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Abstract. We focus on a system of two competing species with cross-diffusion and self-
diffusion. By constructing an appropriate auxiliary function, we derive the sufficient
conditions such that there are no coexisting steady-state solutions to the model. It is
worth noting that the auxiliary function constructed above is applicable to Dirichlet,
Neumann and Robin boundary conditions.
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1 Introduction

In this work, we study the steady-state solutions of the following competing systems with
cross-diffusion and self-diffusion:

∂u
∂t

= ∆[(d1 + a11u + a12v)u] + u(a1 − b1u− c1v), x ∈ Ω, t > 0,

∂v
∂t

= ∆[(d2 + a21u + a22v)v] + v(a2 − b2u− c2v), x ∈ Ω, t > 0,

α1u + β1
∂u
∂ν

= α2v + β2
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)

where Ω ⊂ Rn(n ≥ 1) is a bounded domain with smooth boundary, u and v are the densities
of two competing species, αi, βi and aij (i, j = 1, 2) are nonnegative constants, ai, bi, ci and
di (i = 1, 2) are all positive constants, a11 and a22 stand for the self-diffusion pressures, while
a12 and a21 are the cross-diffusion pressures, a1, a2 represent the intrinsic growth rates of
the two species, b1, c2 describe the intra-specific competitions, while b2, c1 describe the inter-
specific competitions, and d1, d2 are their diffusion rates.
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System (1.1) was first proposed by Shigesada, Kawasaki and Teramoto [10] in 1979 to
investigate the spatial segregation of interacting species. In the last several decades, a great
deal of mathematical effort has been devoted to the study of the model. For the smooth
solutions of the system (1.1) with homogeneous Neumann boundary conditions, [4] and [11]
obtained the global existence and boundedness in a bounded convex domain. We refer to
[2, 3, 5–7] for the study of the positive steady-state solutions. For instance, Lou and Ni [2]
established the sufficient conditions for the existence and nonexistence of nonconstant steady-
state solutions in the strong and weak competition case, respectively. When a21 = a22 = 0, Lou
et al. [5] provided the parameters ranges such that the system has no nonconstant positive
solutions for a11 = 0 and a11 6= 0, respectively.

For literatures about the system (1.1) under homogeneous Dirichlet boundary conditions,
see [1, 8, 12, 14] and references therein. In [9], by the decomposing operators and the theory
of fixed point, Ryn and Ahn discussed the existence of the positive coexisting steady-state of
system (1.1) for two competing species or predator-prey species.

Motivated by [5], we introduce the effect of self-diffusion and consider the model under
three boundary conditions. Our purpose is to establish the sufficient conditions such that the
following system has no coexisting solutions:

∆[(d1 + αv)u] + u(a1 − b1u− c1v) = 0, x ∈ Ω,

∆[(d2 + βv)v] + v(a2 − b2u− c2v) = 0, x ∈ Ω,

α1u + β1
∂u
∂ν

= α2v + β2
∂v
∂ν

= 0, x ∈ ∂Ω,

(1.2)

where αi ≥ 0, βi ≥ 0 and αi + βi > 0 for i = 1, 2. In what follows, we always assume
that α ≥ 0, β ≥ 0, ai > 0, bi > 0, ci > 0 and di > 0 for i = 1, 2. To achieve that, the main
tools we use are the strong maximum principle, Hopf’s boundary lemma and the divergence
theorem. Since u and v represent species densities, we are interested in the nonnegative
classical solution (u, v) of (1.2), which means that (u, v) ∈ (C1(Ω) ∩ C2(Ω))2, u, v ≥ 0 in Ω,
and satisfies (1.2) in the pointwise sense.

The remainder of this work is organized as follows. In Section 2, we show that the non-
negative classical solutions are strictly positive if they are not identically equal to zero, which
plays a key role in the proof of main theorems. Section 3 constructs an auxiliary function,
which can be used to produce contradictions, and thus parameter ranges for nonexistence of
coexisting steady-state solutions will be obtained under three boundary conditions.

2 Preliminaries

Let us first give the following proposition by applying the strong maximum principle, which
indicates that nonnegative classical solutions are strictly positive if they are nontrivial.

Proposition 2.1. Suppose that (u, v) is a nonnegative classical solution of (1.2). Then if u 6≡ 0, we
have u > 0 in Ω, and if v 6≡ 0, we have v > 0 in Ω.

Proof. We only prove u > 0 in Ω whenever u 6≡ 0, since the positivity of v in Ω can be proved
in a similar way. Let w = (d1 + αv)u. Due to d1 > 0, α ≥ 0 and v ≥ 0 in Ω, it suffices to prove
w > 0 in Ω. Otherwise, there is x0 ∈ Ω such that w(x0) = minx∈Ω w(x) = 0.

It follows from the first equation of (1.2) that

∆w + u(a1 − b1u− c1v) = ∆w +
a1 − b1u− c1v

d1 + αv
· w = 0.
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Let

Lw = −∆w + cw with c =
b1u + c1v
d1 + αv

.

Then
c ≥ 0 and Lw =

a1w
d1 + αv

≥ 0 in Ω.

So, an application of the strong maximum principle shows that w is constant in Ω, and
thus w = 0, a contradiction to u 6≡ 0. This completes the proof.

Remark 2.2. When αi = 0 and βi > 0 for i = 1, 2, that is, in the case of Neumann boundary
conditions, we can get further that u, v > 0 in Ω by Hopf’s boundary lemma.

Next, we list two lemmas about the existence of positive solutions for single equation under
Dirichlet or Robin boundary conditions, which can reveal the existence of semi steady-state
solution of system (1.2). The following lemma comes from Theorem 2.1 in [8].

Lemma 2.3. Consider the following problem:{
− ∆[(d + γw)w] = w(a− bw), x ∈ Ω,

w = 0, x ∈ ∂Ω,
(2.1)

where a, b, d are positive constants and γ is nonnegative constant. Let λd
1 > 0 denote the first eigen-

value of −∆ with the homogeneous Dirichlet boundary condition on ∂Ω. If

λd
1 <

a
d

,

then problem (2.1) has a unique positive solution.

From now on, if λd
1 < a1

d1
and λd

1 < a2
d2

, we denote u∗ and v∗ as the unique positive solution
of systems {

− d1∆u + (b1u− a1)u = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

and {
− ∆[(d2 + βv)v] + (c2v− a2)v = 0, x ∈ Ω,

v = 0, x ∈ ∂Ω,

respectively.
For Robin boundary conditions, the corresponding result can be found in Theorem 2.10

of [9].

Lemma 2.4. Consider the following system:
− ∆[(d(x) + γw)w] = w(a(x)− bw), x ∈ Ω,

δw + η
∂w
∂ν

= 0, x ∈ ∂Ω,
(2.2)
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where γ is a nonnegative constant, b, δ, η are positive constants and d(x), a(x) ∈ C2(Ω) with d(x) >
0 for all x ∈ Ω. If ∂

∂ν (d(x)) ≤ 0 on ∂Ω and λ1(d(x), a(x), δ, η) > 0, then (2.2) has a unique positive
solution, where

λ1(d(x), a(x), δ, η) =

∫
Ω

(
− |∇[d(x)φ1]|2 + d(x)a(x)φ2

1

)
−
∫

∂Ω d(x)
[

δ
η d(x)− ∂d(x)

∂ν

]
φ2

1

‖
√

d(x)φ1‖2
L2(Ω)

denotes the principal eigenvalue with eigenfunction φ1 of the following eigenvalue problem:
∆[(d(x)φ] + a(x)φ = λφ, x ∈ Ω,

δφ + η
∂φ

∂ν
= 0, x ∈ ∂Ω.

Similarly, if λ1(d1, a1, α1, β1) > 0 and λ1(d2, a2, α2, β2) > 0, we write u∗∗ and v∗∗ as the
unique positive solution of systems

− d1∆u + (b1u− a1)u = 0, x ∈ Ω,

α1u + β1
∂u
∂ν

= 0, x ∈ ∂Ω,

and 
− ∆[(d2 + βv)v] + (c2v− a2)v = 0, x ∈ Ω,

α2v + β2
∂v
∂ν

= 0, x ∈ ∂Ω,

respectively.

3 Steady-state solutions

Now we give the main theorems of this work. When the intra-competition and inter-competition
parameters of one species are greater than inter-competition and intra-competition of the
other, respectively, whereas the intrinsic growth rate is less than that of the other, we explore
two different sufficient criteria for nonexistence of coexisting solutions of system (1.2).

3.1 Dirichlet boundary conditions

Theorem 3.1. Let αi > 0, βi = 0 for i = 1, 2, α ≥ 0 and β ≥ 0. Assume that (u, v) is a nonnegative
classical solution of (1.2). If

(i) b1 > b2, c1 > c2, a1 < a2, d1 ≥ d2 and α ≥ β

or
(ii) b1 < b2, c1 < c2, a1 > a2, d1 ≤ d2 and α ≤ β,

then we have either
(u, v) ≡ (0, 0),

or
(u, v) = (u∗, 0) if λd

1 <
a1

d1
,

or
(u, v) = (0, v∗) if λd

1 <
a2

d2
.
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Proof. (i) By way of contradiction, suppose that u 6≡ 0 and v 6≡ 0. Thus, u and v are positive
in Ω by Proposition 2.1. So, it is apparent from system (1.2) that:

∆[(d1 + αv)u]
u

= −a1 + b1u + c1v, x ∈ Ω,

∆[(d2 + βv)v]
v

= −a2 + b2u + c2v, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.

(3.1)

Let

w = (d1 + αv)u. (3.2)

Then, by (3.1) and conditions b1 > b2, c1 > c2 and a1 < a2, we have

∆w
w

>
∆[(d2 + βv)v]
(d1 + αv)v

in Ω. (3.3)

We now define a function

p(s) = s
d2−d1

d1 (d1 + αs)
2β−α− d2

d1
α

α for s > 0. (3.4)

It is easy to verify that p(s) > 0 for any s > 0. Moreover, a direct calculation implies that

p′(s) = p(s)

(
d2 − d1

d1s
+

2β− α− d2
d1

α

d1 + αs

)
.

This, together with (3.3), yields that

div [(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]]

= (d1 + αv)vp(v)∆w +∇[(d1 + αv)vp(v)] · ∇w

− wp(v)∆[(d2 + βv)v]−∇[wp(v)] · ∇[(d2 + βv)v]

> ∇[(d1 + αv)vp(v)] · ∇w−∇[wp(v)] · ∇[(d2 + βv)v] in Ω.

Furthermore, we can see that

∇[(d1 + αv)vp(v)] · ∇w−∇[wp(v)] · ∇[(d2 + βv)v]

=
[
αvp(v)∇v + (d1 + αv)p(v)∇v + (d1 + αv)vp′(v)∇v

]
·
[
αu∇v + (d1 + αv)∇u

]
−
[
αup(v)∇v + (d1 + αv)p(v)∇u + (d1 + αv)up′(v)∇v

]
·
[

βv∇v + (d2 + βv)∇v
]

= |∇v|2
[
2α2uvp(v) + d1αup(v) + d1αuvp′(v) + α2uv2 p′(v)− 2αβuvp(v)

− 2d1βuvp′(v)− 2αβuv2 p′(v)− d2αup(v)− d1d2up′(v)− d2αuvp′(v)
]

+∇u · ∇v
[
3d1αvp(v) + d2

1 p(v) + d2
1vp′(v) + 2d1αv2 p′(v) + 2α2v2 p(v)

+ α2v3 p′(v)− 2d1βvp(v)− 2αβv2 p(v)− d1d2 p(v)− d2αvp(v)
]

, |∇v|2M(u, v) +∇u · ∇vN(u, v).
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Since

N(u, v) = p(v)
[
3d1αv + d2

1 + 2α2v2 − 2d1βv− 2αβv2 − d1d2 − d2αv
]
+ p′(v)v(d1 + αv)2

= p(v)
[
(d2

1 − d1d2) + (3d1α− 2d1β− d2α)v + (2α2 − 2αβ)v2

+
d2 − d1

d1
(d1 + αv)2 + v(d1 + αv)(2β− α− d2

d1
α)
]

= 0,

and

M(u, v)

= αup(v)(d1 − d2 + 2αv− 2βv) + up′(v)
[
− d1d2 + (d1α− 2d1β− d2α)v + (α2 − 2αβ)v2]

= αup(v)(d1 − d2 + 2αv− 2βv) + up′(v)(d1 + αv)(−d2 + αv− 2βv)

= αup(v)(d1 − d2 + 2αv− 2βv) + up(v)
(d2 − d1 − 2αv + 2βv)

v
(−d2 + αv− 2βv)

=up(v)(d1 − d2 + 2αv− 2βv)
(

d2

v
+ 2β

)
≥ 0,

we conclude that

div
[
(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]

]
> 0 in Ω. (3.5)

Now, let
Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε} for any small ε > 0.

Since (u, v) ∈ (C1(Ω) ∩ C2(Ω))2, we know that
[
(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]

]
∈

C1(Ωε). Then it follows from divergence theorem that∫
Ω

div
[
(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]

]
dx (3.6)

= lim
ε→0

∫
Ωε

div
[
(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]

]
dx

= lim
ε→0

∫
∂Ωε

[
(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]

]
· νdS

= lim
ε→0

∫
∂Ωε

[
(d1 + αv)vp(v)

∂w
∂ν
− wp(v)

∂[(d2 + βv)v]
∂ν

]
dS

= lim
ε→0

∫
∂Ωε

[
∂w
∂ν

v
d2
d1 (d1 + αv)

2β− d2
d1

α

α − βu
∂v
∂ν

v
d2
d1 (d1 + αv)

2β− d2
d1

α

α

− u
v
(d2 + βv)

∂v
∂ν

v
d2
d1 (d1 + αv)

2β− d2
d1

α

α

]
dS

, lim
ε→0

(I1(ε) + I2(ε) + I3(ε)).

Obviously, I1(ε) and I2(ε) both tend to zero as ε→ 0. To deal with the term I3(ε), we take

V =

{
ϕ(x) ∈ C1(Ω)

∣∣∣ ϕ|Ω > 0, ϕ|∂Ω = 0,
∂ϕ

∂ν

∣∣∣
∂Ω

< 0
}

.
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Then Hopf’s boundary lemma tells us that ∂u(x0)
∂ν < 0 and ∂v(x0)

∂ν < 0 for any x0 ∈ ∂Ω, and thus
u ∈ V and v ∈ V. Define

g(x) :=


u(x)
v(x)

, x ∈ Ω,

∂u(x)
∂ν

/∂v(x)
∂ν

, x ∈ ∂Ω.

Then by applying Lemma 2.4 in [13], we get g(x) ∈ C
(
Ω, (0,+∞)

)
. Therefore I3(ε) also

approaches to zero as ε→ 0.

As a result,
∫

Ω div
[
(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]

]
dx = 0 because of Lebesgue

dominated convergence theorem and the boundary conditions in (1.2), which contradicts (3.5).
So either (u, v) = (0, 0), or only one of them is equal to zero. When v ≡ 0, we have− ∆u +

1
d1

(b1u− a1)u = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

By Lemma 2.3, we can see (u, v) = (u∗, 0) if λd
1 < a1

d1
. Similarly, if u ≡ 0 and λd

1 < a2
d2

, then
(u, v) = (0, v∗). This finishes the proof of the first part.

(ii) Now, we also assume that u 6≡ 0 and v 6≡ 0. Then an application of Proposition 2.1
provides that u and v are positive in Ω. Hence,

∆w
w

<
∆[(d2 + βv)v]
(d1 + αv)v

in Ω,

according to the hypotheses b1 < b2, c1 < c2 and a1 > a2, where w is defined by (3.2).
Given d1 ≤ d2 and α ≤ β, we know that

div
[
(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]

]
< 0 in Ω,

where p(v) is defined as in (i).
Furthermore, again by divergence theorem, we can prove that∫

Ω
div
[
(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]

]
dx = 0,

a contradiction. By repeating the argument in (i), we complete the proof of Theorem 3.1.

3.2 Neumann boundary conditions

In (3.6), if we consider Neumann boundary conditions, we can directly check that (3.6) equals
to zero. Consequently, the following theorem is stated without proof.

Theorem 3.2. Suppose that αi = 0, βi > 0 for i = 1, 2 and (u, v) is a nonnegative classical solution
of (1.2). If

(i) b1 > b2, c1 > c2, a1 < a2, d1 ≥ d2 and α ≥ β

or
(ii) b1 < b2, c1 < c2, a1 > a2, d1 ≤ d2 and α ≤ β,

then either (u, v) ≡ (0, 0), or (u, v) =
( a1

b1
, 0
)
, or (u, v) =

(
0, a2

c2

)
.
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3.3 Robin boundary conditions

In this subsection, we consider the case in which αi and βi (i = 1, 2) are both positive.

Theorem 3.3. Let αi > 0, βi > 0 for i = 1, 2 and (u, v) be a nonnegative classical solution of (1.2). If

(i) b1 > b2, c1 > c2, a1 < a2, d1 ≥ d2, α ≥ β and
α1

β1
≥ α2

β2

or
(ii) b1 < b2, c1 < c2, a1 > a2, d1 ≤ d2, α ≤ β and

α1

β1
≤ α2

β2
,

then we have either
(u, v) ≡ (0, 0),

or
(u, v) = (u∗∗, 0) if λ1(d1, a1, α1, β1) > 0,

or
(u, v) = (0, v∗∗) if λ1(d2, a2, α2, β2) > 0.

Proof. We only prove (i), as (ii) can be proved in a same manner. According to the arguments of
the proof of Theorem 3.1, we can obtain from the hypothesis b1 > b2, c1 > c2, a1 < a2, d1 ≥ d2

and α ≥ β that

div
[
(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]

]
> 0,

where the function p(v) is introduced in (3.4).
We mention that ∂u

∂ν = − α1
β1

u, ∂v
∂ν = − α2

β2
v on ∂Ω. The boundary integral becomes that

∫
Ω

div
[
(d1 + αv)vp(v)∇w− wp(v)∇[(d2 + βv)v]

]
dx

=
∫

∂Ω
v

d2
d1 (d1 + αv)

2β− d2
d1

α

α

[
αu

∂v
∂ν

+ (d1 + αv)
∂u
∂ν
− 2βu

∂v
∂ν
− d2

u
v

∂v
∂ν

]
dS

=
∫

∂Ω
v

d2
d1 (d1 + αv)

2β− d2
d1

α

α

[
uv
(

2β
α2

β2
− α

α1

β1
− α

α2

β2

)
+ u

(
d2

α2

β2
− d1

α1

β1

)]
dS

≤ 0,

due to d1 ≥ d2, α ≥ β and α1
β1
≥ α2

β2
, a contradiction. Thus, if v = 0, we have (u, v) = (u∗∗, 0)

when λ1(d1, a1, α1, β1) > 0. Similarly, (u, v) = (0, v∗∗) if u = 0 and λ1(d2, a2, α2, β2) > 0. This
completes the proof.
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