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For decades, vehicle time-headway distribution models have been studied by many

researchers and traffic engineers. A good time-headway model can be beneficial to

traffic studies and management in many aspects; e.g. with a better understanding

of road traffic patterns and road user behaviour, the researchers or engineers can

give better estimations and predictions under certain road traffic conditions and

hence make better decisions on traffic management and control. The models also

help us to implement high-quality microscopic traffic simulation studies to seek

good solutions to traffic problems with minimal interruption of the real traffic

environment and minimum costs.

Compared within previously studied models, the mixed (SPM and GQM) mod-

els, especially using the gamma or lognormal distributions to describe followers

headways, are probably the most recognized ones by researchers in statistical stud-

ies of headway data. These mixed models are reported with good fitting results

indicated by goodness-of-fit tests, and some of them are better than others in com-

putational costs. The gamma-SPM and gamma-GQM models are often reported

to have similar fitting qualities, and they often out-perform the lognormal-GQM

model in terms of computational costs. A lognormal-SPM model cannot be formed

analytically as no explicit Laplace transform is available with the lognormal dis-

tribution. The major downsides of using mixed models are the difficulties and

more flexibilities in fitting process as they have more parameters than those single

models, and this sometimes leads to unsuccessful fitting or unreasonable fitted pa-

rameters despite their success in passing GoF tests. Furthermore, it is difficult to

know the connections between model parameters and realistic traffic situations or

environments, and these parameters have to be estimated using headway samples.
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Hence, it is almost impossible to explain any traffic phenomena with the param-

eters of a model. Moreover, with the gamma distribution as the only common

well-known followers headway model, it is hard to justify whether it has described

the headway process appropriately. This creates a barrier for better understanding

the process of how drivers would follow their preceding vehicles.

This study firstly proposes a framework developed using MATLAB, which would

help researchers in quick implementations of any headway distributions of interest.

This framework uses common methods to manage and prepare headway samples

to meet those requirements in data analysis. It also provides common structures

and methods on implementing existing or new models, fitting models, testing

their performance hence reporting results. This will simplify the development

work involved in headway analysis, avoid unnecessary repetitions of work done

by others and provide results in formats that are more comparable with those

reported by others.

Secondly, this study focuses on the implementation of existing mixed models,

i.e. the gamma-SPM, gamma-GQM and lognormal-GQM, using the proposed

framework. The lognormal-SPM is also tested for the first time, with the recently

developed approximation method of Laplace transform available for lognormal

distributions. The parameters of these mixed models are specially discussed, as

means of restrictions to simplify the fitting process of these models. Three ways of

parameter pre-determinations are attempted over gamma-SPM and gamma-GQM

models.

A couple of response-time (RT) distributions are focused on in the later part of

this study. Two RT models, i.e. Ex-Gaussian (EMG) and inverse Gaussian (IVG)

are used, for first time, as single models to describe headway data. The fitting

performances are greatly comparable to the best known lognormal single model.

Further extending this work, these two models are tested as followers headway

distributions in both SPM and GQM mixed models. The test results have shown

excellent fitting performance. These now bring researchers more alternatives to

use mixed models in headway analysis, and this will help to compare the be-

haviours of different models when they are used to describe followers headway

data. Again, similar parameter restrictions are attempted for these new mixed

models, and the results show well-acceptable performance, and also corrections on

some unreasonable fittings caused by the over flexibilities using 4- or 5- parameter

models.
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Chapter 1

Introduction

Summary

A brief definition and introduction are given to explain vehicle time headways,

together with the importance of headway in traffic-flow related areas. Some of the

previous important research work is discussed. The objectives of this study are

explained, and followed with a summarized structure of this thesis.

1.1 Introduction to Vehicle Time Headways

Vehicle time headway (TH), also named as headway for short, is the time interval

measure between two consecutive vehicles (front bumper to front bumper) passing

the same designated test point. A headway (measured in seconds) consists of two

components, it is the sum of the time that the front vehicle takes to pass the test

point and the time gap between two vehicles. In a quiet road, where the vehicle

behind is not closely following the front one, the headways is presenting as random

1
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arrival time to the test point, as no delay has been caused by queuing. However,

in a queue of traffic, the first component is depending on the length of the front

vehicle and the velocity it is travelling. The second component is often considered

as the safety gap that the following vehicle will maintain for safe driving.

The time intervals between vehicles are more of interest to individual drivers for

safety reasons, while headways are more important to traffic flow theory in research

and traffic engineering areas. Headways have a very close relationship to traffic

flows, which measure the number of vehicles passing the same road point per

unit time, e.g. vehicles per hour (veh/hr). Since the mean of headways is the

reciprocal of traffic flow rate, vehicle headways represent microscopic measures of

flows passing a point.

Headway is important as, in the first instance, it can be easily collected by many

modern technologies, such as inductance detectors, varieties of traffic counters or

video cameras. To some extent, headways can be looked upon as the footprint of

drivers following behaviours. On the one hand, mean headway reflects the traffic

levels overall. On the other hand, headways reflect how drivers are following their

front vehicles if travelling within a queue.

1.2 Importance of Time Headway Study

Accurate modelling and analysis of headway distribution helps traffic engineers

to maximize roadway capacity and minimize vehicle delays. Highway capacity is

linked with headway distributions (Buckley, 1968; Minderhoud et al., 1997), as
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the capacity can be measured, in one way, using the mean of followers headway in

platoons. The 1985 Highway Capacity Manual contains specification for comput-

ing capacities and levels of service for un-signalized intersections (Transportation

Research Board, 1985). Headway studies are also involved as a crucial role in

analysis of un-signalized intersections and roundabouts (Sullivan and Troutbeck,

1994).

Headway studies are closely related to vehicle merging, lane changing and turning

operations. A number of microscopic simulation models have been developed for

various road configurations. Knowledge of headways play a key role in generating

vehicle arrival times as input into the simulation process. In fact, many of the

researches on headway distribution analysis are motivated by the needs of devel-

oping simulation models. In addition, lane changing models or traffic merging

models are highly dependent on the justification of availability of gaps, which is

again dependent on headway distributions. Much research covers specific studies

on gap availability (May, 1965) and acceptance (Drew, 1968) or ramp merging

models (Wohl and Martin, 1967).

In interrupted traffic applications, gap acceptance studies are important for sig-

nalized and sign-controlled intersections (Blunden et al., 1962; McDowell et al.,

1983), where headway could be used to minimize time delay by synchronizing with

signal plans (Zhang et al., 2007).

In recent years, with the rapid development of information and communication

technologies, the intelligent transport system (ITS) plays a more important role

in many respects on improving traffic congestions and safety issues by providing



Chapter 1. Introduction 4

better information and management to road users (Chowdhury and Sadek, 2003;

Figueiredo et al., 2001). With the demand of ITS development, understanding of

the headway data, to better understand drivers traffic behaviours, is essential.

All the above indicate that headway studies are fundamental in addressing many

traffic engineering, traffic flow research and simulation issues.

1.3 Statistical Studies of Headway Models

Traffic flows have often been considered as stochastic processes since 1930s (Adams,

1936), headways are often studied using distribution models in a statistical analy-

sis. In the past decades, many sophisticated models have been proposed or devel-

oped and many of these have been carefully reviewed and examined by researchers

(Ha et al., 2012; Hoogendoorn and Botma, 1996; Hoogendoorn and Bovy, 1998;

Luttinen, 1996; May, 1990; Zhang et al., 2007).

Some characteristics of headways are widely described and presented using the

mean, median, mode and coefficient of variation (Breiman and Lawrence, 1977;

Buckley, 1968; Dunne et al., 1968; Griffiths and Hunt, 1991; May, 1961, 1965,

1990). More generally, most headway studies use headway distribution models

and histograms to describe the empirical headway data.

Some categorizations of headway distribution models have been suggested. A

three-category suggestion used by Ha et al. (2012) seems to be reasonably precise.

He justified the importance of followers behaviour, and classified the models into
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single, combined and mixed models. Others have used a two-category classification

(Luttinen, 1996; Zhang et al., 2007), with only single and mixed models.

Single models

Single models, also known as simple models, have relatively simple forms of for-

mulations, and they mainly use the standard probability distributions to model

the headway variables. The common widely used models are negative exponential,

gamma and lognormal distributions, etc. In single models, all vehicles are con-

sidered to have only one behaviour. The first model proposed by Adams (1936)

is the exponential distribution. It assumes that vehicle arrivals are drawn from a

Poisson process. The exponential model has its good theoretical foundation hence

it has been referred to by many later studies. However, the model has very lim-

ited fitting performance for empirical headway data. It is more considered as the

random process of the arrivals for platoons (or random bunches) (Branston, 1976;

Buckley, 1968; Miller, 1961).

The lognormal distribution model (Daou, 1964; Greenberg, 1966) has gained prob-

ably the most attention as a single model, because of its close connection with

the microscopic traffic flow theory, and more specifically the car-following mod-

els. Daou (1966) has presented detailed analysis of headway data and theoretical

justifications of using the lognormal model for constrained headways.

The gamma distribution is often used in headway analysis due to its flexibility

and compatibility, as it is the generalization of the exponential distribution and it
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has connections with many other distributions. The gamma distribuition can be

evolved to exponential or chi-square distributions when one of the two parameters

is fixed at specific values (Zhang et al., 2007). The gamma model can also be

generalized to the Pearson type III model by introducing a location parameter.

The Erlang distribution can be derived by using only integers as values of the

shape parameter of gamma distribution. May (1990) suggested that this family of

models is more suitable for describing headways at intermediate traffic flow levels.

Single models are simple and easy to apply, however, they generally have very lim-

ited performance especially in approximating short or very short headways (Ha

et al., 2012). To improve their accuracy, a location parameter δ is often applied to

form shifted-single models. Studies show some shifted-single models have signifi-

cant improvement on their performances. Similar tests are also attempted in the

latter part of chapter 2 in this thesis, for the gamma and lognormal distributions

as two examples of single models.

Compared with single models that consider all vehicles with one single behaviour,

most of the combined and mixed models consider the headway distribution as a

combination or mixture of two group of drivers, i.e. followers and non-followers

(leaders of queues, or free-driving vehicles). Hence researchers have developed

models with components of two distributions. The proportion factor φ is used in

both cases, to describe the proportion of followers in all vehicles.
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Combined models

The combined models use a headway threshold to distinguish the followers and

non-followers groups. These models use a simple linear addition of two models, and

one is always an exponential distribution to describe headways of non-followers.

The followers are considered to be drawn from one of the single models, such as

gamma, lognormal, Erlang etc. Then the new models are named as hyper-single

models, such as Hypergamma, Hyperlognormal, Hyperlang etc.

Some distributions used as followers headway models have been studied widely

in the past. Dawson and Chimini (1968); Drew (1967) proposed the Hyperlang

model, which had been further generalized into the Hypergamma model (Ha et al.,

2011). The normal distribution was suggested by May (1990) as a followers head-

way model, however, this approach is not well accepted due to its poor fitting

performance. Ha et al. (2012) tested four combined models in his study, and he

reported that Hyperlognormal is the best performing model compared with the

others.

Another combined model of the Double Displaced Negative Exponential Distri-

bution (DDNED) is proposed by Griffiths and Hunt (1991), who reported good

fitting results to headway data. Zhang et al. (2007) also tested the DDNED model

in his study, and he found its performance outstanding.

Some studies (Ovuworie et al., 1980) have proposed models with more than two

components, however, these studies are not widely applied due to their overly

complex formulation and implementation.
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Generally, combined models have some improved performance compared with sin-

gle models, with the use of an exponential distribution of non-followers group.

However, the implementation results reported are still not well accepted in terms

of their fitting performance, plus, applying arbitrary threshold to separate fol-

lowers and non-follower groups are considered to lack theoretical background. For

these reasons, combined models are not within the scope of the models of attention

in this study.

Mixed models

Instead of using a headway threshold to categorize the groups of followers and

non-followers, the mixed models assume that the two groups have a statistical re-

lationship. Two types of mixed models have been suggested in the past (Branston,

1976; Buckley, 1968; Cowan, 1975), i.e. the semi-Poisson model (SPM) and the

generalized queuing model (GQM). SPM models use the followers headway dis-

tribution to formulate a conditional probability model for non-followers, which

suppose the non-followers would have larger random headway variables than the

followers, and the headway variables are drawn from an exponential distribution.

GQM models assume that every non-followers headway consists of the sum of two

parts, i.e., the exponential part plus a service time which is the same as the fol-

lowers headway distribution. Studies show that both SPM and GQM are similar

in the result of parameter estimation and goodness-of-fit test (Ha et al., 2012;

Luttinen, 1996). Some works(Luttinen, 1996; Wasielewski, 1979) have concerns

that GQM is lacking in physical basis, while others (Branston, 1976; Ha et al.,



Chapter 1. Introduction 9

2012) give GQM more credibility in terms of better accuracy and simplicity in

implementation.

Followers headway models using gamma, lognormal, normal and Rayleigh distri-

butions have been proposed and examined in studies. Overall, the fitting of the

gamma-SPM (Buckley, 1968; Luttinen, 1996), gamma-GQM (Ha et al., 2012) and

lognormal-GQM (Branston, 1979) have been recommended with outstanding fit-

ting performance in different aspects. Many attempts have been made using mixed

models to have better understanding of car following behaviours. Nowadays, SPM

and GQM models are probably recognized as the most attractive models that have

drawn much attention. In the present study, some existing and newly proposed

mixed models are implemented and tested as one of the major objectives.

Chapter 4 contains further discussion between combined and mixed models. Lut-

tinen (1996) reviewed comprehensively many of the above models, and discussed

each model in terms of three criteria: reasonability, applicability and validity. Lut-

tinen concluded with a recommendation of the gamma-SPM, because of its out-

standing performance in various aspects. Zhang et al. (2007) compared a selection

of single and mixed models and he found that the DDNED model out-performed

other models. Ha et al. (2012) also made a comprehensive comparison of models,

and he found that the gamma-GQM achieved the best performance in his study.
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1.4 Problems in Headway Statistical Analysis

The first practical difficulty in headway analysis is probably the issues in compar-

ing all the work reported by others. This is mainly due to the lack of common

procedures in dealing with headway data, models and results. These are mani-

fested in the following ways:

1. The presentations of headway data are often very different, and it is hard to

categorise and compare the data among the various studies;

2. The sampling methods used in data preparation are often very different;

3. The fitting methods that work in one study may not work in others;

4. The goodness-of-fit (GoF) tests used are often different;

5. The presentations of results are often very different.

Luttinen (1996) pointed out some similar issues in data processing and GoF tests.

As a result, Luttinen provided comprehensive suggestions in testing and compar-

ison of models, especially in applying more powerful GoF test methods.

The second problem concerns variations and uncertainties of parameter estima-

tions in the stage of fitting models to sampled headway data. As described in

chapters 2 and 4, many types of estimation methods have been attempted in fit-

ting mixed models. Due to their complexity in form they have more parameters,

these estimations often have to be solved numerically through optimization, and

the fitting results are sometimes sensitive to initial values. This could lead to
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failures or unreasonable results of estimations. The blame for such faults is often

ascribed to either bad sampling of data or complications of models. This is often a

corollary of the third problem, that is, researchers have paid more attention to the

goodness of fit for their result, but less to the variations of parameters of the mod-

els. Many studies have used various GoF test methods to show how good models

are capable of fitting data, but often they have ignored any implicit connections

between the parameters of a ’good’ model and other potential factors that may be

relevant.

Some researchers have investigated parameters, and revealed potential connections

between them and traffic conditions. For instance, Wasielewski (1979) interpreted

the proportion parameter and arrival rates using traffic flows. Branston (1976)

studied the variations of parameters in GQM model, using the lognormal follow-

ers headway distribution. Both authors have found evidence to support their

assumption, that is, the followers headway is independent of traffic flows. These

are good examples that parameters can be better understood and they can be

used as important information in either model fittings or understanding of some

traffic phenomena, no matter whether they are dependent or independent of the

changes of traffic flows.

With more parameters or complexities in models, the fittings often behave more

flexibly, and they might be sensitive to initial values. These problems sometimes

don’t result in failure in the GoF test, and often multi-sets of parameters can be

accepted by GoF test. But this does not mean that the tested data samples are



Chapter 1. Introduction 12

necessarily drawn from these distributions. When this happens, there is no method

available for researchers to test further in order to choose a better approach.

However, the above can be overcome if the fitted parameters are more understand-

able with more cleared physical significance, as some estimations may exceed their

reasonable ranges (or physical boundaries). To achieve this, both Wasielewski’s

and Branston’s work is very valuable, as in their opinion, some parameters can be

pre-determined before the actual fitting stage of mixed models. Potentially, when

some of these parameters are pre-determined, models will not only be simplified

with fewer fitting parameters, they will also be restricted. These may reduce the

problems mentioned above. Moreover, with some parameters pre-determined by

traffic conditions rather than by data samples, there are more reasons to believe

that a model is a better presentation of headways.

The fourth problem is that, even with a good fitted model, it is still difficult to

say whether the model can closely represent the headway process, especially the

drivers behaviours of car following, which is one important purpose of headway

analysis. So far, only the gamma and lognormal distributions are reported with

good fitting quality in studies of mixed models, however, the lognormal-GQM is

known to have very high computational cost1 in fitting. The results in the gamma

distribution as probably the only applicable followers headway model. Since no

other good mixed models are available to compare with, researchers have to rely

on the results of the gamma-mixed models, with the uncertainties of whether the

models are close enough in representing the headway process.

1See footnote in chapter 2, page 48.
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Overall, finding good statistical methods in headway analysis has still a long way

to go, and all these issues need to be solved or bypassed if headway processes are

needed to be better understood.

1.5 Objectives and Contributions

The first objective of this study is to propose and develop a software tool that

will help on statistical headway analysis by providing common methods and data

structures. A few functionalities shown as follows are the focus of this tool:

1. converting and managing headway data samples in common data structures;

2. providing mechanics to quickly develop and implement distribution models;

3. providing methods to perform goodness-of-fit tests in manner suitable for

meaningful comparison;

4. storing and reporting data and fitting results for later analysis and compar-

ison.

The tool is essential for efficiently appraising models and reporting results in a

similar format. This makes the comparisons between models or datasets more

intuitive.

The second objective is to study the parameters of mixed models, following simi-

lar methods suggested by Wasielewski and Branston, to investigate whether these
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methods will help in effectively simplifying and restricting the parameter estima-

tions in fitting stages of mixed models. To fulfil this objective, several mixed

models need to be discussed and implemented for comparison with findings re-

ported by others.

Some analogies exist between car following and tasks used to measure human

response times (RT) in cognitive psychology. Both have stages of reaction, decision

making and action taking. Thus, some RT models might be suitable to apply in

headway analysis. This may lead to alternative models to describe headway data.

The third objective is to develop and implement some well-known RT models for

the use of headway analysis, and to examine their fitting performance.

As a result of this work the following main outcomes and contributions to knowl-

edge have been achieved:

1. A framework that helps to carry on the work of time-headway analysis is pro-

posed in this study. This framework, which is developed using the MATLAB

Statistics Toolbox, has several advantages in headway analysis. Firstly it assists

in the process of data preparation and sampling by defining common data struc-

tures. Secondly, it quickly implements existing or newly developed models, and

provides an interface to assist with parameter estimation and GoF tests. Thirdly,

it manages all models, samples and results of analysis in one repository for further

data visualisation and analytical report generation. The proposed framework is

used for all headway studies reported within thesis. The study demonstrates that

such a framework reduces the time and cost of repeatedly testing existing time-

headway models and encourages researchers to focus on the important tasks of
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model selection or development.

2. The gamma- and lognormal-mixed models of both SPM and GQM are tested us-

ing data collected on the M42 motorway near Manchester in the UK. The results

show very similar fitting performance for these models compared with previous

studies. In particular, the gamma-SPM model is further developed here, by deriv-

ing an explicit form of its CDF function, and this greatly improved the speed of

GoF test of the model. Also a lognormal-SPM is for the first time implemented

using approximation of the Laplace transform of the lognormal distribution. Fur-

thermore, the use of pre-determined parameters was investigated. This study

found that fitting performance can be greatly improved by using the suggested

combinations of parameters, which are the vehicle arrival rates (λ) and selected

parameters of the corresponding followers headway distribution, without great

variations in the results of parameter estimations.

3. Two of well-known response-time distribution models, i.e. the exponential mod-

ified Gaussian (EMG) and inverse Gaussian (IVG) distributions, are discussed and

tested as single models. They are found to provide acceptable fitting performance

for the first two lanes of a three-lane motorway. The results are comparable to

the shifted-lognormal single model, which has the greatest credibility as a sin-

gle model in headway analysis. These two models are hence applied to define

the followers headway distributions of mixed models (both SPM and GQM). The

fitting results show equally excellent performance when using these new mixed

models to fit the empirical headway data. This provides researchers with ad-

ditional alternative models with good fitting performance in headway analysis.
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Again, pre-determining some suggested combinations of parameters will simplify

the processes of parameter estimation.

Two publications are currently in preparation based on the outcomes of this work,

as outlined in Chapter 6, Section 3.

1.6 The Structure of This Thesis

Chapter 2 provides a detailed description of a proposed analytical framework that

is developed in MATLAB (2013b) environment. This includes the definition of

the structure of the framework, data structures, graphic user interface design and

the use of parameter estimation and GoF methods. Chapter 2 also explains the

approach of using Statistics Toolbox to implement headway models with both built-

in and custom distributions. A set of tests on selected models are implemented,

and comparison of results are presented and discussed.

Chapter 3 describes the headway dataset used in this study. Data sampling meth-

ods are explained, and basic statistics of processed headway samples are given.

Chapter 4 focuses on the traditional mixed models, for both SPM and GQM.

These models are explained and tested, and results of analysis and comparison

are shown. The focus then shifts to a very important feature of these two models,

i.e. the Poisson λ. Based on this, the modified models are proposed with a pre-

defined λ estimated from traffic flow rates. Then the fitting and GoF test results

are shown. Further parameter simplification attempts are made and tested.
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Chapter 5 presents the proposals of using response time (RT) models in headway

analysis. Both selected RT models, i.e. the IVG (inverse Gaussian) and EMG

(exponential modified Gaussian) distribution models, are explained. These two

models are then added into the framework. The results of tests are presented and

discussed. RT models are used as followers headway distributions for mixed SPM

and GQM models. Methods used for parameter simplifications are also attempted

and discussed.

The thesis concludes with a discussion of its findings, along with some plans for

future work, in chapter 6.

Each chapter has a summary of contents at the beginning and a discussion at the

end.



Chapter 2

A Framework for Time-Headway

Statistical Analysis

Summary

This chapter proposes a framework that helps to simplify the procedures for test-

ing new or existing headway distribution models. The advantages of using the

MATLAB Statistics Toolbox to develop this framework are introduced, and the

structure and data management of the framework are explained. As examples of

using this framework, models are implemented and tested using empirical headway

data. Finally, the test results are compared and discussed.

2.1 A Framework for Headway Data Analysis

Traditional ways of implementing a statistical model for headway analysis involve a

substantial amount of work, which can be very tedious and time consuming. Such

18
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development procedures normally involve, more or less, the following summarized

steps:

1. Developing necessary statistical functions, such as, probability density func-

tion (PDF), cumulative distribution function (CDF) etc.

2. Implementing parameter estimation methods, such as maximum likelihood

methods, and goodness-of-fit test methods, such as, KS test, AD test, etc.

3. Preparing data with appropriate structures required by the above proce-

dures.

4. Cleaning and sampling headway data.

5. Fitting and testing models against sampled data and collecting test results

6. Generating tables and graphs for presentation and analysis.

Even though one can design a systematic structure to simplify the repetition pro-

cedure of steps 3-6, however, the large amount of work involved in the first two

steps for development of each new model is inevitable. This can be a barrier to

many who wish to test rapidly some simple ideas. This also can be a barrier to

some experienced researchers, as each has to repeat the same kind of work that has

already been accomplished by others. These repetitions also involve variations in

implementation due to the lack of standard procedures for model fitting and data

sampling. These problems with non-standard procedures may happen in every

step of development, and this makes comparisons between studies more difficult.
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Moreover, there might be errors that are difficult to identify introduced during

development, which may cause misleading conclusions.

To minimise the above problems, a concept of having a framework for headway

analysis, which can process data and models more systematically and structurally,

seems to have advantages. It can provide an opportunity to contribute new work

on the same platform, to avoid unnecessary repetition, and hence to focus more

on the actual model. It also provides a standard way of preparing data samples

and dealing with models. The suggested framework in this chapter may not be

the most convenient one, but it certainly provides a better and easier option until

more comprehensive professional solutions are available. This work is still under

development, and it is planned to be released for public access once completed.

2.2 Introduction of the Framework

2.2.1 Advantages of using MATLAB and Statistics Tool-

box

MATLAB is an advanced mathematical modelling and analysis tool with many

well-known highlights. To the extent of headway data analysis, a number of fea-

tures are directly beneficial, and these are the main reasons for choosing MATLAB

as a platform for developing our framework. The key advantages lie two main as-

pects, i.e. the Statistics Toolbox and object oriented programming capability.
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The Statistics Toolbox provides comprehensive functionalities for work of statisti-

cal analysis. A few main features are (upto version 2013b, at time of this study)

are highlighted below:

1. More proprietary distribution models become available over time as built-in

models in the Statistics Toolbox.

2. Implementing new user-written distribution models in MATLAB is easy and

straightforward.

3. Dataset arrays, provides powerful features for data management.

4. Many goodness-of-fit test methods are available as built-in functions.

5. Comprehensive tools are provided for designing graphical user interfaces and

publishing analytical reports.

6. Object oriented programming features provide inheritable structures that

support easier implementation of statistical models, data fitting, testing and

analysis.

MATLAB continuously adds well tested distribution objects into the Statistics

Toolbox; upto version 2013b, 22 continuous parametric probability distribution

models are available as built-in models, and these cover all those commonly used

single models introduced in the previous chapter. All these models are fully devel-

oped and tested, with comprehensive features to assist fast, easy and reliable im-

plementation. This provides opportunities for researchers to test headway models

with minimum coding effort. All models are provided with the same class structure
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by using the advantages of object oriented programming. Hence, all distribution

models have common properties and methods that users can use directly without

concerns over lack of standardisation.

Each probability distribution model can use the following inherited methods in

common:

• pdf - Probability density functions

• cdf - Cumulative distribution functions

• inv - Inverse cumulative distribution functions

• stat - Distribution statistics functions

• fit - Distribution fitting functions

• like - Negative log-likelihood functions

• rnd - Random number generators

These common features and inheritance of classes provide maximum simplicity

as all models are implemented in an almost identical way. Hence, the Statistics

Toolbox provides opportunities for users to customize their models with exactly the

same class structure. This customization can be simply achieved by inheriting from

common parent classes identical to those built-in models provided in MATLAB.

Such capability of customization is particularly useful for headway analysis, as

many of the combined- or mixed-models have the same function structures that

can be simply inherited from just one parent class. This substantially reduces the
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development work and makes newly developed models more robust and reliable.

The mixed models discussed in chapters 4 and 5 are implemented using these

beneficial features.

A comprehensive data type, i.e. dataset arrays, was introduced since the release of

version of MATLAB R2007a, and this data type is particularly useful for managing

and storing statistical data as objects. It provides a natural way to encapsulate

heterogeneous statistical data and metadata, so that it can be accessed and ma-

nipulated using methods familiar to programmers that are analogous to those for

numerical matrices. Data objects of this type can be simply stored, recalled or

visually presented, and they are capable of managing all different data types, such

as strings, arrays or even data objects, in a single data structure.

The Statistics Toolbox also provides over a dozen hypothesis test methods, and

more will be available in due course. These cover the commonly used goodness-

of-fit test methods in headway studies, such as Kolmogorov-Smirnov test (KS

test), Anderson-Darling test (AD test) and Chi-square test (Chi-Sq. test). These

methods are well compatible with all kinds of continuous distribution models;

hence procedures of testing models become simpler and straightforward.

In addition to the above advantages, MATLAB provides powerful tools (GUIDE)

for graphical interface design as well as tools (the Report Generator) that can

generate and publish analytical reports.

The downsides of using MATLAB are mostly concerned with the following two

aspects:
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1. The cost of licensing is high comparing to other statistical analysis software.

2. Many new and useful features are not available in earlier versions of MAT-

LAB.

2.3 Designs of the Framework

2.3.1 Structure of the Framework

Utilising the MATLAB features mentioned above, it is feasible to develop a frame-

work that possesses three main aspects:

1. Capability of generalization to suit headway data structures obtained from

various resources.

2. Quick and easy implementation of new customized models.

3. Well-defined methods for generating analytical reports.

To accomplish the above goals, the framework presented in Figure 2.1 is proposed.

The original headway data are normally collected using inductance detectors em-

bedded under the surface of a road lane. These detectors record the vehicles’

arrival time. Some of these devices have two detectors positioned nearby, hence

they can also provide information of velocity and vehicle length. These data are

fundamental for headway analysis. Other technologies, such as video cameras, are
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Figure 2.1: Structure of the proposed framework. After data conversion,
further filtering and sampling will process data into required groups of samples
that are then ready for model fittings. After data conversion, further filtering
and sampling will process data into required groups of samples for model fittings

available for collecting similar headway data. Data collected using different tech-

nologies may have different data formats, and hence conversion from the original

format is required to process them into common data structures before they can

be used in this framework. The left part of diagram includes data loading and

conversions that enable data to be prepared into the required format, which is

specified in the next section.

After data conversion, further filtering and sampling will render data into required

groups of samples that are then ready for model fitting.

All selected distribution models are managed as probability distribution objects,

which have common class properties and methods. Hence, their objects can be

operated in the same manner without special considerations given to any particular

model.
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The customized distribution models are those not included in the Statistics Tool-

box, but they can be developed into the same structure as any built-in model.

Both built-in and customized models can be used as base functions (e.g. as fol-

lowers headway distributions) to formulate new kind of distribution. For instance,

by combining location parameter δ a set of new distribution models can be derived

as single or shifted-single headway models. In chapter 4, examples of using built-in

models to form mixed headway models are explained in more detail.

The model objects and headway samples can be paired dynamically and stored as

objects instantiated from a class so called THTestprofile class, and these ob-

jects can then comply parameter estimations and hypothesis tests. Result of such

implementations together with these objects are finally stored as result objects

that are instances of THSamples class.

The result objects are stored as files (.mat files), where they can be easily restored

for further operation, such as viewing estimated parameters or GoF test results of

any model, or generating analytical reports. These objects can also be modified

to append or delete test objects by operating THTestprofile objects.

Using the above structure can simplify the procedures of data analysis, as data

and distribution models are managed more systematically. Any changes in part

of the data, adding new models or GoF test methods would not affect those tests

previously accomplished. These changes can be managed in result objects where

the new tests will be an extended part.
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Researchers only need to concentrate on adding new distribution models, or test

new data without concern over repeating work that has been pursued many times

by others. The resulting objects and report generation capability make the work

more readily comparable between studies, because they have been processed under

the same structure and thus may thus be published in a similar format.

2.3.2 Specification of the Required Data Structures

The original collected headway data would normally have four important data

fields, which are:

1. Arrival time of each individual vehicle

2. The lane of that vehicle

3. Vehicle Speed

4. Vehicle Length

Some of the data may have more information such as weather at the time of data

collection, etc. These data are required to be formatted into proper data records of

headway data that can be categorized for later data sampling and analysis. Hence,

it requires a conversion of the original dataset to the appropriate structures.

A 15-field data structure is proposed in Table 2.1, which will help with further

grouping and sampling the data. This data structure is intermediate but necessary

for making consecutive samples of each lane of roads later, as well as keeping
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Table 2.1: Proposed Structure of Headway Data

Fidel No. Field Name Description

1-4 T, LID, V, Length1 The original fields of data, arrival time, lane,
Speed(m/s), and vehicle length(m)

5-8 Day, Hour, Min, Sec Converted Time as Day, hour, Minutes and
Seconds

9-10 preTH, folTH Headway, and headway of followers (s)
10-11 pdelV, fdelV Speed difference with front vehicle or follow-

ing vehicle (m/s)
12-13 preL, folL length(m) of front vehicle or following vehicle
15 idx idx number in the current lane of road

original information such as speed difference which otherwise will be lost after

sampling process.

Data conversion will be performed as the first step after data loading. For any

original data format that has not previously been used in the framework, new data

conversion functions may be required, as the structure of the original data may

not be recognized.

The next step is data sampling, which will process and filter data using different

techniques in order to achieve trendless and stationary headway data. More details

about data sampling methods are discussed in chapter 3. An example of processed

data can be found in Appendix A, Table A.1.

The data structure after the sampling stage is shown in Table 2.2, and this includes

fundamental as well as statistics information that will assist categorization and

preview of headway data samples.

The processed data with these two data structures are stored as dataset arrays in

’.mat’ file, which is a commonly used MATLAB file format for data storage.
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Table 2.2: Proposed Structure of Data Samples

Field Name Description Field Name Description

SampleID Sample identification Day Day of sample

Size Sample size (number of
headways)

startHour Hour of day

rateFlow Flow level (veh/hour) endHour Hour of day

stdFlow Standard deviation of
Flows

Mean Mean of headways

meanSpeed Average Speed (mph) Std Standard deviation of
headways

stdSpeed Standard deviation of
Speed

CV Cofficents of variation

startTime Starting time of sample Skewness Skewness of sampled
headways

endTime Ending time of sample Kurtosis kurtosis of sampled
headways

LaneID Lane identification pLGV Propotion of large
goods vehicle

Sampleobj data object containing
original data

2.3.3 The Interface Design

Graphical user interface (GUI) design includes modules that helps users to convert

and manage headway datasets, to fit models, to perform goodness-of-fit tests and

to report results. Figures 2.2 to 2.5 show examples of graphical interfaces that

have been developed.

The main application window includes management interface of headway analysis

projects, and buttons that call other modules.
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Figure 2.2: Main Application Window

Figure 2.3: Samples Data Viewer Window
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Samples viewer window presents data prepared in sampling process, and shows

general statistics that summarize a group of chosen headway samples.

Figure 2.4: Headway Data Test Manger Window

The headway samples then can be processed selectively to test individual or a
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group of distribution models, as shown in Figure 2.3. In this step, the chosen

models and samples will be paired and stored as tests that will be processed by

using the button of ’Run Tests’. This will perform parameter estimation and

goodness-of-fit tests for each pair of chosen data sample and distribution model.

Figure 2.4 shows the uses of gamma, lognormal and inverse Gaussian(IVG) dis-

tributions as examples of tests.

Figure 2.5: Group Results Viewer Window

The processed data are then stored in an object in the form of dataset arrays

for further analysis. Figure 2.5 shows an example of data viewers, which are still

under development, and such data viewers can help users to quickly review the

result of individual or groups of data samples and models. Then all the results
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including statistics of data samples can be processed as tables and charts that will

be stored in analytical reports for later reviewing or publishing.

2.3.4 Method of Adding a Customized Model

The Statistics Toolbox provides a sample of implementation of the Laplace distri-

bution, and this example is summarized here to explain the method of creating a

new model in MATLAB environment. A source code file LaplaceDistribution.m

has been provided by MATLAB, and this can be used as a template to implement

any customized distribution model. To make customized models recognizable by

Statistics Toolbox, such model files have to be stored in a folder specially named as

’+prob’. MATLAB will treat files contained in such folders as distribution models.

As an example, LaplaceDistribution class is a subclass of

prob.ToolboxFittableParametricDistribution, which is parent class of all

parametric distribution classes, in MATLAB. An object of the LaplaceDistribution

class represents a Laplace probability distribution with a specific location param-

eter MU and scale parameter SIGMA. This distribution object can be created di-

rectly using the MAKEDIST function or fit to data using the FITDIST function.

Any distribution object with these features may be implemented in the proposed

framework.

Once the LaplaceDistribution class is created, some properties and methods

need to be specified by overriding those inherited from its parent class. These

methods and properties are listed in Tables 2.3 and 2.4.
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Table 2.3: Inherited Methods For a Customized Model

Methods Description

cdf Cumulative distribution function
fit Fit distribution to data
likefunc Likelihood function
icdf Inverse cumulative distribution function
mean Mean
median Median
pdf Probability density function
random Random number generation
std Standard deviation
var Variance

Table 2.4: Inherited Methods For a Customized Model,
Using Laplace distribution as an example, with parameters
mu and sigma specifically

Properties Description

DistributionName Name of the distribution
mu Value of the mu parameter
sigma Value of the sigma parameter
NumParameters Number of parameters
ParameterNames Names of parameters
ParameterDescription Descriptions of parameters
ParameterValues Vector of values of parameters

Note that the above methods and properties are required to create an optimum

and fully functional distribution model, which may not be necessary when they

are used in the framework for headway analysis. For instance, the pdf, ...

cdf, mean, std and var are useful and they are required to be overridden, but

methods like icdf, random or median can be ignored if they are not needed in

headway analysis in some stages. The properties listed in Table 2.4 are only those

important to this study. There are more properties in completing a distribution

class, however, they are less relevant here. Properties mu and sigma are specially

used for the Laplace distribution, and they should be changed correspondingly
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when using other models, such as alpha and beta for a gamma distribution.

Method fit and likefunc are important particularly for parameter estimation,

and these two are frequently used in the framework. Further details will be intro-

duced in the following section.

After the required methods and properties are coded properly, the customized

model is ready as a functional distribution for headway analysis. They can then

be fitted to headway data, and tested by GoF methods for example, which are

explained in the following sections.

2.3.5 Parameter Estimation Methods

Parameter estimations are essential steps for calculating parameter values of a

headway model, which are also specified as fitting models to data samples. To

choose a good estimation method, fitting performance is an essential criteria, which

include two main aspects, i.e. quality of fitting and estimation time. Fitting

qualities describe how well the fitted models represent the sampled data, and

they are normally measured by goodness-of-fit test, which is discussed in the next

section. The estimation time is a computational cost that indicates how rapidly the

fitting precess can be implemented. The fitting performance is the main method

used in this study to measure a selected headway model.

There are a list of estimation methods used in fitting variety of headway models

in the past. These can be known as moment estimator (ME) (Buckley, 1968; Co-

hen and Whitten, 1980), maximum likelihood estimator (MLE) (widely used by
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many), minimum of chi-squared statistics (MCS)(Branston, 1976), minimum of

the sum of the squared errors (MSSE) between estimated and empirical distribu-

tion functions (Zhang et al., 2007) or minimum of the mean integrated squared

error in the frequency domain (MISE) (Hoogendoorn and Botma, 1997). Or with

modifications of some of above methods, such as, modified maximum likelihood

estimator(MMLE)(Luttinen, 1996) or modification of ME (Ashton, 1971). Some

studies also used a combination of certain of the above estimators for fitting dif-

ferent parts of a model (Branston, 1976). Luttinen (1996) and Ha et al. (2012)

give detailed reviews and investigations of these methods.

The most frequently used estimation method is probably the traditional maximum

likelihood estimator (MLE). Suppose θ (θ = θ1, ..., θk, θ ∈ Θ) are parameters of a

parametric model with probability density function (PDF) of f(t; θ), and there is

a sample t1, t2, ..., tn for n independent and identically distributed (iid) headway

observations. Assuming the sample can be described by the distribution model

f(t; θ0), then θ0 is referred to the true value of the parameter, which is unknown.

The purpose of fitting a model is to find an estimator θ̂ which would be as close

to θ0 as possible. The method of MLE is supposed to maximize a joint density

function of all observations of the given data sample, in which the joint density

function can be expressed as:

f(t1, t2, ..., tn; θ) = f(t1; θ)× f(t2; θ)× · · · × f(tn; θ). (2.1)
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If considering the data sample t1, t2, ..., tn as fixed parameter, and θ as variables

in the above function, then the likelihood function can be written:

L(θ; t1, t2, ..., tn) = f(t1, t2, ..., tn; θ) =
n∏
i=1

f(ti; θ). (2.2)

This function is more convenient to use as its logarithm, i.e. the log-likelihood:

lnL(θ; t1, t2, ..., tn) =
n∑
i=1

ln f(ti; θ). (2.3)

The MLE estimates θ̂ to the closest value of θ0, the true value of the parameters,

by maximizing the likelihood or log-likelihood function, i.e.:

{
θ̂
}
⊆
{

arg max
θ∈Θ

lnL(θ; t1, t2, ..., tn)

}
. (2.4)

Often with implementation of MLE in MATLAB, the negative log-likelihood func-

tion is more convenient for optimization

θ̂ ⊆ arg min
θ∈Θ

{− lnL(θ; t1, t2, ..., tn)} . (2.5)
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The log-likelihood function sometimes can be resolved for θ̂, if solutions exist for

its first order derivative of each parameter to equal zero:

∂ lnL(θ̂)

∂θ̂1

= 0

...

∂ lnL(θ̂)

∂θ̂k
= 0.


(2.6)

However, these equations may not always be possible to solve with explicit solu-

tions, as there are cases where distribution models have very complex form. In

such cases, numerical methods have to be used. Lists of studies have discussed

and recommended the MLE method for model fitting of headway data (Cohen and

Whitten, 1980; Ha et al., 2012; Luttinen, 1996; Stuart and Ord, 1991).

Eq. 2.5 can also be directly used numerically to find θ̂, and this is a more gener-

alized way compared with using partial derivatives in Eq. 2.6, as the first method

does not depend on any specific form of f(t). That is, as long as the PDF of a

custom distribution is available, MLE can be implemented using Eq. 2.5 to fit

sampled data. This numerical MLE method is commonly used in MATLAB and

other statistics software packages, such as R. In Statistics Toolbox, function mle

will use MLE to estimate θ̂ this way, when a gradient of a custom distribution is

not available.

In the case of using the proposed framework, this numerical MLE method is ex-

tremely useful, as it can help fit any customized distribution model to headway

data, without dealing with details of mathematical properties of those models.
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Moreover, this method is not the only one used by mle function, which is also

able to identify the best fitting method if available in the distribution object.

For instance, mle function will not implement a numerical method of a nor-

mal distribution, as it has explicit solution of Eq. 2.6 that is available in the

prob.NormalDistribution class. This useful feature is used in the proposed

framework, and it provide flexible manner in fitting models.

The above are the main methods used for parameter estimation in the framework.

In summary, for any models (mostly single models) which have been developed

previously, e.g methods provided in MATLAB, their fitting methods will be used.

However, with more complicated models, such as mixed distributions introduced in

chapters 4 and 5, numerical MLE method is used to directly estimate parameters.

This feature of the framework will minimize the work related to fitting headway

models, especially when researchers would wish to test the fitting quality of a

model, before diving into a great deal of model optimization. However, this does

not limit its capability if any optimized fitting method is developed, as these

methods can be coded to override the fit method of the custom distribution

class, and it will then be used by the framework.

Note that the numerical MLE method computes the parameter estimates using

an iterative maximization algorithm. In such case, with some models and data,

poor choices of initial values can cause this method to converge to a local optimum

rather than the global maximizer, or to fail to converge entirely. Hence the choice

of initial values are often crucial, and this has to be treated with more care.
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2.3.6 Goodness-of-fit (GoF) Tests

To test whether a model is suitable to describe sampled headway data, two meth-

ods are commonly used, i.e. using a visual examination or applying a goodness-

of-fit test. The two types of method are often used together. A graphic of curves

of probability density function (PDF) or cumulative distribution function (CDF)

are presented together with histograms or empirical distribution function respec-

tively for comparison. Some researchers also used Quantile-Quantile (Q-Q) plots

for visual exam (Zhang et al., 2007). These graphical methods are subjective and

they are only suggested to use for preliminary evaluations.

A goodness of fit test is a statistical test in which the validity of one hypothesis is

tested without specification of an alternative. The general procedure consists in

defining a test statistic, which is some function of the data measuring the distance

between the hypothesis and the data (Bock and Krischer, 1998). These tests are

used to determine whether the outcome of a study would lead to a rejection of

the null hypothesis based on a pre-specified low probability threshold, which can

to decide if a result contains sufficient information to cast doubt on the null hy-

pothesis (Schlotzhauer, 2007). To be clear, following the conversion of MATLAB,

a p-value of a test is defined to reflect the probability of observing a test statistic

as or more extreme than the observed value under the null hypothesis. P-values

are often coupled to a significance level, which is also set ahead of investigation,

usually at 0.05 (5%). Thus, if a p-value was found to be less than 0.05, then the

result would be considered statistically significant and the null hypothesis would
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be rejected (McKillup, 2005). Other significance levels, such as 0.1 or 0.01, are

also used, depending on the field of study.

Particularly to this study, GoF tests are mainly used in testing the null hypothesis:

H0 : The random headway sample {t1, ..., tn} is generated by F (t|θ) (2.7)

where F (t|θ) can be any specific distribution of interest in this study. A significance

level of 0.05, rather than 0.01, has been chosen to make the hypothesis testing more

restrictive, since this study is to find a model that is more suitable to describe the

headway data.

Three types of GoF methods had majorly attentions in headway studies: 1) chi-

square test(NIST et al., 2001), 2) Kolmogorov-Smirnov (KS) test(Jr., 1951; NIST

et al., 2001; Stephens, 1974), and 3) Anderson-Darling (AD) test(NIST et al., 2001;

Stephens, 1974). Luttinen (1996) suggested many of these tests are problematic,

and he proposed that more powerful GoF test methods should be used, such as

combination of probabilities or moving probability.

In the present study, the two GoF tests described below are used mainly to illus-

trate the fitting performance of models.

Kolmogorov-Smirnov (KS) test

The KS test is a nonparametric test of the null hypothesis that the population

CDF of the data is similar enough to the hypothesized CDF. The test statistic D

is the maximum absolute difference between the empirical CDF (also called EDF)
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calculated from t and the hypothesized CDF (the proposed model):

D = max
t∈Re+

(∣∣∣F̂ (t)− F (t|θ)
∣∣∣) (2.8)

where F̂ (t) is the EDF for a sample {t1, ..., tn}, calculated from t:

F̂ (t) =

{
i

n

∣∣∣∣t(i) ≤ t < t(i+1)

}
, i = 1, ..., n. (2.9)

Hence, the KS test statistics can be defined as (NIST et al., 2001):

D = max
1≤i≤n

{
F (t|θ)− i− 1

n
,
i

n
− F (t|θ)

}
. (2.10)

The p-value of KS test can bu calculated using:

p = 1− FKS(D|n), (2.11)

where FKS is the CDF of the KS distribution.

The KS test is nonparametric test as its test statistic is the independent of all

hypothesized distributions and their parameters.

Anderson-Darling (AD) test

The Anderson-Darling test (Stephens, 1974) is used to test if a sample of data

came from a population with a specific distribution. It is a modification of the

Kolmogorov-Smirnov (K-S) test and gives more weight to the tails than does the
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K-S test.The test statistic belongs to the family of quadratic empirical distribution

function statistics, which measure the distance between the hypothesized distri-

bution, F (t|θ) and the EDF, F̂ (t) as

Q = n

∫ ∞
0

(
F̂ (t)− F (t)

)2

w(t)dF (t), (2.12)

over the ordered sample values t1 < t2 < ... < tn, where w(t) is a weight function

and n is the number of data points in the sample.

The weight function for the Anderson-Darling test is

w(t) = [F (t)(1− F (t))]−1 , (2.13)

which places greater weight on the observations in the tails of the distribution.

The Anderson-Darling (AD) test statistic (A2) is

A2 = −n−
n∑
i=1

2i− 1

n
[ln(F (ti)|θ) + ln(1− F (tn−i+1|θ))] , (2.14)

where t1 < t2 < ... < tn are the ordered sample data points and n is the number

of data points in the sample.

The framework provides both visual examination and GoF tests. For visual pre-

sentation, PDF curves are often compared with histograms to show general im-

pressions of fitting result. GoF tests are used to give more quantitative measures

(p-values) of quality of fitting for models. MATLAB Statistics Toolbox offers

a selection of GoF test methods, and for the purpose of headway analysis, the
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chi-square test, KS test and AD test are selected which can be used in the frame-

work. These methods are provided as function of chi2gof, kstest and adtest

correspondingly. The use of these tests are totally independent to the type of dis-

tribution models selected, and they are selected and operated by THTestprofile

objects. Hence, it is easy to add new GoF test methods into the framework, by

adding the function name into the list of GoF methods in THTestprofile class.

For example, as shown in Figure 2.4, a ’Monte Carlo’ GoF test method is added

there, which is using a parametric KS test method suggested by Luttinen (1996).

2.3.7 Development Progress of the Framework

The framework is not yet fully complete, although data processing, sampling and

model management element are fully functioned. Parts of the graphical interface

on result viewer and report generators are still under development. The completed

part of the framework can perform headway analysis work and it has been used

to carry out the data processing and analysis work of this study. The next section

gives an example of the use of this framework to test two selected built-in models,

and presents some of the headway analysis results.
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2.4 Examples of Implementation of Chosen Mod-

els

Implementations of any distribution in the proposed framework are straightfor-

ward, since it will automatically identify all models that have been developed and

stored in folders with special name +prob mentioned earlier. Figure 2.4 shows

controls that will help on choosing models, GoF methods and data samples. Note

that the fitting method box is still under development, and the framework will

automatically use the fitting method described in the overridden fit method of

each model. In future, it is planned to allow more fitting methods to be chosen

from a list, and this will help to enable a comparison to be made.

All the data preparation work is processed using the framework discussed in the

above sections. Details of data descriptions and preparations are given in chapter

3.

2.4.1 Selected Probability Distribution Models

Perhaps the two most commonly studied single models are gamma and lognormal

distributions, and many researchers had investigated them. The gamma distribu-

tion is popular due to its flexibilities (Ha et al., 2012; Luttinen, 1996; Zhang et al.,

2007) related to other models, such as exponential, Pearson III, Erlang distribu-

tions, while the lognormal distribution are reported to have close connections to

car following models (Greenberg, 1966). These two models, especially when they
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are modified with location parameter δ, have relatively better fitting performance

to headway data as single models. Moreover, the mixed models are often studied

with these two distributions as followers headway models. These mixed models

are reported to give excellent fitting performance.

For the above reasons, gamma and lognormal models are selected as examples of

implementation under the proposed framework. This demonstrates the capability

of using such frameworks, as claimed in previous sections, and also enables the

performance of both models to be compared with results from other studies.

In following section, gamma and lognormal distribution models, together with

their shifted modifications are reviewed and tested.

2.4.2 The Gamma and Lognormal Distributions

Gamma and Shifted-Gamma Distributions

The rationale of using gamma distribution for describing headway distributions, is

discussed in detail by Luttinen (1996); May (1990). Some mathematical properties

relevant to this study are summarized below.

To clarify notations, PDF functions are notated with function form g(t) for single

models, while CDF functions are notated with G(t). The headway random variable

is commonly denoted X. These notations are applied across the entire thesis, and

are used to distinguish functions of mixed models.
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The probability density function (PDF) of gamma distribution is:

g(t) = g(t;α, β) =
βαta−1

Γ(α)
e−βt, t > 0 (2.15)

where α, β ≥ 0, and Γ(a) is the gamma function

Γ(a) =

∫ ∞
0

xa−1e−xdx (2.16)

The cumulative distribution function (CDF) of gamma distribution is:

G(t) = G(t;α, β) =
γ[α, βt]

Γ(α)
, t > 0 (2.17)

where α, β ≥ 0, γ(α, x) is the incomplete gamma function

γ(a, b) =

∫ b

0

xa−1e−xdx. (2.18)

The mean and variance of gamma distribution is:

E[X] =
α

β
(2.19)

Var(X) =
α

β2
(2.20)

The gamma distribution has Laplace transform of:

g∗(s) =

(
β

s+ β

)α
(2.21)
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The Laplace transforms of models are interesting for this study, mainly due to

their important role in the SPM mixed models. Also, the Laplace transform of

the distribution model is similar to moment generating functions, which are useful

in deriving equations of moments for various purposes.

Applying a location parameter δ, the PDF and CDF of shifted-gamma distribution

can be expressed respectively, as:

g(t) = g(t;α, β, δ) =
βα(t− δ)a−1

Γ(α)
e−β(t−δ), t ≥ δ (2.22)

G(t) = G(t;α, β, δ) =
γ[α, β(t− δ)]

Γ(α)
, t ≥ δ (2.23)

where γ(a, b) is the incomplete gamma function, α, β ≥ 0.

The shifted-gamma distribution is also known as Pearson type III distribution.

2.4.2.1 Lognormal and Shifted-lognormal Distributions

Using lognormal distribution in headway analysis is firstly proposed by (Daou,

1964, 1966) and Greenberg (1966). Many studies covered the applications or re-

views of applying lognormal model (Branston, 1976; Gerlough and Huber, 1975;

Luttinen, 1996; May, 1965; Tolle, 1971). The following part summarizes key math-

ematical properties of importance in this study.

The PDF of lognormal distribution:

g(t) =
1

t
√

2πσ
e−

(ln t−µ)2

2σ2 (2.24)
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The CDF of lognormal distribution:

G(t) =
1

2

[
1 + erfc

(
ln t− µ√

2σ

)]
(2.25)

where erfc(t)is the complementary error function, µ, σ > 0, t > 0.

The mean and variance of lognormal distribution are:

E[X] = eµ+ 1
2
σ2

(2.26)

Var(X) =
(
eσ

2 − 1
)
e2µ+σ2

(2.27)

A general analytic Laplace transform of the lognormal distribution does not exist.

Applying a location parameter δ, the PDF and CDF of shifted-lognormal distri-

bution can be expressed:

PDF:

g(t) =
1

(t− δ)
√

2πσ
e−

(ln(t−δ)−µ)2

2σ2 (2.28)

CDF:

G(t) =
1

2

[
1 + erfc

(
ln(t− δ)− µ√

2σ

)]
(2.29)

2.4.3 Parameter Estimation

The parameters of gamma and shifted-gamma distributions are often estimated

using methods of ME, MLE, MMLE and MCS. The ME method is reported to
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give poor performance for gamma distribution (Bownan and Shenton, 1982; Cohen

and Whitten, 1988; Greenwood and Durand, 1960). Cohen and Whitten (1988)

suggested modified method of moments estimators (MMMEs), and they claimed

that the method is straightforward and applicable over the entire parameter space.

MCS is used by Ha et al. (2012), and he suggested a three-step optimization

method using MATLAB. The MLE methods are widely used and favoured by

most researchers. Johnson et al. (1994) observed unstable performance with the

estimated α close to unity, and he recommends that the method should only be

used if expected estimation of α is more than 2.5. This suits most of the conditions

in headway analysis. Modified MLE (MMLE) is proposed and used by Bownan

and Shenton (1982); Luttinen (1996), who found acceptable performance when α

is between 0.25 and 2.

Cohen and Whitten (1980) compared ME, MLE and MMLE for lognormal dis-

tribution, and they found estimation using ME was not as accurate as MMLE.

Luttinen (1996) suggested convergence problems with the MLE method, despite

the fact that it gave most accurate results. Hence he recommended the MMLE

method for lognormal distribution. Zhang et al. (2007) suggested the use of MLE

method to formulate the best unbiased estimators for single models in his study.

For gamma and lognormal distributions, the fitting methods are provided in the

Statistics Toolbox. In contrast, parameters of shifted-gamma and shifted-lognormal

are estimated using the numerical MLE method introduced earlier in this chapter.

As discussed, numerical MLE is not assumed to be the best method, but it is the

easiest method for rapid deployment.
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The comparisons among different methods of parameter estimation are out of the

scope of this study, but it is certainly worth considering as this framework is

developed in future.

As discussed earlier, KS and AD GoF tests are used to examine the fitting perfor-

mance of headway models in this study.

2.4.4 Results and Discussion

Estimation times1 are measured during the tests and are summarized in Table 2.5.

To distinguish between using location parameter or not, they are mark as ’Shifted’

and ’Original’ respectively. The estimation time of both models seem quite robust,

with the average values about 0.2 seconds. Gamma fittings are slightly slower than

lognormal models. The fitting of shifted-Gamma and shifted-lognormal are both

slower than original ones, and these are expected as the additional parameter δ is

introduced to the original models.

Table 2.5: Estimated times (s) on estimation of
gamma and lognormal distributions

Gamma Lognormal
Mean Std Mean Std

Shifted 0.24 0.05 0.17 0.02
Original 0.18 0.03 0.14 0.02

Table 2.6 shows the results of GoF tests. The p-values of both KS and AD tests

are listed in the table. The values in brackets represent number of samples that did

1An estimation time is a measure of a computational cost of a parameter estimation. This
time is measured by recording the elapsed cpu-time, which is the difference between the recorded
cpu-times before and after the parameter estimation, in seconds. The technical features of the
PC: Intel(R) Core(TM)2 Quad CPU Q9550 @ 2.83GHz; 4.0GB RAM.
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not pass the corresponding test. Figures 2.6 and 2.7 show more detailed results of

p-values against levels of traffic flows. All results are categorized with three lanes

(marked as lane 1-3).

Table 2.6: Summary of GoF Test Results for
Gamma and Shifted-Gamma Distributions

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

Gamma

Shifted 21(31) 21(31) 4(43) 4(43) 0(33) 0(33)
Original 7(45) 5(47) 1(46) 0(47) 0(33) 0(33)

Lognormal

Shifted 48(4) 49(3) 44(1) 44(1) 1(31) 0(32)
Original 29(23) 29(23) 24(23) 23(24) 0(33) 0(33)
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Figure 2.6: GoF Test Results On Gamma and Shifted-Gamma Distributions

The gamma distribution without location parameter δ has very poor fitting per-

formance, as only 8 out of 132 samples have passed KS test, while only 5 have
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Figure 2.7: GoF Test Results On Lognormal and Shifted-Lognormal Distri-
butions

passed AD test. The shifted-gamma has slight improvement, with 25 samples

passed both tests. Figure 2.6 shows that most of the succeeded samples are from

lane 1, at lower traffic flow levels (mostly under 1000 veh/hr). Similar poor fitting

performance were reported by Luttinen (1996), in his thesis.

The lognormal distribution is commonly considered as the best single model re-

ported by many previous studies. Result here shows indeed much better perfor-

mance comparing to both Gamma and shifted-Gamma models. The best fitting

performance are shown with shifted-lognormal models, as 92 samples have ac-

cepted by GoF tests, which is a big improvement compared with test result of

original lognormal distribution. Most of the accepted samples are in lane 1 and 2,

and better fitting performance is obtained with higher flows of traffic. However,

it should be noticed that three samples failed in parameter estimation stage, as
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estimations are beyond the maximum number of iterations.
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Figure 2.8: PDF fitting results of Gamma, shifted-Gamma, lognormal and
shifted-lognormal on selected data samples

All the above models show very poor fitting results in lane 3, as only 1 sample using

shifted-lognormal is managed to pass KS test. Referring to Figure 3.3, the lane 3,

as the third and fast lane in motorway, has more complex traffic situations. The

more skewed headway data indicate the existence of larger portion of short or very

short headways comparing with first two lanes. As Ha et al. (2012) discussed, the

single models, in general, have difficulty modelling short and very short headways.
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Similar results can be seen later in chapter 5, when more single models are tested

for fitting the third lane data.

Fitting results can also be viewed and compared visually. Selected results of PDF

function compared with histogram of empirical headway data are shown in Figure

2.8. Six samples are selected in this figure, as two samples per road lane. The

row 1-3 matches lane 1-3 respectively. The left column of figure contains samples

with relative lower level of traffic flows, while the right column shows samples with

higher traffic flows. Again, these figure show in general better fitting results with

shifted-lognormal distribution. But for the lane 3, none of the models seem to fit

the histogram well.

2.5 Chapter Discussion

A framework is introduced here which is intended to simplify the work on headway

data analysis. Some of the advantages of using MATLAB as development software

are discussed. The framework structure and data structure required are explained

in detail to show how the proposed framework for headway analysis is implemented.

Two single headway distributions are implemented and tested using the proposed

framework, and results have illustrated how the comparison of the selected models

may be made. The results show that the lognormal model generally has better

fitting performance compared with the gamma distribution model. The shifted-

lognormal model shows the best fitting result.
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Later chapters examine existing or new models that offer potentially good fitting

performance to headway data. The data samples used for these tests are described

in chapter 3. All data processing, implementation and tests is performed under

the framework described here.



Chapter 3

Headway Data Preparation

Summary

This chapter describes the headway data used in this study. This is followed

by an explanation of the data sampling process. Then the selected samples are

introduced and their statistics are considered.

3.1 Data Description and Collection

Headway data used in this study were supplied, with acknowledgement, by Profes-

sor Eddie Wilson, Univeristy of Bristol, UK (Wilson, 2008), who studied the data

to reform individual vehicle trajectories. The data are originally collected using

the English Highways Agency’s Active Traffic Management (ATM) system which

operates on a 15-km (approx. 9-mile) stretch of the M42 motorway constituting

57
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part of the box of motorways around Birmingham. For the purpose of monitor-

ing traffic closely, inductance detectors have been installed more densely, with a

nominal spacing of 100 m, and more dense spacing of 30 m in some parts.

The data that each inductance detector records are listed in Table 3.1. The data

are extracted using waveform analysis, with the arrivals quoted to 0.1 seconds

accuracy.

Table 3.1: Data Fields and Nominal Resolution for
Each Individual Vehicle Record (Wilson, 2008)

Quantity Arrival Lane Velocity Length
Time

Resolution 0.1 s integer 0-3 0.01 m/s 0.01 m

Only part of the data above is used in this study, and it is collected from a single

location about 1 mile north of junction 4, on M42 northbound. It contains 4

lanes, which are defined as lane 0 to lane 4, this include the emergency lane (lane

0) that was partially used on at peak times. The lanes 1, 2 and 3 represent the

slow, middle and fast lane of the road respectively. The data are collected in a

continuous period from 1st to 7th October 2008. It is assumed that the data are

free from effects caused by road ramp or other road configuration issues.

The dataset used here represents approximately 464,000 vehicles total in all four

lanes, and Figure 3.1 shows an example flow level of lane 2 for the whole 7-day

period.
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Figure 3.1: Average Traffic Flows of 7-day Period

3.2 Data Sampling Process

3.2.1 Methods of Headway Data Sampling

To carry out reliable analysis, the studied headway data should be under the

condition of relatively stable traffic situations, which means both changes on ve-

locity and flows are independent of time, so called stationary samples. Researchers

proposed a few methods to test for more stationary samples.

Breiman and Lawrence (1973) discussed the approaches of achieving headway sam-

ples of stationary traffic flow. They attempted to separate fluctuations from the

changes in flow rate and to estimate the parameters of the fluctuations. As a

result, they proposed and recommended the method of area test.

Three trend tests methods are often used in data sampling process:
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1. Weighted sign test (Cox, D. R. and Stuart, 1955)

2. Kendall’s rank correlation test (Kendall and Ord, 1990; Stuart and Ord,

1991)

3. Exponential ordered scores test (Cox and Lewis, 1966).

Luttinen (1996) used directly 3 trend tests for his sampling process, with the

exponential ordered scores test as the prime method. Ha et al. (2012) used two

sampling methods for headway data sampling. He classified them as short-time

and long-time sampling methods. In the short time method, data samples are

headway data aggregated with a fixed time interval, 6 minutes in his case. He also

used long-time sampling which is the combination of area test validated by three

trend tests.

This study uses the combination of area tests and trend tests similar to Ha et al.

(2011), provided both velocity and flows are tested. The following steps show the

procedure of sampling test:

1. Using area test then trend tests on traffic counts, in the interval of 30 seconds;

2. Using area test then trend tests on velocities, in the interval of 50 counts;

3. Grouping data which have same level of traffic count and velocity;

4. Storing samples that have data points over 500 headway counts.



Chapter 3. Headway Data Preparation 61

3.2.2 The Results of Data Sampling

Using the above method, 140 groups of headway samples are achieved. In these

samples there are 6 samples, in lane 2, collected on day 1-4 around mid-night,

where no headway data available in lane 1. With further checking, those 6 samples

are found to have limited velocity around 40 mph, which are unusual traffic flows

at those time periods. This raises the suspicion that the road had controlled access

and lane 1 was closed. As a result, these 6 samples are removed from this study.

2 samples from lane 0 (the hard shoulder lane) are removed too, since the traffic

flows only happens at peak times and the data would not present generality of

traffic flows. Table 3.2 shows the number of final selected samples in each of the

three lanes.

Table 3.2: Number of Samples per lane

Lane 1 Lane 2 Lane 3

Samples 52 47 33

Figure 3.1 shows how the velocities are distributed against traffic flows for the

selected headway samples, categorized by lane number 1-3. Data show widely

combinations of velocity and traffic flows in the sampled data, where, lane 2 and 3

have most traffic flow above 1000 veh/hr and more sample in lane 1 have relatively

low flow levels below 1000 veh/hr. Lane 3 shows more samples with higher speed,

while lane 1 has lower average travelling speed.
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Figure 3.2: The Speed and Flow Distributions of Headway Samples

3.2.3 Some Statistics of Data Samples

For the convenience of analysis, the data samples are stored together with the

following information and statistics:

1. LaneID, SampleID, Sample Size, Day & Time

2. Mean of flow rates (meanFlow), mean speed(meanSpeed), mean time head-

way (meanTH), standard deviation of headway (stdTH);

3. Coefficients of variation (CV), skewness, kurtosis, proportion of large good

vehicles (pLGV).

Detailed table of data samples are provided in Appendix A, with the above infor-

mation. Figure 3.3 provides charts that give some general idea about the sampled
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Figure 3.3: The Speed and Flow Distributions of Headway Samples

data. The standard deviation of headway data have very close relationships with

variation of traffic flows, that is, the values have decreasing trend with increasing

flow levels. The coefficient of variation (CV) shows the stability of the headway

data, which show more stability of headway in lane 1 and 2 with CV smaller than

1. In lane 3, headway data show more fluctuations with CVs larger than 1, and

these fluctuations are more stable while traffic flow gets higher. The lanes 1 and

2 have similar skewness and kurtosis level, with slight growing trend with traffic

flows. The data in lane 3 looks more skewed with higher peaks comparing to
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the rest two lanes. Clear linear relationship are shown in figure (bottom-right)

between kurtosis and squared skewness, where the lane 1 and 2 are similar and

they are distinguishable from lane 3. Similar data have been reported by Ha et al.

(2012) where he used A6a motorway data in France.

The proportion of LGV (large goods vehicles, longer than 6m) data are also pre-

sented in Figure 3.3, which shows that most of LGVs are traveling in lane 1. The

maximum proportion of LGVs in lane 2 is about 10%, while almost no LGVs

travelled in lane 3.



Chapter 4

Mixed Time-Headway Models

Summary

This chapter mainly discusses mixed distribution models used in time-headway

analysis. A brief explanation of mixed models and their difference from combined

models, is given. Both SPM and GQM mixed models are then discussed.

Second, using gamma and lognormal distributions as followers headway models, a

set of mixed models is investigated with empirical headway samples. In the later

sections, methods of simplifying model fittings are attempted by pre-determining

one or more parameters. The results are summarized and discussed for each of

these attempted methods.

4.1 Mixed Time-Headway Models

As mentioned in chapter 1, many researchers have studied simple distribution

models (or single models) to describe headway data, and the main disadvantage

65
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is that these simple models are not robust and consistent enough (Ha et al., 2012)

in modelling headway data of complex traffic conditions. That is, it is difficult

to use just one simple model to fit both the sharp peak and the long tail of the

empirical headway distribution (Luttinen, 1996). Most models can only suit one

part of the traffic conditions under a limited range of flow rates.

To overcome the limitations of these simple models, many studies have suggested

using more than one component in models to describe headway data. In general,

these can be termed composite models. Two type of composite models are often

discussed, i.e. combined models and mixed models. The majority of these models

are composed of two components. Models that contain more than two components,

e.g. the study of Ovuworie et al. (1980), have also been suggested. However, due

to the complexity of formulation and parameter estimation, these models are not

widely used.

4.1.1 Composite Distribution Models

Most studies on composite models suggest separation of vehicles into two groups,

i.e. a followers group and a non-followers (also known as leaders) group. In the

followers group, all drivers’ behaviours are restricted by vehicles in front of them,

and they are unable to drive at their desired speed. In contrast, in the non-

followers group, vehicles are either leaders of queues or individual vehicles without

a follower. The non-followers can drive freely with constraint only related to the

overall traffic environment, and no preceding vehicles are immediately ahead of

them.
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Compared to the non-followers vehicles, the followers group includes some un-

avoidable approximations that would prevent a composite model from fully corre-

sponding to realistic traffic (Wasielewski, 1979). Luttinen (1996) have summarized

3 or 4 categories of vehicles into the followers group:

1. Followers

2. Vehicles in a transition stage from free-flowing to follower

3. Vehicles starting a passing manoeuvre

4. Vehicles in the stage of passing but still in the original lane would be included

as the 4th category.

Vehicles in categories 2, 3 and 4 are assumed as followers as they have relatively

small headways which are closer to the headways of true followers.

The common way of studying these two vehicle groups is to composite two proba-

bility distributions, which describe the headways of these two groups. Considering

headway variable X as either the followers headway U or the non-followers head-

way V, then the distribution of X can be described as a linear combination of U

and V, as:

F (t) = φG(t) + (1− φ)H(t) (4.1)

f(t) = φg(t) + (1− φ)h(t) (4.2)
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where F (t), G(t), H(t) and f(t), g(t), h(t) are the CDF and PDF of X, U and V

respectively; the parameter φ is the probability of one vehicle being a follower,

and it represents the fraction of vehicles in the followers group (Ha et al., 2012).

The above can be used as a generalized form of composite headway models. Based

on this, there are mainly two types of composite models that are frequently studied,

i.e. combined models and mixed models.

The main difference between combined models and mixed models in the generalized

form, is how the non-followers headway variable V is treated. That is, the methods

of deriving h(t) of each type of models are different.

In the combined models, workers use the exponential distribution for the function

h(t), as it is natural to consider that the non-followers headway variable V is a

Poisson process. The combined models use a fixed threshold of headway T to

distinguish headways of followers and non-followers groups. That is, for headways

that are larger than T, all vehicles will be in the non-followers group, otherwise,

they will be followers represented by the distribution function G. In this case, the

followers group and non-followers group are completely independent. There are

many studies for combined models, and researchers, e.g. (Ha et al., 2012; Luttinen,

1996; Zhang et al., 2007), consider that this type of model is still inadequate in

describing headway data. Note that the combined models are NOT studied in this

thesis.
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4.1.2 Mixed Distribution Models

Mixed models also classify vehicles with two components of followers and non-

followers groups, and they have the same generalized form of functions as com-

bined models. However, in contrast to combined models, the two components of

mixed models are considered to have mathematical connections between them.

Different assumptions of such connections will further distinguish mixed models

into different types.

If considering the two components to have a probabilistic relationship between

them, then the headway threshold T, is not defined anymore as an arbitrarily

fixed value. Instead, T has been considered as a random variable which has its own

distribution. This could lead to a semi-Poisson Model (SPM for short). In contrast,

if using a queuing model with Poisson arrivals, and using a general distribution as

service time, then the mixed model becomes a generalized queueing model (GQM

for short). At present, the SPM and GQM mixed models are probably the most

popular models in headway analysis.

4.1.2.1 Buckley’s Semi-Poisson Model (SPM)

Buckley (1968) and Wasielewski (1979) considered non-followers as a group of ve-

hicles whose headways come from a Poisson process under the condition that their

headways are larger than the random headway threshold T. In other words, Buck-

ley suggested that the non-followers headway variable V, which is greater than the

followers headway U, follows an exponential distribution. This random threshold
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T in Buckley’s model has been considered as a ’zone of emptiness’ behind each

vehicle which is non-accessible by its following vehicle, in time zone. Within the

followers group, this ’zone of emptiness’ is exactly the headway of each vehicle

behind, which can be described by the distribution function G(t) or density func-

tion g(t). Then function h(t) is an exponential density function with parameter λ,

modified to include only headways greater than random variable U, whose density

function is g(t). That is (Buckley, 1968),

h(t) = (1/B)λe−λt
∫ t

0

g(u)du

= (1/B)λe−λtG(t), t ≥ 0, λ ≥ 0 (4.3)

where B is the normalization constant:

B =

∫ ∞
0

λe−λt
∫ t

0

g(u)du dt = g∗(λ) (4.4)

Luttinen (1996) also derived this equation using method of conditional probability,

using the relationship between U and V:

Pr {V ≥ t|V > U} ∼ e−λv (4.5)

Buckley’s model is named as a semi-Poisson model (SPM), with the complete

form described as follows:
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PDF:

f(t) = φg(t) + (1− φ)
G(t)

g∗(λ)
λe−λt,

t ≥ 0;λ > 0; 0 ≤ φ ≤ 1

(4.6)

CDF:

F (t) = φG(t) +
1− φ
g∗(λ)

∫ t

0

G(u)λe−λudu,

t ≥ 0;λ > 0; 0 ≤ φ ≤ 1

(4.7)

Laplace transform:

f ∗(s) = φg∗(s) + (1− φ)
λg∗(s+ λ)

(s+ λ)g∗(λ)
(4.8)

4.1.2.2 The Generalized Queuing Model (GQM)

Considering stability and safety as the modification of Poisson vehicle arrivals is

similar to adding on to a Poisson process with a classical queuing system with a sin-

gle server (Branston, 1976). The followers distribution can be viewed as a service

time distribution in the queuing system. Branston suggested using the queuing

theory and derived the mixed models into a generalized queuing model (GQM).

Various GQMs have been proposed by Cowan (1975) and Branston (1976). Cowan

(1975) carried out a similar study of it and named it model M4. In the GQM,

non-followers headway variable V is proposed as the sum of followers variable

U and Poisson arrivals Y, so that V= U+Y. Then function h(t) becomes the

convolution of g(t) and an exponential distribution with parameter λ, it follows
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that

h(t) =

∫ t

0

λe−λ(t−u)g(u)du

= λe−λt
∫ t

0

g(u)eλudu

(4.9)

Then the full form becomes:

PDF:

f(t) = φg(t) + (1− φ)λe−λt
∫ t

0

g(u)eλudu (4.10)

Two ways of deriving CDF:

(i) by Gross and Harris (1985):

F (t) = φG(t) + (1− φ)

∫ t

0

G(t− u)λe−λudu (4.11)

(ii) equivalently by Luttinen (1996):

F (t) = φG(t) + (1− φ)

∫ t

0

g(u)
(
1− e−λ(t−u)

)
du

= G(t)− (1− φ)e−λt
∫ t

0

g(u)eλudu

(4.12)

The Laplace transform of GQM is obtained using the convolution property:

f ∗(s) = φg∗(s) + (1− φ)g∗(s)h∗(s)

= φg∗(s) + (1− φ)g∗(s)
λ

s+ λ

(4.13)
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From the above, it is clear that the combined models use fixed threshold T as

the distinction between two headway groups, whereas the mixed models do not.

Instead, the mixed models use probabilistic relationships between g(t) and h(t)

to describe the non-follower groups. In SPM, the non-followers headways are

exponentially distributed under the condition that these headways are greater

than followers headways. For GQM, a service time is considered upon Poisson

arrivals, hence the non-followers headway is the sum of service time and arrival

time. Another difference between combined and mixed models is pointed out by

Ha et al. (2012), using the case where parameter φ = 0. That is, when φ = 0,

combined models become exponential distributions but mixed models do not.

4.1.3 The Followers Headway Distribution in Mixed Mod-

els

In mixed models, the GQM or SPM using the followers headway distribution

function, i.e. g function, are called g-GQM or g-SPM respectively (Ha et al.,

2012). For example, if a GQM or SPM is using gamma distribution as g function,

it is called gamma-GQM or gamma-SPM respectively. Some followers headway

distributions have been studied in the past with mixed models.

Buckley (1962, 1968) suggested normal, truncated normal and gamma distribu-

tions as models of followers headways. At low and low-medium traffic flows, Buck-

ley did not find a solution for parameter estimation of gamma-SPM. However, with
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parameters that were successfully obtained, he found gamma-SPM had similar or

better GoF test result than the rest of the distributions he investigated.

Ashton (1971) attempted a mixed model with the gamma distribution because

of its connection with the exponential distribution. He suggested such a model

should be theoretically more tractable.

Cowan (1975) used the gamma distribution as service time headway in GQM (M4).

He concluded that the M4 model is more realistic for many users and does not

necessarily lead to extreme mathematical difficulties.

Branston (1976) applied and compared both SPM and GQM models with normal,

gamma and lognormal as followers headway distributions with the GQM model.

The Lognormal distribution was not applied with SPM as there is no explicit

Laplace tranform. He found the results of GoF test were not acceptable when

using normal distribution for any of SPM or GQM model. He found acceptable

and almost identical overall GoF results when applying the gamma distribution

in both SPM and GQM. Finally, he recommended the lognormal-GQM as it had

the best overall fitting result.

Luttinen (1996) tested the gamma-mixed models and found that the gamma-

SPM had the best GoF result. He recommended the gamma-SPM for demanding

applications with adequate computational facilities.

Zhang et al. (2007) tested the normal-GQM and the gamma-GQM, and found

poor GoF results with the headway data he investigated. However, he did suggest

that GQM is generally considered more realistic and flexible, and recommended
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to try more followers headway distribution with GQM model, which quoted as M4

in his paper.

Ha et al. (2012) compared beta, gamma, normal, log-normal and Rayleigh distri-

butions on both SPM and GQM models. He recommended that the gamma-GQM

had the most outstanding result compared with other models. He noted that the

gamma-GQM and the gamma-SPM both had similar acceptable GoF results, and

he finally suggested that the gamma-GQM was more stable and low-cost (in GoF

test time) in overall comparisons.

4.1.4 Using Gamma and Lognormal Distributions in Mixed

Models

In the following sections, the method of using gamma and lognormal models as

followers headway models is selected for further study and test. These two dis-

tributions are applied to both GQM and SPM models, that is, gamma-SPM,

gamma-GQM, lognormal-SPM and lognormal-GQM.

This section introduces, for each of above mixed models, some mathematical prop-

erties, which mainly include PDF, CDF functions and expression of the Laplace

transform. For both gamma-SPM and gamma-GQM, more detailed discussions

on their mathematical properties can be found in thesis of Luttinen (1996).

The PDF and CDF functions are expressed using simplified forms that are suitable

and easier to implement in the proposed framework. As shown in Eq. 4.6 and 4.7,

i.e. the general forms of mixed models, if the g functions have been developed as
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single models, these equations can then directly use them in programming stage,

without requiring any further derivations. This feature makes development of

mixed models simpler. Of course, some of these will be computationally expensive,

as there are complexity of integrations of g functions involved, especially for GQM

models, which involve integrations in both PDF and CDF functions. Despite

the slow performance, such methods are valid and require minimum effort in the

development stage. This will be very useful in testing the fitting quality of a new

model in the preliminary stage, without paying too much attention to detailed

mathematics.

However, some levels of simplification are always preferred, as long as they do

not add great complexities in development (e.g. re-writing a likelihood function),

to make implementations run faster. The PDF of SPM is very simple as it only

requires the Laplace transform of the g function, and these functions are not very

costly in computation. They do not need any further expansion or derivations.

Hence, the expressions of PDF in this study, remains in the same form as Eq. 4.6,

without further expansion of g(t) or G(t) components.

The CDF of SPM involves the integration of G(t) for non-followers headway, and

this will normally cause slow performance on GoF test stage, or on random number

generation. The cost of the GoF test does not sound too problematic, as the

demands (number of iterations involved) of computation are trivial compared to

parameter estimation. However, in some applications such as random number

generation using CDF function, the computational cost would be unbearable, if

there is not an alternative method available. With the G(t) involved in integration,
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it is more difficult to simplify a CDF of SPM to obtain more explicit forms. In

this study, if there is no simplification of CDFs, they will remain the same form

as Eq. 4.7, otherwise, the simplified version will be given for improvement.

For GQM mixed models, both PDF and CDF (Eq. 4.10 and 4.12) involve inte-

grations of g(t) times an exponential component eλt. These integrations again will

affect the computational performance, in the stage of parameter estimation, GoF

test etc. If no explicit form of these functions is available, e.g. lognormal-GQM

(Ha et al., 2012), implementation of these models will be unbearably slow. Some of

these functions can be derived with explicit forms, in which case their expressions

will be given.

Note that lognormal-SPM is not studied in any other papers as no closed form

of Laplace transform is available for lognormal distribution. However, since As-

mussen et al. (2014) has proposed an approximation method for Laplace transform

of lognormal distribution, the implementation of lognormal-SPM becomes possi-

ble. Hence, the performance of this model is also investigated in this study.

4.1.4.1 Gamma-SPM

The PDF and CDF of gamma distribution are given in Eq. 2.15 and 2.17, which

is denoted here as gg(t) and Gg(t) respectively. Its Laplace transform Eq. 2.21 is

denoted as g∗g(s). Substituting gg(t), Gg(t) and g∗g(λ) in Eq. 4.6, will gain PDF of



Chapter 4. Mixed Time-Headway Models 78

gamma-SPM model, which is:

f(t;φ, α, β, λ) = φ gg(t;α, β) + (1− φ)
Gg(t;α, β)

g∗g(λ)
λe−λt (4.14)

Accordingly, substituting Gg(t) and g∗g(λ) in Eq. 4.7, will give the CDF of gamma-

SPM model, which is:

F (t;φ, α, β, λ) = φGg(t;α, β) +
1− φ
g∗g(λ)

∫ t

0

Gg(u;α, β)λe−λudu (4.15)

As mentioned above, the CDF function involves integration of Gg(t), this slows

down the performance when GoF test is needed. This CDF can be further ex-

panded as (Luttinen, 1996):

F (t;φ, α, β, λ) = φ
γ(α, βt)

Γ(α)
+ (1− φ)

λ

Γ(α)
(1 +

λ

β
)α
∫ t

0

γ(α, βu)e−λudu (4.16)

where γ(.) is the incomplete gamma function, cf. Eq. 2.18.

In Eq. 4.16, its integration part can be further derived as:

∫ t

0

γ(α, βu)e−λudu =
1

λ

[(
β

λ+ β

)α
γ (α, (λ+ β)t)− γ(α, βt) e−λt

]
(4.17)

after substitution and simplification, Eq: 4.16 becomes

F (t;φ, α, β, λ) = φGg(t;α, β) + (1− φ)

[
Gg(t;α, λ+ β)− Gg(t;α, β)

g∗g(λ)
e−λt

]
(4.18)
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The Laplace transform of gamma-SPM model (Luttinen, 1996):

f ∗(s) = φ

(
β

β + s

)α
+ (1− φ)

λ

λ+ s

(
β + s

β + λ+ s

)α
(4.19)

4.1.4.2 Gamma-GQM

Similar to the substitutions in the derivation of the gamma-SPM, substituting

gg(t) and Gg(t) into Eq. 4.10, will give the the PDF and CDF of the gamma-

GQM model respectively, which are:

PDF of gamma-GQM:

f(t;φ, α, β, λ) = φ gg(t;α, β) + (1− φ)λe−λt
∫ t

0

gg(u;α, β)eλudu (4.20)

which is equivalent to (Luttinen, 1996):

f(t;φ, α, β, λ) = φgg(t;α, β) + (1− φ)

(
β

β − λ

)α
Gg(t;α, β − λ)λe−λt (4.21)

referring to Eq. 2.21, since

(
β

β − λ

)α
= g∗g(−λ) .

The PDF can be also expressed as

f(t;φ, α, β, λ) = φgg(t;α, β) + (1− φ)λg∗g(−λ)Gg(t;α, β − λ) e−λt

t ≥ 0;λ > 0; 0 ≤ φ ≤ 1

(4.22)
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Accordingly, substituting gg(t) and Gg(t) into Eq. 4.12, will give the CDF of the

gamma-GQM model, which is:

F (t;φ, α, β, λ) = Gg(t;α, β)− (1− φ)e−λt
∫ t

0

gg(u;α, β)eλudu (4.23)

which is equivalent to (Luttinen, 1996):

F (t;φ, α, β, λ) = Gg(t;α, β)− (1− φ)

(
β

β − λ

)α
Gg(t;α, β − λ) e−λt (4.24)

Again, it can be rewritten as

F (t;φ, α, β, λ) = Gg(t;α, β)− (1− φ) g∗g(−λ)Gg(t;α, β − λ) e−λt (4.25)

The Laplace transform of gamma-GQM (Luttinen, 1996):

f ∗(s) =

(
β

β + s

)α(
φ+ (1− φ)

λ

λ+ s

)
(4.26)

4.1.4.3 Laplace Transform of Lognormal Distribution

The PDF and CDF of the lognormal distributions are introduced in section 2.4.2.

Its Laplace transform is introduced here. The Laplace transform is important as

it forms a part of the SPM mixed models.
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The Laplace transform:

g∗(λ) =

∫ ∞
0

e−λxdFµ,σ2(x)

=

∫ ∞
0

1

x
√

2πσ
exp

{
−λx− (log x− µ)2

2σ2

}
dx

=

∫ ∞
−∞

1√
2πσ

exp

{
−λet − (t− µ)2

2σ2

}
dt

(4.27)

This function cannot be further derived, and the the explicit form of Laplace

transform does not exist. Recently, a method of approximation was proposed by

Asmussen et al. (2014).

g̃∗(λ) =

exp

{
−W

2(λeµσ2) + 2W (λeµσ2)

2σ2

}
√

1 +W (λeµσ2)
, λ ∈ R+ (4.28)

In the expression above, W (·) is the Lambert W function which is defined as the

solution of the equation W (x)eW (x) = x; this function has been widely studied in

the last 20 years mainly due to the advent of fast computational methods (Corless

et al., 1996).

4.1.4.4 Lognormal-SPM

With the approximation of Laplace transform available, the lognormal distribution

can be now considered in SPM model. Similar to procedures for gamma-SPM, by

substituting Eq. 2.24, 2.25 and 4.28 into Eq. 4.6 and 4.7, approximations of the

PDF and CDF can be achieved for the lognormal-SPM model, which are:
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PDF:

f̃(t;φ, µ, σ, λ) = φGl(t;µ, σ) +
1− φ
g̃l
∗(λ)

Gl(t;µ, σ)λe−λt (4.29)

CDF:

F̃ (t;φ, µ, σ, λ) = φGl(t;µ, σ) +
1− φ
g̃l
∗(λ)

∫ t

0

Gl(u;µ, σ)λe−λudu (4.30)

4.1.4.5 Lognormal-GQM

Both PDF and CDF of lognormal-GQM can be achieved, by substituting Eq. 2.24

and 2.25 into Eq. 4.10 and 4.12, as addressed below:

PDF:

f(t;φ, µ, σ, λ) = φgl(t;µ, σ) + (1− φ)λe−λt
∫ t

0

gl(u;µ, σ)eλudu (4.31)

CDF:

F (t;φ, µ, σ, λ) = Gl(t;µ, σ)− (1− φ)e−λt
∫ t

0

gl(u;µ, σ)eλudu (4.32)

Unfortunately, it is more difficult to simplify the above functions for both lognormal-

SPM and lognormal-GQM models, and they have to be left with involvement of

integrations. These will greatly reduce speed of implementation for both models.

Also, no explicit form of Laplace transform exists, for obvious reasons.
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4.2 Implementing Mixed Models in MATLAB

The methods of implementing single models using MATLAB for headway anal-

ysis are introduced in Chapter 2. In this section, a further extension for adding

mixed models into the proposed framework is explained. Using the advantages

of the MATLAB Statistical Toolbox and object oriented programming structure,

a simple method is introduced that can provide the ability to quickly implement

new followers headway models into the GQM or SPM mixed model in MATLAB.

This gives the researcher more advantages of testing new models in a quick and

reliable way, and saves substantial development time and effort in the preliminary

research stage.

4.2.1 Method to add mixed models in MATLAB

The data structure and class structure of adding new models in the Statistics

Toolbox have been explained in chapter 2. Here, attention is more focused on

a new class structure that can treat the mixed models in a similar way as other

simple models. Since the mixed model mainly has two components as described

in Eq. 4.2, it would be an advantage to use the similarity of this common form of

models to simplify the development work. This proposed attempt is to minimize

the work by avoiding to write similar codes for every mixed model.

The SPM and GQM are treated separately in this method, as there are funda-

mental differences between methods of dealing with non-followers distribution, e.g.
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the h(t) and H(t). This would not cause many complications as there are only

two parent classes resulting in the end, i.e. one for each type of the two models.

SPMdistribution

+ Lambda { get; set; } : do...
+ Phi { get; set; } : double
# g_func() : double
# G_func() : double
# h_func() : double
# H_func() : double
# LT_gfunc() : double
+ pdffunc() : double
+ cdffunc() : double

GQMdistribution

+ Lambda { get; set; } : do...
+ Phi { get; set; } : double
# g_func() : double
# G_func() : double
# h_func() : double
# H_func() : double
# LT_gfunc() : double
+ pdffunc() : double
+ cdffunc() : double

prob_ToolboxFittableParametricDistribution

Gamma_SPM

+ Alpha { get; set; } : double
+ Beta { get; set; } : double
+ fit() : void
# g_func() : double
# G_func() : double
# h_func() : double
# H_func() : double
# LT_gfunc() : double
+ pdffunc() : double
+ cdffunc() : double

Gamma_GQM

+ Alpha { get; set; } : double
+ Beta { get; set; } : double
+ fit() : void
# g_func() : double
# G_func() : double
# h_func() : double
# H_func() : double
# LT_gfunc() : double
+ pdffunc() : double
+ cdffunc() : double

Figure 4.1: Class diagram of mixed models, implemented in proposed frame-
work

The class structure is shown in Figure 4.1 using gamma-Mixed models as an ex-

ample. The two parent classes, i.e. the SPMdistribution and GQMdistribution,

are also subclass of prob.ToolboxFitableParametricDistribution just like

any of the single models in chapter 2. Only that these two are abstract classes

that cannot be instantiated directly.

The details of properties and methods are not explained here as it would take

large amount of space, and similar content can be found from any of the Statis-

tics Toolbox documentation. The added properties are Lambda and Phi, which

are representing λ and φ in Eq. 4.6 and 4.10. Five new methods are added in

these two classes, which are g func, G func, h func, H func and LT g func,

and these methods correspond to g(t), G(t), h(t) and H(t) functions in Eq. 4.2.

The LT g func is Laplace transform of g(t) for followers headway. These two
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classes also override methods of pdffunc and cdffunc, to represent the PDF and

CDF of mixed models, by implementing Eq. 4.2. Methods g func, G func and

LT g func are abstract methods, which have to be overridden in subclasses with

the actual PDF and CDF code of followers headway models.

Both classes SPMdistribution and GQMdistribution are very similar in struc-

ture, in fact they are almost identical, except methods h func and H func, as

functions h(t) and H(t) are treated differently for SPM and GQM models. These

two methods are implemented corresponding to the common form of functions of

SPM (cf. Eq. 4.6 and 4.7) and GQM (cf. Eq. 4.6 and 4.12). These two classes are

designed in such a way so h func and H func methods don’t have to be overridden,

and their inherited subclass can still be functional, as long as the follower headway

distributions have been developed. Such design will help greatly if a researcher

only needs to have a quick check on how a single model will perform on headway

data, when it is used as part of a mixed model, without going through detailed

mathematics for simplification and optimization. Of course, methods of such will

be computationally slow, for obvious reasons. An example in this chapter, the

lognormal-mixed models do not have explicit functions, and this method is used

for their implementations.

Using the gamma distribution as an example, as shown in the class diagram,

Gamma SPM and Gamma GQM are subclass of SPMdistribution and GQMdistribution

respectively. To let these two subclasses functional, firstly their methods of g func, ...

G func and LT g func have to be overridden. Since the gamma distribution has
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been provided by Matlab, its methods can be directly called. For instance, the

g func can be as following:

1 function y = g func(x,varargin) % PDF g(t) of followers ...
headway distribuiton

2 pars = [varargin{:}];
3 a = pars(1);
4 b = pars(2);
5 y = prob.GammaDistribution.pdffunc(x,a,b); %PDF of gamma ...

distribution
6 end

and this will work for both gamma-SPM and gamma-GQM models. Since the

simplified forms of functions, e.g, Eq. 4.18 for CDF of gamma-SPM, the H func

can be overridden in this case for Gamma SPM subclass, and this will greatly improve

its computational performance.

After the subclass of a mixed model is developed, it is ready for fitting headway

data, with numerical MLE methods, and this is the way applied for all mixed

models throughout this study. If there are further simplified forms of PDF or CDF

available, and they are required to be used in the model fitting, then these new

expressions can be coded by overriding the methods pdffunc and cdffunc, which

will overwrite the common form of functions with the more specific ones developed.

Furthermore, if alternative estimation methods are required, for instance, a good

solution for a likelihood function, or a MCS, they can be used by overriding the

fit method.

Overall, the above section introduced how to add new mixed models to the pro-

posed framework, and this method is used for implementation of all mixed models

involved in this study.
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4.2.2 Parameter Estimation

For mixed distribution models, parameter estimation becomes more difficult due

to the more complex structures of their PDFs.

Buckley (1968) used numerical methods on the moment estimators (ME) to es-

timate the parameters of SPM models. He estimated normal-SPM and gamma-

SPM, and he noticed that some of the samples with low and low-medium flow levels

were unable to obtain any estimation results. Ashton (1971) estimated a modified

gamma-SPM model by minimizing the sum of the squared errors between ana-

lytical and calculated moments, which is actually a modified moment estimator.

Wasielewski (1974, 1979) suggested a method to examine the tails of the empirical

headway distribution, and hence obtain estimations for λ and φ. Hoogendoorn

(2005) also used and recommended this method in his study of free speed dis-

tribution. Branston (1976) used the combination of ME and MCS (minimum of

chi-squared statistic), for both SPM and GQM models. For estimation of λ and

φ, he used the first two moments to equate the sample moment and solved the

parameter values. Then he used MCS to estimate α and β for the gamma-mixed

models. Luttinen (1996) suggested the use of the MLE method in estimating the

gamma-SPM in his study. Hoogendoorn and Botma (1997) proposed a method

to estimate GQM parameters by minimizing the mean integrated squared error

(MISE) distance in the frequency domain. His method,in many cases, has been

proved powerful and not complicated in calculation. Zhang et al. (2007) suggested

a method of minimizing the sum of the squared errors (MSSE) between the es-

timated and empirical distribution functions for estimation of the mixed models
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he studied. Ha et al. (2012) reviewed and evaluated some of the above estimation

methods (MCS, ME, MLE), and he concluded with the recommendation to use

MLE accompanied with his proposed three-step estimation process.

The parameter estimation in this study uses the numerical MLE method built into

the proposed framework, as discussed in chapter 2. This method does not give

the best performance nor the most reliable way to estimate parameters for mixed

distribution models, but the overall performance is acceptable, plus its convenience

of implementation in the proposed framework. This estimation method can be

considered as an attractive alternative if no better method has been identified.

4.2.3 Fitting Mixed Models Using Empirical Headway Sam-

ples

Once the gamma-mixed and the lognormal-mixed models are implemented using

the methods explained in previous section, application of these mixed models on

headway data are the same as those of using single models discussed in chapter 2.

Each model will be used to fit all the headway samples described in chapter 3 and

then estimated models are tested for the quality of fitting using both KS and AD

GoF tests. During the fitting and the GoF test stages, all the elapsed cpu-time1

and the GOF results are recorded for later comparison. These two are the major

measurement of comparing the performance of mixed models. Results are listed

in data tables as well as figures, for discussions of fitting and the GoF test speeds,

1Such elapsed cpu-time is also called GoF time in this thesis. It is the time taken to implement
a GoF test, and it is measured in the same way as estimation time, in milliseconds.
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quality of fitting and patterns and variations of estimated parameters. Also, PDF

curves of a few selected samples are presented to compare with the histograms of

headway data, to give visual examinations of the fitting results.

In the parameter estimation stage, the numerical MLE requires initial values for

iterative maximization algorithm used. These values are crucial, as poor values

may lead to bad fitting results. Two considerations are used for set the initial

values. First, for the common parameters φ and λ, as scopes of both values are

effectively between 0 and 1, so a value of 0.5 is chosen as starting point of these two

parameters. Second, for parameters that are specific to followers headway models,

they are chosen with values near the estimated values when corresponding models

were fitted as single models. For example, when the gamma distribution was

implemented in chapter 2, the mean estimated results of α and β are used as the

starting points of fitting gamma-mixed models. After the first implementation,

new mean results will be estimated and they are then selected as final choice

of initial values. In practice, more combinations of initial values were tested,

especially for gamma-mixed models, and resulted parameters have shown good

consistency for these models.

4.2.4 Results and Discussion

All chosen samples are tested in this stage, and in general, the test results are well

accepted. All headway samples are categorized with road lane 1-3 as discussed in

chapter 3. The gamma-mixed models are generally processed with good estima-

tion time, where each estimation took roughly between 0.5 to 3 seconds. However,
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Table 4.1: Comparison of estimation time(s) on
gamma-SPM, gamma-GQM, lognormal-SPM and

lognormal-GQM models

Fitting Time(s) KS test time(ms) AD test time(ms)
Mean Std Mean Std Mean Std

Gamma-

SPM 1.52 1.41 7.96 6.80 5.61 2.46
GQM 1.05 0.61 4.43 2.71 3.27 1.11

Lognormal-

SPM 5.92 1.88 368.52 119.03 385.18 155.40
GQM 96.05 43.08 373.47 137.62 393.54 176.18

the average speeds on fitting the lognormal followers headway models are much

slower, which are expected and discussed earlier. For the lognormal-SPM, each

sample took nearly 10 seconds to implement. This is due to the relative low perfor-

mance on the numerical process involved in the approximated Laplace transform

when computing the PDF. The fittings of the lognormal-GQM to headway samples

are much slower, as each sample took about 150-400 seconds. This slow perfor-

mance is mainly caused by the unavoidable numerical integrations involved in the

computation of the PDF. In practical terms, this may be improved by using al-

ternative optimization methods, such as the Trust-Region algorithm, which would

potentially reduce the number of iterations involved in the MLE process. Other

estimation methods such as the MCS (Branston, 1976) may also be alternatives

for improving the estimation speed. Table 4.1 also provides the time spent on the

GoF tests. The gamma-SPM model is very fast in the GoF test with time aver-

age lower than 10 milliseconds, and the gamma-GQM is slightly faster than the

gamma-SPM. The GoF tests with the lognormal-mixed models are much slower,
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with the average test time between 200-500 milliseconds. Again, such slow per-

formance is caused by the numerical integrations involved in evaluating CDF of

lognormal-mixed models. Ha et al. (2012) reported a much slower performance of

the GoF test with the gamma-SPM, comparing with the gamma-GQM, which is

one of two reasons he rejected the gamma-SPM model. This may be caused by the

involvement of numerical integrations in CDF computation, as he may not have

used any explicit solution. However, this has been improved greatly here by using

Eq. 4.18.

Table 4.2 shows a summary GoF test result categorized by lane numbers 1- 3. More

detailed results are shown in Figure 4.2 and 4.3 for gamma-mixed and lognormal-

mixed models respectively.

Table 4.2: Summary of goodness-of-fit results on gamma-SPM,
gamma-GQM, lognormal-SPM and lognormal-GQM models

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

Gamma-

SPM 50(2) 52(0) 47(0) 47(0) 33(0) 33(0)
GQM 50(2) 52(0) 47(0) 47(0) 33(0) 33(0)

Lognormal-

SPM 51(1) 52(0) 47(0) 47(0) 31(2) 31(2)
GQM 52(0) 52(0) 47(0) 47(0) 32(1) 32(1)

In general, all the test results seem reasonably similar, with only 1-2 out of 132

samples not passing the tests. These results show the excellent fitting qualities of

all mixed models tested.

Referring to the details of the results on each of the samples, the test statistics of

KS and AD GoF are very close to the gamma-SPM and gamma-GQM, in most
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Figure 4.2: GoF result (p value) for gamma-SPM and gamma-GQM
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Figure 4.3: GoF result (p value) for lognormal-SPM and lognormal-GQM
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of the cases. This indicates that the two models of SPM and GQM have similar

fitting quality. Similar results were reported by Branston (1976), Luttinen (1996)

and Ha et al. (2012). There are slight differences in the findings of Ha et al.

(2012), as he found only the KS test results are similar between the two gamma-

mixed models. He pointed out that, with some of the samples, the AD statistics

of the gamma-SPM are very high comparing to the gamma-GQM model. He used

this fact as the second weakness points to reject the gamma-SPM, apart from

the concerns of lower performance on the GoF time mentioned earlier. However,

with this study, no such significant differences are found that would distinguish

between these two models. These two objections either have been improved or

have not been observed in this study, and thus the performance of both gamma-

mixed models should be considered similar. The lognormal-SPM is tested for the

first time, and comparison of KS and AD statistics are also very close to the two

lognormal-mixed models. This is further evidence that the similarity of the SPM

and GQM does not depend on the type of followers headway models being used.

Figure 4.4 shows visual fitting results for some selected samples, using the PDF

of each estimation to compare with the histogram of the sample headway data.

The three rows of figures present samples from the road lane 1-3, from top to

bottom. The left column shows the samples with relatively low flow rates, while

the right column shows the samples with high flow rates. The actually fitting

results and GoF test results can be found in tables of Appendix B. Some basic

sample information is shown within the figures.

All the figures include the PDF curves of all four mixed models. In these figures,
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Figure 4.4: PDF of selected headway samples

the gamma-mixed models and lognormal-mixed models have only a slight differ-

ence between curves. It is hard to see any difference between the SPM and GQM

type of models. They are nearly overlapped with each other, and they give good

visual fits to the headway data.

Overall from the data and figures, all the mixed models seem to fit the headway
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samples very well. However, the estimation time would certainly give some distinc-

tions, as the lognormal-mixed models are slower to fit, especially the lognormal-

GQM. The lognormal-GQM is well tested by Branston (1976), who reported ac-

ceptable results for all the samples he used. As a result of this study, the lognormal-

GQM does not seem outstanding compared with the two gamma-mixed models.

The lognormal-GQM was also tested by Ha et al. (2012), who suggested that the

model did not give good results with the use of the MLE method, and it was exor-

bitantly slow when using MCS methods to estimate parameters. Luttinen (1996)

addressed that the parameter estimation of GQM is problematic.

Considering that Branston (1976) was not able to implement to lognormal-SPM

to compare with GQM model, this part of study can be considered as an valuable

extension of Branston’s work with the lognormal as followers headway distribution.

4.2.5 Parameter Variation of the Mixed Models

Table 4.3 and Figures 4.5-4.8 show the estimated parameters across all the four

mixed models and for those headway samples that have been accepted by GoF

tests. All the figures indicate how the parameters vary with the corresponding

traffic flow. In those figures, the samples are categorized into 3 lane groups as

mentioned in the previous section.

In all four models, the vehicle arrival rates λ have clear trends as the traffic flow

increases. This certainly supports the fundamental concept of constructing the

SPM and GQM mixed models. It is worth looking at the difference between the
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Table 4.3: Parameters variation on gamma- and lognormal-mixed
models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

Gamma-SPM

φ 0.138 0.152 0.272 0.154 0.567 0.083
λ 0.441 0.145 0.586 0.145 0.287 0.065
α 9.345 4.287 10.228 2.581 9.096 1.948
1/β 0.186 0.145 0.124 0.058 0.138 0.040

Gamma-GQM

φ 0.178 0.161 0.312 0.155 0.573 0.084
λ 0.438 0.143 0.585 0.144 0.287 0.065
α 10.529 4.655 10.288 2.737 9.098 1.948
1/β 0.154 0.089 0.126 0.058 0.138 0.040

Lognormal-SPM

φ 0.22 0.20 0.42 0.17 0.62 0.09
λ 0.43 0.14 0.54 0.15 0.27 0.06
µ 0.30 0.29 0.23 0.18 0.15 0.10
σ 0.36 0.10 0.39 0.07 0.38 0.05

Lognormal-GQM

φ 0.28 0.17 0.49 0.16 0.62 0.09
λ 0.43 0.13 0.54 0.14 0.27 0.06
µ 0.37 0.23 0.25 0.18 0.15 0.10
σ 0.38 0.09 0.40 0.07 0.37 0.05

three lane groups where lanes 1 and 2 have very similar trends, with the λ of lane

2 slightly lower than lane 1, while arrival rates of lane 3 seem significantly lower

compared with the first two lanes. The mean values of this parameter in Table 4.3

also support this difference. On all the 3 lanes, the λ values seem more scattered

in the higher flow of traffic, and it may relate to the increasing fluctuations with

heavier traffics.

Between the two gamma-mixed models, the estimated parameters α and β1 look

similar, where α all locate near values between 5-15 and the reciprocals of βlocate

near values between 0.05- 0.2. These two parameters do not seem to vary with

1Tables, including later ones in chapter 4, use 1/β, as this reciprocal form is used in PDF of
gamma distribution, provided by Matlab. Note that, β is still used in main text for convenience.
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Figure 4.5: Estimated parameters for gamma-SPM
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Figure 4.6: Estimated parameters for gamma-GQM
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Figure 4.7: Estimated parameters for lognormal-SPM
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Figure 4.8: Estimated parameters for lognormal-GQM
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the increased traffic flows, and they do not seem to deviate across the three lanes.

At low traffic flow, both α and β seem more scattered, and they become more

aggregated with increasing flow rates. It should be noted that, for the two gamma-

mixed models, the parameter β is presented as its reciprocal value. This is due

to the implementation of the gamma distribution in MATLAB, which is applied

using the scale parameter, i.e. the reciprocal of rate parameter β. However, this

does not have any side-effect on model estimations of interest.

In the two lognormal-mixed models, very similar results are found for µ and σ.

There are no apparent differences found between the SPM and GQM models or

among the three lanes. The parameters also seem more scattered at the low traffic

flow level. It is worth noticing that the estimated values of µ in this study are

very similar to what Branston (1976) studied on highway M4, where he reported

µ of 0.39 for slow lane and 0.17 for fast lane. These are very close to estimated

values of this study, for both lognormal-SPM and lognormal-GQM models.

For parameter φ, which is the proportion of followers, the estimations seem all

similar among the four mixed models. With the increase of the traffic flow level,

quite clear trends can be noticed in that the values of φ are also increasing. This

is reasonable, since when the traffic become busier, more vehicles would be staying

in queues as followers, so the proportion φ will increase. Among the three lanes,

the estimations of φ on lane 3 are clearly larger than the estimations on other two

lanes, which indicate that more vehicles in lane 3 are followers. This phenomenon

is probably caused by the lane changing behaviours, as drivers are mostly looking

for a gap to move into lane 3. In fact, the lower values of arrival rates λ support
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the lane changing behaviours too; since with lower arrivals, there should be lower

traffic flows. However, those samples are all with high flow levels, which indicate

that lane changing is a significant contribution to the traffic as well as the arrivals.

The φ values of lane 2 is also larger comparing to lane 1, but this is not as obvious

compared with the difference with lane 3.

One should notice that some of the estimations of φ are very close to 0, especially

in lane 1 with flow levels less than 1300 veh/hr. Even though these estimates are

well accepted by the GoF tests, they are clearly problematic. Some additional

investigations were made such as varying the initial values, however, the problem

remains. After carefully checking, it can be confirmed that the estimation method

consistently gives the minimum values of the object function for MLE method.

Hence, it is probably caused by the flexibility of the 4-parameter models, and

the reasonable parameters may not be the best fit or the optimized estimations.

Experiments have been done by fixing one or more parameters, and different esti-

mation results were achieved; interestingly, most of the experimental fittings are

also well accepted by GoF tests, or visual checking via the PDF graphs. View-

ing the previous studies, Luttinen (1996) have commented that the mixed models

might be too flexible, and he has suggested the use of a more powerful GoF test.

However, a more powerful GoF test would not change or improve the result of pa-

rameter estimation, it only fails them. Ideally, giving more reasonable constraints

on parameters may be an option to reduce the flexibility of models and make their

estimation more meaningful. This requires better understanding of how the pa-

rameters relate to the traffic environment or conditions. The question of how to
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find better estimations to provide both good fittings and sensible interpretations

to the headway data still remain open.

4.2.6 The Followers Headway

With respect to the construction of mixed models, the followers headway is a key

element. Good followers headway models not only give better and more reasonable

fits to empirical headway data, they also assist the analysis of vehicle following

behaviours or on the explanation of some traffic phenomena using the parameters

of the model.

Many researchers have previously studied followers headway models. Both Lut-

tinen (1996) and Ha et al. (2012) have reviewed this aspect. More specifically,

Wasielewski (1979) and Branston (1976, 1979) did analysis on this topic. Wasielewski

used numerical integration to compute a non-parametric SPM model, and he found

good fitting results on followers headway directly calculated from the empirical

headway data. From the data he used, he concluded that the distribution of

followers headway can be considered independently of the traffic flow level. He

provided a result with a mean of 1.32s and a standard deviation of 0.52.

Branston used analytical forms of functions and tested them on both SPM and

GQM models. He found similar GoF result for these two types of mixed models

with the same analytical function. He also suggested that the parameters of fol-

lowers headway distribution can be held constant over traffic flows without greatly
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changing the fit to the data. He pointed out that the constant parameters of fol-

lowers headway distribution may overcome difficulties of parameter estimation at

very low traffic flows.

Table 4.4: Mean Followers Headway (s)

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

Gamma-

SPM 1.33 0.26 1.15 0.22 1.18 0.11
GQM 1.32 0.25 1.16 0.21 1.18 0.12

Lognormal-

SPM 1.56 0.81 1.38 0.31 1.26 0.14
GQM 1.61 0.47 1.43 0.32 1.25 0.14
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Figure 4.9: Mean followers headway (s) against traffic flows. The y-axis show
the mean followers headway of each specified model.

In the present study, as shown in Figure 4.9, the mean followers headways in

the gamma-mixed model are relatively consistent, with the range of 0.7s to 2.5s,
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where most of samples are with mean headway between 1s to 1.8s. The mean and

standard deviation of each model are given in Table 4.4. The mean values of the

lognormal-mixed model are similar to the result (mean of 1.32s and std of 0.52) of

Wasielewski (1979), and to the result (1.62s for fast lane and 1.29s for slow lane) of

M4 lane in the study of Branston (1976). The gamma-mixed models give slightly

lower but close result compared to Wasielewski’s result. Branston did not provide

any result for gamma-mixed models.

The samples with higher mean values are mostly samples of lane 1 with flow rate

less than 1000 veh/h. The highest bound is mostly less than 3.5s for the low

flows. When the traffic becomes busier, the followers headway become tightly

grouped with a highest bound less than 2s. This is similar to the discussion of

Wasielewski (1979), who used 4s as the threshold to distinguish two vehicle groups.

He suggested with 2.5s for flow less than 1400 veh/h and 3.5s for higher traffic

flows, for the purpose of measuring empirical λ (the arrival rates).

Inspired by Wasielewski and Branston’s work, similar investigations were carried

out in this study in the following sections, to examine the effect of pre-determining

some parameters of models as simplifications of the estimation process.

4.3 The parameter λ - Vehicle Arrivals

The parameter λ in mixed models is more appropriate to describe the tails of

empirical headway density function, as it meant to represent vehicle arrival rates

for of non-followers, or the gaps between traffic queues.
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Imagining the vehicle on an idealised road, where they can all be free driving

with similar speed, and all vehicle lengths are zero. If all drivers do not need

a safe distance or say they can stop immediately to avoid any sudden collisions,

then the distance between two consecutive vehicles can be infinitely small. Under

this assumption, the vehicle numbers within a period of time will agree with a

Poisson distribution, no matter how busy the road is. Hence the vehicle arrivals

or time intervals between two vehicles will be a negative exponential distribution

with parameter λ, where:

f(x;λ) =


λe−λx if x ≥ 0,

0 if x < 0.

(4.33)

The mean arrival time is:

E[X] =
1

λ

where E is the expectation of the random variable X for vehicle arrivals.

The correspondent hourly traffic flow rate is:

q = 3600λ(veh/hr)

However, in reality, there are many restrictions on actual road traffic, as the ve-

hicles have a range of lengths and they travel at different velocities, and drivers

would not drive too close to the preceding vehicles because of safety concerns, re-

action times, etc. As a result, the vehicles have to queue on the road to maintain

a suitable gap, and this will cause a delay compared with the ideal arrival time
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x in the above idealised circumstances. In this case, the traffic flow q estimated

using λ will be larger than the real traffic flow, with the difference depending on

traffic conditions, such as, how busy the road is. The busier the traffic, the longer

queues will be, and they will form more frequently. Consequently, more delays will

be caused. Thus the differences between q and realistic flow rate becomes greater.

This explains phenomenologically why the negative exponential distribution can

fit well for headways with lower traffic flows.

For the above reasons, using the assumption of exponential λ in mixed models,

and consider the queuing vehicles as followers is a sensible method to describe

the road traffic data if the chosen followers headway model is sufficient and the

traffic flow is in relatively steady state. This difference between flows and ideal

flows would have a relationship with traffic delays, and it can be used to check

the followers headway models or may even be helpful for parameter estimation.

However, This idea is not studied further here, but it is certainly worthy of further

investigation.

This section is concentrated on the parameter λ, since if vehicles were successfully

separated into follower and non-followers groups, the above discussion remains

valid if only considering non-followers headway data. That is, the non-follower

arrivals should be a negative exponential distribution, with the same parameter λ.

The relationship between λ and its corresponding flow rates are presented using

three linear equations for road lanes 1 to 3, respectively. Then these equations are

used to predetermine the parameter λ in mixed models.
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4.3.1 Previous studies of parameter λ

Previous studies have focused on the estimation of λ, or examining the exponential

tail hypothesis. One of the main concepts is to find a headway threshold T , where

all vehicles are non-followers if their headway is larger than T .

Miller (1961) studied a two-lane road in Sweden, he tested the threshold with 4,

5 and 6 seconds, and found that the T = 6s would be ideal. Luttinen (1996)

tested data collected from so called ’low speed road’ (50-70 km/h) and ’high speed

road’ (80-100 km/h) in Finland. He attempted to find T by testing where the

exponential hypothesis holds, using GoF methods. He reported a T of 8 seconds

for both low and high speed roads.

Wasielewski (1979) proposed a different method from Miller and Luttinen, and

provided detailed algorithm in his paper. He iteratively checked the intervals

between T − 0.5 s and T to search for significant deviation from the exponential

determined by the headways with t > T . As mentioned in previous section, he

found a T = 2.5s for flow q < 1400 veh/h and T = 3.5s for q > 1450 veh/h.

Other methods were studied using the speed difference to find threshold T (Branston,

1979; Bureau of Public Roads, 1950), which are not discussed here. Luttinen

(1996) provided a comprehensive review.
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4.3.2 Method to Predetermine parameter λ

The main barrier to estimating a threshold T using the headway data, is that the

data at tail end is often very sparse especially with higher traffic flow. It causes

fluctuations on estimation and it is hard to decide where the T should be located in

those fluctuations. Also, if considering the road situation, the threshold T deviates

from one data sample to another. To find a T for all data samples would be too

idealistic. Such methods would be useful and necessary for some applications as

other studies have addressed. However, finding a stable λ is the main focus of this

study, so a different method are chosen here. Using the equation:

λ =
∑

i
(ti − T )/n, ti > T (4.34)

where the sum runs only when the headways ti are greater than T and n is the

total number of these headways.

The method is to iteratively calculate λ at T values from 1 to the maximum of tis

with an interval of 0.1 seconds. Then running averages of λ are calculated with

an interval of 1 second. This will smooth the undesired fluctuations caused by the

insufficient size of the data samples. The final step is to compare those running

average levels and find a period of time where the mean λ does not significantly

deviate. The result shows that a running average between 2.0 and 3.5 s can give

a stable λ.

Using the above method, λ values for all samples are calculated and grouped

by lane 1-3. Then linear regression for each group of lambdas, 3 equations are



Chapter 4. Mixed Time-Headway Models 108

achieved, as shown in Table 4.5.

Table 4.5: Estimation of λ as function of traffic flow q

Parameter Lane 1 Lane 2 Lane 3

a 1.509 1.607 0.736
b -0.045 -0.102 0.012

a, b are parameters of function λ(q), where
λ(q) = a ∗ q+ b, q is sample flow, measured in
veh/second.

4.3.3 Parameter Estimations with given λ

Based on the equations in Table 4.5, λ can be determined using the sample traffic

flow. Both gamma-SPM and gamma-GQM are estimated to see how predeter-

mined λ can affect headway data fitting. The lognormal-mixed models are not

tested from this point onward, due to their high computation times.

The estimation method is the same for the rest of the three parameters, using the

numerical MLE method.

Result and discussion

After parameter estimation, the result of the GoF test on both KS and AD test are

presented in Figure 4.10, and summarized in Table 4.6. Results of both gamma-

SPM and gamma-GQM show the estimation of these two models are very well

accepted. Two more samples in lane 1 did not pass the KS test, compared to the

method in the previous section (see Table 4.2). This indicates that pre-determining

λ before estimation does not change fitting result much.
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Table 4.6: GoF results with pre-determined λ on gamma-SPM and
gamma-GQM models

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

Gamma-

SPM 49(3) 51(1) 47(0) 47(0) 33(0) 33(0)
GQM 49(3) 51(1) 47(0) 47(0) 33(0) 33(0)

The numbers with or without brackets show the numbers
of successes or failures of GoF test.
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Figure 4.10: GoF results (p value) with pre-determined λ on gamma-SPM
and gamma-GQM models

The estimation time, as show in Table 4.7, is effectively reduced about 40% on

both models. This is not surprising as the parameter λ is required to fit in the

estimation stage.

The estimated parameters with pre-determined λ are similar to the results in

section 4.2.5. As shown in Table 4.8, the mean and standard deviation of φ, α

and β have similar ranges compared to Table 4.3. However, in lane 1, there are



Chapter 4. Mixed Time-Headway Models 110

Table 4.7: Estimation Time with pre-determined λ on gamma-SPM
and gamma-GQM models

Fitting Time (s) KS Test (ms) AD Test (ms)
Mean Std Mean Std Mean Std

Gamma-

SPM 0.60 0.27 5.15 2.93 4.00 1.76
GQM 0.56 0.28 4.57 2.73 3.45 1.47

larger standard deviations of more than 1 of β, comparing to the previous of 0.1;

this is because that one sample (No. 189) had extreme estimated values of these

3 parameters. With the very low flow rate (195 veh/hr), the estimation of 0.7 for

φ, seems unreasonably high. Although it can pass GoF test, the estimation of this

sample is problematic. This is probably caused by the inaccuracy of equations on

λ, which is not good enough to give a suitable value at very low level of traffic

flows. If the sample (No. 189) is treated as an outlier, the result (see the values

in brackets) in lane 1 become become similar range as in Table 4.3.

Table 4.8: Estimated Parameters with pre-determined λ on gamma-
SPM and gamma-GQM models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

Gamma-SPM

φ 0.19 0.16 0.29 0.11 0.57 0.08
λ 0.43 0.13 0.58 0.12 0.29 0.06
α 10.30(10.48) 4.27(4.12) 9.98 1.88 9.08 1.83
1/β 0.30(0.15) 1.05(0.06) 0.12 0.04 0.14 0.04

Gamma-GQM

φ 0.23 0.17 0.33 0.12 0.57 0.08
λ 0.43 0.13 0.58 0.12 0.29 0.06
α 10.52(10.71) 4.23(4.07) 10.02 1.87 9.09 1.83
1/β 0.30(0.14) 1.10(0.06) 0.12 0.04 0.14 0.04

For samples in lane 1, as shown in Figure 4.11 and 4.12, there are still a number

of estimations of φ that are close to 0, mentioned earlier. These estimations are
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Figure 4.11: Estimated parameters with pre-determined λ on gamma-SPM
models
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Figure 4.12: Estimated parameters with pre-determined λ on gamma-GQM
models
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still unreasonable, since there must be some proportion of followers travelling in

queues at corresponding traffic flow levels.

The mean followers headway have not varied much compared with the previous

section either. Again, one sample (No. 189) had a very high mean headway of 12

seconds, which was caused by the problematic estimation happened in lane 1. This

also was caused by much larger values of mean and standard deviation across all

samples of lane 1, as shown in Table 4.9. Taking away this outlier, Table 4.4 and

4.9 are similar. In lane 2, the standard deviation reduced, which may indicate that

the mean followers headway becomes more aggregated with the pre-determined λ.

Table 4.9: Mean Followers Headway (s) with pre-determined λ

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

Gamma-

SPM 1.55(1.32) 1.58(0.21) 1.17 0.16 1.18 0.11
GQM 1.58(1.34) 1.65(0.22) 1.18 0.16 1.18 0.11
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Figure 4.13: Mean followers headway with pre-determined λ on
gamma-Mixed Models. The y-axis show the mean followers headway
of each specified model.
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Overall, with pre-determined parameter λ, the speeds in fitting stage are improved,

without much variation in the performance of model fitting to the empirical head-

way data. This positive result shows the reasonability of using arrival rates of λ

to improve the estimation of gamma-mixed models.

The results shown above are very promising, as firstly this method helps in fit-

ting mixed models to headway data without affecting their fitting performance.

Secondly, these results support well as additional evidence on the exponential tail

hypothesis discussed earlier. Thirdly, as λ is estimated using sample flow rates,

rather than model fitting, it can be used for mixed and presumably combined mod-

els with any kind of followers headway distribution. Moreover, the different linear

expressions of λ among varies lane reveal that this parameter is highly dependent

on traffic environment, and this can be further investigated with more headway

data available, especially in various locations and road figures. Such investigations

would potentially identify external factors that affect the changes of λ, and this

will be valuable for the analysis of traffic flows.

4.4 Attempts on More Simplified Estimation

4.4.1 Estimations on Fixed Followers Headway Models

Researchers previously attempted to use fixed followers headway models to simplify

the estimation process of SPM and GQM mixed models. Wasielewski (1979)

reported good results on his non-parametric followers headway SPM model, which
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he used an independent followers headway model evaluated directly from headway

data. He found that all samples have passed the GoF test. Branston (1976)

tested the lognormal-GQM model as a parametric model. He took average values

categorized by lanes and loop locations, and used those values as the parameters

of a lognormal followers headway model. He reported that all the estimation

results are well accepted by the GoF test and concluded that a constant followers

distribution can be an acceptable simplification in fitting the lognormal-GQM to

headway data.

The above studies are good indications that using a fixed followers distribution

can be a reasonable alternative method on simplifying mixed models. Inspired by

this, some similar attempts are investigated in this thesis.

The first apparent step is to repeat Branston’s experiment using gamma-mixed

and lognormal-mixed models with headway data used in the present study. As

discussed in section 4.2.5, the mean estimated values of µ and σ are very close to

what have been reported by Branston, particularly on data for the M4 motorway.

Following his procedure, parameters α and β in the gamma distribution, as well

as the µ and σ in the lognormal distribution are fixed for each of the lanes 1-3.

Model fittings are then implemented to fit headway samples.

The results of the GoF test for these simplifications are listed in Table 4.10. Gener-

ally, the results on lane 1 and 2 are acceptable. However, there is a big performance

drop in lane 3, where only about half of the samples have passed GoF, which is not

ideal. By the time Branston collected his data from a overhead section of the M4

motorway, which had only two lanes on each direction, he did not have data of lane
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3. From the test results, the traffic in lane 3 may be more complex to use a model

which is simplified by only using a fixed followers headway distribution. Due to

the low performance on lane 3, the detailed estimation results are not presented in

this thesis. In addition, the computational costs of using lognormal-GQM are still

unbearable. Also, the computational costs on the GoF test for both lognormal-

mixed models are high, due to the numerical integration in computing CDF of

lognormal-mixed models. This may sound a bit negative with the downgraded

fitting in lane 3. However, the similar results of lanes 1 and 2 compared with

Branston’s study, suggests that the fixed followers headway model is useful with

traffic that is not heavily interrupted by lane changing vehicles, which is probably

the cause of the degraded fitting performance.

Table 4.10: Summary of GoF results using fixed followers headway
models

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

Gamma-

SPM 49(3) 50(2) 47(0) 47(0) 16(17) 16(17)
GQM 50(2) 50(2) 47(0) 47(0) 16(17) 16(17)

Lognormal-

SPM 50(2) 50(2) 46(1) 46(1) 18(15) 20(13)
GQM 50(2) 52(0) 46(1) 46(1) 18(15) 17(16)

4.4.2 Alternative Simplification Methods

Considering that using the pre-determined parameter λ is a good method of sim-

plification, the combinations of λ with one of the parameters in followers headway

distribution may be alternative methods to simplify the estimation process. This
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study tested a few ways of combining parameters for the two gamma-mixed mod-

els.

After some trials, it was found that using the combination of λ and α gives promis-

ing results. This method was again using equations in Table 4.5 to pre-determine

λ, and also using the average of α estimated earlier, with a value of 8.3, for all the

three lanes. Both gamma-SPM and gamma-GQM were tested using this method.

Table 4.11: Summary of GoF results with pre-determined λ and α

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

Gamma-

SPM 49(3) 50(2) 47(0) 47(0) 32(1) 31(2)
GQM 48(4) 50(2) 47(0) 47(0) 32(1) 31(2)
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Figure 4.14: GoF results with pre-determined λ and α on gamma-mixed
Models
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Table 4.11 and Figure 4.14 show a summary of the results of the GoF tests. The

estimations of all samples have passed GoF tests in lane 2. In lanes 1 and 3,

most of the samples are well accepted, but the results are slightly worse compared

with Table 4.2 and 4.6, with 1-2 more samples rejected by the GoF tests. Most

of the rejected samples have occurred on a relatively low flow level of below 1000

veh/hour.

With an additional parameter reduced in estimation process, the fitting time (Ta-

ble 4.12) again reduced by more than half, with the mean estimation time close

to 0.25 seconds.

Table 4.12: Comparison of estimation time(s) on gamma-SPM,
gamma-GQM, with pre-determined λ and α

Fitting Time(s) KS Test (ms) AD Test (ms)
Mean Std Mean Std Mean Std

Gamma-

SPM 0.26 0.08 4.91 2.05 4.04 1.75
GQM 0.24 0.07 4.27 1.94 3.35 1.37

Table 4.13 and Figure 4.15 and 4.16 show the result of estimation parameters with

this alternative method. It is worth noticing that the parameter β is much tighter

to its mean values compared with the previous results in Table 4.15 and Table

4.16. The outlier sample (No. 189) is rejected GoF test this time.

The estimation of φ is improved by this simplification, as some of above-mentioned

problematic values deviate from zero. Also, for each lane, the figures show clear

increasing trends of the proportion factor φ with increased traffic flows. This gives

a better sense of the nature of traffic on the real road, considering the proportion

of queues that depend on traffic flows. Wasielewski (1979) had his data collected
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Table 4.13: Estimated Parameters with pre-determined λ and α on
gamma-SPM and gamma-GQM models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

Gamma-SPM

φ 0.21 0.13 0.32 0.10 0.58 0.08
λ 0.44 0.12 0.58 0.12 0.29 0.06
α 8.30 0.00 8.30 0.00 8.30 0.00
1/β 0.17 0.02 0.15 0.01 0.14 0.01

Gamma-GQM

φ 0.27 0.14 0.37 0.10 0.58 0.08
λ 0.44 0.12 0.58 0.12 0.29 0.06
α 8.30 0.00 8.30 0.00 8.30 0.00
1/β 0.18 0.01 0.15 0.01 0.14 0.01
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Figure 4.15: Estimated parameters with pre-determined λ and α on gamma-
SPM models

from a Detroit freeway, and reported a similar trend without grouping data by

lanes. In contrast, a clear distinction across lanes is shown in this study. Lanes

1 and 2 have a similar trend of φ, and the difference does not seem significant.

Estimated values in lane 3 are much higher for corresponding traffic flows. This
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Figure 4.16: Estimated parameters with pre-determined λ and α on gamma-
GQM models

phenomenon may suggest that more vehicles in lane 3 are gathered in queues other

than driving individually. This gives a similar hint compared with the much lower

λ values in lane 3, as discussed in section 4.3, a good proportion of vehicles may

have changed their lanes and they will find a suitable gap to join lane 3, and this

will form more queues in traffic.

The mean followers headways are more aggregated to their means across all sam-

ples. In relatively lower traffic flows, the mean values seem scattered, and they

become more condensed with increased traffic flows. In Table 4.14 and Figure 4.17,

differences between lanes can be noticed, where the values in lane 1 are larger and

more scattered, while lane 2 and 3 are similar, especially when traffic flows are

more than 1500 veh/hr. It may be explained by that, when the road is busy,

and queues become more condensed, drivers may tend to have similar following
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behaviours.

Table 4.14: Mean followers Headway (s) with pre-determined λ and α

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

Gamma-

SPM 1.40 0.13 1.22 0.11 1.19 0.09
GQM 1.45 0.10 1.23 0.11 1.19 0.09
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Figure 4.17: Mean followers headway (s) with pre-determined λ and α on
gamma-Mixed Models. The y-axis show the mean followers headway of each

specified model.

Compared to the method of using fixed followers headway model in mixed models,

using a combination of pre-determined λ and fixed α in gamma-mixed models has

improved fitting results especially in lane 3. It has also improved the estimation

of φ, as some of previously problematic estimations seem more reasonable. With

the fixed α, the mean followers headways become more consistent with smaller

variations. This is similar to values (within range 1.2-1.4 seconds) reported by

Wasielewski (1979), although the fixed followers headway model did not help to

fit data well in some traffic conditions (lane 3 in this case). Clearly, the suggested

method of this section is valid and useful when using mixed models in analysis of

headway data.
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4.4.3 Considering Parameter φ for Simplification

The result of the previous section shows good increasing trends of φ with increased

flows. If φ can be found to have good relationship with flow rates q, then it will

help to accurately estimate proportion of queue in a specific traffic condition. By

using quadratic methods, three quadratic equations are obtained to describe the

trend of φ as the function of flow rate q, as shown in Table 4.15.

Based on method used in the previous section, an additional parameter φ is also

added to the combination, i.e. to pre-determining φ, λ and α, as a final attempt

to simplify the estimation of mixed models.

Table 4.15: Estimation of φ as function of traffic flow q

Gamma-SPM Gamma-SPM
Lane 1 Lane 2 Lane 3 Lane 1 Lane 2 Lane 3

a 3.28 3.45 0.93 3.01 3.09 0.93
b -0.52 -1.73 0.25 -0.24 -1.30 0.25
c 0.03 0.41 0.35 0.02 0.34 0.35

a, b and c are parameters of function φ(q), where φ(q) =
a ∗ q2 + b ∗ q + c, and q (veh/second) is sample traffic flow.

A similar estimation used with φ pre-determined by equations in Table 4.15, as

well as λ and α, which are discussed in the previous section. The fitting results

are examined with the GoF test.

Table 4.16: GoF results with pre-determined φ, λ and α on gamma-
SPM and gamma-GQM models

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

Gamma-

SPM 48(4) 49(3) 44(3) 45(2) 27(6) 29(4)
GQM 48(4) 49(3) 43(4) 45(2) 27(6) 28(5)

The numbers with or without brackets show the numbers
of successes or failures of GoF test.
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Figure 4.18: GoF results (p value) with pre-determined φ, λ and α on gamma-
SPM and gamma-GQM models

The results show reasonable acceptances of GoF tests in Table 4.16 and Figure

4.18, and there are a few more rejected samples compared to previous sections.

In lane 1, the result are slightly worse compared with both gamma-mixed models.

More samples are rejected by the GoF test in lane 2 and 3. Particularly in lane

3, where 6 out of 33 samples did not pass the KS test. With more restricted

parameters, gamma-mixed models become less flexible and less capable of fitting

headway data.

The results of the estimated parameter β, in Table 4.17, have very similar range

compared with the result in Table 4.13, that is, method of pre-determined φ has

not affected much the estimated parameters (only β in this case). This also applies

to the mean followers headways, which also are not changed by this method.
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Table 4.17: Estimated Parameters with pre-determined φ, λ and α
on gamma-SPM and gamma-GQM models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

Gamma-SPM

φ 0.22 0.12 0.32 0.08 0.59 0.08
λ 0.44 0.12 0.58 0.13 0.30 0.06
α 8.30 0.00 8.30 0.00 8.30 0.00
1/β 0.17 0.01 0.15 0.01 0.14 0.01

Gamma-GQM

φ 0.27 0.13 0.37 0.09 0.59 0.08
λ 0.44 0.12 0.59 0.13 0.30 0.06
α 8.30 0.00 8.30 0.00 8.30 0.00
1/β 0.18 0.01 0.15 0.01 0.14 0.01
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Figure 4.19: Estimated parameters with pre-determined φ, λ and α on
gamma-SPM models

Although pre-determining φ does not give excellent fitting as previous methods

do, the overall good acceptance still suggests that parameter φ can potentially

be used to simplify the mixed models with more careful analysis and probably

with more data from different sites, to achieve excellent fitting results. If this can
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Figure 4.20: Estimated parameters with pre-determined φ, λ and α on
gamma-GQM models

Table 4.18: Mean Followers Headway (s) with pre-determined φ, λ
and α

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

Gamma-

SPM 1.42 0.07 1.22 0.05 1.18 0.08
GQM 1.46 0.07 1.23 0.05 1.18 0.08
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Figure 4.21: Mean Followers Headway (s) with pre-determined φ, λ and α on
Gamma-Mixed Models. The y-axis show the mean followers headway of each

specified model.
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Figure 4.22: PDF curves with pre-determined φ, λ and α on gamma-SPM
models

be generalized, it can be very useful for explaining the queue formulations and

drivers’ car following behaviours.

The main downside is that φ is sensitive to the mixed models selected, even when

with same followers headway models, φ is still required to be estimated differently

between SPM and GQM models. This will badly affect the generalization of this

method, as this parameter is not model independent. Also, this model dependency

of φ shows that the estimated proportion of queues are also highly dependent on
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the models chosen. This also makes estimated models unrealistic, as there is only

one true proportion of queues in reality. Further investigations with more data

may find more about this parameter, and it may potentially be useful in not only

understanding more about queues, but also in validating the mixed models being

used.

4.5 Review and Discussion

The mixed distribution models are widely used in the analysis of time-headway

data. There are major two types of mixed models, i.e. SPM and GQM. This

chapter presents a brief discussion of the use of these two models.

Gamma- and lognormal-mixed models are tested with data samples used in this

study, and very good fitting results have been achieved in the terms of the GoF

tests. The results are similar to findings of previous studies. Importantly, the

lognormal-SPM model has been, for the first time, implemented by using an ap-

proximation method for Laplace transform of lognormal distribution. In both

followers headway models, i.e. the gamma and lognormal, very similar results of

parameter estimation are achieved between the SPM and GQM, which indicate

the quantitative similarities between these two type of mixed models. The com-

putation costs on estimation and GoF tests are much higher for lognormal-mixed

models, due to the unavoidable numerical integrations to solve PDF and CDF, es-

pecially in the GQM case. The speed on estimating lognormal-SPM seems better
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than lognormal-GQM, but still much worse comparing to estimations of gamma-

mixed models.

Considering estimated parameters, a good relationship is found between the arrival

rates λ and traffic flow levels, and this helps further in the simplification of fitting

mixed models. All the estimated parameters of followers headway models, i.e. α

and β of the gamma distribution, as well as µ and σ of the lognormal distribution,

seem to be independent of traffic flow. They are more scattered in the lower level

of flows, but aggregated more densely when the flow level increases. They are also

distinguishable among the lanes of 1-3. Some of the parameter φ, the fraction of

followers group, are estimated very close to zero, especially in lane 1. These are

unreasonable estimates, hence should be considered as problematic estimations,

despite the good fitting results achieved.

The fixed followers distribution method is also tested for both the gamma- and

lognormal-mixed models, as previous studies reported such with good indication.

Using this method, the fitting results in lanes 1 and 2 are very well accepted by

the GoF test, as expected. However, the traffic in lane 3 seems more complex, and

only about half of the estimations are well fitted to headway data. Although, it

is yet unclear of the causes for the downgraded fitting in lane 3, but the similar

results found compared with previous studies in lane 1 and 2 supports very well

that this method can be very useful under certain traffic conditions.

Some methods of simplification on estimation of gamma-mixed models are at-

tempted. The positive test results show that using pre-determined λ, combined

with a constant α can effectively improve the fitting process, without sacrificing
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their performance or great variation of parameters. The method of using the com-

bination of λ and α shows some level of correction on the estimation of parameter

φ, and hence reveals positive trends between φ and traffic flows, which supports

the concept that parameter φ is presenting the proportion of followers group. This

is further supported by using φ as an additional pre-determined parameter for the

estimation.

In general, as four-parameter models, gamma-mixed models are overly flexible.

This may lead some problematic estimations as many parameter combinations

can be acceptable result, in terms of the GoF test. This problem may not be

solved by giving better estimation algorithms or making a more powerful GoF

test, as an optimum solution may not always be the most sensible solution. The

attempts on simplifying the models show a good potential of solving this problem,

by effectively restricting them using external conditions such as flow rates. Indeed,

giving reasonable constraint on some of the better understood parameters would

narrow the scope of solutions, hence force the estimation to gain a better result,

presumably closer to the reality. To accomplish this target, more information

and investigations are desirable for better understanding of the drivers’ following

behaviours.



Chapter 5

The Use of Response Time

Models in Time-Headway

Analysis

Summary

This chapter introduces two distribution models, the exponential modified Gaus-

sian (EMG) and inverse Gaussian (IVG) distributions, which are often applied as

response time (RT) models in cognitive psychology. Both models are explained

and then fitted, as single models, using empirical headway samples. Furthermore,

with the two models used as followers headway distributions, all SPM and GQM

mixed models are implemented and tested. The GoF results show excellent fitting

performance with the use of both EMG and IVG distributions. In the later sec-

tions, methods of simplifying parameter estimations are attempted and discussed.

129
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5.1 Response Time Models

5.1.1 Introduction of the Response Time Models

In a steady-state car following situation, a time-headway can be seen as a sum of

two components. The first component is the time needed for the preceding vehicle

to pass a test point. This time component depends on its speed and length. The

second time component is a time gap between the two vehicles, and this gap

allows the following vehicle to drive with a safe distance so that it can react to

any potential changes on road, such as noticing a slowing down of the preceding

vehicle and then pushing down the brake pedal. This time gap can be seen as a

the follower’s comfort gap where it can follow the preceding vehicle safely based on

the driver’s own perception and judgement. Although there is lack of information

on how this time gap is determined, researchers often use the reaction time as an

important factor of it, in car-following theories (Forbes, 1963; Forbes and Simpson,

1968; Forbes et al., 1958; May, 1990).

The reaction time used in car-following is often known as perception-brake reaction

time (Green, 2000) or brake reaction time(BRT) (Johansson and Rumar, 1971).

This brake reaction time measures the time taken from drivers’ perception, to their

actions of braking after a decision has been made. There is intensive literature for

measuring such a time as drivers braking performance (Lerner, 1993; Sivak et al.,

1981; Summala, 2000; Young and Stanton, 2007). For example, Johansson and

Rumar (1971) reported the estimated reaction time varied from 0.4 to 2.7 s, with
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a mean value of 1.0 s. In their experiment, subjects are instructed to press the

brake pedal as soon as they hear a sound.

Roughly speaking, this brake reaction process is analogous to response time (RT)

of taking a two-choice task in cognitive psychology, as both processes apply the

procedures of perception, decision making and taking actions. Since the analysis

of response time have been widely studied with a long history (Hohle, 1965; Luce,

1986; Matzke and Wagenmakers, 2009; Ratcliff and McKoon, 2008; Townsend and

Ashby, 1983). It is assumed that some of the good models used in RT analysis

can also be used in the analysis of vehicle time-headways. Although there is no

theoretical reasoning to support such an assumption, the fact that gamma and

lognormal distributions are also used as RT models (Baayen and Milin, 2010;

Ratcliff and Murdock, 1976; Ulrich and Miller, 1993; Van Zandt, 2000) gives a

kind of intuition that RT models might as well be an option to time-headway

analysis.

Among many of the RT distribution models, the exponential modified Gaussian

(EMG for short, which is often named as ex-Gaussian), inverse Gaussian (IVG

for short, which is also know as Wald distribution) and shifted-IVG (or shifted-

Wald) models are widely recognized as good performance models in RT analysis

(Hockley, 1984; Hohle, 1965; Luce, 1986; Matzke and Wagenmakers, 2009; Van

Zandt, 2000).

In the first part of this chapter, EMG, IVG and shifted-IVG models are fitted using

the headway samples and their results are compared with lognormal models dis-

cussed in chapter 2. This attempt is to test whether these selected distributions are
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suitable for headway analysis. However, it is important to note such attempt does

not indicate that headway processes are necessarily comparable to RT processes,

which need much deeper studies that involve more theoretical and experimental

investigations. Nevertheless, the successful fitting of the selected models would

give research more useful options when describing and hence predicting headway

data statistically.

5.1.2 Models Description

Similar to the implementations in Chapters 2 and 4, the model fitting methods are

used the numerical MLE to estimate the parameters. Then models are tested using

goodness-of-fit test to examine the fitting result as part of the fitting performance.

To this extend, the PDF and CDF functions are used in the proposed framework.

The mean and variance properties are also important properties especially when

models are used as the followers headway distribution models, as they are the

estimations of the mean and variance of the followers headways, which are difficult

to measure directly from the empirical data. Also, the mean and variance can be

used as first- and second-order moments that will give a comparison between values

of empirical measurement and model estimations.

The Laplace transform of models is very important when the models are used in

the SPM mixed models, so they are also listed as properties considered in this

study. There are more statistical properties of these selected models. Readers can

find more details via the references given.
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Exponential Modified Gaussian(EMG) distribution

For RT data, the most common parametric estimate of the PDF is the EMG

model, the convolution of a normal and an exponential random variable (Van

Zandt, 2000).

The properties of EMG distributions refer to Haney (2011). Haney studied some

practical applications and properties of EMG model, and he also gives the details

of derivation of PDF and CDF of it in his thesis.
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For the convenience of using this PDF in later mixed models, the function is

also notated as ge(t;µ, σ, τ), which indicate that is the PDF of EMG as followers

headway distribution.
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This equation is also notated as Ge(t;µ, σ, τ), which indicate that is the CDF of

EMG as followers headway distribution.

The mean and variance of EMG distribution is:

E[X] = µ+
1

τ
(5.3)

Var(X) = µ2 +
1

τ 2
(5.4)

The Laplace transform of EMG distribution is:

g∗(s) =

exp

(
−µs+

σ2s2

2

)
1 +

s

τ

(5.5)

which is also notated as g∗e(s).

Shifted-EMG distribution

By introducing the location parameter δ into Eq. 5.1 and 5.2, the PDF and CDF

functions of shifted-EMG can be gained as follows:
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CDF:
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The shifted-EMG, in fact, has identical form of PDF and CDF functions as EMG

distribution, since it is equivalent to replacing µ in EMG distribution with µ+ δ.

Because of this, the shifted-EMG should have the same performance as EMG

distribution. However, this model is still tested as a separate model, which might

show different results as both µ and δ will be treated separately using the numerical

MLE method.

Inverse Gaussian(IVG) distribution

In the study, the IVG model is implemented using the built-in methods provided

by Matlab. For the detailed mathematical properties can refer to book of Chhikara

(1988) or Forbes et al. (2011). Heathcote (2004) gives details study on fitting IVG,

shifted-IVG and ex-IVG distributions using response time data, and he provides

mathematical details of these models in his paper.
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This equation is also notated as gi(t;µ, σ), which indicate that is the PDF of IVG

as followers headway distribution.
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This equation function is also notated as Gi(t;µ, σ), which indicate that is the

CDF of IVG as followers headway distribution.

The mean and variance of the IVG distribution is:

E[X] = µ (5.10)

Var(X) =
µ3

σ
(5.11)

The Laplace transform of the IVG distribution is (Lin, 1999):

g∗(s) = exp

{(
σ

µ

)(
1−

√
1 +

2µ2s

σ

)}
, s > 0. (5.12)

which is also notated as g∗i (s).
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Shifted-IVG distribution

By introducing the location parameter δ into Eq. 5.8 and 5.9, the PDF and CDF

functions of shifted-IVG can be gained as follows:
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Note that the shifted-IVG distribution, also known as shifted-Wald, is itself a well-

known and widely used RT model (Heathcote, 2004; Matzke and Wagenmakers,

2009).

5.1.3 Model Fitting to Headway Samples

The parameter estimation of EMG, IVG and shifted-IVG distributions are well

studied for fitting RT models. Van Zandt (2000) examined varies estimation tech-

niques on fitting RT models (including EMG and IVG models). He suggested that

the MLE or least square estimators of CDF for fitting those models to the data.
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Heathcote (2004) tested the MLE method on fitting ex-Wald (convolution of expo-

nential and IVG distributions), EMG and shifted-IVG distributions using software

package of S-PLUS. He suggested that MLE method gives consistent and small

biased estimation of selected models when the test sample sizes are sufficient. He

also reported equivalent fitting performance for both IVG and EMG models when

they are tested in Monte Carlo simulation.

Silver et al. (2009) discussed estimation methods for fitting the EMG distribution,

in the application of microarray background correction. He compared exact MLE,

RMA, saddle-point estimates etc. He proposed an exact MLE method which will

avoid the numerical sensitivity issues of the likelihood function (Bolstad, 2004;

McGee and Chen, 2006). He found the exact MLE method return accurate esti-

mates for EMG models comparing to the rest of methods.

An implementation level discussion of fitting EMG models using Matlab was pro-

vided by Lacouture and Cousineau (2008), where they used MLE to estimate the

parameters of EMG models. He discussed the PDF of the EMG model and tested

the MLE method using Monte Carlo study, and he found that MLE provides good

parameter estimations for EMG distribution. The MLE method he used is the

same as the numerical MLE method proposed in this thesis. In this study, La-

couture’s method is used for the implementation of EMG distribution of headway

analysis.

As one of the built-in models, the parameter estimation of IVG distribution uses

MLE methods provided by MATLAB Statistical Toolbox.



Chapter 5. Using response time models in headway analysis 139

Both shifted-EMG and shifted-IVG are estimated using the numerical MLE method

similar to what has been discussed in chapter 4. Some tests have been done to

compare shifted-IVG and IVG estimations, and the results show that when the

location δ is set to zero, both methods will have identical results for parameter

estimation. Similar tests are also performed to compare shifted-EMG and EMG

estimation, and the results are again identical. These tests shows that numerical

MLE is a valid method to fit these models to headway data.

All the 132 headway samples discussed in chapter 3 are fitted using the above

methods. The results will be discussed in the following section.

5.1.4 Results and Discussion

For both EMG and IVG models, the estimation times are lower than 0.3s, while

the fittings to IVG are slightly faster. The location parameter δ did not affect the

fitting time much, they are very close to those fittings using the original models.

Table 5.1: Fitting time(s) on estimation of EMG
and IVG distributions

EMG IVG
Mean Std Mean Std

Shifted 0.23 0.05 0.16 0.01
Original 0.26 0.08 0.15 0.02

The fitting results are well accepted for samples of lane 1 and 2, but very poor in

lane 3, as shown in Table 5.2, and Figures 5.1 and 5.2. There is no much difference

with using location parameter δ in EMG models, as EMG and shifted-EMG fittings

have same numbers of samples passed the GoF test. For IVG models, the location
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Table 5.2: Summary of GoF result on EMG and
IVG models

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

EMG

Shifted 46(6) 48(4) 43(4) 44(3) 0(33) 0(33)
Original 46(6) 48(4) 43(4) 44(3) 0(33) 0(33)

IVG

Shifted 46(6) 48(4) 45(2) 47(0) 4(29) 6(27)
Original 34(18) 37(15) 24(23) 24(23) 0(33) 0(33)

parameter δ seems to have very positive effect, as a big improvement have been

shown in the table, where the total number of samples passed GoF test increased

from 58 to 91, in lane 1 and 2. The result of EMG and shifted-IVG have similar

fitting performance compared to shifted-lognormal distribution tested in chapter

2. For the samples in lane 2, 2 samples have failed to gain parameters in fitting

stages, while all the 47 samples have enabled parameters to be estimated with

EMG and IVG models.

Figures 5.1 and 5.2 show more detailed goodness-of-fit results across traffic flows.

The lane 3 shows very poor fitting results in all models, while lane 1 and 2 are

fitted reasonable well. For the shifted-IVG and EMG (similar to shifted-EMG)

models, more samples under relative higher traffic flows have mostly passed GoF

test, while a few samples in lower traffic flow have failed.

For headway samples in lane 3, the fitting results are very poor, as non of EMG

and IVG fittings passed the GoF test, and only a few passed GoF test (4 in KS

test and 6 in AD test). These have been similar again to shifted-lognormal fittings.

It seems that the single models have difficulty in describing headway data of lane
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Figure 5.1: GoF results of EMG and shifted-EMG distributions
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Figure 5.2: GoF results of IVG and shifted-IVG distributions
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3.

Table 5.3 shows the estimated parameter δ, where all the δ values are very close

to zero for EMG model. This indicate that the location parameter δ has not effect

on the fitting performance of EMG model. As mentioned earlier, the EMG and

shifted-EMG models have identical analytical forms. The very small δ can been

seen as further evidence of consistency of parameter estimation with numerical

MLE method. Note there is no data available for lane 3 in this table, as those

values are calculated only using samples accepted by GoF test.

In comparison, the shifted-IVG has significant values of δ, which have improved

the fitting result.

Table 5.3: Estimated δ in fitting with shifted-EMG
and shifted-IVG models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

Shifted-EMG 0.001 0.003 0.002 0.001 n/a n/a
Shifted-IVG 0.17 0.11 0.21 0.06 0.31 0.05

Figure 5.3 illustrates the estimated PDF curves in comparison with the histogram

of headway data of 6 selected samples. In the figure, the EMG and shifted-

EMG models look almost identical, and they provide a good fit to samples lane 1

and lane 2 (the top four charts). The PDF curves of IVG model are apparently

different from shifted-IVG model. The shifted-IVG shows good fitting visually in

the figures, as well do the EMG and shifted-EMG models. For the bottom two

charts of samples in lane 3, all the PDF curves do not seem to fit the histogram

well.
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Figure 5.3: PDF fitting results of EMG, shifted-EMG, IVG and shifted-IVG
on selected data samples

Overall, as single models, both shifted-IVG and EMG have good fitting perfor-

mance under some of traffic conditions, and their fitting results are comparable

with the shifted-lognormal distribution. These results are very promising, as the

two models are chosen from widely used RT models, which are, for the first time,

tested with headway data. As a positive example, the above test results certainly

indicate some potential for using RT models in headway analysis. Just as with the

other single models, even though the test results are very positive for lane 1 and
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2, these models are also have difficulties for describing the headway under more

complicated traffic situation, in lane 3.

To extend this, both EMG and IVG models are further attempted as followers

headway distributions, and the next section investigates how these two RT models

can behave when they are used in SPM and GQM mixed models.

5.2 RT Models as Followers Headway Distribu-

tion

The fitting results show reasonable fitting performance to headway data for both

IVG and EMG models in the above section. These results provide more confidence

of using such RT models in headway analysis. As discussed in chapter 4, using

mixed distribution models can greatly improve fitting results when separating

headway data into non-followers and followers group. This might be explained by

that the selected single distributions (gamma and lognormal) are more capable

of describing headway data in car following conditions, i.e. when drivers have

interactions with their preceding vehicles. In other words, these followers are more

prepared for a change compared with the non-followers. This sounds analogous

to some of those tasks that measure RT times, while subjects are prepared for

a change of stimuli before a decision is made for their next action (e.g. waiting

to hear a sound before braking (Johansson and Rumar, 1971)). This gives an

intuition that using RT models to describe followers headway in SPM and GQM

mixed models may also fit headway data well.
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This section introduces four mixed models using the selected RT models (IVG

and EMG) as followers headway distributions, i.e. EMG-SPM, EMG-GQM, IVG-

SPM and IVG-GQM models. These models are implemented within the proposed

framework of the present study, with discussion of their fitting performance. As

in chapter 4, some parameter simplification methods are also discussed for these

four mixed models.

5.2.1 EMG and IVG Distribution in Mixed Models

For SPM mixed models, the general form PDF and CDF are shown in Eq. 4.6

and 4.7; for GQM mixed models, please refer to Eq. 4.10 and 4.12. Substituting

g(t) and G(t) with equations of EMG and IVG distributions, the function form of

EMG-mixed and IVG-mixed models can be gained.

Since the numerical MLE method estimates parameters directly using the calcula-

tion of PDF in likelihood function of each model, the equations of PDF and CDF

are not required for further expansion hence simplification, and they will remain

in the form similar to the general equations of SPM and GQM models. This can

simplify the implementation of each model, as it can maximize the reuse of the

Matlab codes of PDF and CDF of EMG and GQM that are already developed in

the earlier part of this chapter. As described in chapter 2, this is one of the ad-

vantages of using the proposed framework of the present study. The following few

sections describe the PDF and CDF for each proposed mixed model, and for the

GQM models, some simplification of equations are introduced while the functions

still remain in the same form.
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EMG-SPM

The PDF and CDF of EMG-SPM model can be achieved by substituting Eq. 5.1,

5.2 and 5.5 into Eq. 4.6 and 4.7.

PDF:

f(t;φ, λ, µ, σ, τ) = φge(t;µ, σ, τ) + (1− φ)
Ge(t;µ, σ, τ)

g∗e(λ)
λe−λt,

t ≥ 0;λ > 0; 0 ≤ φ ≤ 1

(5.15)

CDF:

F (t;φ, λ, µ, σ, τ) = φGe(t;µ, σ, τ) +
1− φ
g∗e(λ)

∫ t

0

Ge(u;µ, σ, τ)λe−λudu,

t ≥ 0;λ > 0; 0 ≤ φ ≤ 1

(5.16)

EMG-GQM

The PDF and CDF of EMG-GQM model can be achieved by substituting Eq. 5.1,

and 5.2 into Eq. 4.10 and 4.12.

PDF:

f(t;φ, λ, µ, σ, τ) = φge(t;µ, σ, τ) + (1− φ)λe−λt
∫ t

0

ge(u;µ, σ, τ)eλudu (5.17)

CDF:

F (t;φ, λ, µ, σ, τ) = Ge(t;µ, σ, τ)− (1− φ)e−λt
∫ t

0

ge(u;µ, σ, τ)eλudu (5.18)
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The above two equations can be further derived, by simplifying the integration

part of those equations.

∫ t

0

ge(u;µ, σ, τ)eλudu = g∗e(−λ)Ge(t;µ+ λσ2, σ,
1

τ − λ
)

Hence the simplified PDF and CDF are:

PDF:

f(t;φ, λ, µ, σ, τ) = φge(t;µ, σ, τ) + (1− φ)λg∗e(−λ)Ge(t;µ+ λσ2, σ,
1

τ − λ
)e−λt

(5.19)

CDF:

F (t;φ, λ, µ, σ, τ) = Ge(t;µ, σ, τ)− (1− φ)g∗e(−λ)Ge(t;µ+ λσ2, σ,
1

τ − λ
)e−λt

(5.20)

where g∗i (−λ) is the Laplace transform of PDF of EMG, with value −λ, which is:

f ∗(−λ) =

exp

(
µλ+

σ2λ2

2

)
1− λ

τ

(5.21)

For the above simplification to be valid, the parameters has to satisfy the condition

that τ 6= λ.
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IVG-SPM

The PDF and CDF of IVG-SPM model can be achieved by substituting Eq. 5.8,

5.9 and 5.12 into Eq. 4.6 and 4.7.

PDF:

f(t;φ, λ, µ, σ) = φgi(t;µ, σ) + (1− φ)
Gi(t;µ, σ)

g∗i (λ)
λe−λt,

t ≥ 0;λ > 0; 0 ≤ φ ≤ 1

(5.22)

CDF:

F (t;φ, λ, µ, σ) = φGi(t;µ, σ) +
1− φ
g∗i (λ)

∫ t

0

Ge(u;µ, σ)λe−λudu,

t ≥ 0;λ > 0; 0 ≤ φ ≤ 1

(5.23)

IVG-GQM

The PDF and CDF of IVG-GQM model can be achieved by substituting Eq. 5.8,

and 5.9 into Eq. 4.10 and 4.12.

PDF:

f(t;φ, λ, µ, σ) = φgi(t;µ, σ) + (1− φ)λe−λt
∫ t

0

gi(u;µ, σ)eλudu (5.24)

CDF:

F (t;φ, λ, µ, σ) = Gi(t;µ, σ)− (1− φ)e−λt
∫ t

0

gi(u;µ, σ)eλudu (5.25)
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To avoid the integration of gi(t) for above two equations, the integration part can

be further derived and hence simplified using:

∫ t

0

gi(u;µ, σ)eλudu = g∗i (−λ)Gi(t;
µ√

1− 2λµ2

σ

, σ)

Hence the simplified PDF and CDF are:

PDF:

f(t;φ, λ, µ, σ) = φgi(t;µ, σ) + (1− φ)λg∗i (−λ)Gi(t;
µ√

1− 2λµ2

σ

, σ)e−λt (5.26)

CDF:

F (t;φ, λ, µ, σ) = Gi(t;µ, σ)− (1− φ)g∗i (−λ)Gi(t;
µ√

1− 2λµ2

σ

, σ)e−λt (5.27)

where g∗i (−λ) is the Laplace transform of PDF of IVG, with value −λ, which is:

g∗i (−λ) = exp

{(
σ

µ

)(
1−

√
1− 2λµ2

σ

)}
(5.28)

This simplification can greatly reduce the computation when PDF and CDF of

IVG are calculated. However, it is important to note, this can only work when√
1− 2λµ2

σ
and µ√

1− 2λµ2

σ

is valid, i.e. the parameters must always satisfy σ > 2λµ2.

In reality, this would not always happen when fitting with headway samples. As a
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result, this simplification has very limited usage. In the present study, the simpli-

fication is only used when the conditions are met. For the remaining estimations,

numerical integration has to be used for computation.

5.2.2 Implementation of Mixed Models in MATLAB

All the above 4 mixed models are implemented using the MATLAB Statistical

Toolbox. Since it is difficult or impossible to derive explicit forms for these distri-

bution functions, these models can only be implemented numerically.

These models are again implemented using the proposed framework of this study.

With the existence of the IVG and EMG distribution classes, the development

of these four proposed models become very simple and straightforward. Similar

procedures can be found in chapter 4.

All parameters are estimated using the numerical MLE method. This estimation

method may not be optimum in terms of computation performance, however it is

adequate for testing the fitting performance of the above proposed models. When

testing the fitting results, both KS and AD GoF tests are used similar to the tests

of the previous models.

A few aspects of the numerical MLE procedure for these models need special

attentions.

In the models involve EMG distribution, there is numerical sensitivity issues using

Eq. 5.1 as erfc(x) is subject to subtractive cancellation when
µ− t+ τσ2

√
2σ

is too

large, which in result will result erfc

(
µ− t+ τσ2

√
2σ

)
very small, e.g. erfc(35) <
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10−530 which would underflow at many machine precisions (Haney, 2011). This

issue is considered by skipping those parameters that will lead to such problem.

When dealing with EMG-GQM model, Eq. 5.19 is used in estimation stage, as it

can avoid the numerical integration which will be computationally costly. For the

same reason, Eq. 5.26 is used for fitting IVG-GQM model. However, this equation

can only be applied under limited conditions as discussed previously, hence it is

partially used only when the condition is met. For the rest of situations, Eq. 5.24

is still in use.

Since the CDF of both EMG-SPM and IVG-SPM are very difficult, if not impossi-

ble, to be simplified into explicit function forms to avoid the numerical integrations,

there will be higher computational cost in GoF tests comparing to GQM models..

In terms of setting initial values, similar methods are used that have been discussed

in chapter 4.

All the 132 headway samples described in chapter 3 were used to fit the 4 mixed

models.

5.2.3 Results and Analysis

Table 5.4 shows the average fitting time of the four proposed models. For the

EMG-SPM, EMG-GQM and IVG-SPM models, all the fitting times are well below

1 second, which are lower than the fitting time of gamma-SPM and gamma-GQM

models (see Table 4.1). As expected, the fitting time of IVG-GQM is higher with
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larger variance. This is due to part of estimations have to use Eq. 5.24 which

involves numerical integration.

Table 5.4: Comparison of estimation and GoF time
on EMG-SPM, EMG-GQM, IVG-SPM and IVG-

GQM models

Fitting Time(s) KS test time(ms) AD test time(ms)
Mean Std Mean Std Mean Std

IVG-

SPM 0.37 0.15 357 117 376 156
GQM 3.94 12.47 27 83 25 79

EMG-

SPM 0.67 0.22 361 119 371 159
GQM 0.66 0.25 4 4 3 1

For the GoF test, both EMG-GQM and IVG-GQM show very good GoF test

speeds, which are similar comparing with gamma-SPM and gamma-GQM models.

In between, the EMG-GQM have showed the fastest and most stable speed of only

a few milliseconds in GoF test. However, the speeds of GoF test with both EMG-

SPM and IVG-SPM are much slower with greater variations, which are caused by

the inevitable numerical integrations involved in computation of their CDFs.

Table 5.5: Summary of goodness-of-fit results on EMG-SPM, EMG-
GQM, IVG-SPM and IVG-GQM models

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

IVG-

SPM 52(0) 52(0) 47(0) 47(0) 33(0) 33(0)
GQM 52(0) 52(0) 47(0) 47(0) 33(0) 33(0)

EMG-

SPM 52(0) 52(0) 47(0) 47(0) 33(0) 33(0)
GQM 52(0) 52(0) 47(0) 47(0) 33(0) 33(0)
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Figure 5.4: GoF result (p value) for EMG-SPM and EMG-GQM models
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Figure 5.5: GoF result (p value) for IVG-SPM and IVG-GQM
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The fitting performance is tested by using the GoF tests, with same methods as in

Chapter 4. Table 5.5 presents the result of the GoF tests. These summarized re-

sults show that both EMG-mixed and IVG-mixed models are excellently accepted,

as all headway samples have passed the GoF tests. These results are slightly bet-

ter than the well fitted results for the gamma-mixed and lognormal-mixed models

studied in Chapter 4 (see Table 4.2). Similar findings are also shown in Figures

5.4 and 5.5, in which most samples have higher p-values compared with the results

in Figure 4.2 and 4.3. That is, not only are more samples accepted by using the

proposed RT models as followers headway distribution, but also the samples are

better fitted with these models. Higher p-values can be observed in the test results

of the EMG-mixed models compared with the IVG-mixed models and this may be

caused by greater flexibility in parameter estimations of 5-parameter EMG-mixed

models. There is no clear difference observed between the results of the SPM and

GQM models.

Figure 5.6 shows the visual fitting results for six selected samples, using the PDF

of each model to compare with the histograms of the sampled headway data. The

three rows in the figure present samples from lane 1-3 of the tested road, from

top to bottom respectively. The left column shows samples with relatively lower

traffic flow rates, while the right column shows samples with higher flow rates.

All the figures present the PDF curves of all four mixed models. Between the

SPM and GQM models of either EMG or IVG, it is hardly to see any difference as

the corresponding PDF curves are almost overlapped to each other. All the curves
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Figure 5.6: PDF of selected headway samples

seem to have good fittings to the histograms of the empirical headway data. These

again show the similarities in fitting results between SPM and GQM models.

Between the EMG-mixed and IVG-mixed models, it is hardly to compare which

has better fitting to the data as their curves appear similar.

The estimated parameters of all the four models are summarized in Table 5.6, and

more details can be viewed visually in Figures 5.7-5.10. Comparing with the results

of gamma-mixed and lognormal-mixed models (see Figures 4.5-4.8), the estimated
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values of the arrival rates parameter λ have very similar increasing trends with

the increased level of traffic flows.

Table 5.6: Parameters variation on EMG-mixed and IVG-mixed
models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

IVG-SPM

φ 0.26 0.19 0.45 0.18 0.62 0.09
λ 0.43 0.13 0.53 0.15 0.27 0.06
µ 1.84 1.11 1.43 0.36 1.26 0.15
σ 10.20 2.69 8.25 1.32 8.45 1.75

IVG-GQM

φ 0.31 0.18 0.52 0.20 0.62 0.09
λ 0.43 0.13 0.53 0.16 0.27 0.06
µ 1.88 1.22 1.49 0.41 1.26 0.15
σ 10.60 2.72 8.31 1.46 8.45 1.75

EMG-SPM

φ 0.33 0.27 0.66 0.22 0.67 0.09
λ 0.43 0.13 0.46 0.16 0.24 0.05
µ 0.89 0.13 0.78 0.07 0.72 0.06
σ 0.20 0.08 0.19 0.04 0.16 0.02
τ 1.23 1.18 1.03 0.47 0.65 0.17

EMG-GQM

φ 0.45 0.26 0.78 0.18 0.68 0.09
λ 0.46 0.13 0.44 0.15 0.24 0.05
µ 0.93 0.12 0.79 0.07 0.72 0.06
σ 0.22 0.08 0.20 0.04 0.16 0.02
τ 1.27 0.86 1.15 0.45 0.66 0.17

With the IVG-mixed models, µ and σ are the two parameters of the followers

headway distribution. The values of parameter σ spread between 5 and 20, with

most values between 7 and 15. These values of σ do not seem to follow any trend

of changes in the traffic flows, and the values in lane 1 seem slightly higher than

lane 2 and 3. Most of values of µ in IVG-mixed models are between 1 and 2, and

there are no clear distinctions between all three lanes. In lane 1, values of µ are

more scattered at lower traffic flow levels, and they show a decreasing trend with
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Figure 5.7: Estimated parameters for IVG-SPM
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Figure 5.8: Estimated parameters for IVG-GQM
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Figure 5.9: Estimated parameters for EMG-SPM

the increase of traffic flows. In general, values of both µ and σ have less variation

when the traffic becomes heavier.

With the EMG-mixed models, the three parameters, µ, σ and τ seem to converge

with the increased level of flows. The values of µ are gathered between 0.6 and

1.2, while values of σ are gathered between 0.1 and 0.4. The values of τ in lane

1 and 2 are more scattered in the lower traffic flow, while values in lane 3 seem

more consistent.
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Figure 5.10: Estimated parameters for EMG-GQM

The general impressions for values of proportion parameter (φ) are very similar to

what occurred in the gamma-mixed and lognormal-mixed models, especially for

headways in lane 2 and 3. Some of those problematic estimations of parameter

φ, as mentioned in chapter 4, seem to be improved, as they depart from zero.

However, these values of φ seem higher than those φ values with higher levels of

flows in the same lane, which is still unreasonable considering that there should

be a smaller portion of followers in queues with lower traffic flows. The estimated

values of φ with the two GQM models seem less problematic compared with those
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φ values of SPM models. These again may be caused by the problem of over

flexibility with 4- or 5-parameter models as discussed in chapter 4.

Table 5.7: Mean followers headway (s)

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

IVG-

SPM 1.84 1.11 1.43 0.36 1.26 0.15
GQM 1.88 1.22 1.49 0.41 1.26 0.15

EMG-

SPM 2.12 1.20 1.81 0.48 1.37 0.17
GQM 2.20 0.90 1.94 0.46 1.38 0.17
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Figure 5.11: Mean followers headway (s) against traffic flows. The y-axis
show the mean followers headway of each specified model.

The results for the mean followers headway are relatively consistent (shown in

Table 5.7), and they are more aggregated when the traffic flow gets higher (Figure

5.11), within the scope between 0.8 and 3 seconds. Lane 1 has the largest and

more scattered mean headway values, while lanes 2 and 3 have smaller variations
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with slightly higher mean headway values in lane 2. Similar trends are found

and discussed in chapter 4 for the gamma-mixed and lognormal-mixed models

(see Figure 4.9). The large variations in lane 1 may be due to those problematic

estimations mentioned previously in this section, and these may potentially be

improved with more constraints applied to the models for simplification.

The estimated mean followers headways of EMG-mixed models are higher than

those of IVG-mixed models, across all the three lanes, while both EMG-mixed

and IVG-mixed models have slightly higher mean headway values compared with

gamma-mixed and lognormal-mixed models. There are strong similarities between

SPM and GQM models, for all the four models.

Overall, all of the proposed EMG-mixed and IVG-mixed models have very good

fitting performance and reasonable computation cost on parameter estimation.

The tests shows generally better fitting performances compared with the gamma-

mixed or lognormal-mixed models.

As an attempt at using selected RT models to describe followers headway distri-

butions, the above implementations show very promising results which strongly

support the assumptions of this chapter, i.e. both EMG and IVG distributions

can be good alternative options in headway analysis.

5.2.4 Methods of Simplification on Estimation of Models

In the next few sections, some steps, similar to chapter 4, are used as attempts

of simplifying the estimation process of all the four mixed models studied in this
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chapter. Firstly, attention is paid to the pre-determination of parameter λ. Fol-

lowing with some tests using combination of parameter λ and selected parameters

of the followers’ distribution. To save some space, some results are only shown in

the tables in the main chapter, and related figures can be found in Appendix C.

5.2.5 Methods of Pre-determining Parameter λ

The simplifications for EMG-mixed and IVG-mixed models are very similar to

those discussed in Chapter 4. The same equations (in Table 4.5) are used here to

pre-determine λ, and similar estimation methods are applied.

Table 5.8: Comparison of estimation and GoF time
on EMG-SPM, EMG-GQM, IVG-SPM and IVG-

GQM models

Fitting Time(s) KS test time(ms) AD test time(ms)
Mean Std Mean Std Mean Std

IVG-

SPM 0.26 0.05 346 112 362 158
GQM 0.79 3.71 9 38 8 39

EMG-

SPM 0.42 0.12 362 120 378 165
GQM 0.44 0.15 4 3 3 1

The fitting speeds are, as expected, improved since one parameter reduced from

the estimations, and the fitting time can be found in Table 5.8.

Table 5.9 provides with summarized fitting results, which show a well acceptance

by GoF tests, especially for the data of lanes 2 and 3. The results in lane 1 are

slightly degraded compared to those in table 5.5, with 2-4 samples failed during the

tests. The overall results are very similar compared to the gamma-mixed models
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Table 5.9: GoF results with pre-determined λ on EMG-mixed and
IVG-mixed models

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

IVG-

SPM 48(4) 52(0) 47(0) 47(0) 33(0) 33(0)
GQM 49(3) 50(2) 47(0) 47(0) 33(0) 33(0)

EMG-

SPM 50(2) 51(1) 47(0) 47(0) 33(0) 33(0)
GQM 50(2) 51(1) 47(0) 47(0) 33(0) 33(0)

The numbers with or without brackets show the numbers
of successes or failures of GoF test.
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Figure 5.12: GoF result (p value) for EMG-SPM and EMG-GQM models
with pre-determined λ

(see Table 4.6). The Figures 5.12 and 5.13 show averagely higher p-values for

both EMG-mixed and IVG-mixed models, which indicate generally better fitting

performance, compared to results of gamma-mixed models.

With the pre-determined λ, the estimated parameters have not been greatly changed,
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Figure 5.13: GoF result (p value) for IVG-SPM and IVG-GQM with pre-
determined λ

as shown in Table 5.10, especially for those in lane 2 and 3. The estimated param-

eters of EMG (µ, σ and τ) or IVG (µ, σ) seem more aggregated within smaller

ranges comparing to the results of which the method without the pre-determined

λ.

A similar problem caused by the outlier (sample No.189) is found in IVG-mixed

models, as discussed in gamma-mixed models (see discussions in section 4.3.2).

Apparently, this sample, with its traffic flow as low as 195 veh/hr, is not reasonably

represented by the pre-determined λ using the equation in Table 4.5. With this

sample removed from the results of lane 1, the variations of µ, σ are greatly reduced

(values shown in brackets). More detailed figures can be found in Appendix C (see

Figures C.1 - C.4).
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Table 5.10: Parameters variation on EMG-mixed and IVG-mixed
models with pre-determined λ

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

IVG-SPM

φ 0.29 0.18 0.37 0.11 0.60 0.08
λ 0.43 0.13 0.58 0.12 0.29 0.06
µ 1.87(1.63) 1.73(0.64) 1.31 0.22 1.23 0.13
σ 10.59(10.58) 2.93(2.96) 8.62 1.28 8.69 1.67

IVG-GQM

φ 0.33 0.20 0.45 0.14 0.60 0.08
λ 0.43 0.13 0.58 0.12 0.29 0.06
µ 1.83(1.61) 1.57(0.44) 1.38 0.32 1.24 0.13
σ 10.77(10.75) 2.90(2.93) 8.64 1.29 8.68 1.67

EMG-SPM

φ 0.42 0.23 0.41 0.12 0.62 0.08
λ 0.43 0.12 0.58 0.12 0.29 0.06
µ 0.93 0.12 0.78 0.08 0.73 0.06
σ 0.23 0.07 0.19 0.04 0.17 0.02
τ 1.23 0.96 0.63 0.25 0.57 0.12

EMG-GQM

φ 0.46 0.36 0.56 0.18 0.64 0.08
λ 0.43 0.12 0.58 0.12 0.29 0.06
µ 0.92 0.14 0.80 0.08 0.73 0.06
σ 0.22 0.08 0.20 0.04 0.17 0.02
τ 1.00 0.64 0.76 0.32 0.58 0.13

The estimated mean followers headways (see Table 5.11 and Figure 5.14) are more

focused to their average values, especially in lane 2 and 3, across all the four mixed

models. In lane 1, the values of mean headway seem more scattered with lower

level of traffic flows, and they also become more consistent with heavier traffic.

Greater variations can be found for the IVG-mixed models and this is again caused

by the outlier estimates of sample No. 189. Taking away this sample, the data

show (in brackets) a better consistency.

There seems to be some decreasing trends in lane 1 for mean headway values, with
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Table 5.11: Mean Followers Headway(s) with pre-determined λ on
EMG-mixed and IVG-mixed models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

IVG-

SPM 1.87(1.63) 1.73(0.64) 1.31 0.22 1.23 0.13
GQM 1.83(1.61) 1.57(0.44) 1.38 0.32 1.24 0.13

EMG-

SPM 2.16 0.99 1.42 0.25 1.30 0.14
GQM 1.92 0.68 1.56 0.32 1.31 0.14
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Figure 5.14: Mean Followers Headway (s) with pre-determined λ on EMG-
mixed and IVG-mixed models. The y-axis show the mean followers headway of

each specified model.

increasing traffic flows. However, it is unclear whether it is caused by the changes

of traffic flow levels. Two assumptions seem reasonable. The first reason may be

that there are bigger variations in queue formulations with lower traffic, which may

cause problems for these models to have good estimations to the mean followers

headway. It is also possible that, with the increasing but still relatively lower
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traffic flows, drivers may have increasing tensions that will enforce them to follow

preceding vehicles as shorter distances. The increasing tensions will reach a limit

when traffic flow reaches a higher level, and hence the mean headway becomes

more consistent. Since there is not much data on lower traffic flows for lane 2

and 3, the current available headway data are not sufficient for the investigation

of these two assumptions. But this is certainly very attractive to check in future

when more headway data becomes available.

Overall, with predetermined λ, all the four mixed models can describe headway

samples very well. There are slightly downgrade of fitting performance in lane 1,

but the acceptance of the GoF test is still excellent.

5.2.6 Use of Combinations of λ and Other Parameters of

Followers Headway Distribution

Similar to the procedures discussed in Section 4.4, some of the combinations of

parameters are tested. After a few preliminary tests for each mixed model, some

combinations of parameters are identified with good fitting results. For using IVG

as followers headway distribution, pre-determining both λ and σ would have better

fitting comparing to use combinations of λ and µ. Such better performance, with

the combination of λ and σ, are found in both SPM and GQM models. When

using EMG model as followers headway distribution, the combination of the three

pre-determined parameters, i.e. λ, σ and τ , seems to have the best fitting results

compared with other possible combinations of parameters.
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Table 5.12 shows the pre-determined values of parameters used in the models fit-

ting stages. For IVG-mixed models, a constant σ, with value of 9.0, is used in

fitting all samples. The fitting results show that it is sufficient to use a constant

value of parameter σ, which indicates that σ is not sensitive to the traffic condi-

tions, such as flow levels or lanes. However, more careful adjustment according to

lanes and traffic flow rates may further improve the fitting results.

Table 5.12: Pre-fixed values of parameters on EMG-mixed and IVG-
mixed models

Parameter Lane 1 Lane 2 Lane 3

IVG

σ 9.00 9.00 9.00

EMG

Flow (q) <900 ≥900

σ 0.20 0.20 0.20 0.20
τ 0.80 0.70 0.91 0.56

When using EMG-mixed models, the situation changes from the above. The σ

values in EMG model can be pre-determined as a constant value of 0.2. However,

it is impossible to find a constant value for parameter τ , which will support models

to fit all the data samples. For lane 2 and 3, constant values of 0.91 and 0.56 are

used respectively. In lane 1, a further separation have to be made in terms of lower

and higher traffic volumes, with a constant value of 0.8 used for flows smaller than

900 veh/hr. For traffic flows greater than 900 veh/hr, the value of 0.7 is found to be

more suitable. This distinction of parameters for EMG-mixed models is different

when compared to IVG-mixed or gamma-mixed models, as the latter two can both

be used with a single constant parameter for all samples. This feature of the EMG

model, on the one hand is a disadvantage for models to have a more sensitive
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parameter comparing those models that can use constant values. However, on

the other hand, it may be very valuable to use such a sensitive parameter to

find connections between models and variations of external conditions, such as

traffic flows, lanes etc. If connections are truly found, it will help greatly in

understanding of drivers’ car following behaviours. Such work would require large

amount of headway data collected in various known traffic situations, but it is

certainly worth more investigation with those data available.

The results of GoF tests are summarized in Table 5.13, with more details shown

in Figure 5.15 and 5.16. The IVG-mixed models have the best fitting results, with

slight better performance comparing to the gamma-mixed models (comparing to

Table 4.11). Most of p-values of IVG-mixed models are relative higher values

comparing to EMG-mixed and gamma-mixed models. It should be noticed, for

lane 1, the fitting results are in fact improved for IVG-mixed models, comparing

to the results shown in Table 5.9. This is quite encouraging, as it may indicate

the fact that with appropriate constraints of parameter σ, the fitting performance

of IVG-models can be more robust.

Table 5.13: GoF results with pre-determined λ, σ (and τ) on EMG-
mixed and IVG-mixed models

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

IVG-

SPM 50(2) 51(1) 47(0) 47(0) 32(1) 32(1)
GQM 50(2) 51(1) 47(0) 47(0) 32(1) 32(1)

EMG-

SPM 48(4) 51(1) 46(1) 46(1) 32(1) 32(1)
GQM 47(5) 49(3) 47(0) 47(0) 32(1) 32(1)

The numbers with or without brackets show the numbers
of successes or failures of GoF test.
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Figure 5.15: GoF result (p value) with Pre-determined λ, σ and τ for EMG-
SPM and EMG-GQM models
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Figure 5.16: GoF result (p value) with Pre-determined λ and σ for IVG-SPM
and IVG-GQM
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The EMG-mixed model has 2-3 more samples, comparing to IVG-mixed models

in lane 1, which have failed their KS-test. This shows some but not greatly down-

graded in terms of fitting performance. Considering that EMG-mixed models have

very good fitting performance shown in the previous sections, this downgrade may

be caused by the inaccuracy of pre-determined parameter τ , especially when fitting

headway samples of lane 1. In this case, the results may be improved by finding

better connections between τ and some traffic situations, such as traffic flows.

When using IVG as followers headway model, both SPM and GQM seem to have

very similar fitting performance. While using the EMG model for followers head-

way distribution, the test results are slightly different between the SPM and GQM

models (in lane 1 and 2), however, it is difficult to conclude that one model is better

than the other.
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Figure 5.17: Estimated parameters with Pre-determined λ and σ for IVG-
SPM
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Table 5.14: Parameters variation with Pre-determined λ, σ (and τ)
on EMG-mixed and IVG-mixed models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

IVG-SPM

φ 0.31 0.17 0.34 0.12 0.59 0.08
λ 0.42 0.14 0.58 0.12 0.29 0.06
µ 1.96 1.63 1.25 0.19 1.22 0.12
σ 9.00 0.00 9.00 0.00 9.00 0.00

IVG-GQM

φ 0.38 0.16 0.40 0.14 0.60 0.08
λ 0.42 0.12 0.58 0.12 0.29 0.06
µ 1.77 0.38 1.29 0.20 1.22 0.12
σ 9.00 0.00 9.00 0.00 9.00 0.00

EMG-SPM

φ 0.26 0.14 0.56 0.14 0.63 0.09
λ 0.44 0.12 0.58 0.12 0.29 0.06
µ 0.87 0.05 0.76 0.05 0.75 0.06
σ 0.20 0.00 0.20 0.00 0.20 0.00
τ 0.72 0.04 0.91 0.00 0.56 0.00

EMG-GQM

φ 0.31 0.16 0.64 0.14 0.64 0.09
λ 0.43 0.12 0.58 0.12 0.29 0.06
µ 0.89 0.05 0.78 0.05 0.75 0.06
σ 0.20 0.00 0.20 0.00 0.20 0.00
τ 0.72 0.04 0.91 0.00 0.56 0.00

The results of parameter estimation are shown in Table 5.14 and Figures 5.17 -

5.20, where the pre-determined parameters are marked in grey. With the pre-

fixed σ in IVG-mixed models, as well the pre-determined parameter λ, only φ

and µ are required for estimation. The estimated parameters of µ seem more

consistent with the additional constraint on parameter σ. Still, in lane 1, a slight

decreasing trend can be observed at relatively lower traffic flows. In IVG-SPM,

the noticeable large µ value caused by the sample (No. 189) with very low flow

rates makes the estimated values to have large standard deviation. This can be

corrected by removing this outlier, the resulted values are shown in brackets for
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Figure 5.18: Estimated parameters with Pre-determined λ and σ for IVG-
GQM

IVG-SPM. The same sample did not pass the GoF test stage with IVG-GQM

models. The parameter φ obtained more reasonable estimates when σ is pre-fixed,

in lane 1, and these improvement are clearer shown in the results of IVG-GQM

model. Clear increasing trends of estimated φ values, with the increased traffic

flows, can be observed for both IVG-mixed models.

With EMG-mixed models, the estimated values of parameter µ also become more

consistent comparing with the results of early sections. The values of lane 1 seem

higher than values of lane 2 and 3, and they don’t seem vary much with the changes

of traffic flows. The parameter φ shows very clear increasing trends with increased

traffic flows, for both EMG-mixed models.

In general, the proposed combination of pre-determined parameters, for all the
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Figure 5.19: Estimated parameterswith Pre-determined λ, σ and τ for EMG-
SPM

four models, seem to have positive support on parameter estimations. Plus the

convincing results shown when fitting with gamma-mixed models using similar

method (see Section 4.4.2), these confirm that the proposed methods of simplifi-

cation are useful in fitting the selected mixed models.

The results of estimated mean followers headway are shown in Table 5.15 and

Figure 5.21. Despite to the outlier (sample No. 189), the mean followers headways

show very good consistency with all the four models. The slight decreasing trends
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Figure 5.20: Estimated parameters with Pre-determined λ, σ and τ for EMG-
GQM

can be observed in lane 1, at lower traffic flows. With the higher traffic flows, all

the mean followers headways are maintained consistently. The mean headway of

lane 1 and 2 are higher than the results of lane 3. Especially with EMG-mixed

models, the difference of mean headways can be clearly observed in Figure 5.21.

It is interesting to notice that, for both gamma-mixed and IVG-mixed models, the

mean headway in lane 1 seem to be higher than the results in lane 2. However,

in EMG models, the opposite result is observed. It is unclear what is the cause
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Table 5.15: Mean Followers Headway(s) with pre-determined λ, σ
(and τ) on EMG-mixed and IVG-mixed models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

IVG-

SPM 1.96(1.77) 1.63(0.8) 1.25 0.19 1.22 0.12
GQM 1.77 0.38 1.29 0.20 1.22 0.12

EMG-

SPM 1.58 0.07 1.67 0.05 1.31 0.06
GQM 1.61 0.07 1.69 0.05 1.31 0.06
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Figure 5.21: Mean Followers Headway (s) with pre-determined λ, σ (and τ)
on EMG-mixed and IVG-mixed models. The y-axis show the mean followers

headway of each specified model.

of these observations. This may be supposed to have some connection with the

pre-determined parameter τ , which has to be separated by traffic flows and lanes

in order to maintain better fitting performance, in the use of EMG-mixed models.
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Overall, for all the mixed models, including the gamma-mixed models in chap-

ter 4, using the proposed methods which give λ and other parameters reason-

able constraint would not greatly affect the fitting performance of those models.

The GoF results are slightly downgraded under some traffic flow situations, but

the results are still perfectly acceptable. On the positive side, such methods are

greatly simplified the estimation of the model by effectively reducing the num-

ber of parameters. Also, with these parameters constrained by pre-determination,

the proportion factor φ receives much more reasonable estimations, which make

this parameter more meaningful considering the basic idea of using mixed models,

i.e. under higher traffic flow situations, there would be more drivers staying in

a queue. Furthermore, the proposed methods result the mean followers headway

to more consistency under each model, which positively support the idea that the

drivers follow vehicles more consistently when the flow rates reach a higher level,

but drivers tensions changes with flow rates when the road is not busy. However,

there is not enough evidence to conclude such an assumption, which presumably

will demands much deeper investigation. Both Wasielewski (1979) and Branston

(1976) supported that followers headway are independent to the changes of traffic

flows. There is also an agreement in present study, when traffic flows are roughly

more than 1000 veh/h. However, both authors conducted their studies using head-

way data with minimum flow rates of 900 veh/h, and it is unknown whether there

is any similar trend under low traffic flow conditions.
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5.2.7 Using Parameter φ

As discussed in the previous section, for all the four mixed models, the proportion

factor φ appears with more apparent trends when apply the simplifying the esti-

mation by using some combinations of pre-determined parameters. Such results

make further simplification possible by pre-determining φ.

Based on the results of estimating φ in the previous section, quadratic equations

are obtained by applying polynomial fitting to the estimated values of φ, as shown

in Table 5.16. These equations are further used to pre-determine φ for each of

the models, as the final attempts of simplifying the estimation process. With this

simplification, only one parameter µ is left to require estimation for each of the

four mixed models.

Table 5.16: Estimation of φ as function of traffic flow q

IVG EMG
Lane 1 Lane 2 Lane 3 Lane 1 Lane 2 Lane 3

SPM

a 3.1 3.51 0.93 3.7 4.7 0.05
b -0.14 -1.77 0.25 -0.84 -1.99 1.06
c 0.01 0.44 0.35 0.11 0.54 0.22

GQM

a 3.1 3.09 0.93 3.42 2.5 0.05
b -0.14 -1.30 0.25 -0.26 -0.12 1.07
c 0.01 0.34 0.35 0.03 0.22 0.23

a, b and c are parameters of function φ(q), where φ(q) =
a ∗ q2 + b ∗ q + c, and q is sample traffic flow.

All the fitting times (Table 5.17) are reduced to around 0.12 seconds in average,

with standard deviation of 0.02. This is on the same level of gamma-mixed models,

also with φ being pre-determined. As expected, there are not any improvement on
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speed of GoF test for IVG-SPM and EMG-SPM models, as numerical integrations

involved in their CDFs are inevitable.

Table 5.17: Comparison of estimation and GoF
time on EMG-SPM, EMG-GQM, IVG-SPM and

IVG-GQM models

Fitting Time(s) KS test time(ms) AD test time(ms)
Mean Std Mean Std Mean Std

IVG-

SPM 0.12 0.02 343 124 360 159
GQM 0.11 0.02 7 11 2 1

EMG-

SPM 0.12 0.02 344 117 362 161
GQM 0.12 0.01 6 7 3 1

Table 5.18: GoF results with pre-determined φ, λ, σ (and τ) on
EMG-mixed and IVG-mixed models

Lane 1 Lane 2 Lane 3
KS AD KS AD KS AD

IVG-

SPM 48(4) 50(2) 44(3) 45(2) 27(6) 29(4)
GQM 48(4) 49(3) 42(5) 44(3) 25(8) 28(5)

EMG-

SPM 49(3) 50(2) 47(0) 46(1) 31(2) 28(5)
GQM 46(6) 48(4) 47(0) 47(0) 31(2) 29(4)

The numbers with or without brackets show the numbers
of successes or failures of GoF test.

Generally, the GoF tests show well accepted results for all the 4 models across

all samples, although they are downgraded comparing to previous methods. The

IVG-mixed models have similar fitting performance comparing to gamma-mixed

models. The EMG-SPM shows slightly better fitting performance comparing to

all the rest of models including gamma-mixed models.

The fitting performance of IVG-mixed model are downgraded slightly when com-

pared to the results of the previous methods, which did not use the pre-determined
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Figure 5.22: GoF result (p value) with Pre-determined φ, λ, σ and τ for
EMG-SPM and EMG-GQM models
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Figure 5.23: GoF result (p value) with Pre-determined φ, λ and σ for IVG-
SPM and IVG-GQM
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φ for simplification. In contrast, with the EMG-mixed models, the fitting results

are not affected much. Especially in lane 3, where more samples failed GoF tests

when using gamma- and IVG-mixed models. This comparison shows a better

stability on fitting performance when using EMG-mixed models.

Only the parameter µ for IVG-mixed and EMG-mixed models is needed to estimate

in this stage (see Table 5.19). Compared with the previous section, the parameter

of µ has not varied much in lane 2 and 3, and they seem gathered more closely to

the mean values, with smaller variance. In lane 1, the values of µ of EMG-models

have not changed much either. The standard deviations of values in IVG-mixed

models has been greatly reduced, which indicate that these estimated µ values also

become more consistent. Detailed figures can be found in Appendix C (Figures

C.5 - C.8).

The mean followers headways do not differ much from the estimations of previous

section. The smaller standard deviation especially in IVG-models show more con-

sistency on mean followers headway. The values don’t differentiate between SPM

and GQM models, and they don’t seem to have any trend to the changes of traffic

flow, in lane 2 and 3. At the lower traffic flows in lane 1, the decreasing trend of

µ can still be observed, which shows that the parameter µ is not affected much by

pre-determining parameter φ. It seems more likely that this trend is correlated to

the traffic flow levels, rather than a random effect. If more headway samples are

available in lane 2 and 3, with the similar low level of traffic flows, this trend may

be revealed more explicitly.



Chapter 5. Using response time models in headway analysis 182

Table 5.19: Parameters variation with Pre-determined φ, λ, σ (and
τ) on EMG-mixed and IVG-mixed models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

IVG-SPM

φ 0.30 0.14 0.34 0.08 0.59 0.08
λ 0.44 0.12 0.58 0.13 0.30 0.06
µ 1.64 0.11 1.25 0.07 1.20 0.09
σ 9.00 0.00 9.00 0.00 9.00 0.00

IVG-GQM

φ 0.30 0.15 0.38 0.09 0.59 0.08
λ 0.43 0.12 0.59 0.13 0.30 0.06
µ 1.57 0.09 1.24 0.05 1.19 0.08
σ 9.00 0.00 9.00 0.00 9.00 0.00

EMG-SPM

φ 0.24 0.12 0.57 0.13 0.63 0.09
λ 0.43 0.13 0.58 0.12 0.29 0.06
µ 0.88 0.07 0.77 0.04 0.75 0.06
σ 0.20 0.00 0.20 0.00 0.20 0.00
τ 0.72 0.04 0.91 0.00 0.56 0.00

EMG-GQM

φ 0.30 0.14 0.64 0.14 0.64 0.09
λ 0.42 0.12 0.58 0.12 0.29 0.06
µ 0.90 0.05 0.78 0.04 0.75 0.06
σ 0.20 0.00 0.20 0.00 0.20 0.00
τ 0.72 0.04 0.91 0.00 0.56 0.00

Looking at all the gamma-mixed and IVG-mixed models, the values in lane 1 is

generally larger than in lane 2, of which the values are slightly larger than in lane

3. The values in lane 2 and 3 are much closer (around 1.2s) and they have similar

values for both gamma-mixed and IVG-mixed models. The EMG-mixed models

seem to estimate the mean followers headway more closely (around 1.6s) in lane

1 and lane2, but smaller (1.3s) in lane 3. The values in lane 2 seem again higher

than values in lane 1, with higher traffic flows (shown in Figure 5.24).

Figure 5.25 shows the visual fitting result for six selected headway samples. The

estimated PDF curves show good fitting results visually for all the four models.
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Table 5.20: Mean Followers Headway(s) with pre-determined φ, λ,
σ (and τ) on EMG-mixed and IVG-mixed models

Lane 1 Lane 2 Lane 3
Mean Std Mean Std Mean Std

IVG-

SPM 1.64 0.11 1.25 0.07 1.20 0.09
GQM 1.57 0.09 1.24 0.05 1.19 0.08

EMG-

SPM 1.60 0.10 1.67 0.04 1.31 0.06
GQM 1.62 0.07 1.69 0.04 1.31 0.06
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Figure 5.24: Mean Followers Headway (s) with pre-determined φ, λ, σ (and
τ) on EMG-mixed and IVG-mixed models. The y-axis show the mean followers

headway of each specified model.

Overall, this final attempt on simplification of parameters only estimated one

parameter (µ), with all the rest of the parameters pre-determined. The good ac-

ceptance of the GoF result shows that all mixed models can be simplified greatly,

without losing much of their fitting performance. It is worth highlighting that the
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Figure 5.25: PDF curves with pre-determined φ, λ, σ (and τ) on EMG-mixed
and IVG-mixed models

two EMG-mixed models, as they have the best fitting performance after simplifi-

cation, compared with the gamma-mixed and IVG-mixed models.

These results are very positive and encouraging, as they are strong evidence to

support that each of the parameters in mixed models is worth further investigation,

as they may have strong connections to the corresponding traffic conditions or

variations of external traffic environment. These potential connections may be

good hints for further understanding the drivers’ car following behaviours.
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5.3 Review and Discussion

Two response time (RT) models, i.e. the ex-Gaussian(EMG) and iv-Gaussian(IVG)

distribution models are, for the first time, used in headway analysis. The results

of both models are acceptable on fitting the headway data of lane 1 and 2. These

results are comparable with the shifted-lognormal distribution, as they have simi-

lar fitting performance for the first two lanes of the motorway. However, none of

these models shows acceptable fitting results for lane 3. Nevertheless, these results

show a good evidence that, in general, RT distributions have very good potentials

to be good models to describe headway data.

Both EMG and IVG distribution models are then applied as the followers headway

distribution in the SPM and GQM mixed models. Using the numerical MLE

methods, all the four mixed models show reasonable estimation time of under 1

second. However, since the SPM models require numerical integration involved

in CDF, they lead to slower speed on the GoF test. All the four models are well

fitted to the headway samples, which are slightly better than the gamma-mixed

and lognormal-mixed models tested in chapter 4. Still, the 4- or 5-parameter

models are too flexible and some of the estimations, for headway data in lane 1,

seem unrealistic.

Overall, it is difficult to distinguish firstly the types of models between SPM and

GQM as they have similar fitting performance, when using any of the followers

headway distributions in this study. The downside of the SPM model is that it

requires numerical integrations in computing CDFs, and this is often difficult or
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maybe impossible to be improved by achieving an analytical form of the solution.

This may lead to a high computational cost of the GoF test, as Ha et al. (2012)

reported for the gamma-SPM model. The SPM models also require the Laplace

transform of the PDF of the followers headway distribution, which may not have

an explicit function for some models, such as lognormal distribution. The GQM

models generally have acceptable computational costs if a closed form of Laplace

transform exists for the PDF of the followers headway distribution. Otherwise, the

estimation time would be unbearable. Considering these properties, GQM may

be easier to implement compared with the SPM models, with comparable fitting

performance.

All the gamma, IVG and EMG models show similar fitting performance when

they are used as followers headway distributions in mixed models. The IVG-SPM

and EMG-SPM have slower performance while performing the GoF tests. The

IVG-GQM is slower with unstable estimation times while fitting to headway data

when all four parameters are required for estimation. the EMG-GQM and both

gamma-mixed models have stable and acceptable computational costs.

It is hard to say which of these models can be recommended further, considering

the close performances on fitting and computational costs. It may require more

headway data from various location and known environments, to distinguish that

any of this models would be more suitable for use. Considering the EMG-mixed

and IVG-mixed models are the first time ever using in the headway data analysis,

the at least equivalent performances to gamma-mixed models make applications

of these newly proposed models very promising.
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With pre-determination of some parameters in those models, the GoF results

show very good fitting performance when using fixed λ, or a combination of λ

and σ in IVG-models, or combination of λ with σ and τ in EMG-models. These

results are comparable with similar performance while using similar constraints

in the gamma-mixed models. The proportion factor φ is used as an additional

constraint, and fitting results are slightly degraded, but are still well accepted in

general, like those in gamma-mixed models. In such cases, the EMG-SPM shows

the best fitting results compared with the other models. The good fitting results

show the success of the attempts of the simplification methods, and they may

indicate strong connections between parameters and traffic situations, which are

potentially very valuable for understanding drivers’ following behaviour.



Chapter 6

Discussion and Future Work

6.1 Final Discussion

Research work on vehicle time-headway often draws attention in many respects,

from the fundamental understanding of the traffic formulation to traffic simulation.

Statistical analysis is a powerful tool to help researchers and traffic engineers with

better understanding of the empirical traffic data, hence, to help on providing

improved or new designs of solutions to realistic problems.

This thesis mainly looked at statistical models as an analytical tool of knowing

headway data, on motorways in particular. It firstly introduced a framework devel-

oped using the MATLAB Statistical Toolbox. The proposed framework provides

data structures and implementable solutions that can quickly test or repeat ex-

isting statistical models, or making rapid trials for newly proposed models. The

framework is not yet ready to use under practical situations as it sacrifices some of

the computation performance to provide more generalized solutions to suit more

188
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distribution models. But it is still valuable for quick implementation in prelimi-

nary research or to help newcomers to rapidly test some ideas or knowledge about

headway distribution models.

The second part of the thesis focuses on some commonly used mixed models, i.e.

the SPM and GQM models. The common gamma and lognormal distributions, as

followers headway models, are reviewed. The implementation results are similar to

those reported by previous researchers. In addition, the lognormal-SPM, for first

time, has been tested and reported here, by using an approximate solution for the

Laplace transform of the lognormal distribution, which has not been used in this

context before. However, this is only used for demonstration, as the numerical ap-

proximations involved have unavoidable computational cost compared with other

models that have explicit solutions in Laplace transform. The implementation of

the lognormal-SPM again gives well-accepted fitting results for empirical headway

data, and they were very similar to the lognormal-GQM, which has been widely

studied in the past.

Following the general implementations of the above models, some parameters have

been investigated further, mainly the arrival rates λ and followers headways. Some

researchers had investigations on the parameter λ, and their results show good

potentials of pre-determining λ, using the known sample flow rate. Similar studies

are replicated here, as a simplification in fitting stages. The results of the GoF

tests shown are promising as most of data are well accepted with this method.

Followers headways are mainly determined by drivers’ perception when they are

closely following their preceding vehicles, and it could relate to safety distance,
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reaction and response time, etc. This gap between two consecutive vehicles may

vary under the changes of traffic situation or environment, but it should not deviate

dramatically. This may suggest that the follower headway distributions should be

rather consistent, with slight variations responding to various environments. A

few researchers tried to fix followers headway in mixed models to simplify their

estimation process. Some reported very good results when they used constant

followers headways. Similar procedures are also attempted in this study, for the

gamma-mixed models. However, the result did not give ideal performance as

shown by others. The results of lane 1 and 2 are very encouraging as they are

close to previous findings. However, more samples are rejected by the GoF test for

samples of lane 3, and this may be due to the increasing complexity of traffic of this

lane. Alternative methods were investigated, and the attempts at fixing parameter

α in the gamma followers headway model gave some promising results, combined

with pre-determined λ, the two pre-set parameters seem successfully restricted the

two 4-parameter models, and provide more sensible solutions. In particular, the

estimation of φ becomes more reasonable and it shows clear connections with the

sample traffic flow. This fixes some of the problematic estimations for φ, when 4

parameters are all freely estimated using numerical MLE methods.

Followers headway is analogous to some process in the human recognition and

response studies. Two RT models, which are ex-Gaussian and inverse Gaussian

distributions, are investigated in the chapter 5. As single models, both give good

fitting results to some of the samples, especially in lane 1 and 2. But all failed in

fitting any of those samples in the third lane. These two models offer outstanding
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and comparable performance compared with the lognormal distribution, which is

commonly agreed as the most acceptable single model. However, they are still

very limited when generally describe the headway data.

For the mixed models, both above RT models are investigated as followers head-

way distributions, and their fittings to headway data are very well accepted by

GoF tests, with all samples having passed those tests. This shows that using RT

models is potentially a very good way to investigate the followers headway pro-

cess, especially when they are equipped with mixed models. Similar to chapter 4

in the gamma-mixed models, some simplification attempts were also investigated

for these new mixed models. Again, by limiting parameter λ, hence combined with

more parameters in EMG and IVG models, the GoF tests have shown comparable

fitting performance to those methods used with gamma-mixed models.

The above concludes that the tested mixed models have capability to describe the

headway data, with very good fitting results. However, 4 or 5 parameter models

are overly flexible and the optimized solution may not be the best estimation to

match the real traffic situation. Using some sensible constraints in the estimation

process is necessary, and these will narrow the valid range of values and promote

more reasonable estimations. This study would not be able to answer which model

would be the best headway data analysis, due to lack of understanding of the

process of how drivers would follow their preceding vehicle. But the behaviours of

some parameter in those models would help on understanding such process. The

question is not which model gives the best fit, but which models would include
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parameters based on physical features that make a better understanding for the

following process.

This study introduces followers headway distributions which are alternatives in

terms of providing good fit to headway data using mixed models. Study shows

that the RT models are suitable as followers distributions, with at least equivalent

performance comparing to gamma-mixed or lognormal-mixed models. This cer-

tainly will give researchers more options to choose, and more comparisons among

more models.

The followers headway distribution is critical in mixed models; however, variations

among different models have been revealed by the study results. That is, although

it is possible to use identical equations to describe the non-followers arrival rates

λ, the proportion parameter φ are not uniform across different models. This is

certainly not satisfactory, as in reality there will only be one proportion value per

sample, and this proportion should not be dependent on the followers headway

distribution.

A similar problem is also expressed by the estimation of parameters of the followers

headway model. This is easily found by comparing the mean followers headway.

As Wasielewski (1979) and Branston (1976) assumed, the mean followers headway

should be constant. It is natural to expect that this mean value would vary,

within a small range of values, under certain conditions. For instance, the mean

headway may have changes depending on the travel time, i.e. it may vary between

morning and afternoon traffic, due to changes in tiredness, motivation etc., which

may differ at different periods of the day. The mean value may also vary with the
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traffic volume, as busy traffic may cause anxiety or frustration to a large group of

drivers. These changes in mean values are expected, and it is interesting to find

the physical reason. However, changes in mean values are not desirable, when they

are dependent on the changes of models. This dependence on models cannot be

observed if there is no alternative models available. With more models available

to describe followers headway, the estimated mean values can now be compared,

and modified by adjusting some constraints to parameter estimations.

A possible solution to this may be to perform a large numbers of tests across

models using more headway data. The results may show better and more uniform

estimations of parameter φ. If both φ and λ can be reasonably determined, then

the followers mean headway is more reasonably restricted by these two parameters.

This may force the mean followers headway to converge to more constant values

across models. If this can happen, it will be a very good reason to believe that the

mean headway is much closer to the true values in reality. Hence, all parameters

involve in mixed models can be well interpreted with connection to any potential

factors that may interfere with traffic flows.

6.2 Future Work

Striving towards a more sophisticated framework in MATLAB will be very valu-

able. This should mainly be focused on the following aspects:

1. Providing implementations of data sampling methods and fitting methods

that have been used in previous studies;
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2. Providing more comprehensive functionalities with better GUI, that will

make implementation of models simpler.

3. Providing more sophisticated report generators

This work will greatly assist a comparison of headway studies to benefit its users.

Testing the studied models with a large amount of headway data is desirable,

especially data from various sites and traffic conditions. This will help in further

understanding those parameters in suggested models, hence finding more clear

connections between them and potential factors such as traffic flow, hours of the

day etc.

In particular, more headway data with lower traffic flows (presumably under 1000

veh/hr) are desirable, as they will provide more information on supporting or

rejecting the independence of followers headways to traffic flows.

More investigations with IVG- and EMG-mixed models are important, for their

mathematical properties, moment generating functions, random number genera-

tions, and so on. These further studies will make the models more applicable for

use in reality. More sophisticated fitting methods should be sought, for more con-

sistent and effective parameter estimations. Methods such as Monte Carlo studies

should be consulted to properly measure the performance of fitting methods.
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6.3 Future Publications

Following this study, some findings are planned to publish in near future. Two

main aspects of this work can be prepared with materials of this thesis. These

include:

1. Following the work of Asmussen et al. (2014), i.e. the approximation of Laplace

transform of lognormal distribution, the lognormal-SPM mixed model can now be

used for headway analysis. The implementation of this model and its comparison

with lognormal-GQM are planned to publish as a journal paper. This paper

will include the data preparation and description, the approximation method of

Laplace transform for lognormal distribution, descriptions of these two lognormal-

mixed model and their implementations. Then the results of implementation and

comparison will be focused. Discussions of the advantage and deficiencies of these

two models will also be included.

2. The second paper will focus on the use of RT models in the study of headway

analysis. This paper will briefly discuss the use of the existing single and mixed

models in headway analysis. Then the EMG and IVG distributions as single mod-

els and as followers headway distributions in mixed models will be introduced.

Their implementation methods and test results will be provided. This is followed

by comparison of these models and discussion of their fitting performances. Pa-

rameter simplification of the mixed models will be discussed, and the combination

of the proposed pre-determined parameters and their test results will be given.
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The improvement of the results and advantages of using such implementation will

also be included.



Appendix A

Time-Headway Data Samples

Table A.1: Statistical Properties of Time-Headway Samples.

ID L Size D Hour Flow Speed mTH sTH CV Sk. Kur. pLGV

63 1 507 1 8-8h 1725 45.72 2.09 1.18 0.57 1.61 6.30 0.15

69 1 801 1 11-11h 1158 55.32 3.11 2.13 0.68 1.71 6.45 0.43

70 1 2401 1 12-14h 1223 54.85 2.94 2.00 0.68 1.90 8.54 0.42

71 1 549 1 14-14h 1271 54.00 2.83 2.02 0.71 2.07 8.91 0.42

76 1 501 1 16-16h 1483 47.38 2.43 1.63 0.67 1.83 7.06 0.20

79 1 667 1 17-18h 1444 47.46 2.49 1.89 0.76 2.73 15.03 0.14

80 1 526 1 18-18h 1192 47.46 3.02 2.43 0.80 1.90 6.91 0.19

81 1 872 1 19-20h 873 57.76 4.12 2.79 0.68 1.51 6.17 0.33

86 1 533 2 5-6h 662 57.12 5.44 3.58 0.66 1.19 4.29 0.59

98 1 2412 2 10-12h 1195 54.94 3.01 2.11 0.70 1.93 8.95 0.43

99 1 1532 2 13-14h 1222 54.94 2.95 2.02 0.68 1.71 7.01 0.41

103 1 1251 2 15-16h 1477 51.80 2.44 1.62 0.66 1.92 7.58 0.32

112 1 551 2 19-20h 901 56.24 4.00 2.83 0.71 1.52 5.44 0.34

120 1 573 3 5-6h 573 58.70 6.28 4.48 0.71 1.97 10.18 0.52

128 1 1592 3 10-11h 1216 55.00 2.96 2.08 0.70 1.84 7.45 0.40

139 1 501 3 14-14h 1559 45.15 2.31 1.67 0.72 2.67 12.71 0.22

151 1 751 3 17-17h 1584 46.49 2.27 1.55 0.68 2.24 9.49 0.12

162 1 591 4 5-6h 449 61.45 8.02 6.39 0.80 2.00 7.96 0.34

164 1 737 4 7-8h 702 61.45 5.13 3.62 0.71 1.72 7.68 0.23

167 1 693 4 8-9h 1012 59.99 3.56 2.51 0.71 1.49 5.81 0.14

168 1 771 4 9-10h 1168 58.23 3.08 2.09 0.68 1.44 5.16 0.14

169 1 1051 4 10-11h 1203 56.58 2.99 1.99 0.66 1.52 5.67 0.13

170 1 801 4 11-12h 1515 52.24 2.38 1.70 0.72 1.91 6.81 0.11

173 1 575 4 13-14h 1163 58.38 3.09 2.20 0.71 1.49 5.19 0.12

L - LaneID; D-Day; mTH - mean Headway; sTH - st.dev. of Headway.

Continued...
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ID L Size D Hour Flow Speed mTH sTH CV Sk. Kur. pLGV

175 1 981 4 14-15h 1182 59.06 3.05 2.02 0.66 1.39 4.83 0.12

177 1 520 4 17-17h 1039 58.24 3.46 2.43 0.70 1.67 6.57 0.11

178 1 1000 4 17-18h 943 58.24 3.82 2.75 0.72 2.00 9.01 0.10

181 1 538 4 19-20h 886 61.11 4.06 2.63 0.65 1.40 5.26 0.11

186 1 913 4 21-23h 552 62.95 6.52 5.23 0.80 1.96 8.52 0.11

187 1 601 4 23-0h 457 62.95 7.88 6.61 0.84 1.74 6.52 0.10

189 1 685 5 1-4h 196 62.95 18.38 16.98 0.92 1.73 6.56 0.21

200 1 701 5 9-10h 999 56.98 3.60 2.52 0.70 1.68 6.39 0.11

203 1 2037 5 11-12h 1149 56.14 3.13 2.13 0.68 1.91 8.74 0.11

204 1 1951 5 12-14h 1102 57.08 3.27 2.30 0.71 1.82 7.64 0.14

205 1 551 5 14-15h 1142 55.46 3.15 2.21 0.70 1.90 7.50 0.17

206 1 2251 5 15-17h 1147 57.14 3.14 2.27 0.72 1.82 7.32 0.15

208 1 1060 5 17-18h 1107 58.93 3.25 2.29 0.70 1.96 9.02 0.15

209 1 617 5 18-18h 1027 58.93 3.50 2.50 0.71 1.71 6.65 0.14

210 1 1309 5 18-20h 912 58.93 3.95 2.71 0.69 1.50 5.70 0.16

211 1 558 5 20-21h 777 60.67 4.63 3.17 0.68 1.64 7.13 0.17

234 1 1101 6 8-9h 1561 46.39 2.31 1.60 0.69 2.19 9.39 0.18

236 1 1250 6 10-11h 1168 55.86 3.08 2.13 0.69 1.74 6.80 0.41

238 1 5051 6 11-15h 1169 55.06 3.08 2.12 0.69 1.66 6.38 0.43

239 1 513 6 15-16h 1277 54.67 2.82 1.83 0.65 1.57 5.48 0.35

241 1 551 6 17-18h 1315 47.24 2.74 1.71 0.62 1.56 5.82 0.24

257 1 801 7 7-7h 1535 45.22 2.35 1.47 0.63 2.28 10.99 0.18

266 1 508 7 10-10h 1058 54.86 3.40 2.35 0.69 1.57 5.76 0.43

267 1 1323 7 10-11h 1100 53.99 3.27 2.20 0.67 1.78 7.72 0.46

268 1 2254 7 12-14h 1151 53.99 3.13 2.09 0.67 1.60 5.98 0.43

278 1 648 7 17-17h 1572 46.35 2.29 1.48 0.65 1.97 7.72 0.14

279 1 774 7 17-18h 1385 46.35 2.60 1.66 0.64 2.08 10.70 0.17

286 1 601 7 20-21h 645 59.18 5.58 3.79 0.68 1.29 4.87 0.43

303 2 657 1 6-7h 1733 60.90 2.08 1.44 0.69 1.92 7.51 0.07

305 2 501 1 7-8h 1793 48.91 2.01 1.29 0.64 2.21 10.14 0.07

316 2 740 1 10-11h 1701 63.74 2.12 1.57 0.74 2.63 14.16 0.05

318 2 651 1 11-12h 1600 61.72 2.25 1.71 0.76 2.65 13.70 0.12

321 2 2151 1 12-14h 1585 62.70 2.27 1.64 0.72 2.23 10.95 0.09

323 2 1144 1 14-15h 1711 60.85 2.10 1.46 0.69 2.09 9.14 0.11

329 2 601 1 16-16h 1891 48.78 1.90 1.26 0.66 2.75 15.34 0.11

362 2 4401 2 10-12h 1604 62.47 2.24 1.65 0.74 2.39 12.00 0.11

363 2 2201 2 12-14h 1674 62.13 2.15 1.57 0.73 2.53 13.72 0.10

376 2 651 2 16-16h 2004 47.88 1.80 1.04 0.58 2.38 12.37 0.10

390 2 572 2 20-20h 1091 66.67 3.30 2.65 0.80 2.22 10.35 0.04

419 2 551 3 9-9h 1653 60.14 2.18 1.55 0.71 2.16 9.67 0.09

421 2 1451 3 10-11h 1612 62.25 2.23 1.64 0.73 2.40 11.76 0.09

L - LaneID; D-Day; mTH - mean Headway; sTH - st.dev. of Headway.

Continued...
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ID L Size D Hour Flow Speed mTH sTH CV Sk. Kur. pLGV

431 2 551 3 18-18h 1808 48.04 1.99 1.30 0.65 2.07 8.46 0.07

461 2 643 4 7-8h 909 70.01 3.96 3.71 0.94 2.72 14.21 0.02

464 2 551 4 8-9h 1518 67.09 2.37 1.95 0.82 2.74 14.06 0.02

468 2 551 4 9-10h 1774 64.51 2.03 1.66 0.82 3.98 28.83 0.02

479 2 1801 4 11-12h 1933 55.84 1.86 1.28 0.69 2.91 17.30 0.03

480 2 851 4 12-13h 1777 56.95 2.03 1.52 0.75 3.17 19.56 0.02

483 2 2078 4 14-15h 1619 66.62 2.22 1.63 0.73 2.28 10.35 0.01

489 2 663 4 17-18h 1354 65.93 2.66 2.00 0.75 2.46 11.06 0.02

494 2 544 4 19-19h 918 67.24 3.92 3.73 0.95 2.38 9.96 0.01

514 2 586 5 9-9h 1068 66.97 3.37 2.91 0.86 3.07 17.53 0.02

517 2 885 5 10-11h 1328 62.82 2.71 2.03 0.75 2.53 11.68 0.02

519 2 1101 5 11-12h 1533 62.19 2.35 1.57 0.67 2.82 17.72 0.01

521 2 1151 5 12-13h 1530 62.44 2.35 1.76 0.75 2.98 18.98 0.02

522 2 1368 5 13-14h 1567 64.90 2.30 1.73 0.75 2.54 13.32 0.02

525 2 951 5 15-15h 1701 63.96 2.12 1.50 0.71 2.61 12.50 0.02

527 2 1351 5 15-16h 1786 64.62 2.02 1.40 0.69 2.73 14.59 0.01

533 2 2151 5 17-18h 1699 64.86 2.12 1.40 0.66 2.07 9.19 0.02

537 2 917 5 19-20h 1256 66.52 2.87 2.29 0.80 2.13 8.63 0.01

539 2 597 5 20-21h 1032 67.77 3.49 3.14 0.90 2.85 16.66 0.01

559 2 514 6 6-7h 1519 62.22 2.37 1.84 0.78 2.82 14.61 0.04

567 2 801 6 10-11h 1502 63.14 2.40 1.78 0.74 2.25 10.68 0.10

570 2 1851 6 11-13h 1590 62.65 2.26 1.62 0.71 1.97 7.81 0.09

577 2 501 6 14-14h 1604 62.64 2.24 1.51 0.67 2.00 8.55 0.10

578 2 899 6 14-15h 1622 62.47 2.22 1.66 0.75 2.86 16.19 0.09

582 2 851 6 15-16h 1685 61.20 2.14 1.52 0.71 2.24 9.70 0.08

588 2 763 6 19-20h 908 66.71 3.96 3.93 0.99 3.15 17.74 0.06

624 2 981 7 10-11h 1338 61.88 2.69 2.01 0.75 2.21 10.80 0.08

626 2 1417 7 11-12h 1392 61.05 2.59 1.83 0.71 2.88 19.25 0.12

627 2 1001 7 12-13h 1472 61.05 2.44 1.71 0.70 2.27 10.37 0.11

632 2 785 7 13-14h 1567 61.24 2.30 1.54 0.67 2.14 10.37 0.13

634 2 501 7 14-14h 1565 62.66 2.30 1.67 0.73 2.11 8.95 0.10

636 2 700 7 15-15h 1714 60.52 2.10 1.46 0.69 1.90 7.22 0.09

639 2 551 7 15-16h 1866 56.08 1.93 1.25 0.65 1.95 7.70 0.07

649 2 511 7 19-20h 1025 65.79 3.51 2.78 0.79 1.82 6.69 0.04

686 3 1254 1 13-14h 1308 70.23 2.75 3.13 1.14 2.95 14.38 0.00

692 3 601 1 14-15h 1710 66.69 2.11 2.75 1.31 4.38 29.00 0.00

698 3 901 1 16-17h 1787 52.39 2.02 2.10 1.04 4.70 40.35 0.00

733 3 551 2 10-10h 1274 70.17 2.83 3.53 1.25 3.16 15.15 0.00

742 3 1547 2 13-14h 1513 69.87 2.38 2.62 1.10 3.03 14.87 0.00

757 3 601 2 17-17h 1438 52.74 2.50 2.70 1.08 2.69 10.91 0.00

782 3 793 3 8-8h 1463 52.91 2.46 2.96 1.20 3.55 19.44 0.00

L - LaneID; D-Day; mTH - mean Headway; sTH - st.dev. of Headway.
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ID L Size D Hour Flow Speed mTH sTH CV Sk. Kur. pLGV

787 3 1328 3 9-10h 1339 70.21 2.69 3.46 1.29 4.91 43.69 0.00

800 3 651 3 14-14h 2004 49.06 1.80 1.78 0.99 4.89 34.41 0.00

803 3 501 3 14-15h 1911 50.42 1.88 1.79 0.95 4.04 25.56 0.00

816 3 1151 3 17-17h 1870 51.03 1.93 2.00 1.04 4.55 33.29 0.00

818 3 554 3 18-19h 1328 52.46 2.71 3.10 1.14 2.76 11.17 0.00

823 3 751 3 19-20h 1336 67.19 2.69 3.15 1.17 3.21 15.63 0.00

825 3 786 3 20-21h 1088 64.93 3.31 4.05 1.22 3.09 14.74 0.00

848 3 851 4 10-10h 1491 68.51 2.41 2.98 1.23 3.91 22.89 0.00

855 3 501 4 12-13h 1281 61.90 2.81 3.48 1.24 3.15 15.60 0.00

860 3 1551 4 14-16h 906 75.48 3.97 4.97 1.25 2.99 14.59 0.00

876 3 701 5 10-11h 956 69.94 3.77 4.20 1.12 2.85 13.72 0.00

878 3 716 5 11-12h 1244 68.30 2.89 3.82 1.32 5.05 37.88 0.00

892 3 1030 5 15-16h 1433 71.80 2.51 2.84 1.13 3.01 14.00 0.00

896 3 1650 5 17-18h 1446 71.43 2.49 2.90 1.16 3.80 24.96 0.00

900 3 794 5 18-19h 1042 72.09 3.45 4.39 1.27 3.59 22.45 0.00

901 3 700 5 19-20h 789 72.09 4.57 6.04 1.32 2.90 13.35 0.00

922 3 604 6 9-9h 1035 54.39 3.48 4.54 1.30 3.10 15.47 0.00

929 3 801 6 12-12h 1225 70.14 2.94 3.53 1.20 3.45 19.71 0.00

931 3 1401 6 13-14h 1258 70.33 2.86 3.42 1.19 3.59 22.27 0.00

939 3 611 6 16-16h 1527 60.24 2.36 2.60 1.10 3.48 20.21 0.00

941 3 601 6 16-17h 1333 54.26 2.70 2.97 1.10 2.79 12.42 0.00

962 3 588 7 6-7h 1414 67.46 2.55 2.75 1.08 3.12 14.57 0.00

977 3 1051 7 10-11h 1039 69.52 3.46 4.14 1.20 2.94 13.77 0.00

979 3 1063 7 11-12h 1161 68.57 3.10 3.61 1.16 3.38 18.99 0.00

981 3 901 7 12-13h 1108 67.93 3.25 3.80 1.17 2.93 13.66 0.00

997 3 601 7 17-17h 1614 51.41 2.23 2.24 1.00 2.85 12.51 0.00

L - LaneID; D-Day; mTH - mean Headway; sTH - st.dev. of Headway.



Appendix B

Selected Test Results

Table B.1: Results of gamma-SPM.

ID L Fl φ λ α β Ft KSs KSp Ads Adp mFH sFH

63 1 1725 0.00 0.88 9.48 0.11 1.08 0.03 0.84 0.33 0.91 1.02 2.72

69 1 1158 0.11 0.46 11.17 0.11 1.16 0.02 0.96 0.27 0.96 1.25 1.55

70 1 1223 0.17 0.50 8.46 0.16 1.92 0.01 0.92 0.24 0.98 1.36 1.45

71 1 1271 0.25 0.49 10.59 0.13 1.00 0.02 0.97 0.20 0.99 1.36 1.58

76 1 1483 0.39 0.56 8.68 0.16 0.68 0.02 0.97 0.23 0.98 1.40 1.65

79 1 1444 0.42 0.50 9.27 0.15 1.00 0.02 1.00 0.14 1.00 1.40 1.52

80 1 1192 0.28 0.40 15.91 0.08 1.08 0.03 0.57 0.36 0.88 1.23 1.59

81 1 873 0.00 0.33 7.13 0.17 1.86 0.04 0.16 1.35 0.22 1.19 0.89

86 1 662 0.00 0.27 3.78 0.48 0.86 0.04 0.31 1.22 0.26 1.83 0.52

98 1 1195 0.16 0.47 9.89 0.13 1.92 0.01 0.82 0.34 0.91 1.28 1.47

99 1 1222 0.17 0.48 8.90 0.14 1.45 0.01 0.98 0.31 0.93 1.29 1.44

103 1 1477 0.25 0.61 10.46 0.12 1.61 0.01 0.99 0.22 0.99 1.28 1.97

112 1 901 0.00 0.35 4.97 0.26 0.64 0.03 0.63 0.63 0.62 1.27 0.79

120 1 573 0.00 0.22 3.42 0.57 0.98 0.04 0.21 1.38 0.21 1.95 0.41

128 1 1216 0.26 0.46 8.64 0.17 1.40 0.02 0.81 0.22 0.99 1.43 1.35

139 1 1559 0.56 0.52 7.85 0.19 0.72 0.03 0.73 0.36 0.89 1.53 1.45

151 1 1584 0.38 0.63 8.52 0.16 0.98 0.02 0.85 0.38 0.87 1.36 1.82

162 1 449 0.00 0.16 4.54 0.42 0.95 0.03 0.59 0.66 0.59 1.89 0.34

164 1 702 0.00 0.29 2.31 0.89 1.11 0.03 0.60 0.71 0.55 2.06 0.44

167 1 1012 0.00 0.39 4.29 0.24 0.76 0.04 0.13 1.60 0.16 1.01 0.80

168 1 1168 0.06 0.45 13.74 0.07 1.33 0.03 0.70 0.53 0.71 1.01 1.67

169 1 1203 0.13 0.48 10.56 0.12 1.72 0.02 0.57 0.49 0.76 1.23 1.56

170 1 1515 0.42 0.53 9.90 0.13 1.15 0.02 0.90 0.26 0.96 1.33 1.66

173 1 1163 0.24 0.42 10.86 0.12 0.90 0.03 0.83 0.38 0.87 1.33 1.38

L - LaneID; Ft - Fitting time; KSs - KS statistics; KSp - KS p value; ADs - AD statistics; ADp -

AD p value; mFH - mean followers headway; sFH - std. followers headway
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ID L Fl φ λ α β Ft KSs KSp Ads Adp mFH sFH

175 1 1182 0.00 0.49 4.93 0.23 0.68 0.04 0.16 1.74 0.13 1.12 1.10

177 1 1039 0.00 0.40 6.34 0.17 0.92 0.02 0.97 0.33 0.91 1.07 1.02

178 1 943 0.00 0.36 15.64 0.07 2.44 0.02 0.63 0.65 0.60 1.04 1.41

181 1 886 0.00 0.37 5.90 0.25 1.30 0.02 0.92 0.32 0.92 1.47 0.89

186 1 552 0.01 0.19 8.10 0.15 2.19 0.03 0.36 0.59 0.65 1.24 0.53

187 1 457 0.00 0.15 9.35 0.13 1.27 0.02 0.84 0.18 0.99 1.22 0.46

189 1 196 0.00 0.06 25.07 0.05 2.93 0.03 0.62 0.34 0.91 1.26 0.29

200 1 999 0.22 0.38 8.13 0.20 0.81 0.02 0.96 0.28 0.96 1.64 1.08

203 1 1149 0.00 0.48 8.02 0.14 2.10 0.02 0.27 0.92 0.41 1.12 1.36

204 1 1102 0.04 0.43 11.62 0.09 3.19 0.02 0.71 0.44 0.81 1.06 1.46

205 1 1142 0.00 0.46 7.55 0.14 0.78 0.03 0.84 0.66 0.59 1.08 1.26

206 1 1147 0.00 0.44 21.77 0.04 3.30 0.01 0.88 0.26 0.96 0.86 2.03

208 1 1107 0.14 0.43 11.09 0.12 1.11 0.01 1.00 0.14 1.00 1.33 1.44

209 1 1027 0.23 0.38 6.93 0.23 0.80 0.02 0.96 0.30 0.94 1.61 1.01

210 1 912 0.00 0.34 11.07 0.10 2.31 0.04 0.04 1.73 0.13 1.07 1.14

211 1 777 0.00 0.31 3.87 0.41 0.81 0.04 0.42 0.62 0.63 1.58 0.61

234 1 1561 0.36 0.60 9.57 0.14 1.29 0.01 0.99 0.17 1.00 1.30 1.86

236 1 1168 0.00 0.48 5.87 0.19 0.97 0.03 0.22 0.92 0.40 1.10 1.17

238 1 1169 0.00 0.46 11.96 0.08 10.35 0.01 0.70 0.47 0.78 0.96 1.60

239 1 1277 0.17 0.54 8.87 0.15 0.79 0.02 0.96 0.31 0.93 1.36 1.60

241 1 1315 0.26 0.55 8.87 0.17 0.81 0.03 0.85 0.45 0.79 1.50 1.65

257 1 1535 0.41 0.65 8.04 0.19 0.90 0.02 0.93 0.19 0.99 1.54 1.85

266 1 1058 0.13 0.41 11.54 0.11 1.76 0.02 0.93 0.26 0.97 1.31 1.38

267 1 1100 0.24 0.44 7.68 0.21 1.14 0.02 0.81 0.45 0.80 1.65 1.21

268 1 1151 0.09 0.47 10.18 0.12 2.02 0.01 0.92 0.26 0.97 1.24 1.49

278 1 1572 0.13 0.69 17.79 0.06 1.21 0.03 0.66 0.36 0.89 1.06 2.91

279 1 1385 0.24 0.60 9.23 0.15 0.97 0.01 1.00 0.13 1.00 1.41 1.81

286 1 645 0.00 0.23 8.59 0.15 1.77 0.07 0.00 2.39 0.06 1.31 0.68

303 2 1733 0.00 0.72 9.69 0.08 1.08 0.05 0.11 1.44 0.19 0.76 2.25

305 2 1793 0.18 0.81 13.63 0.08 1.20 0.02 0.91 0.28 0.95 1.04 2.97

316 2 1701 0.30 0.65 10.12 0.11 0.98 0.02 0.91 0.38 0.87 1.09 2.06

318 2 1600 0.30 0.59 9.45 0.12 0.93 0.02 0.93 0.27 0.96 1.11 1.81

321 2 1585 0.23 0.61 10.82 0.10 2.19 0.01 0.97 0.21 0.99 1.05 2.01

323 2 1711 0.23 0.69 11.28 0.09 1.38 0.02 0.88 0.29 0.95 1.03 2.30

329 2 1891 0.59 0.68 6.95 0.20 0.76 0.03 0.80 0.34 0.90 1.37 1.79

362 2 1604 0.28 0.60 10.68 0.10 3.74 0.01 0.57 0.52 0.73 1.09 1.98

363 2 1674 0.15 0.67 13.32 0.07 2.82 0.02 0.24 0.61 0.64 0.92 2.45

376 2 2004 0.38 0.93 11.26 0.11 0.97 0.02 0.81 0.32 0.92 1.19 3.11

390 2 1091 0.01 0.39 11.65 0.06 1.57 0.02 0.97 0.21 0.99 0.75 1.32

419 2 1653 0.34 0.62 8.68 0.13 0.82 0.02 1.00 0.14 1.00 1.17 1.82

L - LaneID; Ft - Fitting time; KSs - KS statistics; KSp - KS p value; ADs - AD statistics; ADp -

AD p value; mFH - mean followers headway; sFH - std. followers headway
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ID L Fl φ λ α β Ft KSs KSp Ads Adp mFH sFH

421 2 1612 0.27 0.61 12.15 0.09 1.95 0.02 0.53 0.36 0.89 1.08 2.13

431 2 1808 0.43 0.71 9.82 0.13 0.84 0.01 1.00 0.09 1.00 1.24 2.21

461 2 909 0.16 0.30 8.30 0.14 1.18 0.04 0.20 1.01 0.35 1.17 0.85

464 2 1518 0.38 0.50 7.80 0.15 0.85 0.02 0.99 0.18 0.99 1.19 1.40

468 2 1774 0.68 0.49 6.30 0.23 0.62 0.02 0.98 0.36 0.89 1.42 1.24

479 2 1933 0.38 0.78 10.14 0.11 2.50 0.02 0.68 0.68 0.57 1.13 2.50

480 2 1777 0.60 0.57 7.32 0.19 0.99 0.03 0.33 0.92 0.40 1.37 1.53

483 2 1619 0.25 0.62 10.57 0.10 2.40 0.02 0.63 0.40 0.84 1.05 2.02

489 2 1354 0.50 0.45 6.11 0.27 0.77 0.03 0.48 0.81 0.47 1.65 1.12

494 2 918 0.46 0.24 5.12 0.35 0.82 0.02 0.88 0.33 0.91 1.77 0.55

514 2 1068 0.37 0.35 7.28 0.23 0.84 0.04 0.43 0.47 0.78 1.65 0.95

517 2 1328 0.27 0.51 9.90 0.14 1.45 0.03 0.52 0.78 0.50 1.35 1.61

519 2 1533 0.16 0.68 11.28 0.11 1.61 0.02 0.70 0.35 0.90 1.19 2.29

521 2 1530 0.49 0.53 7.23 0.20 1.26 0.01 0.97 0.30 0.94 1.44 1.41

522 2 1567 0.29 0.58 10.54 0.11 1.70 0.02 0.88 0.31 0.93 1.13 1.89

525 2 1701 0.48 0.62 7.68 0.18 1.06 0.02 0.95 0.35 0.90 1.35 1.72

527 2 1786 0.31 0.73 11.38 0.10 1.50 0.02 0.67 0.41 0.84 1.12 2.47

533 2 1699 0.24 0.71 11.36 0.10 2.37 0.01 0.99 0.13 1.00 1.10 2.39

537 2 1256 0.20 0.45 11.83 0.10 1.40 0.03 0.50 0.80 0.48 1.13 1.55

539 2 1032 0.18 0.34 13.11 0.08 1.21 0.03 0.80 0.25 0.97 1.09 1.23

559 2 1519 0.20 0.59 12.80 0.08 1.14 0.05 0.17 0.78 0.50 1.06 2.13

567 2 1502 0.21 0.56 10.25 0.10 1.34 0.01 1.00 0.17 1.00 1.03 1.81

570 2 1590 0.15 0.63 12.33 0.08 2.50 0.02 0.56 0.62 0.63 0.95 2.22

577 2 1604 0.18 0.67 10.69 0.10 1.00 0.02 0.98 0.23 0.98 1.07 2.18

578 2 1622 0.00 0.66 11.47 0.06 1.68 0.02 0.78 0.58 0.67 0.74 2.25

582 2 1685 0.28 0.66 11.92 0.09 1.44 0.02 0.92 0.28 0.96 1.09 2.27

588 2 908 0.18 0.29 11.77 0.10 1.30 0.04 0.28 1.19 0.27 1.15 0.99

624 2 1338 0.16 0.51 12.80 0.08 1.61 0.03 0.56 0.46 0.79 1.08 1.82

626 2 1392 0.24 0.57 7.56 0.18 1.25 0.01 0.99 0.26 0.96 1.33 1.56

627 2 1472 0.23 0.60 8.93 0.14 1.39 0.01 0.99 0.24 0.97 1.22 1.79

632 2 1567 0.17 0.65 10.31 0.11 1.30 0.02 0.92 0.17 1.00 1.08 2.10

634 2 1565 0.29 0.59 9.33 0.12 0.91 0.03 0.89 0.36 0.89 1.15 1.80

636 2 1714 0.35 0.64 9.03 0.13 0.97 0.02 0.83 0.22 0.98 1.14 1.93

639 2 1866 0.00 0.83 20.58 0.04 1.62 0.03 0.60 0.61 0.64 0.75 3.77

649 2 1025 0.07 0.37 8.20 0.12 1.18 0.04 0.36 0.61 0.63 1.02 1.05

686 3 1308 0.47 0.30 10.04 0.10 1.44 0.03 0.12 0.98 0.37 1.03 0.96

692 3 1710 0.72 0.27 8.02 0.14 1.10 0.03 0.64 0.78 0.49 1.10 0.78

698 3 1787 0.64 0.41 10.83 0.11 1.50 0.02 0.65 0.41 0.84 1.14 1.34

733 3 1274 0.52 0.27 10.48 0.10 1.03 0.03 0.63 0.63 0.62 1.04 0.86

742 3 1513 0.53 0.35 10.21 0.10 2.20 0.02 0.35 0.87 0.43 1.03 1.11

L - LaneID; Ft - Fitting time; KSs - KS statistics; KSp - KS p value; ADs - AD statistics; ADp -

AD p value; mFH - mean followers headway; sFH - std. followers headway

Continued...



Appendix B. Selected Test Results 204

ID L Fl φ λ α β Ft KSs KSp Ads Adp mFH sFH

757 3 1438 0.58 0.31 10.77 0.11 0.95 0.02 0.86 0.35 0.89 1.16 1.01

782 3 1463 0.57 0.31 12.51 0.09 1.14 0.04 0.18 1.26 0.24 1.09 1.11

787 3 1339 0.54 0.29 8.04 0.14 1.49 0.03 0.12 1.89 0.11 1.12 0.82

800 3 2004 0.75 0.43 8.98 0.14 0.87 0.05 0.12 1.55 0.17 1.23 1.27

803 3 1911 0.77 0.38 8.14 0.16 0.82 0.05 0.21 1.44 0.19 1.30 1.07

816 3 1870 0.67 0.43 11.19 0.10 1.45 0.04 0.09 2.15 0.08 1.16 1.43

818 3 1328 0.58 0.27 11.38 0.10 0.95 0.04 0.27 0.86 0.44 1.17 0.92

823 3 1336 0.60 0.27 6.77 0.18 1.01 0.04 0.28 1.05 0.33 1.25 0.70

825 3 1088 0.59 0.21 5.59 0.25 0.86 0.03 0.63 0.79 0.49 1.39 0.50

848 3 1491 0.67 0.28 6.92 0.18 1.05 0.03 0.48 1.46 0.19 1.24 0.73

855 3 1281 0.56 0.25 10.03 0.11 0.83 0.03 0.88 0.39 0.86 1.08 0.80

860 3 906 0.43 0.20 6.67 0.17 1.47 0.03 0.08 2.02 0.09 1.14 0.52

876 3 956 0.46 0.23 8.67 0.16 1.07 0.03 0.52 0.67 0.59 1.40 0.66

878 3 1244 0.61 0.25 7.30 0.19 1.20 0.04 0.33 1.14 0.29 1.38 0.69

892 3 1433 0.55 0.31 9.89 0.11 1.30 0.02 0.82 0.53 0.72 1.07 0.98

896 3 1446 0.59 0.30 8.41 0.14 1.69 0.02 0.40 1.02 0.34 1.14 0.88

900 3 1042 0.49 0.22 7.14 0.16 1.15 0.03 0.59 0.87 0.43 1.16 0.59

901 3 789 0.43 0.17 7.41 0.16 1.20 0.05 0.07 1.33 0.22 1.16 0.46

922 3 1035 0.47 0.22 13.21 0.08 1.29 0.05 0.08 1.08 0.32 1.04 0.79

929 3 1225 0.51 0.27 8.33 0.14 0.96 0.03 0.38 0.82 0.47 1.14 0.78

931 3 1258 0.51 0.28 8.69 0.13 1.61 0.02 0.54 0.84 0.45 1.11 0.81

939 3 1527 0.55 0.35 10.41 0.11 1.06 0.03 0.48 0.55 0.70 1.10 1.14

941 3 1333 0.51 0.30 10.70 0.10 1.03 0.03 0.80 0.33 0.91 1.10 0.99

962 3 1414 0.58 0.32 8.98 0.14 1.01 0.02 0.85 0.49 0.76 1.24 0.95

977 3 1039 0.56 0.21 7.05 0.20 1.18 0.02 0.61 0.67 0.59 1.38 0.56

979 3 1161 0.54 0.25 7.58 0.17 1.19 0.03 0.36 0.61 0.64 1.33 0.70

981 3 1108 0.58 0.22 7.02 0.20 0.98 0.03 0.32 0.90 0.42 1.39 0.59

997 3 1614 0.60 0.37 12.83 0.09 1.01 0.03 0.51 0.53 0.71 1.15 1.32

L - LaneID; Ft - Fitting time; KSs - KS statistics; KSp - KS p value; ADs - AD statistics; ADp -

AD p value; mFH - mean followers headway; sFH - std. followers headway

Table B.2: Results of gamma-GQM.

ID L Fl φ λ α β Ft KSs KSp Ads Adp mFH sFH

63 1 1724.62 0 0.85 12.38 0.07 0.57 0.03 0.9 0.2 0.99 0.91 2.98

69 1 1157.53 0.15 0.46 11.27 0.11 0.95 0.02 0.96 0.27 0.96 1.27 1.56

70 1 1222.53 0.22 0.5 8.57 0.16 1.78 0.01 0.92 0.24 0.98 1.39 1.46

71 1 1270.64 0.29 0.49 10.64 0.13 0.61 0.02 0.97 0.2 0.99 1.37 1.58

76 1 1483.39 0.43 0.56 8.73 0.16 0.73 0.02 0.97 0.23 0.98 1.41 1.65

L - LaneID; Ft - Fitting time; KSs - KS statistics; KSp - KS p value; ADs - AD statistics; ADp -

AD p value; mFH - mean followers headway; sFH - std. followers headway
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ID L Fl φ λ α β Ft KSs KSp Ads Adp mFH sFH

79 1 1444.1 0.45 0.5 9.3 0.15 0.59 0.02 1 0.14 1 1.4 1.53

80 1 1191.71 0.29 0.4 15.92 0.08 0.81 0.03 0.57 0.36 0.88 1.24 1.59

81 1 873.1 0 0.35 5.61 0.21 0.86 0.05 0.05 2.04 0.09 1.2 0.83

86 1 661.58 0 0.26 3.86 0.42 0.58 0.04 0.48 0.98 0.37 1.6 0.51

98 1 1194.67 0.2 0.47 9.96 0.13 1.51 0.01 0.82 0.34 0.91 1.3 1.48

99 1 1222.27 0.21 0.48 8.99 0.15 1.08 0.01 0.98 0.31 0.93 1.31 1.45

103 1 1477.28 0.3 0.61 10.53 0.12 1.04 0.01 0.99 0.22 0.99 1.29 1.97

112 1 900.58 0.03 0.34 12.43 0.09 0.75 0.03 0.8 0.33 0.91 1.16 1.2

120 1 573.24 0 0.22 4.19 0.39 0.72 0.05 0.07 1.68 0.14 1.64 0.44

128 1 1216.22 0.3 0.46 8.69 0.17 1.31 0.02 0.81 0.22 0.99 1.45 1.36

139 1 1558.82 0.6 0.52 7.87 0.2 0.52 0.03 0.73 0.36 0.89 1.54 1.45

151 1 1584.33 0.44 0.62 8.56 0.16 0.67 0.02 0.85 0.38 0.87 1.37 1.83

162 1 448.99 0.03 0.16 8.28 0.22 0.77 0.04 0.43 1.03 0.34 1.84 0.45

164 1 702.05 0.1 0.27 4.6 0.39 0.91 0.04 0.26 1.17 0.28 1.79 0.58

167 1 1012.32 0 0.36 20.33 0.04 1.31 0.04 0.14 1.32 0.23 0.81 1.64

168 1 1168.34 0.08 0.45 13.86 0.07 0.9 0.03 0.7 0.53 0.71 1.03 1.68

169 1 1202.88 0.16 0.48 10.67 0.12 0.88 0.02 0.57 0.49 0.76 1.25 1.57

170 1 1515.34 0.45 0.53 9.93 0.13 0.68 0.02 0.9 0.26 0.96 1.34 1.66

173 1 1163.36 0.26 0.42 10.9 0.12 0.74 0.03 0.83 0.38 0.87 1.34 1.38

175 1 1182.06 0.14 0.46 12.6 0.09 1.07 0.03 0.54 0.62 0.63 1.2 1.64

177 1 1039.2 0 0.41 6.89 0.15 0.76 0.03 0.6 0.63 0.62 1.06 1.09

178 1 943.22 0 0.37 8.15 0.13 0.83 0.02 0.63 0.58 0.66 1.09 1.05

181 1 885.74 0 0.37 5.91 0.23 0.99 0.02 0.92 0.33 0.92 1.34 0.89

186 1 552.37 0 0.19 7.81 0.15 1.6 0.03 0.36 0.59 0.66 1.18 0.52

187 1 456.68 0.02 0.15 10.95 0.12 1.09 0.02 0.86 0.19 0.99 1.3 0.49

189 1 195.86 0 0.06 25.16 0.05 1.56 0.03 0.62 0.34 0.91 1.27 0.29

200 1 998.68 0.27 0.38 8.2 0.2 0.62 0.02 0.95 0.28 0.96 1.67 1.08

203 1 1148.95 0.12 0.47 12.13 0.1 1.48 0.01 0.96 0.27 0.96 1.25 1.63

204 1 1101.98 0 0.43 11.38 0.08 2.29 0.02 0.72 0.44 0.81 0.94 1.45

205 1 1141.99 0 0.45 28.06 0.03 1.21 0.04 0.39 0.5 0.74 0.92 2.37

206 1 1147.15 0 0.45 15.93 0.05 3.54 0.02 0.43 0.9 0.41 0.86 1.8

208 1 1106.66 0.18 0.43 11.16 0.12 0.92 0.01 1 0.14 1 1.35 1.45

209 1 1027.33 0.28 0.38 6.99 0.23 0.73 0.02 0.96 0.3 0.94 1.64 1.02

210 1 912.38 0 0.35 5.9 0.19 0.85 0.03 0.11 1.39 0.21 1.1 0.85

211 1 777.31 0.13 0.31 4.45 0.42 0.66 0.03 0.57 0.5 0.75 1.86 0.66

234 1 1561.17 0.4 0.6 9.62 0.14 0.88 0.01 0.99 0.17 1 1.31 1.87

236 1 1168.04 0.21 0.46 8.81 0.15 0.92 0.01 0.98 0.19 0.99 1.36 1.37

238 1 1168.96 0.04 0.46 12.95 0.08 3.42 0.01 0.7 0.47 0.78 1 1.67

239 1 1277.09 0.24 0.54 8.96 0.16 0.72 0.02 0.96 0.31 0.93 1.39 1.6

241 1 1314.53 0.32 0.55 8.98 0.17 0.66 0.03 0.85 0.45 0.79 1.52 1.66

L - LaneID; Ft - Fitting time; KSs - KS statistics; KSp - KS p value; ADs - AD statistics; ADp -

AD p value; mFH - mean followers headway; sFH - std. followers headway

Continued...
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ID L Fl φ λ α β Ft KSs KSp Ads Adp mFH sFH

257 1 1534.82 0.49 0.65 8.12 0.19 0.59 0.02 0.93 0.19 0.99 1.56 1.86

266 1 1058.18 0.15 0.41 11.61 0.11 0.71 0.02 0.93 0.26 0.97 1.33 1.39

267 1 1100.12 0.3 0.44 7.78 0.22 1.17 0.02 0.81 0.45 0.79 1.68 1.22

268 1 1150.85 0.13 0.47 10.32 0.12 1.64 0.01 0.92 0.26 0.97 1.27 1.5

278 1 1572.01 0.16 0.69 17.89 0.06 0.94 0.03 0.66 0.36 0.89 1.07 2.91

279 1 1385.06 0.3 0.6 9.34 0.15 0.85 0.01 1 0.13 1 1.43 1.82

286 1 644.87 0 0.25 3.57 0.42 0.63 0.06 0.02 1.7 0.13 1.5 0.46

303 2 1733.07 0.24 0.68 14.21 0.07 0.96 0.02 0.99 0.16 1 0.96 2.57

305 2 1793.08 0.23 0.8 13.67 0.08 0.86 0.02 0.91 0.28 0.95 1.05 2.98

316 2 1700.84 0.34 0.65 10.16 0.11 0.85 0.02 0.91 0.38 0.87 1.1 2.06

318 2 1600.43 0.33 0.59 9.49 0.12 0.68 0.02 0.93 0.27 0.96 1.12 1.81

321 2 1585.27 0.26 0.61 10.87 0.1 1.74 0.01 0.97 0.21 0.99 1.06 2.01

323 2 1710.95 0.27 0.69 11.34 0.09 1.04 0.02 0.88 0.29 0.95 1.04 2.31

329 2 1890.75 0.64 0.68 6.99 0.2 0.6 0.03 0.8 0.34 0.9 1.38 1.8

362 2 1604.03 0.31 0.6 10.72 0.1 2.87 0.01 0.57 0.51 0.73 1.1 1.98

363 2 1674.34 0.18 0.67 13.33 0.07 1.83 0.02 0.24 0.6 0.65 0.93 2.45

376 2 2003.76 0.45 0.93 11.35 0.11 0.87 0.02 0.81 0.32 0.92 1.2 3.13

390 2 1091.13 0 0.39 6.24 0.12 0.73 0.03 0.84 0.3 0.94 0.75 0.97

419 2 1653.38 0.38 0.62 8.73 0.13 0.63 0.02 1 0.14 1 1.18 1.82

421 2 1612.01 0.3 0.61 12.19 0.09 1.56 0.02 0.53 0.36 0.89 1.08 2.14

431 2 1807.75 0.47 0.71 9.87 0.13 0.78 0.01 1 0.09 1 1.24 2.22

461 2 908.71 0.18 0.3 8.3 0.14 1.03 0.04 0.2 1.01 0.35 1.19 0.85

464 2 1518.2 0.41 0.5 7.83 0.15 0.58 0.02 0.99 0.18 0.99 1.19 1.41

468 2 1773.86 0.7 0.49 6.32 0.23 0.55 0.02 0.98 0.36 0.89 1.42 1.24

479 2 1933.13 0.43 0.78 10.18 0.11 1.48 0.02 0.68 0.68 0.58 1.14 2.5

480 2 1776.74 0.63 0.57 7.34 0.19 0.67 0.03 0.33 0.92 0.4 1.37 1.54

483 2 1618.93 0.28 0.62 10.61 0.1 1.51 0.02 0.64 0.4 0.85 1.06 2.02

489 2 1354.42 0.55 0.45 6.14 0.27 0.6 0.03 0.48 0.8 0.48 1.66 1.12

494 2 917.96 0.48 0.24 5.13 0.35 0.55 0.02 0.88 0.33 0.91 1.78 0.55

514 2 1068.04 0.4 0.35 7.3 0.23 0.69 0.04 0.43 0.47 0.78 1.66 0.95

517 2 1327.72 0.31 0.51 9.95 0.14 0.93 0.03 0.52 0.78 0.5 1.36 1.62

519 2 1533.38 0.22 0.68 11.34 0.11 1.28 0.02 0.7 0.34 0.9 1.21 2.29

521 2 1530.2 0.53 0.53 7.26 0.2 0.65 0.01 0.97 0.3 0.94 1.45 1.42

522 2 1567.39 0.33 0.58 10.58 0.11 1.12 0.02 0.88 0.31 0.93 1.14 1.89

525 2 1701.03 0.53 0.62 7.72 0.18 0.93 0.02 0.95 0.35 0.9 1.36 1.73

527 2 1786.31 0.35 0.73 11.44 0.1 1.42 0.02 0.67 0.41 0.84 1.13 2.48

533 2 1699.07 0.28 0.71 11.43 0.1 1.85 0.01 0.99 0.13 1 1.11 2.4

537 2 1255.55 0.22 0.45 11.85 0.1 0.97 0.03 0.5 0.8 0.48 1.14 1.55

539 2 1032.36 0.19 0.34 13.12 0.08 0.91 0.03 0.8 0.25 0.97 1.1 1.23

559 2 1519.27 0.23 0.59 12.85 0.08 0.76 0.05 0.17 0.78 0.5 1.07 2.13

L - LaneID; Ft - Fitting time; KSs - KS statistics; KSp - KS p value; ADs - AD statistics; ADp -

AD p value; mFH - mean followers headway; sFH - std. followers headway
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ID L Fl φ λ α β Ft KSs KSp Ads Adp mFH sFH

567 2 1501.52 0.24 0.56 10.3 0.1 0.83 0.01 1 0.17 1 1.04 1.81

570 2 1590.35 0.18 0.63 12.37 0.08 1.9 0.02 0.56 0.61 0.63 0.96 2.22

577 2 1603.92 0.22 0.67 10.79 0.1 0.73 0.02 0.98 0.23 0.98 1.08 2.19

578 2 1621.62 0.05 0.66 13.19 0.06 1.14 0.02 0.7 0.64 0.61 0.78 2.39

582 2 1685 0.32 0.66 11.96 0.09 0.9 0.02 0.92 0.28 0.96 1.1 2.27

588 2 908.36 0.19 0.29 11.78 0.1 0.86 0.04 0.28 1.19 0.27 1.16 0.99

624 2 1338.19 0.18 0.51 12.84 0.08 1.15 0.03 0.56 0.46 0.79 1.09 1.83

626 2 1392.02 0.3 0.57 7.66 0.18 0.92 0.01 0.99 0.26 0.96 1.36 1.57

627 2 1472.45 0.28 0.6 9 0.14 1 0.01 0.99 0.24 0.97 1.24 1.79

632 2 1566.92 0.22 0.65 10.41 0.11 0.8 0.02 0.92 0.17 1 1.1 2.11

634 2 1564.55 0.33 0.59 9.37 0.12 0.77 0.03 0.89 0.36 0.89 1.16 1.8

636 2 1714.46 0.39 0.64 9.07 0.13 0.78 0.02 0.83 0.22 0.98 1.15 1.93

639 2 1866.08 0 0.83 20.69 0.03 1.22 0.03 0.6 0.61 0.64 0.72 3.77

649 2 1025.43 0.1 0.37 8.26 0.13 0.9 0.04 0.36 0.61 0.63 1.05 1.06

686 3 1308.1 0.48 0.3 10.04 0.1 1.27 0.03 0.12 0.97 0.37 1.03 0.96

692 3 1710.08 0.73 0.27 8.02 0.14 0.77 0.03 0.64 0.78 0.49 1.1 0.78

698 3 1786.53 0.64 0.41 10.83 0.11 0.77 0.02 0.65 0.41 0.84 1.14 1.34

733 3 1274.15 0.53 0.27 10.48 0.1 0.76 0.03 0.63 0.63 0.62 1.04 0.86

742 3 1512.91 0.53 0.35 10.21 0.1 1.19 0.02 0.35 0.87 0.43 1.03 1.11

757 3 1437.96 0.59 0.31 10.78 0.11 0.77 0.02 0.86 0.35 0.89 1.16 1.01

782 3 1462.5 0.57 0.31 12.52 0.09 0.93 0.04 0.18 1.26 0.24 1.09 1.11

787 3 1338.58 0.55 0.29 8.04 0.14 1.14 0.03 0.12 1.89 0.11 1.12 0.82

800 3 2004.09 0.76 0.43 8.98 0.14 0.74 0.05 0.12 1.55 0.17 1.23 1.28

803 3 1910.9 0.78 0.38 8.15 0.16 0.58 0.05 0.21 1.44 0.19 1.3 1.07

816 3 1869.64 0.68 0.43 11.2 0.1 1.09 0.04 0.09 2.15 0.08 1.16 1.43

818 3 1328.32 0.58 0.27 11.38 0.1 0.71 0.04 0.27 0.86 0.44 1.17 0.92

823 3 1336.25 0.61 0.27 6.77 0.19 0.77 0.04 0.28 1.05 0.33 1.25 0.7

825 3 1087.52 0.59 0.21 5.59 0.25 0.77 0.03 0.63 0.79 0.49 1.39 0.5

848 3 1491.08 0.67 0.28 6.92 0.18 0.67 0.03 0.48 1.46 0.19 1.24 0.73

855 3 1280.65 0.56 0.25 10.03 0.11 0.6 0.03 0.88 0.39 0.86 1.08 0.8

860 3 905.86 0.43 0.2 6.67 0.17 1.17 0.03 0.08 2.02 0.09 1.14 0.52

876 3 955.87 0.47 0.23 8.67 0.16 0.67 0.03 0.52 0.67 0.59 1.41 0.66

878 3 1243.73 0.62 0.25 7.3 0.19 0.64 0.04 0.33 1.14 0.29 1.39 0.69

892 3 1433.36 0.55 0.31 9.89 0.11 0.78 0.02 0.82 0.53 0.72 1.07 0.98

896 3 1445.7 0.59 0.3 8.41 0.14 1.12 0.02 0.4 1.02 0.35 1.14 0.88

900 3 1042.32 0.49 0.22 7.14 0.16 0.71 0.03 0.59 0.87 0.43 1.17 0.59

901 3 788.6 0.43 0.17 7.41 0.16 0.99 0.05 0.07 1.33 0.22 1.16 0.46

922 3 1035.31 0.47 0.22 13.21 0.08 0.84 0.05 0.08 1.08 0.32 1.04 0.79

929 3 1224.64 0.52 0.27 8.33 0.14 0.88 0.03 0.38 0.82 0.47 1.14 0.78

931 3 1257.71 0.52 0.28 8.7 0.13 1.07 0.02 0.54 0.84 0.45 1.11 0.81

L - LaneID; Ft - Fitting time; KSs - KS statistics; KSp - KS p value; ADs - AD statistics; ADp -

AD p value; mFH - mean followers headway; sFH - std. followers headway
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ID L Fl φ λ α β Ft KSs KSp Ads Adp mFH sFH

939 3 1527.09 0.56 0.35 10.41 0.11 0.68 0.03 0.48 0.55 0.7 1.1 1.14

941 3 1333.12 0.52 0.3 10.7 0.1 0.77 0.03 0.8 0.33 0.91 1.1 0.99

962 3 1413.96 0.59 0.32 8.98 0.14 0.72 0.02 0.85 0.49 0.76 1.24 0.95

977 3 1039.3 0.57 0.21 7.05 0.2 0.95 0.02 0.61 0.67 0.59 1.39 0.56

979 3 1161.19 0.55 0.25 7.58 0.18 0.88 0.03 0.36 0.61 0.64 1.33 0.7

981 3 1107.8 0.59 0.22 7.02 0.2 0.78 0.03 0.32 0.89 0.42 1.39 0.59

997 3 1614.15 0.6 0.37 12.83 0.09 0.92 0.03 0.51 0.53 0.71 1.15 1.32

L - LaneID; Ft - Fitting time; KSs - KS statistics; KSp - KS p value; ADs - AD statistics; ADp -

AD p value; mFH - mean followers headway; sFH - std. followers headway
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More Result Figures of Chapter 5

C.1 Using Pre-determined λ

Estimatied Parameters for pre-determined λ
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Figure C.1: Estimated parameters of IVG-SPM with pre-determined λ
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Figure C.2: Estimated parameters of IVG-GQM with pre-determined λ
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Figure C.3: Estimated parameters of EMG-SPM with pre-determined λ



Appendix C. Appendix Title Here 212

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

P
ar

am
et

er
 φ

0 500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ar

am
et

er
 λ

0 500 1000 1500 2000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

P
ar

am
et

er
 µ

0 500 1000 1500 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ar

am
et

er
 σ

Traffic Flow (veh/hr)

0 500 1000 1500 2000
0

0.5

1

1.5

2

2.5

P
ar

am
et

er
 τ

Traffic Flow (veh/hr)

 

 
Lane 1
Lane 2
Lane 3

                                                                                     Parameters, exGaussian−GQM, fixed(λ)

Figure C.4: Estimated parameters of EMG-GQM with pre-determined λ

C.2 Using Pre-determined φ, λ, σ (, τ)

Pre-determined φ, λ and σ for IVG-mixed models
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                                                                               Parameters, ivGaussian−SPM, fixed(φ,λ,σ)

Figure C.5: Estimated parameters of IVG-SPM, fixed(φ,λ and σ)
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Figure C.6: Estimated parameters of IVG-GQM, fixed(φ,λ and σ)

Pre-determined φ, λ, σ and τ for EMG-mixed models



Appendix C. Appendix Title Here 214

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

P
ar

am
et

er
 φ

0 500 1000 1500 2000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ar

am
et

er
 λ

0 500 1000 1500 2000

0.7

0.8

0.9

1

1.1

1.2

1.3

P
ar

am
et

er
 µ

0 500 1000 1500 2000
−1

−0.5

0

0.5

1

1.5

P
ar

am
et

er
 σ

Traffic Flow (veh/hr)

0 500 1000 1500 2000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
ar

am
et

er
 τ

Traffic Flow (veh/hr)

 

 
Lane 1
Lane 2
Lane 3

                                                                            Parameters, exGaussian−SPM, fixed(φ,λ,σ,τ)

Figure C.7: Estimated parameters of EMG-SPM, fixed(φ, λ, σ and τ)
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Figure C.8: Estimated parameters of EMG-GQM, fixed(φ, λ, σ and τ)
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