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Abstract
Understanding species responses to past environmental changes can help forecast 
how they will cope with ongoing climate changes. Harbor porpoises are widely dis-
tributed in the North Atlantic and were deeply impacted by the Pleistocene changes 
with the split of three subspecies. Despite major impacts of fisheries on natural 
populations, little is known about population connectivity and dispersal, how they 
reacted to the Pleistocene changes, and how they will evolve in the future. Here, 
we used phylogenetics, population genetics, and predictive habitat modeling to in-
vestigate population structure and phylogeographic history of the North Atlantic 
porpoises. A total of 925 porpoises were characterized at 10 microsatellite loci and 
one quarter of the mitogenome (mtDNA). A highly divergent mtDNA lineage was un-
covered in one porpoise off Western Greenland, suggesting that a cryptic group may 
occur and could belong to a recently discovered mesopelagic ecotype off Greenland. 
Aside from it and the southern subspecies, spatial genetic variation showed that por-
poises from both sides of the North Atlantic form a continuous system belonging 
to the same subspecies (Phocoena phocoena phocoena). Yet, we identified important 
departures from random mating and restricted dispersal forming a highly significant 
isolation by distance (IBD) at both mtDNA and nuclear markers. A ten times stronger 
IBD at mtDNA compared with nuclear loci supported previous evidence of female 
philopatry. Together with the lack of spatial trends in genetic diversity, this IBD sug-
gests that migration– drift equilibrium has been reached, erasing any genetic signal of 
a leading- edge effect that accompanied the predicted recolonization of the northern 
habitats freed from Pleistocene ice. These results illuminate the processes shaping 
porpoise population structure and provide a framework for designing conservation 
strategies and forecasting future population evolution.
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1  | INTRODUC TION

Movements of highly mobile marine species are potentially unre-
stricted over vast geographical distances. The absence of evident 
barriers to gene flow challenges, at least in theory, the process of 
population divergence (Palumbi, 1994). High dispersal ability should 
favor population homogeneity and limit spatial genetic structure 
over large geographic scales (Palumbi, 1994). Yet, highly dispersive 
species such as cetaceans exhibit strong population structure, even 
at small geographical scales (Hoelzel, 2009; Vachon et al., 2018). 
These patterns are usually driven by both current and historical 
mechanisms. Oceanographic features, ecological specialization, and 
complex behaviors are often invoked as mechanisms contribut-
ing to limit dispersal and structure cetacean populations (Fontaine 
et al., 2007; Foote et al., 2016; Hoelzel, 2009; Vachon et al., 2018). 
Historical environmental variation during the Quaternary glaciations 
had a major role in shaping patterns of genetic structure and diversity 
in both terrestrial and marine environments (Hewitt, 2000). Habitat 
releases during postglacial periods have opened ecological niches 
and created ecological opportunities that spurred the evolution of 
cetaceans (Slater et al., 2010; Steeman et al., 2009). In particular, 
major glaciations of the last glacial maximum (LGM) compressed suit-
able habitats toward the equator. The successional cold and warm 
periods resulted in large habitat contraction and expansion. These 
environmental fluctuations promoted population subdivision and 
the formation of subspecies, as observed in multiple cetacean spe-
cies such as killer whales Orcinus orca (Morin et al., 2015), bottlenose 
dolphins Tursiops truncatus (Louis et al., 2014, 2020; Moura et al., 
2020), and harbor porpoises Phocoena phocoena (Fontaine, 2016; 
Fontaine et al., 2010, 2014; Rosel et al., 1995; Tolley & Rosel, 2006). 
These historical demographic events leave a detectable imprint on 
genetic variation, which can be used to identify divergent lineages, 
reconstruct species evolutionary history, unravel the impacts of past 
climatic processes on the current spatial distributions of species, and 
formulate hypotheses about population and species future evolution 
(Hewitt, 2000; Hickerson et al., 2010).

Harbor porpoises are among the smallest cetacean species. This 
species has been described as “living in the fast lane” due to its life- 
history traits marked by high reproductive demands, short gener-
ation time (~10 years per generation), and relatively short life span 
for a cetacean (~12 years and up to 24 years) (Lockyer, 2007; Read 
& Hohn, 1995). Porpoises must thus rely on a regular food supply to 
meet their metabolic demands (Hoekendijk et al., 2018; Wisniewska 
et al., 2016). They are opportunistic feeders, feeding mostly on 
the continental shelf, often targeting demersal or benthic species 
(e.g., Santos & Pierce, 2003; but see Nielsen et al., 2018). Coined 
the “aquatics shrews” of the sea, prey availability has been shown 
to be an important driver of porpoise movements (Johnston et al., 
2005; Sveegaard et al., 2012; Wisniewska et al., 2016) and local den-
sities (Hammond et al., 2013; Marubini et al., 2009; Waggitt et al., 
2018). These animals are thus expected to be highly susceptible to 
environmental changes, increasing sea temperature, and prey dis-
placements or modifications (Lambert et al., 2014; MacLeod et al., 

2005). Furthermore, populations are heavily impacted by incidental 
catches in commercial fisheries (Braulik et al., 2020; ICES WGBYC, 
2019; NAMMCO & IMR, 2019; Stenson, 2003). In order to predict 
future movements and distribution in a changing environment and 
the impact of heavy by- catch casualties on natural populations, we 
must understand how populations are genetically structured and 
connected to each other, and how they have reacted to past envi-
ronmental changes.

Distributed in subpolar to temperate waters of the Northern 
Hemisphere (Fontaine, 2016; Gaskin, 1984; Read, 1999), harbor por-
poises are mostly found in coastal waters of the North Pacific, North 
Atlantic, and Black Sea, with three subspecies currently officially 
recognized: P. p. vomerina, P. p. phocoena, and P. p. relicta, respec-
tively. Porpoises from the upwelling zones off Iberia and Mauritania 
have been recently identified as genetically divergent as P. p. phoc-
oena and P. p. relicta, based on DNA sequence analysis of a quarter 
of the mitogenome (Fontaine, 2016; Fontaine et al., 2007, 2014). 
They have thus been proposed to belong to a separate subspecies 
(formally unnamed subspecies and possibly P. p. meridionalis as sug-
gested in Fontaine et al., 2014) due to their distinctiveness in terms 
of genetics, morphology, and ecology (Fontaine, 2016; Fontaine 
et al., 2007, 2014). As a formal description has not yet been made 
for this subspecies, we refer in this paper to these porpoises as the 
Iberia– Mauritania porpoises (IBMA). Demo- genetic inferences sug-
gested that the three lineages in the North Atlantic and the Black 
Sea split during the LGM and were following independent evolution-
ary trajectories making them distinct evolutionary significant units 
(Fontaine, 2016; Fontaine et al., 2010, 2014). These lineages orig-
inated from an initial split of ancestral populations stemming from 
the North Atlantic colonizing the Mediterranean Sea. P. p. relicta and 
IBMA likely descended from these ancestral populations that inhab-
ited the Mediterranean Sea during cold and nutrient- rich periods 
prevailing during the LGM. More recently, IBMA and P. p. phocoena 
populations in the North Atlantic likely came back into contact es-
tablishing a contact zone in the northern part of the Bay of Biscay 
during postglacial warming (Fontaine et al., 2014, 2017). This hybrid-
ization zone is characterized by strong habitat differences in terms 
of oceanographic conditions compared with the prevailing cold and 
highly productive waters found to the north on the European conti-
nental shelf or south along the Iberian coast.

While the evolution of the porpoises surrounding the 
Mediterranean Sea has been fairly well studied (Alfonsi et al., 2012; 
Fontaine et al., 2007, 2010, 2012, 2014; Tolley & Rosel, 2006; 
Viaud- Martinez et al., 2007; see the review of Fontaine, 2016), the 
phylogeographic history of P. p. phocoena spreading north of the 
Bay of Biscay on both sides of the North Atlantic remains under 
debate. This subspecies is fairly continuously distributed from the 
French Biscayan waters northward to the North and Barents Seas, 
and westward across the North Atlantic, around the Faroe Islands, 
Iceland and West Greenland, and then south along Western North 
Atlantic shorelines of Canada and eastern coast of the United States 
(Fontaine, 2016; Gaskin, 1984; Read, 1999). It has been hypothesized 
(hypothesis 1) that porpoises on each side of the North Atlantic could 
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have evolved independently, recolonizing their current ranges from 
distinct source populations living in distinct southern refugia during 
the LGM (Gaskin, 1984; Rosel et al., 1999; Yurick & Gaskin, 1987). 
The management plans by the IWC in 1996 (Donovan & Bjørge, 
1995) considered them as separate evolutionary entities based on 
this suggestion. However, another hypothesis (hypothesis 2) could 
be that suitable habitats were shifted southward without any loss 
of connectivity between populations from each side of the North 
Atlantic, therefore leading to no lineage split between each side of 
the North Atlantic and to limited population contraction. These two 
hypotheses are expected to leave distinct signatures on the genetic 
variation of natural populations. Under hypothesis 1 (two distinct 
refugia), two divergent genetic lineages would be expected, one 
on each side of the North Atlantic, similar to what was previously 
observed around the Mediterranean Sea (Fontaine, 2016; Fontaine 
et al., 2014). Furthermore, a gradient in genetic diversity would be 
expected, with higher diversity in southern areas where populations 
would have survived since the LGM and genetic diversity decreasing 
northward toward the most recently colonized northern temperate 
habitats. This would be consistent with a leading- edge colonization 
effect where allele surfing leads to gradual loss of diversity due to 
genetic drift associated with serial founder effects toward the colo-
nization front (Excoffier et al., 2009; Excoffier & Ray, 2008). Under 
hypothesis 2, we would not expect any distinct lineages in either 
side of the North Atlantic, but rather a single lineage with relatively 
high diversity. Genetic diversity would be close to a migration– drift 
equilibrium, characterized by more homogeneous spatial patterns 
of genetic diversity, possibly with evidence of isolation by distance 
if intergenerational dispersal is spatially restricted (Hutchison & 
Templeton, 1999). Variation in local population density could also 
be expected, decreasing toward southern habitats where warmer 
waters would become less suitable for a cold- water- adapted spe-
cies such as harbor porpoises. No study combining phylogeographic 
approaches together with habitat modeling has been conducted to 
date to tease apart these hypotheses.

Previous genetic studies based on short fragments (~400 base 
pairs, bps) of the mitochondrial control region harbored limited phy-
logenetic information, as shown by the previous shallow and poorly 
resolved phylogenetic trees and networks (Rosel, Tiedemann, et al., 
1999; Tolley & Rosel, 2006; Viaud- Martinez et al., 2007; Wang et al., 
1996). For example, with such a short fragment, IBMA porpoises 
from Iberian and Mauritanian waters could be identified as geneti-
cally differentiated from the other subspecies in terms of haplotype 
frequencies, but the full extent of their divergence only became 
clear when analyzing fragments ten times longer covering one quar-
ter of the mitogenome (Fontaine et al., 2014). In the present study, 
we revisited the population genetic structure and phylogeography of 
harbor porpoises across the entire North Atlantic distribution range. 
Combining phylogenetic and spatial population genetic approaches 
together with predictive habitat modeling, we tested the two hy-
potheses of postglacial evolution described above. For this purpose, 
we reanalyzed samples from the North West Atlantic (NWA) waters 
previously used in Rosel et al. (1999) with similar genetic markers 

as those used in Fontaine et al. (2014). These included sequences 
from one quarter of the mitogenome and ten highly polymorphic mi-
crosatellite loci. We combined these new data from NWA porpoises 
with those from the central and eastern North Atlantic (NEA) from 
Fontaine et al. (2014), which included samples collected during the 
same time period.

Specifically, we (1) assessed whether distinct mtDNA lineages 
were present in P. p. phocoena, possibly indicating distinct glacial 
refugia in the North Atlantic during the LGM; (2) evaluated the post-
glacial population responses and recolonization routes from the 
analyses of spatial patterns of genetic variation and whether por-
poises recolonized their present range from one or multiple refugia; 
(3) assessed the impact of environmental changes in the distribution 
of harbor porpoise by modeling the evolution of suitable habitats 
at present, during the LGM, and by the year 2050; and (4) analyzed 
dispersal behaviors at the North Atlantic scale and whether re-
stricted dispersal could generate isolation- by- distance patterns as 
previously reported in NEA (Fontaine et al., 2007) and NWA (Rosel, 
France, et al., 1999; Wang et al., 1996). Moreover, we investigated 
the extent of sex- biased dispersal with strong female philopatry pre-
viously suggested in the species (Rosel, France, et al., 1999; Wang 
et al., 1996). Here, we reassessed this effect at the scale of the entire 
North Atlantic distribution of the P. p. phocoena subspecies by com-
paring genetic markers with contrasted inheritance modes (biparen-
tally inherited microsatellite vs. maternally inherited mtDNA).

2  | MATERIAL S AND METHODS

2.1 | Sampling and data collection

We combined previous nuclear microsatellite genotype data at ten 
loci for the 768 samples from central and eastern North Atlantic 
populations (Fontaine et al., 2014) with 173 newly genotyped sam-
ples from NWA. We used the samples from Rosel, France, et al. 
(1999) and genotyped them with the same markers as in Fontaine 
et al. (2014). The NWA sampling was from a same time cohort (1990– 
1999) as those analyzed in Fontaine et al. (2014) and included 29 
individuals from West Greenland (WGLD), 60 from Canada (CA), and 
84 from the United States (USA) collected from incidentally entan-
gled and stranded animals (Table S1).

Total genomic DNA was extracted from the skin tissues using 
PureGene and DNeasy Tissue Kits (Qiagen) following the manufac-
turer's recommendations. DNA quality and quantity of the extraction 
products were checked by electrophoresis on an agarose gel stained 
with ethidium bromide and using a fluorometric quantitation proce-
dure using a Qubit v.3.0 (Thermo Scientific). The microsatellite geno-
typing procedure followed the protocol described in Fontaine et al. 
(2007), Fontaine et al. (2006). We included in every 96 PCR plates be-
tween 6 and 10 samples previously genotyped in Fontaine et al. (2014) 
as reference samples to calibrate allele sizes between the previous 
microsatellite genotype dataset from Fontaine et al. (2014) and the 
newly genotyped samples from the present study. These reference 
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samples were used to align allele sizes between the datasets and to 
account for possible shift in allele sizes among genotyping runs. All 
genotypes were checked visually, and individuals with missing data or 
ambiguous alleles were genotyped twice or three times. Only individ-
uals with at least 6 successfully genotyped loci were kept for down-
stream analyses. For various analyses, we subdivided the samples into 
ten putative subpopulations (hereafter called geographical regions) 
(Figure 1, Table S1): Black Sea (BS), Mauritania (MA), Iberia (IB), north-
ern Bay of Biscay (NBB), North Sea (NS), North Norway (NN), Iceland 
(IC), Greenland (WGLD), Canada (CA), and the United States (USA). 
For analyses requiring fine- grained geographic partitioning for mi-
crosatellite data, we subdivided further geographical regions into 30 
local geographical subgroups (Figure S1 and Table S2).

In addition to autosomal microsatellite data, a 4465 bp fragment 
of the mtDNA genome encompassing five coding regions (Cyt- B, 
ATP6, ATP8, ND5, and COXI) was obtained for a subsampling of 55 
individuals from NWA (Table S1), including also five new samples 
from Iceland, following the PCR amplification protocol described 
previously (Fontaine et al., 2014). PCR products were visualized 
under UV light before being prepared for Sanger sequencing on a 
1% agarose gel stained with ethidium bromide. Purification of the 
PCR products used ExoSAP- IT™ PCR Product Cleanup Reagent 

(Thermo Fisher Scientific), and products were then sent to GATC 
Biotech for sequencing. We visually inspected the quality of the se-
quence electropherograms and manually edited them using Geneious 
v.8.1.9 (Kearse et al., 2012). For each gene fragment, forward and re-
verse sequences were assembled into contigs and resulting contigs 
of each individual were visually inspected before making a multiple 
sequence alignment. We concatenated the five genes in accordance 
with previous data (Fontaine et al., 2014) following the same order 
(ATP6- 8, COI, Cyt- B, ND5). The 55 newly sequenced NWA samples 
were combined with 81 previously generated mtDNA sequences 
from central and eastern North Atlantic porpoises (Fontaine et al., 
2014). We added also 14 sequences from the North Pacific harbor 
porpoise P. p. vomerina subspecies from Ben Chehida et al. (2020) to 
the 136 North Atlantic sequences in order to place North Atlantic 
populations into a broader phylogeographic context (Table S3). Two 
sequences from the closest outgroup species, the Dall's porpoise 
Phocoenoides dalli, were included among the 81 mtDNA sequences 
from Fontaine et al. (2014), and were used here for the phylogenetic 
analyses. We performed the multiple sequence alignment using 
MUSCLE (Edgar, 2004) with default settings. MtDNA data were di-
vided into the same 10 geographical regions as used for the micro-
satellite data for the data analyses (Figure 1, Table S1).

F I G U R E  1   Map showing the sampling locations of individual porpoises in the North Atlantic and the 10 genetic groups defined as 
geographical regions in this study (see Figure S1 for finer delimitations into 30 subgroups). Sampling locations are based on approximate 
GPS coordinates or reported discovery location. Acronyms are as follows: BS = Black Sea; MA = Mauritania; IB = Iberia: NBB = North Bay of 
Biscay; NS = North Sea; NN = North Norway; IC = Iceland; WGLD = West Greenland; CA = Canada; USA = United States
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2.2 | Mitochondrial phylogenetic relationships

We evaluated genetic relationships between mtDNA haplotypes 
using three different methods. First, we estimated phylogenetic re-
lationships among unique haplotypes using the maximum- likelihood 
(ML) approach of PHYML (Guindon et al., 2010) implemented in 
Geneious v.8.1.9 (Kearse et al., 2012). Prior to phylogenetic recon-
struction, we used jModelTest v.2.1 (Darriba et al., 2012) to identify 
the model of nucleotide evolution best fitting our dataset. The tree 
was rooted with two sequences from Dall's porpoise. Node support 
was estimated using 1000 bootstrap replicates. The resulting tree 
was visualized using ggtree v.1.4 (Yu et al., 2018) in the R statistical 
environment v.3.5.1 (R Core Team, 2018). In addition to the phylo-
genetic trees, we reconstructed a median- joining haplotype network 
using PopART (http://popart.otago.ac.nz), which allows displaying 
distances among haplotypes in a number of mutational steps and 
reticulations among them. Finally, we also summarized genetic re-
lationships among haplotypes using a nonmetric multidimensional 
scaling (nMDS) based on the Jukes– Cantor genetic distances be-
tween pairs of sequences. We used MEGA v.7.0 (Kumar et al., 2016) 
to calculate the genetic distance and the R package ecodist (Goslee & 
Urban, 2007) to compute the nMDS.

2.3 | Population genetic structure and 
differentiation

We investigated the genetic structure among porpoises from 
Northwest (NWA: USA, CA, WGLD) and Northeast (NEA: IC, NN, 
NS) Atlantic at the microsatellite and mitochondrial loci. For the mi-
crosatellite dataset, we first assessed the patterns of missing data 
and heterozygosity deficit at the local scale (Table S2 and S5) to 
identify possible evidence of null alleles (e.g., local excess of miss-
ing data or homozygous genotypes at a specific locus). Then, we 
explored the patterns of genetic variation and structure using mul-
tivariate methods, including a principal component analysis (PCA) 
(Patterson et al., 2006), a discriminant analysis of principal com-
ponents (DAPCs) (Jombart et al., 2010), and a spatial PCA (sPCA) 
(Jombart et al., 2008). The three approaches were performed using 
the Adegenet v2.1.1 R package (Jombart, 2008) on centered genetic 
data (i.e., set to a mean allele frequency of zero). The PCA was run 
with missing data replaced by the mean. The DAPC was performed 
without any missing data using the subspecies or geographical sub-
groups as a priori groupings with the number of principal compo-
nents set to 30 and 34, respectively, following alpha- score indication 
as recommended by the author. Additionally, we ran a DAPC only on 
P. p. phocoena individuals (NAT) maximizing the difference between 
NWA and NEA or among geographical subgroups in order to assess 
fine- scale population structure. Then, we displayed genetic variance 
with a spatial structure using a sPCA, which accounts for spatial au-
tocorrelation among allele frequencies. We used the Delaunay trian-
gulation as a connection network on a subset of 729 individuals with 
no missing data in both geographic coordinates and microsatellite 

genotypes. We used both “global” and “local” test procedures based 
on the Monte Carlo permutations (104 permutations) to interpret 
the significance of the spatial principal components in the sPCA 
(Jombart et al., 2008). “Global” structure relates to patterns of spa-
tial genetic structure, such as patches, clines, IBD, and intermedi-
ates, whereas “local structure” refers to strong differences between 
local neighborhoods.

We also used the model- based Bayesian clustering algorithm of 
STRUCTURE v.2.3.4 (Hubisz et al., 2009) to estimate individual ge-
netic ancestry. STRUCTURE works by leveraging the fact that pop-
ulation structure induces departures from the Hardy– Weinberg and 
linkage equilibrium (HWLE) expectations among loci. Therefore, 
contrary to multivariate methods, STRUCTURE identifies genetic 
clusters by minimizing departures from HWLE. It estimates the ge-
netic ancestry proportions of each individual multilocus genotype to 
K ancestral clusters. STRUCTURE was performed for a dataset with 
and without missing data. We used the locprior admixture model with 
correlated allele frequencies, which is capable of detecting weak ge-
netic structure when it exists without forcing it (Hubisz et al., 2009). 
The 30 geographical subgroup delimitations (Figure S1 and Table S2) 
were used to inform the locprior model. We tested different num-
bers of plausible clusters (K) ranging from 1 to 5. Each run used 
1 × 106 iterations after a burn- in of 1 × 105 iterations. To evaluate 
the convergence of the Monte Carlo Markov chains (MCMCs), we 
performed 10 independent replicates for each K value and checked 
the consistency of the results using CLUMPAK v.1.0 (Kopelman et al., 
2015). We determined the best K value using the log- likelihood of 
the data for each K value using STRUCTURE HARVESTER v.0.6 (Earl 
& vonHoldt, 2011) and by visually inspecting newly created clusters 
with increasing K values (Vercken et al., 2010). We plotted the re-
sults as bar plots using CLUMPAK. Finally, we investigated geograph-
ical variation in genetic ancestry coefficients (Q) of the predominant 
solution for the best K by computing the spatial interpolation of Q 
values among sampling locations using the script provided at http://
membres- timc.imag.fr/Olivier.Francois/TESS_Plot.html. We also ran 
STRUCTURE focusing only on P. p. phocoena individuals, as it has 
been suggested that rerunning STRUCTURE on identified clusters 
may reveal finer- scale genetic structuring (Evanno et al., 2005).

Pairwise genetic differentiation among geographical regions 
and subgroups at microsatellite loci was assessed using the FST es-
timator of Weir and Cockerham (1984) in the R package diversity 
v.1.9 (Keenan et al., 2013). The FST significance was tested using 
an exact test implemented in GENEPOP v.1.1.3 (Rousset, 2008) 
in R using 10,000 iterations. Geographical subgroups with <10 
individuals were excluded. We estimated the degree of mtDNA 
differentiation in terms of haplotype frequencies between pair-
wise geographical regions using the FST estimator of Hudson et al. 
(1992). Its significance level was tested using 1000 permutations 
on the Snn statistics (Hudson, 2000). These calculations were 
conducted in DnaSP v.4.5 (Librado & Rozas, 2009). We also calcu-
lated the ΦST estimator (Excoffier et al., 1992) using Arlequin v3.5 
(Excoffier & Lischer, 2010). ΦST exploits the degree of pairwise 
differentiation in haplotype frequencies together with nucleotide 

http://popart.otago.ac.nz
http://membres-timc.imag.fr/Olivier.Francois/TESS_Plot.html
http://membres-timc.imag.fr/Olivier.Francois/TESS_Plot.html
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sequence divergence between pairs of geographical regions. 
ΦST values were computed assuming a TN93 substitution model 
(Tamura & Nei, 1993), and significance was assessed using 1000 
permutations. In addition to the two estimators of population dif-
ferentiation, we also calculated the Jukes– Cantor- based dA dis-
tances (Nei, 1987) using DnaSP, which provides a measure of net 
mtDNA divergence between pairs of groups.

2.4 | Patterns of genetic diversity

We first tested linkage disequilibrium (LD) among microsatellite loci 
within putative groups using a G- test (Weir, 1996) implemented in 
GENEPOP in R (Rousset, 2008). We also quantified multilocus LD 
within each geographical region using the RD statistics (Agapow & 
Burt, 2001) and assessed its significance level using 1000 permuta-
tions in Poppr v.2.8.3 (Kamvar et al., 2014). Within- group departure 
from the Hardy– Weinberg equilibrium was assessed using the exact 
tests implemented in diveRsity in R using 10,000 iterations and quan-
tified it using the FIS (Weir & Cockerham, 1984).

Genetic variation at microsatellite loci was estimated per geo-
graphical regions (Figure 1) and subgroups (Figure S1) using the 
allelic richness (Ar), private allelic richness (pAr), and observed (Ho) 
and expected (He) heterozygosity. The calculation of Ar and pAr 
was performed in ADZE (Szpiech et al., 2008), which implements a 
rarefaction- based standardization procedure to account for differ-
ences in sample size between groups. ADZE considers individuals 
without missing data. Standardized Ar and pAr were thus computed 
for a sample size of 18 gene copies for geographical regions and 
subgroups. Geographical subgroups with less than 10 individuals 
(i.e., 18 gene copies) were discarded. Ho and He were first com-
puted with diveRsity without applying any rarefaction standardiza-
tion. Differences in genetic diversity between geographical regions 
were tested using a Wilcoxon signed- rank test for paired samples. 
Bonferroni's corrections were applied to adjust significance levels 
for multiple tests. For the mtDNA genetic variation, we estimated 
nucleotide diversity (π), Watterson's θW, and haplotype diversity (Hd) 
using DnaSP.

While the estimations of Ar and pAr with ADZE already implement 
a standardization to account for differences in sample size among 
groups, calculations for the other statistics did not. Differences in 
sample size can significantly impact the values of genetic diversity 
estimators (Goodall- Copestake et al., 2012). Therefore, we also ap-
plied a rarefaction procedure (Sanders, 1968) using a custom R script 
to calculate He, FIS, RD, π, and θW in order to account for differences 
in sample size among geographic regions. However, while ADZE sub-
samples gene copies for the rarefaction procedure, here we subsam-
pled individuals. For each geographical region and each statistic, we 
randomly subsampled 14 and 5 individuals 1000 times for the sta-
tistics relative to microsatellite and mtDNA data, respectively. We 
then estimated the mean and standard error for each statistic and 
for each geographical region. The rarefaction method was also per-
formed for geographical subgroups for He assuming a standardized 

sample size of 10 individuals. Subgroups with less than 10 individuals 
were excluded (Table S2).

Genetic diversity is expected to decrease with distance away 
from glacial refugia (Excoffier & Ray, 2008). Therefore, we investi-
gated the patterns of spatial variation in various genetic diversity 
estimators across the North Atlantic subspecies distribution range. 
We plotted the mean standardized values for He, Ar, pAr, and π on 
geographical maps using MARMAP v1.0.2 (Pante & Simon- Bouhet, 
2013). Spatial interpolation between sampling locations was cal-
culated for each genetic diversity index to assess variation across 
geographical regions and subgroups using the R script available at 
http://membres- timc.imag.fr/Olivier.Francois/plot.admixture.r.

2.5 | Isolation by distance

Spatially restricted dispersal across generations is expected to pro-
mote genetic differentiation among individuals and could create a 
pattern of isolation by distance (IBD) (Rousset, 1997). IBD describes 
a pattern of genetic differentiation between individuals or popula-
tions increasing with geographic distance. In other words, under IBD, 
populations living closer to each other are expected to be genetically 
more similar than populations farther away. Such IBD was detected 
previously in harbor porpoises on each side of the North Atlantic 
(Fontaine et al., 2007; Rosel, France, et al., 1999) and is thus expected 
to occur at the scale of the entire North Atlantic. Furthermore, 
sex- biased dispersal is widely documented in cetacean species 
with males generally dispersing more than females (e.g., Dall's por-
poises) (Escorza- Treviño & Dizon, 2000). It has been suggested for 
harbor porpoises in the Northwest (Rosel, France, et al., 1999) and 
Northeast Atlantic (Andersen et al., 1997, 2001; Tiedemann et al., 
1996; Walton, 1997). Sex- biased dispersal can strongly influence 
population genetic structure (Prugnolle & de Meeus, 2002). Hence, 
if females disperse less than males across generations, for example 
due to female philopatry, IBD is expected to be stronger in females 
than in males, and stronger in mtDNA than in microsatellite loci 
(Prugnolle & de Meeus, 2002). We assessed the occurrence of IBD 
by testing the correlation between estimates of genetic differentia-
tion between populations with geographic distance and compared 
IBD patterns between maternally inherited (mtDNA) and biparental 
inherited (microsatellites) markers. IBD was tested at the scale of 
geographical regions and subgroups. Subgroups containing less than 
10 individuals were not considered (Table S2).

Genetic differentiation at microsatellite loci between popula-
tions was estimated as FST/(1−FST), which is expected to increase 
linearly with increasing geographical distance under IBD (Rousset, 
1997). We used Weir and Cockerham's FST for microsatellites and 
ΦST for mtDNA. We computed marine geographical distances that 
account for the shortest path by sea, because a Euclidian distance 
would poorly describe the actual geographical distance separating 
pairs of sampled locations in the marine environment. We used fossil 
v.0.3.7 (Vavrek, 2011) and MARMAP R packages to estimate these 
marine geographic distances. Harbor porpoises are usually found on 

http://membres-timc.imag.fr/Olivier.Francois/plot.admixture.r
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the continental shelf between −10 and −200 m, but they have been 
observed also in high abundance up to −650 m in some regions (Skov 
et al., 2003). Therefore, we constrained the computation of marine 
distances between −10 and −650 m in order to eliminate the possi-
bility of movement across deep basins (Figure S2).

To visualize potential fracture in the spatial distribution of the 
genetic distance between populations, we plotted genetic distance 
against marine geographic distances for all population pairs. Then, 
we focused only on North Atlantic populations (P. p. phocoena) to 
test specifically for IBD, excluding individuals south of the northern 
Bay of Biscay to avoid the effect of inter- subspecies comparison. We 
used a Mantel test to assess the correlation significance between 
genetic and geographic marine distances using 1 × 106 permutations 
in the R package ade4 v1.7 (Dray & Dufour, 2007). We also assessed 
the relationship between average relatedness (between pairwise 
subgroups) and marine genetic distances using the same approach. 
Average relatedness was assessed using the microsatellite data and 
the Wang's estimator of the coefficient of relatedness (Wang, 2002) 
in the R package related v.1.0 (Pew et al., 2015).

2.6 | Connectivity and gene flow across North 
Atlantic populations

We further quantify the amount of dispersal, connectivity, and con-
temporary gene flow between geographical regions and subgroups 
that included at least 10 individuals using the “divMigrate()” function 
of the R package diveRsity. This method relies on the detection of 
the direction of genetic differentiation, here the GST statistics (Nei, 
1973), to infer asymmetric pattern of migration rate (m) between 
groups (Sundqvist et al., 2016). We tested whether gene flow was 
significantly asymmetric between groups using 5000 bootstrapped 
genotype resampling. The results were visualized as a network 
drawn using igraph v.1.2.4.1 (Csardi & Nepusz, 2006) and popgraph 
v.1.5.1 (Dyer, 2017) in R. Nodes in the network represent popula-
tions, and edges indicate migration rates from one population to 
another. Networks were constructed at the percolation threshold, 
that is, the highest distance until the network collapses (Rozenfeld 
et al., 2008). Contemporary effective population sizes (Ne) in each 
geographical region were estimated with NeEstimator v2.1.3 (Do 
et al., 2014) based on LD between microsatellites loci (Waples & Do, 
2010). As recommended by the authors, alleles with a frequency 
lower than 0.02 were filtered out (Waples & Do, 2010). The con-
temporary effective number of migrants per generation (2. Ne.m) 
between the geographical regions and the subgroups was estimated 
by combining Ne and m estimates.

2.7 | Population demographic changes

In order to assess genetic evidence for effective population size (Ne) 
changes based in mtDNA data, we estimated Tajima's D and Fu and 
Li's D* in each geographical region using DnaSP. These two statistics 

assess the deviation from the site frequency spectrum from the 
pattern expected under a neutral constant size model. For micro-
satellite loci, evidence of Ne changes in each geographical region 
was assessed using the Garza and Williamson ratio (MGW) (Garza 
& Williamson, 2001), which compares the number of alleles to the 
range in allele size to detect evidence of population contraction. The 
per region MGW value was estimated using the "Mratio()" function 
in R available at https://rdrr.io/githu b/romun ov/zvau/man/Mratio.
html. MGW, D, and D* were calculated for all the samples and for each 
geographic region using the same rarefaction approach as described 
above estimate genetic diversity while accounting for sample size 
heterogeneity among groups.

2.8 | Predictive suitable habitat modeling

We used the AquaMaps species distribution modeling approach 
(Kaschner et al., 2011; Ready et al., 2010) in order to reconstruct the 
suitable habitat for harbor porpoises at three time periods: at pre-
sent, during the LGM using on the GLAMAP project data (Schäfer- 
Neth & Paul, 2004) and by the year 2050, under the most aggressive 
scenario (representative concentration pathways, RCP8.5) for global 
climate models of the Intergovernmental Panel on Climate Change 
(Schwalm et al., 2020). AquaMaps is a bioclimatic model that com-
bines occurrence data (e.g., visual observations, stranding records) 
with available expert knowledge on species preference and toler-
ance to different environmental parameters and generates predic-
tions of the probability of occurrence for a target marine species. 
The preferred habitat can be estimated based on a predefined set 
of environmental parameters including water depth, sea surface 
temperature, salinity, primary production, sea ice concentration, 
and proximity to land. We used mean annual average values for the 
parameters for the three periods. This was subsequently projected 
into geographic space as relative probability of occurrence in a global 
spatial grid of 0.5º mesh size. The projected predictions of the rela-
tive environmental suitability for harbor porpoises into geographic 
space link habitat preferences to local conditions using environmen-
tal data for different time periods and assume no changes in species- 
specific habitat usage over time.

In this study, we used a slightly modified version of the origi-
nal AquaMaps model (available at www.aquam aps.org; Kaschner 
et al., 2019). Specifically, primary production was excluded from the 
model, as there are no corresponding data for this parameter for the 
Pleistocene. AquaMaps has been previously used to hindcast suit-
able habitat predictions during the LGM for various cetacean spe-
cies such as killer whales (Morin et al., 2015), common bottlenose 
dolphins (Nykänen et al., 2019), and narwhals Monodon monoceros 
(Louis et al., 2020).

We included sea ice concentration, depth, and sea surface 
temperature in the final envelopes as these parameters are known 
to drive the distribution of cetaceans (Kaschner et al., 2006) (see 
also the model including salinity in Figures S16 and S17). Using 
the environmental envelopes, we computed predictions of habitat 

https://rdrr.io/github/romunov/zvau/man/Mratio.html
https://rdrr.io/github/romunov/zvau/man/Mratio.html
http://www.aquamaps.org
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suitability focusing only on the North Atlantic and adjacent seas 
for the distribution of harbor porpoises and generated maps using 
ggplot. We calculated and compared the mean latitude of suit-
able habitat between the three periods using the Mann– Whitney 
U tests. Furthermore, we calculated the size of the suitable habitat 
for each time period.

3  | RESULTS

3.1 | Mitochondrial phylogeography

The mtDNA alignment of 148 sequences (excluding the outgroup) 
contained 359 segregating sites, including 118 singletons and 241 
parsimony informative sites defining 110 distinct haplotypes (Table 
S3 and S4). Among 88 nucleotide substitution models tested with 
jModelTest v2.1.10, the HKY+G substitution model (G = 0.17) was 
identified as best fitting the data according to the BIC criterion. The 
maximum- likelihood tree confirmed previous reports of how deep 
genetic divergence was between Pacific and Atlantic porpoises 
and that no haplotype was shared between the two ocean basins 
(Figure 2) (Ben Chehida et al., 2020; Rosel et al., 1995). Within the 
North Atlantic and Black Sea, four main mtDNA lineages equally di-
vergent from each other emerged; three of them corresponded to 
the previously identified subspecies (Fontaine et al., 2014) (Figure 2): 
(i) P. p. relicta in the Black Sea; (ii) IBMA, which included two distinct 
sublineages in the upwelling waters of Iberia (IB) and Mauritania 
(MA); (iii) P. p. phocoena composed of the porpoises sampled from 
the North Sea to the Arctic waters of Norway, and westward across 
the mid- North Atlantic waters, off Iceland, Western Greenland, and 
then southwards along the North American coasts of Canada, and 
Gulf of Maine in the United States; and (iv) a fourth not previously 
reported lineage carried by a single individual from WGLD (Hap 47). 
We resequenced this WGLD sample twice to ensure this was not 
an artifact. This lineage was equally divergent from the three other 
lineages identified in the Atlantic and Black Sea waters (Figure 2). 
The ancestral nodes of each lineage were highly supported (boot-
strap values >90%; Figure 2). The haplotype network (Figure S3a) 
and nMDS (Figure S3b) also clearly depicted these four lineages. 
Net divergence (dA) between this Hap_47 haplotype and the other 
three lineages ranged from 0.45% to 0.67% (Figure S4a). This level 
of divergence overlapped with the divergence observed among the 
other three main lineages of the Atlantic and Black Sea, ranging from 
0.43% to 0.67% and is an order of magnitude higher than the di-
vergence observed among sequences within the P. p. phocoena (dA 
within NAT ≤0.04%) lineage. Hap_47 was excluded for downstream 
analyses of mtDNA genetic diversity because it was clearly not 

closely related to any of the other NAT individuals and would bias 
the estimates of genetic diversity.

Aside from Hap_47, we did not observe any clear mtDNA phylo-
geographic pattern across the North Atlantic within P. p. phocoena 
(Figure 2 and Figure S3). The only remarkable observation was in 
the southeastern North Atlantic range, in the Bay of Biscay, where 
haplotypes from P. p. phocoena were mixed with those from IBMA. 
This indicates the previously reported hybridization between the 
two subspecies and the predominantly northward gene flow (Alfonsi 
et al., 2012; Fontaine et al., 2014) (Figure 2 and Figure S3).

3.2 | Genetic structure and differentiation

A total of 925 individuals were successfully genotyped at 10 micro-
satellite loci with less than 4.28 ± 6.17% of missing data (Tables S1, 
S2, and S5). Significant linkage disequilibrium (LD) between pairs 
of microsatellite loci was detected only in 4 out of the 450 tests 
after applying a Bonferroni correction. These comparisons always 
included IC. However, the multilocus LD test did not reveal any sig-
nificant linkage in any putative groups, with RD values ranging from 
−0.006 to 0.06. No significant deviation from the Hardy– Weinberg 
equilibrium (HWE) was observed within the BS, MA, IB, and NBB 
groups with overall fixation index FIS values ranging from −0.018 to 
0.047 (Fisher's exact tests, p- value >0.05; Table S5). In contrast, the 
NAT group taken as a whole (excluding NBB) showed a significant 
positive FIS value (FIS = 0.046; p- value ≤0.01, Table S5), indicating 
a heterozygosity- deficit compared with HWE. This departure from 
random mating expectation is possibly driven by population struc-
ture (i.e., Wahlund effect) (Garnier- Géré & Chikhi, 2013; Wahlund, 
1928). When considering each region individually, only IC, NN, and 
NS still exhibited some slight but significant departures from HWE 
(Table S5). At the local scale, only the group from the Gulf of Main 
(GM) displayed such HWE departure (Table S2). Two loci (415– 416 
and GT015) displayed globally higher proportions of missing data 
(respectively, 16.7% and 14.7%) than the average, possibly suggest-
ing some evidence of null alleles or allelic drop- out. However, all the 
analyses were conducted with and without these two loci without 
detecting any difference in the results (not shown). We thus kept 
these two loci in the analyses, as it was done in previous studies 
(Fontaine et al., 2007, 2014, 2017).

Consistent with the mtDNA phylogenetic analyses and previous 
works (Fontaine et al., 2014), the distinct mtDNA lineages of harbor 
porpoise identified in the North Atlantic and Black Sea waters also 
formed clearly distinct genetic clusters when analyzing microsat-
ellite variation using multivariate and Bayesian clustering analyses 
(Figure 3, Figures S5– S7): (i) P. p. relicta; (ii) IBMA including the two 

F I G U R E  2   Mitochondrial phylogeny among unique haplotypes estimated using a maximum- likelihood approach. Poorly supported 
nodes with <50% bootstrap support were collapsed. The color- coded labels show the geographic origin of the haplotype. A cryptic lineage 
(Hap_47) found in West Greenland and distinct from all the others is highlighted in purple. The numbers within the boxes refer to the 
number of individuals carrying the haplotype. No number means that the haplotype was observed only once. Group acronyms are provided 
in Figure 1, except for NP: North Pacific
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subgroups IB and MA; and (iii) P. p. phocoena. The first principal axis 
of variation or discrimination (PC1 in Figure S5a, sPC1 in Figure 3a, 
and DF1 in Figure S6) splits P. p. relicta in the Black Sea from the 
rest of the North Atlantic porpoises. The second axis (PC2 in Figure 
S5, sPC2 in Figure 3a, and DF2 in Figure S6) discriminated IBMA 
from P. p. phocoena. Each multivariate method placed the individuals 
from the NBB region at an intermediate position between the IBMA 
and P. p. phocoena lineages, consistent with their admixed genetic 
background previously reported (Fontaine et al., 2014, 2017). The 

global sPCA test assessing the presence of genetic clines or clus-
ters also confirmed that the two first positive sPCs (Figure 3a) were 
significant (p- value ≤0.002). By contrast, none of the negative sPCs 
were significant in the local sPCA test (p- value ≥0.867, Figure 3a). 
Focusing only on P. p. phocoena (NAT) individuals, none of the sPC 
were significant (p- value >0.300). Likewise, the DAPC did not re-
veal any evidence of population subdivision within the P. p. phocoena 
(NAT) subspecies (Figure S8). Also, the distinction between MA and 
IB, clearly apparent at the mtDNA level (Figure 2 and Figure S3), was 

F I G U R E  3   Genetic structure of harbor porpoises in the North Atlantic and Black Sea based on 10 nuclear microsatellite loci. (a) Scatter 
plot showing the first two spatial principal components (sPCs) of a spatial principal component analysis (sPCA). The inset corresponds to the 
positive and negative eigenvalues of the sPCA, which depicts the global and local genetic structure, respectively. (b) Bar plot showing the 
individual genetic ancestry proportions to each cluster estimated from the STRUCTURE analysis at K = 3 excluding individuals with missing 
data. (c) Interpolated map of the genetic ancestry coefficients inferred from the clustering analysis of STRUCTURE at K = 3. (d) Bar plot 
showing the DAPC cluster membership probability excluding individuals with missing data. BSBULG = Black Sea Bulgaria. BSGEO = Black 
Sea Georgia. BSTKM = Black Sea Turkey Marmara Sea. BSTK = Black Sea Turkey. BSU = Black Sea Ukraine. MA = Mauritania. PT = Portugal. 
SP = Spain. BB = Bay of Biscay. IRCS = Celtic Sea. FRC = France Channel. IRIS = . Irish Sea. IRAT = Irish Atlantic. SC = Scotland. 
BL = Belgium. H = Holland. G = Germany. DK = Denmark. IFR = Faroe Island. N1 = Norway South. N2 = Norway North. ICN = Iceland 
North. ICSE = Iceland South East. ICSW = Iceland South West. ICW = Iceland West. WGLD = West Greenland. NF = Newfoundland. 
SL = Saint Lawrence. USA = United States
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also visible in the DAPC using DF3 (Figure S6) and sPC3 (result not 
shown).

The Bayesian clustering analysis of STRUCTURE (Figure 3b- c and 
Figure S7a,c) provided consistent results over 10 replicated runs 
performed for each number of cluster (K) tested and was consistent 
with the multivariate analyses. The probability of the data greatly 
increased until K = 3, which showed the highest values on average 
(Figure S7b). At K = 2, the analysis splits P. p. relicta from the remain-
ing porpoises, and at K = 3, IBMA splits from P. p. phocoena (Figure 
S7a). Beyond K = 3, no further subdivision was observed. Fontaine 
et al. (2014) showed that the two groups of IBMA in MA and IB were 
more closely related to each other than with the other porpoises and 
could be discriminated from each other only when analyzing them 
separately from the other porpoises. Also similar to previous studies 
(Fontaine et al., 2014) and the multivariate analyses, NBB showed 
an admixed genetic ancestry with an equal contribution from IBMA 
and P. p. phocena subspecies (Figure 3b and Figure S7a). No finer 
subdivision was observed over the whole area covered by P. p. phoc-
oena, even when running STRUCTURE focusing only on P. p. phocoena 
individuals (Figure S7c). The most likely number of ancestral genetic 

clusters within P. p. phocoena was one, as suggested by the likelihood 
of the data at K = 1 (Figure S7d).

Interestingly, the individual carrying the fourth major mtDNA 
lineage (Hap_47) in Western Greenland (WGLD) could not be distin-
guished from other NAT porpoises based on the microsatellite data. 
This may just be due to the fact that only one individual of a distinct 
cluster has been sampled or this individual may also share most of its 
genetic ancestry with the NAT group at the nuclear loci, but not at 
the mtDNA locus.

Genetic differences in microsatellite allelic frequencies 
(Figure 4a, Figures S9 and S10) and mtDNA haplotype frequencies 
(Figure 4b, Figure S4b,c and S10) between subspecies were all highly 
significant (p- value <0.001) and much higher than the comparisons 
among demes within each subspecies (Figure 4a,b, Figure S9 and 
S10). Among subspecies, FST values for microsatellite loci ranged 
between 0.09 and 0.30. For the mtDNA, ɸST values ranged from 
0.61 to 0.90. The highest FST values were observed between BS and 
IBMA and lowest between IB and MA. Within P. p. phocoena (NAT) 
subspecies, microsatellite FST values among the geographical regions 
(Figure S9a) and subgroups (Figure S9b) were much smaller and none 

F I G U R E  4   Genetic differentiation at microsatellite (a) and mtDNA (b) loci, expressed as the average pairwise FST and ɸST values, 
respectively. (c) Connectivity among regional groups of harbor porpoises is displayed as the average effective number of migrants (2. Ne.m) 
per generation. *p- value ≤0.05. ***p- value ≤0.001. The acronyms are provided in Figure 1
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of the pairwise comparisons were significantly different from zero. 
In contrast, some demes from NWA and NEA were significantly dif-
ferentiated for the mtDNA FST and ΦST comparisons (Figure S4b,c).

Visualizing the genetic differences as a function of the marine 
geographic distance showed that the increase in genetic differen-
tiation between P. p. phocoena (NAT), IBMA, or P. p. relicta (BS) sub-
species is not simply an effect of the increasing geographic distance 
(Figure S10). The relationship between genetic and geographic dis-
tance revealed large jumps in FST or ɸST values, reflecting genetic 
discontinuities indicative of barriers to gene flow or secondary 
contact between subspecies as previously noted by Fontaine et al. 
(2007, 2014, 2017). We did not detect any such discontinuity be-
tween demes within P. p. phocoena. The intermediate position of 
NBB was again clearly illustrated with lower levels of genetic differ-
entiation than the among subspecies comparisons but higher than 
the within cluster comparisons (Figure S10). This variation in genetic 
differentiation among demes between and within subspecies trans-
lates variation in gene flow between them.

3.3 | Population connectivity

We quantified gene flow using microsatellite markers by estimating 
local effective population sizes (Ne, Table S6) and migration rate (m, 
Table S7) to derive the effective number of migrants per genera-
tion (2. Ne.m, Table S8). Consistent with previous studies (Fontaine 
et al., 2010, 2012, 2014), estimates of Ne (Table S6) were lowest in 
the two IBMA populations (IB and MA with Ne < 60 individuals), low 
in the hybrid NBB (Ne = 217), intermediate in P. p. relicta (Ne = 504), 
and larger in P. p. phocoena (Ne > 800 individuals). Furthermore, Ne 
differed substantially among demes within P. p. phocoena. Demes 
in central North Atlantic (IC/WGLD <925 individuals) displayed 
slightly smaller Ne than in the Eastern (NS/NN >1500 individuals) 
and Western (US/CA >1482 individuals) waters.

Estimates of migration rates (m, Table S7 and Figure S11) and ef-
fective number of migrants per generation (Table S8 and Figure 4c) 
showed no evidence of gene flow between P. p. relicta and the other 
subspecies in the Atlantic (IBMA and P. p. phocoena, m < 0.001 and 
2.Ne.m < 1 individual per generation). Likewise, the two lineages IB 
and MA of IBMA in the upwelling waters showed very limited amount 
of gene flow between them (m ≤ 0.021, Table S7 and Figure S11; 
2.Ne.m < 1 individuals, Table S8 and Figure 4c). Asymmetric gene 
flow was detected between IBMA and P. p. phocoena, flowing espe-
cially from IB to P. p. phocoena demes with NBB serving as a hub in 
the population network (Table S7 and Figure S11). Estimated migra-
tion rates from IBMA to P. p. phocoena were several times larger than 
in the reverse direction (Table S7). However, due to the low Ne in 
IBMA lineages (Table S6), the effective number of migrants remained 
low (2. Ne.m < 1 individuals) in both directions. Gene exchanges from 
NBB to P. p. phocoena ranged from 0.083 to 0.174 and were larger 
than those from NBB to IBMA (from 0.021 to 0.064). Finally, al-
though not statistically significant, m values from NBB to IBMA were 
two to three times lower than the converse. Among P. p. phocoena 

(NAT) demes, we detected a clear signal of migration with m varying 
from 0.18 to 0.9 (Table S7) and 2. Ne.m exceeding 300 individuals per 
generation across the whole North Atlantic (Table S8). We observed 
no difference between the different sectors (West, center, and East) 
of the North Atlantic (Tables S7 and S8).

3.4 | Isolation by distance

Despite the high connectivity among P. p. phocoena demes, we 
tested whether individual dispersal across generations was geo-
graphically restricted and could generate an IBD pattern at mtDNA 
and microsatellite loci at the scale of the North Atlantic. This could 
explain the departure from random mating expectations detected 
at microsatellite loci with the significant FIS value when considering 
P. p. phocoena as a whole (Table S5). We detected a strong IBD at 
the mtDNA marker characterized by an important increase in ge-
netic differentiation with geographic distance among the P. p. phoc-
oena geographical groups (r2 = 0.68; p- value ≤0.001; Figure 5a). In 
contrast, a much weaker IBD was detected at the nuclear micros-
atellite loci among P. p. phocoena demes, and the pattern was only 
significantly detectable when considering the finest level of geo-
graphic subdivision (r2 = 0.04; p- value ≤0.004; Figure 5b), not with 
the geographical regional subdivisions (p- value >0.05; Figure S12). 
Consistent with this weak but significant IBD pattern at the micros-
atellite level, we also detected a negative relationship in relatedness 
as geographical distance increases between pairs of P. p. phocoena 
demes (r2 = 0.05; p- value ≤0.03; Figure 5c). The IBD patterns high-
lighted in this study suggest that P. p. phocoena is not a panmictic lin-
eage because of restricted intergenerational dispersal over its entire 
geographical range.

3.5 | Spatial variation in genetic diversity and 
demographic changes

We investigated spatial variation in genetic diversity in order to 
assess the evidence for potential glacial refugia in P. p. phocoena 
together with a potential leading- edge effect that could have accom-
panied the post- LGM recolonization of the Nordic waters. MtDNA 
genetic diversity (Table S4, Figures S13a and S14a), quantified using 
the haplotype diversity (Hd) and two estimators of nucleotide diver-
sity (π and θw), was lowest in the two populations of IBMA, slightly 
higher in P. p. relicta, and highest in P. p. phocoena. At the contact 
zone between IBMA and P. p. phocoena, NBB displayed the highest 
mtDNA diversity of all geographical regions, which is expected given 
the mixture of divergent haplotypes from the two subspecies in that 
region. North of the Bay of Biscay, the genetic diversity was more ho-
mogeneous across the North Atlantic among P. p. phocoena demes. It 
was slightly higher in NS, IC, and WGLD. However, when accounting 
for difference in sample sizes, standard errors of all estimates over-
lapped (Table S4, Figures S13a and S14a) suggesting no significant 
differences in mtDNA diversity among P. p. phocoena demes.
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The level of microsatellite diversity was comparable between 
IBMA and P. p. relicta (Tables S2 and S5, Figures S13b, S14b- d, S15). 
This is suggested by the lack of significant differences in allelic 

richness (Ar), private allelic richness (pAr), and expected heterozy-
gosity (He) (Wilcoxon signed- rank tests, WSR, p- value >0.05, for 
all pairwise comparisons). These subspecies displayed significantly 
lower diversity than the admixed porpoises (NBB) and those from 
P. p. phocoena (WSR, p- value ≤0.002, for the three diversity mea-
sures). NBB porpoises showed lower Ar and He than P. p. phocoena 
(WSR, p- value ≤0.03) and lower pAr than USA, NS, and CA, similar to 
IC and NN and higher than WGLD (WSR, p- value ≤0.009). While Ar 
and He statistics were comparable among P. p. phocoena demes, pAr 
was significantly higher in USA (WSR, p- value ≤10−5) and lower in 
WGLD (WSR, p- value ≤0.001). NS also displayed significantly higher 
pAr than WGLD, IC, and NN (WSR, p- value ≤0.001). The remaining 
geographical regions showed no significant difference in pAr (WSR, 
p- value >0.05).

We detected significant evidence of change in effective popula-
tion size in P. p. relicta (BS) and IB population within IBMA as shown 
by significant negative values for both Tajima's D and Fu & Li's D* 
statistics (Table S4, Figure S13a). MA did not display any significant 
departure from neutral expectations, and neither did any region 
within the P. p. phocoena range (Table S4, Figure S13a) for Tajima's D. 
WGLD and USA showed a significant negative D* when considering 
all the samples, but the values did not significantly depart from 0 
when using the rarefaction approach (0 being included in the stan-
dard error; Figure S13a). Hence, for mtDNA, all P. p. phocoena demes 
seem close to the migration– drift equilibrium suggesting no signif-
icant recent changes in demography. At the nuclear microsatellite 
markers, we found evidence of Ne contraction in IBMA, P. p. relicta, 
and NBB, with MGW values statistically smaller than in P. p. phocoena 
(no overlapping standard errors, Table S5 and Figure S13b).

3.6 | Predictive habitat suitability

Our estimated distribution of core suitable habitats during the 
present- day reflected well the known distribution of harbor por-
poises in the North Atlantic and adjacent seas, especially when 
considering habitat suitability with a probability larger than 0.3 
(Figure 6b; Figures S16 and S17). The suitability envelope ≥0.3 in-
cluded indeed all the sampling points and all the areas where har-
bor porpoises have been reported (see the area status report of the 
NAMMCO & IMR, 2019). Nonzero habitat suitability values were 
also predicted in the Azorean waters and in the Mediterranean Sea, 
where porpoises are mostly absent nowadays, but habitat suitability 
remained mostly under 0.3, except in the Aegean Sea and Alboran 
Sea where sightings have been occasionally reported (reviewed in 
Fontaine, 2016; NAMMCO & IMR, 2019, and references herein).

F I G U R E  5   Pattern of isolation by distance among 
subpopulations of P. p. phocoena in the North Atlantic. Relationship 
between the unbounded estimator of genetic differentiation among 
geographical regions or subregions and their marine geographic 
distances for (a) mtDNA and (b) microsatellite loci. (c) Relationship 
between the Wang's relatedness estimator (Wang, 2002) and the 
marine distances among subgroups. Red lines show the regression 
lines, and R2 provides the determination coefficient
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The AquaMaps model predicted that the total surface of the suit-
able habitats was reduced by a factor of three during the LGM, from 
~15 million km2 at present to ~5 million km2 (Figure 6 and Figure 
S18). The average latitude of habitable zones during the Pleistocene 
was also significantly compressed and shifted southwards around 
40ºN (5th and 95th percentiles: [30ºN -  48ºN]), compared with the 
significantly higher and broader present- day latitudinal distribution 
(average at 58ºN, [39ºN −74ºN], p- value <0.001). Noteworthy is 
the increase in habitat suitability during the LGM (Figure 6a) in the 
Azorean waters and in the Mediterranean Sea compared with the 
present day (Figure 6b). In contrast, a significant part of present- day 
habitats was unavailable during the LGM. These include waters off 
Greenland, Iceland, Norway, North Sea, and Baltic Sea, but also the 
Black Sea which was only reconnected back to the Mediterranean 
Sea ~7000 yrBP (Fontaine et al., 2010, 2012; reviewed in Fontaine, 
2016).

The model did not reveal any significant difference between 
present and future distributions of suitable habitats (Figure 6 and 
Figure S18). In contrast, habitat size appears even to slightly increase 
for the year 2050 (Figure S18).

4  | DISCUSSION

Quaternary glaciations deeply impacted the genetic structure of 
terrestrial and marine organisms (Hewitt, 2000), including cetacean 
species such as harbor porpoises in the North Atlantic (Fontaine, 
2016). The split between the two subspecies on each side of the 
Mediterranean Sea during the LGM was one of the most dramatic 
events in the species evolutionary history, leaving one relict subspe-
cies in the Black Sea (P. p. relicta) and another one (IBMA) in the up-
welling waters of Iberia and Mauritania (Fontaine, 2016; Fontaine 
et al., 2014). The third subspecies, P. p. phocoena, is the most widely 
distributed in the coastal waters of the North Atlantic, north of the 
Bay of Biscay, but its population structure and evolutionary history 
remained contentious despite numerous genetic studies (Andersen, 
2003; Andersen et al., 2001; Fontaine et al., 2007, 2014, 2017; Rosel 
et al., 1995; Rosel, France, et al., 1999; Rosel, Tiedemann, et al., 1999; 
Tolley & Rosel, 2006; Tolley et al., 2001; Wang et al., 1996). Limited 
sample size, disparate geographic sampling and genetic markers, 
lack of resolution in genetic markers, and heterogeneous method-
ologies (reviewed in Andersen, 2003; Fontaine, 2016; NAMMCO & 
IMR, 2019) contributed to maintaining an incomplete understand-
ing of the population structure and evolutionary history across the 
North Atlantic. The present study aims at filling this gap by compiling 
a fairly comprehensive sampling over the entire species distribution 

range in the North Atlantic, focusing on a synchronous cohort col-
lected between 1990 and 2000 and including a spatiotemporal per-
spective of how suitable habitats changed since the LGM and how 
it will evolve in the near future under the most aggressive (RCP8.5) 
scenario of the IPCC.

4.1 | A new mtDNA lineage in harbor porpoises 
from Western Greenland waters

The discovery of a new divergent mtDNA lineage not previously un-
covered in the North Atlantic is a major finding of this study. This 
haplotype, carried by a single individual from western Greenland 
(WGLD), displayed the same level of divergence as the three other 
subspecies previously identified in the North Atlantic and Black Sea 
(Figure 2, Figures S3a,b and S4a). The phylogenetic tree (Figure 2) 
ruled out the possibility that this haplotype could come from mi-
grants from the North Pacific. The genetic divergence between 
Pacific and Atlantic porpoises is indeed far larger than the diver-
gence observed between lineages present in the North Atlantic and 
Black Sea waters. Divergence time estimates between porpoises 
from the two ocean basins were consistent with a split between 0.7 
and 0.9 Myr ago (Tolley & Rosel, 2006). This contrasts with the poly-
tomy observed among the four Atlantic– Black Sea mtDNA lineages 
in the phylogenetic tree, suggesting a rapid split between the sub-
species previously estimated during the height of the LGM ~20 kyr 
BP (Fontaine, 2016; Fontaine et al., 2010, 2014).

This new mtDNA lineage in Western Greenland is reminiscent 
of the recent discovery of a cryptic ecological group of harbor por-
poises in the exact same area by Nielsen et al., (2018). Satellite track-
ing of 30 WGLD individuals revealed that they were using oceanic 
habitats and were diving to depths that enable mesopelagic forag-
ing, contrasting with the demersal feeding habits in shallow waters 
(within 200 m) usually reported so far for this species. These distinc-
tive migratory and diving behaviors suggested that WGLD porpoises 
could belong to a unique oceanic ecotype, distinct from neighboring 
P. p. phocoena populations. Moreover, Nielsen et al. (2019) found, 
based on preliminary analyses of single nucleotide polymorphism 
(SNP) markers, that individuals from this ecotype displayed shal-
low but significant genetic differentiation and admixture with the 
neighboring populations. The highly divergent haplotype uncovered 
here in one individual sampled opportunistically between 1990 and 
2000 may belong to this ecologically distinct group. This particular 
individual was not distinguishable with the nuclear microsatellite loci 
from other P. p. phocoena demes. The shallow nuclear divergence 
seems thus in contrast with the relatively deep mtDNA divergence. 

F I G U R E  6   Maps showing the predicted habitat suitability for harbor porpoises throughout the North Atlantic and adjacent seas during 
three time periods generated using AquaMaps environmental niche modeling and input parameter settings described in Table S9, excluding 
salinity as predictor. Yellow to red colors represent least to most suitable habitat, respectively, based on the AquaMaps habitat model. Light 
to dark green colors represent the proportion of sea ice concentrations (%). Emerged lands are displayed in gray. Blue dots on the current 
map show individual locations of the porpoise samples used in this study
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This likely comes from the fact that the mtDNA molecule does not 
recombine, in contrast to nuclear markers. MtDNA traces maternal 
ancestry back to the most recent common ancestor (MRCA) with-
out being broken down by recombination and thus without being 
impacted by homogenizing effects of gene flow with other lineages. 
We cannot completely rule out that this divergent mtDNA haplotype 
may reflect past population divergence that does not exist anymore. 
The haplotype may still persist at low frequency in the population 
without being broken down by recombination due to incomplete lin-
eage sorting. This could explain the lack of distinctiveness of this 
individual at the nuclear microsatellite markers, despite the per-
sistence of a divergent mtDNA haplotype. Future studies with a 
larger sample size and genome- scale genetic markers shall examine 
in greater detail the genetic structure and evolutionary history of 
this peculiar group.

Nevertheless, the equal degree of divergence between this 
new mtDNA lineage and the other Atlantic and Black Sea lineages 
(Figure 2, Figure S3a,b and S4a) suggests that they all split almost 
at the same time during the LGM (Fontaine et al., 2014). They must 
thus have remained isolated in allopatry long enough to allow 
mtDNA divergence to build up. We may speculate that this cryptic 
lineage could have emerged during the LGM in the oceanic waters 
surrounding the Azores, where the offshore behavior of this group 
could have evolved. Even if once considered highly improbable, the 
occurrence of an offshore porpoise population in the Azores has 
been suggested multiple times in the past, with even one strand-
ing case reported in January 2004 on the Azorean coasts (Barreiros 
et al., 2006). Our habitat modeling showed that Azorean waters 
were also suitable for porpoises during the LGM (Figure 6; Figures 
S16 and S17). Interestingly, the Azores were a glacial refugia for mul-
tiple benthic and pelagic marine species in the North Atlantic (Maggs 
et al., 2008), such as the thornback rays (Raja clavata (L.), Rajidae) 
(Chevolot et al., 2006), Montagu's blenny (Coryphoblennius galerita, 
Blenniidae) (Francisco et al., 2014), or ballan wrasse (Labrus berg-
ylta) (Almada et al., 2017). One could thus speculate that the fourth 
mtDNA lineage of the oceanic harbor porpoises in WGLD waters 
could come from a glacial refugium in the Azores.

4.2 | No genetic evidence of leading- edge effect in 
P. p. phocoena

It was originally hypothesized that harbor porpoises on each side 
of the North Atlantic could have been isolated from each other in 
distinct glacial refugia, recolonizing northern waters from differ-
ent southern refugia (Gaskin, 1984; Rosel, Tiedemann, et al., 1999; 
Yurick & Gaskin, 1987). Our results and previous ones (Fontaine, 
2016; Fontaine et al., 2014) suggest that the evolutionary history of 
the species during the Pleistocene is far more complex in the Atlantic 
and Black Sea. Porpoises around the Mediterranean Sea, from which 
descended IBMA and P. p. relicta (Fontaine, 2016; Fontaine et al., 
2014), evolved independently from other Atlantic populations dur-
ing the LGM, likely driven by environmental changes that deeply 

impacted habitat suitability in that area (Figure 6, Figures S16– 
S18). Furthermore, an oceanic refugium (e.g., in the Azores) is also 
possible (Figure 6, Figures S16– S18) and could explain the distinct 
oceanic ecotype discovered by Nielsen et al. (2018). The evolution-
ary history of the most widespread P. p. phocoena subspecies north 
of Biscay remained, however, debated. Our results showed that 
P. p. phocoena porpoises on both side of the North Atlantic belong 
to a same mtDNA lineage with high haplotype diversity. This sug-
gests they formed a coherent genetic group during the LGM. This 
rules out previous hypotheses that two distinct genetic groups re-
colonized northern waters with a contact zone somewhere in the 
middle Atlantic, or between Iceland and Norway (Rosel, Tiedemann, 
et al., 1999; Tolley et al., 2001) or by the Davis Strait (Gaskin, 1984; 
Yurick & Gaskin, 1987). Here, we show that no such genetic frac-
tures occurred among demes within P. p. phocoena, in contrast with 
the sharp increase in genetic differentiation observed between dis-
tinct subspecies, for example in the Bay of Biscay (Figure S10). One 
could argue that not enough generations elapsed since the LGM for 
genetic differentiation to capture demographic isolation that could 
have occurred on each side of the North Atlantic, due for example 
to incomplete lineage sorting. Such a lag time between demographic 
and genetic differentiation is known as the “gray zone of popula-
tion differentiation” and has been investigated using empirical and 
simulation- based studies (Bailleul et al., 2018; Gagnaire et al., 2015), 
including cetacean species such as harbor porpoises (Ben Chehida 
et al., 2019). This period of time during which genetics would not 
capture demographic population differentiation is a function of the 
local effective population size (Ne) that conditions the strength of 
genetic drift. We showed recently using simulations that such a 
“gray zone” would be short in cetacean species such as porpoises, 
displaying relatively low fecundity and small Ne (Ben Chehida et al., 
2019). Assuming that two populations would split with no gene flow 
between them and that each one has an Ne value of 1000 diploid 
individuals, it would take less than 8 generations (80 years assum-
ing a generation time of 10 years for porpoises) to be able detect 
highly significant FST values using 10 diploid nuclear microsatellite 
markers and four time less with haploid markers such as the mtDNA. 
Therefore, the lack of genetic fracture between eastern and western 
North Atlantic demes of P. p. phocoena at both mtDNA and nuclear 
microsatellite markers is not the result of a population gray zone ef-
fect. It rather suggests this subspecies remained unfragmented dur-
ing the LGM or that any subdivisions that previously existed were 
erased by dispersal during the postglacial colonization of northern 
waters progressively freed from Pleistocene ice.

Another hypothesis previously suggested that porpoises may 
have retreated and contracted in a southern refugia in the Northwest 
Atlantic during the LGM, and then rapidly expanded into northern 
waters, and colonized the Northeast Atlantic and North Sea follow-
ing the retreat of the last Pleistocene glaciers (Rosel, Tiedemann, 
et al., 1999; Tolley et al., 2001). Such a hypothesis was previously 
supported by higher genetic diversity at the mtDNA- CR in the 
Northwest compared with the Northeast Atlantic (Rosel, Tiedemann, 
et al., 1999). Our habitat modeling predictions during the LGM 
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(Figure 6, Figures S16 and S17) showed that habitats remained avail-
able in the Northwest Atlantic, but in central and Northeast Atlantic 
as well. Furthermore, our reassessment of the genetic variation at 
one quarter of the mitogenome sampled in unrelated individuals 
and a statistical rarefaction procedure that accounts for difference 
in sample size among regions did not capture any significant spatial 
variation in mtDNA genetic diversity nor any significant differences 
between the Northwest and Northeast Atlantic demes (Table S4, 
Figures S13a and S14a). Our results suggest instead that no major 
population contraction occurred in P. p. phocoena during the LGM. 
This agrees with our previous results based on coalescent- based 
inferences that showed a steady increase in effective population 
size of P. p. phocoena porpoises in the Northeast and central North 
Atlantic since the time of the MRCA (TMRCA) more than 50 kyr ago 
without any evidence of historical population contractions (Fontaine 
et al., 2014). This suggests that even if suitable habitats for this sub-
species contracted by a factor of three, as suggested by our habitat 
modeling and shifted southwards (Figure 6, Figures S16– S18), it did 
not induce major population contractions or that local loss of diver-
sity was compensated by recolonization through dispersal among 
neighboring demes, leaving no detectable imprints on the genetic 
variation of the mtDNA and microsatellite markers.

Postglacial recolonization of the northern habitats released from 
Pleistocene ice could have generated a leading- edge effect as pos-
tulated previously for the North Atlantic harbor porpoises (Rosel, 
Tiedemann, et al., 1999; Tolley et al., 2001). However, our results are 
not consistent with the expectations under such a model. Under a 
leading- edge model, populations that have expanded rapidly from a 
core population are expected to experience loss of genetic diversity 
due to genetic drift operating through repeated bottleneck/founder 
events (also called allelic surfing) (Excoffier et al., 2009; Hewitt, 
1996, 1999, 2000). Under such a model, genetic diversity decreases 
progressively from the source populations in the glacial refugium 
toward populations at the colonization front. We did not observe 
any evidence of clinal variation in genetic diversity at the mtDNA 
level in any direction among geographic regions, and especially not 
from southern Northwest to Northeast Atlantic as would have been 
expected under a rapid expansion in this direction. Instead, mtDNA 
diversity was highest in the North Sea, an area among the last to be 
released from the Pleistocene ice, and lowest in Canadian, US, and 
northern Norwegian coasts (Figures S13a and S14a). Spatial varia-
tion in nuclear microsatellite loci was also very comparable among 
P. p. phocoena demes (Figures S13b, S14, and S15). Instead, regional 
variation in genetic diversity is more consistent with local variation 
in census population size, with the highest census population sizes 
reported in the North Sea (NAMMCO & IMR, 2019). This suggests 
that population genetic variation at both mtDNA and microsatellite 
loci has reached an equilibrium state between migration and ge-
netic drift, so- called migration– drift equilibrium. The highly signif-
icant isolation by distance (IBD) that we detected at both mtDNA 
and nuclear microsatellite loci among P. p. phocoena demes provides 
further evidence that migration– drift equilibrium has been reached 
in this group (Hutchison & Templeton, 1999). Thus, in contrast with 

previous studies that suggested a potential leading- edge effect, our 
results based on relatively geographically extensive sampling show 
that the genetic structure reflects more a combination of recent in-
tergenerational dispersal and local effective population size rather 
than a postglacial expansion wave front from southern habitats.

4.3 | Isolation by distance, female philopatry, and 
dispersal across the North Atlantic

The re- establishment of migration– drift equilibrium since the LGM 
could actually be expected given the high dispersal capabilities of 
the harbor porpoise, in particular when considering the effect across 
generations. In highly mobile species forming a continuum with no 
obvious barrier to gene flow, as observed among P. p. phocoena 
demes, high intergenerational dispersal quickly redistributes genetic 
variation among demes. Leblois et al. (2004) showed using simula-
tions that reliable inference of IBD parameters can be done within 
a few tens of generations, assuming temporal and spatial fluctua-
tions of demographic parameters have not been too strong nor too 
recent, which seems to be the case for P. p. phocoena. This suggests 
that migration– drift equilibrium can be restored within that time 
frame. Assuming a generation time of 10 years for harbor porpoise 
(Read, 1999), this means that a few hundred years are required to 
restore migration– drift equilibrium. As a matter of fact, persistence 
in time of the effect of historical demographic fluctuations strongly 
depends on various demographic features, and in particular the 
local effective individual density (D) and the variance of intergen-
erational parent– offspring's dispersal distance (σ2). Both parameters 
combined (Dσ2) form the neighborhood size (4πDσ2). This neighbor-
hood size reflects the local effect of genetic drift and gene flow in a 
stepping stone population model (Rousset, 1997, 2000). The smaller 
the neighborhood size, the stronger local genetic drift is in the face 
of intergenerational gene dispersal, and the stronger that IBD be-
comes. Previously detected in the Northeast Atlantic (Fontaine 
et al., 2007; Tolley & Rosel, 2006), we showed here that IBD extends 
over the entire North Atlantic. This clearly shows that individual dis-
persal across generations is geographically restricted. Therefore, for 
P. p. phocoena, panmixia does not hold at the scale of its complete 
range. Instead, it represents a continuously distributed system under 
isolation by distance where panmixia holds only within the neighbor-
hood size, that is, the demes.

Interestingly, IBD at the mtDNA locus was ten times stronger 
than at the nuclear microsatellite loci. Previous studies reported 
analogous evidence by observing significant genetic differentia-
tion at the mtDNA locus that was weak or absent at microsatellite 
loci among demes in the Northwest Atlantic (Rosel, France, et al., 
1999) and in the Northeast Atlantic (Andersen et al., 2001; Fontaine 
et al., 2007; Tolley & Rosel, 2006). All these results indirectly sug-
gest strong female philopatry in porpoises, which would lead to a 
reduced variance in intergenerational mother– offspring's dispersal 
distance (σ2

mtDNA) and thus to an increase in IBD strength at the ma-
ternally inherited mtDNA locus. In contrast, male- biased dispersal 
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would create highly variable father– offspring's intergenerational dis-
persal distances, thus increasing σ2

microsatellites. Direct observations 
of such female- restricted dispersal driven by female philopatry in 
harbor porpoise were recently demonstrated by satellite tracking 
in West Greenland, the central North Atlantic, and the North Sea 
(Nielsen et al., 2018). Another often neglected factor explaining the 
difference in IBD strength between the two types of markers is the 
difference in effective population size. The maternally inherited hap-
loid mtDNA locus implies a four times smaller effective population 
size at that locus compared with the biparentally inherited diploid 
nuclear microsatellite loci. This means that the neighborhood size, 
and especially the local effective individual density (D), estimated 
for the mtDNA locus is thus also four times smaller than for micro-
satellite loci. Hence, genetic drift is increased in the first compared 
with the second type of marker. Therefore, the combined effect of 
reduced intergenerational mother– offspring's dispersal distance 
driven by female philopatry and the reduced effective mtDNA pop-
ulation size may explain the dramatic differences observed between 
the two types of genetic markers.

4.4 | Conservation and management implications

Harbor porpoises are facing numerous threats driven by human ac-
tivities (e.g., prey depletion due to overfishing, noise disturbance, 
pollution, and potentially climate change), but by- catch mortalities 
in commercial gillnet fisheries are by far the most immediate threat 
to the species (NAMMCO & IMR, 2019). In some regions, by- catch 
mortality is believed to be unsustainable. Assessing the incidence is 
essential to design informative and effective management and con-
servation plans. The International Whaling Commission (Donovan & 
Bjørge, 1995; Gaskin, 1984) and other studies (Evans & Teilmann, 
2009; Fontaine, 2016; NAMMCO & IMR, 2019; Rosel, France, et al., 
1999; Rosel, Tiedemann, et al., 1999) have suggested that local 
demes or subpopulations across the North Atlantic should be treated 
as distinct assessment or management units (MUs). The delimita-
tion of MUs was originally made based on oceanographic, ecologi-
cal, and practical considerations. It was later backed- up by multiple 
lines of evidence ranging from genetic differences to differences 
in skull morphometrics, life- history parameters, stable isotope and 
fatty acid signatures, and movements revealed from radio- tracking 
(Andersen, 2003; Evans & Teilmann, 2009; Lockyer, 2003).

Previous definitions of MUs proposed by the IWCs and 
ASCOBANS were recently reviewed by the IMR and NAMMCO 
report (2019) and still hold for most part in the face of the pres-
ent results. The status of the Iberian and Mauritanian popula-
tions, the IBMA porpoises, was already underlined previously as 
ecologically distinct groups displaying subspecies level genetic di-
vergence similar to porpoises from the Black Sea. They are locally 
adapted to the upwelling environments off Iberia and NW Africa, 
with low population size and relatively isolated from neighboring 
populations (Fontaine, 2016; Fontaine et al., 2007, 2014; and see 

the assessment of the NAMMCO & IMR, 2019). Porpoises north 
of the Bay of Biscay belong to the P. p. phocoena subspecies. The 
very strong IBD detected at the mtDNA and, to a lesser extent, 
at microsatellite markers illustrates how geographically restricted 
dispersal is for this species. Local variation in IBD strength was 
reported here and previously (Fontaine et al., 2007) and reflects 
local variation in census size, dispersal behavior, and local habitat 
variation. Therefore, demes of the P. p. phocoena subspecies across 
the North Atlantic are far from a simple random mating unit. The 
strength of the IBD and its local variation suggest that local demes 
display variable demographic properties across the subspecies 
range, which is a function of local individual density and connectiv-
ity among neighboring demes. They are thus likely differentially im-
pacted by fisheries by- catch. They should thus certainly be treated 
as distinct MUs for conservation and management assessments. 
The impact of by- catch in such a continuous stepping stone system 
under IBD is still poorly understood. It would require an in- depth 
treatment using simulations, modeling this system with realistic 
demographic parameters informed by direct (e.g., field survey and 
satellite tracking) or indirect estimations such as those provided 
by population genetics. This would allow assessing the resilience 
of harbor porpoises in the face of observed by- catch rates. Such 
simulations would be a valuable tool to assess the status of local 
demes across the North Atlantic, to design tailored conservation 
strategies, and identify areas of the species distribution range that 
are at high risk of local depletion that could disrupt gene flow and 
fragment populations.

All the individuals used in this study were sampled between 1990 
and 2000. The genetic structure depicted here may thus just repre-
sent a temporal snapshot and may have already changed with the 
accelerated environmental changes we are experiencing. Ongoing 
environmental changes for instance have triggered profound reor-
ganization of the North Atlantic ecosystems with impacts first upon 
primary production and in turn influenced top predators including 
harbor porpoises (Evans & Waggitt, 2020; Heide- Jørgensen et al., 
2011; Lambert et al., 2014; MacLeod et al., 2005). Depletion of 
prey stocks induced by overfishing (Worm & Lotze, 2009) and the 
high rate of by- catch (NAMMCO & IMR, 2019; Orphanides & Palka, 
2013) may have fostered habitat fragmentation and impacted the 
distribution of harbor porpoises, which could ultimately constitute 
a major threat for this small cetacean (Braulik et al., 2020; Evans, 
2020; NAMMCO & IMR, 2019). It is thus paramount to reassess har-
bor porpoise genetic spatial structure with more recent samples to 
evaluate how it has evolved over the past 30 years. Finally, the pat-
tern underlined in this study will provide key insights useful for de-
vising management plans and model the future evolution of harbor 
porpoises with the forecasted climate changes. The AquaMap model 
predictions for the year 2050 under the most aggressive model 
(Figure 6, Figures S16– S18) show that abiotic environmental suit-
ability for this particular species will not change dramatically com-
pared with the present one. However, this model does not account 
for change in primary production and shifts in prey distributions. 
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Porpoises are already impacted by climate change through the redis-
tribution of their prey, as already observed (Evans & Waggitt, 2020; 
Hammond et al., 2002, 2013; Heide- Jørgensen et al., 2011; Lambert 
et al., 2014; Mahfouz et al., 2017; NAMMCO & IMR, 2019).

The joint IMR- NAMMCO workshop on the status of harbor por-
poises (2019) concluded that despite the absence of clear genetic 
discontinuities between porpoise demes across the P. p. phocoena 
distribution, pragmatic management units should be implemented 
using local connectivity assessment among areas and ecological and 
demographic information, while accounting for the possibility for 
porpoises to mix across certain units. This workshop (NAMMCO & 
IMR, 2019) also stressed the need for international collaborations 
to efficiently monitor porpoises over their distribution range and to 
continuously reassess these management units as the population 
structure highlighted here, and therefore, the suitable conservation 
measures might change in the future.

5  | CONCLUSION

In the present study, we confirmed the undoubtedly deep separa-
tion existing between Pacific and Atlantic harbor porpoises that 
was previously identified as well as the acknowledged distinct 
ecotypes or subspecies of harbor porpoises previously reported 
in the Northeast Atlantic, Iberian, and NW African upwelling wa-
ters, and Black Sea. However, we also discovered a new divergent 
mitochondrial lineage in one individual from West Greenland wa-
ters, suggesting that a fourth ecotype may exist. It may be related 
to the new oceanic group of porpoises recently identified in that 
area, which could have emerged during the LGM in an offshore 
glacial refugium (e.g., Azorean waters). These distinct ecotypes 
likely display specific adaptations, as suggested by their distinct 
behaviors, feeding ecology, habitat use, and genetic ancestries. 
Future genomic studies will certainly refine the evolutionary his-
tory of each ecotype and shed light on how natural selection may 
have contributed to their distinctiveness (Cammen et al., 2016). 
Besides additional genomic studies, knowledge about their habitat 
use, foraging preferences, demography, morphology, life history, 
and behaviors is dearly required. Approaches such as niche habi-
tat modeling, fatty acid and stable isotope analyses, and satellite 
tracking should be implemented on each ecotype or subspecies 
to better grasp the nature of their differentiation and evolution-
ary trajectories. Our study suggests that harbor porpoise sub-
populations from Northwest to Northeast Atlantic waters north 
of Biscay form a highly interconnected system without any major 
genetic discontinuities. However, it is important to realize that 
this large- scale continuous system is not a panmictic unit and in 
terms of conservation should be managed accordingly. The results 
of the present study complemented with further research on har-
bor porpoise life history, demography, and ecology are critical to 
formulate management plans and improve the monitoring of the 
North Atlantic harbor porpoise in the context of the current cli-
mate crisis.
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