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Abstract. Let Ω be a bounded domain in RN ; N > 1 with a smooth boundary or
Ω = (0, 1). We study positive solutions to the boundary value problem of the form:

−∆pu− ∆qu = λ f (u) in Ω,

u = 0 on ∂Ω,

where q ∈ [2, p), λ is a positive parameter, and f : [0, ∞) 7→ R is a class of C1, non-
decreasing and p-sublinear functions at infinity (i.e. limt→∞

f (t)
tp−1 = 0) that are negative

at the origin (semipositone). We discuss the existence of positive solutions for λ �
1. Further, when p = 4, q = 2, Ω = (0, 1) and f (s) = (s + 1)γ − 2; γ ∈ (0, 3), we
provide the exact bifurcation diagram for positive solutions. In particular, we observe
two positive solutions for a finite range of λ and a unique positive solution for λ� 1.
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1 Introduction

In [3], authors discussed results which imply the existence of positive solutions for λ� 1 for
the boundary value problem:

−∆pu = λ f (u) in Ω,

u = 0 on ∂Ω,
(1.1)

where p > 1, Ω is a bounded domain in RN ; N > 1 with a smooth boundary, λ is a positive
parameter, and ∆su = div |∇u|s−2∇u); s > 1, and f : [0, ∞)→ R satisfies:

(H1) f is C1, non-decreasing, p-sublinear at infinity
(
i.e. limt→∞

f (t)
tp−1 = 0

)
,
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(H2) f (0) < 0,

(H3) limt→∞ f (t) = ∞.

In the literature, such problems where f (0) < 0, are referred as semipositone problems. It is
well known that establishing the existence of a positive solution for semipositone problems
are challenging, see [1, 4, 9, 10] and references therein.

In recent years, there has been considerable interest to study boundary value problems
involving the p–q Laplacian operator (−∆p − ∆q, q ∈ (1, p)), for examples, see [2, 5, 8, 11] and
the references therein. Such operators often occur in the mathematical modelling of chemical
reactions and plasma physics. In this article, we extend this study of p–q Laplacian boundary
value problem for a class of semipositone reaction terms. Namely, we study the boundary
value problem

−∆pu− ∆qu = λ f (u) in Ω,

u = 0 on ∂Ω,
(1.2)

for q ∈ [2, p). We establish the following result.

Theorem 1.1. Assume (H1), (H2) hold and there exists A > 0, σ > 0 such that

f (s) ≥ Asσ, for s� 1.

Then (1.2) has a positive solution for λ� 1.

Remark 1.2. It is easy to see that (1.2) does not admit any positive solution for λ ≈ 0. This
follows due to the p-sublinear condition at infinity which implies there exists a M > 0 such
that f (s) ≤ Msp−1, ∀s > 0. Hence, if u is a positive solution, multiplying (1.2) by u and
integrating we obtain ∫

Ω
|∇u|pdx +

∫
Ω
|∇u|qdx ≤ λM

∫
Ω
|u|pdx

which implies

λ ≥
(

1
M

)(∫
Ω |∇u|p dx∫

Ω |u|p dx

)
≥

λ1,p

M
,

where λ1,p > 0 is the principal eigenvalue of −∆p on Ω with Dirichlet boundary condition.

We will use the method of sub-super solutions to establish Theorem 1.1. We will adapt
and extend the ideas used in [3] to construct a crucial positive sub-solution.

Finally, for the case when Ω = (0, 1), p = 4 and q = 2, namely to the two-point boundary
value problem:

−[(u′)3]′ − [(u′)]′ = λ f (u) in (0, 1),

u(0) = 0 = u(1)
(1.3)

with f (s) = (s + 1)r − 2; r ∈ (0, 3), we will provide exact bifurcation diagrams for positive
solutions in Section 4. Bifurcation diagrams we obtained are of the form given in Figure 1.1.
Note that this bifurcation diagram implies the existence of two positive solutions for certain
finite range of λ and a unique positive solution for λ� 1.

The rest of the paper is organized as follows. In Section 2, we will recall some important
results that are required for the development of this article. Section 3 is dedicated to the proof
of Theorem 1.1, and Section 4 is devoted to obtaining the bifurcation diagram of positive
solutions to (1.3).
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Figure 1.1: Bifurcation diagram for positive solutions to (1.3)

2 Preliminaries

In this section, we recall some results concerning a sub-super solution method for p–q Lapla-
cian boundary value problem. First, by a weak solution of (1.2) we mean a function u ∈
W1,p

0 (Ω) which satisfies:∫
Ω
|∇u|p−2∇u.∇φ +

∫
Ω
|∇u|q−2∇u.∇φ = λ

∫
Ω

f (u)φ, ∀φ ∈ C∞
0 (Ω).

However, in this paper, we in fact study C1(Ω) solution. Next, by a sub-solution (super
solution) of (1.2) we mean a function v ∈ W1,p(Ω) ∩ C1(Ω) such that v ≤ (≥) 0 on ∂Ω and
satisfies:∫

Ω
|∇v|p−2∇v.∇φ +

∫
Ω
|∇v|q−2∇v.∇φ ≤ (≥) λ

∫
Ω

f (v)φ, ∀φ ∈ C∞
0 (Ω), φ ≥ 0 in Ω.

Then the following sub-super solution result holds.

Lemma 2.1. Let ψ, z be sub and super solutions of (1.2) respectively such that ψ ≤ z in Ω. Then (1.2)
has a solution u ∈ C1(Ω) such that ψ ≤ u ≤ z.

Proof. We refer to Corollary 1 of [6] for the proof.

3 Proof of Theorem 1.1

In this section, we use sub-super solution method to prove Theorem 1.1. We adapt and extend
the ideas used in [3] to construct a crucial positive sub-solution.

Construction of a sub-solution : Let λ1 be the principal eigenvalue and φ1 ∈ C∞(Ω) be the
corresponding eigenfunction of

−∆φ1 = λ1φ1 in Ω,

φ1 = 0 on ∂Ω

such that φ1 > 0 in Ω and ‖φ1‖∞ = 1. Then ∆pφ1, ∆qφ1 are in L∞(Ω), since 2 ≤ q < p. Further,
by Hopf’s lemma |∇φ1| > 0 on ∂Ω. Now we consider

ψ = λrφ
β
1 , where β =

p
p− 1

and r ∈
(

1
p− 1

,
1

p− 1− σ

)
.
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Note that without loss of generality we can assume σ < q− 1. Then, for s = p, q,

−∆sψ = λr(s−1)βs−1φ
(β−1)(s−1)
1 [−∆sφ1]− λr(s−1)βs−1(β− 1)(s− 1)

|∇φ1|s

φ
s−β(s−1)
1

.

Note that s− β(s− 1) = 0 when s = p and s− β(s− 1) > 0 when s = q. Also, |∇φ1| > 0 on
∂Ω, φ1 = 0 on ∂Ω and φ1 ∈ C∞(Ω). Therefore, by continuity, there exists a δ neighborhood of
∂Ω, say Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ} such that

− ∆sψ < 0 in Ωδ (3.1)

for s = p, q. Further, since ∆pφ1 ∈ L∞(Ω) we see that ∃ εp > 0 (independent of λ) such that

−∆pψ ≤ −λr(p−1)εp in Ωδ.

As r(p− 1) > 1, for λ� 1 it follows that

−∆pψ ≤ −λr(p−1)εp ≤ λ f (0) ≤ λ f (ψ) in Ωδ.

Hence, by (3.1) for λ� 1 we have

− ∆pψ− ∆qψ ≤ λ f (ψ) in Ωδ. (3.2)

Next let µ > 0 be such that φ
β
1 ≥ µ in Ω \Ωδ and Ms > 0 (s = p, q) be such that −∆sψ ≤

Msλ
r(s−1) in Ω. Since r < 1

s−1−σ (s = p, q), it follows that for λ� 1 we have

−∆sψ ≤ Msλ
r(s−1) ≤

(
λA
2

)
(λrµ)σ

≤
(

λ

2

)
f (ψ) in Ω \Ωδ.

Thus, for λ� 1, we obtain

− ∆pψ− ∆qψ ≤ λ f (ψ) in Ω \Ωδ. (3.3)

Combining (3.2) and (3.3), for λ� 1 we see that

− ∆pψ− ∆qψ ≤ λ f (ψ) in Ω. (3.4)

Therefore, ψ is a sub-solution of (1.2) when λ� 1.

Construction of a super solution: Let R > 0 be such that Ω ⊆ BR(0), where BR(0) is the open
ball of radius R centered at origin. Now consider

η(r) =
1− ( r

R )
p′

p′
on BR,

where 1
p +

1
p′ = 1. Notice that 0 ≤ η ≤ 1. Also for 0 ≤ r ≤ R,

η′(r) = − rp′−1

Rp′ ,

− ∆sη = −
(
|η′(r)|s−2η′(r)

)′
=

(
r(p′−1)(s−1)

Rp′(s−1)

)′
≥ 0 in BR, (3.5)
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for s = p, q. In particular,

− ∆pη =
1

Rp . (3.6)

Now let Z = M(λ)η, where M(λ) � 1 so that [M(λ)]p−1

f (M(λ))
≥ λRp. Note that this is possible by

(H1). Then, using that f is non-decreasing, (3.5) and (3.6) we have

− ∆pZ− ∆qZ ≥ −∆pZ =
M(λ)p−1

Rp ≥ λ f (M(λ)) ≥ λ f (Z) in BR. (3.7)

Clearly Z ≥ 0 on ∂Ω and hence it is a super solution of (1.2).

Proof of Theorem 1.1. Let ψ be a sub-solution of (1.2) for λ � 1 (as constructed in (3.4)).
Then, we can construct a super solution Z of (1.2) (as constructed in (3.7)). Further, since
Z > 0 in Ω, we can choose M(λ)� 1 such that Z ≥ ψ in Ω. Hence by Lemma 2.1, (1.2) has a
positive solution uλ ∈ [ψ, Z] for λ� 1 and Theorem 1.1 is proven.

4 Bifurcation diagram for positive solutions to (1.3)

Here we adapt and extend the method used by Laetsch in [7] where he studied the boundary
value problem: −u′′ = λ f (u); (0, 1), u(0) = 0 = u(1). First we note that since (1.3) is au-
tonomous, any positive solution u must be symmetric about x = 1

2 , increasing on (0, 1
2 ), and

decreasing on ( 1
2 , 1). Let u( 1

2 ) = ρ (say).

Figure 4.1: Shape of a positive solution to (1.3)

Now multiplying (1.3) by u′ and integrating we obtain

−3
4
[(u′)4]′ − 1

2
[(u′)2]′ = λ(F(u))′ in (0, 1)

where F(s) =
∫ s

0 f (z)dz. Further integrating we obtain

3[u′(x)]4 + 2[u′(x)]2 = 4λ[F(ρ)− F(u(x))] in [0, 1
2 ]

and hence

u′(x) =

√[
1 + 12λ(F(ρ)− F(u(x)))

] 1
2 − 1

√
3

in [0, 1
2 ]. (4.1)
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Figure 4.2: Shape of a function F

Noting that u′(0) =

√
[1+12λF(ρ)]

1
2−1√

3
, it is easy to see that ρ must be greater or equal to θ where

θ is the position zero of F. Integrating (4.1) we get∫ u(x)

0

ds√[
1 + 12λ(F(ρ)− F(s))

] 1
2 − 1

=
x√
3

in [0, 1
2 ), (4.2)

and setting x → ( 1
2 )
− we obtain

G(λ, ρ) =
∫ ρ

0

ds√[
1 + 12λ(F(ρ)− F(s))

] 1
2 − 1

=
1

2
√

3
. (4.3)

Figure 4.3: Bifurcation diagrams for (1.3) when f (s) = (s + 1)γ − 2; γ =

0.85, 1.25, 1.5, 2.0, 2.5.

It can be shown that that for λ > 0 and ρ ≥ θ, G(λ, ρ) is well defined. Further, if λ > 0,
ρ ≥ θ satisfies (4.3), then (4.2) yields a C2 function u : [0, 1

2 ) → [0, ρ) such that u(x) → ρ as
x → ( 1

2 )
−. Extending this function on [0, 1] so that u( 1

2 ) = ρ, and it is symmetric about x = 1
2 ,

it can be shown that it will be a positive solution of (1.3). Hence the bifurcation diagram for
positive solutions to (1.3) is given by:

S =
{
(λ, ρ) | λ > 0, ρ ≥ θ & G(λ, ρ) = 1

2
√

3

}
. (4.4)

Now, when f (s) = (s + 1)γ − 2; γ ∈ (0, 3), we compute S using Mathematica. In partic-
ular, here are the bifurcation diagrams we obtained for γ = 0.85, 1.25, 1.5, 2.0 and 2.5 (see
Figure 4.3).
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