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Abstract  

Optical character recognition (OCR) in images captured from arbitrary angles requires prelimi-
nary normalization, i.e. a geometric transformation resulting in an image as if it was captured at an 
angle suitable for OCR. In most cases, a surface containing characters can be considered flat, and a 
pinhole model can be adopted for a camera. Thus, in theory, the normalization should be projec-
tive. Usually, the camera optical axis is approximately perpendicular to the document surface, so 
the projective normalization can be replaced with an affine one without a significant loss of accu-
racy. An affine image transformation is performed significantly faster than a projective normaliza-
tion, which is important for OCR on mobile devices. In this work, we propose a fast approach for 
image normalization. It utilizes an affine normalization instead of a projective one if there is no 
significant loss of accuracy. The approach is based on a proposed criterion for the normalization 
accuracy: root mean square (RMS) coordinate discrepancies over the region of interest (ROI). The 
problem of optimal affine normalization according to this criterion is considered. We have estab-
lished that this unconstrained optimization is quadratic and can be reduced to a problem of frac-
tional quadratic functions integration over the ROI. The latter was solved analytically in the case 
of OCR where the ROI consists of rectangles. The proposed approach is generalized for various 
cases when instead of the affine transform its special cases are used: scaling, translation, shearing, 
and their superposition, allowing the image normalization procedure to be further accelerated. 
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Introduction 
Projective image normalization 

Optical character recognition (OCR) in images cap-
tured from arbitrary angles requires preliminary normali-
zation, i.e. geometric transformation resulting in an image 
as if it was captured from the angle suitable for OCR. In 
most cases, a surface containing characters can be con-
sidered flat, and a pinhole model can be adopted for a 
camera. Thus, in theory, the normalization should be pro-
jective. The latter is commonly employed as a part of im-
age preprocessing for various computer vision tasks, such 
as document OCR [1, 2, 3, 4, 5], vehicle license plate 
recognition [6], TV-stream recognition based on a picture 
of a TV screen [7], chessboard recognition [8], artificial 
on-road obstacles detection [9], object detection using 
shape features (detection of the shape of an object within 
an image and matching that shape with an object from da-
tabase) [10, 11, 12, 13, 14, 15], surface parameters moni-
tored from satellites (time-temporal variability of sea sur-
face temperature, determining the velocity of the cloud 
masses motion, etc.) [16], reconstruction of plans and 
maps from the aerial photographs [17, 18], and many 
more. In addition, the projective normalization of photo-
graphs of documents helps human perception [19]. 

Affine approximation of projective normalization  

Usually, the camera optical axis is approximately per-
pendicular to the document surface. In such cases, a pro-
jection model of the affine camera can be utilized [20], 
and a projective normalization can be replaced with a 
commonly used affine normalization without significant 
loss of accuracy [21, 22]. The affine image transfor-
mation is performed significantly faster than the projec-
tive normalization [22, 23], which is helpful for fast im-
age normalization. The latter is important for the OCR on 
mobile devices [24]. 

The idea of the replacement of the projective trans-
formation with the affine one in practice was mentioned 
in [25] back in 1985. This property was implemented in 
[26] for the simplification of the mathematical calcula-
tions. The affine approximation is commonly used in im-
age completion [27] and rendering [23, 28, 29]. In [30] 
the projective transformation is replaced with the simpler 
affine transformation in order to avoid overfitting. A sim-
ilar idea is utilized in «weak-perspective projection» [31, 
32, 33], where the approximation is partial. Use of the af-
fine invariant methods instead of significantly more com-
plicated projective invariant methods is common in key-
points technology [34, 35, 36], as well as in the related 
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problem of salient region detection [37], and both of 
these methods are essentially camera angle invariant. 
There is also a division into affine and projective methods 
in stereo reconstruction [38]. The utilization of affine 
transformation for image rendering and normalization re-
sults in loss of accuracy [22, 39], but the accuracy was 
not formally introduced. 

Affine approximation of the given projective normali-
zation aiming to accelerate the latter is considered for the 
first time in this work. 

Definitions and notation 

Let Iinput be an input image (usually a photograph) for 
the normalization. Let its known projective normalization 
be a perfect normalization H. Let an image formed as the 
result of the application of H to Iinput be a projectively 
normalized image Iproj (see Fig. 1). An arbitrary affine 
approximation of the projective normalization H is 
denoted as A: ˆA = H . Thus A is the affine normalization 
of the image Iinput. The resulting image Iaffin of A applied 
to Iinput is an affinely normalized image. 

 
Fig. 1. The general scheme of transformations, where Iinput is an 
image of the document captured from an arbitrary angle, Iproj is 
a projectively normalized image, Iaffin is an affinely normalized 

image, and the result of the OCR 

Let 
def

=[ ]Tx yr  be Cartesian coordinates of pixels on 

the plane of Iproj. We define the residual projective 
distortion as 

def
1V = AH ,   (1) 

which for each point of the scene transforms coordinates 
r of its image on Iproj into coordinates V(r) of its image 
on Iaffin. 

Ideally, the residual distortion V is an identical trans-
formation. For the formalization of pointwise error of af-
fine normalization we define the coordinate discrepancies 
[40] (see Fig. 2) as  

def

2d( ) = V( ) .r r r    (2) 

In some cases, it is possible to evaluate beforehand 
which part of the projectively normalized image Iproj is of 
interest. Such region of interest (ROI) is denoted as 
R  2. Otherwise, R denotes the entire Iproj.  

a)  

b)  
Fig. 2. The coordinate discrepancies. a) the affinely normalized 
image Iaffin; black frames indicate the ideal positions of the text 

fields; b) a shift vector field V(r)–r, rR; the shades of grey 

illustrate the square root of coordinate discrepancies d( )r  

1. Root mean square criterion of normalization accuracy 

As a criterion of normalization accuracy, we choose 
the widely used criterion of root mean square (RMS) 
coordinate discrepancies. In cases of ROI with finite non-
zero area 0 < S(R) <  and non-empty finite ROI 
0 < |R| <  the criterion is defined as follows:  

2

def

2

2

1
d ( ) d for 0 < ( ) < ,

( )
(d; ) =

1
d ( ) for 0 <| |< .

| |

R

R

S R
S R

L R

R
R 






 





r

r r

r

 (3) 

Such criterion was used, for example, for the 
automatic normalization of distortion caused by lens 
distortion and camera movement [41]. The same criterion 
was also employed for the calculation of the accuracy of 
the aligned image formation via projectors matrix [42]. 
Using definitions (1) and (2) we establish the dependence 
of criterion on the affine transformation A: 

def

2 2(A,H; ) = (d; ),L R L R  1
2d( ) = AH ( ) .r r r    (4) 
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2. Optimal affine image normalization 

2.1. Problem formulation 

Now, as the criterion of normalization accuracy is set, 
we can formulate a problem of search for the optimal 
affine approximation of the projective normalization H:  

def
*

2
A

A = arg min (A,H; ).L R  (5) 

We will also refer to it as the optimal affine 
normalization. The correspondent optimum is denoted as 

def
* *
2 2 2

A
= min (A,H; ) = (A ,H; ).L L R L R  (6) 

The projective normalization H is parametrized by the 

homography matrix 
def

3 3= ( )ijH h  :  

11 12 13

def
21 22 23

31 32 33

= H( ') = ,

h x h y h

h x h y h

h x h y h

   
    

  
r r  

where 
def

= [ ]Tx y  r  are Cartesian coordinates of pixels on 

Iinput image surface. Let an inverse transformation for H 

transformation be 
def

1P = H  and we parametrize it by 

matrix 
def

3 3= ( )ijP p  : 

11 12 13

def
21 22 23

31 32 33

' = P( ) = ,

p x p y p

p x p y p

p x p y p

  
   

 
r r  

 (7)
 

then P ~ H–1. Because matrices P and H are homogenous 
we assume  

1= .P H    (8) 

The affine transformation A is parametrized by matrix 
def

2 3= ( )ijA a  :  
def

A( ) = [ 1] TA x yr .  (9) 

Thus, problem (5) of the optimal transformation 
search can be formulated as the problem of optimal 
matrix search  

2

2*
2

2

P( )
d for 0< ( )< ,

1
= arg min

P( )
for 0<| | < .

1

R

A

R

A S R

A

A R


       

  

   
 




r

r
r r

r
r

 (10) 

Earlier in [43] we proved that this problem is convex.  

2.2. The applicability limits 

Consider function 
def

31 32 33( ) = .Z p x p y p r  (11) 

The line Z(r) = 0 on Iproj image surface is denoted as the 
horizon. Let us consider ROI R which does not lie strictly on 

one part outlined by the horizon. Points on the horizon turn 
the denominator of the transformation (7) into zero, which 
corresponds to them being infinitely remote on the input im-
age Iinput plane. Hence these points cannot be present in Iinput 
image because of its finite size. In reality, these points of a 
scene are situated in the /2 angle of camera view. Points 
that belong to the different sides of the horizon cannot be 
simultaneously present in Iinput image, because points that 
belong to one of these sides are situated in > / 2 angle of 
camera view, i.e. located behind the camera. Thus, at least a 
part of the ROI is absent in the input Iinput image. In this case, 
the RMS criterion of accuracy (4) is meaningless. Hence we 
will consider only cases when the ROI lies strictly on one of 
the sides outlined by the horizon:  

( ) < 0,

( ) > 0.

Z R

Z R


 

r

r
  (12) 

This condition also guarantees the correctness of the 
RMS accuracy criterion definition (4). 

2.3. ROI of non-zero finite area 

Let us consider the ROI with the non-zero finite area, 
then from (10) follows 

2

*

2

P( )
= arg min d .

1A
R

A A
 

  
 


r

r r   (13) 

We will express the affine transformation matrix A as 

the vector 
def

6= ( )ia a  : 

11

12

def
13 1 2 3

21 4 5 6

22

23

( ) = ( ) = .

a

a

a a a a
A A

a a a a

a

a

 
 
 
   

   
  

 
 
  

a a   (14) 

Let us specify the transformation P through its com-
ponents: 

def

P = P P
T

x y   ,  (15) 

and introduce a matrix function Q: 

def P P 1
Q = .

P P 1
x y

x y

 
 
 

  (16) 

Then 

P
= Q

1
A
 
 
 

a , 

which allows the problem vectorization (13) to be defined 
as follows: 

def
2* * *
2= ( ), = arg min Q( ) d .

R

A A a
a a r r a r    (17) 
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Note that the target function of the problem (17) is 
quadratic:  

2 {0} {1} {2}
2Q( ) d = 2 ,T

R

K K K   r r a r a a a   (18) 

where { } { }= ( )d ,k k

R

K f r r   (19) 

where 

def
{0}

def
{1}

def
{2}

( ) = ,

( ) = Q( ),

( ) = Q ( )Q( ).

T

T

T

f

f

f

r r r

r r r

r r r

   (20) 

We will refer to the coefficients K as the target 
coefficients. As was shown above, the target coefficients 
are defined by the homography matrix and the ROI: 

= K( , ).K H R   (21) 

If the target coefficients are calculated, the problem 
(17) can be presented as 

 * {0} {1} {2}= arg min 2 TK K K 
a

a a a a , 

and can be solved analytically: 

   1* {2} {1}= .
T

K K


a  (22) 

Thus, the problem of the unconstrained normalization  
(13) is quadratic and can be reduced to the problem of the 
fractional quadratic functions integration over the ROI. 
Obviously, for an arbitrary ROI this integration can be 
performed only numerically. 

2.4. Non-empty finite ROI 

Similar reasoning can be suggested for the non-empty 
finite ROI R. In this case, according to (10):  

{ } { }= ( ),k k

R

K f


r

r  (23) 

while the definition (20) of functions f and the expression 
(22) for analytical calculation of a* are preserved. Hence 
the RMS criterion (3) can be calculated as  

 1/21/2 {0} {1} {2}
2 (A,H; ) = 2 ,TL R D K K K  a a a  (24) 

where 
def ( ) for 0 < ( ) < ,
=

| | for 0 <| |< .

S R S R
D

R R


 

 

Thus, in all considered cases (3) the optimal affine 
normalization is calculated according to the general 
Algorithm 1. 

Notes on Step 1 regarding the calculation of the target 
coefficients K = K (H, R). The cases of the non-empty 
finite ROI and the ROI of non-zero finite areas are 
discussed above. Let us specify the corresponding 
Algorithms (2 and 3) for the target coefficients 
calculation: 

Algorithm 1. Algorithm of the optimal affine image 
normalization search 

Input:  
 matrix H3×3 of projective normalization H, 
 ROI R  2: 0 < S(R) <  or 0 < |R| < .  

Output: 
 matrix A*2×3 of optimal affine 

approximation H on R: (9), 
 the optimal value of RMS accuracy criterion 

*
2L : (6). 

Step 1. Based on H and R target coefficients are 
calculated K = K (H, R). 

Step 2. a* is calculated: (22). 
Step 3. A* = A (a*) is calculated: (14). 
Step 4. * *

2 2= (A ,H; )L L R  is calculated: (24).  

 

Algorithm 2. Calculation of the target coefficients  
for the non-empty finite ROI  

Input:  
 matrix H3×3 of projective normalization H, 
 non-empty finite ROI 0 < |R| < . 

Output: Target coefficients K = K (H, R). 
Step 1. Matrix P = (pij) is calculated: (8). 
Step 2. Px and Py are defined: (7), (15). 
Step 3. Function Q is defined: (16). 
Step 4. Functions f are defined: (20). 
Step 5. Target coefficients K are calculated: (23).  

 

Algorithm 3. Numerical estimation of the target 
coefficients for the ROI of non-zero finite area 

Input: 
 matrix H3×3 of projective normalization H, 
 ROI R  2 of the non-zero finite area: 

0 < S(R) < . 
Output: Numerical estimation of the target 
coefficients K = K (P, R). 
Step 1. Matrix P = (pij) is calculated: (8). 
Step 2. Px и Py are defined: (7), (15). 
Step 3. Function Q is defined: (16). 
Step 4. Functions f are defined: (20). 
Step 5. Set =1{ }n

i ir  of uniformly distributed on R 
points is generated. 

Step 6. Assignment =1:= { }n
i iR r . 

Step 7. Target coefficients K are computationally 
evaluated: (23). 

In order to get the conventional statistical estimation, 
result of (23) should be multiplied by S (R) /n at the final 
step of Algorithm 3. This multiplication is skipped 
intentionally, because on the one hand, it does not change 
the output of the Algorithm 1 (see expression (22)), and 
on the other hand, the accurate calculation of the area 
S (R) in special cases complicates the Algorithm 3, and 
generally might not be even possible. 

Further we will analytically calculate the target 
coefficients K for some special cases of the ROI R with 
non-zero finite area. 
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2.5. Orthotropic rectangular ROI 

In computer vision applications there is a particularly 
important case of the orthotropic rectangular ROI R: 

1 2 1 2 1 2 1 2= [ , ] [ , ], < , < .R x x y y x x y y  

Let us introduce the antiderivatives  

def
{ } { }( ) = ( )d ,k kF fr r r  

then by the Newton–Leibniz axiom, expressions (19) can 
be written as 

{ } { } 2 2
1 1

= ( , ) | | ,x yk k
x yK F x y   (25) 

where 

def
2 2

1 1 2 21 1

1 2 2 1

( , ) | | = ( , ) ( , )

( , ) ( , ).

x y
x yF x y F x y F x y

F x y F x y

 

 
 

Now in order to calculate (19) we have to find the an-
tiderivatives F. Let us introduce the changes of variables: 

2
1 11 32 12 31 32

2
2 12 31 11 31 32

3 11 32 33 13 31 32

11 32 33 12 31 33

2
4 11 31

2
5 13 31 11 31 33

2
6 11 33 13 31 33

2
7 21 32 22 31 32

2
8 22 31 21 31 32

9

= 2 2 ,

= 2 2 ,

= 2 2

2 2 ,

= ,

= 2 2 ,

= 2 2 ,

= 2 2 ,

= 2 2 ,

=

c p p p p p

c p p p p p

c p p p p p p

p p p p p p

c p p

c p p p p p

c p p p p p

c p p p p p

c p p p p p

c




 
 






21 32 33 23 31 32

21 32 33 22 31 33

2
10 21 31

2
11 23 31 21 31 33

2
12 21 33 23 31 33

2 2

2 2 ,

= ,

= 2 2 ,

= 2 2 ,

p p p p p p

p p p p p p

c p p

c p p p p p

c p p p p p

 
 




  (26) 

2
13 12 31 11 31 32

2
14 11 32 12 31 32

15 12 31 33 13 32 31

12 31 33 11 32 33

2
16 12 32

2
17 13 32 12 32 33

2
18 12 33 13 32 33

2
19 22 31 21 31 32

2
20 21 32 22 3

= 2 2 ,

= 2 2 ,

= 2 2

2 2 ,

= ,

= 2 2 ,

= 2 2 ,

= 2 2 ,

= 2 2

c p p p p p

c p p p p p

c p p p p p p

p p p p p p

c p p

c p p p p p

c p p p p p

c p p p p p

c p p p p




 
 




 1 32

21 22 31 33 23 32 31

22 31 33 21 32 33

2
22 22 32

2
23 23 32 22 32 33

2
24 22 33 23 32 33

,

= 2 2

2 2 ,

= ,

= 2 2 ,

= 2 2 ,

p

c p p p p p p

p p p p p p

c p p

c p p p p p

c p p p p p

 
 




  (27) 

25 12 31 11 32

26 13 31 11 33

27 11 31

28 22 31 21 32

29 23 31 21 33

30 21 31

2
31 11 31

2 2 2 2
32 12 31 11 32 11 12 31 32

2 2
33 12 13 31 11 32 33

11 12 31 33 11 13 31 32

= ,

= ,

= ,

= ,

= ,

= ,

= ,

= 2 ,

= 2 2

2 2 ,

c p p p p

c p p p p

c p p

c p p p p

c p p p p

c p p

c p p

c p p p p p p p p

c p p p p p p

p p p p p p p p

c







 
 

 
2 2 2 2

34 13 31 11 33 11 13 31 33

2
35 11 12 31 11 32

2
36 11 13 31 11 33

= 2 ,

= 2 2 ,

= 2 2 ,

p p p p p p p p

c p p p p p

c p p p p p

 



 (28) 

2
37 21 31

2 2 2 2
38 22 31 21 32

21 22 31 32

2 2
39 22 23 31 21 32 33

21 22 31 33 21 23 31 32

2 2 2 2
40 23 31 21 33 21 23 31 33

2
41 21 22 31 21 32

2
42 21 23 31 21 33

= ,

=

2 ,

= 2 2

2 2 ,

= 2 ,

= 2 2 ,

= 2 2 ,

c p p

c p p p p

p p p p

c p p p p p p

p p p p p p p p

c p p p p p p p p

c p p p p p

c p p p p p

 


 
 

 



  (29) 

2
43 12 22 31 12 21 31 32

2
11 22 31 32 11 21 32

2
44 12 23 31 12 21 31 33

2
13 22 31 13 21 31 32

11 23 31 32 11 21 32 33

11 22 31 33 11 21 32 33

2
45 13 23 31 13 21 31 33

11 23 31 3

=

,

=

,

=

c p p p p p p p

p p p p p p p

c p p p p p p p

p p p p p p p

p p p p p p p p

p p p p p p p p

c p p p p p p p

p p p p

 
 

 
  
  
 

 
 2

3 11 21 33

46 11 22 31 11 21 32

12 21 31

47 11 23 31 11 21 33

13 21 31

48 11 21 31

,

= 2

,

= 2

,

= ,

p p p

c p p p p p p

p p p

c p p p p p p

p p p

c p p p


 


 



  (30) 

31 33

32 33

( ) = ,

( ) = ,

( ) = log ( ).

x

y

z x p x p

z y p y p

l Z




r r

  (31) 

The antiderivative of rT
 r is 

 
2 2

{0} ( )
( ) = d = .

3
T x x y y

F


r r r r   (32) 

The antiderivatives of rT
 Q(r) are 

{1} Q( )d

P ( ) P ( ) P ( ) P ( )

( )

d d .

T

x y x y

F

y y yx x x x y



   


 

r r r r

r r r r
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Although the coefficients K are real numbers, there 
might be some complex numbers showing up throughout 
calculations. The latter causes serious inconvenience, 
especially for a software implementation. These possible 
complex numbers are associated with the fact that 
function Z might be negative, and its logarithm we get in 
(31). But according to the constraint (12), the function Z 
can be either strictly positive or strictly negative. Thus, in 
order to get rid of any complex numbers, we can replace 
matrix P with matrix –P. This change is indeed possible 
since matrix P is homogenous: it defines according to (7) 
the projective transformation which does not change if 
matrix P is multiplied by any non-zero value. 

 

Algorithm 4. Calculation of the target coefficients  
for the orthotropic rectangular ROI 

Input:  
 matrix H  3×3 of projective normalization H, 

 orthotropic rectangular ROI 
R = [x1, x2]×[y1, y2], x1

 < x2, y1
 < y2. 

Output: Target coefficients K = K(H, R). 
Step 1. Matrix P = (pij) is calculated: (8).  
Step 2. Function Z is defined: (11).   
Step 3. If Z([x1  y1]T) < 0, then P := –P and Z is 

redefined. 
Step 4. Coefficients c are calculated: (26), (27), (28), 

(29), (30). 
Step 5. Functions zx, zy, l are defined (31). 
Step 6. Antiderivative F{0} is defined: (32).   
Step 7. Antiderivatives F{1} are defined: (33), (34). 
Step 8. Antiderivatives F{2} are defined: (35), (36), 

(37), (38).   
Step 9. Target coefficients K are calculated: (25). 

2.6. Rectangular ROI 

We have analytically calculated the target coefficients 
K for the orthotropic rectangular ROI above. Now we 
will generalize this solution for the arbitrary oriented 

rectangular ROI. Let us introduce the latter as an image 
of the rotation U of an orthotropic rectangle R0: 

0
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Let us introduce new coordinates 
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However, the coefficients K0 are equal to coefficients 
calculated for the matrix of the projective normalization 

3
TU H  and ROI R0: 

0 3 0= K( , ),TK U H R  
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is a uniform rotation matrix. Thus, the problem is reduced 
to the previously solved problem of the target coefficients 
calculation for the orthotropic rectangular ROI. 

2.7. ROI consisting of rectangles  

Consider the ROI which consists of rectangles: 

=1= : = , .n
i i i jR R R R i j     
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where the coefficients 

{ } { }= ( )dk k
i

Ri

K f r r  

can be analytically calculated via Algorithm 5: 
Ki

 = K(H, Ri). 

3. Special cases of the affine image normalization  

Aside from the affine transformation for image 
normalization, its special cases are widely used [44], 
which is usually even more computationally efficient. Let 
us consider sets of transformation with matrices A 
forming the linear manifold: 

def
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1
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where matrix S  6×(d+1) is a parameter defining the man-
ifold, or in compact notation:  

[ ] = : , .
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t
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Algorithm 5. Calculation of the target coefficients  
for the rectangular ROI 

Input:  
 matrix H  3×3 of projective normalization H, 
 rectangular ROI 0= U( )R R , where 

R0
 = [x1, x2]×[y1, y2], x1

 < x2, y1
 < y2 is an 

orthotropic rectangle, and 
= cos( )

U( ) = ,
= sin ( )

c s c

s c s

   
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r r   

is its rotation. 
Output: Target coefficients K = K(H, R). 
Step 1. Matrix U3 is calculated: (41). 
Step 2. Matrix U6 is calculated: (39). 
Step 3. 0 3 0= K( , )TK U H R  is calculated via 

Algorithm 4. 
Step 4. Target coefficients K are calculated: (40). 

 

Algorithm 6. Calculation of the target coefficients  
for the ROI consisting of rectangles  

Input:  
 matrix H  3×3 of projective normalization H, 
 ROI consisting of rectangles =1= n

i iR R , 
= ,i jR R i j   . 

Output: Target coefficients K = K(H, R). 
Step 1. Ki

 = K(H, Ri) are calculated via Algorithm 5. 
Step 2. Target coefficients K are calculated: (42). 

Thus we can define sets of scaling, translation, 
shearing, and their superposition matrices. But we cannot 
introduce, for example, a set of rotation matrices. Let us 
provide some examples. 

The isotropic scaling 
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The superposition of translation and shearing: 
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The superposition of shearing and anisotropic scaling: 
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The full affine transformation 
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Now let us find a matrix from the given manifold 
[S], which corresponds to the most accurate image 
normalization according to the RMS criterion: 
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Following reasoning from subsection 2.3:  
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where K = K(H, R) is calculated via Algorithms 2, 3, or 6. 
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from which follows the analytical solution: 
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T
K K


t  (51) 

Algorithm 7. Optimal special affine image  
normalization search  

Input:  
 matrix H  3×3 of projective normalization H, 
 ROI R  2: 0 < S(R) <  or 0 < |R| < ,  
 matrix S, which defines linear manifold of 

[S] matrices. 
Output:  

 matrix A*[S] of optimal affine 
approximation of H on R: (9), 

 the corresponding value of RMS criterion of 
accuracy *

2L : (6). 
Step 1. K = K (H, R)is calculated via Algorithms 2, 3, 

or 6. 
Step 2. K* is calculated: (49). 
Step 3. K** is calculated: (50). 
Step 4. t* is defined: (51). 
Step 5. a* is defined: (48). 
Step 6. A*= A(a*) is calculated: (14). 
Step 7. * *

2 2= (A ,H; )L L R  is calculated: (24).  

Because of the example (47), Algorithm 7 is a 
generalization of Algorithm 1. Its program 
implementation in MatLab is available at  
https://github.com/konovalenko-iitp/optimal-affine-
image-normalization. 

4. Accelerated approach to image normalization 

After the problem of optimal (special) affine image 
normalization was solved analytically for many cases, we 
can propose an accelerated approach to image 
normalization. This approach is based on the replacement 
of the projective normalization with the (special) affine 
one if there is no significant loss of accuracy. 
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Algorithm 8. Accelerated image normalization 

Input:  
 input image Iinput, 
 matrix H3×3 of projective normalization H, 
 ROI R  2: 0 < S(R) <  or 0 < |R| < , 
 matrix S which defines linear manifold of [S] 

matrices, 
 accuracy threshold max

2L . 
Output: Projectively or optimally affinely 

normalized image: Iproj or *
affinI . 

Step 1. Calculation of the (special) affine 
approximation A* of H normalization and a 
corresponding value of RMS criterion of 
accuracy *

2L  via Algorithm 7. 
Step 2. If * max

2 2L L , then *
affinI  is calculated via the 

application of the transformation A* to the im-
age Iinput. If otherwise, Iproj is calculated via the 
application of the transformation H to the im-
age Iinput. 

An example of the optimal affine normalization is 
illustrated in Fig. 1. Each of these three images Iinput, Iproj 
and Iaffin has three channels of 1434 × 966 pixels. 
Computations were performed on a computer with an 
Intel Core i3 4030U processor. OpenCV library was 
utilized for image normalization. As the ROI R we have 
chosen the composition of three rectangles of text fields 
on a credit card. The analytical search of the optimal 
affine normalization (Algorithm 4) in this case on the 
average of 104 repetitions took tc

 = 0.191 milliseconds. 
The application of the resulting affine normalization took 
ta

 = 5.90 milliseconds, while the projective normalization 
took tp

 = 9.91 milliseconds. Thus, the Algorithm (5) al-
lowed for the tp /(tc

 + ta)  1.63 times faster performance. 
And Fig. 1 shows that even though the camera optical 

axis is oriented significantly off the perpendicular to the 
document surface, text fields of the credit card were 
normalized with high accuracy. 

Conclusion 

In this work, we propose a fast approach for image 
normalization. It utilizes the affine normalization instead 
of projective if there is no significant loss of accuracy. 
The approach is based on a proposed criterion for the 
normalization accuracy: root mean square (RMS) 
coordinate discrepancies over the region of interest 
(ROI). The problem of optimal affine normalization 
according to this criterion is considered. We have 
established that this unconstrained optimization is 
quadratic and can be reduced to the problem of fractional 
quadratic functions integration over the ROI. The latter 
was solved analytically in the case of OCR where the 
ROI consists of rectangles. The proposed approach is 
generalized for various cases when instead of an affine 
transform its special cases are used: scaling, translation, 
shearing, and their superposition, allowing the image 
normalization process to be further accelerated. 
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