

glycosylation, N-linked glycosylation, phospho-serine glycosylation, C-

mannosylation and glypiation (Varki et al., 2009). 

O-linked glycosylation (also known as O-GlcNAcylation) is a nutrient-

sensitive sugar modification and was first discovered in 1984 as a post-

translational modification by O-linked β-N-acetylglucosamine (O-GlcNAc) 

moiety at Serine or Threonine residues of proteins (Torres and Hart, 1984). It is 

one of the most abundant eukaryotic glycosyltransferase reactions and occurs 

in the cytoplasm and nucleus (Hanover et al., 2012). O-GlcNAcylation has been 

shown to have extensive crosstalk with phosphorylation in several signalling 

cascades due to competitive site occupancy on Serine/Threonine residues. 

Reciprocal occupancy of phosphorylation and O-GlcNAcylation at the same 
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residues or at proximal sites was identified in several proteins (Hart et al., 

2011). The resulting diversity of O-GlcNAcylated and phosphorylated proteins 

contributes to the regulation of cellular processes comprising chromatin 

organisation, transcription, translation, proteostasis, development and signal 

transduction (Figure 1-3) (Hanover et al., 2012). 

O-GlcNAcylation can be influenced through nutrient levels, extracellular 

stimuli, stressors, heat shock, pathogens, cell cycle changes and development. 

(Hanover et al., 2012). The limiting factor in the synthesis of O-GlcNAc is the 

availability of glucose. Nutrient concentration determines the production of 

uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) through the 

metabolically controlled hexosamine biosynthetic pathway (HBP) (Figure 1-3). 

The HBP integrates extracellular physiological determinants such as nutrient 

availability with the metabolism of carbohydrates, amino acids, nucleotides and 

fatty acid components. Several enzymes (cf. Figure 1-3) aid in the ATP-

dependent production of the final product (UDP-GlcNAc) of the HBP pathway 

(Bond and Hanover, 2013, Hanover et al., 2012). UDP-GlcNAc is essential for 

the synthesis of glycosaminoglycans, glycolipids, membrane and secretory 

glycoproteins and is the substrate for O-GlcNAc transferase (OGT) (Hanover et 

al., 2012, Love and Hanover, 2005).  

OGT is an enzyme that transfers saccharides from sugar nucleotide 

precursors in glycosidic linkages (O-GlcNAc) to Serine/Threonine residues of 

target proteins (O-GlcNAcylation) (Kreppel et al., 1997). The specificity of OGT 

for target proteins is possibly mediated by regulatory binding proteins because 

no strict consensus motif has been identified. However, an enrichment of O-

GlcNAcylation is observed on the “PXTXA”, the “PVS” and, “PPV(S/T)SATT” 

sequences (Hurtado-Guerrero et al., 2008, Liu et al., 2014b, Vosseller et al., 
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2006). The N-terminus of OGT harbours a terminal tetratricopeptide repeat 

(TPR) domain, which is separated from the C-terminal catalytic and the 

phosphoinositide-binding domain by a bipartite nuclear localisation sequence 

(NLS). The OGT gene encodes three OGT isoforms in mammals: a nucleo-

cytoplasmic OGT (ncOGT) with 12 TPRs, a mitochondrial OGT (mOGT) with 9 

TPRs and short cytoplasmic form of OGT (sOGT) that contains only 2 TPRs 

(Vocadlo, 2012, Lazarus et al., 2011, Ruan et al., 2013). 

O-GlcNAc can be removed by β-N-acetylglucosaminidase C (also known 

as O-GlcNAcase (OGA)), which then ensures efficient O-GlcNAc cycling (Lubas 

et al., 1997). OGA is present in the cytoplasm and nucleus. Its N-terminus 

contains the O-GlcNAc cleavage domain and the OGT-binding region. The 

OGA C-terminus differs in the two splice variants OGA-L and OGA-S. OGA-L 

possesses a histone acetyltransferase (HAT)-like domain, which is absent from 

OGA-S (Vocadlo, 2012, Ruan et al., 2013, Harwood and Hanover, 2014). OGT 

and OGA are expressed in all tissues and play major roles during vertebrate 

development (Harwood and Hanover, 2014, Yang et al., 2012).  

Changes in protein O-GlcNAcylation causes modifications in protein 

folding, cellular localisation, and catalytic activity of certain enzymes. The 

dynamic O-GlcNAc cycling regulates cellular processes in a nutrient-dependent 

manner. Hence, dysfunctional O-GlcNAc cycling is linked to several diseases 

including cancer, cardiovascular disease, neurodegeneration and diabetes 

(Figure 1-3) (Hart et al., 2011, Bond and Hanover, 2013, Hanover et al., 2012, 

Singh et al., 2014, Harwood and Hanover, 2014, Ma and Vosseller, 2013, 

Zachara, 2012).  

A hallmark of cancer cell energy metabolism is a shift from oxidative 

phosphorylation to the glycolytic pathway (Warburg effect) (Hanahan and 
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Weinberg, 2011). This requires enhanced glucose uptake and if combined with 

increased glutamine absorption, results in increased O-GlcNAc levels (Ma and 

Vosseller, 2013, Singh et al., 2014). Cancer metabolism and survival stress 

signalling can be regulated by O-GlcNAcylation via regulating the stability of 

HIF-1α (Ferrer et al., 2014). Insulin signalling is influenced by the flux of the 

HBP and insulin resistance is associated with type II diabetes, heart disease 

and obesity. O-GlcNAc is associated with direct inhibition of insulin signalling 

and probably contributes to its variations observed in diabetic patients (Whelan 

et al., 2010, Bond and Hanover, 2013). 
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Figure 1-3 O-GlcNAc modification of proteins 

The hexosamine biosynthetic pathway (HBP) provides the sugar substrate for 
O-GlcNAcylation as glucose is converted into UDP-N-acetylglucosamine (UDP-
GlcNAc). The enzyme O-GlcNAc transferase (OGT) catalyses the addition, 
whereas the enzyme O-GlcNAcase (OGA) catalyses the removal of the amino 
sugar to/from nuclear and cytoplasmic proteins. Modified proteins are involved 
in multiple cellular processes, which upon misregulation can cause a variety of 
diseases. 
  

H
e
x
o

s
a

m
in

e
B

io
s
y
n

th
e

tic
 P

a
th

w
a

y
 (H

B
P

)

Glucose metabolism

Glutamine Amino acid metabolism

Glucose

Lipid metabolismAcetyl-CoA

ATP

hexokinase

Nucleotide metabolism

UDP-GlcNAc

Uridine (UTP)

OGT

OGA

target protein

Glucose 6-phosphate

Fructose 6-phosphatefructose-6-phosphate 

amidotransferase (GFAT)

Glucosamine 6-phosphate
glucosamine-6-phosphate 

acetyltransferase Emeg32

N-acetylglucosamine 6-phosphate
Phosphoacetylglucosamine

mutase

UDP-N-acetylglucosamine

pyrophosphorylase

OH

OH
HO

HO

O

NH
O

CH3

OH

O

HO
HO

O

NH - UDP
O

CH3

OH

O

HO
HO

O

NH - Ser/Thr
O

CH3

UDP

N-acetylglucosamine 1-phosphate

Transcription/

Translation

Nutrient sensing/ 

Diabetes

Neuronal 

development/

Alzheimer’s

Cell cycle/

Cancer

Stress responseProteostasis

target proteinSer/Thr +



- 15 - 

1.2 Transforming growth factor-β signalling 

The signalling pathways triggered by the transforming growth factor-β 

(TGFβ) family of cytokines, including bone morphogenetic proteins (BMPs), are 

implicated in diverse cellular functions, including differentiation, proliferation, 

extra-cellular matrix production, apoptosis and motility. Therefore, abnormal 

TGFβ signalling is associated with multiple human diseases including fibrosis, 

immune disorders and cancer (Akhurst and Hata, 2012, Inman, 2011, 

Massague, 2008, Shi and Massagué, 2003). 

 

1.2.1 The TGFβ ligands 

The TGFβ family of structurally related cytokines consists of at least 33 

different ligands, which can be divided into two sub-families: the TGFβ 

subfamily comprising TGFβs, Activin and Nodal and the bone morphogenic 

protein (BMP) subfamily consisting of BMPs, growth and differentiation factor 

(GDF) and anti-Müllerian hormone (AMH). This classification is based on the 

difference displayed by the ligands in receptor recognition and downstream 

SMAD activation (Shi and Massague, 2003). Most TGFβ and BMP ligands are 

expressed ubiquitously, however some are expressed in a specific spatio-

temporal manner. The ligands can function in an endocrine, paracrine and 

autocrine manner (Lin et al., 2006a, Massague, 2012, Massague, 2008).  

TGFβ and BMP cytokines are expressed as large precursor polypeptides, 

which are subsequently cleaved by pro-protein convertases, to form active 

signalling molecules (Constam and Robertson, 1999, Dubois et al., 1995). The 

endopeptidase cleavage generates the active C-terminal mature peptide (Annes 

et al., 2003). The mature peptides subsequently form homo- or hetero-dimers 

within their cytokine subfamily through hydrophobic interactions and disulphide 
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bonds between conserved Cysteine residues (Sun and Davies, 1995). Mature 

TGFβ ligands are secreted and bind to latent TGFβ binding proteins (LTBPs), to 

form a complex in the extracellular matrix (ECM), where they remain until their 

release by protease- or integrin-regulated processes (Todorovic and Rifkin, 

2012). The binding of mature TGFβ ligands to their cognate receptors on the 

cell surface initiates intracellular TGFβ signalling.  

 

1.2.2 TGFβ cell membrane receptors and signalling initiation 

The TGFβ cell membrane receptors can be divided into three different 

groups, termed type I, type II and type III receptors.  

Type I and II receptors are Serine/Threonine protein kinases. Upon 

specific ligand dimers binding to a specific pair of type I and type II receptors, 

quaternary complexes are formed comprising two type I and two type II 

receptors. This enables the constitutively active type II receptors (ActR-IIA, 

ActR-IIB, BMPR-II, AMHR-II or TβR-II) to phosphorylate the type I receptors 

(Activin receptor like kinases (ALKs) 1-7) at the cytoplasmic GS domain, 

leading to their activation (cf. section 1.3.1.1) (Hinck, 2012, Shi and Massagué, 

2003, Wrana et al., 1994, Heldin et al., 1997). 

Activated ALKs phosphorylate the dual Serine residues at the conserved 

C-terminal SXS motif (also known as tail-phosphorylation) of the receptor-

regulated SMAD transcription factors (R-SMADs), which transduce TGFβ 

signals intracellularly. The TGFβ subfamily of ligands signal through the 

activation of ALK4/5/7, which primarily phosphorylate SMADs 2 and 3, while 

the BMP ligands signal through ALK1/2/3/6, which primarily phosphorylate 

and activate SMAD1/5/8 (Figure 1-4) (Moustakas and Heldin, 2009, Persson et 

al., 1998). However, TGFβ ligands can also signal through SMAD1/5/8 (Daly et 
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al., 2008) while BMPs signal through SMAD2/3 in embryonic and transformed 

cells (Holtzhausen et al., 2014). Furthermore, TGFβ ligands can inhibit BMP-

induced transcription through the formation of phosphorylated SMAD1/3/5 

complexes, which bind to BMP-responsive elements on the DNA to induce 

TGFβ-induced transcriptional repression (Gronroos et al., 2012). 

Binding of SMADs to the type I receptor is enhanced upon the 

phosphorylation of ALKs at the GS domain. This phosphorylation also inhibits 

the immunophilin FKBP12 from binding to the receptors, thereby promoting R-

SMAD binding (Huse et al., 1999). The interaction of R-SMADs with the type I 

receptor can be enhanced by the scaffolds such as SMAD anchor for receptor 

activation (SARA) and Erbb2 interacting protein (ERBB2IP), which release R-

SMADs upon phosphorylation (Sflomos et al., 2011, Tsukazaki et al., 1998).  

TGFβ signalling can be fine-tuned by receptor-competitive cell 

membrane bound proteins or by ligand traps. One of the receptor-competitive 

proteins that binds and sequesters cytokines is BAMBI (BMP and Activin 

receptor membrane bound inhibitor). BAMBI exhibits homology to the type I 

receptor extracellular domain and thereby acts as a pseudo-receptor for BMP 

and Activin. Ligand traps in the ECM, such as Follistatin, Chordin and Noggin, 

prevent the interaction of cytokines with their respective receptors by binding to 

and masking the residues within ligands that are critical for receptor binding (De 

Robertis and Kuroda, 2004, Onichtchouk et al., 1999).  

The Type III receptors (TβR-III) do not possess protein kinase activity but 

enhance binding of ligands to type I and type II through their large extracellular 

domains, thereby exerting a function as co-receptors (Shi and Massagué, 

2003). TβR-III is critical for epithelial cell polarity (Meyer et al., 2014).  
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Figure 1-4 Overview of the core-components of TGFβ/BMP signalling 

Ligand binding to Serine/Threonine receptor kinases induces TGFβ/BMP 
signalling and leads to quaternary complex formation of type I and type II 
receptors. In close proximity, the type II receptor is able to phosphorylate the 
type I receptor, which activates the kinase complex. The activated receptors 
can then phosphorylate R-SMADs at their conserved C-termini, which induces 
complex formation with SMAD4. The R-SMAD-SMAD4 complex travels to the 
nucleus where TGFβ/BMP-mediated target gene transcription is initiated. 
Inhibitory SMADs (SMAD6/7) are transcribed and act in a feedback loop, as 
SMAD6/7 compete with R-SMADs for receptor binding and direct E3 ubiquitin 
ligases and/or DUBs to the receptors. 
 

1.2.3 SMAD proteins 

The SMAD proteins are a group of transcription factors that act as the 

intracellular mediators of TGFβ and BMP signalling. SMADs are conserved in 

metazoans and are the vertebrate homologues of SMA (Caenorhabditis 

elegans) and MAD (Drosophila melanogaster) (Raftery et al., 1995, Savage et 

al., 1996, Sekelsky et al., 1995). In humans, there are eight SMAD proteins that 

are classified into three distinct groups according to their structural and 

functional properties: the receptor regulated (R-)SMADs (SMAD1, SMAD2, 
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SMAD3, SMAD5 and SMAD8), the co-mediator SMAD (SMAD4/DPC4) and the 

inhibitory (I-)SMADs (SMAD6 and SMAD7) (Hinck, 2012, Lönn et al., 2009, 

Moustakas and Heldin, 2009, Shi and Massagué, 2003).  

SMAD proteins harbour three distinct globular domains: the conserved 

N-terminal MAD homology 1 (MH1) and C-terminal MAD homology 2 (MH2) 

domains linked by a divergent linker region. The MH1 domain of 

SMAD1/3/4/5/8 mediates DNA binding at promoter regions of TGFβ/BMP-

target genes (Makkar et al, 2009). The MH1 domains of SMAD2/6/7 are not as 

well conserved, resulting in reduced DNA binding. The MH1 domain of SMAD2 

contains a non-homologous insertion and SMAD7 has a truncated MH1 domain 

(Shi and Massagué, 2003, Dennler et al., 1999).  

The MH2 domain is present in all SMADs. However, the SXS 

phosphorylation motif at the C-terminus (tail-phosphorylation) only exists within 

R-SMADs. Activated ALKs phosphorylate the two Serine residues on the SXS 

motif to activate R-SMADs. Tail-phosphorylated R-SMADs interact with their 

common co-factor SMAD4 and form heterotrimeric complexes comprising 

SMAD4 and two R-SMADs (Figure 1-4). All pathway-specific R-SMADs employ 

SMAD4 as a common binding partner and the heterotrimeric complex formation 

is essential for SMAD function within the canonical TGFβ/BMP pathway. These 

ligand induced complexes then accumulate in the nucleus, where together with 

other transcriptional co-factors they regulate the expression of ~500 canonical 

TGFβ/BMP-target genes. In the absence of SMAD4, TGFβ/BMP ligands are no 

longer able to induce the transcription of canonical target genes (Hill, 2009, 

Levy and Hill, 2005, Lönn et al., 2009, Moustakas and Heldin, 2009, Ross and 

Hill, 2008, Shi and Massagué, 2003, ten Dijke and Hill, 2004, Wang et al., 

2013a, Souchelnytskyi et al., 1997). Additionally, the MH2 domain serves as a 
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protein-protein interaction platform that facilitates the interaction with cell 

membrane receptors, other transcription factors and regulatory proteins 

(Massague, 2012, Shi and Massagué, 2003). 

The MH1 and MH2 domains are connected via the divergent linker 

region. The linker region contains several Serine/Threonine residues in close 

proximity to the Proline rich “PPXY” motif. In R-SMADs, this region is 

phosphorylated in response to TGFβ/BMP signals and serves to integrate 

crosstalk from other signalling pathways (cf. section 1.3.1.3) (Sapkota et al., 

2007). 

Inhibitory SMADs, which are transcriptional targets of TGFβ/BMP 

ligands, provide a negative feedback by competing with R-SMADs for access to 

the receptors as well as directing E3 ubiquitin ligases and deubiquitylating 

enzymes to the activated receptors (Figure 1-4) (Al-Salihi et al., 2012a, Zi et 

al., 2012, Yan et al., 2009, Ebisawa et al., 2001, Shi et al., 2004). 

 

1.2.4 Transcriptional control by TGFβ ligands 

TGFβ signalling can activate the transcription of certain genes while 

repressing others. Moreover, TGFβ signalling can control target gene 

transcription differentially depending on the cell type and context. These 

distinctive gene expression patterns are achieved through SMAD proteins 

interacting with unique transcriptional co-factors (Figure 1-4). DNA binding 

proteins that can act as SMAD co-factors include TRIM33, FOX, MIX, HOX, 

RUNX, E2F, AP1, C/EBPβ, CREB/ATF, Zinc-finger and other families 

(Massague, 2012, Massagué and Gomis, 2006, Ross and Hill, 2008, 

Gaarenstroom and Hill, 2014). SMAD interaction with transcriptional co-factors 
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serves to consolidate the otherwise weak interaction between SMADs and DNA 

(Chai et al., 2003).  

The MH1 domains of TGFβ activated SMAD2/3/4 recognise SMAD 

binding elements (SBE) with the 3’-CAGA-5’ palindrome sequence, whereas 

BMP activated SMAD1/4/5/8 preferentially bind GC-rich promoter regions 

known as the BMP responsive element (BRE) (Zawel et al., 1998, Katagiri et 

al., 2002). The X-ray crystal structure analysis of SMAD3 MH1 domain bound to 

DNA revealed the SBE is recognised by a conserved 11-residue β hairpin of 

SMAD3, which is inserted into the major groove of DNA (Shi et al., 1998). 

Conserved Histidine and Cysteine residues of the MH1 domain further 

strengthen the SMAD3-DNA binding by coordinating water molecules and a 

zinc atom (Chai et al., 2003).  

Once bound to the promoter regions, SMADs need to modulate chromatin 

structure in order to regulate transcription. SMADs are able to recruit 

components of a chromatin-remodelling complex and also interact with co-

activators and co-repressors with chromatin-modifying activities (Ross et al., 

2006). R-SMAD-SMAD4 complexes can bind histone acetyltransferases (HATs) 

such as p300 and CREB. Upon histone acetylation, DNA becomes available to 

transcription factors as the DNA is released from histones. TGFβ signalling can 

induce histone acetylation through p300 and CREB-binding protein (CBP) 

resulting in enhanced TGFβ target gene transcription. In order to repress 

transcription of certain genes, SMADs can also form complexes with histone 

deacetylases (HDACs) or transcriptional repressors that display HDAC activity 

(cf. section 1.3.3) (Ross and Hill, 2008).  

Nodal signalling can induce SMAD2/3-SMAD4 as well as SMAD2/3-

TRIM33 complexes. The SMAD2/3-TRIM33 complex recognises quiescent 
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chromatin and binds it via the PHD-Bromo domain of TRIM33. This leads to 

chromatin remodelling and the SMAD2/3-SMAD4 complexes are then able to 

induce transcription (Massagué and Xi, 2012, Xi et al., 2011, He et al., 2006, 

Morsut et al., 2010). 

 

1.2.5 Non-canonical TGFβ signalling 

The canonical TGFβ/BMP signalling pathway constitutes ligand binding 

to the type I and II receptor complex, which upon activation, phosphorylates R-

SMADs at their conserved C-termini (cf. section 1.2.2). Ligand binding to the 

receptors can also induce non-canonical TGFβ signalling, which regulates the 

activity of other proteins and signalling pathways in a SMAD-independent 

manner. Non-canonical BMP and TGFβ signalling pathways are linked to the 

modulation of mitogen-activated protein kinases (MAPKs: ERK, JNK and p38 

MAPK), PI3 kinase/AKT signalling pathways as well as Rho-GTPases. Thus, 

non-canonical signalling contributes to TGFβ-mediated physiological responses 

such as epithelial to mesenchymal transition (EMT), apoptosis and cytoskeleton 

rearrangements (Moustakas and Heldin, 2005, Zhang, 2009, Zhang et al., 

2013b). 

BMP and TGFβ ligands can activate ERK1/2 though the 

ShcA/GRB2/SOS/RAS signalling cascade by binding to the cognate type I and 

II receptors. The activation of RAS causes the sequential phosphorylation of 

MEK and ERK1/2 (Lawler et al., 1997, Lee et al., 2007), which mediates TGFβ-

induced EMT (Galliher-Beckley and Schiemann, 2008) by disassembling 

adherens junctions and regulating EMT-associated gene transcription (Zavadil 

et al., 2001). Activated ERK1/2 can also phosphorylate SMAD1/2/3 in their 

linker region, resulting in recognition by E3 ubiquitin ligases (cf. sections 1.3.1.3 
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and 1.3.2.3). JNK and p38 MAPK are activated by TGFβ ligands through the 

binding of TRAF6 to the activated TGFβ cell membrane receptor complex, 

resulting in the activation of TAK1, MKK4, JNK and p38 MAPK (Sorrentino et 

al., 2008, Yamashita et al., 2008). However, studies performed in TAK1 

knockout cells revealed that TAK1 is dispensable for the activation of p38 

MAPK (Sapkota, 2013). Nevertheless, it is clear that TGFβ induced activity of 

JNK and p38 MAPK regulates TGFβ-mediated transcription (Sapkota, 2013), 

apoptosis (Edlund et al., 2003) and rearrangement of the actin cytoskeleton 

leading to EMT (Bakin et al., 2002, Yamashita et al., 2008). 

TGFβ ligand binding can also result in the association of the TβR-I with 

PI3K via its regulatory subunit p85 and induce AKT and mTORC1 activation 

(Bakin et al., 2000, Yi et al., 2005), regulating translation initiation, which results 

in changes in protein synthesis, increased cell size, invasion and EMT 

(Lamouille and Derynck, 2007, Lamouille et al., 2012). BMP ligands are 

similarly able to induce AKT phosphorylation and PI3K-induced activation of 

NFκB results in the induction of migration or inhibition of Caspases with 

subsequent prevention of apoptosis (Sugimori et al., 2005, Fong et al., 2008). 

Moreover, AKT can influence TGFβ-target gene transcription by 

phosphorylating the transcription factor FoxO. This results in nuclear exclusion 

and hence prevention of interaction with activated R-SMADs (Seoane et al., 

2004). Non-canonical AKT activation can also negatively influence canonical 

TGFβ signalling by binding SMAD3 and restricting the type I receptor mediated 

SMAD3 tail-phosphorylation (Remy et al., 2004, Conery et al., 2004).  

The TGFβ ligand-activated type I and II receptor complex binds the cell 

polarity protein PAR6 in tight junctions, which causes its phosphorylation by 

type II receptor kinase at S345. Phosphorylated PAR6 recruits SMURF1 to 
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induce RhoA ubiquitin-dependent proteasomal degradation, which is mediated 

via the C2 domain of SMURF1. Hence, in response to TGFβ ligands, RhoA 

dissociates from tight junctions resulting in their dissolution, which is a key step 

in the induction of TGFβ-induced EMT and cellular migration (Ozdamar et al., 

2005, Tian et al., 2011, Cheng et al., 2011, Wang et al., 2003). BMP and the 

TGFβ type III receptor can also induce EMT via the PAR6/SMURF1/RhoA 

signalling cascade (Sanchez and Barnett, 2012, Townsend et al., 2011). 

Furthermore, TGFβ ligands can induce RhoA-mediated cell migration via the 

NFκB pathway (Kim et al., 2014).  

RNA translation and protein synthesis is in part regulated by eEF1A1, 

which is phosphorylated by the type I receptor (ALK5) at S300 subsequent to 

TGFβ ligand binding. This phosphorylation abolishes the interaction of eEF1A1 

with amino acyl-bound tRNAs resulting in reduced protein translation and cell 

proliferation. Hence, by altering protein production via phosphorylation of 

eEF1A1, TGFβ acts as a tumour suppressor exhibiting cytostatic effects (Lin et 

al., 2010). 

 

1.3 The regulation of TGFβ signalling by PTMs 

Complex mechanisms, which are often context-dependent, have evolved 

to check and modulate the potency of TGFβ signalling in controlling cell 

behaviour (Itoh and ten Dijke, 2007). While the regulation of the TGFβ pathway 

occurs at multiple layers of the signalling cascade, R-SMADs, as critical 

mediators of TGFβ signals, are suitably primed for key regulatory inputs. 

Indeed, reversible phosphorylation and ubiquitylation of SMAD proteins and 

type I receptors are critical processes that regulate the strength and duration of 

TGFβ signalling (Al-Salihi et al., 2012b, Bruce and Sapkota, 2012, Lönn et al., 
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2009, Massague, 2012, Xu et al., 2012, Imamura et al., 2013, Herhaus and 

Sapkota, 2014). 

 

1.3.1 Regulation of TGFβ signalling by reversible phosphorylation 

 Reversible phosphorylation of TGFβ/BMP receptors  1.3.1.1

As introduced in section 1.2.2, the type II TGFβ receptor (TβR-II) is a 

constitutively active kinase that phosphorylates the type I receptor upon ligand 

binding and quaternary receptor complex formation. TβR-II phosphorylates 

TβR-I at several Serine residues within the GS domain in the cytoplasmic part 

of the receptor, immediately upstream of the kinase domain (Wrana et al., 

1994, Wieser et al., 1995, Willis et al., 1996). This phosphorylation enhances 

the specificity of TβR-I to C-terminal SXS motif of R-SMADs and inhibits binding 

to the inhibitory protein FKBP12 (Huse et al., 2001).  

The phosphorylation of TβR-I can be reversed by the protein 

phosphatase 1 (PP1). Interaction between PP1 and TβR-I can be enhanced by 

SARA, SMAD7 and GADD34 (Shi et al., 2004, Valdimarsdottir et al., 2006). 

Dullard is a phosphatase that acts on BMP type I receptors and its phosphatase 

activity is essential to promote BMPR-II degradation (Satow et al., 2006). 

 

 Reversible SMAD tail-phosphorylation 1.3.1.2

The C-terminal SXS motif of R-SMADs is phosphorylated by type I BMP 

and TGFβ receptors as described in section 1.2.2. Although the phosphorylation 

motif of BMP and TGFβ activated SMADs is very similar, distinct protein 

phosphatases have been reported.  

SCPs1-3 are reported to dephosphorylate the SMAD1 C-terminal region 

(Knockaert et al., 2006). SCPs are nuclear phosphatases and their binding to 
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SMAD1 is greatly enhanced in the presence of the Proline-rich protein BAT3 

(Goto et al., 2011). Another SMAD1 tail phosphatase reported is the 

mitochondrial enzyme Pyruvate dehydrogenase (PDP) (Chen et al., 2006).  

The protein phosphatase Mg2+/Mn2+ dependent 1A (PPM1A/PP2Cα) was 

reported to dephosphorylate both TGFβ- and BMP-induced R-SMAD tail-

phosphorylation and is reported to inhibit BMP signalling by promoting the 

proteasomal degradation of SMAD1 (Kokabu et al., 2010, Duan et al., 2006, Lin 

et al., 2006b). Two mouse models with PPM1A gene perturbation exist, 

however in these the role of PPM1A, as a SMAD2/3 C-terminal phosphatase, 

has not been confirmed (Dai et al., 2011, Yang et al., 2011). It has been 

reported that an interaction between protein phosphatase 2 (PP2A) and SMAD3 

is induced by hypoxia and under these conditions PP2A can dephosphorylate 

SMAD3, but not SMAD2 (Heikkinen et al., 2010). The nuclear accumulation of 

TGFβ-induced phospho-SMAD3 and its retention in endosomes can be caused 

by myotubularin related protein 4 (MTMR4). This phosphatase has been shown 

to promote tail-dephosphorylation of SMAD2 and 3 through binding. MTMR4 is 

thus another phosphatase that inhibits TGFβ signalling (Yu et al., 2010).  

Despite numerous reports on R-SMAD phosphatases, their precise 

nature of regulation remains undefined (Bruce and Sapkota, 2012, Wrighton et 

al., 2009). 

 

 Reversible SMAD linker-phosphorylation 1.3.1.3

The divergent linker region of R-SMADs is a central platform for 

regulatory phosphorylation and dephosphorylation events, which alter their 

localisation, transcriptional ability and stability. This region can be 

phosphorylated in direct response to TGFβ or BMP signalling, as well as by 
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several other signalling pathways like the MAPKs and GSK3. Hence the linker 

region of R-SMADs provides a platform for crosstalk between different 

signalling pathways (Xu et al., 2012).  

MAPKs (ERK2), CDK8/9 and GSK3 sequentially phosphorylate several 

Proline-directed Serine/Threonine residues (“PPXY” motif) in R-SMADs. 

Phosphorylation of the linker region of R-SMADs by MAP kinases and GSK3 

marks SMADs 1 and 3 for recognition by WW-domain containing E3 ubiquitin 

ligases SMURF1 and NEDD4L respectively, which mediate their 

polyubiquitylation and degradation (section 1.3.2.3) (Alarcón et al., 2009, 

Sapkota et al., 2007, Aragon et al., 2011). CDK8/ 9 also phosphorylate SMAD1 

and 3 linker region, subsequent to ligand induced tail-phosphorylation. Likewise, 

this primes their association with E3 ubiquitin ligases, but additionally enhances 

interaction of SMAD1 with YAP and of SMAD2/3 with PIN1 (Alarcón et al., 

2009, Gao et al., 2009, Aragon et al., 2011). The SMAD linker-phosphorylation-

mediated SMAD degradation is however context dependent, as in contrast to 

epithelial cells, in mesenchymal cell types ERK-mediated linker-phosphorylation 

of nuclear SMAD2/3, causes increased half-life of tail-phosphorylated SMAD2/3 

(Hough et al., 2012). The phosphorylation of SMAD3 MH1 and linker region by 

CDK2/4 and SMAD2 MH1 by CDK2 inhibits TGFβ-induced transcriptional 

activity (Matsuura et al., 2004, Baughn et al., 2009). Similarly, phosphorylation 

of SMAD2/3 linker region by GRK2 prevents SMADs from tail-phosphorylation 

and nuclear shuttling, consequently inhibiting TGFβ signalling (Ho et al., 2005).  

The only phosphatases known to reverse R-SMAD linker 

phosphorylation are SCPs 1, 2 and 3. SCPs1-3 dephosphorylate SMAD2 at 

S245, S250 and S255 and analogous the SMAD1 and 3 linker region sites 

(Sapkota et al., 2006, Wrighton et al., 2006, Knockaert et al., 2006). 
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1.3.2 Regulation of TGFβ signalling by reversible ubiquitylation 

Reversible ubiquitylation of the type I TGFβ/BMP receptor kinases and 

SMADs are known to play a critical role in regulating the TGFβ pathway. The 

mechanisms of ubiquitin-mediated turnover of SMADs and TGFβ/BMP cell 

membrane receptors by distinct E3 ubiquitin ligases are generally well 

established (Al-Salihi et al., 2012b, De Boeck and ten Dijke, 2012, Dupont et al., 

2012, Inoue and Imamura, 2008, Tang and Zhang, 2011, Zhang et al., 2014a). 

However, investigations into the regulation of the TGFβ/BMP pathways by 

DUBs are only emerging (Herhaus and Sapkota, 2014). 

 

 Regulation of the TGFβ/BMP receptors by E3 ubiquitin ligases 1.3.2.1

Targeting the receptors for reversible ubiquitylation is very effective in 

modulating the TGFβ/BMP pathway, as this could inhibit (by ubiquitylation) or 

enhance (by deubiquitylation) signalling. SMAD6 and SMAD7 are known to 

direct E3 ubiquitin ligases to the receptors. The WW domains of the C2-WW 

HECT E3 ubiquitin ligases bind to SMAD6/7 through the Proline-rich “PPXY” 

motif (Rotin and Kumar, 2009). Subsequently, I-SMADs can direct HECT E3 

ligases SMURF1/2, WWP1 (Tiul1) and NEDD4L to ALK5, ALK6 and TβR-II to 

catalyse their polyubiquitylation and subsequent degradation (Ebisawa et al., 

2001, Kavsak et al., 2000, Murakami et al., 2003, Fukasawa et al., 2010, 

Komuro et al., 2004, Kuratomi et al., 2005, Seo et al., 2004, Goto et al., 2007). 

SMAD6/7-mediated SMURF-dependent receptor degradation is a negative 

feedback mechanism, as both SMAD6/7 and SMURFs are transcriptional 

targets of TGFβ signalling (Afrakhte et al., 1998). Binding of the SMAD7-

SMURF2 complex to the receptors can be stabilised by the TGFβ co-receptor 

CD109 and be destabilised by TSC22 (Bizet et al., 2011, Bizet et al., 2012, Yan 
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et al., 2011). The HECT E3 ligase ITCH (AIP4) can also inhibit TGFβ signalling 

by promoting the interaction of SMAD7 with the type I receptors, however this is 

independent of its ubiquitin ligase activity (Lallemand et al., 2005).  

The RING E3 ubiquitin ligase TRAF6 has been reported to 

polyubiquitylate the type I receptors independently of SMAD7. TRAF6 

generates K63-linked chains on ALK5, leading to the recruitment of TACE, 

which catalyses its cleavage. The cleaved intracellular domain of ALK5 then 

translocates to the nucleus, where together with the transcriptional regulator 

p300 it induces the transcription of genes that promote cellular invasiveness 

such as Snail and MMP2 (Mu et al., 2011). TRAF4 also binds to the type I 

TGFβ receptor upon ligand stimulation; however, it does not polyubiquitylate the 

receptor complex. In fact, TRAF4 stabilises the receptor by antagonising 

SMURF2 and facilitating the recruitment of the DUB USP15. Receptor binding 

also triggers K63-polyubiquitylation of TRAF4 resulting in activation of TAK1 

(Zhang et al., 2013a). 

The E2 enzymes involved in the ubiquitylation of TGFβ/BMP receptors 

have not yet been identified.  

 

 Regulation of the TGFβ/BMP receptors by DUBs 1.3.2.2

Several deubiquitylating enzymes that reverse type I receptor 

ubiquitylation have been identified. Among the USP family of DUBs, USP4, 

USP11 and USP15 are highly similar, display conserved structural domains and 

protein sequences (cf. section 5.1.1). All three of them were independently 

discovered as DUBs for the type I TGFβ receptors through contrasting 

approaches. A gain-of-function screen looking for activators of TGFβ signalling 

identified USP4 (Zhang et al., 2012b), a proteomic approach looking at 
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interactors of SMAD7 identified USP11 (Al-Salihi et al., 2012a), and a siRNA 

loss-of-function screening looking for DUBs affecting the TGFβ-induced 

luciferase reporter activity identified USP15 (Eichhorn et al., 2012). 

USP4 has been reported to enhance TGFβ signalling by directly 

interacting with and deubiquitylating type I TGFβ receptor (ALK5) (Zhang et al., 

2012b). In this study, it was reported that upon phosphorylation by AKT, USP4 

translocates to the membrane, where it associates with ALK5, deubiquitylates it 

and protects it from degradation (Figure 1-5). The AKT-mediated 

phosphorylation of USP4 on S445 also affects its stability and DUB activity. 

Additionally, USP4 depletion inhibits TGFβ-induced EMT and AKT-induced 

breast cancer cell migration (Zhang et al., 2012b).  

USP11 was identified as an interactor of SMAD7 and ALK5 (Al-Salihi et 

al., 2012a). When bound to ALK5, USP11 deubiquitylates and protects ALK5 

from proteasomal degradation resulting in enhanced TGFβ signalling (Figure 

1-5). Consequently, TGFβ-induced levels of phosphorylated SMAD2/3 and 

transcription were augmented. USP11 could override the negative effects of 

SMAD7 on the TGFβ pathway, demonstrating that a dynamic balance between 

ubiquitylation and deubiquitylation could determine the fate of ALK5. It was 

shown that depletion of USP11 resulted in inhibition of TGFβ-induced 

transcription as well as EMT (Al-Salihi et al., 2012a).  

USP15 was reported to enhance TGFβ signalling by binding to the 

SMAD7-SMURF2 complex and deubiquitylating ALK5 in the process (Figure 

1-5) (Eichhorn et al., 2012). Moreover, USP15 amplification was observed in 

glioblastoma, breast and ovarian cancers, which highly correlated with 

enhanced TGFβ signalling activity and poor prognostic outcomes in individuals 

with glioblastoma (Eichhorn et al., 2012). Depletion of USP15 reduced the 
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oncogenic capacity of patient-derived glioma-initiating cells through the 

inhibition of TGF-β signalling, suggesting a direct role for USP15 and TGFβ 

signalling in glioblastoma pathogenesis (Eichhorn et al., 2012). However, 

USP15 knockout T cells and A375 and HCT116 knockdown USP15 cells did not 

exhibit altered TGFβ signalling as assayed by SMAD phosphorylation levels 

and TGFβ-mediated gene transcription (Zou et al., 2014). Hence, the function of 

USP15 in regulating TGFβ signalling might be cell type specific. 

The UCH family of DUBs, including UCH37, are generally described as 

ubiquitin chain trimmers (Lee et al., 2011). However, UCH37 is reported to 

deubiquitylate the type I receptor (ALK5) and sustain early TGFβ pathway 

activation (Figure 1-5) (Wicks et al., 2005, Cutts et al., 2011). It is directed to 

ALK5 via its interaction with SMAD7 (Wicks et al., 2005). UCH37 influences 

TGFβ-mediated transcription and affects cell migration (Cutts et al., 2011).  

No DUBs had been known to target the type I BMP receptors, hence a 

proteomic study to identify novel BMP signalling regulators was performed, 

which identified USP15 as a deubiquitylase for ALK3 (BMPR1A). The findings 

of this study will be discussed in this thesis (cf. section 5) (Figure 1-5) (Herhaus 

et al., 2014). Similarly, nothing is known about reversible ubiquitylation of 

TGFβ/BMP type II receptors. Furthermore, the precise ubiquitylation sites within 

the receptors and to some extent the nature of ubiquitin chain-linkages that are 

targeted by the different DUBs remain to be defined.   
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 Regulation of R-SMADs by reversible ubiquitylation 1.3.2.3

R-SMADs, which act as transcription factors, are the key cellular 

mediators of the TGFβ/BMP pathways. Hence, their activity has to be tightly 

regulated, as it determines the strength and potency of TGFβ/BMP signalling. 

The regulation of R-SMADs by E3 ubiquitin ligases is well established (Al-Salihi 

et al., 2012b, De Boeck and ten Dijke, 2012, Dupont et al., 2012, Inoue and 

Imamura, 2008, Tang and Zhang, 2011, Zhang et al., 2014a). However, no E2 

enzymes have been identified to play critical roles in R-SMAD ubiquitylation and 

only two deubiquitylating enzymes that act on R-SMADs have been described 

so far (Inui et al., 2011, Herhaus et al., 2013). 

As mentioned in section 1.3.1.3, phosphorylation of the linker region of 

R-SMADs primes them for recognition by WW-domain containing HECT E3 

ligases, which bind the “PPXY” motif within the R-SMAD linker region, with the 

exception of SMAD8 that lacks the “PPXY” motif (Aragon et al., 2011). The WW 

domain containing E3 ubiquitin ligases SMURF1 and SMURF2 have been 

shown to catalyse the ubiquitylation and degradation of BMP responsive 

SMAD1 and 5 (Sapkota et al., 2007, Zhang et al., 2001, Zhu et al., 1999). 

Similarly, SMURF2, NEDD4L, WWP1 and the N-terminal isoform of WWP2 

have been reported to ubiquitylate TGFβ-induced SMAD2 and 3, resulting in 

their proteasomal degradation (Gao et al., 2009, Kuratomi et al., 2005, Seo et 

al., 2004, Lin et al., 2000, Soond and Chantry, 2011).  

Several non-HECT E3 ligases are also reported to target R-SMADs for 

ubiquitylation. The U-Box domain containing E3 ligase CHIP induces SMAD1, 2 

and 3 degradation and hence inhibition of BMP and TGFβ signalling (Li et al., 

2004, Xin et al., 2005). The RING E3 ligase ARKADIA has been reported to 

enhance TGFβ signalling by binding to phosphorylated SMAD2/3, thereby 
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ubiquitylating SMAD signal-inhibiting binding partners, such as SMAD7, SnoN 

and c-SKI (Koinuma et al., 2003, Levy et al., 2007, Nagano et al., 2007, 

Yuzawa et al., 2009). After TGFβ stimulation the RING E3 ligase ROC1-SCF-

βTRCP1 has been shown to ubiquitylate SMAD3 that is bound to the 

transcription trans-activator p300, causing SMAD3 proteasomal degradation 

(Fukuchi et al., 2001). 

Indirect ubiquitylation machinery regulated through signalling crosstalk 

also affects the ubiquitylation of R-SMADs. Axin facilitates GSK3β-mediated 

phosphorylation of SMAD3 at T66, which promotes the degradation of non-

active SMAD3 in an ubiquitin-proteasome dependent manner, however the E3 

ubiquitin ligase responsible has not been identified (Guo et al., 2008). CYLD 

indirectly inhibits TGFβ signalling by decreasing the stability of SMAD3 via the 

AKT-GSK3β-CHIP pathway (Lim et al., 2012). CYLD deubiquitylates K63-

polyubiquitylated AKT, resulting in the inhibition of AKT. This leads to the 

activation of GSK3β and promotes CHIP-mediated SMAD3 degradation (Lim et 

al., 2012). Estrogen receptor α is also reported to recruit SMURFs to SMAD2/3, 

thereby catalysing their proteasomal degradation (Ito et al., 2010).  

In contrast to polyubiquitylation, monoubiquitylation in the TGFβ pathway 

does not result in proteasomal degradation (Dupont et al., 2012). By catalysing 

the monoubiquitylation of SMAD2, the HECT E3 ligase ITCH enhances the 

interaction between SMAD2 and ALK5, which further potentiates SMAD2-tail 

phosphorylation (Bai et al., 2004). The RING-type zinc finger E3 ligase Cbl-b 

might have an analogous function in T cells, as its loss reduces TGFβ-induced 

SMAD2 tail-phosphorylation (Wohlfert et al., 2006, Adams et al., 2010). 

SMURF2 has also been reported to result in multiple monoubiquitylation of 

SMAD3 MH2 domain, hindering SMAD3 from forming a complex with SMAD4 
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(Tang et al., 2011). SMURF2 is recruited to linker-phosphorylated SMADs by 

another WW-domain-containing protein: PIN1 (Nakano et al., 2009).  

To date, the only DUB identified to deubiquitylate monoubiquitylated R-

SMADs is USP15 (Figure 1-6). Monoubiquitylation of R-SMADs reportedly 

occurs at the DNA-binding domain of R-SMADs, thereby preventing their 

association with DNA at the promoters. USP15 reverses SMAD2/3-

monoubiquitylation at the MH1 domain, thereby enhancing their ability to 

recognise the promoters (Inui et al., 2011). No deubiquitylating enzymes that 

target activated R-SMADs to prevent their proteasomal degradation had been 

identified. Therefore, a proteomic screen to discover novel R-SMAD DUBs was 

performed and OTUB1 was as identified an interactor of TGFβ-activated 

SMAD3. The role of OTUB1 in the TGFβ pathway will be discussed in this 

thesis (cf. section 3) (Figure 1-6) (Herhaus et al., 2013).  

 

 Regulation of I-SMADs by reversible ubiquitylation 1.3.2.4

Although I-SMADs direct E3 ubiquitin ligases and DUBs to the receptors, 

they can be targets of reversible ubiquitylation themselves. SMURF1/2 and 

WWP2 that bind to I-SMADs through their “PPXY” motif can also 

polyubiquitylate SMAD6/7, causing their proteasomal degradation (Soond and 

Chantry, 2011, Murakami et al., 2003). The MH1 domain of SMAD7 also assists 

in E2 (UBE2L3) binding to the HECT domain of SMURF2 and thus enhances 

the catalytic activity of the E3 ubiquitin ligase (Ogunjimi et al., 2005). 

The ubiquitylation of SMAD7 on K64 and K70 by SMURF1 can be 

prevented by acetylation of the same sites by the histone acetyl transferase 

p300, which can be reversed by the deacetylase SIRT1 (Gronroos et al., 2002, 

Kume et al., 2007). The RING E3 ligases RNF12 and ARKADIA also 
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polyubiquitylate SMAD7, thereby increasing BMP and TGFβ signalling (Zhang 

et al., 2012a, Koinuma et al., 2003, Liu et al., 2006). The E2 ubiquitin-

conjugating enzyme UBE2O, which acts as an E2-E3 hybrid, interacts with and 

monoubiquitylates SMAD6 at K174. Monoubiquitylation of SMAD6 enhances 

BMP7 signalling as it decreases the binding of unmodified SMAD6 to the 

activated type I BMP receptor (ALK2) (Zhang et al., 2013c). 

Several DUBs are known to deubiquitylate I-SMADs. CYLD, which only 

hydrolyses K63-linked polyubiquitin chains (Komander et al., 2008), was shown 

to deubiquitylate SMAD7, thereby inhibiting TGFβ signalling in the development 

of Tregs (Figure 1-5) (Zhao et al., 2011). CYLD targets K63-linked ubiquitin 

chains on SMAD7 at K360 and K374, which are shown to be required for 

activation of TAK1 and p38 MAP kinases in response to TGFβ (Zhao et al., 

2011). AMSH, a JAMM/MPN+ DUB, has been shown to bind and sequester 

SMAD6 upon BMP receptor activation and activate BMP signalling, however 

whether its catalytic activity influences BMP signalling is not known (Itoh et al., 

2001). Similarly, AMSH-LP is reported to sequester SMAD7, thereby exerting a 

positive effect on the TGFβ pathway (Figure 1-5) (Ibarrola et al., 2004). Whether 

the catalytic activity of AMSH-LP is required is also not known. AMSH and 

AMSH-LP have been reported to only deubiquitylate K63-ubiquitin chains (Sato 

et al., 2008). 

 

 Regulation of SMAD4 by reversible ubiquitylation 1.3.2.5

SMURF1/2, WWP1 and NEDD4L have been shown target SMAD4 for 

ubiquitin-mediated proteasomal degradation after it has formed ternary 

complexes with active R-SMADs or I-SMADs acting as adaptors, as SMAD4 

lacks the “PPXY” motif (Morén et al., 2005). Additionally, ROC1-SCF-SKP2-
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βTRCP1 induces the ubiquitin-mediated degradation of SMAD4 (Liang et al., 

2004, Wan et al., 2004). The U-Box-dependent E3 ubiquitin ligase CHIP 

mediates SMAD4 protein stability, but its precise role in SMAD4 ubiquitylation 

remains undefined (Li et al., 2004).  

SMAD4 can also be ubiquitylated by the RING E3 ligase TRIM33 

(Ectodermin/TIF1γ), which possesses a PHD-Bromo domain that mediates 

chromatin binding. The PHD-Bromo domain is essential for the recruitment of 

TRIM33 to chromatin and chromatin binding is required for its E3 ubiquitin 

ligase activity (He et al., 2006, Xi et al., 2011, Agricola et al., 2011). It has been 

suggested that TRIM33 directly interacts with SMAD4 and causes its 

polyubiquitylation (Dupont et al., 2005). However, it has also been reported that 

SMAD4 is monoubiquitylated by TRIM33 at K519 (Dupont et al., 2009). 

Monoubiquitylation impedes the association of SMAD4 with two other R-SMAD 

molecules, as the ubiquitin occupies the R-SMAD docking sides (Dupont et al., 

2009). In contrast, TRIM33 has also been reported to interact with tail-

phosphorylated SMAD2/3 in competition with SMAD4, creating unique SMAD4-

SMAD2/3 or TRIM33-SMAD2/3 complexes, each resulting in distinct cellular 

functions (Xi et al., 2011, He et al., 2006). 

USP9x (FAM) is the only reported DUB that deubiquitylates SMAD4 

(Figure 1-6) (Dupont et al., 2009). USP9x only reverts monoubiquitylation of 

SMAD4 at K519. Hence, depletion of USP9x resulted in reduced TGFβ-induced 

transcription. It is required for TGFβ-induced growth arrest and cell migration 

but not phosphorylation of SMAD3. (Dupont et al., 2009). Absence of USP9x 

has been reported to result in reduced axon length, a process that requires 

TGFβ signalling (Stegeman et al., 2013). Studies in Drosophila melanogaster 

have also shown that fat facets (USP9x homologue) stabilises Medea (SMAD4 
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homologue) by deubiquitylating Medea K738 (equivalent to human SMAD4 

K519) (Stinchfield et al., 2012). The fat facets-mediated stabilisation of Medea 

is critical in regulating the zygotic Decapentaplegic (BMP2/4 homologue) 

morphogen gradient that determines dorsal-ventral axis formation (Stinchfield et 

al., 2012).  

 
 

 

Figure 1-6 SMAD deubiquitylation 

USP9x and USP15 reverse monoubiquitylation of SMAD4 and R-SMADs 
respectively, thereby enabling the assembly of active transcription factor 
complex and efficient TGFβ/BMP-mediated target gene transcription. OTUB1 
recognises TGFβ-activated SMAD2/3 and inhibits their ubiquitylation, thereby 
stabilising the active transcriptional complex and enhancing TGFβ signalling.  
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 Regulation of the other TGFβ pathway components by reversible 1.3.2.6

ubiquitylation 

Reversible ubiquitylation of proteins associated with the core TGFβ-

pathway components, such as SMADs and receptors, also influences the 

outcome of TGFβ signalling. The transcription factor RUNX2 promotes the 

binding of R-SMADs to DNA. The E3 ubiquitin ligase SMURF1 can be directed 

by SMAD6 to RUNX2 and induce its ubiquitin-mediated degradation, resulting in 

decreased BMP signalling (Shen et al., 2006). The negative nuclear co-factors 

c-SKI and SnoN, that antagonise SMAD-mediated transcriptional activity, are 

also targeted by E3 ubiquitin ligases. The anaphase-promoting complex (APC) 

is recruited to SnoN in a SMAD2-dependent manner and promotes TGFβ 

signalling by polyubiquitylating SnoN, leading to its degradation (Stroschein et 

al., 2001, Wan et al., 2001). In a similar TGFβ-dependent manner, SMURF2 

and ARKADIA target SnoN for proteasomal degradation, causing activation of 

TGFβ transcriptional responses (Bonni et al., 2001, Levy et al., 2007, Nagano et 

al., 2007). By binding to phosphorylated-SMAD2/3 ARKADIA can also 

ubiquitylate and degrade c-SKI (Yuzawa et al., 2009). 

Some DUBs have been implicated in the regulation of non-canonical 

TGFβ signalling. The deubiquitylating enzyme A20 has been shown to be 

recruited to TRAF6 by SMAD6 and abolish K63-linked polyubiquitylation of 

TRAF6, thereby inhibiting the non-canonical TGFβ signalling through the 

TRAF6-TAK1-p38 MAPK/JNK pathway (Jung et al., 2013). Knockdown of the 

deubiquitylating enzyme A20 or its transporter SMAD6, both resulted in 

increased apoptosis, while maintaining p38 MAPK/JNK phosphorylation, 

indicating that SMAD6/A20 are essential for the negative regulation of non-

canonical TGFβ signalling (Jung et al., 2013). TAK1 is also reported to be 
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deubiquitylated by USP4 and USP18 (Fan et al., 2011, Liu et al., 2013). TNFα 

induces the association of USP4 and deubiquitylation of K63-polyubiquitylated 

TAK1. Consequently, TAK1-mediated NFκB activation is down regulated. 

Moreover, USP4 inhibits IL1β-, LPS- and TGFβ-induced NFκB activation (Fan 

et al., 2011). TGFβ together with IL6 initiates T helper 17 (Th17) cell 

differentiation (Bettelli et al., 2006). Recently, USP18 has been shown to 

regulate T cell activation and Th17 cell differentiation by associating with and 

deubiquitylating the TAK1-TAB1 complex, thereby restricting IL2 expression. 

USP18 knockout mice were found to be defective in Th17 generation and 

resistant to experimental autoimmune encephalomyelitis. Hence, the negative 

regulation of TAK1 activity during Th17 differentiation by USP18, led the 

authors to suggest USP18 as a target to treat autoimmune diseases (Liu et al., 

2013). 

OTUD4, USP5 and USP25 have been reported to play a critical role in 

dorsal-ventral patterning of zebrafish embryos through the BMP pathway (Tse 

et al., 2009). It has been reported that TSC22D3, which is crucial for dorsal-

ventral patterning, segmentation and brain development, associates with 

USP15 and OTUD4 to impact the BMP signalling pathway (Tse et al., 2013). 

 

1.3.3 Regulation of TGFβ signalling by other PTMs 

Although the focus of this thesis is primarily on reversible ubiquitylation 

and phosphorylation processes, it is worth noting that other PTMs of key 

components also play important roles in the TGFβ/BMP pathway modulation.  

Sumoylation, like ubiquitylation, is attached to the Lysine residues on 

substrate proteins. While some sumoylation events can prime substrates for 

subsequent ubiquitylation (Hay, 2013, Geoffroy and Hay, 2009), in theory 
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ubiquitylation of a specific Lysine residue could compete with sumoylation or 

other ubiquitin-like modifications and acetylation. Sumoylation has been 

reported to alter the type I TGFβ receptor and SMAD4 functions. TβR-I is 

reported to be sumoylated in response to TGFβ, which results in enhanced 

receptor function by facilitating the recruitment and phosphorylation of SMAD3. 

This sumoylation event requires the kinase activities of both TβR-I and TβR-II 

(Kang et al., 2008). SMAD4 has been reported to be sumoylated at K113 and 

K159 by the SUMO E2 UBC9 and members of the PIAS family of SUMO 

ligases. This sumoylation targets SMAD4 to subnuclear speckles and enhances 

TGFβ-induced transcriptional responses (Lee et al., 2003, Lin et al., 2003, Zhou 

et al., 2014), whereas Medea (homologue to SMAD4) sumoylation in Drosophila 

melanogaster restricts Decapentaplegic (homologue to BMP) signalling through 

nuclear export (Miles et al., 2008).  

The RING E3 ligase c-Cbl, that harbours a Tyrosine kinase binding 

domain, promotes TGFβ signalling by neddylating TβR-II at K556 and K567, 

which stabilises TβR-II by inhibiting its ubiquitylation (Zuo et al., 2013). 

Acetylation of SMAD7 has been reported to compete with ubiquitylation 

to regulate SMAD7 stability (Gronroos et al., 2002, Kume et al., 2007). SMAD2 

and 3 are reported to be acetylated by p300 and CBP at K19 in their MH1 

domain which enhances their transcriptional activity and DNA binding 

(Simonsson et al., 2006). Furthermore, TGFβ induces the enrichment of 

p300/CBP occupancies around SMAD binding sites at TGFβ target gene 

promoters, enhances the interaction of p300 with SMAD2/3 and increases 

SMAD2/3 acetylation (Yuan et al., 2013). Additionally, TGFβ promotes the 

acetylation of histone H3 and the transcription factor Ets-1 by p300 (Kato et al., 

2013).  



- 42 - 

Methylation of SMAD6 by protein arginine N-methyltransferase 1 

(PRMT1) has been reported to promote its dissociation from the type I BMP 

receptor, causing the activation of BMP-SMADs through phosphorylation (Xu et 

al., 2013, Inamitsu et al., 2006). N-linked glycosylation of the extracellular 

domain of TβR-II has been reported to impact TGFβ sensitivity by facilitating 

ligand binding (Goetschy et al., 1996, Fafeur et al., 1993, Kim et al., 2012). 

Furthermore, it is suggested that glycosylation of the TGFβ ligands is necessary 

for their secretion (Sha et al., 1989). 

 

1.3.4 Regulation of TGFβ signalling by non-PTM modes 

The availability of TGFβ components can further be regulated by non-PTM 

modes, through non-coding RNA molecules, which function in transcriptional 

and post-transcriptional regulation of gene and protein expression (Lee et al., 

1993). Regulatory RNAs include micro RNAs (which act in translational 

repression and transcript degradation), long non-coding RNAs (which control 

(post-) transcriptional gene regulation), small intronic transposable element 

RNAs (that mediate gene silencing), small nuclear RNAs (which control RNA 

splicing), small nucleolar RNAs (which chemically modify RNA), Piwi-interacting 

RNAs (that silence retrotransposons) and endogenous small interfering RNAs 

(which control post-translational gene silencing in oocytes) (Bowen et al., 2013, 

Harding et al., 2014). 

Many messenger RNAs (mRNAs) of components of the TGFβ signalling 

pathway are reported to be targeted by microRNAs (miRNAs) for degradation 

(Blahna and Hata, 2012). Furthermore, the biogenesis and processing of 

several miRNAs is reported to be regulated by the TGFβ pathway (Blahna and 

Hata, 2012, Long and Miano, 2011). SMADs can modulate miRNA expression 
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by binding SBEs in miRNA promoter regions and by binding to SBE-like 

sequences of pri-miRNAs (Long and Miano, 2011, Kong et al., 2008, Blahna 

and Hata, 2012). The 44 miRNAs that harbour the SBE-like sequence are 

termed TGFβ/BMP-regulated miRNAs (T/B miRNAs) (Davis et al., 2010, Davis 

et al., 2008). Moreover, miRNAs can directly interact with mRNAs of TGFβ-

target genes (Butz et al., 2012). Additionally, TGFβ can activate the long non-

coding RNAs lncRNA-SMAD7 and lncRNA-ATB, which sequester the miRNA-

200 family and stabilise IL11 mRNA, thereby promoting apoptosis or invasion, 

metastasis and EMT respectively (Yuan et al., 2014, Arase et al., 2014).  
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1.4 TGFβ signalling in human diseases 

1.4.1 Physiological functions of TGFβ and BMP cytokines 

BMP and TGFβ-dependent transcriptional activity determines cellular 

responses such as proliferation, apoptosis, EMT, migration, differentiation and 

embryonic development. TGFβ and BMP ligands are essential to maintain cell 

and tissue homeostasis and often act in a context dependent manner 

(Massague, 2012). 

TGFβ cytokines inhibit cell proliferation of many cell types by repressing 

the transcription of c-Myc as well as the induction of CDK inhibitors including 

p15, p21 and p27. These inhibit CDK activities associated with the G1 to S 

phase progression during cell cycle and arrest cells in G1 (Siegel and 

Massague, 2003). Many other signalling cascades regulated by TGFβ 

cooperate with canonical TGFβ signalling in mediating TGFβ growth control 

(Huang and Huang, 2005, Ten Dijke et al., 2002).  

The induction of apoptosis by TGFβ cytokines constitutes another 

tumour-suppressor mechanism and plays an essential role for the maintenance 

of B- and T-cell homeostasis, among others. Apoptosis is initiated by TGFβ 

ligands in cooperation with stress signals. This leads to canonical (SMAD 

activation), as well as non-canonical (MAPK pathway) TGFβ signalling and 

induces Cytochrome c release and hence Caspase activation (Schuster and 

Krieglstein, 2002).  

TGFβ promotes EMT, which is a fundamental process during 

embryogenesis and organogenesis, whereby epithelial cells undergo profound 

morphological and phenotypic changes to become mesenchymal cells. The 

acquisition of the mesenchymal phenotype is characterised by the loss of cell-

cell adhesion and apical basal cell polarity, which results in enhanced cellular 
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plasticity, including a gain in migratory and invasive properties. All of these 

processes are regulated by the TGFβ-activated receptors, which signal through 

SMADs and the RhoA pathway, and include the rearrangement of the actin 

cytoskeleton and differential expressions of proteins involved in cell-cell junction 

formation and migration (Moreno-Bueno et al., 2009, Heldin et al., 2012, Heldin 

et al., 2009, Medici et al., 2011). Similarly, TGFβ family cytokines can induce 

endothelial to mesenchymal transition (EndoMT), which is critical during 

embryonic heart development and is characterised by the loss of endothelial 

and gain of mesenchymal phenotype (Ten Dijke et al., 2012). EMT is also a 

hallmark of cancer and essential for tumour metastasis. Once EMT is induced 

and metastatic cells disseminate to a distant site, they need to undergo 

mesenchymal to epithelial transition (MET) regulated by BMPs, to permit 

colonisation and reinitiate proliferative programs necessary for the formation of 

secondary tumours (Jo et al., 2009, Morrison et al., 2013, Buijs et al., 2007). 

TGFβ signalling also plays a critical role in wound healing and cellular 

migration (Pakyari et al., 2013). Cellular migration is initiated upon the TGFβ-

mediated degradation of RhoA, which results in the disruption of tight junctions 

(section 1.2.5) (Wang et al., 2003). Furthermore, increased transcription of 

Snail, down regulation of E-cadherin and inhibition of cofilin, which result in 

actin polymerisation, promote migratory events (Heldin et al., 2009, Akhurst and 

Derynck, 2001). In prostate cancer cells TGFβ enhances the production of 

prostaglandin, which mediates cellular migration through the PI3K/AKT/mTOR 

pathway (Vo et al., 2013).  

By regulating the expression or function of tissue-specific transcription 

factors and growth factor cytokines, BMP and TGFβ can regulate the fate of 

pluripotent stem cells (Moses and Serra, 1996). TGFβ signalling also leads to 
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chromatin remodelling in order to transcribe genes controlling differentiation of 

embryonic stem cells (Gaarenstroom and Hill, 2014). TRIM33 has been shown 

to bind chromatin and make it accessible for SMAD2/3/4 to recruit RNA Pol II 

(Xi et al., 2011, Massagué and Xi, 2012). TGFβ ligands inhibit myoblast, 

adipocyte and osteoblast differentiation, whereas BMPs promote the 

differentiation of mesenchymal stem cells into osteoblasts (Liu et al., 2001, 

Derynck and Akhurst, 2007, Moses and Serra, 1996, ten Dijke et al., 2003). 

TGFβ/BMP ligands control mesenchymal precursor cell differentiation during 

bone formation through canonical (SMAD dependent) and non-canonical 

(MAPK pathway) signalling (Chen et al., 2012). In addition, TGFβ family 

cytokines can promote trans-differentiation via redirecting the differentiation of 

cells that are already partly or fully differentiated. This process of cellular 

plasticity is essential during embryonic development and enables BMP ligands 

to also convert myoblasts and pre-adipocytes into osteoblasts (Derynck and 

Akhurst, 2007). Apart from maintaining the pluripotent state and regulating 

(trans)-differentiation of stem cells, the TGFβ family of cytokines are also 

involved in establishing induced pluripotent stem (iPS) cells (Itoh et al., 2014). 

The correct induction of cellular proliferation, apoptosis and 

differentiation, along with EMT in a controlled temporal and spatial manner, 

defined by TGFβ and BMP ligands, is critical during embryonic development. 

Xenopus laevis has been employed as a model organism to study vertebrate 

embryogenesis and the impact of TGFβ/BMP signalling (McDowell and Gurdon, 

1999, Simeoni and Gurdon, 2007, Gurdon et al., 1958). During gastrulation the 

embryo forms three germ layers: ectoderm, mesoderm and endoderm. Each 

germ layer results in the formation of different tissues (De Robertis and Kuroda, 

2004, Blitz et al., 2006). Further organisation is achieved by two opposing 
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signalling centres in the ventral and dorsal sides of the mesoderm, leading to a 

dorsal-ventral axis formation. This axis formation is achieved by the expression 

of BMP cytokines in the ventral and BMP antagonists in the dorsal signalling 

centres creating a gradient of BMP signalling (De Robertis and Kuroda, 2004, 

Eivers et al., 2008, McDowell et al., 2001).  

 

1.4.2 Aberrant TGFβ signalling in hereditary disease 

Due to the complexity and vital function of TGFβ signalling, it is evident 

that aberrant signalling can cause a variety of human diseases. Most diseases 

are caused by mutations in key components of the signalling cascade leading to 

an imbalance of TGFβ/BMP signalling and resulting in somatic and hereditary 

diseases. These diseases comprise cardiovascular, immune and reproductive 

disorders as well as fibrosis and cancer (Figure 1-7) (Massague, 2008, Pardali 

and Ten Dijke, 2012, Hawinkels and Ten Dijke, 2011, Flavell et al., 2010, Blobe 

et al., 2000). 

The Marfan syndrome is a connective tissue disorder that is linked to 

mutations in the FBN1 gene (Dietz et al., 1991). The FBN1 gene encodes 

fibrillin1, which is an extracellular matrix glycoprotein that sequesters TGFβ 

ligands and is essential for the formation of elastic fibres in the connective 

tissue (Kielty et al., 2002). Mutations in FBN1 lead to decreased fibrillin1 

expression, thereby increasing TGFβ signalling. This results in aortic 

aneurysms as well as mitral valve abnormalities and causes failure of the 

vascular system and lung disorders. The Marfan syndrome has also been 

associated with mutations in the TGFβ type I and type II receptors (Neptune et 

al., 2003, Matyas et al., 2006). Mutations in the NOG gene, which encodes the 

BMP antagonist Noggin, results in increased BMP signalling and causes 
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Brachydactyly Type B disease, which is characterised by skeletal defects 

resulting in abnormally fused finger and toe joints (Lehmann et al., 2007). The 

insufficiency of the TGFβ family cytokine AMH can lead to the autosomal 

recessive congenital disorder Persistent Müllerian Duct syndrome (PMDS). 

PMDS is characterised by the development of female organs in genetic males. 

Some patients suffering from PMDS also harbour inactivating mutations in the 

AMH receptor (AMHR-II) that limit their interaction with AMH (Josso et al., 2005, 

Belville et al., 1999). 

Inactivating mutations in ALK1 and its co-receptor endoglin are 

associated with the Osler-Weber-Rendu syndrome (also known as Hereditary 

Haemorrhagic Telangiectasia (HHT)), which is an autosomal dominant disease 

in which patients exhibit impaired vascular development (Govani and Shovlin, 

2009, Johnson et al., 1996). Inactivating mutations in ALK5 and TβR-II are 

associated with the Loeys-Dietz syndrome (LDS), which is a connective tissue 

disorder that exhibits similar symptoms as the Marfan syndrome and is 

characterised by impaired craniofacial development and an increased risk of 

aortic rupture (Loeys et al., 2005, Dietz et al., 2005). 

Inherited mutations in intracellular TGFβ signalling components can also 

cause anomalous cell growth, which can predispose patients to the 

development of cancer. Inactivating mutations in the type I TGFβ receptor gene 

TGFBR1 have been associated with the Ferguson-Smith disease (FSD), which 

is an autosomal dominant skin disorder that is characterised by aggressive skin 

tumours that invade surrounding tissue but spontaneously self-heal (Goudie et 

al., 2011).  

Autosomal dominant mutations of SMAD4 and ALK3 have been reported 

to drive polyp formation in patients with Juvenile polyposis, which is 
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characterised by the formation of spontaneous benign polyps in the 

gastrointestinal tract of children. These polyps predispose patients to develop 

colorectal, gastric and pancreatic cancers (Howe et al., 2004, Latchford et al., 

2012, Sayed et al., 2002).  

Mutations in TGFβ signalling associated factors have been linked to the 

pathogenesis of several diseases. For example, mutations in the SMAD 

transcriptional co-repressor TGIF are linked to Holoprosencephaly, which 

causes structural defects of the developing forebrain (Gripp et al., 2000). 

 
 

 

Figure 1-7 Overview of diseases caused by aberrant TGFβ/BMP signalling 

Mutations in most TGFβ/BMP signalling components can cause a variety of 
severe human diseases.  
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1.4.3 The role of TGFβ signalling in cancer 

In epithelial cells, TGFβ/BMP cytokines are usually regarded as tumour 

suppressors. Mutations and epigenetic changes, however can lead to aberrant 

TGFβ/BMP signalling in somatic cells, which is often associated with the 

development of cancer (Inman, 2011, Massague, 2008, Wakefield and Hill, 

2013, Drabsch and ten Dijke, 2012). The switch from TGFβ as a tumour 

suppressor to tumour promoter is a critical step during cancer development. On 

one hand, mutations in critical signalling components can inactivate TGFβ 

signalling, which could result in the loss of TGFβ-induced cytostasis. On the 

other hand, mutations can also enhance the TGFβ-mediated tumour traits such 

as EMT and the induction of angiogenesis (Inman, 2011, Massague, 2008, 

Zhang et al., 2014b, Meulmeester and Ten Dijke, 2011, ten Dijke et al., 2008).  

Inactivating mutations in the type I and II TGFβ and BMP receptors as 

well as SMAD4 that result in the evasion of TGFβ-dependent growth 

suppression are found in pancreatic, gastric and colorectal cancers (Goggins et 

al., 1998, Hahn et al., 1996, Xu and Pasche, 2007, Zhang et al., 2010, Kodach 

et al., 2007). SMAD4 is a tumour suppressor that has been reported to be 

mutated in ~50% of pancreatic tumours (Hahn et al., 1996). Certain mutations 

in SMAD4 can alter its stability by priming SMAD4 for increased proteasomal 

degradation (Yang et al., 2006, Wan et al., 2005). The loss of SMAD4 promotes 

tumourigenesis in colon cancers and re-expression of SMAD4 is able to restore 

the TGFβ-mediated cytostatic effects (Zhang et al., 2010, Voorneveld et al., 

2014). Cancer cells often exploit TGFβ signalling in order to metastasise, which 

is particularly evident in aggressive breast tumours (Massagué, 2008). In MDA-

MB-231 breast cancer cells, SMAD4 expression is required to drive bone 

metastases (Deckers et al., 2006). Hence, the expression of SMAD4 is an 
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example of how TGFβ signalling can switch from a tumour suppressor to a 

tumour promoter in a cell-type and context-dependent manner. Another 

example is the epigenetic silencing of TGFβ target genes, such as the tumour 

suppressors p15 and p21 (Geyer, 2010). Aberrant BMP signalling is associated 

with bone metastasis, which is the most common secondary tumour site in 

prostate and breast cancer progression (Drabsch and ten Dijke, 2011, Ye et al., 

2007).  

Proteins regulating TGFβ/BMP signalling such as E3 ubiquitin ligases 

and DUBs have also been shown to influence cancer progression. Elevated 

TRAF4 levels, which cause increased levels of SMAD2 and TAK1 

phosphorylation, correlate with poor prognosis in breast cancer patients (Zhang 

et al., 2013a). NEDD4L and SMURF2 are significantly up regulated in prostate 

cancer cells (Hellwinkel et al., 2011) and high SMURF2 levels, which result in 

TβR-II degradation, might cause the attenuation of TGFβ signalling in renal cell 

carcinoma (Fukasawa et al., 2010). Moreover, SMURF1 amplification in 

pancreatic cancers decreases SMAD levels and drives tumourigenic 

phenotypes (Kwei et al., 2011). The loss of ARKADIA is found in some cancer 

cell lines, resulting in the stabilisation of SnoN and c-SKI, which are 

transcriptional co-repressors of TGFβ signalling (Nagano et al., 2010, Levy et 

al., 2007). The DUBs USP15 and USP4, both targeting TβR-I, are also 

implicated in cancer progression. USP15 amplification was observed in 

glioblastoma, breast and ovarian cancers and correlated with high TGFβ activity 

and poor prognosis in individuals with glioblastoma (Eichhorn et al., 2012), 

whereas USP4 stimulated the TGFβ-induced breast cancer invasion and 

metastasis (Zhang et al., 2012b). 
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1.4.4 TGFβ-induced fibrosis 

Fibrosis is caused by excessive scarring and the TGFβ signalling 

pathway has been implicated in orchestrating the process of fibrogenesis 

though excessive would healing. Fibrosis in organs like the lung, liver, kidney, 

skin or heart can cause organ failure and currently there is no effective 

treatment of fibrotic disorders as designing specific strategies for targeting the 

TGFβ pathway could have adverse effects on the injury response, although 

scarring could be reduced (Jiang et al., 2014, Pakyari et al., 2013, Finnson et 

al., 2013).  

The molecular mechanisms that contribute to fibrogenesis are 

pathological, physiological, biochemical, and physical factors including 

mechanical stress, myofibroblast differentiation, chemotherapy (as a result of 

cancer treatment), EMT, increased inflammation, ECM production (collagen 

deposition) and canonical as well as non-canonical TGFβ signalling (Van De 

Water et al., 2013, Goumans et al., 2008, Mancini and Sonis, 2014, Fernandez 

and Eickelberg, 2012). The TGFβ mediated signalling pathways involved in 

fibrosis are the same as those involved in the normal wound healing process, 

however in fibrosis, these signalling pathways escape normal cellular regulation 

(Choi et al., 2012). TGFβ release upon injury assists in the attraction of 

macrophages, neutrophils and fibroblasts, which in turn release more TGFβ 

(Leask and Abraham, 2004). The hyperactivity of TGFβ signalling results in a 

disruption of ECM homeostasis and accumulation of fibrosis-associated 

proteins (Weiskirchen and Meurer, 2013). Pro-fibrotic protein and ECM 

production (e.g. collagen and fibronectin) is augmented through TGFβ, IFNγ, 

IL10 signalling, transcriptional activators (e.g. SMAD3), epigenetic modulators, 

NADPH oxidases that generate reactive oxygen species and downstream 
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transcription (e.g. CTGF and PAI-1) through SMAD2/3 and non-SMAD 

pathways (e.g. EGFR, MAP kinases, p53). PAI-1 is a potent profibrotic 

matricellular protein involved in wound healing, however excessive amounts 

contribute to scarring and organ fibrosis (Ghosh et al., 2013, Samarakoon et al., 

2013). The constitutive overexpression of CTGF and collagen enhance the 

profibrotic response to TGFβ (Leask and Abraham, 2004), possibly through the 

ALK1/SMAD1 and ERK1/2 MAP kinase pathways but not SMAD2/3 in 

scleroderma fibrosis and Dupuytren's disease (Pannu et al., 2007, Krause et al., 

2011). It has been proposed that BMP7 could antagonise established fibrosis 

(Yanagita, 2012), as BMP7 interferes with TGFβ signalling, matricellular proteins 

and proteins that modulate cellular proliferation, migration, adhesion and ECM 

production (Weiskirchen and Meurer, 2013). 

 

1.4.5 Strategies for the treatment of TGFβ-associated diseases 

The TGFβ pathway has been targeted for disruption by several 

therapeutic strategies, as abnormal TGFβ signalling is associated with several 

different diseases (section 1.4.2, 1.4.3 and 1.4.4). The strategies currently in 

use include antisense oligonucleotides, neutralising antibodies, ligand traps, 

soluble TβR-II receptors and small molecule inhibitors of type I TGFβ/BMP 

receptors. Numerous therapeutic strategies are tested in clinical trials and the 

most promising treatments to target TGFβ signalling that have progressed to 

Phase III clinical trials are: Trabedersen (an antisense oligonucleotide that 

blocks mRNA translation), Belagenpumatucel-L (an antisense gene-modified 

allogeneic tumour cell vaccine) and Lerdelimumab (a recombinant human IgG4). 

These drugs all target TGFβ2, which is produced in extreme quantities by 

glioblastoma and pancreatic carcinoma cells (Bogdahn et al., 2011, 
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Schlingensiepen et al., 2011, Nemunaitis et al., 2009, Nemunaitis et al., 2006, 

Cordeiro, 2003, NIH, 2014, Akhurst and Hata, 2012, Nagaraj and Datta, 2010). 

Although several diseases and cancer can result from an imbalance in 

TGFβ signalling, there are major concerns for targeting TGFβ as a therapeutic 

strategy. Due to the wide-ranging physiological functions of TGFβ/BMP 

signalling, inactivation of the complete pathway is not a promising treatment 

approach. The principal apprehension is to remove the cytostatic tumour-

suppressing effects of TGFβ/BMP as well as causing disturbances in the 

immune and cardiovascular systems. In fact, most clinical trials result in failures, 

possibly due to side effects (NIH, 2014). Hence, a comprehensive 

understanding of the TGFβ/BMP signalling pathway regulation will be essential 

to develop more effective therapeutic strategies. Novel regulatory components 

of TGFβ signalling could be exploited as potential drug targets to develop 

effective disease- and individually-tailored therapeutic interventions. 

 

1.5 Aims of the thesis 

The TGFβ and BMP pathways play critical roles during development, in 

adult tissue homeostasis and are intricately regulated. Malfunction of the 

signalling components results in severe human diseases (section 1.4). 

Therefore, understanding the precise molecular mechanisms by which TGFβ 

and BMP pathways are regulated could enable to uncover disease-specific 

druggable targets that modulate TGFβ/BMP signalling. Post-translational 

modifications of TGFβ pathway components play a key role in fine tuning TGFβ-

mediated cellular responses. In particular, the post-translational regulation of 

the TGFβ/BMP receptors and SMAD proteins, which are the key cellular 

mediators of TGFβ/BMP signalling, is crucial. Much is known about E3 ligases 
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that ubiquitylate SMADs and the receptors to induce their proteasomal 

degradation (section 1.3.2). However, the deubiquitylating enzymes that could 

counterbalance the impact of ubiquitylation events to sustain TGFβ/BMP 

signalling are largely unknown.  

A proteomic screen was undertaken in order to identify novel SMAD 

interacting partners. The deubiquitylating enzyme OTUB1 was identified as an 

interactor of TGFβ activated SMAD3 (section 3). Therefore, the first aim of this 

thesis was to characterise the role of OTUB1 in TGFβ signalling. During the 

course of this investigation, it was evident that OTUB1 itself could be modified 

by phosphorylation. Hence, the second aim of this thesis was to characterise 

the phosphorylation on OTUB1 (section 4).  

Another proteomic screen isolated USP15 as an interactor of SMAD6. 

SMAD6 inhibits BMP signalling by recruiting E3 ubiquitin ligases to type I BMP 

receptors and causing their degradation through the proteasome. Thus, the 

third aim of this thesis was to characterise the role of USP15 in the BMP 

pathway (section 5).  

Finally, O-GlcNAc transferase was isolated as an interactor of SMAD2. 

There are no reports of O-GlcNAc modification on SMADs in the TGFβ 

pathway. For this reason, the fourth aim was to establish whether SMADs are 

modified by OGT through O-GlcNAcylation and if so, whether this influenced 

TGFβ/BMP signalling (section 6).  
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2 Materials and Methods 

2.1 Materials 

2.1.1 Reagents and Instruments 

Recombinant TGFβ1, BMP2, Activin A and macrophage colony-

stimulating factor (M-CSF) were purchased from R&D Systems. The type I BMP 

receptor inhibitor LDN189193 (was purchased) and PI3K inhibitor LY294002 

were synthesised in the DSTT. The CK2 inhibitor K66 was from Merck Millipore. 

The type I TGFβ receptor inhibitor SB505124, adenosine 5’-triphosphate 

sodium salt (ATP), Alkaline Phosphatase Detection Kit, anti-HA-agarose, anti-

FLAG-agarose, ammonium persulphate (APS), ampicillin, β-mercaptoethanol 

(biochemical grade), Cycloheximide, benzamidine, dimethyl sulphoxide 

(DMSO), doxycycline, FREON, imidazole, iodoacetamide, kanamycin, 

Lactacystin, Nonidet P-40, phenylmethanesulphonylfluoride (PMSF), Ponceau 

S, polybrene, sodium dodecyl sulphate (SDS), sodium deoxycholate, tris(2-

carboxyethyl)phosphine (TCEP), sodium tetraborate N, N, N’, N’-

tetramethylethylenediamine (TEMED), triethylammonium bicarbonate (TEAB), t-

octylphenoxypolyethoxyethanol (Triton)-X-100 and polyethylene glycol sorbitan 

monolaurate (Tween-20) were from Sigma-Aldrich. Acetic acid, acetone, 

ammonium bicarbonate, ethanol, glycerol, glycine, 4-(2-Hydroxyethyl) 

piperazine-1-ethanesulfonic acid (HEPES), isopropanol, manganese chloride, 

magnesium acetate, methanol, orthophosphoric acid, potassium chloride, 

sodium acetate, sodium chloride, sodium ethylenediaminetetraacetic acid 

(EDTA), sodium ethylene glycol tetra-acetic acid (EGTA), sodium fluoride, 

sodium β-glycerophosphate, sodium orthovanadate, sucrose and 

tris(hydroxymethyl)methylamine (Tris) were from BDH. Bortezomib was 

purchased from LC Laboratories. MG132 was from Calbiochem. PhosphoSafe 
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reagent was from Novogen. Recombinant ubiquitin chains and FLAG-ubiquitin 

were purchased from Boston Biochem. Precision Plus ProteinTM standards for 

SDS-PAGE (broad range), TransFectinTM lipid reagent, iScript cDNA synthesis 

kit, SYBR green mix for qRT-PCR, qRT-PCR plates, qRT-PCR seals, 4-20% 

mini-PROTEAN® TGX gels, mini trans-blot cells, gel dryer apparatus, qRT-PCR 

iCycler, econopac columns and mini-cell transfer tanks were from BioRad. 

Protein A-agarose, protein G-Sepharose, glutathione-Sepharose, Hyperfilm and 

32P-ATP were purchased from GE Healthcare. Acrylamide: bis-acrylamide 

(40% (w/v) 29:1) solution was from Flowgen Bioscience. GFP-TRAP® agarose 

was from Chromotek. Microcystin-LR, Dulbecco’s modified eagle medium 

(DMEM), Eagle’s Minimum essential medium (EMEM), RPMI-1640, Opti-MEM 

reduced serum media, foetal bovine serum (FBS), tissue culture grade 

Dulbecco’s phosphate buffered saline (PBS), trypsin/EDTA solution, L-

glutamine, essential amino acids, non-essential amino acids, sodium pyruvate, 

versene, penicillin/streptomycin, G418, blasticidin, hygromycin-B, zeocin, were 

from GIBCO. Mr Frosty cryo 1 °C freezing containers were from Nalgene. Pre-

cast NuPAGE® Novex 4-12% Bis-Tris gels, NuPAGE® MES and MOPS running 

buffer (20x), 4x NuPAGE® LDS sample buffer, Colloidal Coomassie blue 

staining kit and the NanoDrop® spectrophotometer were from Invitrogen. 

ProLong Gold mounting reagent, SYBR Safe nucleotide gel stain, DNA loading 

dye and DNA ladder were from Life Technologies. Polyethylenimine (PEI) was 

from Polysciences. IgG-free BSA was from Jackson Immunoresearch. 

Sequencing-grade trypsin, Dual-Luciferase® reporter assay kit and passive lysis 

buffer were from Promega. Skimmed milk powder (Marvel) was from Premier 

Brands. Ni-NTA-agarose, plasmid maxi and RNeasy kits were from Qiagen. 

Acetonitrile (HPLC grade) and trifluoroacetic acid (TFA) were from Rathburn 
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Chemicals. Protease inhibitor cocktail tablets (containing aprotinin, bestatin, 

calpain inhibitors, chymostatin, E-64, leupeptin, α2-macroglobulin, pefabloc SC, 

pepstatin, PMSF, and trypsin inhibitors) were purchased from Roche. 

Nitrocellulose and polyvinylidene difluoride (PVDF) membranes were purchased 

from Whatman. Nuclease free water was from Ambion. Cryovials and Spin-X 

columns were from Corning. Dithiobis (succunimidyl propionate) (DSP), 

Coomassie protein assay reagent (Bradford reagent), SuperSignal West Pico 

chemiluminescent substrate, cellular fractionation kits, bench top centrifuges 

and the LTQ-orbitrap mass spectrometer were from Thermo Scientific. Sterile 

cellulose filters (0.22 μm and 0.45 μm) and steriflip columns were from Merck 

Millipore. Photographic developer (LX24), liquid fixer (FX40), autoradiography 

cassettes with intensifying screens and X-ray film were from Kodak. Tissue 

culture plastic-ware was from Corning, Greiner or Nunc. Cell scrapers were 

from Costar. Cellular migration inserts were from Ibidi. The XTT cell proliferation 

assay kit was purchased from ATCC. Bacterial culture medium Luria Bertani 

(LB) broth and LB agar plates were provided by the University of Dundee media 

kitchen service. Thermo mixer IP shakers, combitips and multi dispenser 

pipettes were purchased from Eppendorf. Self-cast polyacrylamide 

electrophoresis gel tanks were from ATTA. Electrophoresis power supplies from 

VWR. Falcon tubes and 96 well luciferase plates were from Greiner. The 

MicroLumat plus LB 96V luminometer was from Berthold technologies. 

Serological pipettes and microtubes from Sarstedt, pipettes from Gilson, pre-

sterilised tips from ART and heat blocks were from Grant. Electromagnetic 

stirrers were from Stuart and vortexer from SLS select. CO2 incubators were 

from Mackay and Lynn. Tissue culture 2nd class safety cabinets were from 

Medical Air Technology. The Vydac 218TP54 C18 reverse phase HPLC column 
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was from Separations Group. SpeedVacs were from CHRIST. HPLC system 

components were obtained from Dionex. Centrifuge tubes, rotors and 

centrifuges were from Beckmann. The automated capillary DNA sequencer 

model 3730 was from Applied Biosystems. 

 

2.1.2 Buffers and solutions 

Buffers frequently used in this thesis are listed in Table 2-1. In order to 

preserve the phosphorylation and expression levels of the proteins at the time 

of lysis, the lysis buffers were supplemented with inhibitors of proteases and 

phosphatases. EGTA and EDTA chelate Ca2+ and Mg2+ ions, which are 

essential co-factors for protein kinases respectively. To inhibit the action of 

Serine/Threonine protein phosphatases, sodium fluoride, sodium 

pyrophosphate, sodium β-glycerophosphate and microcystin-LR were 

supplemented. Sodium orthovanadate is a potent Tyrosine phosphatase 

inhibitor. 

 

Table 2-1 Buffers and solutions 

buffer composition 

5x SDS sample buffer 5% (w/v) SDS, 5% (v/v) β-ME, 50 mM Tris/HCl pH 6.8, 
6.5% (v/v) glycerol and 0.02% (w/v) bromophenol blue 

Ammonium chloride lysis 
buffer 

155 mM NH4Cl, 10 mM NaHCO3, 0.1 μM EDTA, pH 7.3 

Bacterial lysis buffer  50 mM Tris/HCl pH 7.5, 150 mM NaCl, 1% (v/v) Triton-X-
100, 0.02 mM EDTA, 0.02 mM EGTA, 0.2 mM PMSF, 1 
mM benzamidine, 0.06% β-ME 

Bacterial wash buffer 
(GST) 

50 mM Tris/HCl pH 7.5, 250 mM NaCl, 0.1 mM EGTA, 0.2 
mM PMSF, 1 mM benzamidine, 0.1% β-ME, 0.03% Brij 35 

Bacterial wash buffer (His-
6) 

50 mM Tris/HCl pH 7.5, 0.02 mM EDTA, 0.02 mM EGTA, 
0.2 mM PMSF, 1 mM benzamidine, 0.06% β-ME, 20 mM 
imidazole, 0.03% Brij 35, 0.5 M or 150 mM NaCl 

Buffer A 50 mM Tris/HCl pH 7.5, 0.1 mM EGTA and 0.1% (v/v) β-
ME 

Deubiquitylation assay 
buffer 

50 mM Tris/HCl pH 7.5, 5 mM DTT, 100 mM NaCl 

E2~ub loading buffer  50 mM HEPES, 150 mM NaCl, 0.5 mM TCEP, 0.2 mM 
ATP, 10 mM Mg-acetate 

Glutathione elution buffer  20 mM glutathione, 50 mM Tris/HCl pH 7.5, 250 mM NaCl, 
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buffer composition 

0.1 mM EGTA, 0.2 mM PMSF, 1 mM benzamidine, 0.1% 
β-ME, 0.03% Brij 35 

IF blocking solution 5% (v/v) normal donkey serum, 0.01% (v/v) fish skin 
gelatin, 0.1% (v/v) Triton X-100, 0.05% (v/v) Tween-20 in 
PBS, pH 7 

Kinase assay buffer 50 mM Tris/HCl pH 7.5, 0.1% β-ME, 0.1 EGTA, 10 mM 
MgCl2, 0.5 μM microcystin-LR  

LB-plates 1% (w/v) tryptone peptone, 0.5% (w/v) yeast extract, 86 
mM NaCl, 2% (w/v) bacto-agar. After autoclaving: 100 
μg/ml ampicillin or 25 μg/ml kanamycin 

Luria Bertani broth (LB) 1% (w/v) tryptone peptone, 0.5% (w/v) yeast extract, 86 
mM NaCl. After autoclaving: 100 μg/ml ampicillin or 25 
μg/ml kanamycin 

Lysis buffer 50 mM Tris/HCl pH 7.4, 0.27 M sucrose, 150 mM NaCl, 1 
mM EDTA pH 8.0, 1 mM EGTA pH 8.0, 1 mM sodium 
orthovanadate, 10 mM sodium β-glycerophosphate, 50 
mM sodium fluoride, 5 mM sodium pyrophosphate, 1% 
(v/v) Triton X-100, 0.5% (v/v) Nonidet P-40, 0.1% (v/v) β-
ME, 1 tablet of complete protease inhibitors per 25 ml lysis 
buffer  

Lysis buffer containing 
DSP: 

40 mM HEPES pH 7.4, 120 mM NaCl, 1 mM EDTA pH 
8.0, 10 mM sodium β-glycerophosphate, 50 mM sodium 
fluoride, 1 mM sodium orthovanadate, 5 mM sodium 
pyrophosphate, 1% (v/v) Triton X-100, 1 tablet of complete 
protease inhibitors per 25 ml lysis buffer, 2.5 mg/ml DSP 
(in DMSO) 

O-GlcNAcylation buffer 50 mM Tris/HCl pH 7.5, 1 mM DTT 

Phosphate-buffered saline 
(PBS) 

137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.47 mM 
KH2PO4, pH 7.4 

Polyethylenimine (PEI)  1 mg/ml PEI in 25 mM HEPES, pH 7.5 

RIPA buffer 50 mM Tris/HCl pH 8.0, 150 mM NaCl, 1% Triton X-100, 
0.5% sodium deoxycholate, 0.1% SDS, 0.5% Tween-20, 1 
tablet of complete protease inhibitors per 25 ml lysis buffer 

SDS-PAGE buffer  25 mM Tris/HCl pH 8.3, 192 mM glycine, 0.1% (v/v) SDS 

Size exclusion 
chromatography buffer  

150 mM NaCl, 50 mM Tris/HCl pH 7.5, 0.03% (v/v) Brij 35 

TAE buffer 40 mM Tris-acetate pH 8.0, 1 mM EDTA 

TBS-Tween (TBS-T) 50 mM Tris/HCl pH 7.5, 150 mM NaCl and 0.25% (v/v) 
Tween-20 

tissue lysis buffer 10 mM Tris/HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 1% 
NP40, 0.1% SDS, 1 tablet of complete protease inhibitors 
per 25 ml lysis buffer 

Transfer buffer  25 mM Tris/HCl pH 8.3, 192 mM glycine, 20% (v/v) 
methanol 

Tris-buffered saline (TBS) 20 mM Tris/HCl pH 7.5, 150 mM NaCl 

Ubiquitylation assay buffer 50 mM Tris/HCl pH 7.4, 5 mM MgCl2, 2 µM ATP 

 

2.1.3 Plasmids 

 All plasmids encoding mammalian expression constructs were cloned into 

pCMV5, pBABE-puro or pcDNA/Frt/TO vectors with N-terminal FLAG,  
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haemagglutinin (HA) or green fluorescent protein (GFP) tags. pcDNA-Frt/TO 

plasmids (Invitrogen) were used to generate stable tetracycline-inducible 

HEK293 cell lines following manufacturer’s protocol. pBABE-puro constructs 

were used to generate protein expressions similar to endogenous protein levels. 

Rescue constructs harbouring resistance against OTUB1 siRNAs (#1+3) and 

OTUB1 shRNA were generated by adding silent mutations. For bacterial 

expression, constructs were cloned into pGEX6p or pET vectors with N- or C-

terminal GST- or His6- tags. For baculoviral expression, constructs were cloned 

into pFB- GST-expression vectors. Baculovirus was expressed in insect cells in 

order to produce post-translationally modified, biologically active recombinant 

proteins. 

pGL2.11 3TP-Lux luciferase reporter construct was a kind gift from Joan 

Massagué. The pGL4.11 LUC2p-BRE (BMP-Response Element) and pGL4.11 

LUC2p-CAGA (SMAD-Response Element) reporter constructs were constructed 

based on SMAD-binding sequences within ID-1 (BMP-target gene) and PAI-1 

(TGFβ target gene) promoters respectively. All plasmids used in this thesis are 

listed in Table 2-2 and were generated by the DSTT cloning team. 

All DNA constructs used were verified by DNA sequencing, performed by 

DNA Sequencing & Services using Applied Biosystems Big-Dye Ver 3.1 

chemistry on an Applied Biosystems model 3730 automated capillary DNA 

sequencer. The details of all plasmids used in this thesis, which are publicly 

available to the research community worldwide, can be found on the following 

website: http://mrcppureagents.dundee.ac.uk/reagents-cdna-clones.  
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Table 2-2 Plasmids 

Plasmid 
DU 

number 
Plasmid 

DU 
number 

pBABE puro ALK5 DU47035 pCMV-FLAG CK2α  DU42995 

pBABE puro ALK5 K232R  DU47042 pCMV-FLAG CK2α D156A DU47033 

pBABEhygroFLAG-OTUB1 
47-end sprot 1+3 

DU42293 pCMVFLAG1-UBE2D1 DU42180 

pBABEhygroFLAG-OTUB1 
C91S sprot 1+3 

DU42272 pCMVFLAG-UBC13 DU42326 

pBABEhygroFLAG-OTUB1 
sprot 1+3 

DU42270 pCMV-HA-1 OTUB2 DU32797 

pcDNA5-FRT/TO-GFP 
OTUB1 

DU20859 pCMVHA-OTUB1 S16/18A DU42530 

pcDNA5-FRT/TO-GFP 
SMAD1 

DU19336 pCMV-HA-OTUB1 S16/18E DU42496 

pcDNA5-FRT/TO-GFP 
SMAD3 

DU19337 pet156P UBC13 DU15705 

pcDNA5-FRT/TO-GFP 
SMAD6 

DU19606 pET156P UBCH6 DU12803 

pcDNA5-FRT/TO-GFP 
USP15 

DU33581 pET156P UBCH7 DU12798 

pCMV 3xFLAG ALK2 DU42353 pET28A OTUB1 DU19744 

pCMV 3xFLAG ALK6 DU42354 pET28a(+) UBE2D1  DU4315 

pCMV5 FLAG DU DU44060 pET28-UBE2D2 DU20184 

pCMV5 GFP DU DU44062 pFBHTb Ube1  DU32888 

pCMV5 HA DU DU44059 pFBHTc Nedd4-2 DU4004 

pCMV5-ALK3 DU42988 pGEX6P-1-ALK5 T204D DU33585 

pCMV5-FLAG PIM1  DU1453 pGEX6P-1-OTUB1 DU19741 

pCMV5-FLAG PIM1 D277A DU5245 pGEX6P-1-OTUB1 47-271 DU20885 

pCMV5-FLAG SMAD3 
S423A S425A 

DU37860 pGEX6P-1-OTUB1 C91S DU20873 

pCMV5-FLAG SMAD3 
S423D S425D 

DU37862 pGEX6P-1-OTUB1 D88A DU41084 

pCMV5-FLAG SMAD3 
T179A 
S/204/208/213/423/425/A 

DU37861 
pGEX6P-1-OTUB1 D88A 
H265A 

DU41086 

pCMV5-FLAG SMAD3 
T179E 
S/204/208/213/423/425/D 

DU37885 pGEX6P-1-OTUB1 H265A DU41065 

pCMV5-FLAG-1 SMAD1 DU19264 pGEX6P-1-OTUB1 K71R DU41360 
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Plasmid 
DU 

number 
Plasmid 

DU 
number 

pCMV5-FLAG-1 SMAD2 DU19306 pGEX6P1-OTUB1 S16/18A DU42396 

pCMV5-FLAG-1 SMAD3 DU19307 pGEX6P1-OTUB1 S16/18A DU42396 

pCMV5-FLAG-1 SMAD4 DU19309 pGEX6P1-OTUB1 S16A DU42397 

pCMV5-FLAG-1 SMAD6 DU19599 pGEX6P1-OTUB1 S18A DU42398 

pCMV5-FLAG-1 SMAD7 DU19221 pGEX6P1-OTUB1 T134R DU42189 

pCMV5-FLAG-2xFlag-ALK3 DU42276 pGEX6P-1-SMAD1 DU19269 

pCMV5-FLAG-CK2  
α' 

DU24467 pGEX6P-1-SMAD2 DU19418 

pCMV5-HA ALK3 DU19704 pGEX6P-1-SMAD2d3 DU19371 

pCMV5-HA ALK3 D380A DU19717 pGEX6P-1-SMAD3 DU19399 

pCMV5-HA OTUB1 DU19616 pGEX6P-1-SMAD4 DU19398 

pCMV5-HA OTUB1 C91S DU41008 pGeX6P1-SMAD4 S221A DU42764 

pCMV5-HA OTUB1 D88A DU41054 
pGEX6P1-SMAD4 S221A 
S483A 

DU42804 

pCMV5-HA OTUB1 D88A 
C91S H265A 

DU37473 pGeX6P1-SMAD4 S483A DU42765 

pCMV5-HA OTUB1 D88A 
H265A 

DU41055 pGEX6P-1-SMAD6 DU12813 

pCMV5-HA OTUB1 H265A DU41021 pGEX6P-1-SMAD7 DU12443 

pCMV5-HA OTUB1 K71R DU41333 
pGEX6P-1-
UBE2D1/UBCH5a 

DU4151 

pCMV5-HA Ubiquitin  DU3650 pGEX6P-1-USP15 DU19772 

pCMV5-HA USP11 DU19619 pGEX6P-2-NEDD4.2b1 DU8073 

pCMV5-HA USP15 DU19760 pGL4.11 LUC2p-BRE DU19945 

pCMV5-HA USP15 C269S DU33767 pGL4.11 LUC2p-SRE DU19948 

pCMV5-HA-1 OTUB1 47-end DU37633 
pSUPER.retro.puro-OTUB1 
siRNA.2 

DU19913 

pCMV5-HA-2 NEDD4-2B DU19847   
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2.1.4 qRT-PCR primers  

Human qRT-PCR primers were designed using PerlPrimer® with a 

melting temperature between 58-62 °C. For each primer the integrity and 

melting curve were determined. All primers are 20-24 bases long with an 

overlap of seven bases at the intron/exon boundary, producing an amplicon of 

100-300 bases. The primers were ordered from Invitrogen. All DNA 

oligonucleotides used in this thesis are listed in Table 2-3. 

 

Table 2-3 qRT-PCR primers 

Target  Sequence (5’-3’) 

CTGF  forward: GGAGATTTTGGGAGTACGG 
reverse: TACCAATGACAACGCCTCCT 

FoxO4 forward: TTGGAGAACCTGGAGTGTGACA  
reverse: AAGCTTCCAGGCATGACTCAG  

GAPDH forward: TGCACCACCAACTGCTTAGC  
reverse: GGCATGGACTGTGGTCATGAG 

H4 forward: CGGGATAACATTCAGGGTATCACT 
reverse: ATCCATGGCGGTAATGTCTTCCT 

HPRTI forward: TGACACTGGCAAAACAATGCA  
reverse: GGTCCTTTTCACCAGCAAGCT  

ID-1 forward: AGGCTGGATGCAGTTAAGGG 
reverse: GACGATCGCATCTTGTGTCG 

OTUB1 forward: ACAGAAGATCAAGGACCTCCA  
reverse: CAACTCCTTGCTGTCATCCA 

PAI-1   forward: AGCTCCTTGTACAGATGCCG  
reverse: ACAACAGGAGGAGAAACCCA  

RPLI3A forward: CTGGAGGAGAAGAGGAAAGAGA 
reverse: TGAGGACCTCTGTGTATTTGTCAA 

SMAD6 forward: CCATCAAGGTGTTCGACTTC 
reverse: TTGTTGAGGAGGATCTCCAG 

USP11 forward: GTGTTCAAGAACAAGGTTGG  
reverse: CGATTAAGGTCCTCATGCAG 

USP15 forward: GACCCATTGATAACTCTGGAC 
reverse: TGTTCAACCACCTTTCGTG 

xVENT1 forward: TTCCCTTCAGCATGGTTCAAC 
reverse: GCATCTCCTTGGCATATTTGG 

 

2.1.5 siRNA oligonucleotide sequences  

 siRNA oligonucleotides were purchased from Sigma-Aldrich or 

Dharmacon and the sequences are listed in Table 2-4. 
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Table 2-4 siRNA oligonucleotides 

Target  Sequence (5’-3’) 

CK2 (#1) human: GCUGGUCGCUUACAUCACU 

CK2 (#2) human: GGAAGUGUGUCUUAGUUAC 

CK2 (#3) human: AACAUUGUCUGUACAGGUU 

CK2 (#4) human: GCAUUUAGGUGGAGACUUC 

FoxO4 human: CCCGACCAGAGAUCGCUAA 
mouse: GCAAGUUCAUCAAGGUUCA 

OTUB1 (1) human: GCAAGUUCUUCGAGCACUU 
mouse: GAACCCAUGUGCAAGGAGA 

OTUB1 (3) human: CCGACUACCUUGUGGUCUA 
mouse: CAAUUGAAGACUUCCACAA 

OTUB1 shRNA human and mouse: GCAAGTTCTTCGAGCACTT 

USP11 human: GAUUCUAUUGGCCUAGUAU 

USP15 (#1) 
 

human: CUCUUGAGAAUGUGCCGAU 
mouse: GAACUACUGGCUUUCCUGU 

USP15 (#2) 
 

human: CACAAUAGAUACAAUUGAA 
mouse: CCUUAUUGAUGAGUUGGAU 

USP15 (#3) 
 

human: CACAUUGAUGGAAGGUCAA 
mouse: GGUAUUGUCCAAAUUGUAA 

USP15-MO Xenopus: CGCCCTCCGCCATCTTACTCACTT-Lissamine 

Control-MO Xenopus: CCTCTTACCTCAGTTACAATTTATA-Lissamine 

 

2.1.6 Proteins  

 For recombinant protein expression in bacteria, plasmids listed in Table 

2-2 were transformed into BL21 Escherichia coli cells and most of the N-or C-

terminal GST or His6-tagged proteins were expressed and purified by the 

Protein Production Team (DSTT) or Knebel group. Free ubiquitin and FLAG-

ubiquitin, as well as polyubiquitin chains of different linkages were purchased 

from Boston Biochem. ALK2, ALK3 and ALK6 were purchased from Carna 

Biosciences.  

 

2.1.7 Antibodies 

All primary antibodies employed in this thesis are listed in Table 2-5. In-

house antibodies raised in sheep or rabbit were purified by the DSTT using 

standard protocols. Human recombinant SMAD1 (aa 141-268) polypeptide, 
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ALK3 (aa 200-end) polypeptide, ALK5 (aa 142-172) polypeptide, full length 

OTUB1, full length USP15, full length GFP, or OTUB1 (aa 10-22) polypeptide 

(KQEPLGSDSEGVN) were used as immunogens to generated the respective 

antibodies. 

For production of phospho-specific antibodies, the phospho-peptides 

were first conjugated to bovine serum albumin (BSA) and keyhole limpet 

haemocyanin (KLH), whereas for the production of antibodies against total 

proteins, bacterially expressed GST tag proteins, emulsified in Freund’s 

adjuvant, were injected into sheep. A pre-immune bleed was taken on the same 

day as the first injection of antigen. Each animal was immunised every 28 days 

up to four times. Seven days after the injections, a blood sample was collected. 

Each blood sample was allowed to clot at 4 °C for 16 hours, was then 

centrifuged for 1 hour at 1500 g at 4 °C and decanted though glass wool. For 

serum purification, the blood sample was heated for 20 min at 56 °C and filtered 

(0.45 μm). The anti-serum was subsequently diluted 1:1 in 50 mM Tris/HCl pH 

7.5, 2% Triton X-100. In order or minimise the cross reactivity of the antibodies 

present in the anti-serum with GST, the GST antibodies were depleted using 

activated CH Sepharose beads coupled to GST. The GST cleared flow-through 

was affinity purified against the relevant antigen. For the purification of 

phospho-specific antibodies, the antibodies purified on the column containing 

the phosphopeptide immunogen were passed through a peptide column made 

with the non-phosphorylated form of the peptide immunogen. The antibodies 

that did not bind to the non-phosphorylated peptide column were collected and 

used. Antibodies were eluted with 50 mM glycine pH 2.5 and were then dialyzed 

for 16 hours in PBS.  
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The phospho-antibodies stated in Table 2-5 are specific to the following 

residues: anti-phospho-S463/465 SMAD1 (SMAD1-TP), anti-phospho-S465/467 

SMAD2 (SMAD2-TP), anti-phospho-S423/425 SMAD3 (SMAD3-TP), anti-

phospho-T179 SMAD3 (SMAD3-LP), anti-phospho-S16 OTUB1.  

Species-specific HRP-coupled secondary antibodies (1:5000) were 

obtained from Thermo Scientific and HRP-coupled light chain specific 

secondary antibodies (1:10000) were purchased from Jackson Immuno 

Research. Rabbit anti-sheep IRDye 800CW and goat anti-mouse IRDye 680LT 

were from LI-COR. Alexa Fluor® 488 donkey anti-sheep IgG (A11015) and 

Alexa Fluor® 594 goat anti-rabbit IgG (A11012) were used 1:1000 for 

immunofluorescence and purchased from Invitrogen.  

 
Table 2-5 Antibodies 

Antibody Product reference Source Conditions 

ALK3 DSTT S985C sheep 1:1000 Milk 

ALK5 DSTT S426D sheep 1:1000 Milk 

BIRC6 Cell Signalling #8756 rabbit 1:1000 Milk 

Caspase 3 Cell Signalling #9662 rabbit 1:1000 Milk 

CK2 Abcam ab10466 rabbit 1:1000 Milk 

E-cadherin Cell Signalling #3195 rabbit 1:1000 Milk 

Fibronectin Sigma-Aldrich F3648 rabbit 1:2000 Milk 

FLAG-M2 HRP Sigma-Aldrich A 8592 mouse 1:2000 Milk 

GAPDH Cell Signalling #2118 rabbit 1:5000 Milk 

GFP DSTT S268B sheep 1:2000 Milk 

GST HRP Abcam ab3416 rabbit 1:5000 Milk 

HA HRP Roche 12 013 819 001 rat 1:2000 Milk 

Histone 2B-ub Cell Signalling #5546 rabbit 1:1000 Milk 

LAMIN A/C Cell Signalling #2032 rabbit 1:1000 Milk 

Na+/K+-ATPase Cell Signalling #3010 rabbit 1:1000 Milk 

O-GlcNAc Abcam ab2739 mouse 1:1000 BSA 

OGT Santa Cruz sc-32921 rabbit 1:1000 Milk 

OTUB1 DSTT S104D, S300D, S499D sheep 1:1000 Milk 

OTUB1 Abcam ab82154 goat 1:1000 Milk 

OTUB1 pS16 DSTT R3383 rabbit 1:1000 BSA 

PARP Cell Signalling #9542 rabbit 1:1000 Milk 

Phalloidin Invitrogen A12379 - 1: 50 used for IF  

SMAD1 DSTT S618C sheep 1:1000 Milk 



- 68 - 

Antibody Product reference Source Conditions 

SMAD1/5/8-TP Cell Signalling #9511 rabbit 1:1000 Milk 

SMAD2/3 Cell Signalling #8658 rabbit 1:2000 Milk 

SMAD2-TP Cell Signalling #3101 rabbit 1:1000 Milk 

SMAD3-LP Rockland 600-401-C48S rabbit 1:1000 Milk 

SMAD3-TP Rockland 600-401-919 rabbit 1:2000 Milk 

SMAD4 Cell Signalling #9515 rabbit 1:1000 BSA 

SMAD7 R&D Systems MAB2029 mouse 1:1000 Milk 

tubulin Calbiochem DM1A mouse 1:2000 Milk 

Ub K-48 Millipore 05-1307 rabbit 1:1000 BSA 

Ub K-63 Millipore 05-1313 mouse 1:1000 BSA 

UBE2D Santa Cruz sc-15000 goat 1:1000 Milk 

UBE2N Cell Signalling #6999 rabbit 1:1000 Milk 

Ubiquitin Dako Z 0458 rabbit 1:1000 Milk 

USP15 DSTT S844C sheep 1:1000 Milk 

 

2.2 Methods 

2.2.1 Mammalian cell culture 

 Cell Culture  2.2.1.1

HaCaT, HEK293, U2OS, C2C12, A172, HeLa, MDA-MB-231, COS-1, 

G361, U87, RPE-1, NMuMG, LoVo and SW620 cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS), 2 mM L-glutamine, 100 units/ml penicillin and 100 μg/ml 

streptomycin. G361 and U87 cells were supplemented with 1 mM sodium 

pyruvate and 0.1 mM non-essential amino acids (NEAA). NMuMG cells were 

supplemented with 5 µg/ml insulin. LoVo and SW620 cells were supplemented 

with 4.5 g/L glucose. HT29 and MCF7 cells were grown in Eagle’s Minimum 

essential medium (EMEM) supplemented with 2 mM L-glutamine, 100 units/ml 

penicillin, 100 μg/ml streptomycin, 1% NEAA, 1 mM sodium pyruvate and 10% 

FBS. NCI-H727, NCI-H441, HCT15, Ramos, ZR-75-1 and T47D cells were 

grown in RPMI-1640 supplemented with 10% FBS, 2 mM L-glutamine, 100 

units/ml penicillin and 100 μg/ml streptomycin. ZR-75-1 were supplemented 

with 1 mM sodium pyruvate and 25 mM HEPES. T47D cells were 
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supplemented with 4.5 g/L glucose. RPE-1, ARPE-19, SW480 and BT-474 cells 

were grown in DMEM:Ham’s F12 (1:1) medium supplemented with 2 mM L-

glutamine, 10% FBS, 100 units/ml penicillin and 100 μg/ml streptomycin. BT-

474 cells were supplemented with 5 µg/ml insulin. All cells were maintained at 

37 oC in a humidified atmosphere with 5% CO2. 

Stable cell lines infected with pBABE-puro retroviral constructs or 

pSUPERIOR-puro retroviral shRNA constructs were supplemented with 2 μg/ml 

puromycin. Stable CAGA (TGFβ responsive) or BRE (BMP responsive) 

luciferase reporter C2C12 cells were selected in 0.7 mg/ml G418.  

Cells were passaged at 80-90% confluency. For passaging, cells were 

washed once with sterile PBS and then incubated with trypsin/EDTA to facilitate 

cell disassociation. Cells were returned to a 37 ºC incubator for 5-15 min, 

depending on the adherence of the cell line. Detached cells were resuspended 

in their corresponding culture media to a final volume of 10 ml in a 10 cm 

culture dish. All procedures were carried out in aseptic conditions meeting 

biological safety category 2 regulations. 

 

 Generation of primary cells 2.2.1.2

Primary cells (mouse embryonic fibroblasts (MEFs) and bone marrow 

derived macrophages (BMDMs)) were generated from animals that were 

housed under specific pathogen free conditions in accordance with UK and EU 

regulations.  

Wild type MEFs were isolated from decapitated embryos with red organs 

removed. The embryo was minced and resuspended in 1 ml trypsin and 

incubated at 37 °C for 15 min before the addition of 10 ml growth medium 

(DMEM supplemented with 10% heat-inactivated FBS (56 °C for 30 min), 2 mM 



- 70 - 

L-glutamine, 100 units/ml penicillin and 100 μg/ml streptomycin). Cells were 

plated and allowed to attach overnight before being washed with fresh medium 

to remove debris. Growth media was additionally supplemented with 1 mM 

sodium pyruvate and 0.1 mM NEAA. ALK5-/- MEF cells were a kind gift of G. 

Inman (Dundee). 

BMDMs were generated by flushing femurs from female mice with PBS. 

Red blood cells were lysed in ammonium chloride lysis buffer (155 mM NH4Cl, 

10 mM NaHCO3, 0.1 μM EDTA, pH 7.3). Cells were then pelleted by 

centrifugation and cultured on bacterial grade plastic plates for 7 days in DMEM 

supplemented with 10% heat-inactivated FBS (56 °C for 30 min), 2 mM L-

glutamine, 100 units/ml penicillin, 100 μg/ml streptomycin media and 5 ng/ml 

recombinant M‐CSF (macrophage colony-stimulating factor). Cells were then 

detached by scraping in versene and re‐plated on tissue culture treated petri 

dishes. All procedures were carried out in accordance with University of Dundee 

and United Kingdom Home Office regulations (Pattison et al., 2012, Wiggin et 

al., 2002).  

 

 Freezing/thawing of cell lines 2.2.1.3

Sub-confluent cells were trypsinised and centrifuged at 800 rpm for 5 min 

prior to resuspension in freezing media (90% FBS, 10% DMSO). 1 ml aliquots 

were stored in cryovials in a Mr Frosty freezing container at -80 °C prior to long-

term storage in liquid nitrogen. To thaw the cells, cryovials were placed in a 37 

°C water bath for 2 min and cells were transferred to a T25 flask containing 5 ml 

of appropriate culture medium. 
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 Mouse tissue isolation 2.2.1.4

Tissues from mice were snap frozen in liquid nitrogen and ground with 

mortar and pestle. Pulverised tissues were resuspended in tissue lysis buffer 

(10 mM Tris/HCl pH 8, 150 mM NaCl, 1 mM EDTA, 1% NP40, 0.1% SDS, 1 

tablet of complete protease inhibitors per 25 ml lysis buffer) and incubated on 

ice for 30 min before centrifugation. The cleared extracts were processed as 

described for cell extracts. 

 

 Treatment of cells with inhibitors and cytokines 2.2.1.5

The inhibitors used in this thesis are listed in Table 2-6. All compounds 

were resuspended in DMSO and used as indicated in Table 2-6 or figure 

legends. Human recombinant BMP2, TGFβ1 or Activin A (R&D Systems) were 

resuspended in 4 mM HCl, 0.1% BSA. Cells were serum starved for 16 hours 

at 37 oC prior to ligand treatment with BMP2 (6.25 ng/ml or 25 ng/ml), TGFβ1 

(50 pM) or Activin A (20 ng/ml) for 1 hour (or indicated time points).  

 

Table 2-6 Inhibitors 

Inhibitor  Molecular target Dose Source 

4Ac-5S-glcNAc OGT 10 μM, 16 h S. Pathak, Dundee, UK 

Bafilomycin A1 V-ATPase 100 nM, 3 h Sigma-Aldrich 

Bortezomib proteasome 10 μM, 3 h LC laboratories 

Cycloheximide 80S ribosome 20 μM, 21 h Sigma-Aldrich 

GlcNAcstatin G OGA 2 μM, 16 h S. Pathak, Dundee, UK 

Iodoacetamide DUBs 50 mM Sigma-Aldrich  

K66 CK2 10 μM, 4 h Merck Millipore 

Lactacystin proteasome 10 μM, 3 h Sigma-Aldrich 

LDN189193 ALK2/3/6 100 nM, 1 h DSTT 

LY294002 PI3K 10 μM, 4 h DSTT 

MG132 proteasome 10 μM, 3 h Calbiochem 

Quinalizarin CK2 10 μM, 4 h G. Cozza, Padova, Italy 

SB505124 ALK4/5/7 1 μM, 1 h Sigma-Aldrich 

TDB CK2 10 μM, 4 h G. Cozza, Padova, Italy 
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 Cell transfections 2.2.1.6

For plasmid transfections, cells were grown to 50-60% confluence and 

were transfected using 25 µl of 1 mg/ml polyethylenimine (PEI, Polysciences) in 

1 ml DMEM up to 10 µg of plasmid DNA. The mixture was vortexed, left at room 

temperature for 15 minutes and added drop-wise to cells in a 10 cm dish 

containing 9 ml media. The media was replaced 16 hours post-transfection and 

the cells were lysed after 48 hours. Plasmids used for transfections are stated in 

Table 2-2. 

For siRNA oligonucleotide transfections, the cells were transfected 

during attachment. 30 µl TransFectinTM (BioRad) and 300 pM of siRNA (per 10 

cm dish) were mixed in 2 ml OptiMEM (Invitrogen). After incubating for 15 min 

the solution was added to the cells and cells were lysed 48 hours post-

transfection. FoxO4 siRNA was used as a control as it is known not to interfere 

with the TGFβ/BMP pathway (Sapkota et al., 2006, Al-Salihi et al., 2012a). The 

oligonucleotide sequences of the siRNAs are listed in Table 2-4. 

 

 Luciferase reporter assays 2.2.1.7

C2C12 cells, stably expressing CAGA or BRE luciferase reporter 

constructs were seeded onto 12-well plates in triplicate and transfected with 

appropriate siRNA or pCMV5-HA constructs. 36 hours post-transfection, cells 

were stimulated with TGFβ1 (50 pM) or BMP2 (25 ng/ml) for 6 hours and lysed 

in passive lysis buffer (Promega). To assay the luciferase reporter activity, the 

lysates (10 µl) were mixed with luciferase assay substrate (50 µl) (Dual-

Luciferase™ kit, Promega) and luciferase activity was measured on a 

MicroLumat plus LB 96V luminometer (Berthold technologies). The Luciferase 

counts were normalised to the protein concentration and averaged.  
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 Retroviral infection 2.2.1.8

A retroviral system was used to generate cell lines that stably express 

proteins at comparable to their levels to endogenous expression, or to introduce 

shRNA. H29 cells (stably integrated with CMV-Gag/Pol and CMV-VSVG) were 

cultured in growth media supplemented with 20 ng/ml doxycycline, 2 µg/ml 

puromycin and 0.3 mg/ml G418. The cells were grown to sub-confluency in a 15 

cm dish and transfected using 75 µl PEI in 2 ml DMEM and 25 µg of plasmid 

DNA: pRetro SUPERIOR shRNA control or OTUB1 shRNA, as well as pBABE 

constructs (pBABE-puro control, OTUB1 or mutant constructs harbouring silent 

mutations for protection against human iOTUB1#1 and #3 siRNAs, or pBABE-

puro ALK5 and pBABE-puro ALK5 K232R). Cells were transfected in 10 ml of 

growth media supplemented with 1% sodium pyruvate. After 48 hours, the virus 

containing media was filtered (20 µm) and added to 60% confluent target cells 

in the presence of 8 µg/ml polybrene. Target cells were selected in growth 

media containing 2 µg/ml puromycin 24 hours post-viral infection. 

 

 Generation of tetracycline-inducible Flp-IN® HEK293 cells 2.2.1.9

FlpIN TRex HEK293 cell lines (Invitrogen) were maintained in growth 

media supplemented with blasticidin (15 µg/ml) and zeocin (100 μg/ml). Zeocin 

and blasticidin were added to select for the FLP recombination target (Frt/TO) 

sites and tetracycline repressor sequence respectively. To generate stably 

expressing tetracycline-inducible GFP-constructs (GFP, GFP-SMAD1, GFP-

SMAD3, GFP-SMAD6, GFP-OTUB1 and GFP-USP15) the cells were 

transfected with the plasmid of interest (pcDNA/Frt/TO, 1 μg) and pOG44 (9 

μg), which encodes the FLP recombinase that leads to site specific 

recombination of the sequence of interest, using PEI. The cells were selected in 
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growth media containing blasticidin (15 μg/ml) and hygromycin B (100 μg/ml) 48 

hours post-transfection. Hygromycin B selection was used to ensure the correct 

integration of the sequence of interest. GFP-protein expression was induced 

with 20 ng/ml doxycycline for 16 hours prior to lysis.  

 

 Cell lysis  2.2.1.10

For lysis, PBS washed cells were scraped on ice in lysis buffer (50 mM 

Tris/HCl pH 7.5, 0.27 M sucrose, 150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1 

mM sodium orthovanadate, 1 mM sodium β-glycerophosphate, 50 mM sodium 

fluoride, 5 mM sodium pyrophosphate, 1% Triton X-100, 0.5% Nonidet P-40) 

supplemented with complete protease inhibitors (1 tablet per 25 ml) and 0.1% 

β-mercaptoethanol, or 50 mM iodoacetamide.  

For apoptosis assays, cells were lysed in RIPA lysis buffer (50 mM 

Tris/HCl pH 8.0, 150 mM NaCl, 1% Triton X-100, 0.5% sodium deoxycholate, 

0.1% SDS, 0.5% Tween-20, 1 tablet of complete protease inhibitors per 25 ml 

lysis buffer).  

When the chemical cross-linking agent Dithiobis (succinimidyl 

propionate) (DSP) was used, cells were lysed in HEPES lysis buffer (40 mM 

HEPES pH 7.4, 120 mM NaCl, 1 mM EDTA pH 8.0, 10 mM sodium 

pyrophosphate, 50 mM sodium fluoride, 1 mM sodium orthovanadate, 5 mM 

sodium pyrophosphate, 1% (v/v) Triton X-100, complete protease inhibitors) 

containing 2.5 mg/ml DSP. Cell extracts were incubated at 4 °C for 30 min 

before cross-linking was quenched with Tris/HCl pH 7.5 at a final concentration 

of 0.2 M. Extracts were further incubated for 30 min at 4 °C. Lysates were then 

centrifuged for 10 min at 4 ºC, 14000 rpm and processed immediately or snap 

frozen in liquid nitrogen and stored at -80 ºC.  



- 75 - 

For mRNA isolation, cells were processed using an RNA extraction kit 

according to the manufacturer’s instructions (Qiagen RNeasy kit).  

 

 XTT Cell proliferation assay 2.2.1.11

The XTT cell proliferation assay kit from ATCC was used to monitor 

HaCaT cell proliferation. HaCaT cells (5000 cells/ml) were seeded into low 

evaporation 96 well tissue culture plates. Growth media, supplemented with 2 

μg/ml puromycin to select for HaCaT control (puromycin empty vector) or 

HaCaT shRNA OTUB1 cells, was exchanged daily and supplemented with or 

without 50 pM TGFβ1. Every 24 hours one set of cells was incubated for 4 hours 

with XTT dye to detect differences in cellular metabolic activities and the 

absorbance measured at 480 nm on a microtiter plate reader. Cell proliferation 

was measured for 8 days and performed in triplicate.  

 

 Alkaline phosphatase assay 2.2.1.12

C2C12 cells were transfected with siRNAs against mouse USP15 or 

mouse FoxO4 (300 pM each) using transfectin reagent and grown in DMEM 

with 5% FBS. 48 hours post-transfection 100 ng/ml BMP2 was added for 48 or 

96 hours and cells were lysed using CelLytic reagent. The protein concentration 

was determined using Bradford and equal protein amounts were used to detect 

alkaline phosphatase activity. Alkaline phosphatase activity detection was 

carried out in accordance with the manufacturer's protocol (Sigma). In brief, cell 

extracts were diluted in assay buffer and fluorescent substrate (4-

methylumbelliferyl phosphate disodium salt) was added. Fluorescence was 

detected using a fluorescent plate reader (PHERAstar) at 350 nm excitation and 

460 nm emission. 
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 Epithelial to mesenchymal transition (EMT) assay 2.2.1.13

NMuMG cells were grown on glass cover slips or in 6 cm cell culture 

dishes. SB505124 (1 μM) was added 1 hour prior to TGFβ1 (75 pM) stimulation 

for 24 or 48 hours. Cells were either lysed and analysed by immunoblotting 

(section 2.2.3.8) or fixed and evaluated via immunofluorescence microscopy 

(section 2.2.3.9) using antibodies against known markers of EMT. 

 

 Cell migration assay 2.2.1.14

HaCaT cells stably expressing control shRNA or OTUB1 shRNA were 

seeded to near confluency into migration inserts (Ibidi) and transfected with 

FoxO4 or OTUB1 siRNAs respectively. After 24 hours the inserts were 

removed, the cells were serum starved for 4 hours and stimulated with TGFβ1 

(50 pM). Cellular migration was monitored and pictures taken every 24 hours. 

 

 Xenopus studies 2.2.1.15

Xenopus laevis embryos were obtained by in vitro fertilisation and staged 

according to Nieuwkoop and Faber (Niewkoop and Faber, 1975). Lissamine 

coupled USP15 (xUSP15-MO) and control antisense morpholino (control-MO) 

oligonucleotides (Table 2-4) were obtained from GeneTools. The 

oligonucleotides were dissolved in distilled water and stored at 4 °C. Animal cap 

assays were carried out as described previously (Smith, 1993). 

For Xenopus laevis experiments, embryos were cultured in 0.1x Normal 

Amphibian Medium (Slack, 1984) for indicated times. Ten embryos per time 

point were lysed in 100 µl of PhosphoSafe reagent supplemented with complete 

protease inhibitors and extracted with an equal volume of FREON to remove 

yolk proteins. Samples were reduced by adding 4x SDS sample buffer with 10% 
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β-mercaptoethanol and boiled for 5 min. Samples were separated on 7.5% TGX 

gels and then transferred to PVDF membranes. Membranes were blocked for 1 

hour and then incubated in primary antibody in PBS-T (PBS, 0.1% Tween 20) 

overnight at 4 °C. Blots were washed 3x in PBS-T then incubated with a 

combination of IRDye 680LT and 800CW labelled secondary antibodies 

(1:15000 in PBS-T supplemented with 0.02% SDS) for 1 hour. Washed blots 

were imaged with a LI-COR Odyssey scanner followed by image analysis using 

Image Studio. All Xenopus laevis studies were carried out by K. Dingwell at 

NIMR London. 

 

2.2.2 General molecular biology 

 DNA and RNA concentration measurement 2.2.2.1

 The absorbance of isolated DNA or mRNA in aqueous solution was 

measured at 260 nm with a NanoDrop® spectrophotometer, after calibration 

with nuclease-free water, according to the manufacturer’s instructions. 

 

 Plasmid transformation, amplification and isolation  2.2.2.2

 For each transformation, competent E. coli DH5α or BL21 cells from -80 

°C glycerol stocks were thawed on ice. Plasmid DNA (10 ng) was added to the 

cells and incubated on ice for 2 min. Cells were heat-shocked at 42 °C for 1 min 

to facilitate DNA uptake. After 2 min incubation on ice, cells were plated onto LB 

agar plates containing 100 μg/ml ampicillin and incubated for 16 hours at 37 °C. 

For plasmid amplification, one transformed colony was used to inoculate 250 ml 

LB media containing 100 μg/ml ampicillin. Cultures were grown to stationary 

phase overnight at 37 °C in a shaking incubator. The transformed cells were 

pelleted by centrifugation (3000 rpm, 10 min, 4 °C). The plasmid DNA was 
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isolated using Qiagen DNA Maxi Kit according to the manufacturer’s 

instructions.  

 

 Restriction enzyme digests of plasmid DNA 2.2.2.3

Restriction digests were carried out using 0.5 μg of DNA with 1 unit of 

restriction enzyme in the presence of the appropriate digestion buffer. 

Reactions were incubated at 37 °C for 3 hours and analysed by agarose gel 

electrophoresis. 

 

 Agarose gel electrophoresis 2.2.2.4

The size and the purity of DNA products were assessed by 

electrophoresis on 1% agarose gels. Each gel contained a 1:1000 dilution of 

SYBR Safe nucleotide gel stain. Gels were submerged in 1x TAE (40 mM Tris-

acetate pH 8.0, 1 mM EDTA) running buffer. DNA (0.5 μg) was loaded onto a 

gel together with 1x DNA loading dye. 0.5 μg of a 1 kbp DNA ladder was used 

as a marker. Gels were run at 100 V for 30 min. The stained nucleotide 

complexes were visualised using a UV transilluminator.  

 

 DNA mutagenesis 2.2.2.5

DNA mutagenesis of all plasmids (Table 2-2) was performed by the 

DSTT cloning team using the QuikChange site directed mutagenesis method 

(Stratagene) with KOD polymerase (Novagen). DNA constructs were verified by 

DNA sequencing. 

 



- 79 - 

 Real time quantitative reverse transcription PCR (qRT-PCR) 2.2.2.6

 Cells were seeded in 6-well plates, transfected with siRNAs and serum 

starved for 16 hours prior to TGFβ1 (50 pM) treatment. cDNA was made from 1 

µg of the isolated RNA using the I-Script cDNA kit (BioRad) according to the 

manufacturer’s protocol. qRT-PCR reactions were performed in quadruplicate 

according to the manufacturer’s protocol in a CFX 384 Real time System qRT-

PCR machine (BioRad). Each reaction included cDNA (2.5% of reverse 

transcriptase reaction) with forward and reverse primers (0.5 μM each) and 50% 

SYBR Green (BioRad). All primers were designed using PerlPrimer and 

purchased from Invitrogen (Table 2-3). The primer efficiency was determined 

and taken into account when evaluating the qRT-PCR data. The data was 

normalised to the geometrical mean of two housekeeping genes (GAPDH, 

HPRTI or RPLI3A) and the Pfaffl method (Pfaffl, 2001) was used to analyse the 

qRT-PCR data. 

 

2.2.3 General biochemistry 

 Protein concentration measurement 2.2.3.1

The protein concentration was determined by the Bradford method 

(Bradford, 1976) with a spectrophotometer using Bradford protein assay 

reagent (Thermo Scientific). When Coomassie dye binds to proteins in acidic 

medium, the absorbance maximum shifts from 465 nm to 595 nm resulting in a 

colour change from brown to blue. A standard curve was prepared from a BSA 

standard solution at serial dilutions ranging from 0.125 mg/ml to 2 mg/ml. 5 μl of 

standard BSA solution or diluted cell extract were added to 200 μl Bradford 

reagent in a 96 well plate. This mixture, including a blank probe, was incubated 
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for 5 min at RT and the absorbance was measured with a spectrophotometer at 

595 nm. All Bradford measurements were performed in triplicate.  

 

 Immunoprecipitation 2.2.3.2

Cleared cell extracts were further pre-cleared to minimise unspecific 

binding of proteins to the solid phase resins by incubating with agarose or 

protein-G Sepharose beads for 1 hour at 4 °C prior to immunoprecipitation 

(IP). The cleared extracts (2 mg for WB or 50 mg for mass spectrometry 

analysis) were then mixed with FLAG- or HA-agarose beads (Sigma-Aldrich), 

GFP-Trap agarose beads (Chromatek) or antibody/IgG-coupled protein G-

Sepharose or Agarose beads for 2 hours at 4 ºC on a rotating platform. The 

flow-through was retained for Western blot analysis and the beads were 

washed twice in lysis buffer containing 0.4 M NaCl, and twice in buffer A (50 

mM Tris/HCl pH 7.5, 0.1 mM EGTA). IP samples, as well as flow-through and 

input samples, were reduced in sodium dodecyl sulphate (SDS) sample buffer 

(62.5 mM Tris/HCl pH 6.8, 10% (v/v) glycerol, 2% (w/v) SDS, 0.02% (w/v) 

bromophenol blue) containing either 50 mM dithiothreitol (DTT) or 1% (v/v) β-

mercaptoethanol and heated at 95 ºC for 5 min.  

Where appropriate, lambda phosphatase (1 µM) was added to OTUB1 

IPs resuspended in 50 µl buffer (50 mM HEPES, 100 mM NaCl, 0.01% Brij-35, 

2 mM DTT, 1 mM MnCl2, pH 7.5) and agitated at 30 °C for 30 min. IPs were 

then washed and processed as stated above. 

 

 Conjugation of antibodies to protein-G/A Agarose or Sepharose 2.2.3.3

The required volumes of protein G-Agarose/Sepharose beads were 

washed twice in PBS (1 ml) and the final volume was adjusted to 50% (v/v) 
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slurry before addition of antibodies. For each IP, 5 μg of antibody or IgG were 

added to 20 μl of protein G Agarose or Sepharose beads. This mixture was left 

on a shaker at 4 °C to allow conjugation of the antibodies to the beads. After 1 

hour, the beads were washed twice in PBS and resuspended as 50% (v/v) 

slurry. The antibody-coupled beads were then ready to be used for IPs.  

 

 Subcellular fractionation 2.2.3.4

Subcellular fractionation was performed using the NE-PER (nuclear and 

cytoplasmic) kit or subcellular protein fractionation kit for cultured cells (Thermo 

Scientific) according to the manufacturer’s instructions. The lysis buffers were 

supplemented with protease inhibitors (Roche). Fractions were reduced in SDS 

sample buffer as stated above. 

 

 Size exclusion chromatography 2.2.3.5

Unstimulated and TGFβ treated (50 pM, 1 hour) HaCaT cells were lysed 

in the presence of 50 mM iodoacetamide and filtered using Spin-X columns. 

The AKTA Explorer was operated according to manufacturer’s instructions 

using Unicorn 4.1 software. 7 mg of protein extracts were injected into a 

Superdex S200 column (GE Health Care) which was equilibrated overnight with 

degassed and filtered buffer (50 mM Tris/HCl pH 7.5, 150 mM NaCl, 0.03% 

(v/v) Brij35). The samples were collected in 56 separate fractions (0.2 ml) at a 

flow rate of 0.15 ml/min. The fractions were reduced with SDS sample buffer 

and analysed by SDS-PAGE and immunoblotting. 
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 Separation of proteins by SDS-PAGE 2.2.3.6

 Three different sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) systems were used in this thesis. NuPAGE 4-12% 

Bis-Tris pre-cast gels (Invitrogen) were used for mass spectrometry applications 

and 4-20% TGX pre-cast gels (BioRad) were used to resolve ubiquitin chains. 

For all other experiments, the ATTO self-assemble gel system for gel 

electrophoresis was employed (ATTO). The SDS-PAGE gels were made by 

pouring the SDS-PAGE gel mix (0.375 M Tris/HCl pH 8.8, 0.1% (w/v) SDS, 10% 

(w/v) acrylamide and 0.075% (w/v) ammonium persulphate, 0.1% (v/v) TEMED) 

and allowing it to polymerise with 100% isopropanol on top (to level the 

surface). After 20 min, the isopropanol was removed and a stacking gel (0.125 

M Tris/HCl pH 6.8, 0.1% (w/v) SDS, 4% (w/v) acrylamide, 0.075% (w/v) 

ammonium persulphate, 0.1% (v/v) TEMED) was poured on top of the set SDS-

PAGE gel and a comb inserted. NuPAGE 4-12% Bis-Tris gels were run using 

MOPS or MES running buffer. BioRad 4-20% TGX pre-cast gels and ATTO gels 

were run using running buffer, which contained 25 mM Tris/HCl pH 8.3, 192 mM 

glycine and 0.1% (v/v) SDS. 5 μl of Precision Plus Protein Standards (BioRad) 

and 20 μg (or 80 µg for the detection of endogenous OTUB1 pS16) of protein 

extracts in SDS sample buffer were loaded for gel electrophoresis. Gel 

electrophoresis was performed at a constant voltage of 180 V for 1 hour for the 

NuPAGE Novex gels and 1 hour and 25 min for ATTO gels. BioRad 4-20% TGX 

pre-cast gels were run at 300 V for 20 min.  

 

 Coomassie staining of protein gels 2.2.3.7

 Following SDS-PAGE, protein separation was visualised by in gel staining 

of the proteins using colloidal Coomassie Blue staining solution (Invitrogen) 
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according to the manufacturer’s instructions. Gels were stained for 3 hours at 

RT with continual agitation on a rocking platform. Destaining was performed 

with deionised water until the background staining was reduced.  

 

 Immunoblotting (Western blots) 2.2.3.8

 Reduced protein extracts or IPs were separated on 10% SDS-PAGE 

gels, 4-20% TGX gels or 4-12% NuPAGE bis-tris gels by electrophoresis 

(section 2.2.3.6) and transferred to methanol-activated polyvinylidene fluoride 

(PVDF) membranes (Whatmann). Protein transfer was performed in a Mini-Cell 

(BioRad) transfer system at 90 V for 1.5 hours in 1x transfer buffer (25 mM 

Tris/HCl pH 8.3, 192 mM glycine, 20% (v/v) methanol). Efficiency of the transfer 

was assessed by staining the membranes with Ponceau S solution. Membranes 

were blocked in 5% (w/v) non-fat milk in TBS-T (50 mM Tris-HCl pH 7.5, 150 

mM NaCl, 0.2% Tween-20) for 1 hour at RT. The appropriate primary antibodies 

(Table 2-5) were diluted in 5% milk-TBS-T or 3% BSA-TBS-T and incubated for 

16 hours at 4 °C. Membranes were washed in TBS-T three times for 10 min, 

before being incubated with the HRP-conjugated secondary antibodies in 5% 

milk-TBS-T for 1 hour at RT. After washing, detection was performed by 

enhanced chemiluminescence reagent (ECL luminescence, Thermo Scientific) 

followed by exposure to Medical X-Ray Film in the dark and development of the 

film using an SRX-101A automatic film processor (Konica Minolta). 

 

 Immunofluorescence microscopy (IF) 2.2.3.9

Cells were seeded onto poly-L-lysine treated glass cover slips in 6-well 

culture dishes and treated as described (starved for 16 hours and treated with 

TGFβ1 (50 pM) or BMP2 (6.25 ng/ml) treated for 1 hour, or for EMT 75 pM 
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TGFβ1 for 24 or 48 hours). Cells were washed in PBS before fixation with 3.7% 

paraformaldehyde for 20 min at RT and washed a further three times in PBS 

before permeabilisation with 0.2% Triton X-100 in PBS for 12 min at RT. Cells 

were rinsed with PBS before being incubated for 1 hour in blocking solution (5% 

(v/v) normal donkey serum, 0.01% (v/v) fish skin gelatin, 0.1% (v/v) Triton X-

100, 0.05% (v/v) Tween-20 in PBS). Primary antibodies (Table 2-5) were 

incubated for 16 hours in a humidified chamber at 4 °C. After thorough washes 

in PBS, cells were incubated with AlexaFluor® or Cyanine Cy5 secondary 

antibodies for 1 hour in the dark. Cells were washed three more times in PBS 

and once with deionised water before being mounted onto glass slides using 

ProLong® Gold mounting reagent (Life Technologies), which contained the 

nuclear stain 4',6-diamidino-2-phenylindole (DAPI). Slides were viewed using a 

Nikon Eclipse Ti microscope fitted with a 20x, 40x and 60x lens and a cooled 

charge-coupled device camera. 

 

 Purification of GST-tagged proteins from bacteria 2.2.3.10

 Bacterial expression vectors (pGEX6P) encoding GST-tagged proteins 

were transformed into BL21 E. coli cells. To generate a starter culture, a single 

colony of the transformed BL21 bacteria was added to 50 ml LB/100 μg/ml 

ampicillin media and incubated overnight at 37 °C in a shaking incubator. The 

starter culture was then added to 1 L LB/100 μg/ml ampicillin media, and 

bacterial growth was monitored by measuring the optical density (OD) at 600 

nm. Once the OD600 reached 0.5, the expression of the GST-tagged protein was 

induced using 0.1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 16 

hours at 16 °C. Bacteria were harvested by centrifugation in a Beckman J6 rotor 

(5000 rpm, 30 min, 4 °C). The pellet was resuspended in 30 ml bacterial lysis 
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buffer (50 mM Tris/HCl pH 7.5, 150 mM NaCl, 1% (v/v) triton-X-100, 0.02 mM 

EDTA, 0.02 mM EGTA, 0.2 mM PMSF, 1 mM benzamidine, 0.06% β-ME) 

sonicated (8x15 s bursts at 4 °C) and centrifuged (15000 rpm, 30 min, 4 °C). To 

immunoprecipitate the GST-tagged proteins, 1 ml equilibrated glutathione-

Sepharose beads were added to the cleared extract and incubated for 1 hour at 

4 °C with constant agitation. Beads were collected by centrifugation at 3000 rpm 

for 15 min at 4 °C. The beads were washed five times with bacterial wash buffer 

(50 mM Tris/HCl pH 7.5, 250 mM NaCl, 0.1 mM EGTA, 0.2 mM PMSF, 1 mM 

benzamidine, 0.1% β-ME, 0.03% Brij 35). GST-proteins were eluted from 

glutathione-Sepharose by adding an equal volume of glutathione elution buffer 

(20 mM glutathione, 50 mM Tris/HCl pH 7.5, 250 mM NaCl, 0.1 mM EGTA, 0.2 

mM PMSF, 1 mM benzamidine, 0.1% β-ME, 0.03% Brij 35) for 5 min at 4 °C. 

The elution was repeated, both eluates combined and dialysed in 1 L buffer A 

using a Slide-A-Lyzer Cassette (Thermo Scientific) for 16 hours at 4 °C. The 

protein concentration was determined and the purity was verified by SDS-PAGE 

and Coomassie staining. Purified proteins were stored at -80 °C. 

 

 Purification of His6-tagged proteins from bacteria 2.2.3.11

 Bacterial expression vectors (pET) encoding His6-tagged proteins were 

transformed into BL21 E. coli cells, expressed and lysed as described in 

(section 2.2.3.10). To immunoprecipitate the His6-tagged proteins, 1 ml 

equilibrated Ni-NTA-agarose (Qiagen) beads were added to the clarified lysate 

and incubated for 1 hour at 4 °C with constant agitation. Beads were collected 

by centrifugation. The beads were washed five times with bacterial wash buffer 

(50 mM Tris/HCl pH 7.5, 0.02 mM EDTA, 0.02 mM EGTA, 0.2 mM PMSF, 1 mM 

benzamidine, 0.06% β-ME, 20 mM imidazole, 0.03% Brij 35) containing 0.5 M 
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NaCl and twice with bacterial wash buffer containing 150 mM NaCl. His6-tagged 

proteins were eluted from Ni-NTA-agarose with bacterial wash buffer containing 

150 mM NaCl and 300 mM imidazole. The eluted proteins were dialysed in 1 L 

buffer A using a Slide-A-Lyzer Cassette (Thermo Scientific) for 16 hours at 4 °C. 

The protein concentration was determined and protein purity was verified by 

SDS-PAGE and Coomassie staining. Purified proteins were stored at -80 °C. 

 

2.2.4 In vitro assays 

 Peptide binding assay 2.2.4.1

Biotin-C6-RQTVTSTPCWIELHLNGPLQWLDKVLTQMGSPSVRCSSMS 

(SMAD2-TP) (3 µg) was incubated with purified GST-OTUB1 (5 µg) or pre-

cleared HaCaT cell lysate (150 µg) (with or without pre-treatment with TGFβ (50 

pM, 1 hour)) in lysis buffer for 30 min, 30 °C, 900 rpm. As a control the 

phospho-peptide was additionally treated with lambda phosphatase (18 µM) in 

buffer (50 mM HEPES, 100 mM NaCl, 0.01% Brij-35, 2 mM DTT, 1 mM MnCl2, 

pH 7.5). Streptavidin-Sepharose High Performance beads (GE Healthcare) 

were equilibrated in lysis buffer and 20 µl of 50% (v/v) slurry beads were added 

for 15 min, 30 °C, 1300 rpm. IPs were washed 6 times in lysis buffer with 0.4 

M NaCl and twice in buffer A. Proteins were resolved by SDS-PAGE and 

immunoblotted. 

 

 In vitro ubiquitylation assays  2.2.4.2

In-cell ubiquitylation assays were performed in HEK293 cells by co-

transfection as described in section 2.2.1.6.  

In vitro ubiquitylation assays were performed with human recombinant 

E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, E3 ubiquitin 
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ligase and SMAD proteins. Ubiquitylation assays of recombinant SMAD2 or 

FLAG-SMAD2/3/4 (immunoprecipitated from HEK293 cells treated with 50 pM 

TGFβ for 1 hour prior to lysis) were performed in ubiquitylation assay buffer 

(50 mM Tris-HCl pH 7.5, 5 mM MgCl2, 2 µM ATP) with His6-UBE1 (0.1 µM), the 

appropriate E2 (1 µM, or indicated concentrations), His6-NEDD4L (1 µM) and 

ubiquitin (50 µM) in a total reaction volume of 20 μl for 1 hour at 30 °C on an IP- 

shaker. Ubiquitylation assays were stopped by adding SDS sample buffer 

containing 1% β-mercaptoethanol and heating at 95 °C for 5 min. Proteins were 

resolved by SDS-PAGE and immunoblotted. 

 

 In vitro E2~ub loading assays 2.2.4.3

For E2~ub loading assays, reactions were performed in 25 μl buffer (50 

mM HEPES, 150 mM NaCl, 0.5 mM TCEP) using His6-UBE1 (0.5 μg), 

UBE2D1/UBE2N (2 μg), FLAG-ubiquitin (2 μg), GST-OTUB1 (5.5 μg), His6-

NEDD4L (1.4 μg), SMAD3 (0.55 μg) and 2 μl Mg-ATP solution (2 mM ATP, 100 

mM Mg-acetate). Protein solutions were mixed on an IP shaker before the 

addition of ATP for 10 minutes at 30 °C. After ATP addition protein mixtures 

were agitated for a further 10 min at 30 °C before terminating the reaction with 

4x LDS sample buffer (not containing any reducing agents). 10 μl of each 

reaction was separated by SDS-PAGE. The gels were stained with Coomassie 

and imaged. 

 

 In vitro deubiquitylation assays 2.2.4.4

In-cell deubiquitylation assays were performed in HEK293 cells by co-

transfection as described in section 2.2.1.6. 



- 88 - 

In vitro deubiquitylation assays were performed with human recombinant 

wild type or mutant GST-OTUB1 and GST-USP15. For chain-cleavage assays, 

DUBs (30 ng/µl) were incubated in DUB buffer (50 mM Tris/HCl pH 7.5, 5 mM 

DTT, 100 mM NaCl) with the indicated ubiquitin chains (0.13 µg/µl, K48 ub2-7, 

K63 ub2-7, K48 ub2) on an IP-shaker for 1 hour at 30 °C. 

In vitro DUB assays of in vivo polyubiquitylated FLAG-ALK3 or FLAG-

SMAD2/3/4 (FLAG- SMAD2/3/4 were co-expressed with HA-NEDD4L and HA-

ubiquitin in HEK293 cells, treated with 50 pM TGFβ and 10 µM Bortezomib for 

3 hours and FLAG was immunoprecipitated) or in vitro polyubiquitylated 

SMAD2, SMAD3 or FLAG-SMAD2/3/4 were performed with indicated DUBs in 

DUB assay buffer at 30 °C on an IP-shaker. GST-USP15 or GST-OTUB1 (30 

ng/µl) were added for 1 hour post substrate ubiquitylation. To monitor the ability 

of OTUB1 to inhibit ubiquitylation, it was added at the start of the 

ubiquitylation assay (time 0) (30 ng/µl, or at increasing concentrations (8-

60) . The DUB assays were quenched by adding SDS sample buffer containing 

1% β-mercaptoethanol and heating at 95 °C for 5 min Proteins were resolved 

by SDS-PAGE and immunoblotted.  

 

 In vitro kinase assays 2.2.4.5

To phosphorylate OTUB1 in vitro, 200 ng of kinase and 2 μg substrate 

were incubated in a total volume of 20 μl kinase assay buffer (50 mM Tris/HCl 

pH 7.5, 0.1% β-mercaptoethanol, 0.1 mM EGTA, 10 mM MgCl2, 0.5 μM 

Microcystin-LR and 0.1 mM (32P-)ATP (500 cpm/pmole)) at 30 °C for 30 min. 

The kinase assay was stopped by adding SDS sample buffer containing 1% β-

mercaptoethanol and heating at 95 °C for 5 min. The samples were resolved by 

SDS-PAGE and the gels were stained with Coomassie and dried. The 
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radioactivity was analysed by autoradiography and exposed to Hyperfilm for 

different lengths of time. For long exposures, the cassette was placed in -80 °C 

to enhance the autoradiographic signal. Films were developed using a Konica 

automatic developer. For identification of OTUB1 phosphorylation sites by mass 

spectrometry, wet gels were autoradiographed before excision of the bands 

(see section 2.2.5.4). 

 

 In vitro O-GlcNAcylation assay 2.2.4.6

In vitro O-GlcNAcylation assays of TAB1 or SMAD proteins (4 μM) were 

carried out in 20 μl assay volumes containing 1 μM O-GlcNAc transferase, 2 

mM UDP-GlcNAc and the buffer (50 mM Tris/HCl pH 7.5, 1 mM DTT). 

Bacterially expressed O-GlcNAcase (cpOGA) (1 μM) was added as a negative 

control. The reactions were incubated for 90 min at 37 °C, 700 rpm, quenched 

by adding SDS sample buffer containing 1% β-mercaptoethanol and heated at 

95 °C for 5 min. The samples were resolved by SDS-PAGE and the gels were 

stained with Coomassie or immunoblotted. 

 

2.2.5 Mass spectrometry 

 Preparation of samples for mass spectrometry 2.2.5.1

 For mass spectrometry analysis HEK293 cells expressing the protein of 

interest were lysed in HEPES lysis buffer (40 mM HEPES pH 7.4, 120 mM 

NaCl, 1 mM EDTA, 10 mM sodium pyrophosphate, 50 mM sodium fluoride, 1.5 

mM sodium orthovanadate, 1% Triton X-100) supplemented with 0.5 µM 

microcystin-LR, 2.5 mg/ml DSP (in DMSO) and complete protease inhibitors (1 

tablet per 25 ml). The lysate was incubated for 30 min on ice and DSP cross-

linking reaction quenched by the addition of Tris/HCl pH 7.5 (200 mM final). 
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Lysates were then cleared by centrifugation (15000 rpm, 30 min) and filtration 

(0.45 µm). Subsequently, the lysates were incubated with Protein A-agarose 

beads (1 hour on a rotating platform at 4 ºC) to limit nonspecific binding. The 

cleared lysate (50 mg) was incubated with GFP-Trap beads (50 µl) for 4 hours 

on a rotating platform at 4 ºC. The beads were washed 4 times in complete 

lysis buffer containing 0.4 M NaCl and twice in 10 mM Tris/HCl pH 7.4. The 

beads were reconstituted in 1x LDS containing 0.1 M DTT, incubated at 37 ºC 

for 1 hour and heated at 95 ºC for 5 min. The samples were separated by gel 

electrophoresis and stained with Colloidal Coomassie.  

 

 In-gel digestion of proteins for mass spectrometry analysis 2.2.5.2

 To minimise contamination, preparation steps for mass spectrometry 

were performed under a laminar flow hood (Model A3VB, Bassaire Limited). 

Disposable scalpels were used to excise the protein bands of interest from 

Coomassie-stained SDS-PAGE gels. Gel pieces were cut into 1 mm cubes and 

sequentially washed on a vibrating platform for 10 min in 0.5 ml with water, 50% 

acetonitrile (ACN), 100 mM NH4HCO3 and 50% acetonitrile/50 mM NH4HCO3. 

Disulphide bonds were reduced by incubation with 10 mM DTT/100 mM 

NH4HCO3 for 45 min at 65 °C, followed by alkylation with 50 mM 

iodoacetamide/100 mM NH4HCO3 for 30 min at RT in the dark. Gel pieces were 

repeatedly washed with 100 mM NH4HCO3 and 50% ACN /50 mM NH4HCO3 

until colourless. Gel pieces were incubated in 0.3 ml ACN for 15 min at RT, the 

ACN was removed and the dehydrated gel pieces were completely dried in a 

SpeedVac. To digest the proteins in the gel pieces, 30 μl of 25 mM 

Triethylammonium bicarbonate (TEA) containing Trypsin (5 μg/ml) was added 

and the gel pieces incubated for 16 hours at 30 °C with constant agitation. 200 
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μl of ACN was added to the digest for 15 min at RT. Supernatants were 

transferred to clean Eppendorf tubes and subsequently dried using a 

SpeedVac. To maximise the peptide recovery, 100 μl 50% ACN/ 2.5% formic 

acid was added to the remaining gel pieces. The supernatant was combined 

with the first dried extract and the samples were vacuum-trap evaporated to 

complete dryness. Peptide samples were stored at -20 °C prior to analysis by 

mass spectrometry. 

 

 Peptide analysis by liquid chromatography-tandem mass 2.2.5.3

spectrometry 

 The digested peptides were reconstituted in 5% ACN and 0.1% formic 

acid and injected into a nano liquid chromatography system coupled to a LTQ-

orbitrap mass spectrometer. Data files were converted to MSM files and 

submitted to the in-house Mascot server. Data was searched against the 

International Protein Index human database with variable modifications allowing 

for phosphorylation of Serine/Threonine or Tyrosine residues and for 

Methionine oxidation, dioxidation or carboxy modification. Liquid 

chromatography-tandem mass spectrometry (LC-MS-MS) analysis was 

performed by Dr David Campbell and Robert Gourlay. Data analysis was 

performed using OLMAT (http://www.proteinguru.com/MassSpec/OLMAT). 

 

 Identification of phosphorylated peptides 2.2.5.4

Phosphorylated OTUB1 (see section 2.2.4.5) was digested as described 

above (section 2.2.5.2). The dried peptides were reconstituted in 5% ACN/ 

0.1% TFA and injected into a 218TP5215 C18 column equilibrated in 0.1% TFA, 

with a linear ACN gradient at a flow rate of 0.2 ml/min and fractions of 100 μl 

http://www.proteinguru.com/MassSpec/OLMAT
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were collected. The major eluting peptides were analysed by LTQ-orbitrap mass 

spectrometer. To determine the phosphorylated residue in each 32P-labelled 

peptide, the peptides were immobilised on a Sequelon-AA membrane and 

subjected to solid-phase Edman degradation as previously described (Campbell 

and Morrice, 2002). HPLC, LTQ-orbitrap mass spectrometry and Edman 

degradation was performed by Robert Gourlay. 

 

2.2.6 Statistical analysis 

All experiments have a minimum of three biological replicates. Luciferase 

experiments additionally have three and qRT-PCR experiments four technical 

repeats for each biological replicate. Data are presented as the mean with error 

bars indicating the standard deviation. Statistical significance of differences 

between experimental groups was assessed with Student’s t-test or ANOVA 

with Bonferroni Correction. Differences in means were considered significant if 

p<0.05. Differences with p<0.05 were annotated as *, p<0.01 were annotated 

as ** and p<0.001 were annotated as ***. All Western blots shown are 

representatives. 
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3 OTUB1 enhances TGFβ signalling by inhibiting the 

ubiquitylation and degradation of active SMAD2/3 

3.1 Introduction 

Post-translational modifications of TGFβ pathway components play a 

critical role in fine tuning TGFβ-mediated cellular responses. SMAD proteins are 

the key cellular mediators of TGFβ signalling; hence, their activity has to be 

tightly regulated in order to control the potency of TGFβ signalling. A proteomic 

screen was performed in order to identify novel SMAD interactors that could 

regulate the TGFβ pathway (Figure 3-1). OTUB1 was identified as an interactor 

of TGFβ stimulated SMAD3 (Figure 3-4). Previously, nothing was known about 

the role of OTUB1 in the regulation of SMAD3 and the TGFβ pathway. Hence, 

the aim of this chapter was to characterise the role of OTUB1 in the TGFβ 

pathway and achieve a better understanding of the molecular mechanisms by 

which it regulated TGFβ signalling. 
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Figure 3-1 Regulation of R-SMADs by post-translational modifications 

R-SMADs are activated through TGFβ induced tail-phosphorylation. R-SMAD 

activity can be curtailed either by dephosphorylation (section 1.3.1.2) or by 

ubiquitin mediated proteasomal degradation (section 1.3.2.3). Upon nuclear 

localisation, R-SMADs are linker-phosphorylated through CDKs (section 

1.3.1.3), which triggers their recognition by E3 ubiquitin ligases leading to their 

polyubiquitylation and proteasomal degradation. Because ubiquitylation is 

reversible, the ubiquitylation of SMAD2/3 by NEDD4L or other E3 ubiquitin 

ligases can be reversed by DUBs, thereby balancing the outcome of the 

TGFβ/BMP pathway. The turnover of active SMADs is likely to be regulated 

either by removal of the polyubiquitin chains by selective DUBs or prevention of 

polyubiquitylation to produce a dynamic fine-tuning of signalling. 

 

3.1.1 The OTU family of DUBs 

OTUB1 belongs to the ovarian tumour domain protease (OTU) family of 

DUBs that comprises 18 members, of which 14 are catalytically active 

(Komander et al., 2009, Mevissen et al., 2013). The OTU DUBs can be further 

classified into four subfamilies according to phylogenetic analysis: the OTUD 

subfamily (OTUD1, OTUD2, OTUD3, OTUD4, OTUD5, OTUD6A, OTUD6B, 

ALG13, and HIN1L), the A20-like subfamily (A20, Cezanne, Cezanne2, TRABID 

and VCPIP), the OTUB subfamily (OTUB1 and OTUB2) and the OTULIN 

subfamily (OTULIN and FAM105A) (Figure 3-2) (Mevissen et al., 2013).  
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All mammalian OTU DUBs are ubiquitin specific (Mevissen et al., 2013), 

although viral OTU domains also target ISG15 (Frias-Staheli et al., 2007). Most 

human OTU DUBs are linkage specific and only cleave one to four chain types 

(Figure 3-2) (Mevissen et al., 2013). For cleavage, both linked-ubiquitins have 

to interact with the catalytic domain of the DUB. Hence, they have to be 

positioned in such a manner that the isopeptide linkage enters the catalytic site. 

To achieve this, the distal ubiquitin binds the S1 site (see footnote1) in order to 

position its C-terminus in the catalytic triad (Mevissen et al., 2013, Schechter 

and Berger, 1967). The proximal ubiquitin is the ubiquitin that contributes the 

Lysine residue to the isopeptide bond and determines the diubiquitin chain 

linkage type. Hence, positioning of the proximal ubiquitin that binds to the S1’ 

site (see footnote1) determines the chain specificity of the DUB. Additionally, 

OTU DUBs harbour distinct ubiquitin binding motifs (UBDs) (Figure 3-2). 

Together these features enable OTU DUB specificity and lead to the regulation 

of chain cleavage via four distinct mechanisms. Chain cleavage specificity can 

be achieved (1) by positioning the proximal ubiquitin via the S1’ site of a UBD 

in cis, or (2) by positioning the proximal ubiquitin via a conserved S1’ UBD in 

the OTU domain itself, (3) by the use of an S2 site enabling DUBs to bind 

longer chains in a linkage-specific manner and (4) by specific recognition of a 

ubiquitylated sequence (Mevissen et al., 2013). It is not yet established 

whether all active OTU DUBs can hydrolyse the ubiquitin-linkage between 

the substrate and proximal ubiquitin and cleave branched polyubiquitin 

chains. Only OTUB1 and OTUD3 are known to cleave mixed and branched 

chains (Hospenthal et al., 2013, Nakasone et al., 2013).  

                                            
1
 The active site of an enzyme is composed of subsites (S1-Sn and S1’-Sn’), which are located 

on both sites of the catalytic Cysteine (C) (S1-Sn C S1’-Sn’). The positions (P) on the peptide 
substrate have the same numbering as the subsites they occupy (P1-Pn and P1’-Pn’) 
(Schechter and Berger, 1967).  
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Figure 3-2 Overview of OTU domain family DUBs 

The OTU domain family DUBs are displayed on a phylogenetic tree, their 
domain structures are indicated and the type of ubiquitin chain linkage cleaved 
by each OTU DUB is listed. This Figure was adapted from Mevissen et al., 
2013. 
 

3.1.2 OTUB1 structure and canonical mode of action 

OTUB1 functions as a cysteine protease that hydrolyses the isopeptide 

bond between K48-linked ubiquitin chains (canonical mode of action) 

(Edelmann et al., 2009). The catalytic triad of OTUB1 is composed of 

D88/C91/H265 within the OTU domain, which come into close contact upon 

protein folding (Figure 3-3A). OTUB1 preferentially cleaves isopeptide bonds 

over ubiquitin C-terminal fusions due to a bulky side chain (P87) in close 

proximity to the catalytic Cysteine. P87 sterically restricts the P1’ site (see 

footnote1) of OTUB1, favouring its specificity for K48-linked ubiquitin chains 

over K6-, K11-, K29-, K63-, or M1-linked polyubiquitin chains via bidentate 
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substrate binding (Figure 3-3) (Balakirev et al., 2003, Edelmann et al., 2009, 

Messick et al., 2008, Wang et al., 2009).  

The N-terminal domain of OTUB1 harbours a UIM-like (ubiquitin 

interacting motif-like) which acts as a S1’ site, hence the N-terminal helix, which 

forms following ubiquitin binding, helps to position the proximal ubiquitin relative 

to the active site (OTU DUB ubiquitin cleavage mechanism (1) see section 

3.1.1) (Figure 3-3B). In addition to the UIM-like, OTUB1 function also requires 

an extensive proximal ubiquitin-binding site in the OTU domain itself (Figure 

3-3B) (Balakirev et al., 2003, Juang et al., 2012, Wiener et al., 2012, Edelmann 

et al., 2009). OTUB1 binds proximal and distal ubiquitins in an orientation that 

positions the isopeptide linkage of K48-diubiquitin in close proximity to the 

OTUB1 catalytic site for cleavage (Figure 3-3B). According to this bidentate 

binding model, free ubiquitin is likely to reduce OTUB1 catalytic activity by 

binding to one or both ubiquitin-binding sites of OTUB1. The N-terminus of 

OTUB1 forms an interaction surface between the I44 patch of proximal ubiquitin 

upon ubiquitin binding to OTUB1. This interaction surface created by the amino 

terminal α-helix is absent in the apo (unbound) structure of OTUB1. Ligand-free 

OTUB1 is auto-inhibited, as it bears a unique structure of the catalytic triad, not 

observed in other Cysteine proteases. Thus, upon ubiquitin binding OTUB1 

undergoes a conformational change. It is suggested that specific substrates (or 

interactors) are required for OTUB1 activation, possibly through an induced fit 

mechanism (Edelmann et al., 2009, Messick et al., 2008, Wang et al., 2009, 

Wiener et al., 2012, Juang et al., 2012, McGouran et al., 2013). Indeed, the 

catalytic activity of OTUB1 can be regulated by the UBE2D family, UBE2E1, 

UBE2N and UBE2W. The E2 stimulates the binding of K48-linked ubiquitin to 
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OTUB1 by stabilising the folding of the N-terminal ubiquitin binding helix of 

OTUB1 (Wiener et al., 2013). 

The amino acid sequence of OTUB1 is highly similar to OTUB2 

(Edelmann et al., 2009). The major difference between OTUB1 and OTUB2 is 

the N-terminal extension in OTUB1. Additionally, their molecular modes of 

action are distinct. While both cleave ubiquitin chains, OTUB1 also acts in a 

non-canonical mode through the inhibition of E2 enzymes (section 3.1.3). 

 

3.1.3 Non-canonical mode of OTUB1 action: inhibition of E2 enzymes 

In addition to its ability to cleave K48-linked ubiquitin chains, OTUB1 has 

been reported to act in a catalytically independent manner (non-canonical). 

Several studies have described the non-canonical mode of OTUB1 action in 

which OTUB1 inhibits the ubiquitylation of target proteins by binding to and 

inhibiting E2 ubiquitin conjugating enzymes, independently of its catalytic 

activity (Wiener et al., 2012, Nakada et al., 2010, Juang et al., 2012, Sato et al., 

2012).  

The non-canonical mode of action relies on OTUB1 binding to ubiquitin 

charged-E2 enzymes (E2~ub) through the ubiquitin-binding motif in the N-

terminus. The charged E2~ub and free ubiquitin bind OTUB1 in a way that 

mimics K48-linked cleaved chains (Figure 3-3B,C). Therefore, OTUB1 can 

inhibit E2s that generate any ubiquitin-linkage type on substrate proteins. The 

ubiquitin that is bound to the E2, is positioned at the S1' ubiquitin-binding 

(proximal) site of OTUB1, forming a pseudo-substrate complex (Figure 3-3C) 

(Messick et al., 2008, Wiener et al., 2012, Wang et al., 2009, Nakada et al., 

2010, Juang et al., 2012, Sato et al., 2012).  
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The binding of OTUB1 to the UBE2N~ub conjugate is allosterically 

regulated by free ubiquitin, which binds to the distal ubiquitin-binding region of 

OTUB1 (Figure 3-3). Hence, in the absence of free ubiquitin, OTUB1 binds 

charged and uncharged E2s with similar affinity. The binding of conjugated 

donor ubiquitin to OTUB1 is encouraged by conformational changes in the OTU 

domain, which maximises contacts with the ubiquitin bound at the OTUB1 

proximal site. Furthermore, the formation of a 20-amino acid ubiquitin-binding 

helix at the N-terminus of OTUB1, which is disordered in the apo enzyme, 

contacts the donor ubiquitin in the distal site favouring binding (Messick et al., 

2008, Wiener et al., 2012, Wang et al., 2009, Nakada et al., 2010, Juang et al., 

2012, Sato et al., 2012). The N-terminal region of OTUB1 possibly disrupts the 

interaction between UBE2N and its co-factor UBE2V1, thereby disrupting the 

donor ubiquitin-E2 interaction. A similar mechanism is possible for the 

interaction between OTUB1 and UBE2D2, whereby the OTUB1 N-terminus 

might interfere with acceptor ubiquitin binding to the E2 (Wiener et al., 2012).  

The OTUB1-interacting surface on UBE2D2 or UBE2N is in vicinity to the 

interface that mediates E2-E3 interaction and is conserved among the 

UBE2E/D families, leading to the prediction that the interaction mode of all 

OTUB1-interacting E2s is universal (Juang et al., 2012). Interestingly, 

uncharged E2 binding increases OTUB1 affinity for K48-diubiquitin by stabilising 

the N-terminus of OTUB1. Hence, the ratio of charged and uncharged E2s in 

cells as well as the amount of K48-linked ubiquitin present could regulate 

OTUB1 activity. Furthermore, OTUB1 could coexist in E2-OTUB1 and E2~ub-

OTUB1 complexes (Wiener et al., 2013). 

In summary, for the non-canonical mode of action, OTUB1 inhibits the 

ubiquitin transfer from the E2 to the E3. OTUB1 occludes the E3 binding site on 
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the E2 and binds donor ubiquitin with its N-terminus so that it cannot interact 

with the E2 enzyme. Hence, OTUB1 also inhibits substrate ubiquitylation in a 

non-catalytic manner (Wiener et al., 2012, Nakada et al., 2010, Juang et al., 

2012).  

 

 

Figure 3-3 Mechanisms of OTUB1 cleavage of K48-linked ubiquitin chains 
and the inhibition of ubiquitylation 

A) Schematic representation of human OTUB1 indicating the domain structures 
(UIM in red, OTU in orange), catalytic residues (in green), P1’ site (P87 in 
purple), the E2 interface (* in light blue), the proximal ubiquitin binding interface 
(S1’) (* in light grey) and the distal ubiquitin interface (S1) (* in dark grey). B) 
OTUB1 binds K48-linked ubiquitin in a bidentate manner using its distal 
ubiquitin-binding site in the OTU domain and the proximal ubiquitin binding site, 
which is formed upon substrate binding, by the N-terminal region. C) Crystal 
structure of OTUB1 bound to ubiquitin in complex with ubiquitin charged UBE2N 
(taken from Kulathu and Komander, 2012). Binding of ubiquitin-charged E2 
(E2~ub) to OTUB1 positions the proximal ubiquitin (which is bound by the E2) 
into the S1’ binding site of OTUB1 and distal ubiquitin binds OTUB1 at its S1 
site. This conformation mimics the canonical substrate binding as in B.  
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3.1.4 Cellular functions of OTUB1  

Both canonical and non-canonical roles of OTUB1 have been implicated 

in the regulation of several cellular processes (Zhang et al., 2012c, Xia et al., 

2008, Rumpf and Jentsch, 2006, Peng et al., 2014, Li et al., 2014), including 

immune response (Li et al., 2010, Soares et al., 2004, Goncharov et al., 2013), 

estrogen signalling (Stanisic et al., 2009) and DNA damage response (Nakada 

et al., 2010).  

The catalytic activity of OTUB1 is required for its function in apoptosis 

and pathogen invasion. By regulating the E3 ubiquitin ligase cellular inhibitor of 

apoptosis (c-IAP1) via deubiquitylation, OTUB1 regulates the assembly of 

tumour necrosis factor (TNF) receptor signalling complexes and regulates 

apoptosis (Goncharov et al., 2013). OTUB1 was found to stabilise active RhoA 

through deubiquitylation, thereby influencing the susceptibility of host cells to 

bacterial invasion by Yersinia (Edelmann et al., 2010).  

OTUB1 has been reported to deubiquitylate TRAF3 and 6, thereby 

negatively regulating the virus induced type I interferon production and cellular 

antiviral response (Li et al., 2010). Furthermore, it was suggested that HSCARG 

recruits OTUB1 to TRAF3 (Peng et al., 2014). However, whether the catalytic 

activity of OTUB1 is required for cellular responses was not assessed in either 

of the studies. Furthermore, OTUB1 has been reported to act as a specific 

receptor for the ubiquitylated E3 ligase GRAIL, enhancing its degradation and 

thereby regulating CD4+ T cell clonal anergy and promoting IL2 production 

(Soares et al., 2004). OTUB1 function in the regulation of T cell anergy can be 

antagonised by ARF-1, a longer isoform of OTUB1 resulting from an alternative 

splicing and start codon. The OTUB1 mediated degradation of GRAIL, which is 

opposite to the expected function of a DUB, is independent of its catalytic 
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activity (Soares et al., 2004). OTUB1 has been reported to deubiquitylate and 

stabilise Estrogen receptor alpha (ERα) in chromatin, but surprisingly resulting 

in the inhibition of ERα-regulated transcription (Stanisic et al., 2009).  

OTUB1 has been shown to inhibit E2 enzymes (non-canonical mode of 

action) and thereby regulate the cellular responses to DNA damage and stability 

of p53 (Nakada et al., 2010, Sun et al., 2011). OTUB1 can inhibit DNA-damage-

induced RNF168-mediated K63-linked polyubiquitylation on chromatin at DNA 

double-strand breaks. This is independent of its DUB activity but requires the N-

terminal UIM-like, as OTUB1 sequesters the RNF168 cognate E2, UBE2N 

(Nakada et al., 2010). This was the first report of the non-canonical mode of 

action for OTUB1, in which OTUB1 directly inhibits RNF168-UBE2N dependent 

K63-linked ubiquitin chain elongation by preventing the isopeptide bond 

formation between a donor ubiquitin on UBE2N and an acceptor ubiquitin 

coordinated by its co-factor UBE2V1. Furthermore, OTUB1 was also found to 

interact with and inhibit the UBE2D and UBE2E subfamilies (Nakada et al., 

2010). OTUB1 has been reported to regulate the activity and stability of p53 and 

induce p53-mediated apoptosis and cell growth inhibition through its non-

canonical mode of action. OTUB1 inhibits MDM2-mediated ubiquitylation of p53 

by sequestering its cognate E2, UBE2D1 (Sun et al., 2011). Recently, it was 

suggested that OTUB1 is monoubiquitylated by UBE2D1, which in turn 

enhances binding between OTUB1 and UBE2D1 and could disrupt UBE2D1~ub 

complexes (Li et al., 2014).  
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3.2 Results 

3.2.1 Identification of OTUB1 as an interactor of GFP-SMAD3 

In order to uncover novel modes of regulation of the TGFβ pathway, a 

proteomic approach was employed to identify interactors of SMAD1 and 

SMAD3, key mediators of the BMP and TGFβ ligands respectively. HEK293 

cells stably expressing GFP alone and N-terminally GFP-tagged SMAD1 or 

SMAD3 under the control of a tetracycline-inducible promoter were generated. 

GFP-immunoprecipitates (IPs) were resolved by SDS-PAGE and the 

interacting proteins excised, digested with trypsin and identified by mass 

spectrometry (Figure 3-4A). As expected, BMP and TGFβ treatment resulted in 

the phosphorylation of GFP-SMAD1 and GFP-SMAD3 respectively (Figure 

3-4B). Previously reported R-SMAD interactors, including SMAD4, LEMD3, 

TRIM33 and c-SKI were identified in GFP-SMAD1 and GFP-SMAD3 IPs as 

indicated (Figure 3-4A) (Zhang et al., 1996, Lagna et al., 1996, Luo et al., 

1999, Osada et al., 2003, Pan et al., 2005). OTUB1 was identified as a novel 

interactor of GFP-SMAD3 only when cells were treated with TGFβ (Figure 

3-4A). Four OTUB1 tryptic peptides, representing ~ 8% sequence coverage, 

were identified.  
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Figure 3-4 Identification of OTUB1 as an interactor of GFP-SMAD3 upon 
TGFβ stimulation 
 

A) HEK293 cells stably expressing GFP-only, GFP-SMAD1 or GFP-SMAD3 

were treated with 50 pM TGFβ or 25 ng/ml BMP as indicated for 1 hour prior to 

lysis. GFP-immunoprecipitates (IPs) were separated by SDS-PAGE and the 

interacting partners identified by mass spectrometry. B) HEK293 cells stably 

expressing GFP-SMAD1 or GFP-SMAD3 were treated with BMP (25 ng/ml) or 

TGFβ (50 pM) respectively for 1 hour prior to lysis. Extracts were resolved by 

SDS-PAGE and immunoblotted with the indicated antibodies. Abbreviations 

used: SMAD-TP= tail-phosphorylated SMAD. 
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3.2.2 Assessment of interactions between OTUB1 and SMADs at the 

endogenous level 

To verify the ligand-inducible nature of interaction between OTUB1 and 

SMAD3 (Figure 3-4A) at the endogenous level, OTUB1 was 

immunoprecipitated from HaCaT cell extracts. OTUB1 was efficiently 

immunoprecipitated with the anti-OTUB1 antibody but not with the pre-immune 

IgG (Figure 3-5A). TGFβ induces formation of the active phospho-SMAD2/3-

SMAD4 transcription factor complex (Lagna et al., 1996, Zhang et al., 1996). 

Tail (TP)- and linker (LP)-phosphorylated SMAD3, total SMAD3, tail-

phosphorylated SMAD2 and total SMAD2 were all detected in OTUB1 IPs from 

cells stimulated with TGFβ but not from BMP or unstimulated controls (Figure 

3-5A). SMAD4 was also detected in OTUB1 IPs only upon TGFβ stimulation 

(Figure 3-5A), indicating that OTUB1 binds to the active SMAD2/3/4 complex. 

Endogenous tail-phosphorylated SMAD1 and SMAD4 were not detected in 

OTUB1 IPs from control or BMP treated extracts (Figure 3-5A), suggesting that 

OTUB1 selectively recognises the TGFβ-induced SMAD complexes. Similarly, 

SMAD7 was not detected in OTUB1 IPs (Figure 3-5A). None of the SMADs 

were detected in pre-immune sheep IgG IPs, employed as control (Figure 

3-5A). SMAD2-TP and total SMAD2/3 were also detected in OTUB1 IPs from 

primary bone marrow derived macrophages (BMDMs) and mouse embryonic 

fibroblasts (MEFs) only when cells were treated with TGFβ (Figure 3-5B). Next, 

the kinetics of OTUB1-SMAD2/3 interaction upon TGFβ stimulation in HaCaT 

cells was investigated. The binding of endogenous OTUB1 to the active 

SMAD2/3/4 complex occurred within 30 minutes of TGFβ stimulation and 

persisted through 6 hours of continuous stimulation, closely mirroring the levels 

of SMAD2/3-tail phosphorylation (Figure 3-5C).  



- 106 - 

 
Figure 3-5 Endogenous interactions between OTUB1 and TGFβ activated 
SMADs 
 
A) An endogenous IP with anti-OTUB1 antibody or pre-immune sheep IgG was 
performed in HaCaT cell extracts, stimulated without or with 50 pM TGFβ or 25 
ng/ml BMP for 1 hour. Cell extracts (input), IgG or anti-OTUB1 IPs and the 
corresponding immune-depleted flow-through extracts (FT) (O1=OTUB1-
depleted untreated HaCaT extract) were resolved by SDS-PAGE and 
immunoblotted with the indicated antibodies. B) An endogenous IP with anti-
OTUB1 antibody or pre-immune sheep IgG was performed in extracts from 
BMDMs and MEFs stimulated with or without 50 pM TGFβ for 1 hour. Prior to 
TGFβ stimulation BMDMs were serum starved for 2 hours, whereas MEFs were 
not starved. Cell extracts (input) or IPs were resolved by SDS-PAGE and 
immunoblotted with the indicated antibodies. C) As in A, except that a time 
course of TGFβ treatment was performed for up to 6 hours prior to lysis. 
Abbreviations used: SMAD-LP: linker-phosphorylated SMAD.  
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3.2.3 OTUB1 and phospho-SMAD2/3 co-elute in size exclusion 

chromatography 

To visualise the co-elution of possible OTUB1 and SMAD2/3/4 

macromolecular complexes, size exclusion chromatography was performed on 

untreated or TGFβ treated HaCaT cell extracts (Figure 3-6). While most of 

OTUB1 eluted in lower molecular weight fractions under both unstimulated or 

TGFβ stimulated conditions, some OTUB1 eluted in a high molecular weight 

fraction only upon TGFβ stimulation (Figure 3-6). Tail-phosphorylated SMAD2/3 

and SMAD4 also co-elute in this fraction (fraction 17), indicating the potential 

existence of an OTUB1/SMAD2/3/4 macromolecular complex (Figure 3-6).  
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3.2.4 Phosphorylation of SMAD2/3 is necessary for OTUB1 binding 

As shown in Figure 3-5, OTUB1 selectively bound components of the 

active phospho-SMAD2/3-SMAD4 complex; however, it was not clear whether 

SMAD4 was required for this interaction. Therefore, the SW480 colon cancer 

cell line, which lacks SMAD4 expression (Calonge and Massague, 1999), was 

employed. In both HaCaT and SW480 cells, TGFβ induced the phosphorylation 

of SMAD2/3 (Figure 3-7). Phospho-SMAD2/3 proteins were detected in OTUB1 

IPs upon TGFβ stimulation in both cell types (Figure 3-7). SW480 cells 

displayed elevated basal levels of phospho-SMAD2/3 over HaCaT cells (Figure 

3-7). Consistent with this, even in the absence of TGFβ stimulation, phospho-

SMAD2/3 was detected in OTUB1 IPs in SW480 cells (Figure 3-7). These 

observations imply that SMAD4 is not required for the interaction between 

OTUB1 and phospho-SMAD2/3. 

 To establish whether the phosphorylation of SMAD2/3 in response to 

TGFβ is critical for its interaction with OTUB1, OTUB1 IPs from TGFβ-treated 

HaCaT extracts were lambda (λ) phosphatase treated (Figure 3-8A). This 

resulted in a dissociation of SMAD2 from OTUB1 IPs indicating that 

phosphorylation of SMAD2 in response to TGFβ is necessary for its interaction 

with OTUB1. As expected, λ phosphatase efficiently dephosphorylated TGFβ-

induced phospho-SMAD2 in extracts (Figure 3-8A; input). Furthermore 

endogenous OTUB1 IPs were capable of interacting with wild type FLAG-

SMAD3 and a phospho-mimetic mutant of FLAG-SMAD3 but not a phospho-

deficient mutant of FLAG-SMAD3 overexpressed in U2OS cells (Figure 3-8B). 

To definitively establish whether the interaction of OTUB1 with SMAD2 is tail-

phosphorylation dependent, a biotin-tagged SMAD2 tail-peptide (incorporating 

residues 428-467 of hSMAD2) phosphorylated at the “SMS” motif (SMAD2 
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phospho-peptide) was generated. When the SMAD2 phospho-peptide was 

incubated with purified GST-OTUB1 protein in vitro, a robust OTUB1 interaction 

was observed (Figure 3-8C; lane 2). This interaction was abolished upon λ 

phosphatase treatment to dephosphorylate the SMAD2 phospho-peptide 

(Figure 3-8C; lane 3). These observations suggest that the interaction between 

OTUB1 and phospho-SMAD2 is direct. Furthermore, only SMAD2 phospho-

peptide but not the λ phosphatase treated phospho-peptide was able to pull 

down endogenous OTUB1 from HaCaT cell extracts independent of TGFβ 

treatment (Figure 3-8D). Similarly, as expected, SMAD2 phospho-peptide pulled 

down SMAD4, which is known to interact with tail-phosphorylated SMAD2 

(Lagna et al., 1996) (Figure 3-8D). 

 

 

Figure 3-7 SMAD4 is dispensable for the interaction between OTUB1 and 
tail-phosphorylated SMAD2/3 

An endogenous IP with anti-OTUB1 antibody or pre-immune sheep IgG was 

performed in HaCaT and SW480 cell extracts, stimulated with or without 50 pM 

TGFβ for 1 hour prior to lysis. Extracts (input) and endogenous anti-OTUB1 or 

IgG IPs were resolved by SDS-PAGE and immunoblotted with the indicated 

antibodies. 
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Figure 3-8 OTUB1 binding to SMAD2/3 is phosphorylation dependent 

A) Endogenous OTUB1 was immunoprecipitated from HaCaT cells treated with 
or without TGFβ (50 pM; 1 h) prior to lysis. After washing, the IPs were treated 
with or without lambda (λ) phosphatase for 30 min at 30 °C and washed 4 
times. As a control, an aliquot of TGFβ-treated cell extract was incubated with 
lambda (λ) phosphatase for 30 min at 30 °C. Cell extracts, IPs and flow-through 
extracts were resolved by SDS-PAGE and immunoblotted with the indicated 
antibodies. B) U2OS cells were transfected with vectors encoding wild type 
FLAG-SMAD3, FLAG-SMAD3 phospho-mutant or FLAG-SMAD3 phospho-
mimetic mutant and were treated with TGFβ (50 pM; 1 h) prior to lysis. Extracts 
or IPs with pre-immune IgG or anti-OTUB1 antibody were resolved by SDS-
PAGE and immunoblotted with the indicated antibodies. C) Purified GST-
OTUB1 was incubated with biotin-tagged phospho-SMAD2 peptide in the 
presence or absence of lambda (λ) phosphatase for 30 min at 30 °C. The 
SMAD2 peptide was immunoprecipitated with Streptavidin beads and washed 6 
times. Input and IP samples were resolved by SDS-PAGE and immunoblotted 
with the indicated antibodies. D) As in D, however the SMAD2-peptide was 
incubated with untreated HaCaT (+) or TGFβ (T) (50 pM; 1 h) treated cell 
lysate. SMAD4 antibody was used as a positive control. 
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3.2.5 Expression of OTUB1 in different tissues and cell lines 

To further investigate the function of OTUB1, mouse tissues and different 

cancer cell lines were probed for the expression of OTUB1 protein. Mouse 

spatial tissue distribution of OTUB1 revealed that it was ubiquitously expressed, 

with high expression levels observed in the brain (Figure 3-9A). Moreover, 

OTUB1 was ubiquitously expressed across many human cell lines, with 

relatively high expressions observed in breast cancer cells (Figure 3-9B). 

 
 

 

Figure 3-9 OTUB1 is ubiquitously expressed 

A) Indicated mouse tissues were homogenised in lysis buffer, and 20 µg of 
protein lysate were resolved by SDS-PAGE and immunoblotted with antibodies 
against OTUB1, GAPDH and tubulin (the latter ones used as loading controls). 
B) Different cancer cell lines were lysed and extracts resolved by SDS-PAGE 
and immunoblotted with the indicated antibodies. GAPDH and tubulin 
immunoblots were used as loading controls. 
  

th
y
m

u
s

e
p

id
id

y
m

is

li
v
e

r

lu
n

g

b
ra

in

m
u

s
c

le

p
a

n
c

re
a

s

h
e

a
rt

u
te

ru
s

s
p

le
e

n

te
s

ti
s

wild type mouse tissue

k
id

n
e

y

a
d

ip
o

s
e

 t
is

s
u

e

IB: OTUB1

IB: GAPDH

IB: tubulin

A
1

7
2

brain

U
8

7

b
o

n
e

U
2

O
S

G
3

6
1

breast

B
T

-4
7

4

M
C

F
7

T
4
7

D

H
C

T
1

5

H
T

2
9

L
o

V
o

S
W

6
2

0

c
e

rv
ix

H
e

L
a

N
C

I-
H

4
4

1

N
C

I-
H

7
2

7

s
k

in

colon lung

IB: GAPDH

IB: OTUB1

IB: tubulin

IB: SMAD2/3

A

B



- 113 - 

3.2.6 Subcellular localisation of OTUB1 

The intracellular distribution of OTUB1 was also investigated. 

Immunofluorescence microscopy was employed to investigate if TGFβ 

treatment affected the intracellular distribution of OTUB1 and if OTUB1 and tail-

phosphorylated SMADs co-localised. Control or OTUB1 depleted (iOTUB1) 

HaCaT cells were left untreated or treated with TGFβ. TGFβ treatment resulted 

in nuclear accumulation of tail-phosphorylated SMAD3 (Figure 3-10A). 

Depletion of OTUB1 weakened the OTUB1 signal but did not eradicate it 

completely (Figure 3-10B), suggesting that the OTUB1 antibody was not 

completely suitable for IF applications. Nevertheless, OTUB1 was mainly 

cytosolic. This was confirmed by subcellular fractionation in HaCaT and MDA-

MB-231 cells (Figure 3-11A). Endogenous OTUB1 was detected mainly in the 

cytosolic fraction and TGFβ/BMP treatment did not appear to significantly alter 

its localisation. In contrast, tail-phosphorylated SMADs1 and 3 were mainly 

detected in the nuclear fractions (Figure 3-11A). Efficient fractionation was 

indicated by the presence of Lamin A/C and GAPDH in nuclear and cytosolic 

fractions respectively (Figure 3-11A). When fractionating HaCaT cells into five 

compartments (cytoplasm, membrane, nucleus, chromatin, cytoskeleton), 

OTUB1 was detected primarily in the cytosol with some detected at the 

membrane (Figure 3-11B). To assess whether OTUB1 might sequester tail-

phosphorylated SMAD2 from entering the nucleus, HaCaT cells were 

fractionated and the amount of SMAD2-TP in the presence or absence of 

OTUB1 in the nucleus compared. There was no significant difference in the 

amount of SMAD2 entering the nucleus upon TGFβ stimulation in the absence 

or presence of OTUB1 (Figure 3-12).  
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Figure 3-10 Immunofluorescence microscopy indicates that OTUB1 is 
cytosolic 

A) Fixed cell immunofluorescence was performed on HaCaT cells transfected 
with FoxO4 control siRNA or OTUB1 siRNA and treated with 50 pM TGFβ for 1 
hour or left untreated. Individual and merged pictures are shown, indicating 
localisation of OTUB1 mainly in the cytosol and upon TGFβ stimulation SMAD3-
TP in the nucleus. Pictures were taken using a 40x lens, scale bars represent 
50 μm. B) HaCaT cells transfected with FoxO4 control siRNA and control 
shRNA or OTUB1 siRNA and shRNA were seeded onto an Ibidi cellular 
migration chamber and fixed cell immunofluorescence was performed. Pictures 
were taken using a 20x lens, scale bar represents 100 μm. 
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Figure 3-11 Cellular fractionation confirms cytosolic localisation of OTUB1 

A) HaCaT and MDA-MB-231 cells were treated with or without 25 ng/ml BMP or 
50 pM TGFβ for 1 hour prior to lysis and separated into nuclear and cytosolic 
fractions. The fractions were resolved by SDS-PAGE and immunoblotted with 
the indicated antibodies. B) As in A, however HaCaT cells were fractioned into 
cytoplasm, membrane, nucleus, chromatin and cytoskeleton.  
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Figure 3-12 OTUB1 does not affect SMAD2/3 nuclear entry 

HaCaT cells were treated with FoxO4 or OTUB1 siRNA for 48 hours prior to 
TGFβ stimulation (50 pM) for indicated times and cells were separated into 
nuclear and cytosolic fractions. The fractions were resolved by SDS-PAGE and 
immunoblotted with the indicated antibodies. 
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TGFβ signalling.  

OTUB1 was depleted from mouse myoblast C2C12 cells stably 

integrated with a TGFβ-responsive CAGA-luciferase reporter construct using 

multiple siRNAs (Figure 3-13A). Depletion of OTUB1 with mouse iOTUB1#1, 

yielded >90% knockdown of OTUB1 protein levels (Figure 3-13A) resulting in 
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depletion in OTUB1 expression (Figure 3-13A). These results suggested that 

OTUB1 enhances TGFβ-induced transcriptional responses.  

In order to confirm the repression of TGFβ-mediated transcription upon 

OTUB1 depletion in human cells, HaCaT cells were transiently transfected 

with a  control siRNA (human iFoxO4), human iOTUB1#1 siRNA or a stable 

shRNA against OTUB1 (Figure 3-14A) and the endogenous expression of 

TGFβ-target genes was tested by qRT-PCR (Figure 3-14B). Upon depletion of 

OTUB1 by both transient and stable knockdown methods, TGFβ-induced PAI-1 

mRNA expression was significantly inhibited (Figure 3-14B). The expression of 

another TGFβ-target gene, CTGF, was also significantly inhibited upon siRNA-

mediated depletion of OTUB1 (Figure 3-14C). These results demonstrated that 

depletion of OTUB1 by two independent RNAi oligonucleotides in mouse and 

human cells caused inhibition of TGFβ-induced transcriptional activity.  

OTUB1 did not interact with SMAD1 upon BMP-stimulation (Figure 

3-5A). To confirm that OTUB1 only affects the TGFβ pathway, BMP-mediated 

gene transcription was monitored in the presence or absence of OTUB1 (Figure 

3-15). No difference in luciferase activity was observed in C2C12 cells stably 

expressing a SMAD1-dependent BMP-responsive BRE luciferase reporter 

construct, transfected with iFoxO4 control or iOTUB1#1 siRNAs (Figure 3-15A). 

Similarly, the overexpression of HA-control, HA-OTUB1 or HA-OTUB1 C91S did 

not alter the BMP-dependent luciferase activity (Figure 3-15B). 
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Figure 3-13 Depletion of OTUB1 represses TGFβ-induced transcription in 
mouse cells 

A) C2C12 cells were transfected with three different siRNAs (#1, #2, #3) 
targeting mouse OTUB1 (300 pM/10-cm dish each) and lysed 48 hours post-
transfection. Extracts were resolved by SDS-PAGE and immunoblotted with the 
indicated antibodies. B) C2C12 cells stably expressing a SMAD3-dependent 
TGFβ-responsive CAGA luciferase reporter construct were transfected with 
iFoxO4 or iOTUB1#1. Cells were treated with or without 50 pM TGFβ for 6 
hours prior to lysis and luciferase activity was measured. Data are represented 
as mean and error bars indicate standard deviation (n=3). Differences with 
p<0.01 were annotated as **. C) As in C, however cells were transfected with 
iFoxO4 and iOTUB1#3. Data are represented as mean and error bars indicate 
standard deviation (n=3). Differences with p<0.05 were annotated as *. 
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Figure 3-14 Depletion of OTUB1 represses TGFβ-induced transcription in 
human cells 

A) HaCaT cells stably expressing shRNA against OTUB1 or transfected with 
control (-) or OTUB1 siRNA (300 pM/10-cm dish each) for 48 hours were lysed 
and extracts resolved by SDS-PAGE and immunoblotted with the indicated 
antibodies. B) HaCaT cells, transfected with human OTUB1 siRNA, human 
FoxO4 siRNA, or stably expressing OTUB1 shRNA, were treated with 50 pM 
TGFβ for 4 hours prior to RNA isolation. Relative expression levels of indicated 
mRNAs were analysed by qRT-PCR. Data are represented as mean and error 
bars indicate standard deviation (n=6). Differences with p<0.01 were annotated 
as ** and p<0.001 were annotated as ***. C) HaCaT cells depleted of human 
OTUB1 or FoxO4 by RNAi were treated with 50 pM TGFβ for 1 hour. TGFβ was 
then washed off and SB505124 (1 µM) added. mRNA was isolated 45 min post 
TGFβ removal. Relative expression levels of OTUB1 and CTGF mRNAs were 
analysed by qRT-PCR. Data are represented as mean and error bars indicate 
standard deviation (n=6). Differences with p<0.01 were annotated as **. 
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Figure 3-15 OTUB1 does not affect BMP-induced gene transcription 

A) C2C12 cells stably expressing a SMAD1-dependent BMP-responsive BRE 
luciferase reporter construct were transfected with iFoxO4 or iOTUB1#1. Cells 
were treated with or without 25 ng/ml BMP for 6 hours prior to lysis and 
luciferase activity was measured. Data are represented as mean and error bars 
indicate standard deviation (n=3). B) Same as in A, except that cells were 
transfected with HA-OTUB1 or HA-OTUB1 C91S. Data are represented as 
mean and error bars indicate standard deviation (n=3). Differences with p>0.05 
were annotated as ns (not significant). 
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To assess the catalytic activity of OTUB1 and mutants described 

above, in vitro deubiquitylation assays on di- or polyubiquitin chains were 

performed (Figure 3-16B-E). Wild type OTUB1 cleaved K48-linked diubiquitin 

(Figure 3-16B,C) as well as longer K48-linked polyubiquitin chains (Figure 

3-16D), but not K63-linked polyubiquitin chains (Figure 3-16E). The OTUB1 ΔN 

mutant exhibited slightly reduced catalytic activity in vitro against K48-linked 

ubiquitin chains (Figure 3-16B,D). A ll the other mutants of OTUB1: D88A, 

C91S, H265A, D88A/H265A (D/H), D88A/C91S/H265A (D/C/H) (Figure 

3-16B,D) and K71R (Figure 3-16C) did not cleave K48-linked ubiquitin chains, 

indicating that these mutants were catalytically inactive. The addition of 

phosphorylated (SIRCSSVS) or unphosphorylated (SIRCSSVS) SMAD3 

peptide (aa 418-425) to the DUB assay did not significantly alter the catalytic 

activity of OTUB1 (Figure 3-17).  
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Figure 3-16 Characterisation of OTUB1 activity in vitro 

A) A schematic representation of OTUB1 indicating the positions of key 
residues and domains. B&C) Human recombinant GST-OTUB1 or indicated 
GST-OTUB1 mutants were incubated with K48-linked diubiquitin chains in a 
DUB assay buffer for 1 hour at 30 °C. The reaction was stopped by the addition 
of 1x SDS sample buffer, the assay mix was resolved by SDS-PAGE and 
immunoblotted with GST or ubiquitin antibodies as indicated. D) As in B&C, 
however GST-OTUB1 was incubated with K48-linked 2-7 polyubiquitin chains. 
E) As in D, however GST-OTUB1 was incubated with K63-linked 2-7 
polyubiquitin chains.  
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Figure 3-17 The catalytic activity of OTUB1 is not influenced by SMAD3 

Human recombinant GST-OTUB1 or GST-OTUB1 D/C/H were incubated with 
K48-linked diubiquitin in the presence or absence of tail-phosphorylated or 
unphosphorylated SMAD3 peptide in a DUB assay buffer for 1 hour at 30 °C. 
The reaction was stopped by the addition of 1x SDS sample buffer, the assay 
mix was resolved by SDS-PAGE and immunoblotted with GST or ubiquitin 
antibodies as indicated.  
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polyubiquitylation leads to proteasomal degradation (Pickart, 1997), which can 

be blocked by the proteasomal inhibitor Bortezomib (Adams et al., 1999). 
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can be rescued by the addition of Bortezomib (Figure 3-18B, lane 4). 
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Figure 3-18 NEDD4L polyubiquitylates SMAD2/3 

A) HEK293 cells were co-transfected with vectors encoding HA-NEDD4L and 
FLAG-SMAD3. Prior to lysis (in the presence of iodoacetamide) cells were 
treated with 50 pM TGFβ for 1 hour and 10 µM Bortezomib for 3 hours. FLAG-
IPs and linear-, K48- or K63-linked ubiquitin (2-7 molecules) chains were 
resolved by SDS-PAGE and immunoblotted with K48-linkage specific and total 
ubiquitin antibodies. B) HEK293 cells were transfected with HA-NEDD4L. Prior 
to lysis, cells were treated with 50 pM TGFβ for 1 hour and with or without 10 
µM Bortezomib for 3 hours. Extracts were resolved by SDS-PAGE and 
immunoblotted with the indicated antibodies.  
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3.2.10 OTUB1 affects SMAD3 ubiquitylation 

After establishing the catalytic activity of various OTUB1 mutants, their 

ability to interact with and deubiquitylate SMAD3 was assayed. To test this, 

HEK293 cells were transfected with HA-OTUB1 or mutant constructs together 

with FLAG-SMAD3 and HA-ubiquitin. Full-length HA-OTUB1, as well as HA-

OTUB1 ΔN, HA-OTUB1 H265A and HA-OTUB1 K71R interacted with FLAG-

SMAD3 while HA-OTUB1 C91S, HA-OTUB1 D/C/H mutants and OTUB2 did not 

(Figure 3-19A,C). Overexpression of FLAG-SMAD3 in HEK293 cells resulted 

in a spontaneous tail-phosphorylation of FLAG-SMAD3 even in the absence 

of TGFβ (Figure 3-19B). This potentially caused the interaction between HA-

OTUB1 and FLAG-SMAD3 under overexpression conditions even in the 

absence of TGFβ. When co-expressed with HA-ubiquitin in HEK293 cells, 

efficient polyubiquitylation was observed in FLAG-SMAD3 IPs independent of 

TGFβ stimulation (Figure 3-19A,D). Upon co-expression with wild type OTUB1, 

the polyubiquitylation of FLAG-SMAD3 IPs was reduced (Figure 3-19A,D). 

However, this reduction could due to the general reduction in polyubiquitin 

chains observed in extracts when OTUB1, or catalytically inactive mutants of 

OTUB1 (C91S & H265A), were overexpressed (Figure 3-19A,D). 

Overexpression of the OTUB1 K71R mutant, which is also catalytically inactive 

but still interacts with SMAD3, only caused a moderate decrease in FLAG-

SMAD3-polyubiquitylation levels (Figure 3-19D).  

Overexpression of OTUB1 also led to a general reduction in global 

endogenous polyubiquitylation seen in extracts (Figure 3-20A). This loss was 

not rescued completely by proteasomal inhibitors Bortezomib and Lactacystin 

(Figure 3-20B).  
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Figure 3-19 OTUB1 affects SMAD3 ubiquitylation 

A) HEK293 cells were co-transfected with vectors encoding N-terminal HA-

tagged OTUB1 or indicated HA-OTUB1 mutants (C91S, ΔN, 

D88A/C91S/H265A (D/C/H) or HA-OTUB2), HA-ubiquitin and N-terminal FLAG-

tagged SMAD3. Prior to lysis (in the presence of iodoacetamide) cells were 

treated with or without 50 pM TGFβ and 10 µM Bortezomib for 3 hours. FLAG-

immunoprecipitates or extracts were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies. B) HEK293 cells were co-

transfected with vectors encoding N-terminal HA-tagged OTUB1 and N-terminal 

FLAG-tagged SMAD1 or SMAD3. Prior to lysis cells were treated for 1 hour with 

25 ng/ml BMP or 50 pM TGFβ respectively. Extracts were resolved by SDS-

PAGE and immunoblotted with the indicated antibodies. C) As in A, except that 

HA-OTUB1 C91S, H265A and K71R mutants but no HA-ubiquitin was 

transfected. D) As in A, except that HA-OTUB1 C91S, H265A and K71R 

mutants were transfected. 
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Figure 3-20 OTUB1 inhibits ubiquitylation in cells 

A) HEK293 Flp-In cells expressing GFP-OTUB1 under a tetracycline inducible 
promoter were treated with tetracycline for 6 or 24 hours in the presence or 
absence of Bortezomib (10 µM, 3 hours). Extracts were resolved by SDS-PAGE 
and immunoblotted with the indicated antibodies. B) HEK293 cells were co-
transfected with vectors encoding N-terminal HA-tagged OTUB1 or indicated 
HA-OTUB1 mutants (ΔN, K71R, C91S, and H265A) and N-terminal FLAG-
tagged SMAD3. Prior to lysis (in the presence of iodoacetamide) cells were 
treated with or without 50 pM TGFβ for 1 hour, 10 µM Bortezomib and 10 µM 
Lactacystin for 3 hours. FLAG-IPs or extracts were resolved by SDS-PAGE and 
immunoblotted with the indicated antibodies. 
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3.2.11 OTUB1 does not appear to deubiquitylate polyubiquitylated 

SMAD2/3 in vitro 

As OTUB1 overexpression in cells lead to a general loss of overall 

polyubiquitylation in whole cell extracts (Figure 3-20), an in vitro approach 

was chosen to test whether OTUB1 deubiquitylates polyubiquitylated 

SMAD2/3. FLAG-SMAD2/3 and 4 overexpressed in HEK293 cells together with 

HA-ubiquitin and HA-NEDD4L were immunoprecipitated and used as substrate 

for an OTUB1 in vitro deubiquitylation assay. Prior to lysis cells were treated 

with TGFβ and Bortezomib to induce SMAD2/3/4 complex formation and inhibit 

proteasomal degradation respectively (Figure 3-21A). Wild type OTUB1 and the 

ΔN mutant, both capable of cleaving K48-linked di- or polyubiquitin chains in 

vitro (Figure 3-16B,D), along with all the catalytically inactive mutants (D88A, 

C91S, H265A, D/H, D/C/H, K71R) were unable to deubiquitylate the 

polyubiquitylated FLAG-SMAD2/3/4 complex (Figure 3-21A). Identical results 

were obtained when in vitro polyubiquitylated recombinant SMAD3 was used as 

a substrate for OTUB1 (Figure 3-21B), indicating that OTUB1 does not 

deubiquitylate polyubiquitylated SMAD3. 
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Figure 3-21 OTUB1 does not deubiquitylate polyubiquitylated SMAD2/3 

A) For in-cell polyubiquitylation of FLAG-SMAD2/3/4, vectors encoding FLAG-
SMAD2/3/4 were co-transfected with HA-NEDD4L and HA-ubiquitin in HEK293 
cells and treated with 50 pM TGFβ and 10 µM Bortezomib for 3 hours prior to 
lysis and FLAG-SMAD2/3/4 were immunoprecipitated. An in vitro DUB assay of 
in-cell polyubiquitylated FLAG-SMAD2/3/4 was performed with GST-OTUB1 
and the indicated GST-OTUB1 mutants in DUB assay buffer for 1 hour at 30 °C. 
The assay mix was resolved by SDS-PAGE and immunoblotted with the 
indicated antibodies. B) SMAD3 was ubiquitylated in vitro in ubiquitylation assay 
buffer for 1 hour at 30 °C with His-UBE1 (E1), UBE2D1 (E2), His-NEDD4L (E3) 
and FLAG-ubiquitin. An in vitro DUB assay of polyubiquitylated SMAD3 was 
performed with GST-OTUB1 and the indicated GST-OTUB1 mutants in DUB 
assay buffer for 1 hour at 30 °C and proteins were resolved by SDS-PAGE and 
immunoblotted with indicated antibodies. 
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3.2.12 OTUB1 inhibits polyubiquitylation of SMAD2/3 

The decrease in SMAD2/3 polyubiquitylation in cells (Figure 3-19) but no 

deubiquitylation in vitro (Figure 3-21) suggested that OTUB1 possibly inhibits 

the ubiquitylation of SMAD2/3. Such mode of action had been reported for other 

substrates of OTUB1 (Nakada et al., 2010, Sun et al., 2011). Therefore, it was 

tested whether OTUB1 could inhibit the polyubiquitylation of SMAD2/3. 

Recombinant SMAD2 was polyubiquitylated in vitro using UBE1 (E1), UBE2D1 

(E2) and NEDD4L (E3) (Alarcón et al., 2009, Kuratomi et al., 2005) (Figure 

3-22A). OTUB1 or OTUB1 C91S were added at increasing concentrations at 

the start of the reaction. In the absence of SMAD2, no autoubiquitylation of E2 

or E3 was detected (Figure 3-22A, lane 1). In the presence of SMAD2, robust 

polyubiquitylation was observed (Figure 3-22A, lane 2). Adding increasing 

amounts of wild type OTUB1 or catalytically inactive OTUB1 C91S mutant at 

the start of the assay inhibited the polyubiquitylation of SMAD2 in a dose-

dependent manner (Figure 3-22A, lanes 3-10). Likewise, OTUB1 could inhibit 

the polyubiquitylation of FLAG-SMAD2/3/4 in vitro when added at the start of the 

reaction (Figure 3-22B). As seen with recombinant SMAD2, TGFβ-treated FLAG-

SMAD2/3/4 IPs were polyubiquitylated in the presence of E1, E2 & E3 (Figure 

3-22B, lane 3) and no autoubiquitylation occurred (Figure 3-22B, lane 2). 

Polyubiquitylation was significantly inhibited when OTUB1 and most of the 

OTUB1 mutants (D88A, C91S, H265A, D/H) were added at the start of the 

ubiquitylation assay (Figure 3-22B, lanes 4, 6-9). These results implied that 

OTUB1 inhibits the ubiquitylation of SMAD2/3 rather than directly 

deubiquitylating them. However, OTUB1 ΔN, D/C/H and K71R mutants were 

unable to inhibit polyubiquitylation (Figure 3-22B, lanes 5, 10, 11, discussed in 
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section 3.3.2). A summary of the ability of each OTUB1 mutant to bind SMAD3, 

deubiquitylate or inhibit ubiquitylation are outlined in Table 3-1. 

 

 

Figure 3-22 OTUB1 prevents SMAD2/3 ubiquitylation in vitro 

A) An in vitro ubiquitylation assay was performed with human recombinant 
SMAD2. SMAD2 was incubated with His-UBE1 (E1), UBE2D1 (E2), His-
NEDD4L (E3) and ubiquitin in ubiquitylation assay buffer for 1 hour at 30 °C. 
Increasing concentrations of GST-OTUB1 and GST-OTUB1 C91S (8-60 ng/µl) 
were added at the start of the ubiquitylation assay (time 0). Proteins were 
resolved by SDS-PAGE and immunoblotted with the indicated antibodies. B) 
FLAG-SMAD2/3/4 IPs (from HEK293 cells expressing FLAG-SMAD2/3/4 
treated with 50 pM TGFβ for 1 hour prior to lysis) were ubiquitylated in vitro in 
ubiquitylation assay buffer for 1 hour at 30 °C using His-UBE1 (E1), UBE2D1 
(E2), His-NEDD4L (E3) and ubiquitin. The indicated DUBs were added at the 
start of the ubiquitylation assay (time 0) and proteins were resolved by SDS-
PAGE and immunoblotted with the indicated antibodies.  
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Table 3-1 Assessment of OTUB1 mutants 

Outline of the ability of OTUB1 mutants to bind SMAD3, cleave K48-linked 
ubiquitin or inhibit ubiquitylation of SMAD3.  
 

mutant binds SMAD3 
cleaves K48-ub 
chains in vitro 

inhibits SMAD3 
ubiquitylation 

WT + + + 

ΔN + + - 

D88A - - + 

C91S - - + 

H265A + - + 

D/H - - + 

D/C/H - - - 

K71R + - - 

 

 
3.2.13 Effects of OTUB1 mutations on TGFβ-induced transcription 

The previous results suggested that OTUB1 inhibits ubiquitylation of 

SMAD2/3, possibly stabilising the complex. As SMADs are transcription factors, 

the impact of OTUB1 mutations on TGFβ-induced target gene transcription was 

investigated. The impact of OTUB1 catalytic activity, its ability to inhibit 

ubiquitylation of SMAD2/3 and its ability to interact with SMAD3 on TGFβ-

induced transcription were investigated. The loss in expression of the TGFβ-

target gene PAI-1 caused by siRNA-mediated depletion of OTUB1 was 

efficiently rescued by the re-introduction of siRNA-resistant OTUB1 (Figure 

3-23A). However, neither OTUB1 C91S (catalytically inactive, inhibits 

polyubiquitylation of SMAD3 in vitro but does not interact with SMAD3) nor 

OTUB1 ΔN (catalytically active and interacts with SMAD3 but does not inhibit 

polyubiquitylation of SMAD3 in vitro) were able to rescue PAI-1 expression 

(Figure 3-23A). These results suggested that the ability of OTUB1 to both 

interact with and prevent the ubiquitylation of SMAD3 independent of its 



- 133 - 

catalytic activity were essential for the regulation of TGFβ-induced transcription. 

The expression levels of OTUB1 mutant proteins were confirmed by 

immunoblotting (Figure 3-23).  

 

 

Figure 3-23 Only wild type OTUB1 rescues iOTUB1 phenotype 

A) HaCaT cells were stably transfected with vectors encoding siRNA-resistant 
silent mutations (rescue) of the indicated OTUB1 constructs. These cells were 
then transfected with control FoxO4 or OTUB1 siRNA for 48 hours and treated 
with or without TGFβ for 4 hours prior to RNA isolation. Relative expression 
levels of indicated mRNAs were analysed by qRT-PCR. Data are represented 
as mean and error bars indicate standard deviation (n=6). Differences with 
p<0.01 were annotated as ** and p<0.001 were annotated as ***. B) Extracts 
from A were resolved by SDS-PAGE and immunoblotted with the indicated 
antibodies. 
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3.2.14 OTUB1 binds E2 enzymes 

OTUB1 had previously been reported to inhibit ubiquitylation of target 

proteins by interacting with and inhibiting E2 ubiquitin conjugating enzymes 

(Nakada et al., 2010, Juang et al., 2012, Sato et al., 2012, Wiener et al., 2012). 

Consistent with the reported findings, several members of E2 ubiquitin 

conjugating enzymes, including UBE2N, all members of the UBE2D and UBE2E 

family of E2s and BIRC6, were identified as major interactors of GFP-OTUB1 by 

mass spectrometry (Table 3-2, Figure 3-24A,B). In OTUB1 IPs, endogenous 

UBE2D and UBE2N were identified as interactors independent of TGFβ 

signalling (Figure 3-24C). Additionally, the endogenous interaction between 

OTUB1 with BIRC6 was verified (Figure 3-24D). 
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Figure 3-24 OTUB1 binds E2 enzymes 

A) GFP and GFP-OTUB1 immunoprecipitates from HEK293 cells stably 
expressing these proteins were lysed in the presence of DSP and GFP-IPs 
were separated by SDS-PAGE and interacting proteins identified by mass 
spectrometry (cf. Table 3-2). B) Same as in A, but samples were immunoblotted 
with the indicated antibodies. C) An endogenous IP with OTUB1 antibody or 
pre-immune sheep IgG was performed in HaCaT cell extracts stimulated with or 
without 50 pM TGFβ for 1 hour prior to lysis in the presence of DSP. Cell 
extracts, endogenous IgG or anti-OTUB1 IPs and the corresponding immune-
depleted flow-through extracts were resolved by SDS-PAGE and 
immunoblotted with the indicated antibodies. D) An endogenous IP with OTUB1 
antibody or pre-immune sheep IgG was performed in HEK293 cell extracts 
stimulated with or without 50 pM TGFβ and 25 ng/ml BMP for 1 hour prior to 
lysis in the presence of DSP. Cell extracts, endogenous IgG or anti-OTUB1 IPs 
and immune-depleted flow-through extracts were resolved by SDS-PAGE and 
immunoblotted with the indicated antibodies. 
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Table 3-2 OTUB1 binds E2 enzymes 

List of E2 enzymes that were identified as interactors of GFP-OTUB1 but not 
GFP. UBE2D1 was used for the ubiquitylation assays. 

 

Gene   Protein Name MW (Da) score peptide coverage 

UBE2N Ubiquitin-conjugating enzyme E2 N 17184 1171 50 79% 

UBE2E1 Ubiquitin-conjugating enzyme E2 E1 21676 872 37 65% 

UBE2E2 Ubiquitin-conjugating enzyme E2 E2 22526 756 34 59% 

UBE2E3 Ubiquitin-conjugating enzyme E2 E3 23184 685 24 58% 

UBE2D2 Ubiquitin-conjugating enzyme E2 D2 16953 582 34 87% 

UBE2D3 Ubiquitin-conjugating enzyme E2 D3 16904 577 34 91% 

UBE2V2 Ubiquitin-conjugating enzyme E2 variant 2 16409 390 17 55% 

UBE2V1 Ubiquitin-conjugating enzyme E2 variant 1 16598 348 15 59% 

UBE2NL Putative ubiquitin-conjugating enzyme E2 N-like 17366 296 21 35% 

UBE2D1 Ubiquitin-conjugating enzyme E2 D1 16819 272 19 46% 

UBE2D4 Ubiquitin-conjugating enzyme E2 D4 16866 219 19 25% 

UBE2L3 Ubiquitin-conjugating enzyme E2 L3 18021 105 3 24% 

BIRC6 Baculoviral IAP repeat-containing protein 6 536192 9560 454 55% 

 

 
3.2.15 OTUB1 inhibits the transfer of ubiquitin from E2~ub to the E3 ligase 

To investigate if OTUB1 inhibits SMAD3 polyubiquitylation by binding to 

and thereby inhibiting E2 enzymes and whether this step is the rate-limiting 

step, an in vitro ubiquitylation assay with ubiquitin, UBE1 (E1), varying 

concentrations of UBE2D1 (E2), NEDD4L (E3) and recombinant human SMAD3 

in the presence or absence of 0.5 µM GST-OTUB1 was set up (Figure 3-25A). 

In the absence of OTUB1, increasing concentrations of UBE2D1 resulted in 

enhanced polyubiquitylation of SMAD3 in a dose dependent manner (Figure 

3-25A). As observed previously (Figure 3-22), the presence of OTUB1 in the 

reaction resulted in a significant inhibition of polyubiquitylation, especially at 

lower concentrations of UBE2D1 (Figure 3-25A). Higher concentrations of 

UBE2D1 substantially rescued this inhibition, suggesting that binding of OTUB1 

to UBE2D1 is likely to be the rate-limiting step in the inhibition of 
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polyubiquitylation of SMAD3 (Figure 3-25A). Next, it was investigated whether 

OTUB1 inhibits UBE2D1 by preventing the conjugation of ubiquitin or the 

transfer of ubiquitin from UBE2D1 to NEDD4L. In the presence of ubiquitin, ATP 

and UBE1, almost every molecule of UBE2D1 was loaded with ubiquitin 

(UBE2D1~ub) (Figure 3-25B; compare lane 1 vs. 2). This ubiquitin-loading of 

UBE2D1 was not inhibited when wild type OTUB1, OTUB1 C91S or OTUB1 

K71R mutants were present. When E3 ubiquitin ligase NEDD4L and its 

substrate SMAD3 were added to the reaction, in the absence of OTUB1 most of 

the ubiquitin at the predicted molecular weight disappeared (Figure 3-25B; 

compare lane 2 vs. 7). Under these conditions, consistent with an efficient 

transfer of ubiquitin from UBE2D1~ub to NEDD4L and substrate, UBE2D1 was 

mostly observed in a non-ubiquitin loaded native molecular weight state (Figure 

3-25B). However, when wild type OTUB1 was added to the reaction at the start, 

some ubiquitin was observed at its native molecular weight while a significant 

amount of ubiquitin-loaded UBE2D1 was also observed, suggesting that 

OTUB1 inhibited the transfer of ubiquitin from UBE2D1~ub complex to NEDD4L 

(Figure 3-25B). OTUB1 C91S, a catalytically inactive mutant that did not interact 

with SMAD3 but prevented its ubiquitylation, mimicked wild type OTUB1. 

However, OTUB1 K71R, a catalytically inactive mutant, did not appear to inhibit 

the transfer of ubiquitin from UBE2D1-ub complex to NEDD4L (Figure 3-25B, cf. 

bottom line monoubiquitin). This was consistent with the inability of OTUB1 

K71R mutant to inhibit the ubiquitylation of SMAD3 (Figure 3-22B). These 

results suggested that by binding to E2 ubiquitin conjugating enzymes, OTUB1 

inhibited the transfer of ubiquitin from the E2-ub complex onto E3 ubiquitin 

ligases.  
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Figure 3-25 OTUB1 inhibits ubiquitin transfer from E2~ub to E3 

A) An in vitro ubiquitylation assay was performed with human recombinant 
SMAD3, His-UBE1 (0.1 µM), ubiquitin, His-NEDD4L (1 µM) and increasing 
concentrations of GST-UBE2D1 (0.1-5 µM) in ubiquitylation assay buffer for 1 
hour at 30 °C. GST-OTUB1 was added at the start of the ubiquitylation assay 
(time 0). Proteins were resolved by SDS-PAGE and immunoblotted with the 
indicated antibodies. B) His-UBE1, UBE2D1, FLAG-ubiquitin, GST-OTUB1 and 
mutants were mixed with or without His-NEDD4L and SMAD3 prior to the 
addition of ATP. After 10 min at 30 °C, proteins were separated by SDS-PAGE 
and visualised with Coomassie staining (performed by M. Al-Salihi). 
Abbreviations used: WT= wild type, K=K71R, C=C91S.  
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3.2.16 OTUB1 rescues phospho-SMAD2/3 from proteasomal degradation 

OTUB1 bound to phospho-SMAD2/3 (Figure 3-5) and E2 ubiquitin 

conjugating enzymes (Figure 3-24), thereby inhibiting the polyubiquitylation of 

SMAD2/3 in vitro (Figure 3-22). Therefore, OTUB1 potentially enhanced the 

TGFβ-induced transcriptional responses (Figure 3-14) via the stabilisation of 

the active phospho-SMAD2/3 pool in cells by protecting it from polyubiquitin-

mediated proteasomal degradation. To demonstrate that the turnover of active 

phospho-SMAD2/3 was mediated in part by proteasomal degradation, HaCaT 

cells were treated with 26S proteasome inhibitors (Bortezomib or MG132) and 

TGFβ for 3 hours. Bortezomib, and to a lesser extent MG132, treatment 

resulted in enhanced levels of TGFβ-induced phospho-SMAD2/3 as well as 

polyubiquitylated proteins (Figure 3-26A). Bortezomib stabilised phospho-

SMAD2/3 levels for up to 16 hours following ligand removal (Figure 3-26B). 

When TGFβ and Bortezomib were added to the cells for 1 hour, the increase in 

the levels of TGFβ-induced phospho-SMAD2/3 caused by Bortezomib were 

only slight. Additionally, early induction of phospho-SMAD2/3 by TGFβ were 

unaffected by siRNA-mediated depletion of OTUB1 (Figure 3-26C).  

As polyubiquitylation and degradation of phospho-SMAD2/3 occur 

subsequent to the assembly of the active SMAD2/3/4 complex at the 

transcription sites (Alarcón et al., 2009), a pulse-chase experiment was 

performed (Figure 3-27). Control or OTUB1-depleted HaCaT cells were 

stimulated with TGFβ for 1 hour to induce maximal phosphorylation of 

SMAD2/3, after which the TGFβ ligand was removed. In addition to ligand 

removal, SB505124 (1 μM) was added to the samples in order to block any 

further TGFβ receptor activity, with or without Bortezomib (10 μM). The levels 

of phospho-SMAD2/3 were tracked at fixed time points thereafter in the 
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presence or absence of Bortezomib. The cells depleted of OTUB1 expression 

exhibited lower levels of phospho-SMAD2/3 after ½ and 1 hour of TGFβ 

removal compared to control cells (Figure 3-27A, lanes 2 and 6). This effect 

appeared to be a result of rapid proteasomal degradation, as the levels of 

phospho-SMAD2/3 were stabilised in the presence of Bortezomib (Figure 

3-27A, lanes 4, 8). The levels of total SMAD2/3 or SMAD4 did not change 

significantly (Figure 3-27A). The reduction in the levels of phospho-SMAD2 

caused by depletion of OTUB1 was rescued by a siRNA-resistant wild type 

FLAG-OTUB1 construct, suggesting that the results obtained were unlikely to be 

due to off-target effects (Figure 3-27B).  
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Figure 3-26 OTUB1 does not affect tail-phosphorylated SMAD2/3 stability 
during early pathway activation 

A) HaCaT cells were treated with TGFβ (50 pM) and Bortezomib or MG132 (10 
µM) for 3 hours. Extracts were resolved by SDS-PAGE and immunoblotted with 
the indicated antibodies. B) HaCaT cells were treated with TGFβ (50 pM) for 1 
hour and the media was replaced with serum free media, supplemented with 
SB505124 (1 µM) in the presence or absence of Bortezomib (10 µM). Cells 
were lysed at the indicated times after removal of TGFβ, extracts resolved with 
SDS-PAGE and immunoblotted with the indicated antibodies. C) HaCaT cells 
transfected with FoxO4 (-) or OTUB1 siRNAs were treated with TGFβ (50 pM) 
and Bortezomib (10 µM) for 1 hour. Extracts were resolved by SDS-PAGE and 
immunoblotted with the indicated antibodies.   
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Figure 3-27 OTUB1 protects TGFβ-activated SMAD2/3 from proteasomal 
degradation  

A) HaCaT cells, expressing control shRNA (-) or OTUB1 shRNA were 

transfected with FoxO4 (-) or OTUB1 siRNAs respectively, 48 hours prior to cell 

lysis. Cells were serum starved for 16 hours and stimulated with TGFβ (50 pM) 

and Bortezomib (10 µM) for 1 hour. The cells were then washed in PBS and 

media was replaced with starvation media supplemented with SB505124 (1 µM) 

(to block any further TGFβ receptor activity), with or without Bortezomib (10 

µM). The cells were lysed at ½ or 1 hour time points and cell extracts resolved 

by SDS-PAGE and immunoblotted with the indicated antibodies. B) As in A, 

except cells were transfected with vector encoding FLAG-tagged full length 

OTUB1 resistant to OTUB1 shRNA and siRNA (rescue). 

  

B

A

IB: SMAD4

IB: SMAD2-TP (high)

IB: SMAD3-TP

IB: GAPDH

IB: OTUB1

IB: SMAD2/3

IB: SMAD2-TP (low)

HaCaT

iOTUB1

Bortezomib

time (h) after TGFβ removal

-

-

½

+

-

½

-

+

½

+

+

½

-

-

1

+

-

1

-

+

1

+

+

1

IB: OTUB1

IB: SMAD2-TP

IB: GAPDH

iOTUB1

Rescue

time (min) after TGFβ removal

-

-

45

+

-

45

+

+

45

HaCaT



- 143 - 

3.2.17 OTUB1 does not have an effect on TGFβ-induced apoptosis 

TGFβ cytokines can act as tumour suppressors by inducing apoptosis 

which is critical during tissue formation and remodelling (Schuster and 

Krieglstein, 2002). In order to investigate whether OTUB1 had an effect on 

TGFβ-induced apoptosis, several cell lines were tested for their susceptibility to 

apoptosis by a 24-hour treatment with 50 pM of TGFβ (Figure 3-28A). Induction 

of apoptosis can be monitored by the cleavage of Caspase3 or PARP via 

immunoblotting (Fernandes-Alnemri et al., 1994, Nicholson et al., 1995). 

NMuMG and RAMOS cells underwent apoptosis upon prolonged TGFβ 

treatment (Figure 3-28A). As RAMOS cells were inefficient at RNAi or cDNA 

transfections (data not shown), NMuMG cells were employed to investigate 

whether OTUB1 perturbations influence TGFβ-mediated apoptosis (Figure 

3-28B). Neither overexpression of HA-OTUB1 nor siRNA mediated depletion of 

OTUB1 changed the levels of cleaved Caspase3 upon TGFβ stimulation, 

indicating that OTUB1 does not influence TGFβ-dependent apoptosis (Figure 

3-28B).  
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Figure 3-28 OTUB1 does not influence TGFβ-induced apoptosis 

A) Different cell lines were treated with 50 pM TGFβ for 24 hours. Extracts were 
resolved by SDS-PAGE and immunoblotted with the indicated antibodies. B) 
NMuMG cells transfected with HA-OTUB1 or OTUB1 siRNAs were treated with 
50 pM TGFβ for 24 hours. Extracts were resolved by SDS-PAGE and 
immunoblotted with the indicated antibodies. 
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3.2.18 OTUB1 does not have an effect on TGFβ-regulated cell proliferation 

Another tumour suppressor function of TGFβ cytokines relies on the 

inhibition of cell proliferation (Siegel and Massague, 2003). To test whether the 

absence of OTUB1 from cells influences TGFβ-mediated growth inhibition, a 

proliferation assay was performed using HaCaT cells transfected with OTUB1 

or control siRNAs. The XTT assay, which is a colorimetric assay that makes use 

of the ability of live cells to metabolically reduce tetrazolium salt into coloured 

formazans, was employed to assess proliferation (Scudiero et al., 1988). As 

expected, the addition of TGFβ in HaCaT cells decreased their proliferation 

(Huang and Huang, 2005) (Figure 3-29, Table 3-3). The depletion of OTUB1 

also resulted in a slight, but not significant, reduction of cell growth. Importantly, 

the difference in proliferation between control cells and OTUB1-depleted cells 

both treated with TGFβ was not significant (Table 3-3, Figure 3-29). Hence, 

OTUB1 does not appear to influence TGFβ-mediated inhibition of HaCaT cell 

proliferation.  
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Figure 3-29 OTUB1 does not affect TGFβ-regulated cell proliferation 

Control HaCaT cells or OTUB1 depleted HaCaT cells were seeded into 96-well 
plates. Every 24 hours a pool of cells was incubated for 4 hours with XTT dye to 
detect differences in cellular metabolic activities and the absorbance measured 
at 480 nm. Cell proliferation was monitored for 8 days. Data are represented as 
mean and error bars indicate standard deviation (n=3).  

 
 
Table 3-3 Statistical analysis of the proliferation assay 

The statistical significance of the data obtained in Figure 3-29 was calculated 
using ANOVA with Bonferroni Correction. Differences with p>0.05 were 
annotated as ns (not significant), p<0.05 were annotated as *, p<0.01 were 
annotated as ** and p<0.001 were annotated as ***. vs= versus 
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3.2.19 OTUB1 does not impact TGFβ-induced EMT 

EMT is characterised by the loss of cell adhesion, apical-basal polarity 

and the acquisition of fibroblastic characteristics as well as increased cell 

migration. These morphological changes are regulated by actin cytoskeleton 

rearrangements and differential protein expressions of E-cadherin, which is 

highly expressed in epithelial cells, whereas mesenchymal cells express N-

cadherin, fibronectin and vimentin. TGFβ is a potent inducer of EMT during 

development, would healing and potentially metastasis (Moreno-Bueno et al., 

2009, Heldin et al., 2012). To test whether the absence or presence of OTUB1 

influences TGFβ-induced EMT, NMuMG cells were transfected with control or 

OTUB1 siRNA and EMT induced with 75 pM TGFβ for 24 or 48 hours (Figure 

3-30). In the absence of TGFβ, cells display epithelial morphology, 

characterised by the low expression of fibronectin (Figure 3-30A,B), robust E-

cadherin staining at cell-cell junctions (Figure 3-30A,B) and a cuboidal shape 

visualised by actin staining and phase contrast microscopy (Figure 3-30A). The 

addition of TGFβ resulted in an EMT response, as demonstrated by elongated 

cell shape and increased expression of fibronectin by immunofluorescence 

(Figure 3-30A) and immunoblotting (Figure 3-30B) in control (iFoxO4) and 

iOTUB1 cells to similar extent but not in cells treated with the TGFβ inhibitor 

SB505124 (Figure 3-30A,B). Therefore, OTUB1 does not influence TGFβ-

induced EMT. 
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Figure 3-30 OTUB1 depletion does not influence TGFβ-mediated epithelial 
to mesenchymal transition (EMT) 
(Figure legend on next page) 
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Figure 3-30 OTUB1 depletion does not influence TGFβ-mediated epithelial 
to mesenchymal transition (EMT)  
 
A) NMuMG cells, transfected with FoxO4 (control) or OTUB1 siRNAs, were 
treated with 75 pM TGFβ for 24 hours in the presence or absence of 1 μM 
SB505124. Light microscopy or immunofluorescence microscopy (with the 
indicated antibodies) were performed to analyse EMT. White scale bar = 30 μm, 
black scale bar = 100 μm. B) Same as in A, except that cells were lysed for 
Western Blot analysis after 24 and 48 hours. Extracts were resolved by SDS-
PAGE and immunoblotted with the indicated antibodies. 
 

3.2.20 OTUB1 influences TGFβ-induced cellular migration  

TGFβ signalling also regulates wound healing and migration (Heldin et 

al., 2009, Medici et al., 2011, Akhurst and Derynck, 2001). The induction of 

cellular migration by TGFβ is in part implicated in cancer progression and 

metastasis (Akhurst and Derynck, 2001, Massagué 2008). In order to assess 

the impact of OTUB1 on TGFβ-induced cellular migration, a wound healing 

“scratch assay” was employed. Control or OTUB1-depleted HaCaT cells were 

cultured to confluency in adjacent chambers of an insert separated by a small 

fixed-size spacer. Upon the removal of the insert, a  uniform gap was formed. 

Cellular migration onto the gap was monitored for up to 48 hours (Figure 

3-31A). In control cells, TGFβ treatment induced migration of cells within 24 

hours and by 48 hours the gap was completely covered with cells. Depletion of 

OTUB1 substantially inhibited the migration of HaCaT cells onto the gap after 

TGFβ treatment (Figure 3-31A). Efficient knockdown of OTUB1 was confirmed 

by immunoblotting (Figure 3-31B).  
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Figure 3-31 OTUB1 depletion reduces TGFβ-induced cellular migration 

A) HaCaT cells stably expressing control shRNA and FoxO4 siRNA or OTUB1 
shRNA and OTUB1 siRNA were seeded onto migration inserts (Ibidi). After 24 
hours the inserts were removed and cells were serum starved for 4 hours and 
stimulated without or with TGFβ (50 pM). Cell migration was tracked by taking 
images of the gaps every 24 hours. Scale bars = 100 μm. B) HaCaT cells used 
in A were lysed after 48 hours and extracts were resolved by SDS-PAGE and 
immunoblotted with the indicated antibodies, confirming a knockdown of 
OTUB1. 
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3.3 Discussion 

This thesis describes a new regulatory role for OTUB1 in recognising 

phospho-SMAD2/3 upon TGFβ induction, controlling their turnover and 

consequently influencing downstream signalling (Figure 3-32). The results 

reveal a novel interplay between phosphorylation and the recruitment of OTUB1 

to its target in the TGFβ pathway.  

 

 

Figure 3-32 Summary of OTUB1 function within the TGFβ signalling 
pathway 

TGFβ induces SMAD2/3 tail-phosphorylation, association with SMAD4 and 
entry into the nucleus, where SMADs act as transcription factors. Following 
linker phosphorylation, the E3 ubiquitin ligase NEDD4L recognises the 
SMAD2/3/4 complex and polyubiquitylates SMAD2/3, leading to proteasomal 
degradation. OTUB1 interacts with and thereby chaperones the active 
SMAD2/3 complex by inhibiting its ubiquitylation, through its interactions with 
and inhibition of the cognate E2. Proteasomal degradation of active SMAD2/3 is 
thus prevented and the complex can recycle, which leads to sustained TGFβ 
signalling.  
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complex, their translocation to the nucleus and transcriptional control of target 

genes (Shi and Massague, 2003). OTUB1 was isolated from a proteomic 

screen as an interactor of SMAD3 upon stimulation of cells with TGFβ. 

Importantly, endogenous OTUB1 interacts with SMAD2/3 only in TGFβ treated 

cells and the levels of phospho-SMAD2/3 upon TGFβ stimulation directly 

correlate with the ability of OTUB1 to pull down endogenous SMAD2/3. 

Additionally, OTUB1 co-elutes with tail-phosphorylated SMAD2/3 and SMAD4 in 

a molecular weight fraction, indicating possible complex formation. 

Although SMAD4 was detected in OTUB1 immunoprecipitates upon 

TGFβ stimulation, it is not an essential component for the recruitment of 

OTUB1 to TGFβ-induced phospho-SMAD2/3. Consistent with the concept that 

OTUB1 interaction could be phospho-SMAD2/3-dependent, dephosphorylation 

of OTUB1 IPs by lambda phosphatase (to dephosphorylate phospho-

SMAD2/3) partially abolished OTUB1-SMAD2/3 interaction. Furthermore, 

recombinant OTUB1 was able to interact with a SMAD2 tail-phospho-peptide, 

indicating that tail-phosphorylation of SMAD2 is sufficient for its interaction 

with OTUB1. 

Despite the phospho-dependent nature of OTUB1 interaction with 

SMAD2/3, no phospho-interaction motifs within OTUB1 have been reported. 

Moreover, whether OTUB1 is recruited to other targets in a phosphorylation 

dependent manner is not known or reported. Although the published crystal 

structures of OTUB1 exhibit a few positively charged pockets, none are 

predicted to be phospho-binding pockets. A phospho-SMAD2-OTUB1 

structural analysis might shed new light into the molecular basis of their 

interaction. In order to achieve the phospho-SMAD2-OTUB1 structure, 

crystallisation screens with the phospho-SMAD2 peptide and OTUB1 can be 
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set up. The N-terminus of OTUB1 (at least aa 1-24) is disordered and has 

been omitted for previous crystal structure analysis (Edelmann et al., 2009, 

Sato et al., 2012, Juang et al., 2012, Wiener et al., 2012). Because the N-

terminal domain of OTUB1 is not critical for the interaction with SMAD3, 

OTUB1 ΔN can be employed for crystallisation trials. The solved crystal 

structure might give molecular insights into how OTUB1 recognises only 

phosphorylated-SMAD2/3. By mutating key residues in OTUB1 that mediate 

the binding to phospho-SMAD2/3, it will be possible to investigate the overall 

contribution of OTUB1 in the regulation of the TGFβ pathway. 

The identification of a phospho-binding pocket within OTUB1 has the 

potential to unravel a unique mode of action by which OTUB1 recognises its 

targets in response to different environmental cues. With the limited number of 

DUBs and multiple substrates they are expected to target, the substrate 

specificity of DUBs probably relies on signal-induced target modifications. The 

fact that OTUB1 interacts with tail-phosphorylated SMAD2/3 upon TGFβ 

stimulation signifies a unique interplay between phosphorylation and the 

recruitment of a DUB to its target in the TGFβ pathway. 

 

3.3.2 A non-canonical mode of OTUB1 action in the TGFβ pathway 

The TGFβ-dependent recruitment of the deubiquitylating enzyme 

OTUB1 to active phospho-SMAD2/3 complex combined with its impact on 

TGFβ-induced transcription, suggested that OTUB1 might impact TGFβ 

signalling by deubiquitylating and stabilising phospho-SMAD2/3 in cells. In 

vitro OTUB1 cleaves K48-linked polyubiquitin chains, which in cells direct 

target proteins for proteasomal degradation (Thrower et al., 2000). NEDD4L 

catalyses the attachment of K48-linked polyubiquitin chains on SMAD3. 



- 154 - 

However, OTUB1 was unable to deubiquitylate polyubiquitylated SMAD2/3 in 

vitro. Furthermore, in-cell SMAD3 deubiquitylation assays demonstrated that 

some of the catalytically inactive mutants of OTUB1 were still able to reduce 

polyubiquitylation on SMAD3. Further investigations revealed that the action of 

OTUB1 predominantly relies on its ability to inhibit the ubiquitylation of 

SMAD2/3 independently of its catalytic activity. 

Recent reports demonstrate that the catalytic activity of a DUB is not 

always essential in order to regulate the function of its substrate (Sarkari et al., 

2010, Hanna et al., 2006). The ability of OTUB1 to inhibit the polyubiquitylation 

of chromatin upon DNA-damage independent of its catalytic activity has been 

reported previously (Nakada et al., 2010). This and other studies have reported 

that OTUB1 inhibits ubiquitylation by binding to and inhibiting E2 enzymes 

(Juang et al., 2012, Nakada et al., 2010, Sato et al., 2012, Sun et al., 2011, 

Wiener et al., 2012). In agreement with these reports, several E2 enzymes, 

including UBE2D1 and UBE2N, bound to OTUB1 at the endogenous level. By 

binding to UBE2D1, OTUB1 inhibits the transfer of ubiquitin from the 

UBE2D1~ub conjugate to the E3 ubiquitin ligase NEDD4L and subsequently to 

SMAD3. 

OTUB1 is likely to undergo conformational changes upon substrate 

binding (Edelmann et al., 2009, Messick et al., 2008). The addition of SMAD3 

peptides to OTUB1 did not alter its catalytic activity. Nevertheless, it is possible 

that SMAD3 binding to OTUB1 could induce conformational changes that may 

influence its ability to inhibit ubiquitylation or the recruitment of other co-factors. 

Mutations in the catalytic centre of OTUB1 could also result in conformational 

changes (Edelmann et al., 2009, Stanisic et al., 2009). These changes might 

account for the inability of OTUB1 C91S to interact with SMAD3. In the pursuit 
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of mutations in OTUB1 that are catalytically inactive but still interact with 

SMAD3, K71R, a previously uncharacterised mutant, was identified. Although 

K71 lies upstream of the OTU domain, the K71R mutation renders the DUB 

catalytically inactive, possibly through conformational changes within the 

catalytic domain. OTUB1 K71R cannot inhibit SMAD2/3 ubiquitylation in vitro, 

possibly because OTUB1 K71R is unable to inhibit the ubiquitin transfer from 

the E2~ub to the E3. 

The ability of OTUB1 to inhibit E2 enzymes, thereby leading to the 

prevention of SMAD ubiquitylation, is in accordance with recent reports on 

OTUB1 function in cells (Nakada et al., 2010, Sun et al., 2011). Furthermore, 

overexpression of OTUB1 in cells can inhibit global polyubiquitylation, which 

cannot be completely rescued by Bortezomib and Lactacystin, suggesting that 

OTUB1 can inhibit the formation of various polyubiquitin chains. Nevertheless, 

due to the regulation of OTUB1 activity through the balance of ubiquitin-charged 

E2s, uncharged E2s and K48-linked ubiquitin (Wiener et al., 2013), OTUB1 can 

still act as a classic deubiquitylating enzyme for some targets, such as c-IAP 

and active RhoA (Goncharov et al., 2013, Edelmann et al., 2010).  

 

3.3.3 OTUB1 could target phosphorylated SMAD2/3 in the cytosol 

OTUB1 was mostly found in the cytosol, partly at the membrane and not 

in the nucleus, as assessed by immunofluorescence microscopy and cellular 

fractionation. Still, it is possible that small amounts of OTUB1 reside in the 

nucleus, which could not be detected by the employed methods. Furthermore, 

the OTUB1 antibody did not prove suitable for high-resolution microscopy; 

hence, no definitive co-localisation studies of OTUB1 and phospho-SMAD2/3 

could be performed.  
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OTUB1 could be protecting phospho-SMAD2/3 from ubiquitylation either 

by binding phospho-SMAD2/3 in the cytosol or through a sustained (and hardly 

detectable) interaction in both cytosolic and nuclear compartments. At 1 hour 

post TGFβ stimulation, some linker phosphorylated SMAD3 is also present in 

OTUB1 IPs. It has been reported that tail-phosphorylated SMAD2/3 are 

targeted for polyubiquitylation by NEDD4L upon further phosphorylation at the 

linker region by CDK8/9 and nuclear export, which then leads to their 

proteasomal degradation in the cytosol (Gao et al., 2009). Although, tail-

phosphorylation of SMAD2/3 is sufficient for their interaction with OTUB1, 

SMAD2/3 linker phosphorylation could play a regulatory role of SMAD 

recognition by E3s and DUBs. Linker phosphorylation-mediated recruitment of 

E3 ligases to SMADs in the cytosol is consistent with accelerated proteasomal 

degradation of phospho-SMAD2/3 in the absence of OTUB1. Hence, it is 

possible that OTUB1 protects SMAD2/3 in the cytosol. 

 

3.3.4 The ability of OTUB1 to bind to SMAD2/3 and inhibit ubiquitylation 

is necessary to impact TGFβ signalling 

The activation of TGFβ signalling results in the transcription of target 

genes, which ultimately determines the nature of cellular responses. The 

results obtained indicate that OTUB1 modulates TGFβ-induced transcription 

of some target genes. The inhibition of TGFβ-induced transcription of PAI-1 

upon OTUB1 depletion can be rescued by siRNA-resistant wild type OTUB1. 

However, neither siRNA-resistant OTUB1 C91S mutant (catalytically inactive, 

SMAD3-interaction deficient but able to inhibit SMAD3 ubiquitylation) nor 

OTUB1 ΔN mutant (catalytically active, interacts with SMAD3 but unable to 
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inhibit SMAD3 ubiquitylation) was able to rescue the TGFβ-induced 

transcription caused by OTUB1 depletion. 

Together these results imply that binding to SMAD2/3 as well as the 

ability to inhibit SMAD2/3 ubiquitylation are essential for OTUB1 to impact the 

TGFβ pathway. Therefore, the association of OTUB1 with phospho-SMAD2/3 

would be predicted to prevent SMAD2/3 from being polyubiquitylated and 

degraded, thereby enhancing TGFβ signalling. Consistent with this notion, the 

depletion of OTUB1 from cells leads to a rapid loss in levels of tail-

phosphorylated SMAD2/3 but this reduction can be rescued upon treatment of 

cells with proteasomal inhibitor Bortezomib or the expression of siRNA-resistant 

OTUB1. 

 

3.3.5 OTUB1 influences TGFβ-mediated cellular migration 

The TGFβ pathway controls multiple cellular processes and is implicated 

in carcinogenesis, in part through the induction of cellular migration (Akhurst 

and Derynck, 2001, Massagué, 2008). OTUB1 has been shown to inhibit 

cellular growth and induce cell death (Goncharov et al., 2013, Sun et al., 2011). 

However, in the cell types tested in this thesis, the perturbation of OTUB1 

expression does not influence apoptosis or proliferation in the presence or 

absence of TGFβ stimulation. Similarly, OTUB1 depletion does not impact 

TGFβ-induced EMT. However, the depletion of OTUB1 from HaCaT cells 

significantly inhibits lateral migration induced by TGFβ. TGFβ-mediated cellular 

migration is in part controlled through RhoA (section 1.2.5), which is also a 

reported target of OTUB1 (Edelmann et al., 2010). The disparity in TGFβ-

dependent cellular effects of OTUB1 depletion above could be because OTUB1 

only influences a small pool of phosphorylated-SMAD2/3 and thus controls a 
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subset of TGFβ-mediated genes. Consistent with this possibility, only a small 

portion of OTUB1 co-elutes with phospho-SMAD2/3 in size exclusion 

chromatography, whereas most of the activated SMAD2/3 is still observed in 

high molecular weight fractions that exclude OTUB1. Furthermore, it could be 

that the siRNA-mediated depletion of OTUB1 is below the threshold needed to 

observe OTUB1 depletion phenotypes. In order to test these possibilities and 

study the effect of complete OTUB1 depletion on cellular responses of TGFβ 

signalling, it would be beneficial to obtain OTUB1 knockout cells. Attempts to 

generate OTUB1 knockout cells via homologous recombination in KBM7 cells 

and CRISP/CAS9 in U2OS cells did not lead to OTUB1 knockout clones, while 

the integration of the targeting vectors was verified and positive controls of other 

targeted genes resulted in their knockout. This indicates that the OTUB1 gene 

could be essential for cellular survival.  

 

3.3.6 Possible other targets of OTUB1 in the TGFβ signalling pathway 

The specific binding of OTUB1 to phosphorylated SMADs2/3, does not 

exclude the possibility that OTUB1 could also act on other proteins that signal in 

the TGFβ pathway. The membrane localisation of OTUB1 and its ability to 

interact with overexpressed ALK5 indicate that OTUB1 could potentially also 

target the receptors for deubiquitylation and thereby enhance TGFβ mediated 

responses. This possibility should be further investigated. It could be tested 

whether OTUB1 co-localises with ALK5 upon TGFβ treatment by employing 

Fluorescence Resonance Energy Transfer (FRET) or Proximity Ligation Assay 

(PLA). Additionally it could be tested whether OTUB1 deubiquitylates ALK5 in 

cells or in vitro, or if OTUB1 possibly inhibits the polyubiquitylation of ALK5 and 

stabilises receptor levels. By binding phosphorylated-SMADs2/3, OTUB1 could 
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also be present in complexes that include other transcription factors or SMAD-

binding proteins. In close proximity OTUB1 could possibly also deubiquitylate or 

inhibit the ubiquitylation of other SMAD-binding proteins. The physiological 

effects of OTUB1 perturbation were limited to a few TGFβ target genes and 

cellular migration. This indicates that OTUB1 only targets a small pool of 

phosphorylated-SMAD2/3 and that there have to be additional mechanisms in 

place to regulate the specific effects of OTUB1 on TGFβ signalling. This could 

possibly be regulated by specific complex formations that include OTUB1, 

activated SMAD2/3 and additional regulatory proteins. These other regulatory 

proteins could then specifically induce the transcription of a small set of TGFβ 

target genes or assist in TGFβ-mediated cellular migration. Moreover, OTUB1 

could enhance the presence of these other regulatory proteins by rescuing them 

from proteasomal degradation.  

 

3.3.7 OTUB1 as a potential drug target 

Various diseases have been linked to the TGFβ pathway malfunction 

(section 1.4) (Akhurst and Hata, 2012). Hence, the development of new small 

molecule inhibitors that fine tune TGFβ signalling is desirable. The discussed 

properties, modes of action and cellular functions of OTUB1, make it a 

promising target for the development of small molecule inhibitors to specifically 

target the OTUB1-SMAD2/3 interaction. This could result in the inhibition of 

TGFβ signalling and consequently be useful against diseases, such as cancer 

and fibrosis, where TGFβ signalling is abnormal. 

In order to avoid the targeting of multiple signalling pathways that OTUB1 

impacts (Edelmann et al, 2009; Li et al, 2012; Soares et al, 2004; Stanisic et al, 

2009; Sun et al, 2011; Zhang et al, 2012), inhibitors that specifically target the 
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OTUB1-SMAD2/3 interaction are desirable. The generation of an OTUB1-

phospho-SMAD2 crystal structure might reveal novel opportunities to develop 

small molecule inhibitors that disrupt their interaction by targeting the binding 

interface (although other substrates could potentially interact with OTUB1 

through the same binding pocket). These molecules could dampen context-

dependent TGFβ-signalling in specific pathological disorders. In order to test 

these molecules and study the effect of OTUB1-interaction deficient mutations 

on TGFβ signalling, it would be beneficial to obtain OTUB1 knockout mice. No 

OTUB1 knockout mice have been generated yet. Conditional OTUB1 knockout 

mice or conditional OTUB1-SMAD2/3 interaction-deficient knockin mice would 

be useful to study the effects of OTUB1 in TGFβ-induced disorders, especially 

as the impact of OTUB1 on TGFβ signalling has also been demonstrated in 

cells derived from mice. 

RNAi-mediated depletion of OTUB1 from HaCaT cells resulted in 

inhibition of TGFβ-induced expression of the PAI-1 and CTGF transcripts, 

both known TGFβ target genes (Igarashi et al., 1993, Lund et al., 1987). 

CTGF (connective tissue growth factor) is a cysteine-rich matricellular secreted 

protein that regulates diverse cellular functions (Mann et al., 2011). TGFβ-

induced CTGF expression can lead to ECM accumulation, vascular remodelling 

and result in glomerular disease, vascular fibrosis or carcinogenesis (Cheng et 

al., 2014, Lan et al., 2013, Lee, 2012). The TGFβ-target gene PAI-1 

(plasminogen activator inhibitor 1, member of the Serine protease inhibitor 

family) is a contributor to fibrogenesis in numerous organ systems. In the 

progression of several clinically important fibrotic disorders, PAI-1 is found to be 

highly up regulated and is causatively linked to disease severity (Samarakoon 

et al., 2012, Mann et al., 2011, Samarakoon et al., 2013). Furthermore, PAI-1 is 
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a causative factor in the progression of vascular disorders as well as a 

biomarker for cardiovascular-disease associated mortality. PAI-1 has also been 

reported to be a regulator of ECM accumulation impacting smooth muscle cell 

migration via the EGFR/ERK/RhoA/SMAD signalling cascade (Samarakoon and 

Higgins, 2008). As OTUB1 potentiates TGFβ signalling via SMAD2/3 

stabilisation, OTUB1 might serve as a potential drug target for fibrotic disorders. 

Furthermore, recent reports imply that certain DUBs are themselves 

modified or misexpressed in cancers (Eichhorn et al., 2012), thereby affecting 

TGFβ signalling. OTUB1 is expressed in most mouse tissues and across many 

human cell lines, but was found to be slightly up regulated in human breast, 

larynx, prostate and colon cancers (Luise et al., 2011). The increased 

expression of OTUB1 in colon cancer correlates with tumour size, differentiation 

and lymph node metastasis (Liu et al., 2014a).  
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4 Phosphorylation of OTUB1 by ALKs and CK2 

4.1 Introduction 

Deubiquitylating enzymes impact many cellular signalling pathways and 

are highly regulated enzymes (Komander et al., 2009, Kessler and Edelmann, 

2011). Although some recent reports have shed light into the molecular 

functions of OTUB1 (Mevissen et al., 2013, Nakada et al., 2010, Wiener et al., 

2013), its regulation in vivo remains to be defined. While investigating the role of 

OTUB1 in TGFβ signalling, it was discovered that OTUB1 itself could be post-

translationally modified by phosphorylation. The aim of the following chapter 

was to characterise the phosphorylation of OTUB1 at S16 and S18. 

 

4.1.1 Post-translational modifications on OTUB1 

PTMs, such as phosphorylation, monoubiquitylation, sumoylation and 

acetylation, have been reported to alter DUB functions in cells (Kessler and 

Edelmann, 2011). Global mass spectrometry approaches have revealed 

several phosphorylation and ubiquitylation sites on OTUB1 (Figure 4-1) 

(Edelmann et al., 2010, Li et al., 2014, Wagner et al., 2011, Kim et al., 2011, 

Pozuelo Rubio et al., 2004). It has been reported that monoubiquitylation of 

OTUB1 by UBE2D1 mainly on K59 and K109 is critical for its ability to suppress 

UBE2D1, as the E2 preferentially binds ubiquitylated OTUB1 (Li et al., 2014). 

OTUB1 phosphorylation at S16 and S18, among others, has been reported to 

be essential for cellular susceptibility to Yersinia enterocolitica and Yersinia 

pseudotuberculosis invasion (Edelmann et al., 2010). Although Yersinia protein 

kinase A (YpkA) can phosphorylate OTUB1 in vitro, OTUB1 phosphorylation in 

cells was observed independently of Yersinia invasion (Juris et al., 2006, 
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Edelmann et al., 2010). Therefore, the mechanism and kinase(s) that mediate 

the phosphorylation of OTUB1 at S16 and S18 remain elusive. 

 

 

Figure 4-1 Post-translational modifications on OTUB1 

Schematic representation of human OTUB1 domain structure indicating the 

ubiquitin interaction motif (UIM) in red and the OTU domain in orange. Putative 

OTUB1 phosphorylation sites S16, S18 and Y26 are indicated in green and 

reported OTUB1 ubiquitylation sites K59, K71, K84, K109 are indicated in light 

blue. 

 

4.1.2 Non-SMAD substrates of type I TGFβ/BMP receptors 

Type I TGFβ/BMP receptors (ALKs; Activin-receptor-Like-Kinases) are 

Serine/Threonine protein kinases (cf. section 1.2.2). In the canonical TGFβ 

pathway, the activated ALKs phosphorylate R-SMADs at their conserved C-

terminal “SXS” motif (Shi and Massague, 2003). S16 and S18 of OTUB1 

conform to the “SXS” motif, although they are separated by an Aspartic acid 

residue instead of Valine or Methionine in R-SMADs and do not lie at the 

extreme C-terminus as in R-SMADs. However, a non-SMAD substrate PAWS1 

has been reported to be phosphorylated at an intrinsic “SXS” motif by ALK3 in 

response to BMP (Vogt et al., 2014). Therefore, it was tested if OTUB1 could be 

phosphorylated by type I TGFβ/BMP receptors. 
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4.1.3 S16 of OTUB1 is a putative substrate for protein kinase CK2 

The residues surrounding S16 of OTUB1 “GSDSEGVN”, with acidic 

residues at +1 and +3, make it an optimal site for phosphorylation by protein 

kinase CK2 (Meggio and Pinna, 2003, Battistutta and Lolli, 2011, Montenarh, 

2010). Furthermore, the phosphorylation of S18 at +2 would be predicted to 

prime and improve the phosphorylation of S16 by CK2. CK2 (derived from the 

misnomer Casein Kinase 2) is a ubiquitously expressed and highly pleiotropic 

dual-specificity protein kinase. The CK2 holoenzyme is a tetrameric complex 

comprising two regulatory β-subunits and two catalytic (α, α’ or α’’) subunits in 

a homomeric or heteromeric conformation. In cells, the subunits can occur 

individually or as the holoenzyme and the catalytic subunits of CK2 are active 

combined or not with a dimer of its non-catalytic β-subunits (Meggio and Pinna, 

2003, Battistutta and Lolli, 2011, Pinna, 2002). The crystal structure of the CK2 

holoenzyme has been solved and indicates that the regulatory β-subunits form 

a stable dimer that links both catalytic α-subunits (Niefind et al., 2001, Niefind 

and Issinger, 2010). CK2 is a constitutively active kinase and the basal catalytic 

activity is not influenced by specific ligands, extracellular stimuli or metabolic 

conditions. Furthermore, fluctuations in the protein levels of the subunits or the 

holoenzyme of CK2 have not been observed, thus excluding acute regulation 

through transcription/translation or degradative pathways. The phosphorylation 

of CK2 substrates is individually regulated through different conformations and 

regulated assembly of the holoenzyme and subunits, regulatory interactions 

with CK2 inhibitors or activators and most importantly through protein-protein 

interactions (Pinna, 2003, Montenarh, 2010, Litchfield, 2003). 

CK2 has been shown to phosphorylate over 300 substrates and 

therefore regulates many cellular processes (Meggio and Pinna, 2003, Ruzzene 
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and Pinna, 2010). Several targets of CK2 have been reported to regulate 

ubiquitylation and deubiquitylation processes. CK2 phosphorylation of the E2 

ubiquitin conjugating enzyme UBE2R1 (CDC34) at S203 and S222 regulates 

the substrate recognition of βTRCP1 (Semplici et al., 2002) and stimulates 

SCF-mediated ubiquitylation (Block et al., 2005). Furthermore, CK2 

phosphorylation of UBE2R1 at S130 and S167 stimulates UBE2R1 ubiquitin 

charging (Coccetti et al., 2008) by opening the catalytic cleft and promoting 

ubiquitin access (Papaleo et al., 2011). Moreover, CK2 mediates the regulation 

of deubiquitylating enzymes Ataxin-3 and OTUD5 through phosphorylation. 

Phosphorylation of Ataxin-3 by CK2 at S340 and S352 within its third UIM 

promotes its nuclear localisation, aggregation and stability (Mueller et al., 2009). 

OTUD5 is catalytically activated upon phosphorylation by CK2 at S177 by 

positioning the ubiquitin substrate through interactions of the phosphate group 

with the C-terminal tail of distal ubiquitin (Huang et al., 2012).  

The phosphorylation of OTUB1 at S16 and S18 could influence its 

activity, subcellular localisation, substrate specificity and/or function in cells. 

Hence, the aim of this chapter was to characterise the phosphorylation of 

OTUB1 in cells and identify the upstream kinases mediating the 

phosphorylation. 
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4.2 Results 

4.2.1 OTUB1 is phosphorylated by ALK5 in vitro 

During the investigation on the role of OTUB1 in the TGFβ pathway 

(section 3), a mass spectrometry analysis of GFP-OTUB1 immunoprecipitated 

from HEK293 cells identified a tryptic phospho-peptide of OTUB1 (Figure 4-2) 

that was two-fold more abundant upon TGFβ stimulation. The identified 

phospho-peptide (QEPLGSDSEGVNCLAYDEAIMAQQDR), revealed three 

possible phosphorylation sites at S16, S18 and Y26. S16 and S18 constitute a 

“SXS” motif, which in R-SMADs is phosphorylated by ALKs. To determine if the 

type I TGFβ receptor ALK5 was able to phosphorylate OTUB1, an in vitro 

kinase assay was set up (Figure 4-3A). GST-ALK5 T204D was used for all 

kinase assays. The T204D mutation mimics ALK5 phosphorylation by the type II 

receptor and activates ALK5 in its absence. ALK5 phosphorylates wild type 

recombinant GST-OTUB1 in vitro (Figure 4-3A), to a similar extent as it 

phosphorylates SMAD2 and SMAD3 (Figure 4-3A). To test whether ALK5 

preferentially phosphorylates OTUB1 or SMAD3, both SMAD3 and OTUB1 

were phosphorylated by ALK5 in the same assay. Under these conditions, 

ALK5 preferentially phosphorylated SMAD3 over OTUB1, although when 

phosphorylated individually both SMAD3 and OTUB1 are phosphorylated to a 

similar extent (Figure 4-3B). The specific ALK5 inhibitor SB505124 was able to 

inhibit OTUB1 and SMAD3 phosphorylation in a dose dependent manner 

(Figure 4-3B,C), suggesting that ALK5 rather than a contaminating kinase 

phosphorylated these proteins. 

In order to confirm that S16 and S18 were targeted for phosphorylation 

by ALK5, an in vitro kinase assay was performed on wild type, as well as S16A, 

S18A and S16/18A mutant of GST-OTUB1 (Figure 4-3D). GST-OTUB1 was 
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phosphorylated by ALK5 (Figure 4-3D) and the mutation of S16A did not 

significantly impact the ability of ALK5 to phosphorylate OTUB1 (Figure 4-3D). 

The mutation of S18A decreased the phosphorylation of OTUB1 by ALK5 

(Figure 4-3D). When both Serine 16 and 18 were mutated to Alanine, the ALK5-

mediated phosphorylation of OTUB1 was lost, indicating that in vitro ALK5 could 

phosphorylate S16 and S18 of OTUB1, however primarily phosphorylated S18 

(Figure 4-3D). 

 

 

 

Figure 4-2 Identification of an OTUB1 phospho-peptide  
 

HEK293 cells stably expressing GFP-only or GFP-OTUB1 were stimulated with 

50 pM TGFβ for 1 hour and lysed in the presence of DSP. GFP-

immunoprecipitates (IPs) were separated by SDS-PAGE, bands excised and 

processed for mass spectrometry. One OTUB1 peptide 

(QEPLGSDSEGVNCLAYDEAIMAQQDR) was phosphorylated in vivo, with a 

two-fold increase in the presence of TGFβ.  
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Figure 4-3 OTUB1 is phosphorylated by ALK5 in vitro 

A) An in vitro kinase assay with GST-ALK5 was set up, using SMAD2, SMAD3 

and GST-OTUB1 as substrates in the presence of 32P-ATP (500 cpm/pmole). 

The reaction was stopped after 30 min at 30 °C and the samples were resolved 

by SDS-PAGE, the gel was Coomassie stained and radioactivity was analysed 

by autoradiography. B) As in A, however ALK5 phosphorylation of SMAD3 

and/or GST-OTUB1 was performed in the presence or absence of the 

SB505124 (1 μM). C) As in A, however increasing amounts of ALK5 inhibitor 

SB505124 were used to inhibit ALK5-mediated GST-OTUB1 phosphorylation. 

D) As in A, however GST-ALK5 was used with GST-OTUB1 and GST-OTUB1 

point mutants as substrates.  

 

4.2.2 Assessment of OTUB1 phosphorylation by ALKs in cells 

To assess the role of ALK5 in OTUB1 phosphorylation, it was tested 

whether ALK5 and OTUB1 physically interact. FLAG-ALK5 and HA-OTUB1 

were co-expressed in HEK293 cells. FLAG-ALK5 IPs pulled down HA-OTUB1 

and HA-OTUB1 S16/18A mutants in the presence or absence of SB505124 

(Figure 4-4A).  
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Phospho-specific antibodies recognising OTUB1 pS16, pS18 or pS16/18 

were generated. Both pS16 and pS16/pS18 antibodies only recognised OTUB1 

phosphorylated at S16. The antibody against pS18 did not recognise OTUB1 

phosphorylated at S18, which was challenging in terms of characterising S18 

as a substrate for ALK5 in cells. Nonetheless, the phosphorylation of S16 in 

response to TGFβ was characterised. To investigate whether TGFβ treatment 

induces OTUB1 phosphorylation at S16 in a time and dose dependent manner, 

HA-OTUB1 or HA-OTUB1 S16/18 were overexpressed in cells (Figure 4-4B). 

OTUB1 was constitutively phosphorylated at S16 in U2OS (Figure 4-4B) and 

HEK293 (Figure 4-4C) cells independently of TGFβ, BMP and Activin treatment 

or ALK inhibitors SB505124 and LDN198193 (Figure 4-4B,C) (Vogt et al., 

2011). This could be due to other constitutively active kinases phosphorylating 

OTUB1 under basal conditions. ALK5 knockout MEF cells were used to 

definitively establish the involvement of ALK5 in endogenous OTUB1 

phosphorylation at S16 (Figure 4-4D). Wild type, ALK5-/- and ALK5-/- cells 

restored with ALK5 or catalytically inactive ALK5 K232R (Wieser et al., 1995) 

were used to assess endogenous phosphorylation of OTUB1 at S16. The 

phosphorylation of the bona fide ALK5 substrate SMAD2 in response to TGFβ 

was detected only in wild type and ALK5-/- MEFs restored with wild type ALK5 

but not in ALK5-/- MEFs or those restored with catalytically inactive ALK5 

K232R. OTUB1 S16 phosphorylation was detected in all cells regardless of 

ALK5 activity or expression (Figure 4-4D), suggesting that ALKs are unlikely to 

mediate the phosphorylation of S16. 

Although S18 was identified as the key in vitro ALK5 phosphorylation 

site of OTUB1, it has not been possible to characterise this in cells due to the 

lack of a suitable antibody to detect OTUB1 pS18.  
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Figure 4-4 Assessment of in vivo OTUB1 phosphorylation by ALKs 

A) HEK293 cells were co-transfected with vectors encoding N-terminal HA-

tagged OTUB1 or HA-OTUB1 S16/18A and N-terminal FLAG-tagged ALK5. 

Prior to lysis cells were treated with or without SB505124 (1 μM, 1 hour). FLAG-

immunoprecipitates (IP) or extracts were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies. B) U2OS cells were transfected 

with vectors encoding N-terminal HA-tagged OTUB1 or indicated HA-OTUB1 

mutants (S16/18A, S16/18E). Prior to lysis cells were treated with indicated 

amounts (pM) of TGFβ for indicated time points (min). Extracts were resolved 

by SDS-PAGE and immunoblotted with the indicated antibodies. C) HEK293 

cells were transfected with vectors encoding N-terminal HA-tagged OTUB1 or 

HA-OTUB1 S16/18A. Prior to lysis cells were treated with indicated amounts of 

stimuli for indicated time points. Extracts were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies. D) MEF cells (wild type, ALK5-/- 

and ALK5-/- putback with vector, ALK5 or ALK5 kinase inactive (K232R)) were 

treated with TGFβ (50 pM, 1 hour). Cells were lysed and extracts resolved by 

SDS-PAGE and immunoblotted with the indicated antibodies. 
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4.2.3 OTUB1 is phosphorylated in vitro by ALKs2-6 and CK2α 

The observation that S16 is unlikely to be phosphorylated by ALKs 

suggested that other kinases might be involved. To test whether other kinases 

were able to phosphorylate OTUB1 in vitro, a panel of kinases that potentially 

phosphorylate a similar motif that surrounds OTUB1 S16 (Figure 4-5) were 

selected with ALKs to phosphorylate OTUB1 in vitro. The TGFβ-regulated 

ALKs4 and 5 phosphorylate OTUB1 more efficiently than the BMP-regulated 

ALKs2, 3 and 6. Of the other selected kinases assayed, only CK2α was able to 

robustly phosphorylate OTUB1 (Figure 4-5). 

 
 

 

Figure 4-5 OTUB1 is phosphorylated in vitro by ALK2-6 and CK2α 

An in vitro kinase assay was set up with various kinases and GST-OTUB1 as 

substrate in the presence or absence of 32P-ATP (500 cpm/pmole). The 

reaction was stopped after 30 min at 30 °C and the samples were resolved by 

SDS-PAGE, the gel was Coomassie stained and radioactivity was analysed by 

autoradiography. 
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4.2.4 CK2α phosphorylates OTUB1 on S16 in vitro 

Having established that CK2α phosphorylates OTUB1 in vitro (Figure 

4-5), the CK2 phosphorylation site on OTUB1 was determined by a combination 

of mass spectrometry and solid-phase Edman sequencing (Figure 4-6). OTUB1 

was phosphorylated by CK2α using 32P-ATP in vitro, the phospho-OTUB1 

band excised, trypsin digested and the resulting peptides were separated by 

chromatography on a C18 column. One 32P-labelled peak eluting at 25% 

acetonitrile was identified (Figure 4-6A). Analysis of this peptide by mass 

spectrometry resulted in m/z of 2975.2314, which is identical to the OTUB1 

tryptic peptide QEPLGSDSEGVNCLAYDEAIMAQQDR with an additional single 

phospho-modification. To determine the precise phosphorylated residue in the 

32P-labelled peptide, the peptide was subjected to solid-phase Edman 

degradation. 32P radioactivity was released after the sixth cycle of Edman 

degradation, suggesting that CK2α could phosphorylate OTUB1 on S16 (Figure 

4-6B).  

An in vitro kinase assay on wild type, as well as S16A, S18A and 

S16/18A GST-OTUB1 was performed to confirm the phosphorylation sites 

identified by mass spectrometry and Edman degradation. Mutation of S16A or 

S16/18A, but not S18A, abolished the phosphorylation of OTUB1 by CK2 

(Figure 4-6C).  
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Figure 4-6 CK2 phosphorylates OTUB1 on S16 in vitro 

A) GST-OTUB1 phosphorylated by CK2α in vitro was excised, digested with 

trypsin and resolved by HPLC on a C18 column on an increasing acetonitrile 

gradient. One peak of 32P release was observed after 76 minutes. B) Solid-

phase sequencing of the peak revealed the release of 32P radioactivity after the 

sixth cycle of Edman degradation (performed by R. Gourlay). C) An in vitro 

kinase assay with CK2α was set up, using GST-OTUB1 and the indicated 

mutants of GST-OTUB1 as substrates in the presence of 32P-ATP (500 

cpm/pmole). The reaction was stopped after 30 min at 30 °C and the samples 

were resolved by SDS-PAGE, the gel was Coomassie stained and radioactivity 

was analysed by autoradiography. 
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4.2.5 CK2α phosphorylates OTUB1 on S16 in vivo 

The phosphorylation of OTUB1 at S16 was further investigated by 

employing several chemical inhibitors of CK2 and ALK5 in cells. First, the 

specificity of CK2 and ALK inhibitors was tested in HEK293 cells (Figure 4-7A). 

SB505124 inhibits ALK5 activity and thereby abolishes SMAD2 phosphorylation 

(Vogt et al., 2011). Moreover, it did not affect the phosphorylation of known CK2 

substrates AKT1 pS129 and CDC37 pS13 (Figure 4-7A) (Di Maira et al., 2005, 

Miyata and Nishida, 2004). Several inhibitors of CK2 have been developed 

(Battistutta, 2009, Cozza et al., 2010, Pagano et al., 2008). Non-selective 

inhibitors of CK2 LY294002 and K66 (Pagano et al., 2008) did not significantly 

impact AKT1 or CDC37 phosphorylation at the CK2 sites and were discarded 

for further use (Figure 4-7A). In contrast, TDB (Cozza et al., 2013) efficiently 

inhibited the CK2-mediated phosphorylation of AKT1 at S129 (Di Maira et al., 

2005) and partially inhibited the phosphorylation at S13 (Miyata and Nishida, 

2004) (Figure 4-7A).  

To test whether OTUB1 is a bona fide substrate of CK2 in cells, wild 

type or the OTUB1 S16/18A mutant were overexpressed in HEK293 cells and 

the extracts immunoblotted with anti-OTUB1 pS16 antibody (Figure 4-7B). 

OTUB1 S16 phosphorylation was detected in cells transfected with wild type 

OTUB1 but not OTUB1 S16/18A mutant. The CK2 inhibitor TDB (Cozza et al., 

2013) blocked the S16 phosphorylation of OTUB1 in cells (Figure 4-7B, last 

lane). OTUB1 S16 phosphorylation was also detected in endogenous OTUB1 

immunoprecipitates of U2OS, HeLa and HEK293 cells in the absence of TDB 

(Figure 4-7C). By probing untreated cell extracts for phosphorylation of OTUB1 

at S16, it was discovered that endogenous OTUB1 was constitutively 

phosphorylated, which was blocked by the CK2 inhibitor TDB (Figure 4-7D), 
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suggesting that CK2 is a constitutively active kinase upstream of OTUB1 

(Pinna, 2003). For endogenous detection of OTUB1 pS16, TDB and OTUB1 

siRNA were employed as controls to verify the specificity of the anti-OTUB1 

pS16 antibody (Figure 4-7D). 

Several cell permeable CK2 inhibitors are available, however many of 

them also target a wide range of other kinases (Battistutta, 2009, Cozza et al., 

2010, Pagano et al., 2008). To date, TDB is the most potent and specific CK2 

inhibitor to be reported, although it also inhibits 3 other kinases: PIM1, CLK2 

and DYRK1A (Cozza et al., 2014). An in vitro kinase assay was set up to test 

whether PIM1, DYRK1A and CLK2 were also able to phosphorylate OTUB1. 

Under the conditions where CK2α phosphorylates OTUB1, PIM1, DYRK1A and 

CLK2 failed to phosphorylate OTUB1 (Figure 4-8A). To verify the in vitro 

results, PIM1 and its catalytically inactive mutant PIM1 D277A were 

overexpressed in HEK293 cells (Figure 4-8B). PIM1 did not alter the levels of 

endogenous OTUB1 phosphorylation at S16 (Figure 4-8B). To further verify 

that the inhibition of OTUB1 phosphorylation mediated by TDB is specific to 

CK2, another potent and specific CK2 inhibitor (Quinalizarin) was employed 

(Cozza et al., 2009). Quinalizarin also inhibited OTUB1 phosphorylation at S16, 

however not as efficient as TDB (Figure 4-8C). 

To verify that CK2α expression and activity mediated the OTUB1 

phosphorylation at S16, wild type CK2α or the catalytically inactive CK2α 

D156A mutant (Korn et al., 1999) were overexpressed in HEK293 cells (Figure 

4-9A). Wild type CK2α enhances phosphorylation of OTUB1 S16 over the 

basal levels (Figure 4-9A, lane 2), whereas the catalytically inactive CK2α did 

not alter basal OTUB1 S16 phosphorylation (Figure 4-9A, lane 4). TDB was 

less efficient at inhibiting OTUB1 S16 phosphorylation when CK2α was 
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overexpressed (Figure 4-9A, lane 3). Catalytically active CK2α (42 kDa) or 

CK2α’ (38 kDa) were both able to phosphorylate endogenous OTUB1 at S16 

(Figure 4-9B). To further confirm that CK2 was the main mediator for OTUB1 

S16 phosphorylation in vivo, a loss-of-function experiment was employed using 

4 different siRNAs against CK2α (Figure 4-9C). All four CK2 siRNAs target 

CK2α and CK2α’, however the anti-CK2 antibody only recognises CK2α 

(Figure 4-9C). siRNAs #1 and #3 were selected for further investigation and in 

both cases robust CK2α knockdowns were achieved (Figure 4-9D). Under 

these conditions, a significant reduction in S16 phosphorylation of OTUB1 was 

achieved (Figure 4-9D), indicating that OTUB1 is a new bona fide substrate for 

CK2 in cells. 
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Figure 4-7 OTUB1 is constitutively phosphorylated at S16 in vivo 

A) HEK293 cells were treated with the indicated amounts of inhibitors for 4 

hours. Extracts were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies. B) HEK293 cells were transfected with vectors encoding 

N-terminal HA-tagged OTUB1 or HA-OTUB1 S16/18A. Prior to lysis cells were 

treated with the indicated inhibitor or cytokines for the indicated time points. 

Extracts were resolved by SDS-PAGE and immunoblotted with the indicated 

antibodies. C) An endogenous IP with anti-OTUB1 antibody or pre-immune 

sheep IgG was performed in HeLa, HEK293 or U2OS cell extracts, treated with 

or without 10 μM TDB for 4 hours. Endogenous IgG or anti-OTUB1 IPs were 

resolved by SDS-PAGE and immunoblotted with the indicated antibodies. D) 

HEK293 cells were left untreated, treated with TDB (10 μM, 4 h) or were 

transfected with siRNA against OTUB1 (300 pM/10-cm dish each) and lysed 48 

hours post-transfection. Extracts (80 μg) were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies.  
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Figure 4-8 Phosphorylation of OTUB1 at S16 is specific to CK2 

A) An in vitro kinase assay was set up with various kinases using GST-OTUB1 

as substrate in the presence of 32P-ATP (500 cpm/pmole). The reaction was 

stopped after 30 min at 30 °C and the samples were resolved by SDS-PAGE, 

the gel was Coomassie stained and radioactivity was analysed by 

autoradiography. B) HEK293 cells were transfected with vectors encoding N-

terminal FLAG-tagged PIM1 or FLAG-PIM1 D277A. Prior to lysis cells were 

treated with or without TDB (10 μM, 4 hours). Extracts were resolved by SDS-

PAGE and immunoblotted with the indicated antibodies. C) HEK293 cells were 

left untreated, treated with TDB (10 μM, 4 h) or Quinalizarin (10 μM, 4 h) prior to 

lysis. Extracts (80 μg) were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies. 
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Figure 4-9 CK2 phosphorylates OTUB1 in vivo 

A) HEK293 cells were co-transfected with vectors encoding N-terminal HA-

tagged OTUB1 or HA-OTUB1 S16/18A and N-terminal FLAG-tagged CK2 or 

FLAG-CK2 D156A. Prior to lysis cells were treated with or without TDB (10 μM, 

4 hours). Extracts were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies. B) HEK293 cells were transfected with vectors encoding 

N-terminal FLAG-tagged CK2α, FLAG-CK2α D156A or FLAG-CK2α’. Prior to 

lysis cells were treated with or without TDB (10 μM, 4 hours). Extracts were 

resolved by SDS-PAGE and immunoblotted with the indicated antibodies. C) 

HEK293 cells were transfected with USP15 siRNA or four siRNAs against 

CK2α/α’ (#1, #2, #3, #4) (300 pM/10-cm dish each) and lysed 48 hours post-

transfection. Extracts were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies. D) HEK293 cells were transfected with HA-OTUB1 and 

siRNAs against CK2α/α’ (#1, #3) or FoxO4 (control) (300 pM/10-cm dish each) 

and lysed 48 hours post-transfection. Prior to lysis cells were treated with or 

without 10 μM TDB for 4 hours. Extracts were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies.  
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4.3 Discussion 

In this study, two residues on OTUB1, S16 and S18, were identified as 

potential phosphorylation sites. Further investigations on these residues have 

revealed that CK2 phosphorylates OTUB1 at S16 in vivo, making OTUB1 a 

bona fide substrate for CK2. The regulation of OTUB1 by phosphorylation 

remains to be investigated. 

 

4.3.1 Identification of the kinases responsible for OTUB1 

phosphorylation at S16 and S18 

It had been suggested previously that OTUB1 could be phosphorylated 

by the Yersinia encoded kinase YpkA, which phosphorylates OTUB1 in vitro. 

However, in the absence of Yersinia infection OTUB1 is still phosphorylated in 

cells (Juris et al., 2006, Edelmann et al., 2010), suggesting a host kinase 

mediates the phosphorylation of OTUB1. In this study, type I TGFβ/BMP 

receptors (ALKs2-6) were identified as kinases that are able to phosphorylate 

OTUB1, primarily at S18, in vitro. However, currently no suitable tools are 

available to assess whether S18 of OTUB1 is phosphorylated by these kinases 

in response to TGFβ or BMP. In the absence of a phospho-specific antibody 

recognising OTUB1 phosphorylated at S18, SRM (selected reaction monitoring) 

could be used to establish whether activated ALKs could phosphorylate OTUB1 

at S18 in cells.  

The activation of ALKs through TGFβ/BMP/Activin did not enhance the 

phosphorylation of OTUB1 at S16 in cells. In order to identify the kinase(s) that 

mediates OTUB1 S16 phosphorylation, several kinases that phosphorylate 

residues in a motif similar to the one that surrounds OTUB1 S16 were selected. 

From this kinase panel, only CK2α was able to phosphorylate OTUB1 in vitro. 
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CK2 is an acidophilic Serine/Threonine kinase that targets “SXX(E/D/pS/pT)” 

and prefers acidic amino acids at positions n+1 and n+3 (Meggio and Pinna, 

2003). OTUB1 is phosphorylated by CK2 at S16 (“SDSE”), which is followed by 

two acidic residues (at n+1 and n+3). Moreover, the preference for CK2 towards 

OTUB1 at S16 could potentially be further enhanced by phosphorylation of S18 

by ALKs or other unknown kinase(s). An in vitro phosphorylation assay using 

OTUB1 S18 or pS18 peptides could be employed to further test whether 

phosphorylation at S18 primes OTUB1 for recognition and phosphorylation by 

CK2. However, preliminary data suggests that CK2 phosphorylates OTUB1 

independently of S18 phosphorylation. If S18 phosphorylation would prime 

OTUB1 for recognition by CK2, then it would be unlikely that S18 is 

phosphorylated in response to TGFβ/BMP because, in ALK5-/- MEFs the CK2-

mediated phosphorylation of S16 was not affected.  

CK2 phosphorylates OTUB1 at S16 in different cell lines. Through 

overexpression and loss of function experiments, OTUB1 has been verified as a 

bona fide substrate of CK2 (Figure 4-10). Furthermore, inhibitors of CK2 abolish 

the phosphorylation of OTUB1. The phosphorylation of OTUB1 S16 in cells is 

constitutive, which is consistent with CK2 being a constitutively active kinase 

(Meggio and Pinna, 2003, Battistutta and Lolli, 2011, Pinna, 2003, Montenarh, 

2010). Although the phosphorylation of OTUB1 might not be induced through 

extracellular stimuli, the dephosphorylation of OTUB1 could be. Potential 

phosphatase(s) that target OTUB1 are not known. OTUB1 is phosphorylated by 

CK2; however it is possible that not every molecule of OTUB1 is 

phosphorylated in cells. A balance between phosphorylated and 

unphosphorylated OTUB1 could be created by phosphatases, other OTUB1 

binding proteins that restrict access to CK2, or differential pools of OTUB1 and 
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CK2 in subcellular compartments. CK2 only phosphorylates OTUB1 on S16, as 

assessed by mass spectrometry and Edman degradation. 

 

 

Figure 4-10 OTUB1 is phosphorylated by CK2 at S16 

Schematic representation of human OTUB1 indicating the domain structures 

(UIM in red, OTU in orange), catalytic residues (in dark green), P1’ site (P87 in 

purple), the E2 interface (* in light blue), the proximal ubiquitin binding interface 

(S1’) (* in light grey), the distal ubiquitin interface (S1) (* in dark grey) and the 

OTUB1 CK2-mediated phosphorylation site S16 (light green), which can be 

blocked by the CK2 inhibitor TDB.  

 

4.3.2 The potential impact of OTUB1 phosphorylation  

Phosphates introduce a change in the local charge of proteins, thereby 

causing conformational changes in the modified protein, which could alter their 

affinity or activity towards ligands, substrates or binding partners (Manning et 

al., 2002). The phosphorylation sites of OTUB1 (S16 and S18) are present in its 

N-terminus (Figure 4-10). The N-terminus of OTUB1 harbours a UIM-like motif 

and folds into an α-helix upon ubiquitin binding (section 3.1.2 and 3.1.3). S16 

and S18 are in proximity to the E2 and proximal ubiquitin-binding interface and 

their phosphorylation could change the conformation of OTUB1. Hence, 

phosphorylation of S16 and S18 could potentially alter the KM of OTUB1 

catalytic activity or the affinity for the specific chain linkage types (Figure 4-11). 

It has been reported that the E2 stimulated catalytic activity of OTUB1 is 

affected by a deletion of the first 30 N-terminal OTUB1 residues, while a 

CK2 TDB
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deletion of the first 15 amino acids of OTUB1 had no effect (Wiener et al., 

2013). Therefore, it is tempting to speculate that the phosphorylation of S16 and 

S18 could potentially influence the E2 stimulated catalytic activity of OTUB1. 

The binding of OTUB1 to ubiquitin, K63-linked polyubiquitin chains, E2 or 

E2~ub could be altered through the negative charge of S16 and S18 

phosphorylation and influence its non-canonical function (Figure 4-11). The first 

23 amino acids preceding the α-helix of the OTUB1 N-terminus are disordered 

(Wiener et al., 2013) and absent from all reported crystal structures (Wiener et 

al., 2013, Wiener et al., 2012, Juang et al., 2012, Sato et al., 2012). S16 and 

S18 phosphorylation could alter protein folding (Figure 4-11) or assist in protein-

protein interactions that mediate the transition from intrinsically unstructured to 

ordered state. Apart from E2s and ubiquitin, the phosphorylation of OTUB1 

could also attract the binding of other regulatory proteins such as 14-3-3s or 

influence its affinity towards substrates, such as phosphorylated SMAD2/3 

(section 3.1.4) (Figure 4-11). It has been reported that phosphorylated OTUB1 

displays increased affinity towards YpkA, which modulates susceptibility to 

Yersinia invasion (Edelmann et al., 2010). Small molecule inhibitors that inhibit 

the CK2 mediated phosphorylation of OTUB1 in cells could potentially 

decrease the uptake of Yersinia into host cells and be employed as therapeutic 

strategies. 

OTUB1 is mainly observed in the cytosol. However, upon 

phosphorylation a small pool of OTUB1 could potentially translocate to the 

nucleus or other organelles (Figure 4-11), as has been reported for Ataxin-3 

(Mueller et al., 2009). CK2 localises to DNA double strand breaks and is 

implicated in the DNA damage repair (Olsen et al., 2012, Blaydes and Hupp, 

1998, Loizou et al., 2004, Ghavidel and Schultz, 2001). The mechanism of 
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OTUB1 displacement from DNA damage sites is still unknown (Nakada et al., 

2010), but could potentially be regulated by CK2 mediated phosphorylation. 

The generation of OTUB1 knockout cells will be helpful to decipher the 

physiological roles of OTUB1 phosphorylation, as these cells could be 

employed to generate stable OTUB1 phosphorylation deficient or mimetic 

mutant cell lines. Furthermore, the generation of bacterially purified OTUB1 

pS16 would be a versatile tool for functional in vitro studies of OTUB1. Small 

amounts of phosphorylated OTUB1 at S16 have been purified using the amber-

stop codon technique to incorporate phospho-Serines at desired sites during 

translation (Park et al., 2011). However, initial trials of this technique have failed 

to yield homogeneous pS16 and pS18 OTUB1 and further optimisation is 

needed.  

The possibility of OTUB1 regulation in cells through phosphorylation 

should be taken into account when designing small molecule inhibitors of 

OTUB1. By modulating the amount of phosphorylated OTUB1 in cells, distinct 

physiological functions of OTUB1 could be altered. The precise mechanisms 

and interplay between phosphorylation and ubiquitylation in the regulation of 

OTUB1 should be further investigated and could open new avenues of 

research. 
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Figure 4-11 Possible functions of OTUB1 phosphorylation 

The phosphorylation of OTUB1 could result in a change of OTUB1 function. It 

could enhance or inhibit E2, E2~ub or ubiquitin binding, alter OTUB1 catalytic 

activity, protein-protein interactions or subcellular localisation or change the 

organisation structure of the disordered first 24 amino acids of the N-terminus.  
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5 USP15 targets ALK3 for deubiquitylation to enhance BMP 

pathway signalling 

5.1 Introduction 

Ubiquitylation of the TGFβ/BMP pathway components plays a critical role 

in fine tuning TGFβ/BMP-mediated cellular responses (section 1.3.2). Receptor 

ubiquitylation through feedback mechanism attenuates signalling. Much is 

known about the E3 ubiquitin ligases that target TGFβ/BMP receptors for 

ubiquitylation. Recently several deubiquitylating enzymes that reverse type I 

TGFβ receptor ubiquitylation have been reported. However, no DUBs that target 

the type I BMP receptors have been discovered. USP15 was identified in a 

proteomic screen as an interactor of SMAD6, which is a negative regulator of 

the BMP pathway (Figure 5-2A). Hence, the aim of this chapter was to 

characterise the role of USP15 in the BMP pathway. 

 

5.1.1 Structure and function of USP15 

USP15 is a cysteine protease (Komander et al., 2009, Baker et al., 

1999), which also harbours a zinc finger that is essential for the cleavage of 

polyubiquitin chains (Hetfeld et al., 2005). It belongs to the USP family of DUBs 

and is highly related to USP4 and USP11, as defined by conserved sequences 

and structural similarities (Figure 5-1A) (Komander et al., 2009). USP4, USP11 

and USP15 harbour a DUSP (domain present in USPs) at the N-terminus and 

two UBLs (ubiquitin like domains), one preceding the USP catalytic domain and 

one within (Komander et al., 2009). The crystal structures of the DUSP and UBL 

domains of USP15 (Figure 5-1B) have been resolved (de Jong et al., 2006, 

Harper et al., 2011, Elliott et al., 2011).  
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The surface properties of the DUSP domain suggest a potential role in 

protein-protein interaction or substrate recognition (de Jong et al., 2006). The 

UBL domains of multiple-domain proteins can function as protein-protein 

interaction motifs and recognise ubiquitylated substrates (Zhu et al., 2007). The 

UBL domain within the catalytic domain (UBL2) of USP4 also serves an 

autoinhibitory role as a ubiquitin mimic (Luna-Vargas et al., 2011). The UBL1 

domain of USP15 is closely related to ubiquitin, however has longer loop 

regions and different surface characteristics, suggesting that it does not act as a 

ubiquitin mimic (Figure 5-1C) (Harper et al., 2011). The DUSP and UBL 

domains of USP15 are arranged in tandem, which is conserved in USP4 but not 

in USP11. The tandem architecture of the DUSP and UBL domains is stabilised 

by a β-hairpin structure that forms a hydrogen-bonding network between the 

domains (Figure 5-1B, orange linker region) (Harper et al., 2011).  
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Figure 5-1 Structure of USP15 DUSP and UBL domains 

A) Schematic representation of human USP15, USP4 and USP11 indicating the 

domain structures and catalytic residues. B) USP15 DUSP (red), linker (orange) 

and UBL (blue) domains in cartoon representation. The β-hairpin structure at 

the interface of the DUSP and UBL domains (orange linker region) creates an 

extensive hydrogen-bonding network and creates the DUSP and UBL interface, 

thereby determining the fixed tandem orientation. H=α-helix, S=β-strand. C) 

USP15 UBL domain and ubiquitin shown in the same orientation. Residues 

creating the hydrophobic surface patch in ubiquitin that most often engages in 

protein interactions are labelled in red. This Figure was adapted from Harper et 

al., 2011.  
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5.1.2 Deubiquitylation targets of USP15 

USP15 affects diverse signalling pathways and is linked to various 

pathologies, including cancers. USP15 is implicated in chemo-resistance to the 

anticancer agent Paclitaxel (Taxol), through the regulation of Caspase3 stability 

by inhibiting Paclitaxel-induced apoptosis (Xu et al., 2009). Furthermore, it has 

been reported to act as a negative regulator of T cell activation by 

deubiquitylating the E3 ubiquitin ligase MDM2 (Zou et al., 2014) and to 

antagonise the Parkin-mediated mitochondrial ubiquitylation and inhibit 

mitophagy (Cornelissen et al., 2014). USP15 has been shown to deubiquitylate 

the skeletal muscle LIM protein 1 (SLIM1), which is implicated in the 

pathogenesis of myopathies (Isumi et al., 2011). Additionally, USP15 has been 

reported to deubiquitylate the K48-, but not K63-, linked polyubiquitin chains on 

TRIM25, thereby preventing its proteasomal degradation while promoting the 

RIG1-mediated antiviral immune response (Pauli et al., 2014). USP15 is 

involved in the transcriptional regulation by associating with SART3, which 

enhances USP15 binding to ubiquitylated histone H2B and facilitating its 

deubiquitylation (Long et al., 2014). Moreover, USP15 has been shown to 

stabilise HPV16, ROC1, APC, REST and Keap1 through deubiquitylation (Vos 

et al., 2009, Hetfeld et al., 2005, Huang et al., 2009, Faronato et al., 2013, 

Villeneuve et al., 2013). USP15 activity might be regulated in a feedback loop, 

as the DUSP-UBL domain of USP15 binds the coiled coil region of the E3 ligase 

BRAP and stabilises it, whereas BRAP then promotes the ubiquitylation of 

USP15 (Hayes et al., 2012). USP15 has also been implicated in TGFβ 

signalling (cf. section 1.3.2), by deubiquitylating ALK5 and monoubiquitylated R-

SMADs (Eichhorn et al., 2012, Inui et al., 2011). Its role in the BMP pathway 

through its association with SMAD6 had not been investigated.  



- 190 - 

5.2 Results 

5.2.1 USP15 interacts with SMAD6 and is ubiquitously expressed 

In order to identify novel regulators of the BMP signalling pathway, a 

proteomic screen on SMAD6-interacting proteins was performed. Flp-IN 

HEK293 cells stably expressing N-terminal tagged GFP-SMAD6 under the 

control of a tetracycline-inducible promoter were generated. GFP-

immunoprecipitates (IPs) were resolved by SDS-PAGE and the interacting 

proteins excised, digested with trypsin and identified by mass spectrometry. 

USP15 was identified as an interactor of GFP-SMAD6 but not GFP control 

(Figure 5-2A). As expected SMURF2, WWP1, ITCH and USP11 were also 

identified in GFP-SMAD6 IPs (Zhang et al., 2013c).  

To test the specificity of the interaction between USP15 and SMAD6, 

FLAG-SMADs1, 3, 4, 6 and 7 were overexpressed in HEK293 cells. Only 

FLAG-SMAD6, but not other SMADs, was detected in the endogenous USP15 

IPs (Figure 5-2B), indicating a selective interaction. Analysis of the expression 

pattern of USP15 in mouse tissues showed that USP15 is ubiquitously 

expressed (Figure 5-3). 
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Figure 5-2 USP15 interacts with SMAD6 

A) HEK293 cells stably expressing GFP-SMAD6 were lysed in the presence of 

DSP. GFP-immunoprecipitates (IPs) were separated by SDS-PAGE and 

interacting partners identified by mass spectrometry (performed by D. Bruce). 

B) HEK293 cells were transfected with constructs encoding N-terminal FLAG-

tagged SMADs. USP15 or IgG-immunoprecipitates or lysate inputs were 

resolved by SDS-PAGE and immunoblotted with the indicated antibodies 

(performed by M. Al-Salihi).  
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Figure 5-3 USP15 is ubiquitously expressed 

Indicated mouse tissues were homogenised in lysis buffer and 20 µg of protein 

lysates were resolved by SDS-PAGE and immunoblotted with antibodies 

against USP15 and GAPDH. 

 

5.2.2 USP15 modulates the intensity of SMAD1 phosphorylation upon 

BMP Signalling 

SMAD6 is a negative regulator of BMP signalling. It is transcribed upon 

BMP stimulation and acts in a feedback loop by blocking access of R-SMADs 

to type I BMP receptors and directing E3 ubiquitin ligases to the receptor 

complexes, resulting in their ubiquitin-mediated degradation (Goto et al., 2007, 

Murakami et al., 2003). In order to investigate whether the binding of USP15 

to SMAD6 implies a role for USP15 in BMP signalling, HEK293 cells were 

transiently transfected with three different siRNAs against USP15 (Figure 

5-4A). siRNAs 1-3 resulted in a knockdown of USP15 protein levels, as 

compared to control siRNA (iFoxO4). Additionally the cells were treated with 

BMP2 (6.25 ng/ml) for 1 hour2, which resulted in the tail-phosphorylation of 

SMAD1 (SMAD1-TP) in control siRNA transfected cells. USP15 depletion 

caused a reduction in the levels of BMP-induced SMAD1-TP without affecting 

                                            
2
 If not stated otherwise, cells were always serum starved overnight and treated for 1 hour with 
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the total levels of SMAD1 (Figure 5-4A). iUSP15#3 was selected for further 

experiments.  

To verify that USP15 depletion inhibits SMAD1 phosphorylation across 

cell lines, HeLa and U2OS cells were used in addition to the HEK293 cells 

(Figure 5-4B,C,D). siRNA-mediated reduction of USP15 in HeLa (Figure 

5-4B,C) and U2OS (Figure 5-4D) cells strongly suppressed the BMP-induced 

phosphorylation of SMAD1 even in presence of excessive ligand (25 ng/ml 

BMP) (Figure 5-4B). A quantification of Western Blot bands representing 

SMAD1-TP and total SMAD1 from 5 independent experiments using control or 

USP15 siRNA showed that iUSP15#3 caused a statistically significant 

reduction in BMP-induced SMAD1-TP levels (Figure 5-4E). In contrast to the 

inhibition of BMP signalling by USP15 depletion, the overexpression of HA-

USP15 in HEK293 cells slightly enhanced the levels of tail-phosphorylated 

SMAD1 in response to BMP (Figure 5-4F). 
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Figure 5-4 USP15 modulates the intensity of BMP-induced SMAD1 tail-
phosphorylation  

A) HEK293 cells were transiently transfected with siRNAs targeting USP15 and 

stimulated with 6.25 ng/ml BMP for 1 hour prior to lysis. Extracts were resolved 

by SDS-PAGE and immunoblotted with the indicated antibodies. B) As in A, 

except that HeLa cells were transiently transfected with iUSP15#3 and 

stimulated with 25 ng/ml BMP for 1 hour prior to lysis. C) As in B, except that 

cells were stimulated with 6.25 ng/ml BMP for 1 hour. D) As in C, except that 

U2OS cells were employed. E) Western Blot bands representing phospho-

SMAD1 and total SMAD1 from 5 independent experiments using iUSP15#3 or 

FoxO4 siRNA were quantified using Image J. Data are represented as mean 

and error bars indicate standard deviation (n=5). Student’s t-test was performed 

and differences with p<0.001 were annotated as ***. F) HEK293 cells transiently 

expressing control HA-vector or HA-USP15 were stimulated with 6.25 ng/ml 

BMP for 1 hour prior to lysis. Extracts were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies. 
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5.2.3 Reduction of phospho-SMAD1 caused by a loss of USP15 can be 

rescued by Bortezomib and HA-USP15 

To verify that the decrease in levels of tail-phosphorylated SMAD1 by 

USP15 depletion were not due to off target effects of siRNAs, rescue 

experiments were performed. The inhibition of BMP-induced SMAD1-TP levels 

by iUSP15#3 were rescued by the overexpression of FLAG-USP15 in HEK293 

cells (Figure 5-5A). Furthermore, the proteasomal inhibitor Bortezomib resulted 

in the stabilisation of BMP-induced SMAD1-TP levels caused by USP15 

depletion (Figure 5-5B). In both cases, the total levels of SMAD1 protein 

remained unchanged (Figure 5-5). 

 
 
Figure 5-5 Reduction of phospho-SMAD1 caused by a loss of USP15 can 
be rescued by Bortezomib and HA-USP15 

A) HEK293 cells were transiently transfected with iFoxO4 or iUSP15#3. 24 

hours post siRNA transfection, cells were transfected with HA-control or HA-

USP15. Cells were stimulated with or without BMP for 1 hour prior to lysis. 

Extracts were resolved by SDS-PAGE and immunoblotted with the indicated 

antibodies (performed by M. Al-Salihi). B) HEK293 cells were transiently 

transfected with iUSP15#3 or iFoxO4. Cells were treated with or without 10 μM 

Bortezomib for 3 hours and stimulated with 6.25 ng/ml BMP for 1 hour prior to 

lysis. Extracts were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies (performed by M. Al-Salihi).  
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5.2.4 USP15 depletion inhibits BMP-induced transcription 

Next, it was investigated whether phospho-SMAD1 reduction caused by 

USP15 depletion (Figure 5-4) also resulted in inhibition of BMP-induced 

transcriptional activity (Figure 5-6). RNAi-mediated depletion of USP15 in 

HEK293 cells significantly reduced the expression of inhibitor of differentiation 1 

(ID-1) mRNA, which is a transcriptional target of BMP (Figure 5-6A). In contrast, 

depletion of USP11, which is highly similar to USP15 (Figure 5-1A) and impacts 

TGFβ-induced transcription (Al-Salihi et al., 2012a), did not cause any reduction 

in ID-1 expression upon BMP induction (Figure 5-6B).  

 

 

Figure 5-6 USP15 depletion inhibits BMP-induced transcription  

A) HEK293 cells were transiently transfected with iUSP15#3 and stimulated 

with 6.25 ng/ml BMP for 1 hour. Cells were then washed and lysed 2 hours 

later. The mRNA expression levels of USP15 and the BMP-target gene ID-1 

were analysed by qRT-PCR. Data are represented as mean and error bars 

indicate standard deviation (n=6). Differences with p<0.001 were annotated as 

***. B) As in A, except that HEK293 cells were transfected with siRNA against 

USP11. Differences with p>0.05 were annotated as ns (not significant).   
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5.2.5 USP15 and SMAD6 impact the BMP pathway in opposite ways  

SMAD6 is a negative regulator of BMP signalling by directing E3 

ubiquitin ligases to ALK3, thereby inducing ubiquitin-mediated degradation of 

the receptors. This results in reduced SMAD1 phosphorylation. Furthermore, 

SMAD6 can compete with SMAD1 for receptor binding, thus further inhibiting 

SMAD1 phosphorylation. Hence, the overexpression of HA-SMAD6 in HEK293 

cells significantly reduced the BMP-induced tail-phosphorylation of SMAD1 

(Figure 5-7A). The reduction in SMAD1 tail-phosphorylation could be partly 

rescued by the overexpression of USP15, indicating that in contrast to SMAD6, 

USP15 is a positive regulator of BMP signalling (Figure 5-7A).  

In accordance with these findings, siRNA-mediated knockdown of 

SMAD6 was also able to rescue the inhibition of BMP signalling caused by 

USP15 depletion (Figure 5-7B). The depletion of SMAD6 by siRNA resulted in 

enhanced BMP-mediated phosphorylation of SMAD1, whereas the depletion of 

USP15 caused a decrease in SMAD1 phosphorylation in HEK293 cells. The 

knockdown of SMAD6 and USP15 together resulted in SMAD1 phosphorylation 

levels similar to control cells (iFoxO4) treated with BMP (Figure 5-7B). This 

indicates that SMAD6 and USP15 have opposing roles in regulating the BMP 

pathway. In the absence of SMAD6 antibodies, siRNA-mediated depletion of 

SMAD6 was confirmed by qRT-PCR (Figure 5-7C).  
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Figure 5-7 Opposing roles for USP15 and SMAD6 in the BMP pathway 

A) HEK293 cells were co-transfected with constructs encoding N-terminal HA-

tagged USP15, SMAD6 and N-terminal FLAG-tagged SMAD1. Cells were 

stimulated with 6.25 ng/ml BMP for 1 hour prior to lysis. Extracts were resolved 

by SDS-PAGE and immunoblotted with the indicated antibodies. B) HEK293 

cells were transiently transfected with iUSP15#3, iSMAD6 or iFoxO4. 48 hours 

post transfection cells were stimulated with 6.25 ng/ml BMP for 1 hour prior to 

lysis. Extracts were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies. C) The SMAD6 knockdown from B was confirmed by qRT-

PCR. HEK293 cells were transiently transfected with iFoxO4 or iSMAD6. Cells 

were then washed and lysed 48 hours later. The expression of SMAD6 

transcript was assessed by qRT-PCR. The error bars indicate standard 

deviation. 
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5.2.6 USP15 interacts and co-localises with ALK3 

Although USP15 was identified as an interactor of SMAD6 (Figure 5-2A) 

the results above indicate that it is unlikely to target SMAD6 for deubiquitylation 

(Figure 5-4, Figure 5-6), as stabilisation of SMAD6 would result in inhibition of 

BMP signalling. The observation that the total levels of SMAD1 are unaffected 

by either USP15 overexpression or depletion suggests that the target of USP15 

in the BMP pathway lies upstream of SMAD1. Immediately upstream of SMAD1 

are the type I BMP receptors (ALK2/3/6), which induce SMAD1 phosphorylation 

(Murakami et al., 2003). ALK3 is targeted for ubiquitylation by E3 ligases, which 

are recruited to the receptors by SMAD6. Hence, it was hypothesised that 

SMAD6 could escort USP15 to ALK3 in a similar manner and that USP15 

deubiquitylates ALK3, thereby opposing the effect of SMAD6 and its associated 

E3 ubiquitin ligases. 

Firstly, the ability of USP15 to interact with ALKs, including ALK3, was 

tested in HEK293 cells. GFP-USP15 interacted with FLAG-ALK5/2/3/6, with the 

strongest interaction observed between USP15 and ALK2 (Figure 5-8A). 

Secondly, the ability of SMAD6 to influence the interaction between USP15 and 

ALK3 was investigated. The expression of HA-SMAD6 reduced the interaction 

between GFP-USP15 and FLAG-ALK3, indicating that SMAD6 might disrupt the 

USP15-ALK3 complex formation (Figure 5-8B). Additionally, the interaction 

between GFP-USP15 and HA-SMAD6 was completely abolished in the 

presence of FLAG-ALK3. This could suggest that the interactions of USP15 with 

SMAD6 or ALK3 are mutually exclusive (Figure 5-8B).  

In order to verify this assumption, U2OS cells were transfected with GFP-

USP15, HA-SMAD6 and FLAG-ALK3 and their localisations analysed by 

immunofluorescence microscopy (Figure 5-9). In the absence of SMAD6 or 
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ALK3 overexpression, USP15 was observed pan-cellularly (Figure 5-9A). ALK3 

was present in the cytosol and at the membrane (Figure 5-9C,E,F,G), whereas 

SMAD6 expression was predominantly nuclear (Figure 5-9B,D,F,G). In the 

presence of ALK3, USP15 localised to the plasma membrane (Figure 

5-9C,D,E,F,G). USP15 co-localised partially with SMAD6 in the nucleus (Figure 

5-9B,D,E,F,G) and predominantly interacted with ALK3 at the membrane and 

the cytosol (Figure 5-9B,D,E,F,G). The nuclear presence of SMAD6 indicates 

that SMAD6 is unlikely to direct USP15 to ALK3 at the membrane. It might be 

possible that the expression of SMAD6 induces modulations on USP15 and/or 

ALK3 (or induces further proteins) that limit the interaction between ALK3 and 

USP15. 

 

Figure 5-8 USP15 interacts with SMAD6 and ALK3 

A) HEK293 cells were co-transfected with N-terminal FLAG-tagged ALK5, 

ALK3, ALK2, ALK6, control and GFP-USP15. GFP-IPs or extracts were 

resolved by SDS-PAGE and immunoblotted with the indicated antibodies. B) 

HEK293 cells expressing GFP control or GFP-USP15 were transfected with 

FLAG-ALK3, HA-SMAD6 or both as indicated. GFP-IPs or extracts were 

resolved by SDS-PAGE and subjected to immunoblotting with the indicated 

antibodies.   
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Figure 5-9 USP15 localises to membranes when co-transfected with ALK3 

A-G) Fixed cell immunofluorescence was performed on U2OS cells transfected 

with FLAG-ALK3, HA-SMAD6 and GFP-USP15. Individual and merged pictures 

are shown. Pictures were taken using a 60x lens, scale bar represents 30 μm. 
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5.2.7 USP15 deubiquitylates ALK3  

The interaction between USP15 and ALK3, their co-localisation and the 

positive effect of USP15 on BMP signalling suggest that USP15 could act as a 

DUB for ALK3. USP15 has been shown to cleave K6-, K11-, K27-, K29-, K33-, 

K48- and K63- but not M1-linked ubiquitin (McGouran et al., 2014, Herhaus et 

al., 2014). Recombinant GST-USP15 was able to cleave K48-linked 

polyubiquitin chains (Figure 5-10A). To test whether USP15 was able to 

deubiquitylate polyubiquitylated ALK3 in vitro, FLAG-ALK3 was 

immunoprecipitated from HEK293 cells treated with Bortezomib (to prevent 

polyubiquitylated ALK3 form degradation) and used as a substrate (alongside a 

FLAG control) for GST-USP15 in an in vitro DUB assay. USP15 was capable of 

deubiquitylating ALK3, resulting in the accumulation of monoubiquitin (Figure 

5-10B).  

To test the ability of USP15 to deubiquitylate ALK3 in cells, HEK293 cells 

were transfected with either a FLAG-control or FLAG-ALK3 in the presence or 

absence of HA-USP15 (Figure 5-11A). In the absence of HA-USP15, K48-

linked polyubiquitin and total ubiquitin chains were observed in FLAG-ALK3 IPs, 

whereas no ubiquitylation was observed in FLAG control-IPs. Both K48-linked 

polyubiquitin and total ubiquitin chains on ALK3 IPs were significantly reduced 

in the presence of HA-USP15 (Figure 5-11A). Additionally, the level of overall 

polyubiquitylation in extracts was reduced upon overexpression of HA-USP15, 

which reflects the ability of USP15 to cleave multiple ubiquitin chain linkages 

(section 5.1.2, (McGouran et al., 2013)). The observed polyubiquitylation of 

ALK3 does not depend on its kinase activity, as catalytically inactive ALK3 

D380A mutant was also polyubiquitylated to a similar extent as the wild-type 

ALK3 (Figure 5-11B). 
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In order to establish whether the catalytic activity of USP15 was required 

for ALK3 deubiquitylation, FLAG-ALK3 was immunoprecipitated from HEK293 

cells expressing control HA, wild type HA-USP15 or catalytically inactive HA-

USP15 C269S mutant (Figure 5-12A). In the absence of HA-USP15, FLAG-

ALK3 is efficiently polyubiquitylated, especially featuring K48-linked ubiquitin 

chains (Figure 5-12A). Treatment of cells with BMP did not alter the levels of 

FLAG-ALK3 polyubiquitylation (Figure 5-12A). Overexpression of wild-type HA-

USP15 but not HA-USP15 C269S mutant resulted in the loss of 

polyubiquitylated ALK3, indicating that USP15 requires its catalytic activity in 

order to reduce ubiquitylation on ALK3 (Figure 5-12A). 

Because the overall ubiquitylation was reduced in cell extracts upon wild 

type USP15 but not catalytically inactive USP15 overexpression (Figure 5-10D, 

Figure 5-12A), the role of endogenous USP15 in deubiquitylating ALK3 was 

established by performing a loss-of function experiment (Figure 5-12B). 

Depletion of endogenous USP15 led to an increase in total as well as K48-

linked ubiquitin chains on FLAG-ALK3 IPs (Figure 5-12B). This increased 

polyubiquitylation was significantly inhibited when cells were transfected with 

siRNA-resistant mutant of HA-USP15 (rescue), suggesting that the observed 

effects were unlikely to be due to off-target effects of USP15 siRNA (Figure 

5-12B).   
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Figure 5-10 USP15 deubiquitylates ALK3 in vitro 

A) Human recombinant GST-USP15 was incubated with K48-linked 2-7 

polyubiquitin chains in a DUB assay buffer for 1 hour at 30 °C. The reaction was 

stopped by the addition of SDS sample buffer and the assay mix was resolved 

by SDS-PAGE and immunoblotted with the indicated antibodies. B) HEK293 

cells transfected with FLAG control or FLAG-ALK3 vectors were treated with 

Bortezomib (10 μM) for 3 hours prior to lysis. FLAG-IPs from extracts were used 

as substrates for GST-USP15 in an in vitro deubiquitylation assay. The 

reactions were stopped by adding SDS sample buffer. The samples were 

resolved by SDS-PAGE and immunoblotted with the indicated antibodies.  
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Figure 5-11 USP15 deubiquitylates ALK3 in vivo 

A) HEK293 cells were transiently transfected with FLAG control or FLAG-ALK3 

vectors with or without HA-USP15. Prior to lysis, cells were treated with 10 μM 

Bortezomib for 3 hours. FLAG-IPs and extract inputs were resolved by SDS-

PAGE and immunoblotted with the indicated antibodies. B) HEK293 cells were 

transfected with GFP control, GFP-ALK3 or GFP-ALK3 D380A (kinase dead) 

vectors. Prior to lysis, cells were treated with 10 μM Bortezomib for 3 hours. 

GFP-IPs and extracts were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies.  
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Figure 5-12 USP15 requires catalytic activity to reduce polyubiquitylation 
on ALK3 

A) HEK293 cells transiently expressing FLAG-ALK3, HA-USP15, and USP15 

C269S (DUB dead) were pretreated with 10 μM Bortezomib for 3 hours and 

then stimulated with 6.25 ng/ml BMP for 1 hour prior to lysis. FLAG-IPs and 

extract inputs were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies (performed by M. Al-Salihi). B) HEK293 cells transiently 

expressing iUSP15#3, FLAG-ALK3, and iUSP15#3 resistant silent mutant of 

HA-USP15 (HA-USP15 rescue), were pretreated with 10 μM Bortezomib for 3 

hours and then stimulated with 6.25 ng/ml BMP for 1 hour prior to lysis. FLAG-

IPs and extract inputs were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies (performed by M. Al-Salihi). 
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5.2.8 Polyubiquitylated ALK3 undergoes proteasomal degradation 

The degradation of polyubiquitylated ALK3 could be mediated via the 

proteasome or the lysosome (Bonifacino and Weissman, 1998), or possibly 

both (Zhao et al., 2012). Hence, the turnover of untagged human ALK3 was 

monitored in the presence of the proteasomal inhibitor Bortezomib and 

lysosomal fusion inhibitor Bafilomycin A1 in HEK293 cells (Yoshimori et al., 

1991). As expected, Bortezomib resulted in the accumulation of polyubiquitin 

chains in extracts, whereas Bafilomycin A1 caused increased levels of the 

autophagic marker LC3-II (Allen et al., 2013) (Figure 5-13A). Enhanced levels of 

ALK3 were detected in cells treated with Bortezomib, but not with control or 

Bafilomycin A1 treated cells. The treatment of cells with Cycloheximide for 24 

hours prevented de novo ALK3 synthesis and also resulted in the accumulation 

of ALK3 only in the presence of Bortezomib (Figure 5-13A). Similar results were 

obtained when Xenopus ALK3-HA was overexpressed in HEK293 cells (Figure 

5-13B). The pre-treatment of cells with Bortezomib, but not Bafilomycin A1, 

resulted in enhanced levels of ALK3 in extracts treated with Cycloheximide and 

increased ALK3 polyubiquitylation in HA-ALK3 IPs (Figure 5-13B). Human 

FLAG-ALK3, like untagged and Xenopus HA-ALK3, was degraded via the 

proteasome, as indicated by increased polyubiquitylation of FLAG-ALK3 IPs in 

the presence of Bortezomib but not Bafilomycin A1 (Figure 5-13C). Together, 

these results suggest that ALK3 polyubiquitylation leads to its proteasomal 

degradation.  
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Figure 5-13 Polyubiquitylated ALK3 undergoes proteasomal degradation 

A) HEK293 cells transfected with untagged ALK3 were treated with or without 

20 μM Cycloheximide for 21 and then with DMSO control, 100 nM Bafilomycin 

A1 or 10 μM Bortezomib for 3 hours prior to lysis. Extracts were resolved by 

SDS-PAGE and immunoblotted with the indicated antibodies. B) HEK293 cells 

transfected with Xenopus ALK3 (xALK3-HA) were treated with or without 20 μM 

Cycloheximide for 21 hours and then with DMSO control, 100 nM Bafilomycin 

A1 or 10 μM Bortezomib for 3 hours prior to lysis. Extracts or HA-IPs were 

resolved by SDS-PAGE and immunoblotted with the indicated antibodies. C) 

HEK293 cells transfected with or without human FLAG-ALK3 were treated with 

DMSO control, 100 nM Bafilomycin A1 or 10 μM Bortezomib for 3 hours prior to 

lysis. Extracts or FLAG-IPs were resolved by SDS-PAGE and immunoblotted 

with the indicated antibodies.  
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5.2.9 USP15 impacts BMP-induced osteoblastic differentiation  

Mesenchymal cells differentiate into chondrocytes, myocytes, adipocytes 

and osteoblasts (Moses and Serra, 1996). The differentiation into osteoblasts is 

driven by the commitment of the undifferentiated mesenchymal cells into 

osteoblast progenitors, which then mature into osteoblasts that exhibit 

phenotypes of bone-forming cells. These phenotypes include production of 

extracellular matrix proteins (i.e. type I collagen, osteocalcin), responsiveness to 

calcitropic hormones and high levels of alkaline phosphatase (AP) activity 

(Katagiri et al., 1994). BMP2 has been shown to induce alkaline phosphatase 

activity, inhibit myotube formation of myoblastic C2C12 cells and convert their 

differentiation pathway into the osteoblast lineage (Katagiri et al., 1994).  

To investigate whether USP15 has a physiological function in BMP 

signalling, the impact of its depletion on differentiation of the mouse myoblast 

progenitor C2C12 cells into osteoblasts by BMP was tested. RNAi-mediated 

depletion of USP15 in C2C12 cells resulted in reduced BMP-induced SMAD1 

phosphorylation levels (Figure 5-14A), and a significantly reduced BMP-induced 

alkaline phosphatase activity at both 48 hours and 96 hours post BMP-

stimulation (Figure 5-14B). USP15 is conserved in mice (Angelats et al., 2003) 

and the knockdown of USP15 was confirmed by immunoblotting (Figure 5-14B). 
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Figure 5-14 USP15 impacts mouse osteoblastic differentiation  

A) The mouse myoblast cell line C2C12 was transfected with siRNAs targeting 

mouse (m) FoxO4 or USP15. Cells were treated with or without BMP for 1 hour 

prior to lysis. Extracts were resolved by SDS-PAGE and immunoblotted with the 

indicated antibodies. B) C2C12 cells transfected with mouse (m) iFoxO4 or 

iUSP15 were grown for up to 96 hours in the presence of 100 ng/ml BMP2. 

Cells were lysed and the alkaline phosphatase activity measured using a 

fluorescence plate reader. Data are represented as mean and error bars 

indicate standard deviation (n=3). Differences with p<0.05 were annotated as *. 

Representative extracts were resolved by SDS-PAGE and immunoblotted with 

the indicated antibodies.  
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vertebrate embryogenesis. During gastrulation (stages 5.25-10) the ventral 

centre expresses BMP and BMP related cytokines, whereas in the dorsal side 

(Spemann organiser) BMP antagonists are produced, resulting in a gradient of 

BMP signalling along the dorsal-ventral axis (Eivers et al., 2008, De Robertis 

and Kuroda, 2004). BMP-mediated phosphorylation of SMAD1 in Xenopus 

embryos is detected after stage 9 (based on staging by Niewkoop and Faber, 

1975) of development and is sustained thereafter (Figure 5-15A) (Sapkota et 

al., 2007). USP15 depletion in Xenopus embryos by morpholinos (xUSP15-MO) 
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decreased SMAD1 tail-phosphorylation (Figure 5-15A). To investigate whether 

USP15 influences BMP-mediated Xenopus development, the effect of USP15 

depletion was measured by the mRNA expression of xVENT1, a marker of BMP 

signalling in Xenopus embryos (Figure 5-15B). Antisense morpholino 

oligonucleotides targeting Xenopus USP15 (xUSP15-MO) or control (control-

MO) were injected into one-cell-stage embryos and animal caps were cut at 

stage 8.5. The animal caps were collected at stage 10 and mRNA isolated for 

subsequent qRT-PCR analysis. Depletion of USP15 resulted in a reduction of 

the BMP-induced xVENT1 mRNA levels, indicating that USP15 controls BMP 

signalling during Xenopus embryogenesis (Figure 5-15B). 

 

 
 
Figure 5-15 USP15 modulates BMP signalling in Xenopus embryogenesis 

A) Xenopus embryos were injected with 80 ng of either xUSP15- (xUSP15-MO) 

or control- (control-MO) morpholinos at the 1-cell stage and then collected at 

the indicated stages. Lysates were resolved by SDS-PAGE and immunoblotted 

with the indicated antibodies (performed by K. Dingwell). B) qRT-PCR analysis 

of xVENT1 mRNA expression. Embryos were injected with 80 ng of either 

USP15-MO or control-MO at the 1-cell stage and animal caps were cut at stage 

8.5. The animal caps were collected at the equivalent embryo stage of 10 and 

processed for qRT-PCR. Data are represented as mean and error bars indicate 

standard deviation (n=3) (performed by K. Dingwell).  
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5.3 Discussion 

Several DUBs targeting the TGFβ type I receptors have been reported 

(Zhang et al., 2012b, Eichhorn et al., 2012, Al-Salihi et al., 2012a), however the 

DUBs acting on BMP type I receptors remained undefined. This study describes 

the discovery of USP15 as a DUB for ALK3. In the course of a proteomic 

approach to identify novel regulators of the BMP pathway, USP15 was identified 

as an interactor of SMAD6. Here, it is shown that USP15 binds to and 

deubiquitylates ALK3, thereby enhancing BMP signalling. Consequently, 

USP15 impacts BMP-induced SMAD1 phosphorylation, mouse osteoblastic 

differentiation and Xenopus embryogenesis. 

 

5.3.1 USP15 impacts BMP signalling in multiple species 

Depletion of USP15 from human, mouse and Xenopus cells confirms that 

USP15 plays a critical role in BMP signalling. In multiple human cell lines 

(HEK293, HeLa and U2OS), mouse C2C12 cells and Xenopus embryos, RNAi-

mediated depletion of USP15 resulted in the inhibition of BMP-induced tail-

phosphorylation of SMAD1. Although USP15 had been reported to bind to and 

deubiquitylate monoubiquitylated R-SMADs (Inui et al., 2011), perturbation of 

USP15 expression did not alter the total SMAD1 levels in all of the above 

species. Furthermore, no interaction was detected between endogenous 

USP15 and overexpressed R-SMADs, suggesting other targets for USP15 in 

the BMP pathway. The significance of USP15-mediated BMP signalling 

regulation was confirmed in a genome wide loss-of-function screen in zebrafish, 

where USP15 was identified as a critical player in dorsal-ventral patterning (Tse 

et al., 2013). In accordance with this finding, USP15 also affects the expression 

of the ventral marker xVENT1 in Xenopus laevis embryos. Vent1 is a homeobox 
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transcriptional repressor expressed during gastrulation in the ventral region of 

the animal cap and acts downstream of BMP4 in the ventral signalling pathway. 

It antagonises the dorsal signalling centre and results in ventral mesoderm 

formation (Onichtchouk et al., 1998, Gawantka et al., 1995).  

 

5.3.2 USP15 targets ALK3 for deubiquitylation and degradation via the 

proteasome 

USP15 interacts with and deubiquitylates the type I BMP receptor ALK3. 

Ubiquitylated proteins can be degraded through the proteasomal, the lysosomal 

or the autophagic pathway (Komander and Rape, 2012). The ubiquitylation of 

the receptor kinase EGFR causes endocytosis-mediated degradation via the 

lysosome (Ganley et al., 2011). Additionally, the type I TGFβ receptor has been 

reported to associate with the transmembrane prostate androgen-induced 

protein (TMEPAI), which is localised to the lysosome and late endosome. 

TMEPAI also binds NEDD4 and together they promote the degradation of TβR-I 

through lysosomes (Bai et al., 2014). Lysosomal degradation can be blocked 

experimentally with Bafilomycin A1, which inhibits lysosomal acidification via the 

vacuolar-type H+-ATPase (Yoshimori et al., 1991). Polyubiquitylation of ALK3 

results in its degradation, which is not inhibited by Bafilomycin A1. This 

indicates that the lysosomal-autophagic pathway does not mediate ALK3 

turnover. In contrast, by blocking the proteasome with Bortezomib, ALK3 is 

stabilised. This is consistent with the presence of K48-linked polyubiquitin 

chains on ALK3, which promote proteasomal degradation (Pickart, 1997). By 

cleaving K48-linked ubiquitin chains on ALK3, USP15 rescues the type I BMP 

receptor from ubiquitin-mediated proteasomal degradation. It is possible that 

other ubiquitin-chain types are present on ALK3 in addition to K48-chains and 
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as USP15 can cleave several different chain linkages (McGouran et al., 2013), 

it would be predicted that USP15 can remove other ubiquitin-chain linkages on 

ALK3 in addition to K48-linked ubiquitin chains. It would be interesting to 

determine which residues of ALK3 are polyubiquitylated, if other chain linkages 

are present on ALK3 and if so, which cellular function these chain types confer 

on ALK3.  

BMP stimulation or ALK3 kinase activity did not affect the 

polyubiquitylation of ALK3. The accumulation of SMAD6 and its associated E3 

ubiquitin ligases on ALK3 is possibly a late event during BMP signalling, as it 

serves as a feedback function. Hence, it would be interesting to investigate 

whether endogenous ALK3 polyubiquitylation increases at later stages of BMP 

treatment.  

 

5.3.3 The role of SMAD6 in USP15 mediated deubiquitylation of ALK3 

It is well established that I-SMADs direct E3 ubiquitin ligases to type I 

and II TGFβ and BMP receptors to catalyse their polyubiquitylation and 

subsequent degradation (Ebisawa et al., 2001, Kavsak et al., 2000, Murakami 

et al., 2003, Fukasawa et al., 2010, Komuro et al., 2004, Kuratomi et al., 2005, 

Seo et al., 2004, Lin et al., 2000). However, interaction and co-localisation data 

suggest that SMAD6 does not direct USP15 to ALK3. SMAD6 is predominantly 

found in the nucleus, whereas ALK3 and USP15 are cytosolic and present at 

the membrane. SMAD6 overexpression slightly inhibits the association of 

USP15 with ALK3, and ALK3 overexpression totally disrupts binding of USP15 

to SMAD6. This suggests that USP15-SMAD6 and USP15-ALK3 interactions 

are mutually exclusive. Nevertheless, USP15 counters the inhibitory effect of 

SMAD6 on BMP signalling. Hence, in addition to deubiquitylating the receptors, 



- 215 - 

USP15 may restrict SMAD6-E3 ligase complexes from reaching the receptors. 

The role of USP15 in the BMP signalling pathway is most likely to strike a 

balance between BMP receptor degradation and stabilisation. Thus, it would 

also be interesting to study the effect of USP15 on the interaction between 

ALK3 and SMAD6. SMAD6 can inhibit ALK3 and ALK6, but not ALK2, receptor 

function through physical interaction, possibly because ALK3 and ALK6 are 

structurally related (Goto et al., 2007). USP15 interacts equally strong with 

ALK3, ALK5 and ALK6 but the strongest binding of USP15 with type I receptors 

was observed between USP15 and ALK2. ALK3 is widely expressed (as is 

USP15), however ALK6 expression is restricted to certain cell types and 

tissues. Furthermore, ALK3 and ALK6 mostly signal through BMP2, whereas 

ALK2 mostly signals through BMP6 and BMP9 (Ebisawa et al., 1999, Brown et 

al., 2005, Scharpfenecker et al., 2007). Thus, it would be interesting to test 

whether USP15 also protects ALK2 from proteasomal degradation and if BMP6 

or BMP9-induced target gene transcription is influenced by USP15 perturbation.  

In conclusion, the differential binding affinities, subcellular and tissue 

specific distributions of ALKs, SMAD6 and USP15 possibly add an additional 

layer to the feedback induced regulation of BMP signalling by SMAD6 and 

USP15.  

 

5.3.4 Substrate specificity of USP4, USP11 and USP15 

The closely related DUBs USP4, USP11 and USP15 have been reported 

to modulate TGFβ signalling by deubiquitylating ALK5 through distinct modes of 

action (Al-Salihi et al., 2012a, Eichhorn et al., 2012, Zhang et al., 2012b) (cf. 

section 1.3.2.2). USP15 interacts with ALKs that signal through BMP, as well as 
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with TGFβ receptor ALK5, which has been described previously (Eichhorn et 

al., 2012).  

USP4, USP11 and USP15 are closely related DUBs (Elliott et al., 2011) 

and thus are likely to have similar cellular targets, however the role in BMP 

signalling is unique to USP15. Depletion of USP15 caused a reduction in BMP-

induced transcription, but depletion of USP11 or USP4 (Zhang et al., 2012b) did 

not affect BMP-mediated gene expression. Pathway specificity is possibly 

conferred by their relative binding affinities to type I TGFβ/BMP receptors and/or 

I-SMADs, among other regulatory factors.  

The DUSP-UBL domains in USP4, 11 and 15 could be key features to 

determine substrate specificity as they adopt different configurations that could 

regulate substrate binding (Elliott et al., 2011). The electrostatic characteristics 

of the DUSP-UBL region of USP4/11/15 are very similar, however the linker 

region is distinct in these three DUBs. The linker region connects the DUSP and 

UBL domains and determines their arrangement (Figure 5-1). In USP4 the UBL 

domain is independent of the DUSP domain and the linker region stabilises 

dimerisation of USP4, which locks the two DUSP domains into one unit. USP11 

is only present as a monomer due to a shortened linker region and the DUSP 

and UBL domains can move independently from each other. In USP15, the 

DUSP and UBL domains form a single unit in a fixed orientation, which is 

defined by the linker region (Figure 5-1B). These differences in the DUSP-UBL 

domain arrangements of USP4, 11 and 15 can modify surface properties and 

are the likely features to provide selective binding properties (Elliott et al., 

2011). It would be interesting to map the USP15-ALK3 or USP15-SMAD6 

interaction domains and test if the binding of USP15 to ALK3 or SMAD6 is 

mediated by the USP15 DUSP and UBL domains. If so, it would be interesting 
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to investigate whether swapping the DUSP-UBL domains from USP4, 11 and 

15 alters their substrate specificity towards different ALKs and I-SMADs.  

The activity and substrate specificity of USP4, 11 and 15 might further be 

influenced by PTMs within the DUBs or their targets. Phosphorylation of USP4 

by AKT induces membrane localisation, binding to ALK5 and even influences 

stability and catalytic activity of USP4 (Zhang et al., 2012b). The AKT 

phosphorylation site in USP4 (S445) is not conserved in USP11 or USP15 and 

whether USP11 and USP15 are further regulated by PTMs has not been 

investigated so far. Phosphorylation on S445 of USP4 is also required for 

homomeric and heteromeric complex formation with USP11, USP15 and 

USP19 (Zhang et al., 2012b). This suggests that these DUBs could act as a 

complex and potentially individually compensate for the loss of the other. In 

addition to PTMs, differential expression patterns of USP4, 11 and 15 in cells 

and tissues could also contribute to the context-dependent regulation of 

TGFβ/BMP signalling. The generation of single, double and triple USP4, USP11 

and USP15 knockout (or catalytically inactive knockin) mice might give 

molecular insights into their pathway-selectivity and redundancy. It has already 

been suggested that USP15 knockout T cells exhibit normal TGFβ signalling 

(Zou et al., 2014), indicating possible redundancy in the TGFβ pathway. 

 

5.3.5 USP15 as a potential drug target 

USP15 is implicated in the regulation of various cellular signalling 

pathways (section 5.1.2) and altered in different cancers. Amplification of 

USP15 was observed in glioblastoma, breast and ovarian cancers (Eichhorn et 

al., 2012), whereas in pancreatic cancers lower USP15 copy numbers were 

detected and USP15 deletion events were probably enriched by selective 
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pressures (Srihari and Ragan, 2013). USP15 has already been suggested as a 

potential drug target for the treatment of glioblastoma, a pathology associated 

with TGFβ signalling (Eichhorn et al., 2012). Apart from its critical role in TGFβ 

signalling, the catalytic activity of USP15 is also essential for BMP signalling. 

Loss of USP15 inhibits BMP signalling in human and mouse cells, as well as 

during Xenopus embryogenesis. Mutations leading to overactive BMP signalling 

are associated with diseases such as Duchenne muscular dystrophy, 

heterotopic ossification and bone metastasis (Shi et al., 2013). Duchenne 

muscular dystrophy is a pathology that results in muscle degeneration due to 

constitutive muscle fiber damage, chronic inflammation and fibrosis (Mann et 

al., 2011). Heterotopic ossification is characterised by the formation of cartilage 

and bone at aberrant locations outside the skeleton and is caused by 

inflammation associated with traumatic injury. Furthermore, endothelial-

mesenchymal transition and mesoderm cell differentiation into chondrocytes 

and osteocytes contribute to heterotopic ossification (Ramirez et al., 2014). 

Bone metastasis is the most common secondary tumour site in prostate cancer 

progression (Ye et al., 2007). Prostate cancer metastasis to bone is associated 

with increased osteoblast activity, which is characterised by high levels of 

alkaline phosphatase (AP). In normal bone tissue or bone metastasis originating 

from other organs, only few osteoblasts are present. Therefore, AP activity, a 

marker of osteoblast differentiation, was found to be significantly increased in 

prostate cancer patients that exhibited bone metastases compared to patients 

without metastasis. Patients with increased AP also showed significantly lower 

survival rates than patients with low AP concentrations (Jung et al., 2004). 

Moreover, it has been suggested that increased AP activity is linked to bone 

resorption in women with severe osteoporosis (Hulth et al., 1979). Depletion of 
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USP15 inhibited BMP-induced alkaline phosphatase activity and decreased 

BMP-mediated downstream signalling. Therefore, the inhibition of USP15 could 

be employed as a therapeutic strategy to inhibit BMP signalling in pathologies 

caused by elevated BMP pathway activity.  

However, USP15 inhibition could have adverse effects on muscle 

regeneration after damage (Ono et al., 2011, Clever et al., 2010). Thus, the 

administration of USP15 inhibitors has to be cautioned and would only be 

beneficial in certain context-dependent physiological settings, which might differ 

in patients. Moreover, USP15 has multiple other targets (cf. section 5.1.2) and 

USP15 inhibitors could be non-selective and affect many cellular processes 

beyond those controlled by the BMP pathway. Therefore, it would be essential 

to map the USP15-ALK3 interaction, in order to design small molecule inhibitors 

that could act BMP signalling specific. 
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6 O-GlcNAc modification in the TGFβ/BMP pathway 

6.1 Introduction 

O-GlcNAcylation is a post-translational modification on Serine/Threonine 

residues of target proteins that is catalysed by O-GlcNAc transferase (OGT) 

(section 1.1.3). A proteomic approach identified OGT as an interactor of GFP-

SMAD2. To date, SMADs have not been associated with O-GlcNAc 

modifications. Interestingly, a closer inspection of their conserved tail-

phosphorylation “SXS” motif revealed that the first Serine potentially conforms 

to a putative O-GlcNAcylation motif (Figure 6-1). Extensive crosstalk between 

O-GlcNAcylation and phosphorylation has been reported in various signalling 

pathways (Hart et al., 2011). The occupancy of O-GlcNAc on one of the 

TGFβ/BMP-mediated phosphorylation sites on R-SMADs could potentially 

cause delayed or alternative downstream signalling. Therefore, the aim of this 

chapter was to establish whether SMADs bind to O-GlcNAcylated proteins or 

are modified by OGT through O-GlcNAcylation and if so, whether this 

influenced TGFβ/BMP signalling.  

 

 

Figure 6-1 Putative optimal motif for O-GlcNAc modification by OGT 

Schematic representation of the amino acid sequence that is preferentially 

targeted by OGT to catalyse O-GlcNAc modification on position 0 of substrates. 

Unpublished information provided by S. Pathak and D. van Aalten. 
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6.1.1 The effect of high glucose on TGFβ signalling 

The limiting factor in the synthesis of O-GlcNAc is the availability of 

glucose, which is processed through the metabolically controlled hexosamine 

biosynthetic pathway (HBP) (Figure 1-3). High glucose concentrations have 

been reported to cause an increase in TGFβ1 ligand expression, through the 

HBP pathway (Kolm-Litty et al., 1998). In the HBP pathway, GFAT 

(glutamine:fructose-6-phosphate amidotransferase) catalyses the conversion of 

glucose into glucosamine (Figure 1-3), which enhances TGFβ1 protein 

production, promotes conversion of latent TGFβ1 to the active form and 

subsequently increases the production of extracellular matrix proteins (Weigert 

et al., 2004, Cheng et al., 2013, Ye et al., 2013, Kolm-Litty et al., 1998). The 

increase in TGFβ1 protein levels in high glucose conditions also coincides with 

increases in expression of TβR-II, SMAD2/3 and activation of TGFβ signalling 

as well as the AKT/mTOR pathway (Aguilar et al., 2014, Hong et al., 2001, 

Singh et al., 2008, Wu and Derynck, 2009). High concentrations of glucose 

result in increased cell size and protein synthesis, which are dependent on 

TGFβ receptor activity (Wu and Derynck, 2009).  

 

6.1.2 O-GlcNAcylation and the TGFβ/BMP pathways 

Increased glucose availability correlates with increased O-GlcNAc 

modification (Aguilar et al., 2014). Although O-GlcNAc modification of the 

TGFβ/BMP pathway components would be predicted to impact signalling in 

response to glucose, not much is known about this. TGFβ promotes site-

specific O-GlcNAcylation of oncofetal fibronectin, which is an ECM component 

expressed by cancer cells and embryonic tissues (Freire-de-Lima et al., 2011). 

BMP15, an oocyte-secreted factor critical for the regulation of ovarian 
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physiology, is O-GlcNAcylated on T10, however the physiological significance 

of O-GlcNAcylation on BMP15 is still unknown (Saito et al., 2008). 

In this chapter, it was investigated whether SMADs interact with OGT 

and are modified by O-GlcNAcylation or bind to O-GlcNAcylated proteins.  
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6.2 Results  

6.2.1 R-SMADs interact with endogenous OGT and co-precipitate O-

GlcNAc modification 

In order to test whether OGT interacts with R-SMADs at the endogenous 

level, SMAD1, SMAD2 and SMAD3 IPs from HeLa extracts were subjected to 

immunoblotting with anti-OGT antibody. OGT was detected in SMAD1, SMAD2 

and SMAD3 IPs. As expected, stimulation of cells with BMP and TGFβ caused 

enhanced phosphorylation of SMAD1 and SMAD2/3 respectively, however this 

did not affect the interaction between OGT and SMAD1, SMAD2 or SMAD3 

(Figure 6-2, Figure 6-3, Figure 6-4). Treatment of HeLa cells with small 

molecule inhibitors of OGT (4Ac-5S-glcNAc, iT) resulted in a decrease in O-

GlcNAc modification from cell extracts. In order to completely remove O-GlcNAc 

from IPs treated with iT, the IPs were additionally incubated with bacterially 

expressed O-GlcNAcase (cpOGA, iT*). The O-GlcNAcase (OGA) inhibitor 

(GlcNAcstatin G, iA) resulted in significant accumulation of O-GlcNAc modified 

proteins in cell extracts (Pathak et al., 2012). Neither inhibitor altered the 

interaction between R-SMADs and OGT (Figure 6-2, Figure 6-3, Figure 6-4). 

To investigate whether R-SMADs were O-GlcNAcylated or pulled-down 

O-GlcNAc modified proteins from cell extracts, endogenous R-SMAD IPs were 

subjected to immunoblotting with an antibody that recognises O-GlcNAc 

modification. O-GlcNAcylation was detected in IPs from endogenous SMAD1 

(Figure 6-2), SMAD2 (Figure 6-3), as well as SMAD3 (Figure 6-4) independent 

of BMP or TGFβ stimulation. Treatment of HeLa cells with the small molecule 

inhibitor of OGT resulted in complete loss of O-GlcNAc modification from all R-

SMAD IPs (Figure 6-2, Figure 6-3, Figure 6-4). No O-GlcNAc was detected in 

anti-IgG IPs employed as control (Figure 6-2, Figure 6-3, Figure 6-4).  
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Figure 6-2 O-GlcNAc modification around 50 kDa is detected in SMAD1 IPs 

An endogenous IP with anti-SMAD1 antibody or pre-immune sheep IgG was 

performed in HeLa cell extracts, stimulated with or without 25 ng/ml BMP2 for 1 

hour in the presence or absence of O-GlcNAc transferase inhibitor (4Ac-5S-

glcNAc, iT, 10 μM) or O-GlcNAcase inhibitor (GlcNAcstatin G, iA, 2 μM) which 

were added 16 hours prior to ligand stimulation. Indicated cell extracts and IPs 

were additionally treated with cpOGA (iT*) to remove residual O-GlcNAcylation. 

Cell extracts (input), endogenous IgG or anti-SMAD1 IPs were resolved by 

SDS-PAGE and immunoblotted with the indicated antibodies. Reprobe= the 

membrane was stripped of the first primary antibody (O-GlcNAcylation) and the 

same membrane was probed with a second primary antibody (SMAD1). 
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Figure 6-3 O-GlcNAc modifications around 50 kDa and 55 kDa are 
detected in SMAD2 IPs 

An endogenous IP with anti-SMAD2 antibody or pre-immune sheep IgG was 

performed in HeLa cell extracts, stimulated with or without 50 pM TGFβ for 1 

hour in the presence or absence of O-GlcNAc transferase inhibitor (4Ac-5S-

glcNAc, iT, 10 μM) or O-GlcNAcase inhibitor (GlcNAcstatin G, iA, 2 μM) which 

were added 16 hours prior to ligand stimulation. Indicated cell extracts and IPs 

were additionally treated with cpOGA (iT*) to remove residual O-GlcNAcylation. 

Cell extracts (input), endogenous IgG or anti-SMAD2 IPs were resolved by 

SDS-PAGE and immunoblotted with the indicated antibodies. 
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Figure 6-4 O-GlcNAc modifications around 50 kDa and 55 kDa are 
detected in SMAD3 IPs 

An endogenous IP with anti-SMAD3 antibody or pre-immune sheep IgG was 

performed in HeLa cell extracts, stimulated with or without 50 pM TGFβ for 1 

hour in the presence or absence of O-GlcNAc transferase inhibitor (4Ac-5S-

glcNAc, iT, 10 μM) or O-GlcNAcase inhibitor (GlcNAcstatin G, iA, 2 μM) which 

were added 16 hours prior to ligand stimulation. Indicated cell extracts and IPs 

were additionally treated with cpOGA (iT*) to remove residual O-GlcNAcylation. 

Cell extracts (input), endogenous IgG or anti-SMAD3 IPs were resolved by 

SDS-PAGE and immunoblotted with the indicated antibodies. 

 

6.2.2 R-SMADs bind to unidentified O-GlcNAcylated proteins 

A single band of O-GlcNAc modification was observed in SMAD1 IPs 

proximal to the 50 kDa marker, where SMAD1 itself migrates (Figure 6-2). A 

reprobe immunoblot with SMAD1 antibody on the same membrane (reprobe, 

Figure 6-2), indicated a superimposition of SMAD1 and the O-GlcNAc signal, 

suggesting that SMAD1 itself might be O-GlcNAcylated or binds to an O-

GlcNAcylated protein of ~50 kDa. Two distinct O-GlcNAcylation bands at ~50 

kDa and ~55 kDa were observed in SMAD2 and SMAD3 IPs (Figure 6-3, Figure 
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6-4). Because SMAD2 (~55 kDa) and SMAD3 (~50 kDa) exhibit similar patterns 

of O-GlcNAc modifications at their respective molecular weights, it could be that 

SMADs2/3 are O-GlcNAc modified and each protein also pulls down the other 

(Nakao et al., 1997), or that SMADs2/3 pull down other O-GlcNAc modified 

proteins. To investigate these possibilities, the R-SMAD IPs were run and 

analysed on the same gel (Figure 6-5A). The O-GlcNAc double band observed 

in SMAD3 IPs exhibited a similar electrophoretic migration pattern as the bands 

observed in SMAD2 IPs, however the levels of O-GlcNAc present in SMAD2 

IPs were significantly lower (Figure 6-5A). Furthermore, the relative locations of 

O-GlcNAc modification in SMAD1 and SMAD3 IPs were similar, although 

SMAD3 (aa 425) is slightly smaller than SMAD1 (aa 465) (Figure 6-5A). This 

indicates that the observed O-GlcNAc modification is potentially an R-SMAD-

interacting protein rather than O-GlcNAc modified R-SMADs themselves (Figure 

6-5A). To evaluate this further, O-GlcNAc modification and SMAD3 levels on 

SMAD3 IPs were compared using LI-COR analysis (Figure 6-5B). The LI-COR 

image revealed that the O-GlcNAcylation signal was detected at a higher 

molecular weight than SMAD3 itself. Therefore, it is more likely that SMAD3 is 

not O-GlcNAcylated, but binds to O-GlcNAc modified proteins.  

O-GlcNAc is a nutrient sensitive PTM and the amount of O-GlcNAc 

present in cells is dependent on the glucose concentration (section 1.1.3). In 

order to test whether the amount of glucose regulates the levels of O-GlcNAc 

present in SMAD1 and SMAD3 IPs, HeLa cells were grown in glucose free 

media for 16 hours (Figure 6-6). Glucose depletion reduced the amount of O-

GlcNAc present in inputs, depleted the O-GlcNAc signal in SMAD1 IPs (Figure 

6-6A) and reduced the O-GlcNAc doublet observed in SMAD3 IPs (Figure 

6-6B).  
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Figure 6-5 SMAD3 is unlikely to be O-GlcNAcylated 

A) Endogenous IPs with anti-SMAD1, 2 and 3 antibody or pre-immune sheep 

IgG were performed in HeLa cell extracts. Cells were treated for 16 hours with 

or without O-GlcNAcase inhibitor (GlcNAcstatin G, iA, 2 μM) or O-GlcNAc 

transferase inhibitor (4Ac-5S-glcNAc, iT, 10 μM) and cpOGA (iT*). Cell extracts 

(input), endogenous IgG or anti-SMAD IPs were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies. B) An endogenous IP with anti-

SMAD3 antibody or pre-immune sheep IgG was performed in HeLa cell 

extracts. Cells were treated for 16 hours with or without O-GlcNAcase inhibitor 

(GlcNAcstatin G, iA, 2 μM) or O-GlcNAc transferase inhibitor (4Ac-5S-glcNAc, 

iT, 10 μM) and cpOGA (iT*). IPs were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies. The Western Blot was analysed 

using LI-COR.  
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Figure 6-6 Low glucose conditions weaken the O-GlcNAc signal in SMAD1 
and SMAD3 IPs 

A) HeLa cells were grown in the presence or absence of glucose for 16 hours 

and IgG or anti-SMAD1 was immunoprecipitated from extracts. Cell extracts 

(input), endogenous IgG or anti-SMAD1 IPs were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies. B) As in A, except that SMAD3 

was immunoprecipitated. 
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included, as the levels of O-GlcNAc modification observed in SMAD2 IPs were 

less than that observed in SMAD3 IPs (Figure 6-5A). As expected, TAB1 was 

only O-GlcNAcylated in the presence of OGT. None of the R-SMADs or I-

50

Ig
G

SMAD1 input

IP

HeLa

75

50

IB: SMAD1

IB: O-GlcNAcylation

IB: GAPDH

A

Ig
G

SMAD3 input

IP

HeLa

-+ + -+
75

IB: SMAD2/3

IB: O-GlcNAcylation

IB: GAPDH

B

Glucose

-+ + -+ Glucose



- 230 - 

SMADs were O-GlcNAcylated in vitro, however OGT O-GlcNAcylated SMAD4 

(Figure 6-7). This confirms that SMAD1, SMAD2 and SMAD3 are unlikely to be 

O-GlcNAcylated. 

 

 

Figure 6-7 SMAD4 is O-GlcNAcylated in vitro 

An in vitro O-GlcNAcylation assay was performed with human recombinant 

SMADs and TAB1 used as substrates. The substrate proteins were incubated 

with O-GlcNAc transferase and UDP-GlcNAc in an assay buffer containing 50 

mM Tris-HCl, pH 7.5, 1 mM DTT and 12.5 mM MgCl2 for 90 min at 37 °C. 

Proteins were resolved by SDS-PAGE and transferred to nitrocellulose 

membranes, which were stained with Ponceau S or immunoblotted with the 

indicated antibody. 
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In order to test if SMAD4 is O-GlcNAcylated in vivo, endogenous SMAD4 
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the predicted molecular weight of SMAD4 from cell extracts that were treated 

with O-GlcNAcase inhibitors (Figure 6-8). 

An online O-GlcNAc modification prediction tool (Gupta and Brunak, 

2002), predicted that SMAD4 could be O-GlcNAcylated at S221 and S483 

(Figure 6-9A). An in vitro O-GlcNAcylation assay was set up in order to test 

whether GST-SMAD4 was O-GlcNAcylated at S221 and S483 (Figure 6-9B). 

SMAD4 wild type, SMAD4 S221A, SMAD4 S483A and the S221/483A double 

mutant were O-GlcNAcylated to the same extent, indicating that SMAD4 is O-

GlcNAcylated at a different residue(s). In order to identify this residue(s), 

SMAD4 was in vitro O-GlcNAcylated and processed for mass spectrometry 

analysis (Figure 6-9C), which has so far not been successful in identifying the 

O-GlcNAc site within SMAD4. 

 

 

Figure 6-8 SMAD4 is O-GlcNAcylated in vivo 

An endogenous IP with anti-SMAD4 antibody or pre-immune sheep IgG was 

performed in HeLa and HEK293 cell extracts, in the presence or absence of 

glucose, O-GlcNAc transferase inhibitor (4Ac-5S-glcNAc, iT, 10 μM) or O-

GlcNAcase inhibitor (GlcNAcstatin G, iA, 2 μM) for 16 hours. Indicated cell 

extracts and IPs were additionally treated with cpOGA (iT*). Cell extracts 

(input), endogenous IgG or anti-SMAD4 IPs were resolved by SDS-PAGE and 

immunoblotted with the indicated antibodies.  
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Figure 6-9 Identification of SMAD4 O-GlcNAcylation sites 

A) Schematic representation of human SMAD4 indicating S221 and S483 as 

possible O-GlcNAcylation sites, as predicted using O-GlcNAcScan (Gupta and 

Brunak, 2002). B) An in vitro O-GlcNAcylation assay was performed with 

human recombinant SMAD4 and SMAD4 mutants employed as substrates. The 

substrate proteins and UDP-GlcNAc were incubated with or without O-GlcNAc 

transferase or O-GlcNAcase in the assay buffer (50 mM Tris–HCl, pH 7.5, 1 mM 

DTT, 12.5 mM MgCl2) for 90 min at 37 °C. Proteins were resolved by SDS-

PAGE and transferred to nitrocellulose membranes, which were stained with 

Ponceau S or immunoblotted with the indicated antibody. C) Same as in B, 

except that O-GlcNAcylated SMAD4 was excised and processed for mass 

spectrometry analysis.  
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6.2.5 O-GlcNAcylation does not impact TGFβ-induced R-SMAD tail-

phosphorylation 

As mentioned above (section 6.2.2), it is unlikely that R-SMADs are O-

GlcNAcylated. In order to assess whether O-GlcNAcylation has a direct impact 

on the TGFβ/BMP-mediated activation of SMADs, a TGFβ or BMP stimulation 

time course in the presence or absence of OGT and OGA inhibitors was 

performed in different cell lines (Figure 6-10, Figure 6-11). The presence of the 

OGT inhibitor decreased the total O-GlcNAc modifications on proteins in cell 

extracts, whereas the addition of the OGA inhibitor resulted in enhanced O-

GlcNAc levels (Figure 6-10, Figure 6-11). The levels of SMADs2/3 tail-

phosphorylation following a TGFβ-stimulation time course was not affected by 

changes in the cellular O-GlcNAcylation levels caused by OGT or OGA 

inhibitors in HeLa (Figure 6-10A) or RPE-1 (Figure 6-10B) cells. Similarly, the 

tail-phosphorylation of SMAD1 was not influenced by the cellular O-GlcNAc 

levels during a BMP-stimulation time course in HeLa (Figure 6-11A) or HEK293 

(Figure 6-11B) cells.   
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Figure 6-10 O-GlcNAcylation does not appear to interfere with TGFβ-
mediated SMAD2/3 tail-phosphorylation 

A) HeLa cells were treated with O-GlcNAc transferase inhibitor (4Ac-5S-glcNAc, 

iT, 10 μM), O-GlcNAcase inhibitor (GlcNAcstatin G, iA, 2 μM) or DMSO for 16 

hours prior to a TGFβ (50 pM) stimulation time course. Extracts were resolved 

by SDS-PAGE and immunoblotted with the indicated antibodies. B) As in A, 

except that retinal epithelial RPE-1 cells were used. 
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Figure 6-11 O-GlcNAcylation does not appear to interfere with BMP-
mediated SMAD1 tail-phosphorylation 

A) HeLa cells were treated with O-GlcNAc transferase inhibitor (4Ac-5S-glcNAc, 

iT, 10 μM), O-GlcNAcase inhibitor (GlcNAcstatin G, iA, 2 μM) or DMSO for 16 

hours prior to a BMP2 (25 ng/ml) stimulation time course. Extracts were 

resolved by SDS-PAGE and immunoblotted with the indicated antibodies. B) As 

in A, except that HEK293 cells were treated with 6.25 ng/ml BMP2. 
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6.3 Discussion 

The regulation of TGFβ/BMP signalling by O-GlcNAcylation has not been 

investigated previously. The observations that R-SMADs interact with OGT and 

pull down potential O-GlcNAc modified protein(s), in addition to SMAD4 

possibly being O-GlcNAcylated imply that O-GlcNAc modification could regulate 

TGFβ/BMP signalling. Further investigation is needed to decipher the precise 

molecular mechanisms of this potential regulation. 

 

6.3.1 The possible impact of SMAD1 and SMAD3 binding to O-

GlcNAcylated proteins 

Extensive crosstalk occurs between O-GlcNAcylation and 

phosphorylation in different signalling pathways (Hart et al., 2011). Analogous, 

reciprocal occupancy of O-GlcNAc and phosphates could occur on residues of 

SMADs, which could potentially influence the TGFβ/BMP signalling cascade. O-

GlcNAc cycling does not appear to influence the ability of TGFβ/BMP receptors 

to tail-phosphorylate R-SMADs, which excludes competition of these two PTMs 

at the C-terminal “SXS” motif on SMADs. Indeed, SMADs 1, 2, 3, 6, and 7 are 

unlikely to be O-GlcNAcylated themselves, although OGT interacts with R-

SMADs and O-GlcNAcylation was detected in R-SMAD IPs around the 50 kDa 

marker, where these proteins migrate. SMAD1, 2 and 3 probably bind to the 

same O-GlcNAc modified protein, as its electrophoretic mobility pattern is 

identical in both SMAD1 and SMAD3 IPs. The second band in SMAD3 IPs 

could be an additional O-GlcNAc modified protein. An immunoprecipitation of 

SMADs1/2/3/4 under denaturing conditions might give further clues as to 

whether SMADs bind to O-GlcNAcylated proteins. The O-GlcNAc signal in 

SMAD1/3 IPs weakens in the presence of OGT inhibitors and under low 
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glucose conditions, indicating that this protein is genuinely affected by O-

GlcNAc cycling in cells. The binding of SMADs to OGT could potentially alter 

the catalytic activity or specificity of OGT or act as a scaffold to facilitate O-

GlcNAcylation of the SMAD-binding proteins. The O-GlcNAc signal in SMAD 

IPs is enriched, as the same O-GlcNAc signal is not visible in whole cell 

extracts at the same molecular weight. It would be interesting to find out which 

O-GlcNAc modified protein(s) is bound to endogenous SMAD1/2/3. Detection of 

O-GlcNAcylation by mass spectrometry is challenging, as the sugar 

modification is labile and could be lost during this process. Hence, the 

identification of the O-GlcNAc modified R-SMAD-bound protein(s) will be 

difficult, but could be attempted through a double enrichment pull down using a 

mutant version of cpOGA coupled to beads that traps O-GlcNAc and then by 

further selecting with a second IP of SMAD1 or SMAD3. Furthermore, it would 

be interesting to investigate whether the O-GlcNAc modification of the R-SMAD 

binding protein(s) is essential for their interaction. 

Upon TGFβ/BMP stimulation SMAD3 interacts with SMAD2/SMAD4 and 

SMAD1 with SMAD4 (Souchelnytskyi et al., 1997), however the interaction of 

the O-GlcNAcylated proteins with SMAD1 or SMAD3 was independent of 

TGFβ/BMP stimulation. Moreover, the O-GlcNAc modified binding protein 

exhibited significantly reduced affinity towards SMAD2, which is highly similar to 

SMAD3 but in contrast to SMAD1/3 has less affinity towards DNA (Dennler et 

al., 1999). 

It has been reported that 21 proteins change their O-GlcNAcylation 

status upon TGFβ treatment. Most of the identified hits were proteins of 

unknown function and regulators of cell survival, apoptosis, trafficking, and RNA 

processing (Iwahana et al., 2006). SMAD proteins or known interacting partners 
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have not been shown to be post-translationally modified by O-GlcNAc in this 

study. TGFβ/BMP signalling could be altered through the binding of SMADs to 

proteins that are regulated by O-GlcNAcylation. O-GlcNAcylated proteins could 

potentially regulate SMAD nuclear translocation, binding to interacting proteins 

and/or affect SMAD-mediated transcription. O-GlcNAcylation has been reported 

to regulate several signalling pathways at the transcriptional level and O-

GlcNAcylation of R-SMAD-binding transcription co-factors could link TGFβ/BMP 

signalling to nutrient sensing and glucose metabolism (Özcan et al., 2010). 

Furthermore, it has been suggested that differences in BMP-SMAD signalling, 

lipid metabolism and glucose utilisation determine the differentiation and lipid 

accumulation between intramuscular and subcutaneous preadipocytes (Wang 

et al., 2013b). The SMAD-interacting O-GlcNAcylated protein possibly regulates 

SMAD function at the basal level, as their interaction was not influenced by 

ligands.  

 

6.3.2 The possible impact of O-GlcNAcylation on SMAD4 

In contrast to SMAD1 and SMAD3, SMAD4 is O-GlcNAcylated in vitro 

and potentially in vivo. In vivo SMAD4 O-GlcNAcylation is only visible in the 

presence of OGA inhibitors, indicating high O-GlcNAc cycling and constant 

removal of O-GlcNAc from SMAD4. This could infer an inhibitory function of O-

GlcNAcylation on SMAD4. The O-GlcNAcScan software is unreliable and did 

not predict the actual SMAD4 O-GlcNAcylation sites. Therefore, it will be critical 

to identify the bona fide O-GlcNAc sites on SMAD4, which might be possible by 

performing a SMAD4 in vitro O-GlcNAcylation assay and identifying the 

residues on SMAD4 by mass spectrometry (Ma and Hart, 2014). To confirm the 

O-GlcNAcylation of SMAD4 in vivo, an antibody directed against the O-
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GlcNAcylation site(s) in SMAD4 should be raised. This antibody would clarify 

under which conditions SMAD4 is O-GlcNAcylated or if SMAD4 potentially also 

binds to an O-GlcNAcylated protein which has a similar electrophoretic mobility. 

If the O-GlcNAcylation sites on SMAD4 can be determined, then wild type 

SMAD4 or SMAD4 harbouring mutations of these specific sites could be stably 

integrated into cells lacking endogenous SMAD4. These cells could then be 

used to determine the impact and significance of SMAD4 O-GlcNAcylation, by 

monitoring the transcription of SMAD4-dependent target genes, the ability of 

SMAD4 to shuttle between the nucleus and cytoplasm and its affinity towards 

R-SMADs or other SMAD4 binding proteins. SMAD4 could be regulated by O-

GlcNAcylation in an alagous manner to other transcription factors such as 

CREB, YY1, STAT, p53, ERα, c-Myc and C/EBPβ (Özcan et al., 2010). 

SMAD4-mediated gene transcription could be monitored under high and low 

glucose conditions in the presence or absence of TGFβ/BMP ligands or kinase 

inhibitors, using luciferase reporter constructs or qRT-PCR. This would give a 

better insight into the magnitude of TGFβ/BMP pathway regulation goverened 

by O-GlcNAc modification. 
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