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Critical current for an insulating regime of an underdamped current-biased
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We study analytically an underdamped current-biased topological Josephson junction. First, we consider a
simplified model at zero temperature, where the parity of the nonlocal fermionic state formed by Majorana
bound states (MBSs) localized on the junction is fixed, and show that a transition from insulating to conducting
state in this case is governed by single-quasiparticle tunneling rather than by Cooper pair tunneling, in contrast to
a nontopological Josephson junction. This results in a significantly lower critical current for the transition from
insulating to conducting state. We propose that if the length of the system is finite, the transition from insulating
to conducting state occurs at exponentially higher bias current due to hybridization of the states with different
parities as a result of the overlap of MBSs localized on the junction and at the edges of the topological nanowire
forming the junction. Finally, we discuss how the appearance of MBSs can be established experimentally by
measuring the critical current for an insulating regime at different values of the applied magnetic field.
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I. INTRODUCTION

Topological superconductors have recently received much
attention in the condensed-matter community as a new exotic
form of quantum matter [1-3] and, moreover, as prospec-
tive candidates for quantum computation schemes due to the
non-Abelian nature of Majorana fermions, which are formed
at edges of such systems [4-8]. However, even the direct
observation of these states presents a challenging problem,
which is still under active investigation [9—15]. In this paper,
we discuss effects that can indicate the existence of Marjorana
bound states (MBSs) in topological Josephson junctions and
supplement often ambiguous zero-bias peak signatures.

There are several platforms to fabricate a topological
Josephson junction: topological insulators [16—18], semi-
conducting nanowires [19-24], quantum dots [25], quantum
spin-Hall insulators [26], and even more exotic ones like
carbon nanotubes [27-29]. In this paper we restrict ourselves
to a model of a semiconducting single-channel nanowire
with strong spin-orbit interaction in the presence of a strong
magnetic field applied along the nanowire axis, which re-
sults in two split subbands in the nanowire [19,30]. The
nanowire is assumed to be proximity coupled to a con-
ventional s-wave superconductor, which effectively induces
p-wave pairing. Typically, in experimental setups, the semi-
conducting nanowire has a hexagonal cross section; the
s-wave superconductor is a thin layer covering few facets
of the nanowire [22,24,31,32]. As a result, the topological
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state exists at magnetic fields larger than the critical value
B > B, = 2 \/A? + ;2 determined by the superconduct-

SUB
ing pairing term A induced by the proximity effect and by

the chemical potential u, where the constants g and up are
Landé g factor and Bohr magneton, respectively. The Joseph-
son junction can be realized if a part of the nanowire is
not covered by a superconducting layer (Fig. 1) or if there
is a thin insulating segment being inserted in the supercon-
ducting layer. In the first realization, the effective Josephson
junction is dominated by single-quasiparticle tunneling via
the MBSs on the sides of the junction if the junction has
low transparency [33-36]. For high-transparency junctions,
the conventional Cooper-pair tunneling dominates. In the sec-
ond realization, there is also an additional contribution to
Cooper-pair tunneling due to possibility of tunneling through
an insulating strip. Therefore, it may be possible to have
Cooper-pair tunneling dominating even for not very trans-
parent Josephson junctions. We start with the system whose
length is large enough to neglect the effects of the MBSs at the
outer edges of the nanowire on the Josephson junction (finite-
size effects are discussed in Sec. III). Then the Hamiltonian
of the system can be written as [35,37,38] (we put i =1
throughout the paper)

2 I1—1
HeL {Hy—Ejcosg— L2100

2C Qe N M

where g is the electric charge on the Josephson junction
of capacitance C, ¢ is the superconducting phase difference
across the junction, and E; is the Josephson energy of the
junction. The last two terms in Eq. (1) account for the driv-
ing current / and the dissipation through a large impedance
shunting the junction, respectively. Here, I, is the current
through this impedance and H, is the Hamiltonian of a ther-
mal bath, representing the dissipation in the impedance. Two
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MBSs on the sides of the Josephson junction are described by
Hy = %EMF cos (¢/2): I' can be associated with the parity
of the state formed by these MBSs (I' = 1 for odd and
even parity, respectively), and Ey, is the coupling energy be-
tween the MBSs on the junction [39] and characterizes the
single-quasiparticle tunneling through the junction. This Hy,
represents an effective two-level system, where the levels cor-
respond to the occupation of an effective nonlocal fermionic
state formed by the left and right MBSs localized on the sides
of the junction. As a result, each parity is associated with the
occupation of this fermionic state. We consider the junction
in the limit when the phase ¢ is well defined. Therefore, the
terms corresponding to electron tunneling should dominate
over the Coulomb interaction terms, i.e., Ey; > E. = ¢>/(2C)
and E; > E..

In this work, we study the initial part of the current-voltage
dependence for an underdamped topological Josephson junc-
tion. It is known that at low currents a Josephson junction
shunted by large impedance ReZ > Zy = 27/ (2e)? (under-
damped junction) is in a zero-current Coulomb blockade state
(effectively insulating) due to quantum phase fluctuations
[37,40,41]. The voltage V depends linearly on the current /
as the current flows through the external impedance Z; this
regime holds up to some critical current /., which depends
on the lowest band dispersion of a junction. In a topological
junction, this lowest band dispersion should be significantly
different from a nontopological case, which should be seen in
the value of this critical current .. The idea of an equilibrium
measurement seems to be especially promising in comparison
to dynamical detection schemes, as the evidence of 47 effects
in nontopological junctions has been shown recently in dy-
namical experiments, i.e., missing Shapiro steps [42], which is
supposed to be the result of Landau-Zener transitions. While
in equilibrium measurements there are no Landau-Zener tran-
sitions between Andreev bound states, 47 periodicity can still
be seen as a special property of a topological junction. We
do not consider the opposite limit of overdamped Josephson
junction in this work, as strong dissipation results in phase lo-
calization and, therefore, no effectively insulating regime for
a current-biased junction emerges [41]. We consider the tem-
perature to be sufficiently low [much lower than level spacing
wp; see Egs. (9) and (16)]. In principal, thermal fluctuations
should smear the voltage peak V, = ZI. [41]; however, the
probability of thermally activated phase slips is exponentially
low for such a temperature regime, and therefore we neglect
the corrections due to finite temperature in this work.

The paper is organized as follows. In Sec. II, we intro-
duce the simplified model with the fixed fermionic parity,
which corresponds to an infinite nanowire limit. We derive
the expressions for the lowest band of a topological Josephson
junction in two important limits, Ey; > Ej and Eyy < Ej, and
calculate the critical current for an insulating regime of the
Josephson junction. In Sec. III, we discuss finite-size effects.
We show that the critical current in this regime is significantly
larger; however, it is possible that at certain values of the
applied magnetic field the critical current falls to the values
characteristic for infinite systems. We summarize our results
and give an outlook in Sec. IV. In the Appendix, we discuss
the instanton action and the fluctuation determinant for our
problem.

B < B. ()
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FIG. 1. Schematic representation of the system: (a) cross section
of a semiconducting nanowire (SE, green) with layers of supercon-
ductor (S, blue) on two facets and magnetic field B applied along
the nanowire, (b) a Josephson junction in the nontopological state
(B < B, only Cooper pairs can tunnel), and (c) a Josephson junc-
tion in the topological regime (B > B, with competition between
Cooper-pair and single-quasiparticle tunneling).

II. FIXED PARITY STATE

Let us start with the simplified model of a very long
nanowire, introduced in the previous section, so that we can
neglect the overlap between MBSs on the junction and MBSs
on the edges of the wire. At zero temperature and without
quasiparticles, we can consider the fermionic parity to be
fixed. Without loss of generality, we can choose an odd-parity
state. Let us start with the case of zero bias current and
no dissipation. Having fixed the parity, we can integrate out
the degrees of freedom corresponding to the subgap fermion
formed by the MBSs localized on the junction. The effective
Hamiltonian takes the form [35]

2
N E
H:g—C—TMcosg—EJcosq). 2)
In analogy with a particle moving in a one-dimensional peri-
odic potential [37], the first term in this Hamiltonian may be
seen as kinetic energy, while

V(p) = —%cos%—&cosd) 3)

is the potential energy (the phase difference ¢ plays the role
of the conjugate coordinate), which is depicted in Fig. 2.

In a nontopological junction with Ej; = 0, the spectrum
consists of energy bands due to coherent 27 phase slips [37].
In the topological junction, the picture is slightly different.
In the regime where single-quasiparticle tunneling dominates
over Cooper-pair tunneling (Ey > Ej;), the band structure is
determined by 47 phase slips. In the opposite limit (Ey <
Ej), the band structure is either determined by 47 or 2 phase
slips, depending on the interplay between Ej; and vy, which
is the tunneling amplitude between the neighboring minima
[43]. The value of vy is defined below in Eq. (13).

A. Lowest energy band for the topological junction

We start with the case in which single-quasiparticle tun-
neling dominates, i.e., Ey > E;. If we completely ignore
the Josephson term, the corresponding Schrodinger equation
becomes

d? E Ey ¢
— +(—+ cos—) =0, 4
d(¢/2)2w E. 2E. 2 v @)
which is the Mathieu equation. The wave functions yr corre-
sponding to that equation should be composed of Bloch wave
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FIG. 2. The effective potential energy V(¢) as a function of
the phase difference ¢; see Eq. (3). We schematically indicate the
47 tunneling between minima of an effective potential in the two
limits: (a) Ey > E; and (b) Ey < E;. In the latter limit, the po-
tential also exhibits a set of local minima, shifted from the absolute
minima by Ej.

Sy

(b)
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functions:
V(9) = Z f dk "y,

where u,((")(qﬁ) is 4 periodic and n corresponds to the band
number. As we are looking for the lowest bands in the limit
Ey > Ec, We can use the tight-binding approximation and
present uk ((])) in the Wannier form,

= u @), (5)

o]

w (@)=Y

m=—00

w™ (¢ — drm)e @AMk ©)

where w™(¢) are the eigenfunctions of the harmonic oscilla-
tor with the frequency wy = /EnE,. This gives us the bands’
dispersion

E™(k) = wo(n + 3) +2(=1)""v{¥ cos(dmk)  (7)

with exponentially small amplitudes (which correspond to
coherent tunneling between the nth states in two neighboring
minima of the potential [44]),

2 E n/2+3/4 24n+1 4 JE
W = [ 2E(2) )
T

E. n!

This expression is valid for the lowest bands, which are close
to the energy of the harmonic oscillator with frequency wy:
n <K EM/Q)() = /\/EM/EC.
Including the Josephson
eration  perturbatively — will

consid-
harmonic

term into our
modify the

frequency to

wo = +/(Ey + 8E)E,

2
EyE. [1+4—+0< ) } 9)
Eyn

as well as the exponent, determined by an instanton action (see
Appendix), connecting neighboring minima of the potential
(see Fig. 2). We neglect the correction to the pre-exponential
term in the amplitude. The instanton action is given by

4
En ¢ | 2E
Mo~ | 1 —cos— 4+ —/( —
Six SE. /\/ cos > + EM( cos p)d¢
0

. EM 16 E o E 0
s vmeE  \gpeE)

As a result, including these modifications in Eq. (7), we get
the lowest energy band dispersion

EO (k) = Lwy — 20} cos(4rk), (11)

with the amplitude

2 E 3/4
WM = 2,/;EC<E—M> eSH (12)

Next, we study the case Ey < E;. Here, we consider the
limit of Ej > vp, which corresponds to the suppression of 2
phase slips, where we introduce [37,45]

2 E
Vo = 4\/721/415 (E’) oS (13)

which is the 27 tunneling amplitude in case of Ey; = 0 (which
corresponds to a nontopological junction), where

Sox = +/8E; /E. (14)

is the instanton action for this tunneling process. We assume
that this limit is realistic as the phase-slip amplitude is expo-
nentially small in the chosen range of parameters (E; > E.).
Therefore, the band structure is again determined by 47 phase
slips. Following the same approach as in the opposite limit,
we derive

EQ ) = Lwy — 2v]_cos (4k). (15)

Here, the harmonic frequency is given by

wo = v/ (Ey +8Ej)E,

iEj + O(EJ> } (16)

while the tunneling amplitude is determined again by an in-
stanton action,

J SK{JTN -5 Sirr —S5.+S> (17)
vl o= ZENe P = [ 2T e Sty
T\ 2 Sox 0

Here, N is determined by the reduced determinant (with
excluded zero mode) of an operator that corresponds to
the second variation of the imaginary-time action (see the
Appendix and Refs. [44,46]), and therefore A/ can be consid-
ered to be the same as for the case of a nontopological junction

SEJEC[l +

033448-3



SVETOGOROV, LOSS, AND KLINOVAJA

PHYSICAL REVIEW RESEARCH 2, 033448 (2020)

Z 1y
E,
£y

C

g 2

FIG. 3. Schematic of the equivalent electric circuit for an un-
derdamped topological Josephson junction. The applied current /
is divided between the shunting impedance Z (current I,) and the
topological junction, effectively represented by the capacitance C,
Cooper-pair tunneling element E;, and single-quasiparticle tunneling
element E),.

[with the relative correction O(Ej;/E;)]. The instanton action
for the 47 phase slip in this limit takes the form

E
/ Ly \/ cos¢—2—g]j(cos§—l)d¢
E, Ey Ey
=2 (8— 4+ ———[1+4+5In2 —In—
\/ Eﬁm[+ n “E,]

2
+0<3/§—M>. (18)
RN

B. Critical current for the insulating state of an underdamped
topological junction

In this subsection, we study the insulating regime of an
underdamped topological junction. Therefore, we include dis-
sipation through a large impedance Z into our consideration
and allow for a small current / through the system (see Fig. 3).
To ensure weak dissipation, we require an underdamped
junction regime: Re Z > Zy, where Zy = 1/(4€?) is the re-
sistance quantum. Using the analogy of a particle moving in
a one-dimensional potential, we can write the semiclassical
equations of motion [37,40]:

dp dE© (19)
dt — dk’
dk 1 Zpde
“ae_ L fedv 20
dt 2e Z dt (20)

Then, up to a critical current I, = 2e max(“— dE Y7 @ )ZZQ , the current
I flows through the external impedance Z as there is a station-
ary solution with constant k:

dp 1 Z

21
dt 26 ZQ b

with V = ZI being the voltage. It is important to note that I,
is not the maximum current supported by the junction but a
critical current for an insulating regime of an underdamped
junction. This stationary regime corresponds to an insulating
state of the junction. At stronger driving currents, i.e., I > I,

there is no longer a solution with constant k£ and the system
enters the regime of Bloch oscillations. In this regime, for the
low dissipation, the motion is periodic in k [40]. As a result,
the voltage V is decreasing with the increase of the driving
current / and the junction is no longer in the insulating state.

We can express the critical current I, in the two limits:
single-quasiparticle tunneling dominating (Ey; > Ej) versus
Cooper-pair tunneling dominating (Ey; < E;). The first limit
results in the critical current

4
I = 32e/2wEM A E e 5% 7Q, (22)
while in the second limit we have
Z
- 128eﬁ21/4E;/4Ej/4e—55n79. (23)

One can see that the expressions are sufficiently different from
the one for a nontopological junction [37,40]

Z
Ly = 32e/2m2 A EMAE ¢S 7Q, (24)

due to an exponential factor. For Ej > Ej;, the instanton
action is parametrically larger, i.e., Sﬁ > S»;, while in the
opposite limit Ey < Ej, it is at least twice as large as in the

nontopological case:
Ey | Ey :|
— —_— n —
A/ 8EJEC EJ

EZ
+ 0( . /2\/_> (25)

The critical current in both topological limits is exponentially
smaller compared to the nontopological case, provided that
E; can be considered to be the same as in the nontopologi-
cal setup. In principle, this effect should be measurable, for
example, by driving the junction from the nontopological to
topological state by increasing the magnetic field. However,
this increase of field will also change the effective E;. We
expect the first limit Ey; > E; to be more promising for the
demonstration of the presence of MBSs in the system, as the
current I. depends mostly on Ej,. Here, E; results only in
a parametrically small corrections to the critical current. In
addition, Ej, is nonmonotonic as a function of the applied
magnetic field [36,47,48], which results in a nonmonotonic
dependence of I? on the magnetic field. In contrast, for a
nontopological junction, E; is decreasing monotonically with
the magnetic field, which results in a growth of I, due to
the exponential factor. Strictly speaking, Eq. (24) should re-
sult in the growth of I, up to some value of B and further
decrease due to pre-exponential factor; however, at this point
the assumption E; > E, breaks down, and therefore the above
formulas are no longer valid. We expect that this should al-
low one to distinguish experimentally the junctions that host
MBSs from those which do not. In fact, when MBSs appear,
E; was also reported to show a nonmonotonic dependence on
the magnetic field [36]. Thus, the junction in such a regime
can also be used for establishing the existence of MBSs in the
system.

Unfortunately, there is another restriction for experimental
observation of this effect. In any realistic experimental setup,
one has to take into account quasiparticles that are switching

Sy =28, + [1+51n2
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FIG. 4. Schematic representation of the overlap of MBSs y;(,) on
the junction and y;3, on the nanowire edges with associated splittings
8, and Sy for the left and right parts of the wire, respectively. The
lengths of the corresponding parts are given by L; and Lg.

the parity of the MBSs. Therefore, this effect can be measured
only on the timescales sufficiently smaller than the charac-
teristic time 7, between quasiparticles passing the system,
while the latter could be short in existing experimental setups
[49-54]. On the other hand, there are new encouraging esti-
mations for these timescales based on treating quasiparticle
dynamics in finite-size one-dimensional system [55]. More-
over, finite-size effects may change the picture dramatically;
we address them in the next section.

III. PARITY SWITCHING DUE TO FINITE SIZE OF
THE SYSTEM

In a realistic experimental setup the whole system is finite;
therefore, there is a small but finite overlap between MBSs
on the junction (y; and y,) and MBSs on the edges of the
topological nanowire (yp and y3) [56-58], which results in
hybridization of two states with different parities. The total
parity is conserved; however, the parity of the subgap fermion
formed by the MBS on the junction may change together with
the parity of the nonlocal fermion state formed by the MBSs
on the outer edges of the topological nanowire. The overlap
of MBSs y; is schematically depicted in Fig. 4. As a result,
the part of the Hamiltonian H [see Eq. (1)] corresponding
to the MBSs on the junction H), is modified. We can write
it in the following form [56,58,59]:

R EMcos% 8
HM—EKZf ( 5 ~Eycos? v, (26)

where ¥ = (wo) corresponds to the wave function of the sub-

(41
gap fermion state, given by 1|0) + v |1), where |0) and |1)

are even- and odd-parity states, respectively (|y1|> + [o]> =
1). The nondiagonal term is § = 8; + 6g, where &z /r is the
coupling between the MBSs to the left or right from the
junction (see Fig. 4).

If we consider the phase to be constant, the ground state of
such a system is (see Fig. 5) [56,58,59]

E,= —Ejcosp— 1\[E} cos (9/2) + 8. (2T)

If the total coupling energy & is much larger than the tunnel-
ing amplitude, given by 27 phase slip, vy, [calculated later:
Eq. (34) in two opposite limits], which gives the characteristic
velocity of the phase evolution, we can consider the phase
dynamics to be adiabatic in comparison to the dynamics of a
two-level system, formed by MBSs on the junction, given by
Hamiltonian (26). As a result, we can neglect Landau-Zener

FE
A First excited state
Landau-Zener 5
\ /\transition )\ /o
0 27 225
Ground \ Veyy
state
M
Vor

FIG. 5. Two lowest energy levels in a fixed phase regime (in the
limit Ey, > E;). The ground-state energy (blue curve) can be seen
as an effective potential Vi [see Eq. (31)] in the adiabatic limit such
that one can neglect Landau-Zener transitions. As a result, 2w phase
slips are restored.

transitions at ¢ = (2n + 1), where n is an integer. Then, the
effective potential coincides with E, and, therefore, it is 27
periodic, which results in 27 phase slips with an amplitude
higher than for 47 phase slips. The probability of the Landau-
Zener transition is given by

2
(8/2) ) 28)

PLZ = exp (—27{ -
$Ey/2

where ¢ = d¢/dt, and can be estimated as the tunneling

amplitude between neighboring minima of the effective po-

tential ¢ = 2w v,,. Therefore, the quantitative condition for

this regime is

8> 8. = /202 Enr. (29)

That means that we can still consider § to be sufficiently
smaller than any other energy scale in the system, as the
whole tunneling amplitude is exponentially small in both lim-
its considered, vﬁ/ T~ exp (—Sgi/ 7Y, due to the large tunneling
action. We can assume that this regime is indeed reasonable

since [47,60]

SR ~ LPE g=2Luelin cos(prLir), (30)
méy

where Ly g is the length of the nanowire to the left or right
of the junction, &, is the localization length of the Majorana
fermions, which is of the order of hundred nanometers for
typical materials like InAs, and pr is the Fermi momentum.
Moreover, pp effectively grows with the applied magnetic
field B; therefore, &;,r oscillates around zero as a function
of the magnetic field [36,47,60]. As a result, experimentally
it should be possible to decrease 8y x to the desirable values
or even tune it to zero (that is a way to realize the limits
studied in the previous section in a finite system). However,
the latter assumption also relies on §; and 6z going through
zero at the same values of the magnetic field to have total
splitting 8 = &, + 8g oscillating around zero. This is possible,
for example, if the parts of the nanowire to the left and to the
right of the junction are identical, which might be challenging
to implement experimentally. Alternatively, the same effect
can be achieved if, say, the left part is sufficiently long to give
6;, = 0, while the right part is shorter with finite dx that can
then be tuned by the magnetic field. The effective potential
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takes the form (see Fig. 5)

Verr (@) = —%\/ 2 cos? % +682—Ejcosp.  (31)

Then, the tunneling actions in the two opposite limits, Ey; >
E; and Ey < E;, become

8Ey 42 E,
E, (V2-1)+ T(NE B I)Q/EME;

19) _E 5 [Em 32
g TV E 2

s = 8Q+\/§1n2 Ey
ud E. 4 JESE.

+0( Eiy )+0< En a) (33)
E;"*E; VEE )

respectively. Here, we have neglected the correction due to §,
as we consider it to be small in comparison to all the energy

parameters in the system except for the tunneling amplitudes.
As a result, we can calculate v,, for these cases,

M _
S27r_

and

SM/J M/T | M/J

Mg M| O s s

Vor = Vim SM/Je o G4
4

and, finally, the critical current for an insulating regime:
172

2-1 wZ
= 16<f 5 > e\/ang/“Ej/“e*Szn?Q (35)

for Ey > E; and

z
i, = 32eV/ I EE) e 2 (36)

for Ey < Ej.

One can see that the critical current value in the limit
Ey < Ej is close to the value for the nontopological junction
given in Eq. (24). The reason is that the effective potential has
only a parametrically weak relative modification [O(Ey /E;)],
while 27 phase slips are no longer suppressed. However,
we note that the value of E; in topological and nontopolog-
ical junctions is different and, what is more important, has
a contrasting dependence on the magnetic field. Indeed, if
the system cannot support MBSs, E; decays monotonically
with the magnetic field, whereas the emergence of MBSs in
magnetic fields higher than the critical value B, results in a
nonmonotonic dependence of E; [36]. In the opposite limit,
the critical current for an insulating regime depends mostly on
E)y rather than E;, which should again result in a nonmono-
tonic dependence of I, on the magnetic field. Moreover, as
1,k oscillates around zero as a function of magnetic field, if
the right and left parts of the nanowire have the same length,
the total hybridization § = & + §g should also be oscillating
around zero. Alternatively, again, §; can be made vanishingly
small by increasing the length of the left part of the nanowire,
while 8 is finite and can be tuned by the magnetic field.
As a result, in some range of the magnetic field, the system

B

B, By B3

FIG. 6. Schematic illustration of the critical current /. as function
of magnetic field B. At B = B; > B, the overlap between MBSs goes
to zero, § = 0. As a result, the critical current /. drops exponentially.
The schematic plateaus of /. correspond to 27 periodicity, while the
dips correspond to (mostly) 47 periodicity of the Josephson junction.

should be in the limit § <« §., which increases the probability
of Landau-Zener transition to one. Therefore, the critical cur-
rent should decrease dramatically due to the suppression of
27 phase slips (as shown in the previous section). This should
result in a highly nonmonotonic dependence of the critical
current on the magnetic field, which we have schematically
depicted in Fig. 6. In the proposed scheme, one should be
able to distinguish the peak at voltage V., = ZI.. In the limit
§ < 8, the voltage peaks may be hard to observe as the value
is suppressed by the large factor in the exponent. For example,
in experimentally relevant regime of proximity-induced gap
A =250 peV, E; = 0.01A, Ey = 0.02A, and E, = 0.005A
the voltage peak would be of the value of hundred nanovolts,
which is on the very edge of resolution. However, for § > §.
the factor in the exponent is smaller (and in principle can be
close to the one in a nontopological junction due to restoration
of 2m phase slips). For example, for the values given above
the voltage peak is already of the order of ten microvolts.
Therefore, the fact that at some values of the applied mag-
netic field the voltage peaks (as well as corresponding /.) are
significantly lower should be observable.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we have studied an underdamped
topological Josephson junction. We used the effective model
of a topological junction based on a semiconducting nanowire
proximitized by a conventional s-wave superconductor. We
started with deriving an expression for the lowest energy band
of such a junction in the absence of a current source at zero
temperature. We introduced two regimes governed either by
single-quasiparticle tunneling or by Cooper-pair tunneling,
which are determined by the geometry of the sample (mostly
the transparency of the junction). Then we discussed the
insulating regime (Coulomb blockade) of the junction,
shunted by a huge impedance, which holds up to some critical
bias current. We have shown that this critical current in the
topological regime is sufficiently lower than in the nontopo-
logical junction with the same E; due to the possibility of
single-quasiparticle tunneling and the resulting suppression of
27 phase slips. From an experimental point of view, a way
to determine whether the junction supports MBSs or not
could be to measure this critical current at different values
of the magnetic field. We have argued that a nonmonotonic
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dependence on the magnetic field indicates the presence of
MBSs.

We continued our analysis by addressing finite-size ef-
fects, resulting in hybridization of the states with different
parities due to coupling of the MBSs on the junction with
the MBSs on the outer edges of the nanowire. If the cou-
pling energy is significantly larger than 4., given by Eq. (29),
the effective potential becomes 27 periodic, which results in
larger tunneling amplitudes and, therefore, larger critical cur-
rents. Despite the restoration of 27 phase slips, the effective
potential is still sufficiently different from the nontopological
case. The main reason is that the energy scales, corresponding
to the potential amplitude, have a nontrivial dependence on
the applied magnetic field as mentioned above, while for
nontopological junctions E; is monotonically decreasing with
the field. Therefore, the same way of detecting MBSs can be
used as for very long systems, where finite-size effects are
negligible: The critical current for an insulating regime of
the junction should show nonmonotonic dependence on the
magnetic field, if Majorana fermions are present.

Finally, we have also discussed a specific case where the
parts of the nanowire to the right and to the left of the junction
could be considered identical. Then the total hybridization
energy 6 = §; + 8g should be oscillating around zero as a
function of the magnetic field. Alternatively, ; can be made
zero by sufficiently increasing the length of the left part of
the nanowire, while the finite §z can be tuned by the magnetic
field. As a result, the system should move from the limit of
8 > 6. to 6 K &, and back with the increase of the magnetic
field. Therefore, the critical current /. for the insulating regime
should have significant drops at certain values of the magnetic
field (suppression of 2w phase slips). This may signifi-
cantly simplify the experimental identification of MBSs in the
system.

In this work, we have focused on two limiting cases:
8 K 6. and § > 4., which correspond to regimes with 4x
and 27 phase slips, respectively. As an outlook, we plan to
study the transition between these regimes in more detail,
as the difference between these limiting cases is dramatic
due to the exponentially different values of the critical current
for the insulating state of an underdamped junction.
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APPENDIX: INSTANTON ACTION AND
FLUCTUATION DETERMINANTS

The tunneling amplitude between two potential minima
can be calculated quasiclassically with the help of instanton
techniques. In our model, the potential is (see Fig. 2)

E
= —FE;cos¢p — TMcos q_ﬁ

V(o) 7

(AD)

The main idea of this method is to find the trajectory connect-
ing these minima that minimizes the imaginary-time action
B

Sl¢] = / <16E >dr
0

where 8 = 1/T is the inverse temperature. The action on this
instanton gives the main contribution to the exponential factor
of the tunneling amplitude v ~ =5, The trajectory ¢; is found
by putting the first variation to zero,

(A2)

B
1
8S = /draqs(r)( B ¢V[¢>l(t)]> =0. (A3)
0

Then we can calculate the pre-exponent by integrating over
quadratic deviations from this trajectory:

2
v—N/dt/D8¢exp< S; — 15¢5 Sigi] ¢>>

S¢p?
= V27 N(det W)~1/2e=Si, (A4)
where N is a normalization factor,
82S[o; 1 92 32V (¢
_ Slpil _ @) as)
52 SE 12 g2

is an operator that describes the fluctuations around the in-
stanton solution, and det W is the corresponding fluctuation
determinant. There is always a zero mode in the spectrum of
such an operator due to the fact that the instanton center 7,
can be shifted in imaginary time without changing the action.
Therefore, this mode should be treated separately. Following
Refs. [44,46], one can integrate over the position of an instan-
ton center instead, which results in

B
S; _
/drc,/—(det/W) 172
27
0

where det’ is the reduced determinant (with excluded zero
mode). Integration over the instanton center gives the constant
B. Now we can compare the results for a nontopological
junction Ej; = 0 and for a topological junction in the limit
Ey < E;. The operator W takes the form

(detw)™1/? = (A6)

wo- LV g ¢+ ¢
= 3L 0 7 COS 8cos2

(A7)

which has a parametrically small difference between these two
cases [the relative difference is O(Ey;/E;)]. Therefore, we can
assume the reduced determinants det’ W for the two cases to
be the same; the only significant difference arises from the
zero mode, as its contribution is proportional to +/S;. This
results in Eq. (17).
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