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Abstract. In this paper we study the integrability of a few families of the complex cubic
system. We have obtained necessary and sufficient conditions for existence of a local
analytic first integral. Sufficiency of the obtained conditions was proven using differ-
ent methods: time-reversibility, Darboux integrability and others. Using the obtained
results on integrability of complex cubic system, we have obtained results for corre-
sponding real cubic systems. Then the study of bifurcation of limit cycles from each
component of the center variety of real system was performed.
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1 Introduction

One of the main problems of qualitative theory is the problem of integrability. The integrabil-
ity is not often seen phenomena, but never the least less important. A first integral determines
the phase portrait of the plane system and for higher dimensional systems first integral can
be used to reduce the dimension of the system, hence the importance. This problem can be
linked to another problem of qualitative theory, the problem of distinguishing between a cen-
ter or a focus. The so-called center problem goes back to Dulac [19], who published in year
1908 a paper on integrability of real quadratic ones. The integrability problem for quadratic
system is resolved by Dulac, Kapteyn and others, see [19, 30–32, 39, 48, 50, 51]. Since the pub-
lication of Dulac’s work, a lot of studies have been made on higher degrees systems, real
and complex systems. The integrability conditions for some cubic systems were presented in
[4, 14, 17, 18, 22, 36–38, 43, 47] and for results on higher degree systems see [5, 6, 8, 23, 24, 45].

When the systems that contain a center are known, there appears the question: “What
is the bound of the number of limit cycles that can bifurcate from the center under small
perturbation of parameters of the system?” This is a part of the 16th Hilbert’s problem, one of
the twenty-three problems introduced by David Hilbert in 1900. It is stated as: “What is the
maximum number of limit cycles of system ẋ = Pn, ẏ = Qn, where Pn and Qn are polynomial
of degree n or less? What are possible relative positions of the limit cycles?”
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In attempt to solve this open Hilbert’s problem, the cyclicity problem became one of the
main problems in the qualitative theory of differential equations (survey by J. Li, [34]).

The beginning of the study of cyclicity problem goes back to Bautin, who introduced the
concept of cyclicity [3]. In the seminar paper of Bautin it was proven that the minimal bound
on the number of limit cycles of quadratic system is 3. Since then a lot of studies were made
on this problem. For quadratic systems it was believed for some time that there are only 3
limit cycles that can bifurcate, but some examples of quadratic systems with 4 limit cycles
were constructed [7, 49]. Due to the faulty proof of Dulac on the fixed number of limit cycles
of fixed polynomial system, see [19], was his statement a big uncertainty for some time. But
one step closer to reviling the correctness of it were Chicone and Shafer [9] in year 1983, where
it was proven that a fixed quadratic system has a finite number of limit cycles in any bounded
region. The result was extended to the whole phase plane by Bamón [2] and Romanovski
[42]. Dulac’s Theorem for an arbitrary polynomial system was then proven by Ecalle [20] and
Il’yaschenko [27]. Even though a lot of studies on this problem is done, the question on the
uniform bound on the number of limit cycles in polynomial systems of fixed degree remains
unknown. For more results on cyclicity see [25, 26, 28, 33, 44, 46, 52–55, 57].

In this paper we present results of integrability of a complex family of cubic polynomial
systems of the following form

ẋ = x− a10x2 − a20x3 − a11x2y− a02xy2 − a−13y3,

ẏ = −y + b01y2 + b3,−1x3 + b20x2y + b11xy2 + b02y3.
(1.1)

The computations for the general family (1.1) were complicated, hence we studied four differ-
ent subfamilies of it. We explore integrability of the systems (1.1) where

1) a−13 = b3,−1 = 1, 2) a−13 = b3,−1 = 0, 3) a−13 = 1, b3,−1 = 0,

4) a−13 = 0, b3,−1 = 1.
(1.2)

By choosing these specific subfamilies we enable determination of general conditions for inte-
grability of complex systems of the form (1.1). In our case it is only necessary to study three
of four cases, since the involution aij ↔ bji transforms case 3) into case 4). As it will be shown
in Section 3, obtained conditions for these subsystems can be transformed to more general
system, where a−13 and b3,−1 are arbitrary. The approach is describe into details in the same
section.

The main result of this paper is presented here.

Theorem 1.1. The system (1.1) is integrable if and only if one of the following conditions holds:

1. a11 = a−13 = a02 = b11 = b02 = 0,

2. a11 = a−13 = a02 = b11 = b3,−1 = b20 = 0,

3. a11 = a20 = b11 = b3,−1 = b20 = 0,

4. a11 − b11 = a−13 = b3,−1 = a20 + b20 = a02 + b02 = 0,

5. a11 − b11 = a2
20a−13 − b2

02b3,−1 = a02b02b3,−1 − a20b20a−13 = a02a20 − b20b02 = a2
02b3,−1 −

b2
20a−13 = a2

10b02 − a20b2
01 = a2

10a−13b20 − a02b2
01b3,−1 = a2

10a20a−13 − b02b2
01b3,−1 = a2

10a02 −
b2

01b20 = a4
10a−13 − b4

01b3,−1 = 0,
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6. a11 = a10 = b01 = b11 = 3a−13b3,−1 + 4b20b02 = a20 + 3b20 = 3a02 + b02 = 0,

7. a11 − b11 = a10 = b01 = a02 − 3b02 = 3a20 − b20 = 0.

Using obtained components of center variety of complex system (1.1), we have computed
the center variety of the general real system which complexification is complex systems (1.1),
Theorem 4.1. In Section 4 we have researched the cyclicity of each real component.

2 Preliminaries

Let us study the system
u̇ = au + bv + f1(u, v),

v̇ = cu + dv + f2(u, v).
(2.1)

The behavior of the nondegenerate singular point at the origin of two-dimensional systems
(2.1) is the same as for the linearized system of (2.1), that is the system

u̇ = au + bv, v̇ = cu + dv,

except in the case of center. In the case of two purely imaginary eigenvalues of the linearized
system the singularity can be either a focus or a center. In that case some additional study
needs to be done.

The important theorem, which is the link between the center-focus problem and the inte-
grability problem, studied in this paper, is the Poincaré–Lyapunov Theorem [35, 40].

It states the following:

Theorem 2.1. The system

u̇ = λu− v + P̃(u, v) = λu− v +
n

∑
j+k=2

Ajkujvk,

v̇ = u + λv + Q̃(u, v) = u + λv +
n

∑
j+k=2

Bjkujvk.
(2.2)

on R2 has a center in the origin if and only if it there exists the a formal first integral of the form
ψ(u, v) = u2 + v2 + · · ·

By transformation x = u + iv the real system can be transformed to

ẋ = ix + P
(
(x + x)

2
,
(x− x)

2i

)
+ iQ

(
(x + x)

2
,
(x− x)

2i

)
= i(x + X1(x, x)).

The complex system obtained after (complex) time transformation idt = dτ is

ẋ = λx + i
(

x−
n

∑
p+q=2

apqxp+1 x̄q
)

. (2.3)

The system (2.3) for λ = 0, with x̄ → y, āpq → bqp and after time rescaling is written as

ẋ = x−
n

∑
p+q=2

apqxp+1yq = P1(x, y),

ẏ = −y +
n

∑
p+q=2

bqpxqyq = Q1(x, y),
(2.4)
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where P1(x, y) and Q1(x, y) are polynomials of degree at most n.
The system (2.4) is locally analytically integrable if and only if it admits a formal first integral

in the form
ψ(x, y) = xy + ∑

l+m≥3
vl−1,m−1xlym. (2.5)

Since the first integral is constant on any solution, it is obvious that it needs to satisfy
Xψ(x, y) = ∂ψ

∂x P1 +
∂ψ
∂y Q1 ≡ 0.

The construction of the first integral in the form (2.5) yields a series for which Xψ(x, y)
reduces to

Xψ(x, y) =
∂ψ

∂x
P1 +

∂ψ

∂y
Q1 := ∑

k1+k2≥2
gk1,k2 xk1 yk2 . . . (2.6)

The coefficients gk1,k2 of series (2.6) can be obtain with some computations from

Xψ(x, y) =

(
y + ∑

l+m≥3
lvl−1,m−1xl−1ym

)(
x−

n

∑
p+q=2

apqxp+1yq

)

+

(
x + ∑

l+m≥3
mvl−1,m−1xlym−1

)(
−y +

n

∑
p+q=2

bqpxqyq

) (2.7)

and are of the form

gk1,k2 = (k1 − k2)vk1,k2 −
k1+k2−1

∑
s1+s2=0,
s1,s2≥−1

((s1 + 1)ak1−s1,k2−s2 − (s2 + 1)bk1−s1,k2−s2)vs1,s2 . (2.8)

In order for the series ψ(x, y) to be a first integral each coefficient gk1,k2 must be equal to zero.
By step-by-step construction of series (2.5), we see that for k1 6= k2 the coefficients vl,m can
be chosen so that gk1,k2 = 0. But when k1 = k2 = i this is not the case and gk1,k2 depends on
previous vl,m. The polynomial of coefficients of the system (2.4) appearing in (2.6),

gi,i =
2k−1

∑
s1+s2=0,
s1,s2≥−1

((s1 + 1)ak−s1,k−s2 − (s2 + 1)bk−s1,k−s2)vs1,s2 ,

is called i-th focus quantity and the ideal B = 〈g1,1, g2,2, . . .〉 is called the Bautin ideal. The ideal
generated by the first k focus quantities is denoted by Bk. The variety of the ideal B, V(B), is
called the center variety.

The ideals B1,B2, . . . form the ascending chain of ideals,
B1 ⊆ . . . ⊆ Bk−1 ⊆ Bk ⊆ . . . , and by the Hilbert Basis Theorem, this chain stabilizes at some k.

Hence in order to obtain subfamilies of the system (1.1) which are locally integrable it is
necessary to compute irreducible decomposition of V(Bk), where k is the number for which
the ascending chain of Bk stabilizes. For obtained conditions it remains to be shown that these
conditions are sufficient, i.e. find the first integral of the form (2.5). For more detailed on this
see [1, 44].

From obtained center variety of any polynomial family one can produce, using different
approaches, a bound for the cyclicity of the system. An efficient computational technique
which we used in this paper and which allows estimation of the generic cyclicity of a family
of centers was described in the paper by Christopher [10].
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Before the formulation of the theorem presented in [10], let us explain some notations and
give some additional definitions.

Denote with (λ, (A, B)) the coefficient string (λ, A20, . . . , B0n) and with E((λ, (A, B))) the
space of parameters of the family (2.2). For the family (2.3) the coefficient string is (λ, a) =

(λ, ap1q1 , . . . , aplql ), where l is the number of coefficients of the system (2.3) and E((λ, a)) is the
space of parameters. By gR

kk the polynomial obtained by substitution of coefficients bji with
aij in the polynomial gkk is denoted and let BR

k be the ideal BR
k = 〈gR

11, gR
22, . . . , gR

kk〉.
Since the parameters of the system (2.2) and of the system (2.3) are connected, the defini-

tion is given for the complex system (2.3).

Definition 2.2. For parameters (λ, a), let n((λ, a), ε) denote the number of limit cycles of
the corresponding system (2.3) that lie wholly within an ε-neighborhood of the origin. The
singularity at the origin for the system (2.3) with fixed coefficients (λ∗, a∗) ∈ E((λ, a)) has
cyclicity c with respect to the space E((λ, a)), if there exist positive constant δ0 and ε0 such that
for every pair ε and δ satisfying 0 < ε < ε0 and 0 < δ < δ0,

max {n((λ, a), ε) : |(λ, a)− (λ∗, a∗)| < δ} = c.

The approach for the estimation of the number of limit cycles of our system was based on
the following theorem by C. Christopher [10]:

Theorem 2.3. Suppose that s is a point on the center variety and that rank Jp(BR
k ) = k. Then s lies

on a component of the center variety of codimension at least k and there are bifurcations of (2.3) which
produce k limit cycles locally from the center corresponding to the parameter value s.

If furthermore, we know that s lies on a component of the center variety of codimension k, then s is
smooth point of the variety, and the cyclicity of the center for the parameter value s is exactly k− 1.

In the latter case, k− 1 is also the cyclicity of generic point on this component of the center variety.

3 Results on integrability

Before presenting the main results on integrability we recall some important methods used
approaching the problem of integrability.

The so-called Darboux method is based on Darboux factors and using them we can some-
times construct the Darboux integrals, more on this can be found in [11, 12, 44].

Definition 3.1. A nonconstant polynomial f (x, y) ∈ C[x, y] is called a Darboux factor of system
(2.4) if there exists a polynomial K(x, y) ∈ C[x, y] such that

X f =
∂ f
∂x

P1 +
∂ f
∂y

Q1 = K f . (3.1)

The polynomial K(x, y) is called a cofactor of f (x, y) and it has degree at most n.

If sufficient number of Darboux factors are found, then so-called Darboux first integral can
be constructed.

Let f1, . . . , fs be Darboux factors such that αj ∈ C for 1 ≤ j ≤ s. A first integral of system
(2.4) of the form

H = f α1
1 . . . f αs

s

is called a Darboux first integral of system (2.4).
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For two specific systems of the form (2.4), Hamiltonian system and time-reversible system, it
is known that the singularity of the origin is a center, see [44].

We recall that: System (2.4) is a Hamiltonian system if there is a function H : C2 → C called
Hamiltonian, such that P1 = −Hy and Q1 = Hx.

Clearly, the Hamiltonian is a first integral of the system.

The definition of time-reversibility of the system is the following.

Definition 3.2. The system dz
dt = F(z), where z = (x, y) ∈ C2, is time-reversible if there exists

a transformation T(x, y) = (γx, γ−1y), for γ ∈ C \ {0}, such that

d(Tz)
dt

= F(Tz).

In the proofs of the following theorems the results of [29] on time-reversibility of the cubic
systems will be important.

Next we present the results on integrability of system (1.1).

Theorem 3.3. System (1.1) with a−13 = b3,−1 = 1 is integrable if and only if one of the following
conditions holds:

1. a11 − b11 = b01 = a10 = a02 − 3b02 = 3a20 − b20 = 0,

2. a11 − b11 = a20 + b02 = a02 + b20 = a2
10 + b2

01 = 0,

3. a11 − b11 = a20 − b02 = a02 − b20 = a10 − b01 = 0,

4. a11 − b11 = a20 − b02 = a02 − b20 = a10 + b01 = 0,

5. a11 = b11 = a10 = b01 = a20 + 3b20 = 3a02 + b02 = 4b20b02 + 3 = 0.

Proof. The computation of necessary conditions
With the computer algebra system Mathematica we were able to compute first nine non-
zero focus quantities using algorithm presented in [44]. Due to the large size of the focus
quantities, we present here only two

g11 = a01a10 + a11 − b01b10 − b11;

g22 = (24a2
01a2

10 + 24a01a10a11 + 6a2
01a20 + 3a02a20 + 2a10a−12a20

− 18a01a2
10b01 − 18a10a11b01 − 3a01a20b01 − 27a2

01a10b10

+ 3a02a10b10 − 27a01a11b10 + 2a2
10a−12b10 + 5a−12a20b10

+ 21a11b01b10 + 18a10b2
01b10 + 3a10b02b10 + 3a10a−12b2

10

+ 27a01b01b2
10 − 24b2

01b2
10 − 6b02b2

10 − 2a−12b3
10 − 21a01a10b11

+ 18a10b01b11 + 27a01b10b11 − 24b01b10b11 + 2a10a−12b20

− 3a01b01b20 − 3b02b20 − 3a−12b10b20 + 2a3
01b2,−1 + 3a01a02b2,−1

− 4a11a−12b2,−1 + 2a10a−13b2,−1 − 3a2
01b01b2,−1 − 2a02b01b2,−1

− 2a01b2
01b2,−1 − 5a01b02b2,−1 − 2b01b02b2,−1 − a−13b10b2,−1

+ 4a−12b11b2,−1 + a01a−12b3,−1 − 2a−12b01b3,−1)/3.

To obtain the necessary conditions for system to be integrable, the irreducible decomposi-
tion of integrability variety, V(B9) needs to computed. The irreducible decomposition was
computed using Singular [15] routine minAssGTZ [16].
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Since the computation of irreducible decomposition is difficult, in many cases it is nec-
essary to work in modular arithmetics instead of over the field of rational numbers. Since
the obtained ideals have rational coefficients, the rational reconstruction needs to be done.
For more informations on rational reconstruction algorithm see [53]. Working with modular
arithmetics sometimes produces wrong conditions or do not produces all conditions, some
can be lost. For this reason additional few steps need to be done.

The approach which can be used to check the conditions was suggested in [41].
The irreducible decomposition was computed over four different characteristics; 7919,

32003, 100109 and 104729. The approach described in [41] was not done completely, but
in many cases computations are difficult even for more capable computers. But with high
probability the list of conditions of Theorem 3.3 is complete.

The existence of the analytic first integral

Now we prove that under each of the conditions of Theorem 3.3 the system has a first
integral.

Case 1. The system under conditions a11 − b11 = b01 = a10 = a02 − 3b02 = 3a20 − b20 = 0 is

ẋ = x− a20x3 − b11x2y− a02xy2 − y3,

ẏ = −y + x3 + b11xy2 + 3a20x2y +
a02

3
y3.

It is a Hamiltonian system. The first integral is ψ(x, y) = xy − x4

4 −
y4

4 − a20x3y − b11
2 x2y2 −

a02
3 xy3.

Case 2. Conditions a11 − b11 = a20 + b02 = a02 + b20 = a2
10 + b2

01 = 0 satisfy the conditions for
time-reversible cubic system written in [44], hence the system is time-reversible.

Case 3 and Case 4. systems are of form

ẋ = x− a10x2 − a20x3 − a11x2y− a02xy2 − y3,

ẏ = −y± a10 + x3 + a11xy2 + a02x2y + a20y3.

The system, the same as in Case 2, is time-reversible, since it satisfies the conditions for time-
reversible cubic system.

Case 5. The conditions a11 = b11 = a10 = b01 = a20 + 3b20 = 3a02 + b02 = 4b20b02 + 3 = 0 yield
the system

ẋ = x− 9
4b02

x3 +
b02

3
xy2 − y3,

ẏ = x3 − y− 3
4b02

x2y + b02y3.

We obtain three Darboux factors of this system, one of degree four,

l1(x, y) = 1− 3
2b02

x2 +
b2

02
9

x4 − 9
4b2

02
xy− 4b2

02
9

xy +
2b02

3
x3y− 2b02

3
y2 +

3
2

x2y2

+
3

2b02
xy3 +

9
16b2

02
y4,
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and two of degree six,

l2(x, y) = 1− 9
2b02

x2 +
81

16b2
02

x4 − b02

3
x6 + 2b02x3y− 3

2
x5y− 2b02y2 +

3
2

x2y2

− 9
4b02

x4y2 +
9

2b02
xy3 − 9

8b2
02

x3y3 − 2b2
02

9
x3y3 + b2

02y4 − b02x2y4

− 3
2

xy5 +− 3
4b02

y6

and

l3(x, y) = 1− 9x2

4b02
− 216b2

02xy
81 + 16b4

02
− b02y2 +

54b2
02x4

81 + 16b4
02

+
9
2

x2y2 +
54b2

02y4

81 + 16b4
02

+
b02(243 + 16b4

02)x3y
81 + 16b4

02
+

27(27 + 16b4
02)xy3

4b02(81 + 16b4
02)
− 8b5

02x6

3(81 + 16b4
02)

− 24b4
02x5y

81 + 16b4
02
− 90b3

02x4y2

81 + 16b4
02
− 180b2

02x3y3

81 + 16b4
02
− 405b02x2y4

2(81 + 16b4
02)

− 243xy5

2(81 + 16b4
02)
− 243y6

8b02(81 + 16b4
02)

.

Two of these three Darboux factors construct the first integral

ψ(x, y) = C(l3
1 l2 − l3

1 l−1
2 ) = xy + . . . ,

where C =
6b2

02
81+16b4

02
and 81 + 16b4

02 6= 0.

In case 81 + 16b4
02 = 0, the first integral is of form

ψ(x, y) =
1
4
(4− 4(−1)

3
4 x2 + ix4 − 4(−1)

1
4 x3y + 4(−1)

1
4 y2 + 6x2y2 + 4(−1)

3
4 xy3 − iy4).

Theorem 3.4. The system (1.1) with a−13 = b3,−1 = 0 is integrable if and only if one of the following
conditions holds:

1. a11 = b11 = b20 = a20 = 0,

2. a11 = b11 = b20 = a02 = 0,

3. a11 = b11 = b02 = a02 = 0,

4. a11 − b11 = a02a20 − b20b02 = a20b2
01 − a2

10b02 = a2
10a02 − b2

01b20 = 0,

5. a11 − b11 = a20 + b20 = a02 + b02 = 0.

Proof. The computation of necessary conditions The computation of irreducible decomposition
of variety of ideal B9 with additional conditions a−13 = b3,−1 = 0, was not too extensive and
difficult, hence it was done over the field of rational numbers. This way conditions of Theorem
3.4 were obtained.

The existence of the analytic first integral
The system (1.1) with a−13 = b3,−1 = 0 is Lotka–Volterra system, which was studied in [18].

Case 1. The system under conditions a11 = b11 = b20 = a20 = 0 is equivalent to the system of
Case 4 of Theorem 1.4 in [18].
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Case 2. Conditions a11 = b11 = b20 = a02 = 0 yield the Case 3 of Theorem 1.4 in [18].

Case 3. Conditions a11 = b11 = b02 = a02 = 0 yield the system that is equivalent to the system
of Case 5 of Theorem 1.4 in [18].

Case 4. The Case 4 is Case 2 of Theorem 1.4 in [18].

Case 5. Conditions a11 − b11 = a20 + b20 = a02 + b02 = 0 are conditions of Case 1 of Theorem
1.4 in [18].

Theorem 3.5. The system (1.1) with a−13 = 1 and b3,−1 = 0 is integrable if and only if one of the
following conditions holds:

1. a11 − b11 = b20 = a20 = a10 = 0,

2. a11 = b11 = b20 = a20 = 0,

3. a11 − b11 = a10 = b01 = 3a20 − b20 = a02 − 3b02 = 0,

4. a11 = b11 = a20 + 3b20 = b01 = b02 = a02 = a10 = 0.

Proof. The computation of necessary conditions
The conditions were obtained similar as in case of Theorem 3.3.

The existence of the analytic first integral

Case 1. The corresponding system for conditions a11 − b11 = b20 = a20 = a10 = 0 is

ẋ = x− a11x2y− a02xy2 − y3,

ẏ = −y + b01y2 + a11xy2 + b02y3.

This system is time-reversible, hence integrable.

Case 2. In this case system is of the form

ẋ = x− a10x2 − a02xy2 − y3,

ẏ = −y + b01y2 + b02y3.

Darboux factors found for this system are

l1(x, y) = y, l2,3(x, y) =
1
2

(
2− b01y±

√
b2

01 + 4b02y
)

,

but using them we were not able to construct Darboux first integral or Darboux integrating
factor. For this reason we looked for a first integral of the form ψ(x, y) = ∑∞

k=1 fk(x)yk. The
function fk(x) is defined by recursive differential equation

(k− 2)b02 fk−2(x) + (k− 1)b01 fk−1(x)− k fk(x)− f ′k−3(x)+

− a02x f ′k−2(x) + x(1− a10x) f ′k(x) = 0. (3.2)

Using induction we show that for every odd number, k = 2n− 1, is f2n−1(x) = pn(x)
(−1+a10x)2n−1

and for every even number, k = 2n, is f2n(x) = pn(x)
(−1+a10x)2n .

Proving first the assumption for odd numbers.
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For k = 1: f1(x) = −x
(−1+a10x) . Let us assume that the assumption holds for all l < 2n− 1.

We need to show that it holds for 2n− 1. Using assumptions in (3.2) for every l < 2n− 1 we
obtain differential equation

pn(x)
x(−1 + a10x)2n−1 =

(2n− 1)
x(−1 + a10x)

f2n−1(x) + f ′2n−1(x),

which has solution

f2n−1(x) =
x2n−1

(−1)2n−1(−1 + a10x)2n−1

∫
(−1)2n−1 pn(x)(−1 + a10x)2n−1

x2n(−1 + a10x)2n−1 dx

=
x2n−1

(−1 + a10x)2n−1

∫ pn(x)
x2n dx =

x2n−1

(−1 + a10x)2n−1
pn(x)
x2n−1 =

pn(x)
(−1 + a10x)2n−1 .

In the same way this can be proven for even numbers k.
For k = 2: f2(x) = b01x

(−1+a10x)2 and

pn(x)
x(−1 + a10x)2n =

2n
x(−1 + a10x)

f2n(x) + f ′2n(x)

needs to hold. Solving this differential equation we obtain f2n(x) = pn(x)
(−1+a10x)2n , as needed.

Case 3. The system corresponding to conditions a11 − b11 = a10 = b01 = 3a20 − b20 = a02 −
3b02 = 0 is

ẋ = x− b11x2y− b20

3
x3 − 3b02xy2 − y3,

ẏ = −y + b11xy2 + b20x2y + b02y3.

This is Hamiltonian system and the first integral is

ψ(x, y) = xy− b20

3
x3y− b11

2
x2y2 − b02xy3 − y4

4
.

Case 4. The system in this case is

ẋ = x− a20x3 − y3,

ẏ = y(−1 +
a20

3
x2).

Darboux factors of this system are l1(x, y) = y, l2(x, y) = x− y3

4 and two Darboux factors of
degree six,

l3(x, y) =
1
9
(9− 18a20x2 + 9a20x4 + 18a20xy3 − 2a2

20x3y3 − 3a20y6)

and

l4(x, y) =
1
6
(6− 6a20x2 + 6a20xy3 − a20y6).

Using three of four Darboux factors we obtain first integral

ψ(x, y) = l1l2l−
1
3

3 = xy + · · ·
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Studying integrability of the systems of higher degrees is difficult, mostly because of com-
putation of irreducible decomposition. Due to these problem we splitted the research of the
system (1.1) to four cases, as explained before in Section 1. The fact is that by the involution
of parameters aij ↔ bji we can transforms case 3) of (1.2), where additional conditions are
a−13 = 1 and b3,−1 = 0, into case 4), where a−13 = 0 and b3,−1 = 1. Hence only three of four
cases needed to be studied. In theorems 3.3, 3.4 and 3.5 the obtained results are presented
and in the proofs all procedures of obtaining these conditions are explained into details.

By fixing some coefficients and splitting the study of the system (1.1), the general condi-
tions of integrability of this system were not obtained. But as it will be explained here the
general conditions of integrability of the system (1.1) can be computed using conditions of
Theorems 3.3, 3.4 and 3.5.

The main theory behind obtaining the general results is the elimination theory. More on
this theory can be read in [13, Chapter 3] or [44, Chapter 1.3]. Before explaining the whole
procedure for obtaining the general conditions, some important facts on the elimination theory
need to be given.

Definition 3.6. Let I = 〈 f1, . . . , fm〉 be ideal in k[x1, . . . , xn] (with the implicit ordering of the
variables x1 > x2 > . . . > xn) and fix l ∈ {0, 1, . . . , n− 1}. The l-th elimination ideal of I is the
ideal Il = I ∩ k[xl+1, xl+2, . . . , xn]. Any point (al+1, . . . , an) ∈ V(Il) is called partial solution of the
system { f = 0; f ∈ I}.

Geometrically, the elimination is the projection of V(I) ⊂ kn on the lower dimensional
subspace kn−l .

The method for computing the elimination ideal Il is provided in the following theorem.

Theorem 3.7. Fix the lexicographic term order on the ring k[x1, . . . , xn] with x1 > x2 > · · · > xn

and let G be a Gröbner basis for an ideal I of k[x1, . . . , xn] with respect to this order. Then for every l,
0 ≤ l ≤ n− 1, the set Gl := G ∩ k[xl+1, . . . , xn] is a Gröbner basis for the l-th elimination ideal Il .

The procedure of obtaining the general results is based on the following observations.

Taking the variables
x1 → ax, y1 → by

changes the system (1.1) into the system

ẋ1 = x1 − α10x2
1 − α20x3

1 − α01x1y1 − α11x2
1y1 − α−12y2

1 − α02x1y2
1 − α−13y3

1,

ẏ1 = −y1 + β2,−1x2
1 + β3,−1x3

1 + β10x1y1 + β02x2
1y1 + β01y2

1 + β11x1y2
1 + β02y3

1,
(3.3)

where

α10 =
a10

a
, β2,−1 =

bb21

a2 ,

α20 =
a20

a2 , β3,−1 =
bb3,−1

a3 ,

α01 =
a01

b
, β10 =

b10

a
,

α11 =
a11

ab
, β20 =

b20

a2 ,

α−12 =
aa−12

b2 , β01 =
b01

b
,
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α02 =
a02

b2 , β11 =
b11

ab
,

α−13 =
aa−13

b3 , β02 =
b02

b2 .

The focus quantities of both systems, (1.1) and (3.3), are different only by the constant fac-
tor. This constant factor does not make a difference for the center variety, hence the irreducible
decomposition of both varieties generates the same conditions.

As it is seen from the system (3.3), each nonzero coefficient can be rescaled so that obtained
coefficient is equal to 1. Similar, coefficients can be set equal to zero.

Hence by splitting our studies as presented in Section 1, the general results were not lost.
These can be obtained with the approach described below.

For the case 1), where a−13 = b3,−1 = 1, the coefficients α−13 and β3,−1 need to fulfil
α−13 = ab−3 and β3,−1 = a−3b, with additional restrictions a 6= 0 and b 6= 0. These additional
restrictions can be written in the term of polynomial as 1− wa, respectively 1− vb. The other
conditions of Theorem 3.3 change regarding ai,j = αi,ja−ibj and bi,j = βi,ja−ibj, where i, j ∈
{−1, . . . , 3}. This way ideals I1, . . . , I5 ∈ C[w, v, a, b, A, B], where A = {a10, a20, a11, a02, a−13}
and B = {b01, b02, b11, b20, b3,−1} are formed,

I1 = 〈1− wa, 1− vb, ab(a11 − b11), bb01, aa10, b2(a02 − 3b02), a2(3a20 − b20),

− a + b3a−13,−b + a3b3,−1〉
I2 = 〈1− wa, 1− vb, ab(a11 − b11), a2a20 + b2b02, b2a02 + a2b20, a2a2

10 + b2b2
01,

− a + b3a−13,−b + a3b3,−1〉
I3 = 〈1− wa, 1− vb, ab(a11 − b11), a2a20 − b2b02, b2a02 − a2b20, aa10 − bb01,

− a + b3a−13,−b + a3b3,−1〉
I4 = 〈1− wa, 1− vb, ab(a11 − b11), a2a20 − b2b02, b2a02 − a2b20, aa10 + bb01,

− a + b3a−13,−b + a3b3,−1〉
I5 = 〈1− wa, 1− vb, aba11, abb11, aa10, bb01, a2(a20 + 3b20), b2(3a02 + b02,

3 + 4a2b2b02b20,−a + b3a−13,−b + a3b3,−1〉.

Similar we obtain ideals I6, . . . , I10 from conditions of Theorem 3.4. Ideals I11, . . . , I14 were
gained from Theorem 3.5 and I15, . . . , I18 by involution of coefficients in conditions of Theo-
rem 3.5.

From the obtained ideals I1, . . . , I18 we eliminate, using Singular routine eliminate, vari-
ables w, v, a and b. The elimination ideals are

J′1 = I1 ∩C[a10, a20, a11, a02, a−13, b01, b02, b11, b20, b3,−1], . . . , J′18.

Then we compute irreducible decomposition (Singular routine minAssGTZ) of each obtained
eliminated ideal, gaining ideals J1, . . . , J18:

J1 = 〈b01, a11 − b11, 3a20 − b20, a02 − 3b02, a10〉,
J2 = 〈a11 − b11, a2

20a−13 − b2
02b3,−1, a02b02b3,−1 − a20a−13b20, a02a20 − b20b02,

a2
02b3,−1 − a−13b2

20, a2
10b02 − a20b2

01, a2
10a−13b20 − a02b2

01b3,−1,

a2
10a20a−13 − b2

01b02b3,−1, a2
10a02 − b2

01b20, a4
10a−13 − b4

01b3,−1〉,
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J3 = 〈a11 − b11, a2
20a−13 − b2

02b3,−1, a02b02b3,−1 − a20a−13b20, a02a20 − b20b02,

a2
02b3,−1 − a−13b2

20, a2
10b02 − a20b2

01, a2
10a−13b20 − a02b2

01b3,−1,

a2
10a20a−13 − b2

01b02b3,−1, a2
10a02 − b2

01b20, a4
10a−13 − b4

01b3,−1〉,
J4 = 〈a11 − b11, a2

20a−13 − b2
02b3,−1, a02b02b3,−1 − a20a−13b20, a02a20 − b20b02,

a2
02b3,−1 − a−13b2

20, a2
10b02 − a20b2

01, a2
10a−13b20 − a02b2

01b3,−1,

a2
10a20a−13 − b2

01b02b3,−1, a2
10a02 − b2

01b20, a4
10a−13 − b4

01b3,−1〉,
J5 = 〈b11, b01, a11, 3a−13b3,−1 + 4b20b02, a20 + 3b20, 3a02 + b02, a10〉, . . .

By computing intersection of obtained ideals Ji, J = ∩18
i=1 Ji (Singular routine intersect) and

then using Singular routine minAssGTZ to compute irreducible decomposition of V(J), we
obtain list of conditions from Theorem 1.1. For more details on this approach see [21].

4 Cyclicity of components of the center variety

In this section we will presented results connected to cyclicity of the specific family of real
cubic system.

The researched real system was obtained from the complex system (1.1) by setting

a10 = A10 + iB10, b01 = A10 − iB10, a20 = A20 + iB20, b02 = A20 − iB20,

a02 = A02 + iB02, b20 = A02 − iB02, a11 = A11 + iB11, b11 = A11 − iB11,

a−13 = A−13 + iB−13, b3,−1 = A−13 − iB−13.

(4.1)

In the same way, by setting (4.1), the real center variety was obtained from the center variety
presented in Theorem 1.1. The studied real system is of the form

ẋ = i(x− (A10x2 + A20x3 + A11x2 x̄ + A02xx̄2 + A−13 x̄3)

− i(B10x2 + B20x3 + B11x2 x̄ + B02xx̄2 + B−13 x̄3)).
(4.2)

Theorem 4.1. The center variety in R10 of the real system (4.2) consists of the following irreducible
components:

1) 3B20 + B02 = B11 = B10 = 3A20 − A02 = A10 = 0,

2) B20 − 3B02 = B11 = B10 = A20 + 3A02 = A11 = A10 = A2
−13 + B2

−13 − 4A2
02 − 4B2

02 = 0,

3) B11 = A02B20 + A20B02 = A2
02B−13 − 2A−13 A02B02 − B−13B2

02 = A20A02B−13 − 2A−13A20B02

+ B−13B20B02 = A2
20B−13 + 2A−13A20B20 − B−13B2

20 = 2A10A02B10 + A2
10B02 − B2

10B02

= 2A10A20B10−A2
10B20 + B2

10B20 = A2
10A02B−13−A02B2

10B−13− 2A2
10A−13B02 + 2A−13B2

10B02

+ 2A10B10B−13B02 = A2
10A20B−13 − A20B2

10B−13 + 2A2
10A−13B20 − 2A−13B2

10B20

− 2A10B10B−13B20 = 2A02B3
10B−13 + 4A2

10A−13B10B02 − 4A−13B3
10B02 + A3

10B−13B02

− 5A10B2
10B−13B02 = 2A20B3

10B−13 − 4A2
10A−13B10B20 + 4A−13B3

10B20 − A3
10B−13B20

+ 5A10B2
10B−13B20 = 4A3

10A−13B10 − 4A10A−13B3
10 + A4

10B−13 − 6A2
10B2

10B−13 + B4
10B−13 = 0,

4) B20 − B02 = B−13 = B11 = A02 + A20 = A−13 = 0,

5) B02 = B−13 = B11 = A02 = A11 = A−13 = 0.

The dimension of these components is 5, 3, 5, 5, 4, respectively.
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Proof. The center variety of the real system (4.2) was obtain from complex variety of Theo-
rem 1.1. The change of coefficients in the way as written at (4.1) and then by elimination of
complex unit i from obtained ideals produced the conditions of Theorem 4.1. The conditions
4), 5), 6), 7) of Theorem 1.1 yield conditions 4), 3), 2), 1) of this theorem and the condition 5)
was obtain from 2). The other obtained conditions are subvarieties of 3), 4) and 5).

As we can see from 1), 4) and 5) the number of parameters in these components is equal
to 5, 5 and 6. Hence the dimension is 5, 5 and 4, since the number of all parameters is 10 and
5 (respectively 5 and 4) parameters are free.

The dimension of remaining components is not obvious as in three cases before. By the
Theorem 2 of [13, Chapter 3.3] the upper bound of dimension can be determine from obtained
rational parametrization. For the case 2) the parametrization is

B10 = A10 = B11 = A11 = f0 = 0, A02 = f1(u1, u2, u3)/g2(u3),

B02 = f2(u1, u2, u3)/g2(u3), A20 = f3(u1, u2, u3)/g2(u3),

B20 = f4(u1, u2, u3)/g2(u3), B−13 = f5(u1, u2, u3)/(g1(u2)g2(u3)),

A−13 = f6(u1, u2, u3)/(g1(u2)g2(u3)),

where
f1(u1,u2, u3) = u1(1− u2

3), f2(u1, u2, u3) = 2u1u3,

f3(u1, u2, u3) = −3u1(1− u2
3), f4(u1, u2, u3) = 6u1u3,

f5(u1, u2, u3) = −u1(u2 + u3)(−1 + u2u3),

f6(u1, u2, u3) =
1
2

u1(−1− u2 − u3 + u2u3)(−1 + u2 + u3 + u2u3),

g1(u2) = 1 + u2
2, g2(u3) = 1 + u2

3

and the components dimension is less or equal three, since these functions depends on three
variables, u1, u2 and u3. To know if the dimension is exactly three, Jacobian of the functions
f0(u1, u2, u3), . . . , f6(u1, u2, u3) needs to be computed. The Jacobian in some arbitrary point,
u1 = 1, u2 = 4, u3 = 2, is three, hence the dimension is equal to three.

In the same way we obtain the dimension for component 3). The parametrization is

B11 = f0 = 0, B10 = f1(u1, u2, u3, u4, u5) = u1,

A10 = f2(u1, u2, u3, u4, u5) = u2, A20 = f3(u1, u2, u3, u4, u5) = u3,

B20 = f4(u1, u2, u3, u4, u5)/(g3(u1, u2)g4(u1, u2)),

A02 = f5(u1, u2, u3, u4, u5) = u4, B02 = f6(u1, u2, u3, u4, u5)/(g3(u1, u2)g4(u1, u2)),

A−13 = f7(u1, u2, u3, u4, u5)/(( f1(u1) f2(u2)g3(u1, u2)g4(u1, u2))),

where
f4(u1, u2, u3, u4, u5) = −2u1u2u3, f6(u1, u2, u3, u4, u5) = u4,

f7(u1, u2, u3, u4,u5) = −2u1u2u4, g3(u1, u2) = u1 − u2,

g4(u1, u2) = u1 + u2.

The dimension of this component is less or equal five and the Jacobian of f1(u1, u2, u3, u4, u5),
. . . , f7(u1, u2, u3, u4, u5) in random point u1 = 4, u2 = 6, u3 = 2, u4 = 1, u5 = 2 is five, hence the
dimension of this component of center variety is five.

Theorem 4.2. Let us define polynomials F1 = A2
20B−13 + 2A−13A20B20− B−13B2

20, F2 = (A02B−13−
B02A−13)(B02B−13 + A02A−13), F3 = 3A2

02 + 2A02A2
10− 8A02A20 + 2A2

10A20− 3A2
20− 2A02B2

10−
2A20B2

10, F4 = (A2
10 + B2

10)(A02 + B02)(A02 − B02) and F5 = A2
10B20 − B2

10B20 − 2A10A20B10.
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There are bifurcations of the system (4.2) which produce 3 limit cycles locally from the center
corresponding to the parameter value p1, where p1 is a component 1) with F1(p1) 6= 0 of R10. The
cyclicity of a generic point p2 of component 2) with F2(p2) 6= 0 and of point p4 with F4(p4) 6= 0 is 5.
For the component 3) with F3(p3) 6= 0 the cyclicity is 4 and 6 for the component 5) with F5(p5) 6= 0.

Proof. Component 1) We choose an arbitrary point p = (A10, B10, A20, B20, A02, B02, A11, B11,
A−13, B−13) of this component, (0, 0, 1, 1, 3,−3, 2, 0, 1, 1), the rank of the Jacobian of the fo-
cus quantities, rank J(k)p = 3, is equal to three. By Theorem 2.3 the cyclicity of a generic point
of this component is three.

Component 2) For the random point p = (0, 0,−3, 3, 1, 1, 0, 0,−
√

7, 1) the rank of the Jacobian
is five, rank J(k)p = 5, hence five limit cycles can bifurcate for these systems.

Component 3) The rank of Jacobian of the focus quantities at the point p, where p =

(2, 1, 3
4 , 1,− 3

4 , 1, 1, 0, 7
24 , 1) of the component 3) is equal to four, rank J(4)p = 4.

Component 4) For the point p = (1, 1,−2, 3, 2, 3, 1, 0, 0, 0) of the component 4) there can bifur-
cate up to five limit cycles, since the rank of Jacobian at the point p is five, rank J(5)p = 5.

Component 5) The cyclicity of the component 5) is six, since the rank of Jacobian of the focus
quantities at the point p = (2, 3, 1, 1, 0, 0, 0, 0, 0, 0) of this component is six, rank J(k)p = 6.

5 Conclusions

The main results in this paper are on integrability and cyclicity of cubic system. The compu-
tation of necessary conditions for system of the form (1.1) were difficult. It was impossible
to compute over the field of rational numbers. To overcome the difficulties we have splitted
our system into four subsystems, solved the integrability problem and from the integrability
conditions for these subsystems we have reconstructed integrability variety of general system
(1.1). From the results on integrability of complex cubic system, where seven conditions were
obtained, see Theorem 1.1, we have obtained the conditions of associated real cubic systems.
Results are presented in Thereom 4.1. For each of five obtained components of integrability
variety of a real systems we studied the number of limit cycles that can bifurcate from it. It
was shown that maximum limit cycles that can bifurcate from system (4.2) under some spe-
cific conditions is six. This number is, in comparison to result from Żołądek [56], where he
proven that there are up to eleven limit cycles appearing, small.
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