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Abstract. In this paper we consider a class of second order Hamiltonian system with the
nonlinearity of linear growth. Compared with the existing results, we do not assume
an asymptotic of the nonlinearity at infinity to exist. Moreover, we allow the system to
be resonant at zero. Under some general conditions, we will establish the existence and
multiplicity of nontrivial periodic solutions by using the Morse theory and two critical
point theorems.

Keywords: second order Hamiltonian systems, periodic solutions, Morse theory, critical
groups.

2020 Mathematics Subject Classification: 34C25, 37B30, 37J45.

1 Introduction

Consider the following second order Hamiltonian systems

− ẍ = Vx(t, x), (1.1)

where V ∈ C2(R × RN , R) with V(t + T, x) = V(t, x) for some T > 0. During the past
forty years, the existence and multiplicity of periodic solutions for second order Hamiltonian
systems have been extensively studied by variational methods. There has been a lot of results
under various suitable solvability conditions, such as the sublinear conditions (see [14, 18, 22,
23, 27, 28] and references therein), the superlinear conditions (see [3, 8, 9, 16, 17, 21, 24, 29] and
references therein), and the asymptotically linear conditions (see [2, 6, 10, 15, 19, 20, 30] and
references therein).

In this paper, we shall study the existence and multiplicity of nontrivial periodic solutions
for (1.1) when the nonlinearity Vx(t, x) has linear growth. Compared with the existing results,
we do not make any assumptions at infinity on the asymptotic behaviors of the nonlinearity
Vx(t, x). Specifically, we do not require the system to be asymptotically linear at infinity.
Instead, we assume that there exists a T-periodic symmetric matrix function A∞(t) such that
for some K > 0,

Vxx(t, x) ≥ A∞(t) (or Vxx(t, x) ≤ A∞(t)), ∀t ∈ [0, T], |x| ≥ K,
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where for two symmetric matrices A and B, A ≤ B means that B− A is semi-positively defi-
nite. Under this general linear growth condition, we will construct a sequence of approximate
systems and use the Morse theory and two critical point theorems to establish the existence
and multiplicity of nontrivial periodic solutions for the system. The idea of our proof is closely
related to the work of Liu, Su and Wang [13], where they dealt with the existence of nontrivial
solutions of elliptic problems. Note that in [13] the authors assumed that the elliptic problem
was nonresonant at zero. By contrast, here we allow system (1.1) to be resonant at zero. On the
other hand, system (1.1) with periodic boundary condition is rather different from the elliptic
problems with Dirichlet boundary condition. These lead us to need some new technique.

Now let us say some words about the idea of the proof. We first construct a sequence of
approximate systems which are asymptotically linear and non-resonant at infinity. Then in
a crucial step we establish the L∞ bound to the solutions of the approximate systems whose
Morse index is controlled by the Morse index at infinity. Finally, we use the Morse theory
and two critical point theorems to obtain the nontrivial periodic solutions with the controlled
Morse index for the approximate systems, therefore using the previous L∞ estimate they are
also the nontrivial periodic solutions of the original system.

We make the following assumptions:

(H1) V(t, x) ∈ C2(R×RN , R) with V(t, 0) = 0 and V(t + T, x) = V(t, x);

(H2) There exist C1 > 0 and C2 > 0 such that

|Vx(t, x)| ≤ C1(1 + |x|), |Vxx(t, x)| ≤ C2, t ∈ [0, T], x ∈ RN ;

(H3) Vx(t, x) = A0(t)x + (G0)x(t, x), where A0(t) is a T-periodic continuous symmetric ma-
trix function and (G0)x(t, x) = o(|x|) as |x| → 0;

(H±4 ) There exists δ > 0 such that

±G0(t, x) > 0, ∀t ∈ [0, T], 0 < |x| < δ;

(H±5 ) There exists a T-periodic continuous symmetric matrix function A∞(t) such that for
some K > 0,

±Vxx(t, x) ≥ ±A∞(t), ∀t ∈ [0, T], |x| ≥ K.

Let E := H1
T(R, RN), the Hilbert space of T-periodic functions on R with values in RN

under the inner product

〈x, y〉 =
∫ T

0
(ẋ · ẏ + x · y)dt, ∀x, y ∈ E,

and norm ‖x‖ = 〈x, x〉 1
2 . We define the functional I on E by

I(x) =
1
2

∫ T

0
|ẋ(t)|2dt−

∫ T

0
V(t, x)dt. (1.2)

By (H1) and (H2), I ∈ C2(E, R) and the critical points of I in E are T-periodic solutions of (1.1).
Clearly, the set σ = {( 2kπ

T )2 | k ∈ Z+} is the set of the eigenvalues of

− ẍ = λx (1.3)
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with T-periodic boundary condition. Consider the eigenvalue problem of the following sys-
tem

− ẍ− A∞x = λx (1.4)

with T-periodic boundary condition. Without loss of generality, in (H±5 ) by considering
A∞(t)∓ εIN instead of A∞(t) for ε small if necessary we may assume that 0 is not the eigen-
value of (1.4). Let λ1 < λ2 < · · · < λl < 0 < λl+1 < λl+2 < · · · be distinct eigenvalues of (1.4).
Clearly, λi → ∞ as i→ ∞. Let E(λi) be the eigenspace of (1.4) corresponding to λi, i ∈ Z+.

We define the linear operator L̃ on E by

〈L̃x, y〉 :=
∫ T

0
ẋ · ẏdt, ∀x, y ∈ E.

Then L̃ is a bounded self-adjoint operator. Define the linear operators B0 and B∞ on E by

〈B0x, y〉 :=
∫ T

0
A0(t)x · ydt, ∀x, y ∈ E

and

〈B∞x, y〉 :=
∫ T

0
A∞(t)x · ydt, ∀x, y ∈ E.

Then B0 and B∞ are bounded self-adjoint compact operators on E. Let L0 := L̃ − B0 and
L∞ := L̃ − B∞. Since 0 is not an eigenvalue of (1.4), we have that L∞ is a non-degenerate
operator on E. Denote by E+

0 , E−0 , E+
∞ and E−∞ the positive and negative spectral subspaces of

L0 and L∞ respectively, and let E0
0 = ker L0. Then there exists a constant c0 > 0 such that for

any x ∈ E+
0 and y ∈ E−0 ,

〈L0x, x〉 ≥ c0‖x‖2, 〈L0y, y〉 ≤ −c0‖y‖2. (1.5)

Clearly,

E−∞ =
l⊕

i=1

E(λi), E+
∞ =

∞⊕
i=l+1

E(λi),

E = E+
0

⊕
E0

0

⊕
E−0 = E+

∞

⊕
E−∞.

Set
i0
0 = dim E0

0, i−0 = dim E−0 , i−∞ = dim E−∞.

By (H3), we see that x = 0 is a periodic solutions of (1.1) which is called trivial periodic
solution. Our aim is to find nontrivial periodic solutions of (1.1). Now we give our main
results as follows.

Theorem 1.1. Assume that (H1), (H2), (H3) hold. Then (1.1) has at least one nontrivial periodic
solution in each of the following cases:

(1) (H+
4 ), (H+

5 ) and i−0 + i0
0 < i−∞ − 1;

(2) (H−4 ), (H+
5 ) and i−0 < i−∞ − 1;

(3) (H+
4 ), (H−5 ) and i−0 + i0

0 > i−∞ + 1;

(4) (H−4 ), (H−5 ) and i−0 > i−∞ + 1.
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Theorem 1.2. Assume that (H1), (H2), (H3) hold, and V(t,−x) = V(t, x) for any (t, x) ∈ R×RN .

(1) If (H+
4 ), (H+

5 ) hold and i−0 + i0
0 < i−∞ − 1, then (1.1) has at least i−∞ − i−0 − i0

0 − 1 pairs of
nontrivial periodic solutions;

(2) If (H−4 ), (H+
5 ) hold and i−0 < i−∞ − 1, then (1.1) has at least i−∞ − i−0 − 1 pairs of nontrivial

periodic solutions;

(3) If (H+
4 ), (H−5 ) hold and i−0 + i0

0 > i−∞ + 1, then (1.1) has at least i−0 + i0
0 − i−∞ − 1 pairs of

nontrivial periodic solutions;

(4) If (H−4 ), (H−5 ) hold and i−0 > i−∞ + 1, then (1.1) has at least i−0 − i−∞ − 1 pairs of nontrivial
periodic solutions.

Remark 1.3. In what follows, we assume that x = 0 is an isolated critical point of I in E. In
fact, if x = 0 is not an isolated critical point of I, then I has infinitely many critical points
and therefore (1.1) has infinitely many periodic solutions. Therefore Theorem 1.1 and 1.2 hold
naturally.

The paper is organized as follows. In Section 2, we construct a sequence of approximate
systems and establish the L∞ bound to the solutions of these approximate systems with ap-
propriate Morse indexes. In Section 3, we will give the proof of Theorem 1.1 by using Morse
theory and previous estimate. In Section 4, we will prove Theorem 1.2 by using two critical
point theorems for even functional and previous estimate.

2 Preliminaries

In this section we give some important preliminary lemmas. Let H be a real Hilbert space
and J ∈ C2(H, R). Denote K(J) = {u ∈ H | J′(u) = 0}. For u ∈ K(J), we denote the Morse
index of u by m−(J′′(u)) which is the dimension of the negative spectral subspace of J′′(u).
The augmented Morse index of u is defined by

m∗(J′′(u)) = m−(J′′(u)) + dim ker(J′′(u)),

where ker(J′′(u)) is the kernel of J′′(u).
To construct a sequence of approximate systems of (1.1), we first construct a sequence of

approximate functions Vk(t, x). The following result is from [13].

Lemma 2.1. Assume that (H1), (H2) and (H+
5 ) (resp. (H−5 )) hold. Then there exists a sequence

functions Vk(t, x) ∈ C2(R×RN , R) satisfying the following properties:

(a) Vk(t + T, x) = Vk(t, x) and there exists an increasing sequence of real numbers Rk → ∞
(k→ ∞) such that

Vk(t, x) = V(t, x), ∀|x| ≤ Rk, t ∈ [0, T];

(b) there exist C′1 > 0 and C′2 > 0 independent of k such that

|(Vk)x(t, x)| ≤ C′1(1 + |x|), |(Vk)xx(t, x)| ≤ C′2;

(c) for each k ∈ Z+, (Vk)xx(t, x) ≥ A∞(t) (resp. (Vk)xx(t, x) ≤ A∞(t)) for all t ∈ [0, T], |x| ≥ K;
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(d) there is γ > 0 independent of k such that
( 2pπ

T

)2
< γ <

( 2(p+1)π
T

)2 for some p ∈ Z+, and for
each k ∈ Z+ fixed,

Vk(t, x) =
γ

2
|x|2 + o(|x|2), (Vk)x(t, x) = γx + o(|x|), (Vk)xx(t, x) = γIN + o(1)

as |x| → ∞;

(e) if V(t,−x) = V(t, x), ∀t ∈ [0, T], x ∈ RN , then for every k ∈ Z+, Vk(t,−x) = Vk(t, x),
∀t ∈ [0, T], x ∈ RN .

Let

Ik(x) :=
1
2

∫ T

0
|ẋ|2dt− ψk(x), x ∈ E, (2.1)

where

ψk(x) :=
∫ T

0
Vk(t, x)dt.

Clearly, Ik(x) ∈ C2(E, R) and the critical points of Ik correspond to the periodic solutions of
the following system

− ẍ = (Vk)x(t, x). (2.2)

By Lemma 2.1 (a) and Remark 1.3, x = 0 is also an isolated critical point of Ik for every k ∈ Z+.
Define the linear operator Bγ : E→ E by

〈Bγx, y〉 :=
∫ T

0
γx · ydt, ∀x, y ∈ E.

Let Lγ := L̃ − Bγ, then by Lemma 2.1, Lγ is a non-degenerate bounded linear self-adjoint
operator on E. We have the decomposition E = E−γ ⊕ E+

γ , where E−γ and E+
γ are the negative

and positive spectral subspaces of Lγ. Then there exists a constant cγ > 0 such that for any
x ∈ E+

γ and y ∈ E−γ ,
〈Lγx, x〉 ≥ cγ‖x2‖, 〈Lγy, y〉 ≤ −cγ‖y2‖. (2.3)

Denote
j−∞ = dim E−γ .

By Lemma 2.1 (c), (d), if (H+
5 ) holds, then γIN ≥ A∞(t), which implies that

E−∞ ⊂ E−γ and j−∞ ≥ i−∞. (2.4)

If (H−5 ) holds, then γIN ≤ A∞(t), which implies that

E−γ ⊂ E−∞ and j−∞ ≤ i−∞. (2.5)

Let
Gk(t, x) = Vk(t, x)− γ

2
|x|2, G0k(t, x) = Vk(t, x)− 1

2
A0(t)x · x

and

ϕk(x) =
∫ T

0
Gk(t, x)dt, ϕ0k(x) =

∫ T

0
G0k(t, x)dt.

By (H3), Lemma 2.1 (a), (d), we see that (Gk)x(t, x) = o(|x|) as |x| → ∞ and (G0k)x(t, x) =

o(|x|) as |x| → 0. Then we have

ϕ′k(x) = o(‖x‖) as ‖x‖ → ∞ and ϕ′0k(x) = o(‖x‖) as ‖x‖ → 0. (2.6)

And we can rewrite the functional Ik by

Ik(x) =
1
2
〈Lγx, x〉 − ϕk(x) =

1
2
〈L0x, x〉 − ϕ0k(x), x ∈ E. (2.7)
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Lemma 2.2. Assume that (H1), (H2), (H3) and (H+
5 ) (resp. (H−5 )) hold. For every k ∈ Z+, if xk

is a critical point of Ik with m−(I′′k (xk)) ≤ i−∞ − 1 (resp. m∗(I′′k (xk)) ≥ i−∞ + 1), then there exists a
constant β > 0 independent of k such that ‖xk‖L∞ ≤ β.

Proof. We use an indirect argument. Assume that ‖xk‖L∞ → ∞ as k → ∞. By the Sobolev
inequality ‖x‖L∞([0,T]) ≤ C‖x‖, we have that ‖xk‖ → ∞ as k→ ∞.

Let

x̄k =
xk

‖xk‖
.

Then x̄k satisfies

− ¨̄xk =
(Vk)x(t, xk)

‖xk‖
. (2.8)

Up to a subsequence, we have that for some x̄ ∈ E, x̄k ⇀ x̄ in E, x̄k → x̄ in L2([0, T]). And it
follows from Proposition 1.2 in [20] that x̄k converges uniformly to x̄ on [0, T]. By (H2), (H3)
and Lemma 2.1, there exists C′1 > 0 such that |(Vk)x(t, xk)| ≤ C′1|xk|. Thus for every k,∣∣∣∣ (Vk)x(t, xk)

‖xk‖

∣∣∣∣ ≤ C′1|x̄k|. (2.9)

Multiplying (2.8) by x̄k, one has

1 = ‖x̄k‖2 ≤ (C′1 + 1)‖x̄k‖2
L2([0,T]).

Letting k→ ∞, we get

‖x̄‖2
L2([0,T]) ≥

1
C′1 + 1

> 0. (2.10)

Now we show that up to a subsequence ˙̄xk converges uniformly to ˙̄x on [0, T]. For any
t ∈ [0, T], by (2.8), (2.9) and Hölder inequality, we have

| ˙̄xk(0)| =
∣∣∣∣ ˙̄xk(t) +

∫ t

0

(Vk)x(s, xk)

‖xk‖
ds
∣∣∣∣

≤
∣∣∣∣ ˙̄xk(t)|+

∣∣∣∣∫ t

0
C′1|x̄k(s)

∣∣∣∣ ds
∣∣∣∣

≤ | ˙̄xk(t)|+ C′1
√

T‖x̄k‖L2

≤ | ˙̄xk(t)|+ C′1
√

T,

thus ∫ T

0
| ˙̄xk(0)|dt ≤

∫ T

0
| ˙̄xk(t)|dt +

∫ T

0
C′1
√

Tdt

≤
√

T‖ ˙̄xk‖L2 + C′1
√

TT

≤
√

T + C′1
√

TT.

Hence

| ˙̄xk(0)| ≤ C2,
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where C2 =
√

T
T + C′1

√
T. Then for any t ∈ [0, T],

| ˙̄xk(t)| =
∣∣∣∣ ˙̄xk(0) +

∫ t

0
− (Vk)x(s, xk)

‖xk‖
ds
∣∣∣∣

≤ | ˙̄xk(0)|+
∣∣∣∣∫ t

0
C′1|x̄k(s)|ds

∣∣∣∣
≤ C2 + C′1

√
T‖x̄k‖L2

≤ C2 + C′1
√

T,

which implies that for every k ∈ Z+,

‖ ˙̄xk(t)‖C0 ≤ C2 + C′1
√

T. (2.11)

For any ∆t ∈ R, by (2.8) and (2.9) we have

| ˙̄xk(t + ∆t)− ˙̄xk(t)| =
∣∣∣∣∫ t+∆t

t
¨̄xk(s)ds

∣∣∣∣
=

∣∣∣∣∫ t+∆t

t
− (Vk)x(t, xk)

‖xk‖
ds
∣∣∣∣

≤
∣∣∣∣∫ t+∆t

t
C′1|x̄k|ds

∣∣∣∣
≤ C′1|∆t| 12 ‖x̄k‖L2 ≤ C′1|∆t| 12 . (2.12)

Thus by (2.11) and (2.12), we have
‖ ˙̄xk(t)‖C

1
2
≤ C.

Then by the Arzelà–Ascoli theorem, ˙̄xk converges uniformly to ˙̄x on [0, T].
We claim that x̄(t) 6= 0 a.e. in [0, T]. In fact, conversely, if x̄(t) = 0 in a positive measure

subset of [0, T], then there exists a point t0 ∈ [0, T] such that x̄(t0) = 0 and ˙̄x(t0) = 0. Recall
that x̄k and ˙̄xk converge uniformly to x̄ and ˙̄x respectively on [0, T], we have

x̄k(t0)→ 0 and ˙̄xk(t0)→ 0 (2.13)

as k→ ∞. Let ȳk := ˙̄xk, then (x̄k, ȳk) satisfies the following system{
˙̄xk = ȳk,
˙̄yk = − (Vk)x(t,xk)

‖xk‖
.

(2.14)

For any t ∈ [0, T],

|(x̄k(t), ȳk(t))| =
∣∣∣∣(x̄k(t0), ȳk(t0)) +

∫ t

t0

(
ȳk(s),−

(Vk)x(s, xk)

‖xk‖

)
ds
∣∣∣∣

≤ |(x̄k(t0), ȳk(t0))|+
∣∣∣∣∫ t

t0

∣∣∣∣(ȳk(s),−
(Vk)x(s, xk)

‖xk‖

)∣∣∣∣ ds
∣∣∣∣

≤ |(x̄k(t0), ȳk(t0))|+
∣∣∣∣∫ t

t0

√
1 + C′21 |(x̄k(s), ȳk(s))| ds

∣∣∣∣ .

Thus by Gronwall’s inequality, we have

|(x̄k(t), ȳk(t))| ≤ |(x̄k(t0), ȳk(t0))|e
|
∫ t

t0

√
1+C′21 ds| ≤ C|(x̄k(t0), ȳk(t0))|, (2.15)
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where C = e
√

1+C′21 T. Then letting k → ∞ in (2.15), we get x̄(t) = 0 and ȳ(t) = 0 for any
t ∈ [0, T], which is contrary to (2.10). Hence the claim is proved. Note that ‖xk‖ → ∞, then by
this claim one has

|xk| → ∞ a.e. in [0, T] (2.16)

as k→ ∞.
If (H+

5 ) holds, then by (2.16), Lemma 2.1 (b), (c) and Fatou’s Lemma, for any fixed x ∈
E−∞ \ {0},

lim sup
k→∞

〈I′′k (xk)x, x〉 = 〈L̃x, x〉 − lim inf
k→∞

∫ T

0
(Vk)xx(t, xk)x · xdt

≤ 〈L̃x, x〉 −
∫ T

0
lim inf

k→∞
(Vk)xx(t, xk)x · xdt

≤ 〈L̃x, x〉 −
∫ T

0
A∞(t)x · xdt

= 〈L∞x, x〉 < 0,

which implies that there exists k(x) ∈ Z+ such that 〈I′′k (xk)x, x〉 < 0 when k ≥ k(x). Note that
E−∞ is finite dimensional, there must exist k0 ∈ Z+ independent of x ∈ E−∞ \ {0} such that

〈I′′k (xk)x, x〉 < 0

for all x ∈ E−∞ \ {0} and k ≥ k0. This means that m−(I′′k (xk)) ≥ i−∞ for k ≥ k0, which leads to a
contradiction.

If (H−5 ) holds, since E+
∞ is infinite dimensional, the above argument cannot be used directly.

To overcome this difficulty, we will split E+
∞ into two parts. Let

M = max
t∈[0,T]

|A∞(t)|.

Since λi → ∞ as i → ∞, then there exists i0 ∈ Z+ such that λi0 ≥ 2(M + C′2) where C′2 is the
constant as in Lemma 2.1 (b). Let

E1 =
i0−1⊕

i=l+1

E(λi), E2 =
∞⊕

i=i0

E(λi).

Then E+
∞ = E1 ⊕ E2 and E1 is finite dimensional. For any y1 ∈ E2 \ {0}, note that∫ T

0
(|ẏ1|2 − A∞y1 · y1)dt ≥ λi0

∫ T

0
|y1|2dt,

then

〈I′′k (xk)y1, y1〉 =
∫ T

0
|ẏ1|2dt−

∫ T

0
(Vk)xx(t, xk)y1 · y1dt

≥ λi0

∫ T

0
|y1|2dt +

∫ T

0
A∞y1 · y1dt−

∫ T

0
(Vk)xx(t, xk)y1 · y1dt

≥ λi0

∫ T

0
|y1|2dt−

∫ T

0
M|y1|2dt−

∫ T

0
C′2|y1|2dt

≥ λi0
2

∫ T

0
|y1|2dt > 0. (2.17)
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For any y2 ∈ E1 \ {0}, by (2.16), Lemma 2.1 (b), (c) and Fatou’s Lemma,

lim inf
k→∞

〈I′′k (xk)y2, y2〉 =
∫ T

0
|ẏ2|2dt− lim sup

k→∞

∫ T

0
(Vk)xx(t, xk)y2 · y2dt

≥
∫ T

0
|ẏ2|2dt−

∫ T

0
lim sup

k→∞
(Vk)xx(t, xk)y2 · y2dt

≥
∫ T

0
|ẏ2|2dt−

∫ T

0
A∞(t)y2 · y2dt

= 〈L∞y2, y2〉 > 0,

which implies that there exists k(y2) ∈ Z+ such that 〈I′′k (xk)y2, y2〉 > 0 for k ≥ k(y2). Note
that E1 is finite dimensional, there must exist k1 ∈ Z+ independent of y2 ∈ E1 \ {0} such that

〈I′′k (xk)y2, y2〉 > 0 (2.18)

for all y2 ∈ E1 \ {0} and k ≥ k1. Hence by (2.17) and (2.18), for any y ∈ E+
∞ \ {0} and every

k ≥ k1,
〈I′′k (xk)y, y〉 > 0.

This implies that m∗(I′′k (xk)) ≤ i−∞ for k ≥ k1, which leads to a contradiction.
Therefore the lemma is proved.

3 Proof of Theorem 1.1

In this section, we will use Morse theory to prove the existence of nontrivial periodic solution
for (1.1). Let H be a real Hilbert space and J ∈ C2(H, R) be a functional satisfying the (PS)
condition, i.e., any sequence {un} ⊂ H for which J(un) is bounded and J′(un) → 0 as n → ∞
possesses a convergent subsequence. Denote by Hq(A, B) the q-th singular relative homology
group of the topological pair (A, B) with coefficients in a field F . Let u be an isolated critical
point of J with J(u) = c. The groups

Cq(J, u) := Hq(Jc, Jc \ {u}), q ∈ Z

are called the critical groups of J at u, where Jc = {u ∈ H | J(u) ≤ c}. Denote K = K(J) =

{u ∈ H | J′(u) = 0}. Suppose that J(K) is bounded from below by a ∈ R. The critical groups
of J at infinity are defined by

Cq(J, ∞) := Hq(H, Ja), q ∈ Z.

We say that J has a local linking structure at 0 with respect to the direct sum decomposition
H = H− ⊕ H+ if there exists r > 0 such that

J(u) > 0 for u ∈ H+ with 0 < ‖u‖ ≤ r, J(u) ≤ 0 for u ∈ H− with ‖u‖ ≤ r.

The following results can be found in [1], [26] and [4].

Proposition 3.1 (See [1]). Suppose J satisfies (PS) condition. If K = ∅, then Cq(J, ∞) ∼= 0, q ∈ Z.
If K = {u0}, then Cq(J, ∞) ∼= Cq(J, u0), q ∈ Z.
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Proposition 3.2 (See [26]). Let 0 be an isolated critical point of J ∈ C2(H, R) with Morse index
µ0 and nullity ν0. Assume that J has a local linking structure at 0 with respect to the direct sum
decomposition H = H− ⊕ H+ and k = dim H− < ∞. If k = µ0 or k = µ0 + ν0, then

Cq(J, u) = δq,kF , q ∈ Z.

Let A be a nondegenerate bounded self-adjoint operator defined on H. According to its
spectral decomposition, H = H+⊕H−, where H+, H− are invariant subspaces corresponding
to the positive and negative spectrum of A respectively. Let

J(x) =
1
2
〈Ax, x〉+ g(x),

and the following assumptions are given:

(A1) A± := A |H± has a bounded inverse on H±;

(A2) κ := dim H− < ∞;

(A3) g ∈ C1(H, R1) has a compact derivative g′(x) and ‖g′(x)‖ = o(‖x‖) as ‖x‖ → ∞.

Proposition 3.3 (See [4]). Under the assumptions (A1), (A2) and (A3), we have that J satisfies (PS)
condition and Cq(J, ∞) = δq,κF .

Proposition 3.4 (See [4]). Suppose that J ∈ C2(H, R) satisfies (PS) condition, and K = {u1, . . . , uk},
then

∞

∑
q=0

Mqtq =
∞

∑
q=0

βqtq + (1 + t)Q(t),

where Q(t) is a formal series with nonnegative coefficients, Mq = ∑k
i=0 rank Cq(J, uk) and βq =

rank Cq(J, ∞), q = 0, 1, 2, . . .

Now we compute the critical groups of Ik at zero and at infinity.

Lemma 3.5. Assume that (H1)–(H3) hold. Then for every k ∈ Z+,

(1) if (H+
4 ) holds,

Cq(Ik, 0) = δq,i−0 +i0
0
F , q ∈ Z.

(2) if (H−4 ) holds,
Cq(Ik, 0) = δq,i−0

F , q ∈ Z.

Proof. (1) We first show that Ik has a local linking structure at 0 with respect to E = E− ⊕ E+,
where E− = E−0 ⊕ E0

0 and E+ = E+
0 . For x ∈ E+

0 , by (1.5) and (2.6) we have

Ik(x) =
1
2
〈L0x, x〉 − ϕ0k(x)

≥ c0

2
‖x‖2 − o(‖x‖2) (3.1)

as ‖x‖ → 0. This means that there exists small r > 0 such that

Ik(x) > 0, for x ∈ E+
0 with 0 < ‖x‖ ≤ r. (3.2)
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For x ∈ E−0 ⊕ E0
0, we write x = x− + x0 with x− ∈ E−0 and x0 ∈ E0

0. Then

Ik(x) =
1
2
〈L0x−, x−〉 −

∫ T

0
G0k(t, x)dt

≤ − c0

2
‖x−‖2 −

∫ T

0
G0k(t, x)dt. (3.3)

By (H+
4 ) and Lemma 2.1 (a), ∫

|x|≤δ
G0k(t, x)dt ≥ 0. (3.4)

If |x| > δ, since E0
0 is finite dimensional, we have

|x−| ≥ |x| − |x0| ≥ |x| − ‖x0‖L∞ ≥ |x| − C‖x0‖ ≥ |x| − C‖x‖,

thus let 0 < r < δ
3C , for ‖x‖ ≤ r, we have

|x−| ≥ |x| − δ

3
≥ |x| − 1

3
|x| = 2

3
|x|. (3.5)

By Lemma 2.1 (b), (d), there exists Cδ > 0 such that for |x| > δ,

|G0k(t, x)| ≤ Cδ|x|3. (3.6)

Hence, by (3.3)–(3.6), for x ∈ E−0 ⊕ E0
0 with ‖x‖ ≤ r, we have

Ik(x) ≤ − c0

2
‖x−‖2 −

∫ T

0
G0k(t, x)dt

≤ − c0

2
‖x−‖2 −

∫
|x|≤δ

G0k(t, x)dt−
∫
|x|>δ

G0k(t, x)dt

≤ − c0

2
‖x−‖2 +

∫
|x|>δ

Cδ|x|3dt

≤ − c0

2
‖x−‖2 + Cδ

∫
|x|>δ

(
3
2

)3

|x−|3dt

≤ − c0

2
‖x−‖2 + C′δ‖x−‖3. (3.7)

This implies that there exists r > 0 small enough such that

Ik(x) < 0, for x ∈ E−0 ⊕ E0
0 with ‖x‖ ≤ r and ‖x−‖ > 0. (3.8)

On the other hand, for x0 ∈ E0
0, we can choose r > 0 small enough such that

0 < ‖x0‖L∞ < δ, when 0 < ‖x0‖ ≤ r.

Then for x0 ∈ E0
0 with 0 < ‖x0‖ ≤ r, since x0 ∈ C2([0, T], RN), there must exist 0 < t1 < t2 < T

such that
0 < |x0(t)| < δ, ∀t ∈ [t1, t2].

Then by (H+
4 ) and Lemma 2.1 (a), for x0 ∈ E0

0 with 0 < ‖x0‖ ≤ r,

Ik(x0) = −
∫ T

0
G0k(t, x0)dt = −

∫ T

0
G0(t, x0)dt ≤ −

∫ t2

t1

G0(t, x0)dt < 0. (3.9)
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Hence, by (3.8) and (3.9), there exists r > 0 such that

Ik(x) < 0, for x ∈ E−0 ⊕ E0
0 with 0 < ‖x‖ ≤ r. (3.10)

Therefore, it follows from (3.2) and (3.10) that Ik has a local linking structure at 0 with
respect to E = E−⊕ E+, where E− = E−0 ⊕ E0

0 and E+ = E+
0 . Then by Proposition 3.2, we have

Cq(Ik, 0) = δq,i−0 +i0
0
F , q ∈ Z.

(2) By a similar argument as (1), we can prove that Ik has a local linking structure at 0 with
respect to E = E−⊕ E+, where E− = E−0 and E+ = E+

0 ⊕ E0
0. Then by Proposition 3.2, we have

Cq(Ik, 0) = δq,i−0
F , q ∈ Z.

Lemma 3.6. Assume that (H1)-(H3), (H+
5 )(or (H−5 )) hold. Then for every k ∈ Z+, Ik satisfies (PS)

condition and the critical groups of Ik at infinity are

Cq(Ik, ∞) = δq,j−∞F , q ∈ Z.

Proof. Note that

Ik(x) =
1
2
〈Lγx, x〉 − ϕk(x)

Since Lγ is a nondegenerate operator on E, then Lγ |E±γ has a bounded inverse on E±γ . Recall
that dim E−γ = j−∞ < ∞. Thus the assumptions (A1) and (A2) in Proposition 3.3 are satisfied.
On the other hand, note that ϕk(x) ∈ C2(E, R) has compact derivative ϕ′k(x) and ϕ′k(x) =

o(‖x‖) as ‖x‖ → ∞, then the assumption (A3) in Proposition 3.3 is also satisfied. Hence, by
Proposition 3.3, we have

Cq(Ik, ∞) = δq,j−∞F , q ∈ Z.

Remark 3.7. Since I′k(x) = Lγx + ϕ′k(x) = Lγx + o(‖x‖) as ‖x‖ → ∞ and Lγ is invertible, it is
easy to see that the critical point set K(Ik) is bounded for every k ∈ Z+. Then since Ik satisfies
(PS) condition by Lemma 3.6, we conclude that K(Ik) is a compact set for every k ∈ Z+.

Proof of Theorem 1.1. We only prove the result for the case (1), the proofs for the cases (2), (3)
and (4) are similar.

For every k ∈ Z+, since x = 0 is an isolated critical point of Ik, there exists σ > 0 such that
Ik(x) has no nontrivial critical points in Bσ(0) := {x | ‖x‖ ≤ σ}. Since i−0 + i0

0 < i−∞ − 1, then
by (2.4), Lemma 3.5 (1) and Lemma 3.6 we have

Cq(Ik, ∞) 6= Cq(Ik, 0)

for some q ∈ Z. So by Proposition 3.1 and Remark 3.7, the set K(Ik) \ {0} is not empty and
compact. Denote Kk = K(Ik) \ {0}.

Now we show that for every k ∈ Z+ there exists a nontrivial critical point xk ∈ Kk such
that

m−(I′′k (xk)) ≤ i−∞ − 1. (3.11)

We use an indirect argument. Suppose that for any xk ∈ Kk,

m−(I′′k (xk)) > i−∞ − 1. (3.12)

For A ⊂ E and a > 0, set
Na(A) := {x ∈ E | dist(x, A) < a}.

Using the Marino–Prodi perturbation technique from [25], for any ε > 0 and 0 < τ <

min{ σ
3 , 1}, we can obtain a C2 functional Jk such that:
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(i) ‖Ik − Jk‖C2 < ε;

(ii) Ik(x) = Jk(x), x ∈ E \ N2τ(Kk);

(iii) I′′k (x) = J′′k (x) for any x ∈ Nτ(K(Ik)), K(Jk) \ {0} ⊂ Nτ(Kk), and the nontrivial critical
points of Jk are all non-degenerate.

By (iii), J′′k (0) = I′′k (0), thus by Proposition 3.2 and Lemma 3.5, we have

Cq(Jk, 0) = Cq(Ik, 0) = δq,i−0 +i0
0
F . (3.13)

By (ii), Ik(x) = Jk(x) for x ∈ E \ N2τ(Kk), then by Lemma 3.6, Jk also satisfies (PS) condition
and

Cq(Jk, ∞) = Cq(Ik, ∞) = δq,j−∞F . (3.14)

Since K(Jk) ⊂ Nτ(K(Ik)) and K(Ik) is compact, K(Jk) is also a compact set. Moreover, note
that the notrivial critical points of Jk are all non-degenerate, we have that K(Jk) is a finite set.
Suppose that

K(Jk) \ {0} = {xk1, xk2, xk3, . . . , xkn}.

By (iii) and (3.12), we can choose τ small enough such that for all 1 ≤ i ≤ n,

m−(J′′k (xki)) > i−∞ − 1. (3.15)

By (3.13), (3.14), and Proposition 3.4 we have

ti−0 +i0
0 +

n

∑
i=1

tm−(J′′k (xki)) = tj−∞ + (1 + t)Q(t). (3.16)

Note that i−0 + i0
0 < i−∞ − 1 and i−∞ ≤ j−∞, it follows from (3.16) that (1 + t)Q(t) has a nonzero

term with exponent i−0 + i0
0. Then this means that the left hand side of (3.16) has a nonzero

term with exponent i−0 + i0
0 − 1 or i−0 + i0

0 + 1. Thus there exists a 1 ≤ i ≤ n such that

m−(J′′k (xki)) = i−0 + i0
0 − 1 or m−(J′′k (xki)) = i−0 + i0

0 + 1.

Since i−0 + i0
0 < i−∞ − 1, we have that m−(J′′k (xki)) ≤ i−∞ − 1 for some 1 ≤ i ≤ n. This is contrary

to (3.15), thus (3.11) is proved.
By Lemma 2.2 and (3.11), for every k ∈ Z+ the functional Ik has a nontrivial critical point

xk such that ‖xk‖L∞ ≤ β. By Lemma 2.1, for k large enough such that Rk > β, xk is also a
nontrivial critical point of I, and thus xk is a nontrivial periodic solution of (1.1).

4 Proof of Theorem 1.2

We introduce two critical point theorems which will be used in proving Theorem 1.2. Let H be
a Hilbert space. Assume that J ∈ C2(H, R) is an even functional, satisfies the (PS) condition,
J(0) = 0 and K(J) is a compact set. Let Ba = {y ∈ H | ‖y‖ ≤ a} and Sa = ∂Ba = {y ∈ H |
‖y‖ = a}. The following two critical point theorems follow from Ghoussoub [7] and Chang
[4] (see also [13] ).
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Proposition 4.1 (See [7]). Assume H = Y
⊕

Z, and let X be a subspace of H, satisfying dim X =

j > k = dim Y. If there exist R > r > 0 and α > 0 such that

inf J(Sr ∩ Z) ≥ α, sup J(SR ∩ X) ≤ 0,

then J has j− k pairs of nontrivial critical points {±u1,±u2, . . . ,±uj−k} so that m−(J′′(ui)) ≤ k + i
for i = 1, 2, . . . , j− k.

Proposition 4.2 (See [4]). Assume H = Y
⊕

Z, and let X be a subspace of H, satisfying dim X =

j > k = dim Y. If there exist r > 0 and α > 0 such that

inf J(Z) > −∞, sup J(Sr ∩ X) ≤ −α,

then J has at least j− k pairs of nontrivial critical points {±u1,±u2, . . . ,±uj−k} so that m∗(J′′(ui)) ≥
k + i− 1 for i = 1, 2, . . . , j− k.

For every k ∈ Z+, by Lemma 2.1 (e), we see that Ik(x) is an even functional on E. From
Lemma 3.6 and Remark 3.7, Ik satisfies (PS) condition and K(Ik) is compact. Now we give the
proof of Theorem 1.2.

Proof of Theorem 1.2. (1) We will use Proposition 4.1 to prove this case. Let Y = E−0 ⊕ E0
0,

Z = E+
0 and X = E−∞. Then E = Y⊕ Z and dim X = i−∞ > i−0 + i0

0 = dim Y.
For x ∈ E+

0 , by (1.5) and (2.6) we have

Ik(x) =
1
2
〈L0x, x〉 − ϕ0k(x) ≥ c0

2
‖x‖2 + o(‖x‖2) (4.1)

as ‖x‖ → 0. Then there exists α > 0 and sufficiently small r > 0 such that Ik(x) ≥ α for any
x ∈ Sr ∩ E+

0 , that is
inf Ik(Sr ∩ E+

0 ) ≥ α. (4.2)

On the other hand, recall that E−∞ ⊂ E−γ in this case, then by (2.3) for x ∈ E−∞ we have

Ik(x) =
1
2
〈Lγx, x〉 − ϕk(x) ≤ − cγ

2
‖x‖2 + o(‖x‖2) (4.3)

as ‖x‖ → ∞. Thus there exists R > r such that Ik(x) ≤ 0 for any x ∈ SR ∩ E−∞, that is

sup Ik(SR ∩ E−∞) ≤ 0. (4.4)

For every k ∈ Z+, by (4.2), (4.4) and using Proposition 4.1, we have that Ik(x) has i−∞− i−0 −
i0
0 pairs of nontrivial critical points {±x1

k ,±x2
k , . . . ,±xi−∞−i−0 −i0

0
k } with m−(I′′k (xi

k)) ≤ i−0 + i0
0 + i

for i = 1, 2, . . . , i−∞ − i−0 − i0
0. By Lemma 2.2, ‖xi

k‖L∞ ≤ β for i = 1, 2, . . . , i−∞ − i−0 − i0
0 − 1. Then

for k large enough such that Rk > β, {±x1
k ,±x2

k , . . . ,±xi−∞−i−0 −i0
0−1

k } are also nontrivial critical
points of I, and therefore are nontrivial periodic solutions of (1.1).

(2) We will also use Proposition 4.1 to prove this case. Let Y = E−0 , Z = E+
0 ⊕ E0

0 and
X = E−∞. Then E = Y⊕ Z and dim X = i−∞ > i−0 = dim Y.

For x ∈ E+
0 ⊕ E0

0, we write x = x+ + x0 where x+ ∈ E+
0 and x0 ∈ E0

0. For x ∈ (E+
0 ∩ Sr)⊕

(E0
0 ∩ Br), by (1.5) we have

Ik(x) =
1
2
〈L0x+, x+〉 − ϕ0k(x+ + x0)

≥ c0

2
‖x+‖2 − o(‖x+ + x0‖2)

≥ c0

4
r2 (4.5)
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provided r is small enough.
Now we consider Ik on (E+

0 ∩ Br)⊕ (E0
0 ∩ Sr). For x ∈ (E+

0 ∩ Br)⊕ (E0
0 ∩ Sr), by (1.5) we

have that

Ik(x) =
1
2
〈L0x+, x+〉 − ϕ0k(x+ + x0)

≥ −ϕ0k(x+ + x0)

≥ −1
4

r2 (4.6)

provided r is small enough. Inspired by [12], we define a function g : E0
0 ∩ Sr → R by

g(x0) = inf{Ik(x+ + x0) | x+ ∈ E+
0 ∩ Br}.

Then by (4.6), g is well defined and continuous. For any fixed x0 ∈ E0
0 ∩ Sr, by a standard

minimization method, we see that g(x0) is attained at some x̄+ ∈ E+
0 ∩ Br, i.e.,

g(x0) = Ik(x̄+ + x0).

By the Sobolev inequality ‖x‖L∞ ≤ C‖x‖, we can choose r small enough such that

‖x̄+ + x0‖L∞ < δ.

Thus by (H−4 ),
G0k(t, (x̄+ + x0)(t)) < 0

for any t satisfying (x̄+ + x0)(t) 6= 0. Since x0 ∈ E0
0 ∩ Sr, then x̄+ + x0 is not identically equal

to zero. This implies that ∫ T

0
G0k(t, (x̄+ + x0)(t))dt < 0

and

g(x0) = Ik(x̄+ + x0) =
1
2
〈L0 x̄+, x̄+〉 −

∫ T

0
G0k(t, (x̄+ + x0)(t))dt > 0.

Since E0
0 is finite dimensional, E0

0 ∩ Sr is a compact set. Then there exists α0 > 0 such that

g(x0) ≥ α0, ∀x0 ∈ E0
0 ∩ Sr.

Hence, by the definition of g we have

Ik(x+ + x0) ≥ g(x0) ≥ α0, ∀x+ + x0 ∈ (E+
0 ∩ Br)⊕ (E0

0 ∩ Sr). (4.7)

Let α = min{α0, c0
4 r2}. Notice that

∂[(E+
0 ∩ Br)⊕ (E0

0 ∩ Br)] = [(E+
0 ∩ Sr)⊕ (E0

0 ∩ Br)] ∪ [(E+
0 ∩ Br)⊕ (E0

0 ∩ Sr)],

then by (4.5) and (4.7) we have

Ik(x+ + x0) ≥ α, ∀x+ + x0 ∈ ∂[(E+
0 ∩ Br)⊕ (E0

0 ∩ Br)]. (4.8)

Taking α > 0 smaller if necessary, we obtain

Ik(x+ + x0) ≥ α, ∀x+ + x0 ∈ (E+
0 ⊕ E0

0) ∩ Sr, (4.9)
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that is
inf Ik((E+

0 ⊕ E0
0) ∩ Sr) ≥ α. (4.10)

By (H+
5 ), it is easy to see that (4.4) also holds in this case. Then by (4.4) and (4.10), using

Proposition 4.1 and a similar argument as the case (1), we can prove that system (1.1) has at
least i−∞ − i−0 − 1 pairs of nontrivial periodic solutions;.

(3) We will use Proposition 4.2 to prove this case. Let Y = E−∞, Z = E+
∞ and X = E−0 ⊕ E0

0.
Then E = Y⊕ Z and dim X = i−0 + i0

0 > i−∞ = dim Y.
For x ∈ E+

∞, note that E+
∞ ⊂ E+

γ by (2.5) in this case, we have

Ik(x) =
1
2
〈Lγx, x〉 − ϕk(x) ≥ cγ

2
‖x‖2 − o(‖x‖2) (4.11)

as ‖x‖ → ∞. Then there exists Mk > 0 such that

Ik(x) ≥ 0, ∀x ∈ E+
∞ with ‖x‖ ≥ Mk. (4.12)

On the other hand, by Lemma 2.1, there exists a constant C′1 > 0 such that

|Vk(t, x)| ≤ C′1|x|2.

Thus for x ∈ E+
∞ with ‖x‖ ≤ Mk, we have

Ik(x) =
1
2

∫ T

0
|ẋ|2dt−

∫ T

0
Vk(t, x)dt ≥ −C′1

∫ T

0
|x|2dt ≥ −C′1M2

k . (4.13)

By (4.12) and (4.13), we have
inf Ik(E+

∞) > −∞. (4.14)

For x ∈ E−0 ⊕ E0
0, by using a similar argument as in obtaining (4.9), we have that there exist

r > 0 and α > 0 such that

Ik(x) ≤ −α, ∀x ∈ (E−0 ⊕ E0
0) ∩ Sr,

that is
sup Ik((E−0 ⊕ E0

0) ∩ Sr) ≤ −α. (4.15)

Then by (4.14) and (4.15), using Proposition 4.2 and a similar argument as the case (1),
we can prove that the system (1.1) has at least i−0 + i0

0 − i−∞ − 1 pairs of nontrivial periodic
solutions.

(4) We will also use Proposition 4.2 to prove this case. Let Y = E−∞, Z = E+
∞ and X = E−0 .

Then E = Y⊕ Z and dim X = i−0 > i−∞ = dim Y.
It is easy to see that (4.14) also holds in this case. For x ∈ E−0 ,

Ik(x) =
1
2
〈L0x, x〉 − ϕ0k(x) ≤ − c0

2
‖x‖2 + o(‖x‖2) (4.16)

as ‖x‖ → 0. By (4.16), there exist r > 0 and α > 0 such that

sup Ik(E−0 ∩ Sr) ≤ −α. (4.17)

By (4.14) and (4.17), using Proposition 4.2 and a similar argument as the case (1), we can
prove that system (1.1) has at least i−0 − i−∞ − 1 pairs of nontrivial periodic solutions.
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