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Summary  
 

Understanding the dynamics of species interactions under the threats of habitat loss and 

fragmentation can be key to develop measures preventing further degradation of natural and 

agricultural systems. Agroecological knowledge and state of the art technologies can help to 

conciliate the often-discrepant objectives of biodiversity conservation and agricultural 

production. Specifically, information on the characteristics of plant-pollinator networks in 

agroecosystems can unveil the most efficient strategies to preserve ecosystem functionality and 

pollination services provision.  

In chapter 1, I focused on the contributions of new technology to the objective of turning 

agricultural landscapes increasingly compatible with biodiversity. I reviewed the applications of 

unmanned aerial vehicles (UAVs) in ecology and precision agriculture. I 1) identified existing 

applications, 2) discussed limitations and advantages of the current technology, 3) highlighted 

knowledge gaps and 4) proposed new applications. 

In chapter 2, I studied the characteristics of a plant-pollinator metanetwork of calcareous 

grasslands embedded in an agricultural matrix. I characterized and discussed the structural 

properties of the network that determine its stability and resilience to perturbations. Furthermore, 

I identified the traits of the most central nodes in the network. I found that the metanetwork was 

significantly more modular and less connected than expected by chance. This reflects the 

existence of many fragment-unique interactions and is an indication of poor metanetwork 

stability. I also demonstrated that habitat size and the diversity of land cover types in the 

surroundings of a grassland fragment are significant predictors of site centrality. Thus, these 

features can help to identify the most important fragments for metanetwork cohesiveness. 

Additionally, I found that the centrality of interactions depends on the pollinator size, species 

identity and also on the plant’s habitat specialization. 

In chapter 3, I compared plant-pollinator networks constructed with flower visitation data 

to networks constructed with pollen transport data. The level of specialization of pollen transport 

networks was higher than that of visitation networks, as half of the interactions in the visitation 

networks did not occur in the pollen transport networks. This highlights the fact that visitation 

does not necessarily imply pollen transport, and I discussed its implications for the conservation 

of pollination. Considering that high specialization is known to be associated with low stability in 
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mutualistic networks, this result has important implications for conservation. According to these 

findings, traditional studies on plant-pollinator networks, based on visitation data, would 

overestimate the stability of pollination networks. Additionally, I identified that almost a third of 

the total number of interactions found are difficult to spot given their low frequency, occurring 

only in the pollen transport networks. Finally, I found positive effects of landscape diversity on 

the total number and proportion of single-fragment interactions for pollen transport, but not for 

visitation networks. 

In conclusion, the protection of large and small calcareous grasslands as well as the 

enhancement of landscape heterogeneity was found to be essential for the maintenance of the 

plant-pollinator metanetwork. Furthermore, the importance of interactions among habitat 

specialist plants and large-bodied generalist pollinators appeared to be fundamental to connect 

the plant-pollinator metanetwork. Nonetheless, small solitary bees and the habitat specialist 

butterfly Polyommatus coridon also played a central role for the plant-pollinator networks in 

calcareous grasslands. By identifying the most central plants, pollinators and interactions at the 

metacommunity level, the information reported in this work can inform tailored management 

measures to protect them. Among others, I suggest considering plant species’ roles in the 

metanetwork when applying conservation measures, such as flower strips, and landscape 

coordination among farmers to increase crop diversification. Moreover, I showed the great 

potential of UAVs to contribute to such conservation measures and to biodiversity management 

in agricultural landscapes. UAVs can assist in diverse tasks such as quantifying encroachment of 

calcareous grasslands and plant diversity monitoring. Additionally, they can contribute to 

farmer´s cropland management and agri-environmental schemes surveillance by governmental 

agencies.  
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Introduction 
 

The 2020-2030 decade is critical to the fight against climate change and environmental 

degradation, as many no-return ecosystem limits are predicted to be reached (Dakos et al., 2019; 

Ge et al., 2019a). Avoiding environmental collapse is fundamental to protect all types of life on 

Earth including humankind (Breyer et al., 2017) and can only be achieved by operating within the 

planetary biophysical boundaries (Rockström et al., 2009). The solutions to this challenges are 

certainly multidimensional and interdisciplinary, encompassing complex questions in the fields of 

philosophy, economy and ecology, among many others (Reid and Mooney, 2016).   

This thesis aims to contribute to the solution of one of the main challenges on the ecological side 

of the problem: reconciling agricultural production and biological conservation (Egli et al., 2018). 

How do ecological networks respond to the pressures of habitat fragmentation in agricultural 

landscapes? Can we design agricultural landscapes that cannot just conserve biodiversity but also 

benefit from it? 

The development of novel approaches and technologies is fundamental, as we cannot expect to 

solve new problems using old methods. Developments from one discipline can sometimes be 

applied to answer questions in a different scientific area. Unmanned aerial vehicles, for example, 

were initially developed for war and surveillance purposes (Newcome, 2004). However, in the 

last 15 years they have had an exponential adoption in conservation science and precision 

agriculture (Fig. 1, Librán-Embid et al., 2020). Network theory, on the other hand, was initially 

developed in the context of social sciences in the 1930s (Borgatti et al., 2009), but was quickly 

adopted by ecologists years later to study food webs and it has greatly developed afterwards 

(Bascompte, 2007).  
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Figure 1. Unamnned aerial vehicle (octocopter) used for the assessment of the flower diversity of 

calcareous grasslands. © Maxim Bogdanowitsch. 

The recent fast advance in technology and especially computer science has allowed to handle 

large amounts of ecological data (Allan et al., 2018). Furthermore, ecologists have benefited from 

the concomitant development of statistical methods, such as mixed models. These were 

developed theoretically around three decades ago (Wolfinger and O'connell, 1993), but were only 

implemented in open source software more recently (Bates et al., 2006; Juricek, 2003). As a 

consequence of both phenomena, the complexity of the hypotheses that can currently be tested in 

ecology through statistical modelling could not be even imagined 15 years ago. 

It is fairly clear today that the battle of conservation science to protect biodiversity exclusively in 

huge nature reserves will be lost in the middle term because of human pressure and illegal 

activities (Allan et al., 2017; Pringle, 2017). These conservation efforts need to continue as far as 

possible to protect many vulnerable and rare species that cannot survive in disturbed areas and 

are reservoirs of genetic and functional diversity (Allison et al., 1998; Bruner et al., 2001). 

Agricultural expansion and intensification have contributed to ecosystems degradation, but 
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agriculture is an unavoidable companion of humanity and it is the main source of food and other 

goods (Duncan and Duncan, 1996; Laurance et al., 2014).  

Agriculture and biodiversity do not need to be mutually exclusive (Chappell and LaValle, 2011). 

In fact, an increasing number of studies are focusing on, not just reducing the impacts of 

agricultural activities on natural and semi-natural habitats, but rather designing multifunctional 

biodiversity-friendly agricultural landscapes (Grass et al., 2019; Tscharntke et al., 2005). In these, 

landscape composition and configuration are taken into account in order to support biodiversity 

and agricultural activities by increasing the provision of ecosystem services such as pollination 

and biological control of agricultural pests (Grass et al., 2019; Tscharntke et al., 2005). If we can 

design these landscapes, pressure on natural reserves will decrease and food production will 

increase, helping humankind and all other types of life on Earth. 

Such an ambitious objective can only be reached by embracing the complexity of the interactions 

among species and their environment. The effects of habitat fragmentation on ecological 

networks, for example, cannot be understood by analyzing single species or single interactions, 

simply because of the existence of emergent properties associated to increasing levels of 

complexity (Ponge, 2005). Because of the existence of emergent properties, biological systems 

tend to be more complex than physic systems. The performance of a car, for example, can be 

predicted by understanding the properties of its single components (i.e. its wheels, windows, etc) 

but the behavior of ecological networks cannot be predicted by understanding how single species 

act in isolation from the others. 

In this context, the concept of ecological metaneworks (Fig. 2) gains special importance as it 

permits to link interactions between species with the habitat fragments where they occur (Emer et 

al., 2018; Hagen et al., 2012). This strategy is especially useful in agricultural landscapes, which 

are usually composed by complex mosaics of crops and fragments of natural or semi-natural 

habitats (Bennett et al., 2006). By using metanetworks, species interactions and habitat fragments 

can be studied as an integral dynamic unit and biodiversity conservation in multifunctional 

agricultural landscapes can be better achieved. 
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Figure 2. Pollen transport metanetwork structure among calcareous grassland fragments and unique 

pairwise plant-flower visitor interactions (n = 29 and n = 263, respectively). Circles indicate pairwise 

plant- flower visitor interactions and squares represent sites. Interactions occurring in at least two sites 

form links between sites. Thickness of links (gray lines) is proportional to interaction abundance. Colors 

represent metanetwork modules based on the Walktrap community-finding algorithm (igraph package). 

This algorithm indicates the presence of sub-graphs that constitute a distinctive community. Nodes with 

greater centrality occur in the central positions of the graph based on the gravitational force on degree 

(Bannister et al., 2013). 
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Study region 

My study region comprises 285 sharply delimited semi-natural calcareous grasslands around the 

city of Göttingen (Germany) that differ in size, spatial connectivity, management and 

successional stage (Krauss et al., 2003b). These grasslands are embedded in an agricultural 

matrix mainly composed of arable land (42%) and managed European beech (Fagus sylvatica) 

forests (37%) (Krauss et al., 2003a). I conducted my study on 29 calcareous grassland fragments 

during the spring and summer of 2017 and 2018 (April-September). These fragments were 

selected in a previous study (Krauss et al. 2003a) along independent (i.e. non-correlated) 

gradients of habitat area and spatial connectivity. 
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Figure 3. Study region in the surroundings of the city of Göttingen, Germany. a) The 29 studied 

calcareous grassland fragments with 500 m buffer of mapped cover types. b) Magnification of one 

fragment showing the land cover mapping in more detail. 
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Study system 

I studied the interactions established by bees (Hymenoptera: Apiformes), butterflies 

(Lepidoptera: Papilionoidea) and burnet moths (Lepidoptera: Zygaenidae) with flowering 

herbaceous plants in calcareous grasslands (Fig. 4). These taxa are the most active and abundant 

diurnal flower visitors in calcareous grasslands and are considered fundamental for the 

reproductive success of native plants (Steffan-Dewenter and Tscharntke, 2002). 

 

Figure 4. Examples of some common interactions in the studied calcareous grasslands. From top left to 

bottom right: Polyommatus coridon in Lotus corniculatus, Bombus pascuorum in Trifolium pratense, 

Bombus pascuorum in Gymnadenia conopsea, Melanargia galathea in Knautia arvensis, Bombus 

terrestris in Centaurea scabiosa, Zygaena carniolica in Centaurea scabiosa, Maniola jurtina in 

Centaurea scabiosa, Aphantopus hyperantus in Valeriana officinalis, Melanargia galathea in Centaurea 

scabiosa, Polyommatus coridon in Clinopodium vulgare (last two pictures) © Guillermo Gallardo 

Quilacán and Cristina Ganuza. 
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Objectives 

In this thesis my objectives are twofold:  

1) My first objective was to thoroughly review unmanned aerial vehicles (UAVs) applications in 

terrestrial ecology and agriculture, to identify research gaps and to highlight potential new UAV 

applications in ecology coming from developments in agricultural research and viceversa. These 

objectives were conceived under the overarching objective of contributing to the development of 

biodiversity-friendly agricultural landscapes, which we consider a major worldwide objective in 

the years to come. Objective one was met in chapter one of this thesis and was recently published 

in Science of the Total Environment under the title ‘Unmanned aerial vehicles for biodiversity-

friendly agricultural landscapes – A systematic review’ (doi: 10.1016/j.scitotenv.2020.139204) 

2) My second objective was to study the charachteristics of plant-pollinator interaction networks 

across a habitat fragmentation gradient. The importance of pollination systems, their structure 

and resilience under land use and climate change is a fundamental challenge given the 

importance of pollination for agricultural production and for the integrity of all natural and semi-

natural habitats and the ecosystem services they provide. We used a novel approach to network 

theory, the concept of metanetwork, which allowed us to identify the most central plants, 

pollinators, interactions and habitat fragments to the system. This innovative approach can 

significantly help to adjust conservation efforts and strategies to the most important components 

of ecological networks and therefore to increase efficiency and accelerate results of conservation 

science. I met objective number two in chapters 2 and 3 of this thesis. 
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Abstract 

The development of biodiversity-friendly agricultural landscapes is of major importance to meet 

the sustainable development challenges of our time. The emergence of unmanned aerial vehicles 

(UAVs), i.e. drones, has opened a new set of research and management opportunities to achieve 

this goal. On the one hand, this review summarizes UAV applications in agricultural landscapes, 

focusing on biodiversity conservation and agricultural land monitoring, based on a systematic 

review of the literature that resulted in 550 studies. Additionally, the review proposes how to 

integrate UAV research in these fields and point to new potential applications that may contribute 

to biodiversity-friendly agricultural landscapes. UAV´s imagery can be used to identify and 

monitor plants, floral resources and animals, facilitating the detection of quality habitats with 

high prediction power. Through vegetation indices derived from their sensors, UAVs can 

estimate biomass, monitor crop plant health and stress, detect pest or pathogen infestations, 

monitor soil fertility and target patches of high weed or invasive plant pressure, allowing precise 

management practices and reduced agrochemical input. Thereby, UAVs are helping to design 

biodiversity-friendly agricultural landscapes and to mitigate yield-biodiversity trade-offs. In 

conclusion, UAV applications have become a major means of biodiversity conservation and 

biodiversity-friendly management in agriculture, while latest developments, such as the 

miniaturization and decreasing costs of hyperspectral sensors, promise many new applications for 

the future.  

Key Words: Unmanned aerial systems (UAS), UAV, Drones, Smart farming, Yield-biodiversity 

trade-offs, Vegetation monitoring, Precision agriculture.  
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1 Introduction 

Agricultural land covers 34% of the world land area and approximately half of the habitable land 

on Earth (WWF, 2016). To meet growing food demands, agricultural production systems are 

increasingly including novel techniques that rely on remote sensing and intelligent machines. 

Unmanned aerial vehicles (UAV), agribots and their sensors allow small-scale treatment of crop 

plants and farm animals with high accuracy (Walter et al., 2017; Zhang and Kovacs, 2012). 

Together with GPS guidance, this technology can increase yield (Saavoss et al., 2016; Zhao et al., 

2013), reduce agrochemical inputs (Bongiovanni and Lowenberg-Deboer, 2004), fuel and time 

spent on crop management (Bora et al., 2012). Its application promises more sustainable 

agriculture to meet present and future demands for food and other agricultural products without 

compromising sustainability (Bongiovanni and Lowenberg-Deboer, 2004; Tilman et al., 2002). 

In addition to food provision, agricultural landscapes are also key for biodiversity conservation, 

given that natural habitats are increasingly scarce (Rockström et al., 2009; Steffen et al., 2015). In 

fact, agricultural landscapes in tropical and temperate regions are often composed by a complex 

mosaic of different land covers, including cropland (usually dominant) and fragments of natural 

and semi-natural habitats. These different land cover types interact with each other (e.g. by 

species spillover) and management strategies should, therefore, consider them as dynamic 

interacting units (Grass et al., 2019). In agroecosystems, biodiversity at the local (i.e. field) scale 

is driven by colonization from the surroundings and, therefore, relies on source (natural and semi-

natural) habitats in the proximities of cropland (Tscharntke et al., 2005). Protection of species 

that provide ecosystem services, such as pollination and biological pest control (Tscharntke et al., 

2007), is crucial for sustained high yield, particularly given the high dependency of crops on 

animal pollination (Garibaldi et al., 2013; Klein et al., 2007; Kremen et al., 2007; Ollerton et al., 

2011) and the magnitude of crop losses to pests (Deutsch et al., 2018; Oerke, 2006; Savary et al., 

2019). Cropland management has also an important influence on the ability of species to use and 

cross agricultural land, and consequently, on their population dynamics and survival in 

agricultural landscapes (Batáry et al., 2015; Boesing et al., 2018; Magioli et al., 2016; Tomé et 

al., 2015). However, biodiversity and ecosystem services conservation have usually been seen as 

an obstacle to high yield achievement in the short term (Paul et al., 2020). Cutting-edge 

technology brings new possibilities to overcome this challenge and may contribute to high yield 

and biological conservation alike. 
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Unmanned aerial vehicles (UAVs) have experienced an exponential growth in the last 10 years, 

in terms of number of scientific publications (Fig. S1) and also regarding diversification of types 

and applications (Pajares, 2015). Fast technological advances and decreasing costs have made 

UAVs central for precision agriculture and smart farming, but also for a wide spectrum of 

research fields. This is partly due to their flexibility to transport many different kinds of sensors, 

their cost-effectiveness and their suitability to work at different scales (up to 1500ha) and in 

remote areas (Gago et al., 2015; Rango et al., 2006; Watts et al., 2010). In fact, UAV-based 

imagery outperforms other imaging acquisition technologies, such as satellites and manned aerial 

systems, in terms of increased temporal and spatial resolution, higher flexibility and reduced 

costs, especially when used for small (<5ha) to medium (5-50ha) spatial scale objectives (Cruzan 

et al., 2016; Matese et al., 2015; Pádua et al., 2017; Wich and Koh, 2018). Therefore, UAVs are 

starting to be implemented by NGOs, state organizations, researchers and practitioners around the 

world. 

Although UAVs capabilities are well known in ecology, precision agriculture and conservation 

science, this review focuses on the, so far little developed, contributions of UAVs to biodiversity-

friendly agricultural landscapes. Classical definitions of the agroecosystem are usually restricted 

to the field scale (Wezel et al., 2009). However, considering the already mentioned importance of 

surrounding habitats for biodiversity and associated ecosystem services, and the capability of 

UAVs to work beyond the limits of the strict agricultural land, we consider that the concept 

should be broadened. We understand by biodiversity-friendly agricultural landscapes those that 

integrate local (e.g. cropland diversification, flower strips, hedgerows, set asides and reduced 

agrochemical input) and landscape (e.g. natural habitat protection, heterogeneous landscape 

structure) measures to benefit biodiversity (Landis et al., 2000; Tscharntke et al., 2012). The 

interdependence between land use types in the agricultural landscape determines that sustainable 

development goals (e.g. zero hunger) will only be achieved by concealing food production and 

biodiversity conservation under the same joint effort (Kremen and Merenlender, 2018; Rosa-

Schleich et al., 2019). Therefore, the objectives of this systematic review are 1) to summarize 

current applications of UAVs in ecology, precision agriculture and conservation science and 2) to 

identify potential applications towards the development of biodiversity-friendly agriculture at 

local and landscape scales.  
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2 Methods 

A bibliographic search was conducted in Scopus and Web of Science on October 1st, 2019. Our 

search terms comprised the words unmanned, RPAS (Remotely Piloted Aircraft Systems) and 

either conservation, ecology, biodiversity, richness or agriculture. The word unmanned was used 

to capture studies on unmanned aerial vehicles (UAVs), unmanned aerial systems (UASs), 

unmanned aircraft systems (UASs) and unmanned aircraft vehicles (UAVs). We did not use the 

term drone, which usually occurs in addition to the most frequent term unmanned, to avoid 

retrieving articles regarding the ecology of male honeybees. As we were only interested in 

terrestrial landscapes, studies including the words maritime, ocean and sea were excluded. The 

exact search words used and other details can be found in the supporting information. To be 

included in the review, studies were required to: 1) Refer to or use unmanned aerial vehicles and 

no other type of ground or aquatic systems. 2) Focus on UAVs applications and not on technical 

properties (e.g. no studies focusing on endurance, manoeuvrability, etc.). 

1946 articles were obtained as a result of the Scopus (1143) and Web of Science (803) searches. 

After excluding duplicates and unsuitable studies 529 articles were kept. We further added 21 

additional publications that were found to be suitable for our review but did not appear on the 

original search totalizing 550 articles. 

3 UAVs applications 

Land cover mapping and classification has experienced a breakthrough with the advent of UAVs. 

UAVs can get very high spatial (<1cm/px) and temporal resolution images at relatively low cost 

when compared to manned airborne or satellite systems (Dufour et al., 2013; Lim et al., 2018; 

Ruwaimana et al., 2018; Whitehead and Hugenholtz, 2014). Classification has gone from 

differentiation among conspicuous land cover classes such as bare ground on rangelands 

(Breckenridge et al., 2012) to high resolution 3D maps of forests (Baena et al., 2017; Dandois 

and Ellis, 2013), and finally, to detailed land-use classifications of habitat types and land-cover 

classes (Ahmed et al., 2017; Strong et al., 2017). Plant and soil monitoring have also significantly 

improved since UAV imaging appeared. Particularly, monitoring of natural and semi-natural 

habitats in the context of restoration efforts (Malenovský et al., 2017; Reif and Theel, 2017; 

Zahawi et al., 2015) and recovery monitoring after fire events (Silva et al., 2014). 
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In the context of precision agriculture, cropland monitoring is rapidly evolving from traditional 

local assessments based on visual analysis to cutting-edge non-destructive methods based on 

optical remote sensing. Diagnostic information can be derived from the images and indices taken 

from on-board sensors; including biomass, disease, water stress and lodging; and is later used for 

crop management, yield forecasting, and environmental protection (Zhang and Kovacs, 2012). 

Constant and high resolution monitoring can precisely inform where and when applications are 

needed throughout the growing period of a crop, a former unfeasible task at farm scale given 

logistic and economic constrains. Farmers are therefore increasingly demanding flexible and high 

resolution systems (< 20cm/px; Bareth et al., 2015) to monitor crops on fine scale. Manned aerial 

imagery lacks flexibility and cannot provide data of enough temporal resolution for this task at 

affordable costs for most farmers. On the side of satellites, even the best current commercial ones 

are not able to provide data of enough spatial resolution (31cm/px, WorldView4) for precise crop 

monitoring at the farm scale. Centimetre and sub-centimetre imagery resolution, as the one 

provided by UAVs, contributes to a more accurate assessment of structural and biochemical plant 

traits (Jay et al., 2019). Thus, UAVs are helping to maximize efficiency in the applications of 

fertilizers, herbicides and insecticides (Gebbers and Adamchuk, 2010), and concomitantly, to 

minimize their impacts on the environment. Therefore, UAVs represent one of the most suitable 

available systems for crop monitoring objectives at farm scale. 

In the following, topics of interest focusing on current and possible future applications of UAVs 

for the development of biodiversity-friendly agricultural landscapes are discussed (Table 1). 

Within each section, areas of interest related to UAV research are identified and related 

implications, relevance and knowledge gaps are discussed in further detail under the section 

“Perspectives on future research”.  
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Table 1. Overview table of UAV applications, giving a description of the application and a few major 

references. 

UAV application Description Major references 

3.1 Biodiversity conservation 

 

a. Plant diversity  

 

 

 

  b. Animal diversity  

Identification and monitoring of 

single plant species and plant 

species richness estimation. 

(Getzin et al., 2012; Ahmed et al., 

2017; Malenovský et al., 2017; 

Capolupo et al., 2015; Knoth et al., 

2013; Cruzan et al., 2016; Silva et 

al., 2014; Michez et al., 2016) 

Identification and monitoring of 

animal populations and 

communities as well as habitat 

quality, based on vegetation 

properties. 

(Mulero-Pázmány et al., 2014; 

Chrétien et al., 2016; Hodgson et al., 

2016; Weissensteiner et al., 2015; 

Goebel et al., 2015 Habel et al., 

2016; Forbey et al., 2017) 

3.2 Agricultural land 

monitoring  

Plant traits estimation for yield 

and carbon stock calculation.    

Early and precise physiological 

stress detection caused by pests, 

pathogens, nutrients or water 

deficit. 

(Bareth et al., 2016; Geipel et al., 

2014; Kachamba et al., 2017; Rey-

Caramés et al., 2015; Zhou et al., 

2017; Sanches et al., 2018; Gong et 

al., 2018; Zarco-Tejada et al., 2013; 

Shields and Testa, 1999;  Smith et 

al., 2015; Faithpraise et al., 2015; 

Yue et al., 2012; Cardil et al., 2017; 

Moriya et al., 2017) 

a. Plant height and biomass  
 

b. Yield and nutrient status  

c. Pest and pathogen damage 

 

 

 

d. Soil fertility 

 

e. Weeds and other non-crop 

plants 

Estimation of soil organic 

carbon content, soil residue 

cover, soil moisture and soil 

erosion. 

(Aldana Jague et al., 2016; Kavoosi 

et al., 2018; d'Oleire-Oltmanns et al., 

2012; Bazzoffi, 2015; Acevo-Herrera 

et al., 2010; Sugiura et al., 2007) 

Weed detection, characteristics 

and management. 

(Shields et al., 2006; Rasmussen et 

al., 2013; Pelosi et al., 2015; Peña et 

al., 2013; Peña et al., 2015; Pantazi 

et al., 2017; Pérez-Ortiz et al., 2015) 
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3.1 Biodiversity conservation  

Species identification and monitoring in agricultural landscapes, from natural and semi-natural 

habitats to cropland, is fundamental for biodiversity conservation (Fig 1). UAVs derived 

information on plant and animal occurrence, movement and health status is providing important 

information for appropriate management. Besides the intrinsic value of biodiversity, animals and 

plants are also important for production in agricultural landscapes given the number of ecosystem 

services they provide (Balvanera et al., 2006; García-Feced et al., 2015).  

 

Fig. 1 a) Plant diversity assessment and floral resources mapping in grasslands of central Germany. Notice 

two different multirotor UAVs (one quadracopter and one hexacopter) performing image acquisition tasks 

in habitats of high plant diversity. b) UAV high-resolution imagery, based on a habitat suitability model of 

two lycaenid butterflies in Germany (modified from Habel et al., 2016, used with permission). Open 

circles represent presence of the butterfly´s forage plants. Green circles depict presence of butterfly larvae 

and red circles absence of it. Warmer colors indicate areas of high habitat suitability. c) Butterfly tracking 

in South Korea (modified from Ivosevic et al., 2017, used with permission). 
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a. Plant diversity 

The expansion of monocultures and herbicide overuse has caused a dramatic decline in plant 

diversity in agricultural landscapes with negative consequences for ecosystem multi-functionality 

and production sustainability (Egan et al., 2014; Hooper et al., 2012). To alleviate this situation 

and increase landscape heterogeneity, measures including crop diversification, adjacent natural 

vegetation protection and agri-environmental schemes, have been promoted by state agencies in 

many countries (Batáry et al., 2015; Fahrig, 2017). Efficient plant diversity assessments in 

agricultural landscapes are fundamental for the success of these measures.  

RGB (red-green-blue) cameras mounted on UAVs have enabled identification of not only 

conspicuous species in savannas (Cruzan et al., 2016), pastures (Silva et al., 2014) and riparian 

forest (Michez et al., 2016), but also biodiversity in deciduous forests (Getzin et al., 2012). 

Although comparatively cheap and simple, RGB cameras have been shown to achieve similar 

performances as LiDAR systems (Zahawi et al., 2015). Multispectral sensors (i.e. those able to 

capture 4-10 spectral bands) move a step forward, as they allow for more detailed vegetation 

classification and monitoring. In particular, those able to capture near-infrared spectra have been 

used in temperate systems to distinguish among land-cover classes and individual species with 

accuracies of ~90% (Ahmed et al., 2017; Knoth et al., 2013; Lu and He, 2017; Mora et al., 2015). 

They have also been successfully used to identify and monitor invasive plants (Samiappan et al., 

2016b; Samiappan et al., 2016a) as in the case of Harrisia pomanensis in South Africa (Mafanya 

et al., 2017). 

The general methodology implies the construction of orthomosaics from RGB or multispectral 

imagery (e.g. with AgiSoft software) followed by a segmentation process through object-based 

image analysis (OBIA). Later, spectral vegetation indices are derived from the imagery and tested 

for their capacity to identify the specific species or cover types (e.g. with random forests’ 

algorithms). Finally, accuracy tests are performed (Michez et al., 2016). Knoth et al. (2013), for 

example, used this procedure to analyse a bog complex in Germany using color infrared images 

with a modified digital camera. Thanks to the small spatial resolution achieved in the study (1.5 - 

3 cm/px) they were able to discriminate a moss (Sphagnum spp), a herbaceous plant (Eriophorum 

vaginatum) and a deciduous tree (Betula pubescens) with high accuracy (Table S1). In a different 

study system, Ahmed et al. (2017), were able to precisely distinguish individual deciduous tree 
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species, shrub communities and agricultural crops, by deriving orthomosaics and normalized 

difference vegetation index (NDVI) maps from true-color and multispectral imagery. 

Although RGB and multispectral sensors may be sufficient for many objectives, hyperspectral 

sensors are usually regarded with the best potential for mapping purposes given the possibility to 

capture more than 200 bands in a broad spectral range (~350 – 2500 nm) and high spectral 

resolution (~10 nm) when mounted on manned or unmanned aerial vehicles (Colomina and 

Molina, 2014). The spectral diversity/variability hypothesis proposes that the number of plant 

species increases with the diversity of spectra observed (Heumann et al., 2015; Palmer et al., 

2002; but see Schmidtlein and Fassnacht, 2017) and has been tested with hyperspectral sensors 

mounted on satellites or manned aerial systems (Mapfumo et al., 2016; Möckel et al., 2016; 

Wachendorf et al., 2018). This data has been used for biodiversity assessment in a wide range of 

ecosystems, including tropical forests (Cochrane, 2000), costal zones (Lange et al., 2004), 

wetlands (Gross and Heumann, 2014; Heumann et al., 2015) and grasslands (Lopatin et al., 2017; 

Möckel et al., 2016). However, in complex habitats, such as grasslands, accurate biodiversity 

assessment demands higher spatial resolution than manned aerial or satellite systems can reach 

(Capolupo et al., 2015; Lopatin et al., 2017), highlighting the relevance of UAVs as the only 

current remote solution available for biodiversity assessments in these habitats (Fig. 1a). 

Until very recently, hyperspectral sensors were only available for manned aircraft and satellite 

systems (Mulla, 2013) given UAVs’ payload limitations (Adão et al., 2017). Additionally, high 

costs associated to commercial hyperspectral sensors (ranging from USD 25,000 to USD 

100,000; Association for Computing Machinery, 2017; CBRNE Tech Index, 2019) prohibited 

their wider public use. However, the increase in UAVs’ payload capacity (up to 15kg multirotor 

and up to 50kg fixed wing UAVs, Chen et al. 2016), in addition to the emergence of light and 

non-commercial low-cost hyperspectral sensors (USD700~USD2,000; Adão et al., 2017; 

Colomina and Molina, 2014; Nevala and Baden, 2018; Sigernes et al., 2018) in the last few years, 

are making it possible for a larger public to have access to UAV-on-board hyperspectral sensors. 

Cao et al. (2018), for example, used a 470g commercial hyperspectral camera (USD 50,000), 

with a spectral resolution of 4nm, to identify mangrove species in China. Sigernes et al. (2018), 

on the other hand, constructed a light (200g) low-cost (USD 700) hyperspectral sensor and 

successfully produced orthomosaics from NDVI image sequences taken from a UAV octocopter.  
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In practice, the fact that commercial hyperspectral sensors adapted for UAVs are still 

approximately ten times more expensive than multispectral ones highlights the importance of 

carefully considering the most cost-efficient sensor for each specific objective. Multispectral or 

RGB imagery may offer cheaper and easier solutions than hyperspectral imagery in ecosystems 

where all types of sensors record similar accuracy levels for species classification, such as forests 

(Michez et al., 2016). Nonetheless, limitations need to be overcome in terms of automated image 

classification methods (e.g. by including elevation data, Cruzan et al., 2016). Furthermore, given 

the high spatial resolution needed for vegetation identification at the species level and the current 

resolution of most current commercial RGB and multispectral sensors, UAVs need usually to be 

flown at very low altitudes (< 20m). This makes it impractical to cover big areas given the 

amount of time needed for the flights and image mosaicking (Bertacchi et al., 2019). These 

problems might soon be overcome by the development of new sensors with increased resolution 

power. 

b. Animal diversity 

Data on the availability of vegetation used for food is fundamental to understand animals’ 

occurrence (Forbey et al., 2017). The capacity of sensors mounted on UAV to deliver high 

resolution images, combined with high UAV spatio-temporal flexibility for mapping and 

characterizing microhabitats, provides new opportunities for animal species habitat preference 

detection (Habel et al., 2016). UAVs’ sensors have been used to measure structural properties 

(e.g. height metrics and phytochemical features) in forest, grass and shrub ecosystems (Anderson 

and Gaston, 2013; Forbey et al., 2017) and consequently the identification of areas with high 

protection value is expected to become more precise and efficient (Habel et al., 2016). 

Conservation strategies (e.g. agri-environmental schemes), especially those directed towards 

specific species, may improve by employing UAVs. For example, the monarch butterfly (Danaus 

plexippus) relies almost exclusively on milkweed (Asclepias syriaca) as a larval food-plant. A 

recent decline in milkweed populations, due to increased use of glyphosate in maize and soya 

plantations in the USA, is threatening the butterfly survival (Pleasants and Oberhauser, 2013). 

Mapping and protecting milkweed populations is hence critical to protect this flagship species 

(Lu and He, 2017). In this context, the combination of UAVs’ surveys precision, range, speed 
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and cost-efficiency could help to overcome former strategies’ limitations and therefore to avoid 

the species’ extinction. 

Wildlife detection and management have also benefited from UAVs (Fig. 1c). Wildlife detection 

within field and in the field surroundings is an important component for the concept of 

biodiversity-friendly agricultural landscapes for two main reasons. On the one hand, an increased 

detection rate would reduce the number of animals unintentionally killed in agricultural 

landscapes during fieldworks (e.g. harvest period). Thermal cameras mounted on UAVs can be 

used to detect endothermic animals, therefore avoiding animal mortality and also increasing 

farmers harvest efficiency, as has been shown for deer fawn (Cukor et al., 2019), lapwing (Israel 

and Reinhard, 2017 - 2017) and  Montagu ́s Harrier (Mulero-Pázmány and Negro, 2011). On the 

other hand, detection of certain animal species in the agricultural landscape might contribute to a 

better planning of agricultural and conservation strategies and eventually lead to win-win 

scenarios. Given its high conservation value and its role in rodent biological control in cereal 

fields, the Montagu ́s Harrier protection constitutes one of these mutually benefiting scenarios 

between conservation science and agricultural production.  

Wasps’ nests identification would be likewise important in agricultural landscapes given their 

importance as pest predators of many crops and their eventual danger to humans when undetected 

(Medeiros et al., 2019; Prezoto et al., 2019; Southon et al., 2019). Given the higher temperature 

of social wasps’ nests compared to the surrounding environment (i.e. 5-10°C, Klingner et al., 

2005), thermal cameras could also be applied to identify them, although, to our knowledge, this 

possibility has not yet been explored. Furthermore, vertebrate pollinators, such as hummingbirds 

and bats, would also be fundamental to detect given their crucial role in plant reproductive 

success (Rader et al., 2016). Their absence reduces fruit and/or seed production by 63% on 

average (Ratto et al., 2018). Bats are known for their importance as biological control agents, 

seed dispersers and pollinators of several wild plants and crops (Kunz et al., 2011), such as the 

Agave spp. (Trejo-Salazar et al., 2016). Birds are also fundamental pest predators (Boesing et al., 

2017), the endemic lemon-bellied-white-eye Zosterops chloris, for example, was found to be the 

main bird predator in cacao agroforestry landscapes in Indonesia (Maas et al., 2015) and is 

therefore a key element for efficient biological pest control. Quantitative and spatially explicit 

information on the presence of these important animal groups (e.g. gathered with thermal 
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cameras on UAVs) would be a tipping point for the design of biodiversity-friendly agricultural 

landscapes and for smart farming.   

Density data collection over large areas has significantly improved and spread thanks to the 

advent of UAVs, given the avoidance of traditional aerial survey biases, greater spatio-temporal 

resolutions, and to the reduced impact of noise on wildlife (Chrétien et al., 2016). Multispectral 

imagery, in particular, has been recognized as more efficient than traditional human visual 

detection for animal discrimination, especially in the case of bird and mammal surveys (Chrétien 

et al., 2016). UAV-derived counts of colony-nesting birds, for example, are an order of 

magnitude more precise than traditional ground counts (Hodgson et al. 2016). For small but fixed 

objects, such as birds’ nests, UAVs can obtain very detailed data from images, such as  nestlings’ 

age and number of eggs (Weissensteiner et al., 2015). Moreover, the possibility of using 

multispectral imagery and, in particular, the combination of visual and infrared spectrum sensors, 

allows tracking animals more efficiently and even at night (Chrétien et al., 2016; Ward et al., 

2016). This may be particularly relevant to track small, low contrasting and nocturnal animals 

(e.g. rodents) that may otherwise be difficult to follow (Gonzalez et al., 2016). Images can be 

used for abundance estimates (with both manual and automated methods) and also to track 

changes in animal size, body shape and nutritive condition (Goebel et al., 2015).  

3.2 Agricultural land monitoring  

Agricultural land monitoring refers to the set of activities related to crop health and grow from 

soil fertility to yield calculation (Fig. 2). Early and precise plant physiological stress detection 

caused by pests, pathogens, nutrients or water deficit is of major importance (Lichtenthaler, 1998; 

Maimaitiyiming et al., 2017), not just for crop development and yield, but also for conservation 

objectives in agricultural land (e.g. biodiversity protection). Detecting a crop pest outbreak early 

enough, for example, may allow low-cost and environmentally friendly treatment, e.g. with 

biological pest control agents (Barrera, 2008; Gerling et al., 2001).  
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Fig. 2 UAV applications for vegetation monitoring in crops and forests. a) Plant height computation of a 

corn field (modified from Geipel et al., 2014). The lower part of the figure shows an RGB orthoimage and 

a classification layer based on the Excess Green Index (ExG) where green represents crop and yellow soil. 

The upper part shows the corresponding crop surface model height information as a 3D representation, 

colored by the ExG-classification. b) Surface temperatures at different heights from potato fields 

(modified from Faye et al. (2016), used with permission). Red stands for higher temperatures and blue for 

lower ones. c) Pine processionary moth defoliation assessment in Catalonia (modified from Cardil et al. 

(2017), used with permission). Yellow depicts infested trees, red completely defoliated trees and green 

non-infested trees.  
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a. Plant height and biomass 

In precision farming, management strategies often rely on estimations of biomass, crop growth, 

light use efficiency and carbon stocks to predict total yields and spatial yield variations, and to 

determine harvest dates (Bendig et al., 2014; Chen et al., 2012; Li et al., 2016). Plant growth is a 

good indicator of plant response to heat, drought or nutrient stress and therefore of crop 

performance. Bareth et al. (2016) used RGB imagery from a UAV and computer vision 

techniques to construct multi-temporal crop surface models of barley at three growth stages and 

found that plant height estimations derived from this method were as accurate as the more 

commonly used terrestrial laser scanning (Table S1). Furthermore, UAV multispectral imagery 

can also produce crop height estimates as accurate as those coming from LiDAR systems 

(Sofonia et al., 2019), at much lower costs. 

Above-ground biomass is another important measure for agricultural and natural systems that can 

be applied to monitor ecosystem health, impacts of climate change and human activity (Liang et 

al., 2016). Above-ground biomass allows to estimate carbon sequestration, which is important for 

the global carbon cycle and for carbon emissions estimation and can be used for carbon 

conservation programs (Chen et al., 2012). In the past, the above-ground biomass of plants in an 

area was extrapolated by measuring the height (and width of trees in forests) of a sample of plants 

on the ground or by destructively sampling plants to directly measure their biomass (Gao et al., 

2013). Today parameters such as canopy height, ground cover, and vegetation indices (e.g. 

NDVI) can be estimated using UAVs imagery and later used to model above-ground biomass 

(Bendig et al., 2014; Grüner et al., 2019). At small to medium scales, UAVs can produce 

consistent biomass estimates at significant smaller costs than manned aircraft (Kachamba et al., 

2017). 

Common procedures for plant height and biomass estimation involve the generation of 3D point 

clouds from RGB or multispectral imagery (e.g. with structure from motion techniques), followed 

by the construction of digital surface models (DSMs) and digital elevation models (DEMs) with 

software as Agisoft or Pix4D (Table S1).  In grasslands, above-ground biomass estimations help 

to predict production (e.g. livestock forage), carbon storage, and wind erosion potential (Gao et 

al., 2013; Liang et al., 2016). Möckel et al. (2016), for example, used airborne hyperspectral data 

for fine-scale biodiversity predictions through pigment content and biomass analyses, based on 

the negative correlation between plant species diversity and above-ground biomass. Given the 
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recent miniaturization and price reduction of UAVs, these habitats could be now studied at a 

much lower price. In fact, the use of UAVs enables us to non-destructively sample areas and to 

make small-scale estimations of above-ground biomass, which can be used for site-specific 

agricultural decision making in croplands and grasslands (Geipel et al., 2014; Liang et al., 2016).  

Accurate tree height and biomass estimation is also possible through UAVs imagery based on 

color-infrared (Zarco-Tejada et al., 2014), multispectral (Shin et al., 2018) and hyperspectral 

sensors (Adão et al., 2017). This is especially important for orchards (e.g. olive and fruit trees), 

silvopastoral systems (Surový et al., 2018) and forestry (Tang and Shao et al., 2015). Forestry 

management, for example, might particularly benefit from these advances considering that tree 

height and biomass information are fundamental to determine productivity and harvesting time. 

Pine (Guerra-Hernández et al., 2017), eucalyptus (Wallace et al., 2016) and oak (Surový at al., 

2018) plantations have already profited from UAV monitoring. 

Although most studies report good accuracies for plant height and biomass estimation (Table S1), 

it is important to note that structure from motion approaches retrieve in general lower accuracies 

in heterogeneous crops, compared to homogeneous ones, such as monocultures. Increased spatial 

resolution and plant density information might contribute to higher accuracy in those scenarios 

(Grüner et al., 2019). 

b. Yield and nutrient status  

Yield prediction is naturally of principal interest for farmers, given its direct effect on income. 

However, it is also fundamental to adaptive crop management and balancing input applications 

(e.g. fertilizers). Avoidance of unnecessary inputs, as nitrogen and phosphorous, has positive 

effects on ecosystem functioning and biodiversity (Mozumder and Berrens, 2007). Therefore, 

yield and nutrient status predictions are central to the design of biodiversity-friendly agricultural 

landscapes. The Leaf Area Index (LAI), defined as the area of single sided leaves per area of soil, 

can link multispectral remote sensing to crop growth, yield and other biological measurements 

(López-Lozano and Casterad, 2013; Wu et al., 2007). Multispectral information can be used to 

calculate spectral indices related to LAI such as the NDVI (normalized ratio between the red and 

near infrared bands, Lelong et al., 2008). These spectral indices provide information about 

important vegetation properties, such as the chlorophyll concentration, water stress and plant 

productivity (Gago et al., 2015; Nemeskéri et al., 2019).  LAI can be calculated at multiple 
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phenological stages using RGB, TIR (thermal infra-red) and hyperspectral sensors and has been 

used in potato plantations (Roosjen et al., 2018), wheat (Yao et al., 2017), sorghum (Potgieter et 

al., 2017) and vineyards (Kalisperakis et al., 2015).  

Imagery datasets from UAVs have allowed yield prediction in crops such as corn (Geipel et al., 

2014), vineyards (Rey-Caramés et al., 2015), rice (Zhou et al., 2017) , sugarcane (Sanches et al., 

2018) and oilseed rape (Gong et al., 2018). The combination of spectral vegetation indices maps 

(e.g. Excess Green Index) with 3D surface models is a particularly important method for yield 

estimation (Geipel et al., 2014). However yield estimation accuracy based on imagery has not yet 

reached that of traditional methods in some crops (Geipel et al., 2014; Yin et al., 2011).  

Nutrient status assessment through spectral indices has been studied in many crops (Liu et al., 

2018; Schirrmann et al., 2016) and particularly well in vineyards. In the latter, leaf carotenoid 

content estimation, vigour and development have been estimated using high resolution 

hyperspectral (Zarco-Tejada et al., 2013) and multispectral imagery (Rey-Caramés et al., 2015), 

acquired from UAVs. It has been demonstrated that, given its higher spatial resolution, UAV 

imagery outperforms satellite decametric imagery in vineyard vigour assessment (Khaliq et al., 

2019). Moreover, LAI estimation with hyperspectral data or 3D canopy models was found to be 

more accurate than estimations based on RGB 2D data (Kalisperakis et al., 2015).  

Current methods for yield and nutrient status estimation show already satisfactory results (Table 

S1). Research is now focused on increasing efficiency in terms of costs/time reduction and 

increased accuracy. Cost reduction is mostly associated to technology development and will 

continue in the years to come as UAVs and sensors tend to get more economic. Reduced time 

involves finding the optimal spatial resolution for each objective, where important vegetation 

details can be captured without increasing data noise. Avoiding unnecessary high resolution also 

reduces image processing and aerial campaigns time, as UAVs might be flown at higher altitudes, 

covering more area per flight. 

c. Pest and pathogen damage 

Some pests and pathogens have potential to gain uncontrolled outbreak character causing 

dramatic losses to agriculture (Singh and Satyanarayana, 2009). Attempts to reduce these losses 

cost farmers a considerable amount of time, money and effort (Deutsch et al., 2018; Oliveira et 

al., 2014). Chemical pest control, the most used pest control method, is also an important driver 
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of biodiversity loss, negatively affecting surrounding areas and beneficial insects such as 

pollinators (Gill et al., 2012; Jong et al., 2008; Woodcock et al., 2017). Furthermore, pesticides 

costs might take a substantial part of farmers’ budget, making the production chain more 

expensive and compromising the sustainability of small and medium farmers’ livelihoods 

(Bourguet and Guillemaud, 2016). Therefore, early and precise detection of incipient pests and 

pathogens means a breakthrough for agriculture and conservation, as these could be treated fast 

and locally, well before reaching economic thresholds. Consequently, this early detection could 

favour farmers’ budget, biological conservation and ecosystem health and functioning. 

Although in its infancy, crop pest and pathogen damage can be monitored with UAV-based 

imagery given the specificity of the structural and chemical changes occurring in attacked plants 

(Maes and Steppe, 2019; Mahlein, 2016). One of the main advantages of UAV imagery is the 

possibility to detect pest and pathogen attack before visual signs emerge. Thermal and 

fluorescence imaging can provide such early identification of attacked plants based on the 

modification of plant cuticular and stomatal conductance (Oerke et al., 2006) and chlorophyll 

fluorescence (Mahlein, 2016), respectively. However, both methods lack the capacity to 

distinguish among diseases.  

UAV-based multispectral sensors can assist in early and specific pest and pathogen detection 

through spectral vegetation indices (Garcia-Ruiz et al., 2013). Although, UAV-based 

multispectral imagery was found to reach higher accuracy than aircraft imagery for this purpose; 

moderate overall accuracy levels and a high proportion of false negatives demand further 

improvements on these technics (Garcia-Ruiz et al., 2013). One possible improvement might be 

to combine multispectral and thermal imagery, which has retrieved encouraging results in legal 

opium poppy plantations (Calderón et al., 2014). The simpler RGB sensors might not be as 

appropriate for early detection objectives but, nonetheless, they can provide accurate maps of 

location and severity of affected plants (Cardil et al., 2017; Sugiura et al., 2016; Tetila et al., 

2017). Considering the lower costs of RGB sensors compared to multispectral ones, it is 

important to adapt methods to research objectives in order to achieve cost-effective solutions 

(del-Campo-Sanchez et al., 2019).  

Despite the above, hyperspectral imaging has the biggest potential for species specific, precise 

and early pest and pathogen detection (Mahlein et al., 2018), in particular when combined with 
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thermal data (López-López et al., 2016). Vanegas et al. (2018), for example, developed a 

methodology to detect grape phylloxera (Daktulosphaira vitifoliae) attack in vineyards by 

combining digital surface models obtained from RGB imagery with spectral vegetation indices 

coming from multispectral and hyperspectral data (Table S1). Vanegas et al. (2018) used a 

methodology that produced promising results and could be adapted to other systems provided that 

information on the optical properties of healthy and attacked plants is available. Spectral 

signatures between healthy and unhealthy plants are usually not different across all spectral 

regions; therefore, it is important that the used sensors capture radiation at the correct 

wavelengths for the given study system (Moriya et al., 2017; Vanegas et al., 2018). Given the 

high amount of data generated with hyperspectral sensors (Mahlein, 2016), it is recommendable 

to carefully select just the informative spectral regions and the correct spatial resolution needed in 

order to optimize data analysis. 

Non-imagery UAVs have also been applied in different studies to reduce pest and pathogen 

damage to crops. Smith et al. (2015), for example, studied the long distance dispersal potential of 

an insect pest (Thrips tabaci) transmitting a pathogenic virus in onion crops. They used UAVs 

equipped with sticky card traps to determine seasonal dynamics of insect occurrence in the 

planetary boundary layer and virus infection rates to better understand pest dynamics of T. tabaci. 

Likewise, UAVs have been used to deploy wasp and fly parasites of the African armyworm 

(Spodoptera exempta) in cereal crops, improving the quality of the crop and replacing pesticides 

(Faithpraise et al., 2015). 

d. Soil fertility 

RGB and multispectral imagery have also been used to estimate soil residue cover (Kavoosi et 

al., 2018), soil erosion (Bazzoffi, 2015; d'Oleire-Oltmanns et al., 2012), soil moisture (Acevo-

Herrera et al., 2010; Sugiura et al., 2007) and soil organic carbon content in bare cultivated soils 

(Aldana-Jague et al., 2016b). Soil residue cover, for example, is fundamental to sustainable 

agriculture as appropriate residue cover improves soil and water quality and reduces soil erosion 

(Kavoosi et al., 2018). Kavoosi et al. (2018) used a combination of multispectral satellite imagery 

(Landsat 8 OLI) and RGB imagery from a UAV and found that multispectral imagery predicts 

soil residue cover with higher precision than RGB imagery. 
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Soil erosion is a serious problem in Europe (Bazzoffi, 2015) and especially in semi-arid regions 

(d'Oleire-Oltmanns et al., 2012), as it causes soil loss and degradation and is considered an 

indicator of desertification (López-Bermúdez, 1990). Soil erosion is accelerated by inappropriate 

human activities and is a useful indicator to monitor land degradation (Wang et al., 2016). Wang 

et al. (2016) and d'Oleire-Oltmanns et al. (2012) used commercial digital cameras (i.e. RGB 

imagery) mounted on UAVs to produce DEMs  and sub-decimetre orthomosaic images through 

which they were able to precisely map, quantify and monitor gully erosion (Table S1). High 

resolution multispectral imagery has also proved useful in the prevention and management of soil 

erosion through the interactions between sediment connectivity and vegetation (Estrany et al., 

2019). 

Soil moisture estimates are essential for precision agriculture, coastal monitoring, fire risk 

estimation and flood prevention (Kumar et al., 2018; Wang et al., 2018). They have been 

calculated with high accuracy in agricultural fields using L-band radiometers (Acevo-Herrera et 

al., 2010), thermal cameras (Sugiura et al., 2007; Wang et al., 2018),  multispectral sensors 

(Wang et al., 2018) and UAV hyperspectral imagery (Ge et al., 2019b). Finally, estimates of soil 

organic carbon are extremely important as this property is related to water holding capacity and 

nutrient availability of soils. It is also linked to climate regulation, as atmospheric CO2 

concentrations depend on terrestrial carbon, whose largest reservoirs are soils (Aldana Jague et 

al., 2016a). Although the most informative spectral bands related to soil organic carbon 

estimation occur in both, the visible near-infrared (350–1000nm) and the shortwave near-infrared 

(1000-2500nm) regions (Laamrani et al., 2019); Crucil et al. (2019) found that model predictions 

of soil organic carbon based only on the visible near-infrared spectral range perform as well as 

those based on both regions. Furthermore, they found that models based on multispectral narrow 

bands performed better than those of hyperspectral sensors. Crucil et al. (2019) key findings 

mean that expensive and heavy hyperspectral sensors (e.g. spectro-radiometers) are not needed 

for soil organic carbon estimation. Instead, lighter UAV adaptable hyperspectral sensors (i.e. 

typically those covering a spectral range of 400-1100 nm), and particularly multispectral sensors, 

might perform even better. The study of  Aldana-Jague et al. (2016b), for example, used UAV 

multi-spectral imagery for soil organic carbon estimation in barley fields and obtained highly 

accurate models (average R²= 0.95), staying in line with recent findings (Table S1). 
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e. Weeds and other non-crop plants  

Given potential competition with crops, non-crop plants (e.g. arable weeds) are usually seen as 

enemies to yield and are therefore intensively fought with herbicides in conventional agriculture 

(Oerke, 2006). Widespread herbicide use has caused dramatic declines in arable plant species 

(Storkey et al., 2012), despite their importance as major basis for biodiversity and food webs, 

with bottom-up effects to insects and birds (Gerowitt et al., 2017). In Germany, 71% of all arable 

plant species per crop field have disappeared since 1950 (Meyer et al., 2013) and currently 35% 

of species are facing extinction (Albrecht et al., 2016).  However, weeds are very diverse and 

some species may even exhibit net positive effects to agricultural systems thanks to a high 

biodiversity value and low levels of competition with crops (Marshall et al., 2003; Storkey, 

2006). Beneficial weeds can decrease the damage caused by pests (Frank and Barone, 1999) and 

inhibit the proliferation of detrimental weeds and invasive plants, avoiding further costs for the 

farmers (Christina et al., 2015; Li et al., 2015; Vandermeer and Perfecto, 2017; Zhao et al., 

2008). 

The ability to distinguish and map beneficial and detrimental weeds within farms (see Storkey, 

2006), can lead to a general reduction of herbicide application (Rasmussen et al., 2013) as 

farmers may opt to maintain beneficial weeds while removing detrimental ones. Selective 

herbicides constitute one method to achieve this. Alternatively, weed clusters could be treated at 

the sub-field level (Pelosi et al., 2015), exploiting the fact that weeds show often patchy 

distributions, naturally leaving a considerable proportion of land free of them (Rew and Cousens, 

2001; Torres-Sánchez et al., 2013). Using a quadcopter equipped with a lightweight multispectral 

sensor, Peña et al. (2013) found that 23% of the area in a maize field was free of weeds, and the 

area with low weed coverage (<5% weeds) was 47%. These findings highlight the potential of 

UAV-based weed mapping to reduce the amount and time spent on herbicide spraying (Table 

S1). 

Satellites and airplanes are unsuitable for this task because of their low spatial and temporal 

resolutions (Lopez-Granados, 2011). Conversely, UAV-based imagery can capture the spectral 

differences between weeds, crop plants and bare soil enabling successful identification of weed 

plants (Peña et al., 2013), with accuracy levels of > 90% (Pantazi et al., 2017; Peña et al., 2015). 

The success of these UAV operations in detecting weed plants has been shown to depend on the 

cameras used, resolution of images, as well as on time (i.e. days after sowing, Peña et al., 2015) . 
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Accuracy can also be improved when crop row detection/classification is included in the 

identification process (Pérez-Ortiz et al., 2015).  

 

Fig. 3 Weed seedling detection in sunflower field from Spain (modified from Peña et al. (2015), used with 

permission). The first row includes on-ground photographs; the second shows manual classification of 

crop (green) and weeds (blue); and the third shows weed (red) and crop (green) detection with four 

different automatic classification methods (columns). 

Precise weed detection has been shown to reduce herbicide applications ranging from 12.5% to 

99% depending on the proportion of the field infested, herbicide and application threshold used 

(Andújar et al., 2013; Hamouz et al., 2013). Castaldi et al. (2017), for example, used 

multispectral UAV imagery from a modified digital camera and demonstrated that UAVs can 

save up to 39% in herbicide applications in maize fields (Table S1). Furthermore, UAVs can be 

used to monitor weeds by taking air samples from wind-dispersed weed seeds (Shields et al., 

2006). Finally, UAVs can assist in identifying detrimental weed seed predators (see section 1b on 

animal diversity) such as certain insects, birds and small mammals (Bajwa et al., 2015), allowing 

for specific management practices for these species and therefore enhancing the provision of 

biological control services. 

4 Perspectives on future research 

Biodiversity-friendly management in agriculture has been limited by a lack of information on 

species location and condition, in particular if species cover large areas. Large-scale UAV 
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applications will need collaboration between local and regional stakeholders to jointly take 

landscape scale measures. With current technology, UAV high spatial resolution imagery could 

be used to detect and map floral resources with high precision. Mapping and monitoring of 

flower resources from flower strips and set asides across landscapes is of major importance as 

these are fundamental for pollination and biological control services delivery (Sutter et al., 2018; 

Tschumi et al., 2015; Walton and Isaacs, 2011; Westphal et al., 2015). However, systematic 

monitoring of flower resources at the landscape scale in successive years has been practically 

unfeasible, given associated time and costs constrains.  

UAVs’ imagery, and in particular the emergent hyperspectral imaging from UAVs, opens a new 

set of possibilities for accurate mapping and monitoring of flower resources across entire 

landscapes by applying the spectral diversity/variability hypothesis. Additionally, multispectral 

sensors (especially those able to capture near-infra red radiation) could be used to provide a 

precise assessment of the activity and distribution of keystone animals (e.g. vertebrate pollinators, 

pests’ predators and protected species), although arthropod activity is still mainly based on 

indirect evidence such as flower resources or plant damage (Xavier et al., 2018). UAV´s imagery 

has therefore a promising potential to increase the efficacy of agri-environmental schemes across 

European agriculture (Batáry et al., 2011).  

Despite the considerable advance in wildlife tracking in Ecology and Conservation Science this 

knowledge has not yet been extensively applied to identify species of agricultural or conservation 

value in agricultural landscapes. In particular, to our knowledge, pests’ predators and crops’ 

pollinators have not been so far systematically monitored in agricultural systems. Given the 

above we exhort scientists, state agencies and agricultural practitioners to put this new 

technology and knowledge at the service of biodiversity and ecosystem services conservation in 

agricultural landscapes. 

In the tropics, where agricultural landscapes are usually complex mosaics of different crops and 

remnants of secondary tropical forest (Ribeiro et al., 2009), UAV’s RGB and multispectral 

imagery could be further exploited to assess the conservation value and quality of forest 

fragments through biodiversity assessments from the over- and understorey (Getzin et al., 2012; 

Hernandez-Santin et al., 2019). This information can improve landscape management and 

contribute to policy making based on scientific evidence (Metzger, 2010). Moreover, the 
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advances on UAV research will increase the number of native habitat fragments within 

agricultural landscapes that can be protected and allow further exploration of their interactions 

with cropland. 

Premature and precise identification of crop damage due to pests and pathogens opens the 

possibility for a new set of tailored responses. Heavy, expensive and systemic pesticide 

application may become a method of the past as much cheaper, easier and biodiversity-friendly 

strategies can be applied, provided that pest damage is targeted early enough, before economic 

damage thresholds are reached. These strategies gain further importance considering the 

consistent move to insecticide and herbicide banning in developed countries (Storck et al., 2017). 

Additionally, systematic chemical control provokes emergence of resistant pest and weed 

(Schütte et al., 2017) populations, such as the Colorado potato beetle (Leptinotarsa 

decemlineata), which has developed resistance to ≥ 50 different insecticides (Alyokhin et al., 

2007; Mota‐Sanchez et al., 2006). Therefore, reduced insecticide use means costs avoidance, 

preservation of yield enhancing pollinators (e.g. bees), and less contamination of soil and water 

(Arias-Estévez et al., 2008; Bretagnolle and Gaba, 2015; Geiger et al., 2010; Gerhardson, 2002; 

Potts et al., 2010; Wilson and Tisdell, 2001).  

The detection of local and incipient pest focuses, such as those of the coffee-leaf-miner 

(Leucoptera coffeella) in coffee plantations, would become possible by identifying the particular 

necrotic areas caused in the leaves and may be mitigated by deployment or facilitation of natural 

enemies such as wasps, birds and bats (Librán-Embid et al., 2017). Identification of pest and 

pathogen presence in the agricultural landscape may also help to better understand how different 

land-use types and linear elements like flower strips and hedgerows affect their distribution. 

Control agents may then better contribute to a more biodiversity-friendly approach of pest and 

pathogen control in agricultural, natural and semi-natural land. Collaboration and coordination 

among local and regional stakeholders might become increasingly important under this scenario 

as many of these processes are affected by management at the local and landscape level (Redlich 

et al., 2018).  

In general, conservation science has not yet fully integrated recent advances in plant monitoring 

coming out of precision agriculture, which could help to better monitor fragile ecosystems under 

climate change and biotic pressures. On the other hand, precision agriculture should incorporate 
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the latest developments in species detection coming from conservation science, especially to 

distinguish among detrimental and beneficial arable weeds (see section 2e. weeds and other non-

crop plants). This would benefit farmers’ economy in terms of reduced time and herbicide costs, 

increased ecosystem services and would also contribute to the protection of biodiversity given the 

high proportion of arable weeds threatened with extinction (Albrecht et al., 2016; Meyer et al., 

2013).  

Yield is frequently negatively associated to biodiversity although management options to increase 

yield with less impact on biodiversity have been proposed (Clough et al., 2011; Cunningham et 

al., 2013). This apparent trade-off is, however, mainly caused by high agrochemical input 

associated to non-biodiversity-friendly agricultural intensification. We posit that UAVs can 

establish a new scenario in which the antipode between yield and biodiversity conservation may 

not be the rule. UAVs’ based imagery is changing the way inputs are applied as it is allowing to 

identify where, when and how much input is needed with high precision. This produces two 

major benefits: first, yields increase as plants receive the exact treatment they need at the right 

time, avoiding nutrient, water and herbivory stress, and leading to reduced input costs for 

farmers. Second, reduced amounts of pesticides directly benefit naturally occurring insects 

(Geiger et al., 2010), which is not only fundamental for conservation science, but also increases 

the availability of beneficial agents such as pollinators and pest predators, thereby also reducing 

the necessity for inputs (Chaplin-Kramer et al., 2011; Cohen et al., 1994; Holland et al., 2012). In 

sum, these developments may constitute a synergistic win-win scenario. 

5 Conclusions 

Future agricultural landscapes must meet two major objectives: 1) increase food, fiber and fuel 

production and 2) do so in a biodiversity-friendly way. Here we show that UAVs are helping to 

reconcile these oft-considered discrepant objectives, by enhancing the efficiency of fertilizer, 

pesticide and herbicide applications, while simultaneously increasing yield and reducing impacts 

on biodiversity. UAV-based information on species' habitat use and movement through the 

landscape supports more efficient large-scale management of beneficial animals and increased 

success in biological conservation. Therefore, UAVs are expected to become common tools for 

the management of agricultural landscapes, in particular when combined with promising 

developing technology, such as light-weight hyperspectral sensors. UAV-based imagery will not 

substitute the use of manned aircraft or satellite imagery for regional and global assessments but 
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will greatly contribute to local management at small to medium scales (up to 50 ha). The main 

current limitations for a more widespread adoption of UAVs are the high price of multispectral 

and especially hyperspectral sensors; the lack of established image processing methods in some 

applications; and the lower estimation accuracy for yield estimations in certain crops, compared 

to traditional methods. Nevertheless, these current limitations may be offset in the near future by 

rapid advances in sensor technology and decreasing prices, thereby increasing the suitability of 

UAVs for applications in agriculture and conservation science. 
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Supplementary material 

From 1995 to 2018 UAVs publications showed a growth rate of 30.64% resulting in a doubling 

of output in less than 2.3 years, therefore nearly tripling the mean publication growth rate in 

science (Larsen and Ins, 2010; Bornmann and Mutz, 2015).  

 

Figure S1. Total number of publications per year in Web of Science core collection under the topic 

“unmanned aerial” from 1995 to 2019 as of October 10th 2019.  
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Table S1. Technical details of all studies using UAVs cited throughout the review sections. 

 

UAV 

application 
Authors 

Study 

objective 
Sensor Platform 

Flight 

height 

(m) 

Indices 

used 

Processing 

software 
Built products 

Resolution (cm): 

GSD or cell size 
Accuracy 

Other data 

sources used 
Comments  

3.1 
Biodiversity 
conservation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Plant 
diversity 

Ahmed et 
al., 2017 

Vegetation 
classification 

Sony DSC-WX220 
(RGB) and Parrot 

Sequoia 
(multispectral) 

SenseFly eBee 
(fixed-wing) 

120 NDVI ENVI 

RGB: Orthomosaics, 
point clouds and 

DSM 
Multispectral: 

Colour-balanced 
orthomosaics, non-

balanced ‘raw’ 
reflectance and 

NDVI maps 

RGB: 2.6- 3.5 
Multispectral: 5.7 

Overall accuracy 
78-95% 

depending on 
sensor, resolution 
and classification 

detail. 

Reflectance 
data calibrated 
with spectral 
reflectance 

measurements 
obtained with 
an ASD Field 

Spectrometer 

- 

Cruzan et 
al., 2016 

Plant species 
and vegetation 

types 
distributions 

RGB 
DJI Phantom 2 

Vision+ 
(quadcopter) 

40 None AgiSoft PhotoScan 
Orthomosaic and 

DSM 
~2 Not reported No 

R scripts used for 
automated 

habitat 
delineation 

Getzin et 
al., 2012 

Forest 
biodiversity 
assessment 

RGB Fixed-wing ~250 GSCI ArcGIS Shapefiles 7 
R2 = 0.47–0.74, P 

values <0.001 
No 

Gap polygons 
from orthophotos 

manually 
segmented to 

create shapefiles. 

Habel et al., 
2016 

Butterflies 
micro-habitat 
mapping and 

characterization 
 

GoPro HERO 4 
Black (RGB) 

DJI Phantom 2 
(quadcopter) 

40 
 

None 
AgiSoft Photoscan 

Professional 
 

Georeferenced 
orthomosaic and 

HSM 
2 

HSM feeding 
plants: 

 AUC = 0.72, COR 
= 0.39  

HSM for larvae: 
AUC = 0.72, COR = 

0.22 

Verification in 
the field 

Input variables 
for HSMs were 
aerial pictures 

decomposed into 
RGB channels 

Knoth et 
al., 2013 

Restoration 
monitoring 

Modified Canon 
Ixus 400 (captures 
NIR) and modified 

Panasonic 
Lumix LX-3 

(captures VIS and 
NIR) 

Mikrokopter 
and 

Microdrone 
MD4-1000 

(quadcopters) 

15-100 

NIR/blue 
ratio to 

generate 
NIR-

albedo 
variation 

ERDAS Imagine 
including the Leica 
Photogrammetry 

Suite and 
eCognition 
Developer 

CIR orthomosaic 3 and < 1.5 
Overall accuracy 

84-95% 
No - 

Lu & He, 
2017 

Grassland 
species 

classification 

Modified Canon 
PowerShot ELPH 
110HS (captures 

VIS and NIR) 

Tarot T15 
(octocopter) 

70 
Blue NDVI 
and Green 

NDVI 

Agisoft Photoscan, 
ArcGIS and ENVI 

Orthomosaics 5 R² = 0.6-0.95 

Canopy 
reflectance data 
collected using 

a 
spectroradiome

ter. 

- 

Michez et 
al., 2016 

Riparian forest 
species 

classification 
and health 
condition 

Ricoh GR3 camera 
(RGB) 

Gatewing X100 
(fixed-wing) 

114-404 Multiple 
Agisoft Photoscan 

Professional 
Orthomosaic 10-25 

Species 
clasification: 48.5-
84.1% depending 
on site and scale 

of analysis. 
Health condition: 
81±10.8-90.6±0.7 

LiDAR digital 
terrain model 

(DTM) 
- 

Silva et al., 
2014 

Grassland 
species mapping 

Canon Ixus-90 (RGB 
) and modified 

RG715 (captures 
NIR) 

Helium 
balloon 

35 

Foliage 
projective 
cover and 

LAI 

Open source: 
“Bundler”, 

“GRASS”, “SAGA” 
and “gbm” R-

package 

DSM 1 
AUC 0.81-0.99. 
AUC= 0.88 in 

average 

Field 
Spectroscopy 
with the field 
spectrometer 

(Handyspec-14) 

Also used R and 
Python languages 
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Zahawi et 
al., 2015 

Monitor tropical 
forest recovery 

Canon ELPH 520 
HS (RGB) 

HiSystems 
Mikrokopter 
(hexacopter) 

30–40 m 
above 

canopy 
None 

Agisoft Photoscan 
and ArcGIS 

Point clouds, DTM 
and CHM.  

30 R² = 0.53-0.85 
Compared to 

LiDAR 
measurements 

Also used R and 
Python languages 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. Animal 
diversity 

Chrétien et 

al., 2016 

 

Wildlife surveys 

FLIR Tau640 sensor 

(thermal) and 

D7000 sensor 

(RGB) 

ING Robotic 

Responder  

(helicopter) 

60 None Not specified Orthomosaics 
RGB: 0.8 

Thermal: 5.4 

100% detection 
rate open land 

deer. 52% 
detection rate 

overall 

No - 

Cukor et al., 

2019 

Reduce 

mortality of roe 

deer fawns 

LWIR Workswell 

WIRIS 2nd 

generation 

(thermal) 

GD HX-1100F 

ZODIAC 

(hexacopter) 

40 

 
None 

DJI GO application 
and 

WorkswellCorePla
yer 

Thermogram ~10 
100% search 
success rate 

No - 

Gonzalez et 

al., 2016 

Wildlife 

monitoring 

FLIR Tau 2-640 

(thermal) and 

Mobius (RGB) 

S800 EVO 

(hexacopter) 

20,30, 

60 and 

80 

None Not specified 
Thermal and RGB 

images 
RGB: ~17 - ~ 70  

Thermal: ~5 - ~20 
100% accuracy at 

< 60 m height 
No 

Used two 
algorithms to 
automatically 

classify and count 
wildlife (Python) 

Hodgson et 

al., 2016 

Bird colony 

estimation 

Canon EOS M 

mirrorless camera 

(RGB) 

X8 3D Robotics 

(octocopter) 

and FX79 

airframe 

conservation 

drone (fixed-

wing) 

75 and 

120 
None Adobe Photoshop Composite 1.5 

UAV counts ten 
times more 

accurate than 
ground counts 

No - 

Israel & 

Reinhard, 

2017 

Reduce 

mortality of 

lapwings 

Tau 640 infrared  

(thermal) and 

GoPro 3 Black Plus 

(RGB) 

Falcon 8 from 

Ascending 

Technologies 

(octocopter) 

 

40 None Not specified Thermogram 3.18 93% No 
MbOpt algorithm 

to improve 
detectability 

Mulero-

Pazmany & 

Negro-

Balmaseda, 

2011 

Reduce 

mortality of 

Montagu´s 

Harriers 

Panasonic Lumix 

LX3 (RGB) 
Fixed-wing 70  None Arc GIS 

Georeferenced 

aerial photographs 
~5 

64% search 
success rate 

No -  

Ward et al., 

2016 

Wildlife 

detection and 

monitoring 

FLIR Lepton 

(thermal) 

 

3DR IRIS 

(quadcopter) 
10 None Not specified Thermogram Not specified - No 

Open-source 
detection 
algorithms 
(written in 

Python) 

Weissenstei

ner et al., 

2015 

Nesting status 

evaluation of 

canopy-

breeding birds 

RGB 

DJI Phantom 2 

Vision 

(quadcopter) 

10-30 None - - < 1 

Nestling number 
accuracy 75%. 
UAV nesting 

status assessment  
7.4 times faster 
than climbing ( 

P < 0.005) 

No - 
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3.2 
Agricultural 
land 
monitoring  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a. Plant 
height  
and biomass  
 

Bareth et 
al. 2016 

Barley 
monitoring 

Panasonic Lumix 
GX1(RGB) 

HiSystems 
MikroKopter 

MKOkto 
(octocopter) 

50 None 
Agisoft PhotoScan 

Professional 
Georeferenced 

CSM 
0.9 R² = 0.91 

Compared to 
terrestrial laser 

scanning 
- 

Bendig et 
al., 2014 

Plant height 
estimation 

Panasonic Lumix 
GX1(RGB) 

HiSystems 
MikroKopter 

MKOkto 
(octocopter) 

50 None 
Agisoft PhotoScan 

Professional  
Georeferenced 

CSM 
1 R² = 0.71-0.92 No - 

Grüner et 
al., 2019 

Grassland 
biomass 

prediction 
DJI FC300S (RGB) 

DJI Phantom 3 
Advanced 

(quadcopter) 
20 None 

Agisoft PhotoScan 
Professional  

DSM 0.7-0.8 R² = 0.58-0.81; No 

Compared to 
destructive 

biomass sampling 
and ruler height 
measurements 

Guerra-
Hernández 
et al., 2017 

Tree growth 
estimation 

Canon Powershot 
S110 (RGB) 

SenseFly eBee 
(fixed-wing) 

170 None Pix4D 
Orthomosaics and 

DSMs 
6 

R² = 0.96 
Detection rate 

100% 
No - 

Kachamba 
et al., 2017 

Biomass 
estimates in dry 
tropical forests 

Canon IXUS127 HS 
(RGB)  

SenseFly eBee 
(fixed-wing) 

325 None 
Agisoft Photoscan 

Professional  

Normalized point 
cloud to generate 

canopy height 
variables 

~ 20 R² = 0.31-0.64 No - 

Li et al., 
2016 

Maize canopy 
height and 

aboveground 
biomass 

estimation 

SONYA6000 (RGB) 
Not specified 
multiple-rotor 

system 
150 

7 
greenness 

VIs 

Smart3DCapture 
to generate point 

clouds 

Orthorectified 
image and DSM 

2 

R² = 0.88 (multiple 
stepwise linear 

regressino 
model); R²=0.78 
(random forest 

regression) 

No - 

Shin et al., 
2018 

Forest canopy 
fuels estimation 

multispectral 
SenseFly eBee 
(fixed-wing) 

120 NDVI 
Pix4D, ENVI and 
CloudCompare 

Orthomosaics 15 R² = 0.72 No - 

Surový et 
al., 2018 

Tree position 
and height 
estimation 

Samsung K-Zoom 
(RGB) 

DJI F550 
(hexacopter) 

50 None 
Agisoft Photoscan 

and ArcGIS 
Orthomosaic and 

DEM 
Orthomosaic: 3.5 

DEM: 4.5 
Detection rate 43-

80% 
No . 

Wallace et 
al., 2016 

Forest structure 
assessment 

Canon 550D (RGB) 
Droidworx 

Skyjib 
(octocopter) 

30 None 
Agisoft Photoscan 

Professional 
Point cloud 10 R² = 0.68.0.84 

Laser scanner 
data 

- 
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Zarco-
Tejada et 
al., 2014 

Tree height 
quantification 

Modified Panasonic 
Lumix DMC-GF1 
(CIR detection) 

mX-SIGHT 
(fixed-wing) 

200 None Pix4D 
Ortho-mosaics and 

DSMs 
5 R2 = 0.83 No - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. Yield and 
nutrient 
status 

Capolupo 
et al., 2015 

Grassland 
structural and 
chemical trait 

analysis 

Wageningen UR 
Mapping System 
(hyperspectral)  

Aerialtronics 
Altura AT8 v1A 

(octocopter) 
70 

Multiple  
narrow 

vegetation 
indices 

- - 
Hyperspectral: 20 

RGB: 2 

R²= 0-0.86 (see 
tables 6 and 7 in 

manuscript) 
No 

Comparison of 
statistical 

approaches: 
partial least 

squares 
regression vs 
narrow Vis. 
400-950nm 

Geipel et 
al., 2014 

Spectral and 
spatial modeling 

of corn yield 

Canon Ixus 110 IS 
(RGB) 

Modified 
MikroKopter 

Hexa XL 
50 

ExG, 
NGRDI and 

PPRb 
Agisoft PhotoScan 

Vegetation index-
orthoimages and 
3D crop surface 

models 

2-10 R² of up to 0.74 
Combined with 

vegetation 
index maps 

Three early- to 
mid-season 

growth stages 

Gong et al., 
2018 

Estimation of 
rapeseed yield 

Modified Tetracam 
Mini-MCA 

(multispectral) 

SZ DJI S1000 
(hexacopter) 

50 
Multiple 

vegetation 
indices 

- - 2.5 R² = 0.33-0.81 

In situ 
hyperspectral 
measures of 

samples spectra 

Six spectral bands 
490-900nm. 

Kalisperakis 
et al., 2015 

Leaf area index 
estimation in 

vineyards 

Headwall Photonics 
Micro-A-Series 

(hyperspectral) and 
GoPro Hero3 (RGB) 

OnyxStar 
multicopter 
(octocopter) 

Not 
specifie

d 

LAI, NDVI 
and GRVI 

SfM for 2D 
orthomosaics and 

not specified 
algorithms for 3D 

canopy surface 
models 

2D orthomosaics 
and 3D canopy 
surface models 

Not specified R² >73% No 380nm-1000nm 

Khaliq et 
al., 2019 

Vineyard 
variability 

assessment 

Parrot sequoia 
(multispectral) 

Octocopter 35 NDVI Agisoft Photoscan NDVI maps 5 - 

Compared to 
satellite 

multispectral 
imagery 

UAV-NDVI maps 
significantly 

predicted three 
vigor classes 

Lelong et 
al. 2008 

Quantitative 
monitoring of 

wheat crop 

CANON EOS 350D 
(RGB) and SONY 
DSC-F828 (Red, 

Green, Blue, and 
Cyan). 

L’Avion Jaune 
powered glider 

(fixed-wing) 
and ABS-
Aerolight 
motorized 
parachute 

20-100 
NDVI, SAVI 

, GNDVI 
and GI 

Not specified 
LAI and nitrogen 

uptake maps 
10 R² = 0.82-0.92 No - 

Liu et al. 
2018 

Nitrogen status 
diagnosis in 

winter oilseed 
rape 

Mini-MCA 6 
(multispectral) 

SZ DJI S1000 
(hexacopter) 

40 

NDVI, 
VARI, 

MSAVI2, 

Cired edge, 
RVI1, RVI2 

Agisoft Photoscan 
Pro  

Orthomosaics 2.2 R² = 0.45-0.83 

Ground 
sampling 

campaigns. LAI 
and oilseed 
rape spectra 

measured 
(hyperspectral 

data) 

- 
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Potgieter et 
al., 2017 

Assessment of 
sorghum leaf 

area dynamics  

MicaSense 
RedEdgeTM 

(multispectral) 
 

3D Robotics 
X8+ multi-

rotor 
(quadcopter) 

20 
LAI, NDVI, 

EVI and 
NDRE 

Pix4D 
Geo-referenced 

multi-layer 
orthomosaic 

0.5 R² = 0.19-0.85 No - 

Rey-
Caramés et 

al., 2015 

Vineyard 
variability 

characterization 

MCA-6 Tetracam 
(multispectral) 

RPAS Md4-
1000 

(quadcopter) 
250 

Multiple 
indices 

ENVI Orthomosaic 17 R² = 0.32-0.69 No - 

Sanches et 
al., 2018 

Sugarcane yield 
prediction 

1/2.3”CMOS (RGB) 
DJI Phantom 3 
(quadcopter) 

25 
LAI and 

GRVI 
Drone Deploy Orthomosaic 5 

R²GRVI = 0.69 

R²LAI = 0.34 

R²GRVI+LAI = 0.79 

No - 

Zarco-
Tejada et 
al., 2013 

Leaf carotenoid 
estimation in 

vineyards 

MCA-6 Tetracam 
(multispectral) and 
Micro-Hyperspec 

VNIR 
(hyperspectral) 

mX-SIGHT 
(fixed-wing) 
and ELIMCO 

Viewer (fixed-
wing)  

150 
(multisp
ectral) 

and 575 
(hypersp

ectral) 

LAI, 
R515/R57

0 and 
TCARI/OS

AVI 

PARGE 
Ortho-rectified 
hyperspectral 

scenes 

15 for multispectral 
and  

40 for 
hyperspectral 

R² = 0.5-0.99 No - 

Zhou et al., 
2017 

Rice yield 
prediction 

EOS 5D Mark III 
(RGB) and Mini-

MCA6 
(multispectral) 

HiSystems MK 
(octocopter) 

100 
(multisp
ectral) 
and 50 
(RGB) 

Multiple 
indices 

IDL script within 
ENVI and Agisoft 

PhotoScan 
Professional 

Orthomosaic 
5.4 for 

multispectral and 
~2 for RGB 

R² = 0.33-0.79 

Target´s 
reflectance 

measured with 
a FieldSpec 4 

Spectroradiome
ter 

- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c. Pest and 

Calderón et 
al., 2014 

Downy mildew 
detection in 

opium poppy 

ADC Lite Tetracam 
(multispectral) and 

MIRICLE 307 
(thermal)  

mX-SIGHT 
(fixed-wing) 

200 
(multisp
ectral) 

and 100 
(thermal

) 

NDVI and 
R550/R67

0 
Not specified 

Multispectral and 
thermal scenes 

20 - 

Reflectance of 
attacked leaves 
measured with 
Li-Cor 1800-12 

Integrating 
Sphere 

spectrometer 

- 

Cardil et al., 
2017 

Pine-
processionary-

moth 
defoliation 
assessment 

RGB 
DJI Phantom 3 
(quadcopter) 

80-100 None 
Agisoft PhotoScan 

Professional 

Point clouds, 3D 
reconstruction, 
orthomosaic, 

DSMs, DEM and 
CHM 

1.5-2.5 

Overall accuracy 
79%. 

R²  = 0.55 of linear 
regression model 

No 
Videos at 20 m 

altitude  
for validation 

Del-Campo-
Sanchez et 
al., 2019 

Pest 
quantification in 

vineyards 

SONY αILCE-5100L 
(RGB) 

microdrone 
md4-1000 

(quadcopter) 
80 None 

Agisoft PhotoScan 
and LAIC 

Point clouds, 
orthomosaics and 

affection maps 
1.5 

Overall accuracy 
radiometric 79%. 
Overall accuracy 

radiometric + 
geometric 99.3%. 

 

5 m resolution 
DEM used 

The automated 
identification of 

affected 
vegetation with 

LAIC 
 

Garcia-Ruiz 
et al., 2013 

Infected citrus 
trees 

identification 

miniMCA6 
Tetracam 

(multispectral) 

HiSystems 
GmbH 

(hexacopter) 
100 

Seven 
vegetation 

indices 

PixelWrench2, 
ENVI, Matlab 

Georeferenced 
false color images 

5.45 
Overall accuracy 

67-85%. 
No 

Compared with 
50 cm/pixel 

airborne 
hyperspectral 

images 
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pathogen 
damage 
 

Moriya et 
al., 2017 

Sugarcane 
mosaic virus 

mapping 

DT-0014 
Fabry-Perot 

Interferometer 
(hyperspectral) and 
Ultracam-XP (RGB) 

SX8 multirotor 
UAS 

(octocopter) 
160 None 

Radiometric 
processing done 

with BRDF model. 
Classification 
Process with 

spectral 
information 

divergence (SID) 
in ENVI 

Orthomosaic and 
digital surface 

model 

11 for 
hyperspectral 

images. 
40 for RGB camera. 

50 for DSM and 
orthomosaic 

Overall accuracy 
92.5%. 

 

Spectral library 
of sick and 

healthy leaves 
made with an 
ASD handheld 

FieldSpec 
UV/NIR 

spectroradiome
ter 

 

Up to 25 bands 
from selectable 

wavelengths. 
spectral range 

500 -900 n 

Sugiura et 
al., 2016 

Assessment of 
potato late 

blight resistance 

Sony 
NEX-5N (RGB) 

HiSystems 
GmbH 

Mikrokopter 
(quadcopter) 

80 None Not specified 
Potato damage 

maps 
2.4 R²  = 0.73-0.77 No - 

Tetila et al., 
2017 

Identification of 
Soybean Foliar 

Diseases 
Sony EXMOR (RGB) 

DJI Phantom 3 
(quadcopter) 

1-16 None 
Visual 

classification of 
superpixels 

Disease 
classification maps 

0.043-0.691 
Overall accuracy 

98.34%. 
No 

Uses SLIC 
superpixels 

algorithm for 
segmentation 

Vanegas et 
al., 2018 

Plant pest 
surveillance in 

vineyards 

Canon 5DsR 
camera (RGB), 

MicaSense 
RedEdge 

(multispectral) and 
Headwall Nano-

Hyperspec 
(hyperspectral) 

S800 EVO 
(hexacopter) 

60-100 
Multiple 
indices 

Agisoft Photoscan, 
Headwall 

SpectralViewer, 
MATLAB, Scyllarus 

and ArcMap 

3D models, 
orthomosaics, DSM 

and DVM 

3.26-6.74 for 
multispectral 

imagery 

positive 
correlation (r > 

0.4) with 7 
different indices 

Google Earth 
imagery 

- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
d. Soil fertility 
 

Aldana-
Jague et al., 

2016b 

Soil carbon 
mapping 

Mini-MCA6 
(multispectral) 

Mikrokopter-
XL 

(octocopter) 
100 None 

AutoPano Giga 
and ArcGISTM. 
Support Vector 
Machine (SVM) 

algorithm to 
predict SOC from 
the soil spectra in 

R 

Orthomosaic 12 R2 > 0.9 No 
Six spectral bands 

450-1050nm 

Bazzoffi, 
2015 

Rill erosion 
measurement 

SONY NEX-5 (RGB) 
Falcon 8 

(octocopter) 
30 None 

Agisoft 
PhotoScan Pro 
and ESri ArcGis 

Digital elevation 
model 

1-6 
R2 = 0.87 

 
No - 

d'Oleire-
Oltmanns 

et al., 2012 

Soil erosion 
monitoring 

Panasonic Lumix 
GF1 (RGB) 

Sirius I (fixed-
wing) 

70-400 None 
Leica 

Photogrammetry 
Suite and MAVinci 

Digital Terrain 
Models (DTMs) and 

orthomosaics 
~1-10 Not specified No 

Coordinates for 
well-defined 
points, were 
taken from a 

Quickbird 
satellite scene 

Estrany et 
al., 2019 

Ecosystem 
dynamics 

assessment and 
management 

Canon PowerShot 
ELPH 110HS 

(multispectral) 

Mikrocopter 
(hexacopter) 

52 BNDVI 
 Agisoft Photoscan 
Professional and 

ArcGIS 

Orthomosaic and 
DEMs 

1.4 Not specified No 
MATLAB for 

image processing 
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Ge et al., 
2019 

Soil moisture 
monitoring 

Headwall Nano-
Hyperspec 

(hyperspectral) 

DJI Matrice 
600 Pro 

(hexacopter) 
100 

30 
different 
indices 

Image smoothing 
and model 
calibration, 

evaluation and 
comparison  in 

MATLAB 

Orthomosaic 4 

R2 = 0.15-0.66 for 
common spectral 

indices. 
R²=0.91 for 

perpendicualr 
index random 

forest 

No 
Spectrometer 

range 400–1000 
nm. 

Kavoosi et 
al., 2018 

Soil residue 
cover 

monitoring 
Sony EXMOR (RGB) 

DJI Phantom 3 
professional 
(quadcopter) 

5-10 

14 
different 

visible 
spectrum 

indices 

RGB bands 
separated with 

MATLAB. Spectral 
indices calculated 

in Excell 

None 0.23-0.45 
R2 = 0.84 

 
Landsat 8 OLI 
data (satellite) 

- 

Sugiura et 
al., 2007 

Soil water status 
estimation 

Thermal camera 
Unmanned 
helicopter 

40 

 
None 

Used a correction 
model to get real 

temperature 
values based on 
emissivity and 
transmissivity. 

Thermal infrared 
maps 

~12 
R2 = 0.62-0.69 

 
No 

Ground-truth 
measurement 

Wang et al., 
2016 

Gully erosion 
mapping and 
monitoring 

Sony EXMOR (RGB) 
Phantom 3 

Professional 
(quadcopter) 

120 None 
Pix4Dmapper and 

ArcGIS 
Orthomosaic and 

DSM 
4.4 

Overall accuracy 
90%. 

 

Pleiades-1A 
imagery (satellit

e) 
- 

 
 
 
 
 
 
 
 
 
 
e. Weeds and 
other non-
crop plants  
 

Castaldi et 
al., 2017 

Maize herbicide 
spraying 
analysis 

Modified Canon 
s110 (multispectral) 

and AIRINOV 
Agrosensor 

(multispectral) 

eBee (fixed-
wing) and SF6 

150 and 
35 

LAI and 
NDVI 

Support vector 
machine 

algorithm in ENVI 
CAN-EYE to 

calculate LAI 

Weed, prescription 
and biomass maps. 

8-9 and 5 R2 ≥ 0.80 No - 

Pantazi et 
al., 2017 

Weed mapping 
Canon S110 
(NIR sensor) 

eBee (fixed-
wing) 

115 None Pix4Dmapper Pro 
Orthomosaic, point 

cloud and DSM. 
50 >98% No - 

Peña et al., 
2013 

Maize weeds 
mapping 

Tetracam mini- 
MCA-6 camera 
(multispectral) 

md4-1000 
(quadcopter) 

30 NDVI 
PixelWrench2 and 

eCognition 
Developer 

OBIA output (geo-
referenced weed 

map) 
2 R2=0.89 No - 

Peña et al., 
2015 

Weed seedling 
detection 

Olympus PEN E-
PM1 (RGB) and 
Tetracam mini- 
MCA-6 camera 
(multispectral) 

md4-1000 
(quadcopter) 

40-100 NDVI 

eCognition 
Developer and 

Agisoft Photoscan 
Professional  

Orthomosaic and 
OBIA output (geo-
referenced weed 

map) 

RGB: 1.52-3.81 
Multiscpectral: 

2.16-5.41 

RGB: 19-71% 
accuracy 

 
Multispectral: 43-

71% accuracy 

No - 

Pérez-Ortiz 
et al., 2015 

Sunflower 
weeds mapping 

Olympus PEN E-
PM1 (RGB) and 
Tetracam mini- 
MCA-6 camera 
(multispectral) 

md4-1000 
(quadcopter) 

30-100 
NDVI and 

ExG 
Agisoft Photoscan 

Professional 
Orthomosaic 

RGB: 1-4 
Multiscpectral: 2-5 

75% No - 
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Definitions:  Ground sampling distance (GSD), digital terrain model (DTM), digital surface model (DSM), digital vigour model (DVM), digital elevation model 

(DEM),  habitat suitability model (HSM), crop surface model (CSM), canopy height model (CHM), area under the receiver operating characteristic curve (AUC), 

point-biserial correlation coefficient (COR), colour infrared (CIR), Near infra-red (NIR), vegetation indices (VIs), gap shape complexity index (GSCI), green-red 

vegetation index (GRVI), excess green index (ExG), normalized green-red difference index (NGRDI), plant pigment ratio (PPRb), normalized difference 

vegetation index (NDVI), blue normalized difference vegetation index (BNDVI), enhanced vegetation index (EVI) and normalized difference red edge index 

(NDRE), soil-adjusted vegetation index (SAVI), green normalized difference vegetation index (GNDVI), greenness index (GI), visible atmospherically resistance 

index (VARI), modified soil adjusted vegetation index 2 (MSAVI2), red edge chlorophyll index (CIred edge), ratio vegetation index 1 (RVI1), ratio vegetation 

index 2 (RVI2), structure from motion (SfM), ground control points (GCPs),  microbolometer optimization (MbOpt), Leaf Area Index Calculation software 

(LAIC), Simple Linear Iterative Clustering (SLIC). 

Software details: Agisoft Photoscan and Pix4D are used for mosaicking and orthorectification. ArcGIS and ENVI allow geometric and radiometric correction, 

respectively. Adobe Photoshop permits image merging.  
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Abstract 

To understand how plant-pollinator interactions respond to habitat fragmentation we need novel 

approaches that can capture properties that emerge at broad scales, where species engage across 

multiple communities in metanetworks. Here we studied plant-pollinator interactions over two 

years on 29 calcareous grassland fragments selected along independent gradients of habitat size 

and surrounding landscape diversity. We associated the centrality of plant-pollinator interactions 

and grassland fragments with their traits. Interactions involving habitat specialist plants and 

large-bodied pollinators were the most central, implying that species with these traits form the 

metanetwork core, maintaining its integrity. Large fragments embedded in landscapes with high 

land cover diversity exhibited the highest centrality; however, small fragments harbored a high 

share of unique interactions not found on larger fragments. Our results emphasize the need to 

keep a conservation focus on both small and large habitat fragments as well as on landscape 

diversification. 
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Introduction 

To understand the impacts of global change on species survival and community composition, we 

need to look beyond the species richness level and incorporate the fact that all species are 

connected by ecological interactions (Valiente-Banuet et al., 2015). Ecosystem functions and 

services, many of which are essential to human well-being, are underpinned by species 

interactions (Galetti et al., 2013; Traill et al., 2010). Plant-pollinator interactions, for example, are 

mutualistic associations fundamental to the reproductive success of 88% of all flowering plants 

and consequently to the functioning of natural and agricultural systems (Ollerton et al., 2011). 

Plant-pollinator interactions organize themselves in intricate networks based on the local plant 

and pollinator pools (Bascompte et al., 2003; Delmas et al., 2019; Memmott, 1999). Studying the 

properties of these networks gives information about their functionality and stability, which 

ultimately determines species persistence (Burkle et al., 2013; Landi et al., 2018). Understanding 

changes in ecological networks following habitat fragmentation, from local community to 

broader metacommunity levels, would greatly advance basic knowledge needed for successful 

species conservation (Emer et al., 2018; Tylianakis et al., 2010; Tylianakis and Morris, 2017). 

The effects of habitat fragmentation on plant-pollinator networks have been studied to some 

extent (Ferreira et al., 2013; Pellissier et al., 2018). Most studies have used bipartite approaches 

at local scales that have helped to understand network changes in terms of structure and stability 

(Grass et al., 2018; Spiesman and Inouye, 2013). However, local approaches cannot capture the 

properties of plant-pollinator interactions emerging at broader scales, where species engage 

across multiple communities in metacommunities (Hagen et al., 2012). To overcome this 

limitation, plant-pollinator interactions can be studied in a metanetwork framework in which 

local communities are connected by the interactions they share (Emer et al., 2018). From a 

conservation perspective, it is fundamental to identify and protect the most important nodes 

within a metanetwork (i.e. central interactions or habitats, Emer et al., 2018). Node importance 

can be quantified through the concept of node “centrality” (Jordán, 2009). Central nodes are 

those that maintain network cohesiveness and stability, and, when lost, have the strongest 

detrimental effects for the whole structure of the network (Estrada, 2007; Freeman, 1978; 

González et al., 2010). The loss of central nodes can lead to the breakdown of a spatial 

metanetwork resulting in isolated communities and the extirpation of ecological functions at the 

landscape level (Emer et al., 2018). 
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Species traits determine their centrality in local networks (Morán‐López et al., 2020). Likewise, 

trait combinations of interacting partners may determine the centrality of an interaction within a 

metanetwork perspective. Among the different species traits that can be related to centrality, body 

size and habitat specialization are of particular ecological importance (Grass et al., 2018). For 

instance, wing and body size are correlated with flying capacity in bees and butterflies 

(Gathmann and Tscharntke, 2002; Stevens et al., 2013; Westphal et al., 2006). In a scenario of 

habitat fragmentation and low-risk matrix (Fahrig, 2007), large species would be expected to be 

able to cross the matrix and use habitat patches that are out of reach for smaller species (Thomas 

et al., 1992). High habitat specialization entails that a given species is mostly restricted to a 

certain habitat (Segura et al., 2007). Therefore, at the landscape level, habitat specialists cannot 

establish viable populations in the matrix, being restricted to available habitat fragments. Habitat 

specialization and body size can thus be used to identify key interactions of metanetworks, as 

well as to identify changes in plant-pollinator interactions caused by habitat fragmentation at the 

landscape scale. 

In addition, the metanetwork approach can be used to identify key traits of habitat fragments that 

are fundamental to maintain metacommunity cohesiveness. Fragment size and fragment spatial 

connectivity (i.e. measure of proximity to other sites) could predict fragment centrality, as these 

characteristics are related to the number of individuals that a certain fragment can support and to 

the frequency of immigration events, respectively (Hanski and Ovaskainen, 2000; Steffan-

Dewenter and Tscharntke, 2002). Furthermore, the characteristics of the matrix in the 

surroundings of a fragment can also influence fragment centrality, given that the matrix 

composition affects available food resources and is known to affect the capacity of organisms to 

cross it (Boesing et al., 2018; Nowicki et al., 2014; van Halder et al., 2017). 

Here we studied plant-pollinator interactions along a habitat fragmentation gradient in calcareous 

grasslands, which are threatened hotspots of plant and pollinator diversity in Europe (Habel et al., 

2013). We identified central plant-pollinator interactions in a metanetwork context and related 

these to the traits of the species involved in those interactions. We also explored the 

characteristics of the most central habitat fragments that maintain metanetwork cohesiveness at 

the regional level. 
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We hypothesized that: (i) the overall metanetwork structure will be poorly connected and highly 

modular because of the presence of many interactions performed by small-sized species, not able 

to cross the matrix and therefore restricted to single fragments; (ii) interactions involving habitat 

specialist species are more central than those involving habitat generalists, because habitat 

specialist are better adapted to exploit the resources of calcareous grasslands, as they depend 

exclusively on them across the fragmented landscape; (iii) interactions involving large-bodied 

pollinators are more central than those involving small-bodied ones, given that large-bodied 

species can exploit resources at greater distances and potentially cross the matrix, and that (iv) 

larger-sized and more connected fragments with higher diversity of cover types in the 

surrounding landscape show higher centrality. 

Methods 

Study system 

Calcareous grasslands are the most species-rich habitats in central Europe and are therefore 

considered biodiversity hotspots (Habel et al., 2013; van Swaay, 2002). Once widely spread, they 

have been greatly reduced due to agricultural intensification and the abandonment of the 

historically common extensive grazing, essential to avoid bush encroachment (Cremene et al., 

2005; WallisDeVries et al., 2002). Although highly fragmented, they still harbour many rare and 

specialized plant and invertebrate species (Steffan-Dewenter and Tscharntke, 2002) and are 

therefore protected by law in Germany and other European countries (Filz et al., 2013). 

Study area 

Our study region around the city of Göttingen (Germany) comprises 285 sharply delimited semi-

natural calcareous grasslands that differ in size, spatial connectivity, management and 

successional stage (Krauss et al., 2003b). These grasslands are embedded in an agricultural 

matrix mainly composed of arable land (42%) and managed European beech (Fagus sylvatica) 

forests (37%) (Krauss et al., 2003a). We conducted our study on 29 calcareous grassland 

fragments during the spring and summer of 2017 and 2018 (April-September). These fragments 

were selected in a previous study (Krauss et al., 2003a) along independent (i.e. non-correlated) 

gradients of habitat area and spatial connectivity. 

Landscape metrics  
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We characterized the calcareous grasslands at the local (fragment area and fragment spatial 

connectivity) and landscape levels (percentage of cover types and Shannon diversity of cover 

types) using the “landscapemetrics” package (Hesselbarth et al., 2019). Fragment size ranged 

from 82 m² to 52557 m², excluding zones dominated by shrubs. The distance between study 

fragments with respect to the closest neighbouring grassland ranged from 55 m to 1894 m 

(Krauss et al., 2003a). Fragments’ spatial connectivity was quantified with a connectivity index 

developed by (Hanski et al., 1994) and considered all calcareous grasslands in a radius of 2 km 

around the study grasslands (see SM for details). Larger values of this index indicate higher 

spatial connectivity (Table S1). We calculated percentages of land cover types at multiple radii 

from our focal fragments (i.e. fragment centroids) from 100 m until 500 m radius in 50 m 

intervals, based on reported spatial scales at which bees and butterflies perceive their 

environment (Gathmann and Tscharntke, 2002; Steffan-Dewenter and Tscharntke, 2002; Stevens 

et al., 2013; Westphal et al., 2006). The mapped land cover types were: oilseed rape, grainfield, 

maize, other crops, forest open, forest closed, field margin, hedgerow, pasture, calcareous 

grassland, orchard, settlements, water bodies, streets, grassroads and bare soil. We tested the 

effect of arable land (mainly composed of oil-seed-rape, wheat and maize plantations), semi-

natural habitat (including calcareous grasslands, orchards, hedgerows, field margins and flower 

strips) and the Shannon diversity of cover types, on site centrality (see section Statistical 

analyses). To choose the optimal scales at which these variables had the strongest effects on 

fragment centrality, we compared linear models at different spatial scales, and chose the scale 

with the highest predictive value, using the corrected Akaike information criterion for small 

samples (AICc). Shapefiles of land use were constructed using ArcGis 10.5.1 and all statistics 

were performed in R (R Development Core Team 2019). 

Field data collection 

Each calcareous grassland was visited three times per year in order to capture the succession of 

flower visitors (hereafter pollinators) and wildflower species throughout the season. We 

established seven observation plots in each site, totalizing 1218 observations of 10 min each. 

Surveys were carried out from 9:00 to 17:00 on days with a minimum temperature of 15 °C and 

at least 50% clear sky, or with a minimum temperature of 18 °C in any sky condition (van Swaay 

et al., 2012). Sites were surveyed at different times of the day to avoid any potential confounding 

effect of daytime.  
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Observation plots were circular (3 m radius, 28.3 m2) and were established in flower-rich areas. 

Within these, all interactions between pollinators (butterflies, Lepidoptera: Papilionoidea; burnet 

moths, Lepidoptera: Zygaenidae; and bees, Hymenoptera: Apiformes) and flowering plants that 

occurred in a ten-minute period were registered. A visit by a pollinator was considered to be an 

interaction as soon as the insect touched the plant reproductive organs. Pollinators not easily 

recognizable at a distance were captured with a sweep net and photographed or collected for later 

identification by taxonomists. The timer was paused while handling insects. We excluded 

interactions involving Apis mellifera as the presence of this species in the region is solely related 

to the existence of bee keepers in the surroundings. A. mellifera interactions accounted for 1181 

from a total of 8114 interactions registered and were present in all sites (range 1-166 A. mellifera 

interactions per site). 

Plant-pollinator traits 

Plants and pollinators were classified according to their life-history traits. Habitat specialization 

followed Piqueray et al. (2011) for plants, Jauker et al. (2013) and Hopfenmüller et al. (2014) for 

bees, and van Swaay (2002) and Brückmann et al. (2010) for butterflies. Body length values for 

bees were taken from Westrich (2018) and wing length values for butterflies were taken from 

Sterry and Mackay (2004). All values were standardized to make them comparable by subtracting 

the mean and dividing by the standard deviation of each group. Butterflies were considered large 

whenever their wing length was equal or larger than 16 mm (median wing length of butterflies), 

otherwise they were classified as small. On the other hand, bees were considered large when 

having a body length of 10 mm or more (median body length of bees) and were otherwise 

considered small (Fig. S2). 

Metanetwork structure 

A metanetwork was built by pooling the 29 calcareous grasslands into an aij adjacency matrix, in 

which i are the studied sites and j the pairwise plant-pollinator interactions. First, we 

characterized the overall structure by calculating: (1) pollinator richness, plant richness and plant-

pollinator interaction richness; (2) connectance: here defined as the realized proportion of plant-

pollinator interactions per fragment regarding all possible interactions at the metanetwork level 

(Dunne et al., 2002); (3) modularity: here, the organization in sub-groups of fragments and 
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interactions that are highly connected among themselves but less with other sub-groups; 

estimated using the DIRTLPAwb+ algorithm (Beckett, 2016). 

Second, we estimated the centrality (Freeman, 1978; González et al., 2010) of the metanetwork 

nodes by calculating: (4) interaction degree, as the number of fragments in which a given 

interaction occurs; (5) interaction weighted degree, as the frequency of an interaction across all 

fragments; (6) fragment degree, as the number of unique pairwise interactions that a given 

fragment holds (i.e. interaction richness per site); (7) fragment weighted degree, as the frequency 

of interactions that a given fragment holds (i.e. interaction frequency per site).  

All network metrics were calculated using the “bipartite” package in R (Dormann et al., 2008). 

Statistical analyses 

First, we assessed the significance of the metanetwork connectance and modularity against 

independent null models that constrain network size while randomizing the distribution of links 

among rows and columns, but holding the marginal totals constant (Dormann et al., 2009). That 

is, fragments maintain the same number of interactions in the null models, and interactions 

maintain the same number of fragments in which they occur. We obtained the mean and standard 

deviation of 100 iterations of each null model to test against the observed values of each 

corresponding metric (i.e. obtaining their z-scores). In a post hoc analysis we used linear and 

generalized linear models to explore local (fragment area and connectivity) and landscape 

(diversity of cover types) level effects on the number and proportion of single-fragment 

interactions per fragment. 

Second, we tested whether species traits affected the centrality of plant-pollinator interactions 

(i.e. interaction degree and interaction weighted degree) using generalized linear mixed models. 

Specifically, we tested for the effects of the plant and pollinator habitat specialization, as well as 

pollinator size and guild (i.e. bumblebee, solitary bee or butterfly), on the centrality of the 

interactions they perform. Our full models included the mentioned explanatory variables, all their 

two-way interactions, the plants’ and animals’ active period regarding season (categorical with 

three levels: Spring, Summer or Spring and Summer) and number of months active. Furthermore, 

we included plant’s and animal’s identity as crossed random intercepts.  
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Finally, we tested whether the previously described fragment and landscape traits affected the 

centrality of the calcareous grassland fragments. Specifically, we tested the effects of (log) 

fragment area, (log) connectivity index and the Shannon index of cover types (hereafter, 

landscape diversity). Percentage of semi-natural habitat was excluded from the analyses as it was 

correlated with fragment area (Pearson's corr = 0.66, P < 0.001) and with landscape diversity 

(Pearson's corr = 0.51, P = 0.004). 

We used a truncated negative binomial distribution and the “glmmTMB” package in all centrality 

models (Magnusson et al., 2017). We selected the minimum adequate models using backwards 

model selection with likelihood ratio tests. All non-significant explanatory variables (P > 0.05) 

were sequentially removed. Post-hoc tests were performed with the “lsmeans” package (Lenth, 

2017). All network and statistical analyses were performed in R (R Development Core Team 

2019). 

Results 

Metanetwork structure 

The metanetwork had a total of 6936 plant-pollinator interaction events from a pool of 842 

unique pairwise plant-pollinator combinations among 131 plant species and 118 pollinator 

species on 29 calcareous grassland fragments (Fig. 1). From those, 4722 (68.1%) plant-pollinator 

interactions occurred among 46 butterfly species and 99 plant species, comprising a total of 474 

unique pairwise plant-butterfly interactions (56.3%). On the bees’ side, we found 12 bumblebee 

species interacting 1891 (27.3%) times with 89 plant species, totalizing 214 unique pairwise 

plant-bumblebee interactions (25.4%). In addition, we found 320 (4.6%) interactions among 60 

solitary bee species and 50 plant species, involving 154 unique pairwise plant-bee interactions 

(18.3%). On average, each fragment comprised 28.2 ± 6.7 (mean ± s.d.) pollinator species, 22.3 ± 

5.2 plant species and 71.5 ± 21.7 unique pairwise interactions. 

Overall, the metanetwork was significantly less connected (C = 0.08, P < 0.001) and more 

modular (M = 0.39, P < 0.001) than expected from null models (Fig. S1). The modular structure 

was organized around 17 modules, with an average of 1.7 fragments and 49.5 unique interactions 

per module. 
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a) 
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b) 

 
 
Figure 1. a) The plant-pollinator metanetwork structure of the calcareous grassland fragments. Circles 

indicate unique pairwise combinations of plant and pollinator species that perform pollination interactions 

(n = 842) and squares represent the studied sites (n = 29). Interactions occurring in at least two sites form 

links connecting them. The thickness of links (gray lines) is proportional to interaction frequency (range 

1-254).  Colors represent metanetwork modules based on the Walktrap community-finding algorithm 

(igraph package). This algorithm indicates the presence of sub-graphs that constitute a distinctive 

community. Nodes with greater centrality occur in the central positions of the graph based on the 

“gravitational force” on degree (Bannister et al., 2013). b) Sub-graph of the metanetwork, zooming on the 

core plant-pollinator interactions (here those present in more than 10 sites).  
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Single-fragment interactions 

Only 305 (36.2%) unique pairwise plant-pollinator interactions occurred in at least two 

fragments, but these made up for the majority of observed plant-pollinator interactions (6171, or 

89%). This means that more than half of the unique plant-pollinator combinations were rare and 

local (i.e., occurred in a single fragment). Landscape diversity had a positive effect on the number 

of single-fragment plant-pollinator interactions (X² = 12.25, P < 0.001, Fig. 2a) and a negative 

effect on the proportion single-fragment interactions respect to all unique interactions in a certain 

fragment (F = 8.08, P = 0.008, Fig. 2b). Fragment area and fragment connectivity did not have 

significant effects on the number of single-fragment interactions or their proportion respect to all 

interactions (Table S3). 

a) 
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b) 

 

Figure 2. Relationship between a) the number of single-fragment interactions (i.e. those that occur in only 

one fragment from the 29 fragments studied) and b) the proportion of single-fragment interactions, with 

landscape diversity. The proportion is the number of single-fragment interactions divided by interaction 

richness in a specific fragment.  

Interaction centrality and biological traits   

Plant habitat specialization was a significant predictor of interaction degree (X² = 12.78, P < 

0.001, Table S2). Specifically, interactions involving habitat specialist plants had significantly 

higher degree than those involving habitat generalist plants (Fig. 3a). Additionally, pollinator 

identity and the interaction between plant habitat specialization and pollinator size were found to 

be significant predictors of interaction weighted degree (Table S2). Specifically, interactions 

involving habitat specialist plants and large-bodied pollinators had higher weighted degree than 

those involving habitat generalist plants and small-bodied pollinators (X² = 5.28, P = 0.021, Fig. 

3b). Moreover, interactions performed by butterflies (t = -2.50, P = 0.034) and bumblebees (t = -

2.75, P = 0.016) had higher weighted degree than those performed by solitary bees (Fig. 3b). 
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a) 

 
b) 

 
 
Figure 3. Relationship between a) interaction degree (i.e. number of fragments on which a specific plant-

pollinator interaction pair occurs) with plant habitat specialization and b) interaction weighted degree (i.e. 

interaction frequency across all fragments) with plant habitat specialization, pollinator size and pollinator 

identity. Bars represent 95% confidence intervals.  

 

Fragment centrality and landscape features 



 

88 
 

Larger calcareous grassland fragments were more central in the metanetwork, as indicated by the 

positive effect of fragment area on fragment degree (X² = 4.24, P = 0.04) and fragment weighted 

degree (X² = 11.40, P < 0.001, Fig. 4). In addition, landscape diversity had also a positive effect 

on fragment centrality as evidenced by increased fragment degree (X² = 4.67, P < 0.001) and 

weighted degree (X² = 12.54, P < 0.001). Conversely, fragment connectivity and arable land had 

no significant effects on fragment degree (X² = 0.95, P = 0.33; X² = 1.27, P = 0.26) nor on 

fragment weighted degree (X² = 0.013, P = 0.91; X² = 2.37, P = 0.12). 

a) 
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b) 

 
 

Figure 4. Effects of calcareous grassland fragment size and landscape diversity (here calculated as the 

Shannon diversity index of cover types) on a) interaction richness and b) interaction frequency. Grey areas 

represent 95% confidence intervals. 

Discussion 

Here we analyzed a plant-pollinator metanetwork along a habitat fragmentation gradient over a 

two-years period. We found that plant-pollinator interactions involving habitat specialist plants 

and large-bodied pollinators were the most central in our system. Bumblebees and butterflies 

established more central interactions than solitary bees. Moreover, large fragments embedded in 

landscapes with high land cover diversity exhibited the highest centrality, while small fragments 

harbored a high share of unique interactions not found on larger fragments. 

Plant-pollinator metanetwork structure 

As predicted, the plant-pollinator metanetwork was more modular and less connected than 

expected by chance. The different modules within the metanetwork appear to reflect the presence 

of unique pools of interacting species in different fragments of calcareous grassland where local 

species tend to establish specific associations among each other. Interestingly, compared to the 
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only previous study applying the same methodology, a plant-frugivore metanetwork in the 

Brazilian Atlantic Forest (Emer et al., 2018), our plant-pollinator metanetwork was less modular. 

This might be explained by two reasons, namely the difference in the biology of the systems and 

the difference in scale. The extent of the study region and the size of the fragments were smaller 

in our study. This is related to the larger size of the Brazilian Atlantic Forest fragments compared 

to the calcareous grasslands fragments in our region (Ribeiro et al., 2009). Considering that some 

large-bodied pollinator species should be able to actually cross the matrix and reach some of the 

nearest neighboring grasslands in our system (Steffan-Dewenter and Tscharntke, 1999), the 

present study constitutes a more applied version of the metanetwork concept than in the case of 

(Emer et al., 2018), where the chance of a bird reaching a neighboring studied fragment was 

small (minimum distance among studied fragments was 26 km). The pollinators recorded in our 

study may thus act as mobile links among fragments reducing modularity, which is supported by 

the strong core of central interactions in our metanetwork (Fig. 1b). 

Network theory predicts that modularity can reduce the sensitivity of interconnected systems to 

perturbations as these will not easily spread to the whole network (Dormann et al., 2017). 

However, modularity has also been associated to reduced stability in mutualistic networks 

(Thébault and Fontaine, 2010). A highly modular network depends on the presence of connector 

species (i.e. species establishing interactions across modules) to maintain its integrity and prevent 

it from breaking apart into separate modules. Once modules are disconnected, they become 

smaller independent networks on their own and consequently become more prone to collapse 

given their smaller size and higher sensitivity to stochastic events (Traveset et al., 2017; 

Tscharntke et al., 2002). 

As established by (Olesen et al., 2007), only a small proportion of species are structurally 

important to a network, however, when these are lost, cascades of extinctions might occur, 

leading to a general collapse of the network. In our case, the species involved in the interactions 

showed in Figure 1b are the most important to the metanetwork, as they are the key connections 

among otherwise segregated modules. Interestingly, all pollinator species involved in the most 

central interactions of our system were habitat generalists (except for Polyommatus coridon), but 

most plant species were habitat specialists, i.e. characteristic species of the studied calcareous 

grasslands. This means that in addition to protecting habitat specialist species of calcareous 

grasslands by targeted management strategies (Filz et al., 2013), biodiversity-friendly measures 
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in the matrix, such as flower strips, hedgerows and crop diversification, could help to protect 

central pollinators acting as mobile links (Kleijn et al., 2006; Sirami et al., 2019). Protecting 

habitat generalist pollinators, in turn, maintains the cohesiveness of the metanetwork, thereby 

also protecting habitat specialist plant species (directly) and habitat specialist pollinator species 

(indirectly). In other words, conservation measures aiming at this core group of generalist species 

may indirectly help to conserve also specialist species. Furthermore, protecting Polyommatus 

coridon might also be possible by including Hippocrepis comosa into seed mixtures of agri-

environmental schemes (Batáry et al., 2015), as it is its solely larval food plant in western Europe 

(Schmitt, 2015).  

Unique pairwise plant-pollinator interactions 

All unique pairwise interactions, including single-fragment interactions, increased with landscape 

diversity (Fig. 2a and Fig. 4a), but the proportion of single-fragment interactions decreased with 

it (Fig. 2b), i.e. the rate at which all unique pairwise interactions increase with landscape diversity 

is higher than that of single-fragment interactions. This result may be related to the high amount 

of interactions established by large-bodied habitat generalist butterflies. As a consequence of 

their high mobility, these butterflies are expected to connect the metanetwork by reaching 

multiple calcareous grassland fragments. Hence, differently from bees, that are spatially attached 

to their nests, the majority of the interactions established by large-bodied habitat generalist 

butterflies may not be restricted to a single fragment. 

Interaction centrality and species traits   

Our results show that interactions between habitat specialist plants and pollinators are 

fundamental to the metanetwork (Fig. 3). Despite representing only 17.6% of the plant species 

found and despite being involved in only 38.9% of all unique pairwise interactions, interactions 

conformed by habitat specialist plants and pollinators were more central than those involving 

habitat generalist plants. Hence, habitat specialist plants in calcareous grasslands establish 

interactions that provide cohesiveness and stability to the metanetwork, highlighting the 

importance of their conservation. Contrastingly, although habitat generalist plants establish 

numerous interactions, those interactions do not belong to the core interactions of the plant-

pollinator metacommunity in calcareous grasslands. A notable exception is the habitat generalist 

plant Knautia arvensis, which established many central interactions particularly with large-



 

92 
 

bodied butterflies. Whether this is a consequence of interaction rewiring due to the absence of the 

related habitat specialist Scabiosa columbaria remains to be studied. 

As expected, large-bodied pollinators established more central interactions than small-bodied 

ones. Movement capacity is positively correlated to body size (Stevens et al., 2014). Large 

pollinators have larger foraging ranges (Greenleaf et al., 2007), which may allow them to reach a 

higher amount of calcareous grassland fragments, increasing the number of plant species 

available with which they can potentially interact. From the plant species perspective, it is 

reasonable for habitat specialist plants to specialize more on large-bodied pollinators that are not 

constrained to the focal fragment and can eventually disperse their pollen at greater distances. 

This assumption is supported by our finding that the core of the most central interactions is in fact 

formed by habitat specialist plants and large-bodied pollinators (Fig. 1b and Fig. 3b). Whether 

this pattern is a consequence of habitat fragmentation or a characteristic feature of calcareous 

grasslands needs to be further explored, for example, by analyzing plant-pollinator interactions 

exclusively in large continuous calcareous grasslands. 

Solitary bees were found to be involved in interactions of lower centrality than those of 

butterflies and bumblebees. In comparison to social bees, such as bumblebees, solitary bees 

typically have much more restricted movement capacity (Gathmann and Tscharntke, 2002; 

Westphal et al., 2006). Also, bumblebees establish numerous interactions with both specialist and 

generalist plants given their high abundance favored by their social life in colonies (Hass et al., 

2019; Leidenfrost et al., 2020). Nonetheless, all bees are somehow attached to the nest position to 

which they need to come back regularly, independent of whether they are social or solitary 

species. Butterflies, on the other hand, are not attached to a nest and therefore can potentially 

move longer distances than bees throughout their lives. In particular, this may be the case for 

large-bodied generalist butterflies, as small specialist butterflies have a much smaller capacity 

and probability to cross the matrix and reach other fragments (Habel et al., 2020). 

Fragment centrality and landscape traits 

As expected, habitat fragment size had a positive effect on fragment degree and on fragment 

weighted degree (Fig. 4). This result is not surprising given that larger fragments tend to harbor 

larger species populations and consequently have a higher probability of interaction 

establishment. Although larger fragments might favor the presence of area-sensitive, 
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monophagous and rare specialist species (Rösch et al., 2015; Steffan-Dewenter and Tscharntke, 

2002), it has been demonstrated that in a fragmented landscape many small fragments harbor a 

larger amount of habitat specialist species than a single large fragment of the same area (Rösch et 

al., 2015; Tscharntke et al., 2002). Given the high amount of unique interactions involving habitat 

specialist species that were restricted to small fragments, a similar importance of small fragments 

seems to hold for species interactions. Therefore, it needs to be highlighted that although large 

fragments are fundamental for the metanetwork stability and cohesiveness, small fragments 

contribute many unique pairwise interactions that cannot be conserved by only focusing on large 

fragments. 

Interestingly, fragments embedded in landscape with high land cover diversity exhibited higher 

fragment centrality, meaning that these fragments had higher numbers of unique and total plant-

pollinator interactions. This finding has important implications for conservation as it highlights 

the essential role of not only protected habitats, but also the surrounding landscape to protect 

plant-pollinator interactions. A diverse landscape multiplies the number of resources available for 

pollinators, such as nectar, pollen and nesting opportunities, and therefore contributes to their 

persistence in the landscape (Landis et al., 2005). Furthermore, the presence of linear elements 

such as flower strips and hedgerows can facilitate animal movement through the landscape and 

between fragments (Davies and Pullin, 2007; Holzschuh et al., 2009; Klaus et al., 2015; van 

Geert et al., 2010). The ability of large-bodied specialist butterflies, such as Polyommatus 

coridon, to cross the matrix and reach surrounding calcareous grasslands needs to be further 

explored. However, some studies have found that a small proportion of individuals of this species 

can cross matrix gaps of a few hundred meters and exceptionally a few kilometers (Schmitt et al., 

2006; Schmitt, 2015). The protection of this particular butterfly species and the interactions it 

establishes appears fundamental for the integrity of the metanetwork system. 

Conclusion 

We analyzed a plant-pollinator metanetwork along a habitat fragmentation gradient over a two-

year period. We identified the most central plant-pollinator interactions and habitat fragments in 

the metanetwork and traits associated to their centrality. We found that plant-pollinator 

interactions involving habitat specialist plants and large-bodied pollinators were the most central 

and thus structurally important in our system. Furthermore, bumblebees and butterflies 

established more central interactions than solitary bees, highlighting the importance of social bees 
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and mobile butterflies for maintaining plant-pollinator interactions in fragmented landscapes. 

Importantly, large fragments embedded in landscapes with high land cover diversity exhibited the 

highest centrality. Conserving large grasslands fragments and diversifying the agricultural matrix 

is thus fundamental for the cohesiveness and stability of plant-pollinator metanetworks. In 

particular, crop diversification and conservation schemes such as agri-environmental schemes 

may promote metanetwork stability. However, although large fragments were the most central in 

our system, small fragments also need protection as they harbor a high proportion of unique 

interactions not found in large fragments.  
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Supplementary material  

Connectivity index based on Hanski et al. 1994 

 

I = ∑ e-dij Aj 

Aj is the size in m² of neighbouring calcareous grasslands and dij is the distance in km from the 

neighbouring grassland j to the study site I (following Krauss et al. 2004). The 2 km radius was 

chosen to capture the maximum biologically meaningful distance for the largest pollinators (see 

also Krauss et al. 2010). Larger values of “I” indicate higher connectivity (Table S1).  

 

Table S1. Landscape metrics for each study site: Area in m², management, Shannon diversity 

index of cover types in a 200m radius and connectivity index. 

Study site Habitat area 

(m²) 

Management Shannon index 

(200 m) 

Connectivity 

index 

Huhnsberg 52557 Grazing 1.50 52162 

Mühlenberg 50673 Grazing 1.89 15805 

Aschenburg 35479 Grazing 1.45 19917 

Ellershagen 33186 Grazing 0.68 7145 

Lengender Burg 16804 Unmanaged 1.68 4914 

Dehnerberg 12724 Grazing 1.85 3671 

Mackenrodt 11612 Mowing 1.71 637 

Burgbreite 7641 Grazing 1.28 7335 

Gladeberg 7288 Grazing 1.19 3814 

Weinberg 6641 Grazing 1.71 25941 

Hackelberg 5823 Mowing 1.58 28463 

Am Graben 5535 Unmanaged 1.93 1186 

Tiefetal 4132 Grazing 1.36 4617 

Südlicher Riesenberg 3535 Unmanaged 1.76 6103 
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Ossenfelder Bahndamm 3504 Grazing 1.86 1111 

Kleiner Knull 3467 Grazing 1.55 8083 

Kuhberg 3465 Grazing 1.78 10797 

Eschenberg 1861 Unmanaged 1.36 306 

Vor dem roten Berge 1462 Unmanaged 1.23 21676 

Auf dem Klee 778 Unmanaged 1.45 25575 

Schweineberg 701 Mowing 1.70 114 

Am Hopfenberge 693 Unmanaged 1.34 19917 

Unter den Niederwiesen 406 Mowing 0.49 5332 

Emme 381 Unmanaged 0.85 10015 

Gieseberg Süd 353 Unmanaged 1.71 15953 

Mühlenberg 2 228 Mowing 1.12 47366 

Zipfel am Lindenberg 227 Unmanaged 1.37 10518 

Lieseberg 144 Unmanaged 1.24 2943 

Heikenrott 82 Mowing 1.28 6152 
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Table S2. Minimum adequate models for interaction and fragment degree centrality selected with 

likelihood ratio tests (via “drop1”). Significance levels: ***p<0.001. **p<0.01, *p<0.05  

Response 

variable 
Model Fixed effects 

LRT 

(Chi2) 
P 

Interaction 

degree 
1 

 

Months active plant 

 

42.30 

 

< 0.001*** 

Months active pollinator 24.80 < 0.001*** 

Plant habitat specialization 12.78 < 0.001*** 

   

 

Interaction 

weighted 

degree  

2 

      

Pollinator identity 8.74 0.012* 

Months active plant 24.86 < 0.001*** 

Months active visitor 6.64 0.010* 

Plant habitat specialization: Pollinator size 5.28 0.021* 

   

Fragment 

degree 
3 

 

(log) Fragment area 

 

4.24 

 

0.040* 

Landscape diversity (200 m) 16.04 < 0.001*** 

   

Fragment 

weighted 

degree 

4 

   

(log) Fragment area 11.40 < 0.001*** 

Landscape diversity (150 m) 12.54 < 0.001*** 
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Table S3. Full and minimum adequate models for unique interactions and unique interactions’ 

proportion. Minimum adequate models were selected with likelihood ratio tests (via “drop1”). 

Significance levels: ***p<0.001. **p<0.01, *p<0.05  

Response 

variable 
Model Fixed effects LRT P 

Unique 

interactions 
Full 

 

Landscape diversity (100 m) 

 

9.34 

 

0.002** 

(log) Fragment area 0.092        0.76 

(log) Connectivity Index 0.60       0.44 

   

Unique 

interactions 
Min     Landscape diversity (100 m) 12.52  < 0.001*** 

Unique 

interactions’ 

proportion 

Full  

 

Landscape diversity (500 m) 6.88 0.014* 

(log) Fragment area 0.88 0.36 

(log) Connectivity Index 2.30 0.14 

  

Unique 

interactions’ 

proportion 

Min  Landscape diversity (500 m) 8.08 0.008** 
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Figure S1. Connectance (a) and modularity (b) of our plant-pollinator metanetwork (red vertical 

line) compared to null models (grey distribution). 



 

106 
 

 

Figure S2. Histogram of bees’ and butterflies’ sizes (body size and wingspan, respectively. The 

dashed vertical lines represent the median size for each group.  
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Abstract 

Plant-pollinator networks are key to the functioning of natural and human-modified ecosystems. 

Habitat fragmentation and landscape simplification effects on mutualistic networks have been 

studied to some extent, but studies comparing pollination networks based on flower visitation and 

those based on pollen loads across landscape gradients are missing. Here we contrasted visitation 

with pollen transport networks in 29 fragments of calcareous grassland, a highly endangered 

biodiversity hotspot. We found that only 37% of the total unique pairwise interactions occurred in 

both types of networks, 28% of these were only registered through pollen load analyses and 49% 

of the observed flower-pollinator interactions did not translate into pollen transport. Network 

specialization was higher in pollen transport networks and was negatively related to the diversity 

of land cover types in the surrounding landscapes. The number of single-fragment interactions as 

well as the proportion of single-fragment interactions increased with landscape diversity in the 

pollen transport networks. Finally, at the metanetwork level, the most central plant and pollinator 

species are shared between the visitation and pollen transport metanetworks. In conclusion, our 

results reveal that flower visitation and pollen transport data give different, but complementary 

information, while none can be used as a surrogate of the other. Higher specialization of pollen 

transport networks indicates that network vulnerability could be higher than hitherto expected 

from visitation networks. Our results also reveal a surprisingly high number of rare pollen 

transport interactions, particularly in diverse landscapes, which would have been undetected in a 

classical flower visitation study. 
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Introduction 

Plant-pollinator networks have been traditionally constructed using data on flower visitation 

(Ballantyne et al., 2015). However, in order for pollination to occur, viable pollen grains need to 

be transported from the anthers of a flowering plant to a receptive stigma of a conspecific. 

Therefore, the solely visitation of an animal to a flower is expected to be a poor predictor of its 

capacity as a pollinator (King et al., 2013). For instance, many flower visitors forage exclusively 

for nectar (e.g. most butterflies) and do not contact flower anthers; other species lack 

morphological traits to carry pollen and thus cannot act as pollinators (Genini et al., 2010; Stavert 

et al., 2016). Two methods have been proposed to overcome this challenge. First, stigmas and 

styles can be analyzed to identify pollen deposition after an animal visit (Emer et al., 2015). Yet, 

this method is extremely time-consuming and consequently prohibitive for landscape scale 

studies. Alternatively, flower visitors’ pollen loads can be analyzed to check for their pollen 

transport capacity (Zhao et al., 2019). Although not as close to pollination as direct pollen 

deposition measures, this method can also provide valuable information regarding an animal 

capacity as a pollinator. Furthermore, given its relative simplicity, it is suitable for large scale 

studies. 

Pollen transport networks have been recently constructed at singular sites and local scales 

(Alarcón, 2010; Gresty et al., 2018; Lopezaraiza-Mikel et al., 2007). However, landscape scale 

effects, and in particular, habitat fragmentation effects on plant-pollinator networks are essential 

to understand their dynamics under land use change (Grass et al., 2018; Xiao et al., 2016). In 

spite of this, to our knowledge, there is no study analyzing landscape scale effects on pollen 

transport networks over a gradient of habitat size and isolation. Originating from the concept of 

“multilayer” networks (Pilosof et al., 2017), metanetworks (i.e. a group of scattered local 

networks connected by species dispersal) are an emerging approach to study the consequences of 

habitat fragmentation on ecological networks at landscape and regional scales (González et al., 

2018; Hagen et al., 2012). The identification of the most important species for metanetwork 

integrity can guide environmental policy and conservation efforts. A metanetwork can be 

constructed using habitat fragments and plant or pollinator species as the interacting units (i.e. 

nodes).  

Node importance can be quantified through the concept of node centrality (Domínguez-García 

and Muñoz, 2015; Jordán, 2009). Central nodes are characterized by having the most detrimental 
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effects on the integrity of a metanetwork once removed (e.g. most associated co-extinctions; 

González et al., 2010). Moreover, species traits can be related to species centrality in ecological 

networks (Morán‐López et al., 2020). In particular, species body size and habitat specialization 

have been found to affect species’ ecological roles and functions (Gathmann and Tscharntke, 

2002; Grass et al., 2018; Westphal et al., 2006). Species traits can also determine the probability 

of an interaction being detected with flower visitation observations, pollen loads analyses or both. 

For example, given that social bees are usually more effective pollen vectors (sensu Freitas, 

2013) and more abundant than solitary bees, interactions established by social bees should have a 

higher probability of occurrence in visitation and pollen transport networks simultaneously. 

Furthermore, habitat specialist plants, differently from habitat generalists, can have adaptations to 

maximize pollen dispersal through pollinators (Miller-Struttmann, 2013) and, hence, should also 

establish interactions with a higher probability of occurrence in both types of networks. 

Here, we constructed pollination networks at the flower visitation and pollen transport levels, 

over a gradient of habitat fragmentation of European calcareous grasslands, a highly threatened 

biodiversity hotspot, characterized by a vast number of rare and endangered species (Habel et al., 

2013). We compared the structure of local visitation and pollen transport networks in terms of 

network specialization and connectance. Furthermore, we explored fragmentation effects on 

them. To this end, we identified the most central species in both metanetworks and studied their 

functional traits (body size, habitat specialization). In addition, we aimed to analyze the 

differences and similarities among the observational and pollen loads data for the description of 

the plant-pollinator networks dynamics and to explore the consequences of the conclusions 

derived from both methods. Therefore, we analyzed which functional traits of the plant-pollinator 

interaction pairs relate to the probability of them occurring in the visitation and pollen transport 

networks. Finally, we studied the effects of landscape structure on the occurrence of single-

fragment interactions in local networks. 

We hypothesized that: (i) the specialization of local pollen transport networks will be higher than 

that of local visitation networks given that not all flower visitors are expected to carry pollen on 

their bodies; (ii) network specialization will decrease in larger and more connected habitats and 

also with landscape diversity, as the presence of more species should increase the probability of 

multiple interacting partners; (iii) due to many rare and ineffective interactions (i.e. interactions 

that contribute little to the plant reproductive success, sensu Freitas, 2013), a high number of 
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interactions unique to the visitation and pollen transport metanetworks is expected; (iv) the most 

central species at the metacommunity level are expected to be the same in the visitation and 

pollen transport metanetworks, despite projected differences between network types; (v) the 

probability of interaction occurrence in both network types depends on pollinator identity (i.e. 

bumblebee or solitary bee) and plant habitat specialization; (vi) finally, we expect that the 

number and proportion of single-fragment interactions increases with landscape diversity and 

with habitat size and connectivity in both types of networks. 

Methods 

Study area 

Data was collected from April until August 2018 on 29 calcareous grasslands in the surroundings 

of the city of Göttingen (Germany). These grasslands were selected in a previous study (Krauss et 

al., 2003a), from a larger regional pool (~300), to vary along independent gradients of size and 

isolation from other calcareous grasslands. Arable land and European beech (Fagus sylvatica) 

forests are the two main land use types in the region with 31% and 38% land cover, respectively 

(Krauss et al., 2003a). 

Landscape metrics 

We tested the effects of fragment size, fragment connectivity and landscape diversity of cover 

types on the structure of local fragment networks in terms of specialization and connectance and 

also on the number and proportion of single-fragment interactions per fragment. Fragment area 

was calculated with ArcGis 10.5.1 and ranged from 82 m² to 52557 m², excluding zones 

dominated by shrubs. Fragment spatial connectivity and the Shannon diversity of cover types (as 

a measure of landscape diversity) were calculated using the “landscapemetrics” package 

(Hesselbarth et al., 2019). For fragments’ spatial connectivity we used a connectivity index 

developed by Hanski et al. (1994) and considered all calcareous grasslands in a radius of 2 km 

around the study grasslands (see SI for details). Larger values of this index indicate higher spatial 

connectivity (Table S1). The mapped cover types were: oilseed rape, grainfield, maize, other 

crops, forest open, forest closed, field margin, hedgerow, pasture, calcareous grassland, orchard, 

settlements, water bodies, streets, grassroads and bare soil. Shapefiles of land use were 
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constructed using ArcGis 10.5.1 and all statistics were performed in R (R Development Core 

Team 2019). 

Flower visitation data 

We performed three rounds of sampling throughout the season in each calcareous grassland to 

capture the succession of flower visitors (hereafter, pollinators) and wildflower species. Seven 

observation plots of 10 min were established in each site. We followed a protocol established by 

van Swaay et al. (2012) to carry out our surveys. We collected data from 9:00 to 17:00 on days 

with a minimum temperature of 15 °C and at least 50% clear sky, or with a minimum temperature 

of 18 °C in any sky condition. To avoid any confounding effect of daytime sites were surveyed at 

different times of the day. 

Our observational plots were established in flower-rich areas and were circular (3 m radius, 28.3 

m2). Within these, all interactions between bees (Hymenoptera: Apiformes) and flowering plants 

were registered. A visit by a bee was considered to be an interaction as soon as the insect touched 

the plant reproductive organs. Bees not easily recognizable at a distance were captured with a 

sweep net and photographed or collected for later identification by taxonomists. The timer was 

paused while handling insects. We excluded interactions involving Apis mellifera as the presence 

of this species in our region was solely related to the existence of bee keepers in the 

surroundings. A. mellifera interactions accounted for 334 from a total of 1499 interactions 

registered and were present in all sites (range 1-75 A. mellifera interactions per site). Bees were 

classified in solitary bees or bumblebees (hereafter, bee identity). All bumblebees are social and 

belong to the genus Bombus spp.. Within the group of “solitary bees”, seven species present some 

degree of sociality but were grouped within the solitary bees because of the morphological and 

genetic similarities with these. The seven species are: Andrena scotica (communal), Halictus 

confusus, Halictus rubicundus, Halictus tumulorum, Lasioglossum calceatum, Lasioglossum 

morio and Lasioglossum pauxillum. 

Plant-pollinator traits 

Plants and pollinators were classified according to their life-history traits, following Piqueray et 

al. (2011), Jauker et al. (2013) and Hopfenmüller et al. (2014) for plants’ and bees’ habitat 

specialization, respectively. Bees were considered large when having a body length of 10 mm or 

more (median body length of bees) and were otherwise considered small. All body length values 
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for bees were taken from Westrich (2018). We consider Cirsium sp. (cluster of four species 

mostly represented by the habitat specialist Cirsium acaule) and Ononis sp. (cluster of two 

hybridizing species including the specialist Ononis repens) as habitat specialists. 

Pollen load data 

Pollen was taken from bees’ bodies, head and antennae by bathing bees in Eppendorf tubes filled 

with distilled water (modified protocol from Dafni, 1992). As some interactions were very 

abundant, we established a maximum of 6 pollen samples taken from the same interaction in each 

site and round. Samples were later acetolysed (Jones, 2014) using a protocol lab technique and 

analyzed using light microscopy at 40x magnification. We also created a reference collection of 

pollen from the flowering plants of the region to aid sample pollen identification. We did not 

consider slides with less than 30 pollen grains. From the remaining ones we counted 200 pollen 

grains in each slide, except five slides which had 50-200 pollen grains. Following Bosch et al. 

(2009), we considered the presence of at least 10 pollen grains in our samples as proof of true 

visitation to the corresponding flowering species. 

Network and statistical analysis 

Our study involved two levels of complexity: (i) local scale, in which we zoomed-in to compare 

flower-visitation vs pollen-transport networks types; (ii) regional scale, in which we scaled-up, 

from local fragment networks, to regional metanetworks. Below, we describe how we analyzed 

that complexity in the light of our hypotheses. 

We constructed local quantitative bipartite networks (one for each fragment) and regional 

metanetworks using data on flower visitation (hereafter, visitation networks) and pollen loads 

(hereafter, pollen transport networks), respectively. Local bipartite networks were constructed as 

aij adjacency matrices in which i are the plant species and j the pollinator species. At the 

landscape level, metanetworks were built by pooling the 29 calcareous grasslands into akl 

adjacency matrices in which k are the studied sites and l the plant or pollinator species. To make 

visitation and pollen transport networks comparable we did not consider pollen from trees (e.g. 

Picea spp or Pinus spp), crops (e.g. Vicia faba), grasses (e.g. Poaceae) or ornamental plants (e.g. 

Astrantia major) as observations were done exclusively on herbaceous plants of calcareous 

grasslands.  
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To test whether pollen transport networks were more specialized than visitation networks at the 

local level (hypothesis 1), and whether they were affected by habitat fragmentation and landscape 

diversity (hypothesis 2), we calculated the H2’ index which measures the specialization of the 

network for each fragment (Blüthgen et al., 2006). We used a linear mixed model with fragment 

identity as random intercept and network type, (log) fragment area, (log) connectivity index and 

landscape diversity at 350 m as explanatory variables. To choose the spatial scale at which effects 

were stronger, we compared models fitted at all scales from 100 m to 500 m in 50 m intervals and 

compared them using the corrected Akaike information criterion for small samples (AICc). As 

almost all indices of network structure are more or less affected by network size, we standardized 

H2’ relative to a null model to allow for meaningful comparisons among networks of different 

fragments (Dormann et al., 2009; Dormann and Strauss, 2014). We followed Grass et al. (2018) 

by creating null distributions based on 1000 replicates of Patefield’s algorithm.  

We estimated the centrality of the metanetworks nodes (hypothesis 4) by calculating: (1) species 

degree, as the number of fragments where a species occurs; (2) species betweenness centrality 

(hereafter, species betweenness), as the number of shortest paths among fragments going through 

the focal species; (3) weighted betweenness centrality, same as species betweenness but weighted 

by species abundance and; (4) proportional generality, as the number of fragments, where the 

focal species occurs, in relation to the total number of fragments in the metanetwork weighted by 

the species abundance. Betweenness centrality > 0 indicates species that have the potential to 

connect the metanetwork to some extent, BC = 0 means that the focal node is exclusive to a 

single fragment. Network metrics were calculated using the “bipartite” package (Dormann et al., 

2008). 

We modelled the probability of the presence of interactions in both networks (hypothesis 5) using 

a generalized linear mixed model with binomial distribution and pollinator and plant species 

identity as crossed random intercepts. Network type was tested as a single explanatory variable. 

Finally, to study the relationship between landscape diversity and habitat fragmentation on the 

number and proportion of single-fragment interactions (hypothesis 6) we used generalized linear 

models with negative binomial distribution and linear models, respectively. 
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The minimum adequate models were found with backwards model selection using likelihood 

ratio tests. All non-significant explanatory variables (P > 0.05) were sequentially removed. All 

network and statistical analyses were performed in R (R Development Core Team 2019). 

Results 

We observed 1165 interaction events among 67 bee species and 71 plant species resulting in 250 

unique pairwise interactions. Further, we analyzed pollen samples of 830 bee individuals and 

found 474 individuals carrying 0-30 pollen grains, 351 carrying ≥ 200 pollen grains and 5 

carrying 50-200 pollen grains. In total we identified 44 bee species transporting pollen of 64 plant 

species, resulting in 222 unique plant-bee pairwise interactions. Of those, 31 (43.7%) plant 

species were only visited by bumblebees and 19 (26.8%) plant species were only visited by 

solitary bees, while 23 (32.4%) plant species were visited by both, totalizing 71 plant species 

visited (Fig. 1a, Table S2). Some examples include Fragaria vesca, which was only visited by 

solitary bees, and Trifolium pratense, Salvia pratensis, Prunella grandiflora, Carlina vulgaris 

and Anthyllis vulneraria, which were only visited by bumblebees (Table S2). Regarding pollen 

transport, 20 (31.3%) plant species were only pollen-transported by bumblebees and the pollen of 

12 (18.8%) plant species was only transported by solitary bees (Fig. 1b, Table S3). The pollen of 

32 (50%) plant species was transported by both groups, summing up to 64 plant species that got 

their pollen transported by flower visitors. For example, pollen of Knautia arvensis was only 

transported by bumblebees and pollen of Potentilla sp. was only transported by solitary bees 

(Table S3).   
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a) Visitation data                                   b) Pollen transport data 

 

Figure 1. Network representation of the established interactions among bumblebees (white squares) and 

solitary bees (black squares) with plant species (circles) in a) the visitation dataset and b) the pollen 

transport dataset. Plants visited by both groups occur between the squares. 

At the local network level, our results show that pollen transport networks were significantly 

more specialized than visitation networks (F = 11.33, P = 0.002, Fig. 2). We also found a 

negative effect of landscape diversity at the 350 m scale on specialization of both visitation and 

pollen transport networks (F = 13.56, P = 0.001, Fig. 2). On the other hand, network connectance 

did not differ between the visitation and pollen transport networks (F = 1.03, P = 0.32) and was 

also not affected by landscape diversity (F = 1.97, P = 0.17). Fragment area and fragment 

connectivity had no significant effects neither on network specialization nor network connectance 

(Table S4). 
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Figure 2. Relationship between standardized network specialization (H2), network type and landscape 

diversity (i.e. Shannon diversity of land cover types). Each network type includes 28 local networks 

(fragments) in each dataset (pollen transport and visitation). Bands represent 95% confidence intervals.  

At the metanetwork level, we found a total of 345 unique combinations of plant-pollinator 

interactions considering both visitation and pollen transport metanetworks, from which 127 

(36.8%) were found in both types (Fig. 3, Table S5). From a total of 222 unique pairwise 

interactions detected in the pollen transport metanetwork, 95 (42.8%) were exclusive to it (i.e. 

they were not registered in the visitation metanetwork, Table S6) and 123 out of 250 (49.2%) 

were recorded only in the visitation metanetwork (Table S7). Furthermore, we identified 

important differences in the number of interactions established by some plant species in both 

metanetworks (Table S8 and Table S9). The most outstanding case was Knautia arvensis 

(Caprifoliaceae), which was visited by 19 different bees but only four of them transported its 

pollen.  

https://es.wikipedia.org/wiki/Caprifoliaceae
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Figure 3. Diagram representation of the plant-pollinator interactions (circles) occurring in the pollen 

transport (black square) and visitation (white square) metanetworks. Those interactions exclusive to the 

pollen transport dataset occur to the left side of the black square and those exclusive to the visitation 

dataset are shown to the right side of the white square. Circles in between squares represent unique 

pairwise interactions occurring in both datasets. 

 

Eight out of the 10 most central plant species in the visitation and pollen transport metanetworks, 

based on the proportional generality of the species, coincided (Fig. 4). The most central plant 

species in the visitation metanetwork, Knautia arvensis, did not fall among the ten most central 

plant species in the pollen transport metanetwork. On the other hand, Trifolium pratense, the 

most central plant species in the pollen transport network, only showed up at the sixth place in 

the visitation metanetwork. Moreover, centrality measures based on weighted betweenness 

differed from those based on proportional generality in both metanetworks. Centaurea scabiosa 

and Hippocrepis comosa, two habitat specialist plants, were consistently the two with the highest 

weighted betweenness in both metanetworks (Fig. 4). 
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a) 

 

b) 

 

Figure 4. The ten most central plant species based on proportional generality in a) the visitation 

metanetwork and b) the pollen transport metanetwork. 

Further, we found that the probability of the presence of an interaction in both datasets (i.e. 

visitation and pollen transport) was affected by the plant habitat specialization and the pollinator 
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identity. Specifically, interactions involving habitat specialist plants (X2 = 6.47, P = 0.011) and 

bumblebees (X2 = 17.24, P = 0.0071), had a significantly higher probability of occurrence in both 

networks than those involving habitat generalist plants and solitary bees (Fig. 5). 

 

 

Figure 5. Effects of the plant habitat specialization and the pollinator identity on the probability of 

presence of an interaction in the visitation and pollen transport datasets simultaneously. 

 

Finally, we found a significant positive effect of landscape diversity on the number of single-

fragment interactions (Fig. S2). However, the spatial scale at which this effect was stronger 

differed for the visitation and pollen transport datasets. Specifically, the number of single-

fragment interactions increased with landscape diversity at the 150 m scale for the visitation data 

(X2 = 4.59, P = 0.032, Fig. S2a) and at the 500 m scale for the pollen transport data (X2 = 5.96, P 

= 0.015, Fig. S2b). Moreover, landscape diversity at the 500 m scale was found to significantly 

increase the proportion of single-fragment interactions (F = 5.26, P = 0.030). Nonetheless, this 

effect was only found for the pollen transport data (Fig. 6). Fragment area and fragment 
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connectivity had no significant effect on the number of single-fragment interactions or the 

proportion of single-fragment interactions (Table S10). 

 

Figure 6. Effect of landscape diversity on the proportion of single-fragment interactions occurring in 

local networks based on the pollen transport dataset. 

Discussion 

In this study, we compared plant-pollinator networks from flower visitation data with those from 

pollen transport data across a gradient of habitat fragmentation and we identified their similarities 

and differences. Of all interactions found, 63.2% were exclusive to either the visitation or pollen 

transport networks, highlighting the numerous low-frequency interactions that are not captured 

by observations of flower visits (27.5%), and also a high number of interactions (35.7%) that do 

not translate into pollen transport. Pollen transport networks were more specialized than visitation 

networks. Also, the diversity of land cover types in the surroundings of a habitat fragment 

increased network generalization. The probability of being represented in both network types was 

larger for interactions involving habitat specialist plants and bumblebees, compared to those 

involving habitat generalist plants and solitary bees. Lastly, we found a positive effect of 
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landscape diversity on the number of single-fragment interactions in the pollen transport and 

visitation networks as well as on the proportion of single-fragment interactions, which was found 

exclusively in the pollen transport dataset. 

Network type and landscape diversity effects on network specialization 

As expected, pollen transport networks were found to be more specialized than visitation 

networks (Fig. 2). This pattern supports previous studies (Alarcón, 2010; Zhao et al., 2019) and 

shows that many flower visits do not translate into pollen transport (King et al., 2013). 

Importantly, a higher specialization of pollen transport networks indicates that pollination 

networks might be more vulnerable to collapse following disturbance, as increased specialization 

can make networks less robust and more prone to co-extinction cascades (Classen et al., 2020; 

Thébault and Fontaine, 2010; Vanbergen et al., 2017, but see  Benadi et al., 2013; Hoiss et al., 

2015). The vast majority of plant-pollinator network studies are based on visitation data and 

conclusions regarding biodiversity conservation and ecosystem services provision are derived 

mostly from them. In light of our results, we call attention to the risk of an overestimation of 

plant-pollinator networks stability and robustness in past studies based solely on flower visitation 

data. 

Landscape diversity had a negative effect on network specialization, i.e. plant-pollinator 

networks from fragments surrounded by a higher diversity of land cover types were more 

generalized. Plant-pollinator networks specialization has been shown to be affected by many 

variables, such as species richness and species behavior (Classen et al., 2020; Hoiss et al., 2015; 

Jauker et al., 2019). Analyzing plant-pollinator interactions in calcareous grasslands, Jauker et al., 

2019, found that decreasing fragment size reduced networks generalization through the loss of 

species and interactions. Similarly to habitat fragmentation, landscape simplification may 

decrease the availability of interacting partners as a consequence of reduced population sizes or 

local extinctions. The absence of interacting partners can have opposite effects on species 

specialization. On the one hand, pollinators may visit more plant species to compensate for 

missing resources, therefore increasing their generalization (Brosi and Briggs, 2013). However, 

in case of limited behavioral plasticity or high plant fidelity, specialization could increase after 

disturbance (i.e. loss of a plant partner) as pollinators would be unable to establish new 

interactions. For plants, losing a pollinator may directly increase plant specialization by reducing 
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the number of interacting partners. Nonetheless, reduced competition for resources among 

pollinators could facilitate visitation from opportunistic (and usually less effective) pollinators, 

therefore increasing the plant generalization (Brosi and Briggs, 2013). Our results suggest that 

pollinators may not compensate for the missing plant partners and that plants do not get extra 

visits once a specialized pollinator is lost following landscape homogenization. 

Visitation and pollen transport exclusive interactions  

We found a high amount of interactions occurring exclusively in the pollen transport (27.5%) or 

visitation datasets (35.7%, Fig. 3). Plant-pollinator networks based on pollen transport and pollen 

transfer data were recently found to have topological differences compared to traditional 

networks based on flower visitation (Emer et al., 2015; Zhao et al., 2019). This suggests that 

conclusions derived from traditional studies may have to be revisited. Our results indicate that the 

structural differences between visitation and pollen transport networks could be larger than 

previously believed, based on the surprisingly high amount of interactions found exclusively in 

the visitation and pollen transport datasets. These results challenge the so far accepted 

assumption that visitation data is a sufficient surrogate of animal mediated pollen transport.  

The large presence of flower visitors with a relatively small capacity for pollen transport raises 

many questions regarding their importance for pollination (Moquet et al., 2017). In theory, 

deposition of a single conspecific pollen grain could be enough for pollination to occur, but 

pollen deposition thresholds are common given that not all pollen deposited by pollinators is 

viable (Li et al., 2019). Therefore, a relatively high amount of conspecific pollen deposition is 

usually needed for a meaningful pollination success (Li et al., 2019). The concomitant deposition 

of heterospecific pollen is also an important factor considering its negative effects on pollination 

(Arceo-Gómez and Ashman, 2011; Brown and Mitchell, 2001). Actually, from a plant species 

perspective, a strategy based on maximizing pollinators’ visits might come at the cost of high 

heterospecific pollen deposition on their stigmas. Contrastingly, a strategy based on the attraction 

of a small number of specialized pollinators (and therefore larger potential for conspecific pollen 

deposition) comes at the cost of a higher dependence on a small group of pollinators and a lower 

probability of visitation. Habitat fragmentation and landscape homogenization may impose a 

reduced set of pollinator partners to interact with. As a consequence, higher plant specialization 
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could arise as an indirect result of the lack of alternative partners and not as part of an ecological 

strategy to increase reproductive success. 

The pollen transport networks revealed a high amount of rare interactions. This implies that 

plant-pollinator networks based only on flower visitation data are not just biased by the inclusion 

of interactions with no potential for pollination, but also by missing many rare interactions. 

Consequently, pollen loads analysis represents a better approach to study pollination systems, as 

the actual pollen dispersal across the plant community can be quantified. Visitation data, on the 

other hand, appears fundamental to understand the plant-pollinator interactions from the 

pollinator perspective, as competition among pollinators and the different foraging strategies that 

pollinators use to maximize their fitness can be eventually quantified. 

The detection of interactions involving rare habitat specialist plants, such as Scabiosa columbaria 

(Angeloni et al., 2014; Bijlsma et al., 1994), indicates that pollen load analyses can contribute to 

improve conservation strategies by identifying remaining small populations of these rare species. 

For example, restoration efforts targeting these small populations could be undertaken in places 

where the plants were thought to be locally extinct. Then again, the high amount of interactions 

not translating into pollen transport might suggest a higher vulnerability of plant-pollinator 

networks to the loss of species. 

Plant habitat specialization and pollinator identity on interaction presence probability 

As predicted, interactions involving bumblebees had a higher probability of occurrence in both, 

the visitation and pollen transport networks (Fig. 5). Bumblebee species are bigger than most 

solitary bees, have dense hair and also the capacity to vibrate their bodies through thoracic 

muscle contractions to extract pollen from buzz pollinated plants (Stavert et al., 2016; Vallejo-

Marín, 2019). These morphological and behavioral traits, in addition to their abundance, give 

bumblebees a high capacity for pollen transport (Velthuis and van Doorn, 2006; Willmer et al., 

1994). Our results support this by demonstrating that the probability of a bumblebee carrying 

pollen after a flower visit is higher than that of solitary bees. However, studies on pollen transfer 

(i.e. pollen deposition in a conspecific stigma) after flower visits would be necessary to verify 

whether bumblebees are also able to deposit more pollen on stigmas than solitary bees, since 

pollen transport does not always translate into pollen deposition (Emer et al., 2015). Furthermore, 

the ratio between conspecific and heterospecific pollen deposition might also be important to 
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analyze, as it is essential for plants’ reproductive success (Arceo-Gómez and Ashman, 2011; 

Morales and Traveset, 2008). 

We found a smaller representation of habitat generalist plants on pollen transport networks 

compared to habitat specialist ones (Fig. 5). The direct consequence of this result is that flower 

visits to habitat specialist plants have a higher probability to translate into pollen transport than 

visits to habitat generalist plants. A higher representation of habitat specialist plants in pollen 

transport networks cannot be solely related to a higher attractiveness of habitat specialist flowers 

or pollen, as interactions involving habitat specialist plants in the pollen transport dataset were 

less than half of the total interactions found (46.8%). This result is rather a consequence of 

different mechanisms that allow habitat specialist plants to allocate their pollen more frequently 

on flower visitors than habitat generalists. Habitat specialist plants are expected to have a long 

history of evolutionary adaptations to the local pollinator pool and, therefore, to have developed 

mechanisms for efficient pollen transport through those pollinators (Miller-Struttmann, 2013). 

Conversely, generalist plants should lack such adaptations as they would exhibit more 

opportunistic strategies to quickly adapt to different environments. The adaptations of plants to 

increase pollination success can occur at many levels including pollen vector attraction, pollen 

presentation, pollen transport and pollen germination (Minnaar et al., 2019). At the visitation 

level, traits such as flower size, flower abundance and the quantity and quality of offered flower 

rewards (i.e. pollen and nectar), may increase visitation rates (Conner and Rush, 1996). At the 

pollen transport level, plants may possess mechanisms to place larger amounts of pollen at 

specific places of the flower visitors´ body (Minnaar et al., 2019). At the pollen transfer level, 

plant traits such as the stigma type (i.e. wet or dry), pollen morphological traits or behavioral 

characteristics of pollinators may affect the quantity and quality of pollen deposition (Emer et al., 

2015; Konzmann et al., 2019; Minnaar et al., 2019). Even after pollen deposition on stigmas, 

plants may exhibit mechanisms to regulate receptiveness depending on the characteristics of the 

flower visitor (Betts et al., 2015). 

Plant and pollinator metanetwork hubs 

Interestingly, seven out of the 10 most central pollinator species and eight out of the 10 most 

central plant species were shared between the visitation and pollen transport data, indicating that 

the most central species tend to be identical in both metanetworks (Fig. 4 and Fig. S1). In 



 

126 
 

addition, six out of the 10 most central plant species were habitat specialist in both metaneworks, 

but only one pollinator species (Andrena subopaca and Halictus scabiosae in the visitation and 

pollen transport metanetworks, respectively) was a habitat specialist among the most central 

pollinator species in both metanetworks. These results reveal that the most central species in the 

metanetworks are asymmetric in terms of habitat specialization, implying that habitat specialists 

tend to interact with habitat generalist species. This is in agreement with previous findings of 

pollination networks in grasslands communities (Fantinato et al., 2019). Remarkably, the habitat 

generalist Knautia arvesis, the most central plant in the visitation metanetwork, was not included 

among the 10 most central plant species in the pollen transport metanetwork. This highlights how 

misleading it can be to draw conclusions on pollination dynamics based exclusively on flower 

visitation data. It is also important to highlight the presence of Osmia bicolor as the only solitary 

bee species representative in the group of most central pollinators in both metanetwork types. 

Furthermore, O. bicolor exhibited the third highest weighted betweenness in both datasets among 

all bee species (i.e. including bumblebees). This is an exceptional trait for a solitary bee species, 

considering that bumblebees are frequently considered the dominant pollinator group given their 

high abundance and large body size (Gorenflo et al., 2017; Willmer et al., 2017). 

Pollinator identity  

Our results support the hypothesis that visitation data is a poor predictor of a pollinator’s ability 

to transport pollen, as the presence of a plant’s pollen in transport networks does not necessarily 

correlate to how frequently visited that plant is (King et al., 2013). The habitat generalist Knautia 

arvensis, for example, was visited by many species of both bee guilds (bumblebees and solitary 

bees) being involved in a total of 105 interactions events. As a consequence, this plant exhibited 

the highest proportional generality in the visitation metanetwork. However, we found only ten 

interactions with K. arvensis in the pollen transport networks, involving only four bumblebee 

species and no solitary bees (Table S8 and Table S9). In contrast, the habitat specialist, 

Onobrychis viciifolia, got its pollen transported by all its seven species of visitors from both 

guilds (Table S8 and Table S9). 

Solitary bees were fundamental for the pollen transport of many plant species. In particular, they 

transported pollen of 16 habitat specialist plants and were the only pollen vector of at least three 

of them (Table S3). Considering that many solitary bee species are vulnerable and threatened 
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with extinction (Jauker et al., 2013; Nieto et al., 2017), these results signal to the importance of 

their role in calcareous grasslands and to the potential risk of their absence for habitat specialist 

plants reproductive success. Our findings reveal that both, bumblebees and solitary bees, are 

complementary for pollen transport of calcareous grasslands plant species. 

Landscape diversity effect on single-fragment interactions 

The number of single-fragment interactions increased consistently with landscape diversity (Fig. 

S4). This highlights that a diverse group of land cover types benefits the diversity of interactions, 

most likely by providing suitable conditions for both, habitat specialist and habitat generalist 

species. Interestingly, the spatial scale at which landscape diversity most strongly affected the 

number of unique interactions was larger for the pollen transport dataset compared to the 

visitation dataset. This suggests that landscape-scale conservation measures to protect plant-

pollinator networks might be undertaken at the wrong spatial scales when solely based on flower 

visitation data.  

When considering not only the number of single-fragment interactions, but the proportion of 

single-fragment interactions (i.e. number unique interactions divided by interaction richness), we 

found a significant positive effect of landscape diversity that was, interestingly, not captured in 

the visitation dataset (Fig. 6). This means that the increased number of single-fragment 

interactions is not solely related to a general increase in the total number of interactions with 

landscape diversification. Importantly, this effect was only captured with the pollen transport data 

and highlights that landscape structure effects can remain undetected in plant-pollinator studies 

solely based on visitation data. It also implies that landscape diversification has a 

disproportionally positive effect on the occurrence of single-fragment interactions compared to 

the total amount of interactions. 

Conclusion 

Here we analyzed plant-pollinator networks across a gradient of habitat fragmentation through 

data on flower visitation and pollen transport by bees. We found that pollen transport networks 

were more specialized than visitation networks, indicating that plant-pollinator networks could be 

more vulnerable than previously believed. Only 35.7% of the total amount of plant-pollinator 

interactions registered occurred in both, flower visitation and pollen transport networks. This 

challenges the widely held assumption that visitation networks are a sufficient surrogate of 
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pollination systems. It also questions conclusions drawn from these studies, as the actual 

properties and dynamics of pollination networks can be strikingly different from current 

pollination paradigms. We found positive effects of landscape diversity on the proportion of 

single-fragment interactions for pollen transport, but not visitation networks, highlighting the 

importance of landscape level measures for the conservation of plant-pollinator networks. 

Interactions involving habitat specialist plants and bumblebees were significantly more 

represented in the visitation and pollen transport networks than interactions involving habitat 

generalist plants and solitary bees. Nonetheless, the pollen of several plant species was found to 

be only transported by solitary bees and we identified solitary bee species with disproportionally 

high importance for the metacommunity. Our study shows that conservation of pollination 

systems and related pollination services cannot be conceived without finer data on the biological 

processes underlying plant-pollinator interaction networks, such as pollen load analyses. Our 

results have important consequences for the understanding of the responses of plant-pollinator 

networks to habitat fragmentation and contribute to unveil important processes underpinning the 

dynamics of these networks. 
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Supplementary material  

Connectivity index based on Hanski et al. 1994 

 

I = ∑ e-dij Aj 

Aj is the size in m² of neighbouring calcareous grasslands and dij is the distance in km from the 

neighbouring grassland j to the study site I (following Krauss et al. 2004). The 2 km radius was chosen to 

capture the maximum biologically meaningful distance for the largest pollinators (see also Krauss et al. 

2010). Larger values of “I” indicate higher connectivity (Table S1).  

 

Table S1. Landscape metrics for each study site: Area in m², management, Shannon diversity index of 

cover types in a 200 m radius and connectivity index. 

Study site Habitat area 

(m²) 

Management Shannon index 

(200 m) 

Connectivity 

index 

Huhnsberg 52557 Grazing 1.50 52162 

Mühlenberg 50673 Grazing 1.89 15805 

Aschenburg 35479 Grazing 1.45 19917 

Ellershagen 33186 Grazing 0.68 7145 

Lengender Burg 16804 Unmanaged 1.68 4914 

Dehnerberg 12724 Grazing 1.85 3671 

Mackenrodt 11612 Mowing 1.71 637 

Burgbreite 7641 Grazing 1.28 7335 

Gladeberg 7288 Grazing 1.19 3814 

Weinberg 6641 Grazing 1.71 25941 

Hackelberg 5823 Mowing 1.58 28463 

Am Graben 5535 Unmanaged 1.93 1186 

Tiefetal 4132 Grazing 1.36 4617 

Südlicher Riesenberg 3535 Unmanaged 1.76 6103 

Ossenfelder Bahndamm 3504 Grazing 1.86 1111 
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Kleiner Knull 3467 Grazing 1.55 8083 

Kuhberg 3465 Grazing 1.78 10797 

Eschenberg 1861 Unmanaged 1.36 306 

Vor dem roten Berge 1462 Unmanaged 1.23 21676 

Auf dem Klee 778 Unmanaged 1.45 25575 

Schweineberg 701 Mowing 1.70 114 

Am Hopfenberge 693 Unmanaged 1.34 19917 

Unter den Niederwiesen 406 Mowing 0.49 5332 

Emme 381 Unmanaged 0.85 10015 

Gieseberg Süd 353 Unmanaged 1.71 15953 

Mühlenberg 2 228 Mowing 1.12 47366 

Zipfel am Lindenberg 227 Unmanaged 1.37 10518 

Lieseberg 144 Unmanaged 1.24 2943 

Heikenrott 82 Mowing 1.28 6152 
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Table S2. Number of interactions per pollinator group in the visitation data 

Plant Bumblebee Solitary bee 

Ajuga reptans 5 0 

Alliaria petiolata 0 1 

Anemone sylvestris 3 0 

Anthyllis vulneraria 11 0 

Aquilegia vulgaris 10 1 

Astragalus glycyphyllos 1 0 

Campanula sp 4 0 

Carduus nutans 2 0 

Carlina vulgaris 21 0 

Centaurea jacea 52 51 

Centaurea scabiosa 285 32 

Cerastium arvense 1 0 

Cerinthe minor 2 0 

Cirsium sp 22 2 

Cirsium vulgare 2 0 

Clinopodium acinos 2 0 

Clinopodium vulgare 1 0 

Cotoneaster integerrimus 17 1 

Crataegus monogyna 2 1 

Crepis sp 0 2 

Dactylorhiza fuchsii 1 0 

Daucus carota 5 0 

Dictamnus albus 2 0 

Echium vulgare 4 0 

Euphorbia cyparissias 0 3 

Filipendula vulgaris 0 1 

Fragaria vesca 0 16 

Genista tinctoria 7 5 

Geum urbanum 0 1 

Helianthemum nummularium 4 2 

Hieracium cymosum 1 0 

Hieracium lachenalii 0 1 
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Plant Bumblebee Solitary bee 

Hieracium murorum 1 0 

Hieracium pilosella 0 4 

Hieracium umbellatum 2 0 

Hippocrepis comosa 100 37 

Hypericum perforatum 2 0 

Knautia arvensis 105 25 

Lathyrus sylvestris 0 1 

Leontodon hispidus 0 2 

Leucanthemum vulgare 1 5 

Lotus corniculatus 30 6 

Medicago falcata 1 0 

Medicago lupulina 0 1 

Medicago sativa 1 1 

Melampyrum arvense 1 0 

Myosotis arvensis 1 3 

Onobrychis viciifolia 13 2 

Ononis sp 54 4 

Origanum vulgare 0 8 

Orobanche rapum-genistae 0 1 

Plantago lanceolata 1 1 

Plantago media 1 0 

Polygala comosa 1 0 

Potentilla sp 0 8 

Primula veris 3 19 

Prunella grandiflora 15 0 

Ranunculus bulbosus 1 16 

Ranunculus repens 0 2 

Rhinanthus minor 2 0 

Salvia pratensis 10 0 

Sanguisorba minor 1 0 

Senecio sp 3 7 

Silene dioica 1 0 

Stellaria holostea 0 4 

Taraxacum officinale 0 4 
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Plant Bumblebee Solitary bee 

Trifolium pratense 38 0 

Trifolium repens 1 0 

Veronica austriaca 4 3 

Veronica chamaedrys 1 5 

Vicia sp 12 2 

 

 

Table S3. Number of interactions per pollinator group in the pollen transport data 

Plant Bumblebee Solitary bee 

Ajuga reptans 4 1 

Anthriscus sylvestris 3 0 

Anthyllis vulneraria 2 0 

Aquilegia vulgaris 4 2 

Astragalus glycyphyllos 7 0 

Campanula sp 3 2 

Carduus nutans 2 0 

Carlina vulgaris 7 0 

Centaurea jacea 44 11 

Centaurea jacobea 1 0 

Centaurea scabiosa 61 11 

Cerastium arvense 0 1 

Cerinthe minor 4 1 

Cirsium sp 20 1 

Cotoneaster interregimus 0 1 

Crepis sp 4 8 

Daucus carota 3 0 

Echium vulgare 3 0 

Filipendula vulgaris 0 1 

Fragaria vesca 2 14 

Galium sp 7 1 

Genista tinctoria 3 2 

Geum urbanum 1 1 
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Plant Bumblebee Solitary bee 

Helianthemum nummularium 3 4 

Hieracium cymosum 1 0 

Hieracium pilosella 0 3 

Hippocrepis comosa 51 11 

Knautia arvensis 10 0 

Leucanthemum vulgare 0 1 

Lotus corniculatus 32 2 

Medicago falcata 1 0 

Melampyrum pratense 3 0 

Mentha type 1 0 

Myosotis arvensis 0 1 

Onobrychis viciifolia 6 3 

Ononis sp 50 6 

Plantago lanceolata 4 2 

Plantago media 2 2 

Potentilla sp 0 10 

Primula veris 1 6 

Prunella grandiflora 1 0 

Pulmonaria sp 1 0 

Ranunculus acris 5 6 

Ranunculus bulbosus 6 13 

Ranunculus repens 0 1 

Rumex obtusifolius 1 0 

Salvia pratensis 11 1 

Sanguisorba minor 0 4 

Saxifraga sp 4 3 

Scabiosa columbaria 1 1 

Senecio sp 7 1 

Silene dioica 1 0 

Silene vulgaris 0 1 

Stellaria holostea 0 5 

Taraxacum officinale 0 8 

Trifolium pratense 43 3 

Trifolium repens 4 1 
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Plant Bumblebee Solitary bee 

Trifolium sp 5 1 

Valeriana officinalis 2 0 

Veronica austriaca 1 1 

Veronica chamaedrys 5 2 

Veronica sp 1 0 

Vicia sp 14 1 

Viola sp 1 0 
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Table S4. Full and minimum adequate models for network specialization (H2) and network 

connectance selected with likelihood ratio tests (via “drop1”). Significance levels: ***p<0.001. 

**p<0.01, *p<0.05  

Response 

variable 
Model Fixed effects 

LRT 

(F) 
P 

H2 

standardized 

Full 

 

Network type 

 

11.25 

 

0.0024** 

Landscape diversity (350 m) 11.96 0.0020** 

(log) Fragment area 0.43 0.52 

(log) Connectivity Index 0.12        0.73 

    

H2 

standardized  
Min 

      

Network type 11.33 0.0023** 

Landscape diversity (350 m) 13.58 0.0011** 

   

Connectance 

standardized 
Full 

 

Network type 

 

0.99 

 

0.33 

Landscape diversity (200 m) 0.63 0.44 

(log) Fragment area 1.34 0.25 

(log) Connectivity Index 0.55 0.47 
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Table S5. Interactions occurring in both, the visitation and pollen transport datasets 

Interaction 

Ajuga reptans Bombus pascuorum 

Anthyllis vulneraria Bombus pascuorum 

Aquilegia vulgaris Bombus hortorum 

Aquilegia vulgaris Bombus pratorum 

Astragalus glycyphyllos Bombus pascuorum 

Campanula sp Bombus lapidarius 

Carduus nutans Bombus pascuorum 

Carduus nutans Bombus terrestris 

Carlina vulgaris Bombus pascuorum 

Centaurea jacea Bombus bohemicus 

Centaurea jacea Bombus lapidarius 

Centaurea jacea Bombus pascuorum 

Centaurea jacea Bombus pratorum 

Centaurea jacea Bombus terrestris 

Centaurea jacea Halictus rubicundus 

Centaurea jacea Halictus scabiosae 

Centaurea jacea Halictus simplex 

Centaurea jacea Megachile versicolor 

Centaurea scabiosa Bombus bohemicus 

Centaurea scabiosa Bombus campestris 

Centaurea scabiosa Bombus hortorum 

Centaurea scabiosa Bombus hypnorum 

Centaurea scabiosa Bombus lapidarius 

Centaurea scabiosa Bombus pascuorum 

Centaurea scabiosa Bombus pratorum 

Centaurea scabiosa Bombus rupestris 

Centaurea scabiosa Bombus terrestris 

Centaurea scabiosa Ceratina cyanea 

Centaurea scabiosa Halictus scabiosae 

Centaurea scabiosa Halictus simplex 

Centaurea scabiosa Lasioglossum pauxillum 

Centaurea scabiosa Megachile versicolor 
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Interaction 

Cerinthe minor Bombus pascuorum 

Cirsium sp Bombus bohemicus 

Cirsium sp Bombus lapidarius 

Cirsium sp Bombus pascuorum 

Cirsium sp Megachile versicolor 

Crepis sp Lasioglossum albipes 

Crepis sp Lasioglossum villosulum 

Daucus carota Bombus terrestris 

Echium vulgare Bombus pascuorum 

Fragaria vesca Andrena flavipes 

Fragaria vesca Andrena minutuloides 

Fragaria vesca Halictus tumulorum 

Fragaria vesca Lasioglossum fulvicorne 

Fragaria vesca Osmia bicolor 

Genista tinctoria Bombus lapidarius 

Genista tinctoria Bombus pascuorum 

Genista tinctoria Megachile ericetorum 

Genista tinctoria Megachile willughbiella 

Helianthemum nummularium Bombus pascuorum 

Helianthemum nummularium Bombus pratorum 

Hieracium cymosum Bombus hortorum 

Hieracium pilosella Lasioglossum brevicorne 

Hieracium pilosella Lasioglossum leucozonium 

Hieracium pilosella Lasioglossum villosulum 

Hippocrepis comosa Andrena gravida 

Hippocrepis comosa Andrena ovatula 

Hippocrepis comosa Andrena similis 

Hippocrepis comosa Bombus hortorum 

Hippocrepis comosa Bombus lapidarius 

Hippocrepis comosa Bombus pascuorum 

Hippocrepis comosa Halictus rubicundus 

Hippocrepis comosa Megachile ericetorum 

Hippocrepis comosa Osmia aurulenta 

Hippocrepis comosa Osmia bicolor 
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Interaction 

Knautia arvensis Bombus bohemicus 

Knautia arvensis Bombus campestris 

Knautia arvensis Bombus pascuorum 

Leucanthemum vulgare Andrena gravida 

Lotus corniculatus Bombus lapidarius 

Lotus corniculatus Bombus pascuorum 

Lotus corniculatus Halictus rubicundus 

Medicago falcata Bombus pascuorum 

Myosotis arvensis Andrena subopaca 

Onobrychis viciifolia Bombus hypnorum 

Onobrychis viciifolia Bombus lapidarius 

Onobrychis viciifolia Bombus pascuorum 

Onobrychis viciifolia Bombus pratorum 

Onobrychis viciifolia Bombus terrestris 

Onobrychis viciifolia Osmia aurulenta 

Onobrychis viciifolia Osmia leucomelana 

Ononis sp Anthidium manicatum 

Ononis sp Bombus lapidarius 

Ononis sp Bombus pascuorum 

Ononis sp Bombus terrestris 

Ononis sp Megachile versicolor 

Plantago lanceolata Bombus terrestris 

Plantago lanceolata Lasioglossum pauxillum 

Plantago media Bombus pascuorum 

Potentilla sp Andrena minutuloides 

Potentilla sp Halictus tumulorum 

Potentilla sp Osmia bicolor 

Primula veris Anthophora plumipes 

Primula veris Bombus hortorum 

Prunella grandiflora Bombus pascuorum 

Ranunculus bulbosus Andrena gravida 

Ranunculus bulbosus Andrena strohmella 

Ranunculus bulbosus Andrena subopaca 

Ranunculus bulbosus Bombus hortorum 
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Interaction 

Ranunculus bulbosus Chelostoma florisomne 

Ranunculus bulbosus Halictus confusus 

Ranunculus bulbosus Halictus tumulorum 

Ranunculus bulbosus Osmia bicolor 

Ranunculus bulbosus Osmia bicornis 

Ranunculus repens Osmia bicornis 

Salvia pratensis Bombus hortorum 

Salvia pratensis Bombus lapidarius 

Salvia pratensis Bombus pascuorum 

Senecio sp Bombus bohemicus 

Silene dioica Bombus bohemicus 

Stellaria holostea Nomada flavoguttata 

Stellaria holostea Nomada lathburiana 

Taraxacum officinale Nomada lathburiana 

Taraxacum officinale Osmia bicolor 

Trifolium pratense Bombus hortorum 

Trifolium pratense Bombus lapidarius 

Trifolium pratense Bombus pascuorum 

Trifolium repens Bombus pascuorum 

Veronica austriaca Bombus hortorum 

Veronica austriaca Bombus pratorum 

Veronica chamaedrys Andrena labiata 

Veronica chamaedrys Andrena subopaca 

Veronica chamaedrys Bombus pascuorum 

Vicia sp Bombus hortorum 

Vicia sp Bombus pascuorum 

Vicia sp Bombus pratorum 
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Table S6. Interactions exclusive to the pollen transport dataset 

Interaction 

Ajuga reptans Anthophora plumipes 

Anthriscus sylvestris Bombus pascuorum 

Anthriscus sylvestris Bombus terrestris 

Astragalus glycyphyllos Bombus lapidarius 

Campanula sp Bombus terrestris 

Campanula sp Megachile ericetorum 

Campanula sp Megachile willughbiella 

Carlina vulgaris Bombus lapidarius 

Centaurea jacea Bombus campestris 

Centaurea jacea Lasioglossum costulatum 

Centaurea jacobea Bombus bohemicus 

Centaurea scabiosa Bombus sylvestris 

Cerastium arvense Andrena strohmella 

Cerinthe minor Anthophora plumipes 

Cirsium sp Bombus campestris 

Cotoneaster interregimus Andrena fulva 

Crepis sp Andrena flavipes 

Crepis sp Bombus lapidarius 

Crepis sp Bombus pascuorum 

Crepis sp Bombus terrestris 

Crepis sp Halictus scabiosae 

Crepis sp Halictus simplex 

Crepis sp Lasioglossum costulatum 

Crepis sp Megachile versicolor 

Crepis sp Osmia bicolor 

Filipendula vulgaris Megachile willughbiella 

Fragaria vesca Andrena strohmella 

Fragaria vesca Bombus pascuorum 

Galium sp Anthophora plumipes 

Galium sp Bombus campestris 

Galium sp Bombus pascuorum 

Galium sp Bombus terrestris 
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Interaction 

Geum urbanum Bombus terrestris 

Geum urbanum Osmia bicolor 

Helianthemum nummularium Bombus hortorum 

Helianthemum nummularium Bombus lapidarius 

Helianthemum nummularium Osmia aurulenta 

Hippocrepis comosa Bombus rupestris 

Hippocrepis comosa Osmia leucomelana 

Knautia arvensis Bombus hortorum 

Lotus corniculatus Bombus rupestris 

Melampyrum pratense Bombus pascuorum 

Mentha type Bombus lapidarius 

Ononis sp Bombus pratorum 

Ononis sp Halictus simplex 

Plantago lanceolata Bombus campestris 

Plantago lanceolata Bombus pascuorum 

Plantago lanceolata Bombus rupestris 

Plantago lanceolata Megachile willughbiella 

Plantago media Bombus pratorum 

Plantago media Lasioglossum pauxillum 

Potentilla sp Anthophora plumipes 

Pulmonaria sp Bombus pascuorum 

Ranunculus acris Andrena subopaca 

Ranunculus acris Bombus lapidarius 

Ranunculus acris Bombus sylvestris 

Ranunculus acris Bombus terrestris 

Ranunculus acris Halictus tumulorum 

Ranunculus acris Osmia bicolor 

Ranunculus acris Osmia bicornis 

Ranunculus bulbosus Bombus lapidarius 

Ranunculus bulbosus Bombus pascuorum 

Rumex obtusifolius Bombus hortorum 

Salvia pratensis Bombus pratorum 

Sanguisorba minor Andrena minutuloides 

Sanguisorba minor Anthophora plumipes 
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Interaction 

Sanguisorba minor Chelostoma florisomne 

Sanguisorba minor Osmia bicolor 

Saxifraga sp Andrena subopaca 

Saxifraga sp Bombus hortorum 

Saxifraga sp Bombus pascuorum 

Saxifraga sp Bombus pratorum 

Saxifraga sp Osmia bicolor 

Scabiosa columbaria Andrena gravida 

Scabiosa columbaria Bombus rupestris 

Senecio sp Bombus campestris 

Senecio sp Megachile versicolor 

Silene vulgaris Andrena gravida 

Stellaria holostea Andrena strohmella 

Stellaria holostea Lasioglossum punctatissimum 

Taraxacum officinale Anthophora plumipes 

Taraxacum officinale Halictus tumulorum 

Taraxacum officinale Lasioglossum punctatissimum 

Trifolium pratense Andrena gravida 

Trifolium pratense Andrena similis 

Trifolium pratense Halictus rubicundus 

Trifolium repens Bombus lapidarius 

Trifolium repens Osmia bicolor 

Trifolium sp Andrena ovatula 

Trifolium sp Bombus lapidarius 

Trifolium sp Bombus pascuorum 

Valeriana officinalis Bombus bohemicus 

Veronica chamaedrys Bombus hortorum 

Veronica sp Bombus terrestris 

Viola sp Bombus lapidarius 
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Table S7. Interactions exclusive to the visitation dataset 

Interaction 

Ajuga reptans Bombus hortorum 

Alliaria petiolata Lasioglossum calceatum 

Anemone sylvestris Bombus pratorum 

Anemone sylvestris Bombus terrestris 

Anthyllis vulneraria Bombus hortorum 

Aquilegia vulgaris Osmia aurulenta 

Carlina vulgaris Bombus terrestris 

Centaurea jacea Ceratina cyanea 

Centaurea jacea Halictus quadricinctus 

Centaurea jacea Lasioglossum albipes 

Centaurea jacea Lasioglossum calceatum 

Centaurea jacea Lasioglossum morio 

Centaurea scabiosa Halictus quadricinctus 

Centaurea scabiosa Halictus rubicundus 

Centaurea scabiosa Hylaeus communis 

Centaurea scabiosa Lasioglossum costulatum 

Centaurea scabiosa Lasioglossum fulvicorne 

Cerastium arvense Bombus pascuorum 

Cirsium sp Lasioglossum morio 

Cirsium vulgare Bombus bohemicus 

Cirsium vulgare Bombus rupestris 

Clinopodium acinos Bombus pratorum 

Clinopodium vulgare Bombus pascuorum 

Cotoneaster integerrimus Andrena fulva 

Cotoneaster integerrimus Bombus hypnorum 

Cotoneaster integerrimus Bombus pratorum 

Crataegus monogyna Andrena chrysosceles 

Crataegus monogyna Bombus pratorum 

Crataegus monogyna Bombus terrestris 

Dactylorhiza fuchsii Bombus pascuorum 

Dictamnus albus Bombus pratorum 

Euphorbia cyparissias Andrena subopaca 
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Interaction 

Euphorbia cyparissias Nomada flavoguttata 

Filipendula vulgaris Andrena nitida 

Fragaria vesca Nomada flavoguttata 

Genista tinctoria Bombus terrestris 

Genista tinctoria Megachile nigriventris 

Geum urbanum Andrena subopaca 

Helianthemum nummularium Anthidium punctatum 

Hieracium lachenalii Lasioglossum villosulum 

Hieracium murorum Bombus bohemicus 

Hieracium umbellatum Bombus pascuorum 

Hieracium umbellatum Bombus terrestris 

Hippocrepis comosa Andrena nigroaenea 

Hippocrepis comosa Andrena subopaca 

Hippocrepis comosa Anthidium punctatum 

Hippocrepis comosa Bombus terrestris 

Hippocrepis comosa Lasioglossum punctatissimum 

Hippocrepis comosa Megachile nigriventris 

Hippocrepis comosa Megachile versicolor 

Hippocrepis comosa Megachile willughbiella 

Hippocrepis comosa Sphecodes niger 

Hypericum perforatum Bombus pascuorum 

Hypericum perforatum Bombus terrestris 

Knautia arvensis Bombus hypnorum 

Knautia arvensis Bombus lapidarius 

Knautia arvensis Bombus pratorum 

Knautia arvensis Bombus rupestris 

Knautia arvensis Bombus sylvestris 

Knautia arvensis Bombus terrestris 

Knautia arvensis Ceratina cyanea 

Knautia arvensis Coelioxys elongata 

Knautia arvensis Halictus rubicundus 

Knautia arvensis Halictus scabiosae 

Knautia arvensis Halictus simplex 

Knautia arvensis Lasioglossum albipes 
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Interaction 

Knautia arvensis Lasioglossum calceatum 

Knautia arvensis Lasioglossum morio 

Knautia arvensis Lasioglossum pauxillum 

Knautia arvensis Megachile versicolor 

Lathyrus sylvestris Megachile ericetorum 

Leontodon hispidus Anthidium punctatum 

Leontodon hispidus Ceratina cyanea 

Leucanthemum vulgare Andrena nigroaenea 

Leucanthemum vulgare Andrena subopaca 

Leucanthemum vulgare Andrena wilkella 

Leucanthemum vulgare Bombus hortorum 

Leucanthemum vulgare Sphecodes rubicundus 

Lotus corniculatus Coelioxys inermis 

Lotus corniculatus Halictus tumulorum 

Lotus corniculatus Megachile ericetorum 

Lotus corniculatus Megachile ligniseca 

Medicago lupulina Osmia bicolor 

Medicago sativa Bombus pascuorum 

Medicago sativa Halictus tumulorum 

Melampyrum arvense Bombus hortorum 

Myosotis arvensis Bombus pratorum 

Ononis sp Anthidium punctatum 

Origanum vulgare Halictus rubicundus 

Origanum vulgare Halictus tumulorum 

Origanum vulgare Lasioglossum morio 

Orobanche rapum-genistae Lasioglossum fulvicorne 

Polygala comosa Bombus pascuorum 

Potentilla sp Lasioglossum pauxillum 

Primula veris Andrena nitida 

Primula veris Anthophora furcata 

Primula veris Bombus pascuorum 

Primula veris Lasioglossum pauxillum 

Primula veris Osmia bicolor 

Prunella grandiflora Bombus hortorum 
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Interaction 

Ranunculus bulbosus Andrena scotica 

Ranunculus bulbosus Lasioglossum pauxillum 

Ranunculus bulbosus Nomada flavoguttata 

Ranunculus bulbosus Osmia aurulenta 

Ranunculus repens Andrena subopaca 

Rhinanthus minor Bombus hortorum 

Rhinanthus minor Bombus pratorum 

Sanguisorba minor Bombus pratorum 

Senecio sp Halictus tumulorum 

Senecio sp Lasioglossum calceatum 

Senecio sp Lasioglossum morio 

Taraxacum officinale Eucera nigrescens 

Trifolium pratense Bombus bohemicus 

Veronica austriaca Andrena labiata 

Veronica austriaca Bombus terrestris 

Veronica austriaca Hylaeus confusus 

Veronica austriaca Osmia bicolor 

Veronica chamaedrys Andrena viridescens 

Veronica chamaedrys Lasioglossum pauxillum 

Veronica chamaedrys Osmia bicolor 

Vicia sp Bombus sylvarum 

Vicia sp Eucera longicornis 

Vicia sp Eucera nigrescens 
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Table S8. Richness of flower visitors (Degree) per plant species in the visitation dataset. 

Plant Degree 

Ajuga reptans               2 

Alliaria petiolata             1 

Anemone sylvestris             2 

Anthyllis vulneraria           2 

Aquilegia vulgaris             3 

Astragalus glycyphyllos        1 

Campanula sp                   1 

Carduus nutans                 2 

Carlina vulgaris               2 

Centaurea jacea               14 

Centaurea scabiosa            19 

Cerastium arvense              1 

Cerinthe minor                 1 

Cirsium sp                     5 

Cirsium vulgare                2 

Clinopodium acinos             1 

Clinopodium vulgare            1 

Cotoneaster integerrimus       3 

Crataegus monogyna             3 

Crepis sp                      2 

Dactylorhiza fuchsii           1 

Daucus carota                  1 

Dictamnus albus                1 

Echium vulgare                 1 

Euphorbia cyparissias          2 

Filipendula vulgaris           1 

Fragaria vesca                 6 

Genista tinctoria              6 

Geum urbanum                   1 

Helianthemum nummularium       3 

Hieracium cymosum              1 

Hieracium lachenalii           1 
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Plant Degree 

Hieracium murorum              1 

Hieracium pilosella            3 

Hieracium umbellatum          2 

Hippocrepis comosa            19 

Hypericum perforatum           2 

Knautia arvensis              19 

Lathyrus sylvestris            1 

Leontodon hispidus             2 

Leucanthemum vulgare           6 

Lotus corniculatus             7 

Medicago falcata               1 

Medicago lupulina              1 

Medicago sativa                2 

Melampyrum arvense             1 

Myosotis arvensis              2 

Onobrychis viciifolia          7 

Ononis sp                      6 

Origanum vulgare               3 

Orobanche rapum-genistae       1 

Plantago lanceolata            2 

Plantago media                1 

Polygala comosa                1 

Potentilla sp                  4 

Primula veris                  7 

Prunella grandiflora           2 

Ranunculus bulbosus           13 

Ranunculus repens              2 

Rhinanthus minor               2 

Salvia pratensis               3 

Sanguisorba minor              1 

Senecio sp                     4 

Silene dioica                  1 

Stellaria holostea             2 

Taraxacum officinale           3 
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Plant Degree 

Trifolium pratense             4 

Trifolium repens               1 

Veronica austriaca             6 

Veronica chamaedrys            6 

Vicia sp                       6 
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Table S9. Richness of flower visitors (Degree) per plant species in the pollen transport dataset. 

Plant Degree 

Ajuga reptans                 2 

Anthriscus sylvestris          2 

Anthyllis vulneraria           1 

Aquilegia vulgaris             2 

Astragalus glycyphyllos        2 

Campanula sp                   4 

Carduus nutans                 2 

Carlina vulgaris               2 

Centaurea jacea               11 

Centaurea jacobea              1 

Centaurea scabiosa            15 

Cerastium arvense              1 

Cerinthe minor                 2 

Cirsium sp                     5 

Cotoneaster interregimus       1 

Crepis sp                     11 

Daucus carota                  1 

Echium vulgare                 1 

Filipendula vulgaris           1 

Fragaria vesca                 7 

Galium sp                      4 

Genista tinctoria              4 

Geum urbanum                   2 

Helianthemum nummularium       5 

Hieracium cymosum              1 

Hieracium pilosella            3 

Hippocrepis comosa            12 

Knautia arvensis               4 

Leucanthemum vulgare           1 

Lotus corniculatus             4 

Medicago falcata               1 

Melampyrum pratense            1 
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Plant Degree 

Mentha type                    1 

Myosotis arvensis              1 

Onobrychis viciifolia          7 

Ononis sp                      7 

Plantago lanceolata            6 

Plantago media                 3 

Potentilla sp                  4 

Primula veris                  2 

Prunella grandiflora           1 

Pulmonaria sp                  1 

Ranunculus acris               7 

Ranunculus bulbosus           11 

Ranunculus repens              1 

Rumex obtusifolius             1 

Salvia pratensis               4 

Sanguisorba minor              4 

Saxifraga sp                   5 

Scabiosa columbaria            2 

Senecio sp                     3 

Silene dioica                  1 

Silene vulgaris                1 

Stellaria holostea             4 

Taraxacum officinale           5 

Trifolium pratense             6 

Trifolium repens               3 

Trifolium sp                   3 

Valeriana officinalis          1 

Veronica austriaca             2 

Veronica chamaedrys            4 

Veronica sp                    1 

Vicia sp                       3 

Viola sp                       1 
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Table S10. Full and minimum adequate models for unique interactions and unique interactions’ 

proportion in the visitation and pollen transport datasets. Minimum adequate models were 

selected with likelihood ratio tests (via “drop1”). Significance levels: ***p<0.001. **p<0.01, 

*p<0.05  

Response 

variable 
Model Fixed effects LRT P 

Unique 

interactions 

Full 

visitation 

 

Landscape diversity (150 m) 

 

4.06 

 

0.044* 

(log) Fragment area 0.11        0.74 

(log) Connectivity Index 0.018       0.89 

   

Unique 

interactions 

Min 

visitation 

      

Landscape diversity (150 m) 4.59 0.032* 

   

Unique 

interactions 

Full 

transport 

 

Landscape diversity (500 m) 

 

4.07 

 

0.044* 

(log) Fragment area 2.35 0.13 

(log) Connectivity Index 0.24 0.62 

   

Unique 

interactions 

Min 

transport 

 

Landscape diversity (500 m) 5.96 0.015* 

 

Unique 

interactions’ 

proportion 

Full 

visitation 

 

Landscape diversity (150 m) 0.94 0.20 

(log) Fragment area 0.38 0.71 

(log) Connectivity Index 0.64 0.53 

  

Unique 

interactions’ 

proportion 

Full 

transport 

 

Landscape diversity (500 m) 2.79 0.11 

(log) Fragment area 1.55 0.22 

(log) Connectivity Index 0.014 0.91 

   

Unique 

interactions’ 

proportion 

Min 

transport 
Landscape diversity (500 m) 5.26 0.030* 
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a) 

 

b) 

 

Figure S1. The 10 most central pollinator species based on proportional generality in a) the visitation 

metanetwork and b) the pollen transport metanetwork. 
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a) 

 

b) 

 

Figure S2. Effect of landscape diversity on the number of single-fragment interactions in local networks 

in a) the visitation dataset and b) the pollen transport dataset. 



 

 

CV 
 

Felipe Miguel Librán Embid 
Curriculum Vitae 
______________________________________________________________________________________ 

Personal Details 
 

Born: 01/03/1989 - Montevideo/ - Uruguay 
 
Nationality: Uruguayan and Spanish 
 

Address:  Zoological Biodiversity, Institute of Geobotany, Leibniz University Hannover, Nienburgerstr. 17  
 30167 Hannover, Germany 
  
E-mail: feliem3@gmail.com 
_________________________________________________________________________________ 

Education 
 

2016 - 2020 PhD student in Agricultural Sciences 
 Georg-August-University Göttingen, Göttingen, Germany 
 Title: Plant-pollinator networks in fragmented calcareous grasslands. 
 Supervisor: Prof. Dr. Teja Tscharntke 
 
2013 - 2015         Master in Ecology (Mestrado em Ecologia) 
 Universidade de São Paulo, USP, São Paulo, Brasil 
 Title: Landscape structure effects on the biological control of the coffee-leaf-miner (Leucoptera 

coffeella, Lepidoptera: Lyonetiidae) provided by birds and bats. 
 Supervisor: Prof. Dr. Jean Paul Walter Metzger 
 
2007 - 2011  BSc in Biological Sciences (Licenciatura en Ciencias Biológicas) 
 Universidad de la República, UdelaR, Montevideo, Uruguay 
 Title: Reproductive behaviour in Austrolebias affinis, Amato 1986 
 Supervisor: Dra. Bettina Tassino 
_____________________________________________________________________________________ 

Scholarships 
 
1. Georg-August-University Göttingen 

2016 – 2019 PhD scholarship by the German Science Foundation (DFG) 
   

2. Universidade de São Paulo – USP 
2013 - 2015  MSc scholarship by the PAEC-OEA-GCUB program  

 

3. Universidad de la República- UdelaR  
2010 - 2011    Initiation to research scholarship by PEDECIBA (Program for the development of basic 

sciences) 
_____________________________________________________________________________________ 

Field of study 
 



 

162 
 

1. Landscape Ecology/ Ecological networks / Ecosystem Services 
____________________________________________________________________________________ 

 
Projects 
 
Research projects  
 
2016 - 2020 Plant-pollinator networks in fragmented calcareous grasslands. Financially supported by the German 

Research Foundation (DFG) through the RTG 1644-“Scaling problems in statistics". 
 
2013 - 2015 Landscape structure effects on the biological control of the coffee-leaf-miner (Leucoptera coffeella) 

provided by birds and bats. 
 Financed by the University of São Paulo (USP) and the Foundation for research support of the state of 

São Paulo (FAPESP) 
_____________________________________________________________________________________ 

Personal skills and competences  
  

Native tongue  
 

1) Spanish / Castilian 
  

Other languages 

 Understanding Speaking Writing 

European level (*) Listening Reading Spoken interaction Spoken production  

2) English C2 Proficient user C2 Proficient user C1 Proficient user C2 Proficient user C1 Proficient user 

3) Portuguese C2 Proficient user C2 Proficient user C2 Proficient user C2 Proficient user C2 Proficient user 

4) Italian B2 Independent user B1 Independent user A2 Basic user A2 Basic user A1 Basic user 

5) German B2 Independent user B1 Independent user B1 
Independent 

user 
B1 

Independent 
user 

A2 Basic user 

 

(*) Common European Framework of Reference for Languages - Self-assessment grid 

 

Computer skills      R language, ArcGis, QGis 
   
Other skills              Member of the youth (2006, 2007) and junior (2008) Uruguayan national handball teams 
_____________________________________________________________________________________ 

Relevant graduate courses 
- Ecosystem services and landscape planning – Grade A 
- Landscape Ecology, concepts and research methods – Grade A 
- Advanced statistical methods in Ecology and Evolution – Score 12/12  

_____________________________________________________________________________________ 

Awards 
- 6th highest GPA of the 2007 biological sciences class (UdelaR, Uruguay). 
- Best ecology thesis of 2015 (USP, Brasil). 
- “Summa cum laude” grade in PhD dissertation and disputation 



 

 

Author Publications  
 

Published in peer reviewed journals 

1. LIBRÁN-EMBID, F., DE COSTER, G., METZGER, JP. 

Effects of bird and bat exclusion on coffee pest control at multiple spatial scales. Landscape 

Ecology 32, 1907–1920 (2017). https://doi.org/10.1007/s10980-017-0555-2 

2. GRASS, I., LOOS, J., BAENSCH, S., BATÁRY, P., LIBRÁN-EMBID, F., FICICIYAN, A., 

KLAUS, F., RIECHERS, M., ROSA, J., TIEDE, J., UDY, K., WESTPHAL, C., WURZ, A., 

TSCHARNTKE, T. 

Land‐sharing/‐sparing connectivity landscapes for ecosystem services and biodiversity 

conservation. People and Nature 1: 262– 272 (2019). https://doi.org/10.1002/pan3.21 

3. METZGER, JP., BUSTAMENTE, M., FERREIRA, J., FERNANDES GW., LIBRÁN-

EMBID, F., PILLAR, V., PRIST, P., RIBEIRO RODRIGUEZ, R., VIEIRA, IC., OVERBECK, 

G.  

Why Brazil needs its Legal Reserves. Perspectives in Ecology and Conservation, 17(3), 91-103 

(2019). https://doi.org/10.1016/j.pecon.2019.07.002 

4. LIBRÁN-EMBID, F., KLAUS, F., TSCHARNTKE, T., GRASS, I. 

Unmanned aerial vehicles (UAVs) for biodiversity-friendly agricultural landscapes – a systematic 

review. Science of the total Environment. 732, 139204 (2020). 

https://doi.org/10.1016/j.scitotenv.2020.139204 

 
 

In preparation 

LIBRÁN-EMBID, F., GRASS, I., GANUZA, C., EMER, C., TSCHARNTKE, T. 

A plant-pollinator metanetwork along a habitat fragmentation gradient 

LIBRÁN-EMBID, F., GRASS, I., ALARCÓN, V., HERMANN, B., BIAGIONI, S., C., EMER, 

C., GANUZA, C., HERRERA-KRINGS, C., SETYANINGSIH, CA., TSCHARNTKE, T. 

Pollination networks in fragmented landscapes are more specialized for pollen transport than 

flower visitation 

  

https://doi.org/10.1002/pan3.21


 

164 
 

Acknowledgements 
 

A PhD thesis demands years of dedication, perseverance and commitment. Also, as plant-

pollinator interactions, it makes little sense to be analyzed in isolation. Many people have 

contributed in this path in direct and indirect ways. Therefore, in the next lines, I will take the 

liberty of not skimping on words. 

 

My grandmother was a fantastic woman that I had the pleasure to enjoy 19 years of my life. Her 

name was Esperanza (“hope” in spanish); a name tightly related to what she taught me in life 

through words and example. One of her most brilliant phrases was “la matemática es la materia 

más sencilla que hay, el problema es que padece de muy malos profesores… La materia más 

difícil son las relaciones humanas” (i.e. “math is the easiest subject there is, the problem is that 

lacks good teachers…The toughest subject are the human relationships”). Coming from one of 

the first female engineers of Uruguay (graduated in the 1950 class) these words had a special 

meaning and sticked deeply in my head. As usual, I would confirm the truth behind her words 

over time.   

Indeed, mathematical rules are immutable through space and time and a solid ground to base our 

hypotheses and knowledge. When these logical rules, patterns and relationships are correctly 

explained then math becomes easy. Human relationships, on the other hand, are an intrinsic part 

of the human biology as social beings, that are not possible to solve through mathematical rules. 

Actually, they involve large amounts of variables, which interact with each other and are abruptly 

changing in space and time. Furthermore, their solution involves many other areas from the brain 

not related to mathematical thinking, but to emotion and empathy, among others. Clearly 

Esperanza was right, differently from the common belief, human relationships are far harder than 

math. 

Human relationships permeate every single aspect of our lives and form complex interaction 

networks and metanetworks shaping our lives, our happiness and our miseries.  

The process of learning and the search of knowledge and understanding has always been the 

motor os my passion and the main sense of my existence. Learning and knowledge have helped 

me to overcome challenges from a very young age and to see the beauty in life.  



 

165 
 

A very common trait in Latin Americans is our smiling and cheerful mood. In science and in 

Germany I can see how surprising and misleading that is. A smile and kind treat might be seen as 

an unnecessary (non-mathematical) trait related to a lack of consciousness on the severity or 

importance of certain events. Also, it is often unconsciously associated to a low responsibility 

and seriousness that could impare a person from dealing with tough or complicated 

situations/problems. All these being very important skills that a scientist and a person should 

“theoretically” have. 

Independently of our cultural differences, humans from all corners of the world need love and 

support in their lives and most especially during childhood. For many different reasons, love and 

support are not guaranteed for many Latin American kids. The ghosts of violence, inequality, 

food scarcity and educational shortages deny a healthy development for most Latin American 

kids and are abominations that need to be faced and palliated. Those of us who do survive and 

reach adulthood develop a set of skills that we used to overcome those challenges, namely smiles 

and kindness. Kindness to the suffering of other human beings and smiles to face the complex 

and sometimes almost unbearable events in life. Our smiles are the scars of what we have seen 

and experienced and our choice on how to deal with life in its beauty and misery. Therefore, far 

from a weakness, is our best skill to face every single challenge no matter how big and complex. 

In this huge network of human interactions that we live in, I like to believe that the artificial 

modularity that has been imposed to us can be overcome. I dream that humanity can be saved by 

promoting a higher connectance among us and the planet we all share. I hope that through this 

amazing network, my kindness can spread beyond the limits of my physical frontiers and reach, 

in remote places, the souls of those in need. 

Having said the above I want to give tailored acknowledgements: 

My family: 

To my grandparents Esperanza and Aurelio for the gifts of love, beauty, intelligence, sensibility 

and hope that guided me through dark times and were the very reason to keep fighting. 

To my mother Eliana for the insipation of math, for being my most loyal fan, for always 

encouraging me in all my challenges, for believeing in me, for all economic, moral, psicological 

and logistical support through all my studies. 



 

166 
 

To my aunts Alicia and Patricia and to my uncle Rafael for their smiles and kindness. To my 

brother Josema and my sisters Jamila and Anixe for being amazing and insipiring persons full of 

love. 

To my father, for putting me in contact with sports. 

The Agroecology group: 

To my dear advisor Prof. Teja Tscharntke. It has been such an inspiration and such an honour to 

be your student. Only the quality of person that you are surpasses your quality as a researcher. I 

could not imagine a better place to have done my PhD. I felt outstandingly appreciated, respected 

and supported through all these almost four years. Thank you so much for all the advice, the 

teachings, the kindness, the trust and the support you gave me. I really had four of the happiest 

years of my life here in Germany and you made it possible by not just being who you are but also 

by forming this amazing human and research group.  

To my dear advisor Prof. Ingo Grass. The advice you and Teja gave me was such a perfect 

balance. Thank you for being always there for me to discuss ideas and answer questions. I felt so 

much freedom and so much support from you and Teja during this process, I have no words to 

thank. Also, thanks for selecting me after my interview and to be able to see beyond my smiles, 

to my potential in research. 

To Dr. Carine Emer for all the amazing support, good humor and great discussions. Vc foi um 

anjo que apareceu do nada para me ajudar! Muuuitíssimo obrigado pelos scripts, as dicas, por me 

ajudar até final de semana e também me escutar nas horas de dessespero. Não tenho como 

agradecer!  

To Prof. Andreas Schuldt for kindly accepting the invitation to participate in my defense 

committee. Thank you very much. 

To this outstanding research group called Agroecology. It has been so amazing. Still today it is 

hard for me to believe how lucky I have been to land in this group. Brilliant, inspiring, caring and 

beautiful people. It has been so much easier with all of you around. You have given me so much 

help academically and so much joy from our friendships. It has been a true pleasure and honour 

to come to the office every day to share with you. Thank you!  



 

167 
 

Svenja (Bänsch), so kind, helpful and modest. Thanks for helping me from day one (with the sofa 

xD) until the very last day with the thesis printing. Also for all pollen and bee discussions. Please 

always keep your extremely kind and lovely personality. 

Anoush, also a lovely and sweet person. Thanks for so many phone calls (also Svenja again!) to 

the doctor and lots of german paperwork. I am so sorry for being such a pain in the… but it was 

truly helpful. Thanks for the Carnaval experience in Bonn. Great happy memories I will keep 

forever. 

Annika, what a brilliant and low-profile person. Always offering me that big happy smile when 

knocking your door to ask about bees and other things. Thanks for your kindness in all moments. 

Kevin Darras. What a great guy to have around. Smart, always open to help. Fast hands for R. I 

enjoyed a lot disagreeing with you in stats haha. Thanks for all your help! 

Kevin Li. Another great person. So kind and intelligent. You helped me so much in diverse things 

from English language to GIS stuff. I also enjoyed a lot our philosophical/political discussions. 

Cheers my friend! 

Arne. I mean you three, that office haha. My friend, I really love your personality. Such a chill 

and funny person. Smart and always cool. Thanks for the super helpful script for landscape 

metrics in R. Also for the rugby and for coming to our handball games. I hope to keep the 

friendship for many years. 

Felix Klaus. My cool office mate. Junge I had so much fun with you. Great working atmosphere. 

You are a great person. Funny and relaxed. Those barbecues at your place made a huge 

difference in the quality of free time here. Great to share the passion for sports with you as well 

and also for our great discussions in the office. Thanks for never saying “please, just shut up and 

stop that bullshit” haha. 

Nicole, my great salsa and bachata partner. Thank you also a lot for the german language help 

and for all those moments of joy while dancing. 

Caro. Una de mis grandes colegas Latinas! You are such a nice person with such a beautiful 

smile. Also very intelligent and always there to share a thought and offer your help. Thanks a lot! 



 

168 
 

Julia Rosa. What a lovely person you are! Fantastic personality, there is so much love in you. 

Always taking care of me so nicely. Special thanks for helping me when I locked myself out 

haha. I still have those great pics! 

Manu. Otro de mis capos latinos! What a great personality. Always relaxed and chill and also full 

of love. Extremely calmed from your voice to your moves. Thanks for inviting us to your place 

so many times for such great discussions in our informal group meetings. Cheers my friend! 

Emmeline. Another lovely and intelligent person. It is so easy to feel good when being around 

you. You are always kind and nice. Thanks for all the times I asked for your native speaker skills. 

Fantastic person! 

Annemarie. As Julia you always took so much care of me. You are extremely intelligent and take 

care of everyone. Thanks for all the help you have given me in different issues. Always 

supportive and kind. Thank you! 

Mina. Also a lovely person. Such a nice soul. You also helped me a lot with phonecalls and 

appoinments. It was great to share with you ☺ 

Felix Kirsch. What a nice shy person you are my friend. Kind, hard worker, always with a smile. 

You helped me many times with german homework because you were from the “after 5pm” 

working group together with Nicole haha. Thanks a lot really! 

Gabriel. You are obviously a great guy with a great personality and smile. A fantastic last 

incorporation to the group. I hope you enjoy your PhD years here as much as I did. 

Costanza Geppert. Beautiful person! It was great to have you around and I am very happy about 

the friendship we built. 

Prof. Peter Batáry, thank you for everything Peter! Hajrá ETO! 

Hannah and Kristy, you also took good care of me when I arrived. Thank you very much for the 

bike, the advice and everything. 

To Susanne, Brigitte, Mike and Heike also thank you so much! For helping me with paperwork, 

fieldwork material and all sort of different logistical challenges. So nice with me all the time. My 

deepest thank. 



 

169 
 

To my 2017 fieldwork team and good friends Cristina Ganuza and Guillermo Gallardo Quilacán. 

I had so much fun with you, it was a great happy experience. Cristina you are such a smart, 

tenacious, talented young researcher. Also such a nice, funny and kind human being it was a huge 

pleasure. I learned a lot with you and had a great time! Guillermo you are extremely funny and 

nice. Such a great fieldmate. Thanks a lot for joining us! 

To my 2018 fieldwork team Jessica, Natascha and Svenja. It was great to work with you. 

Natascha such a responsible and efficient person. Svenja so chill and nice. Jessica also very kind 

and dedicated. We had great talks about science and more during those lunch breaks. Thanks for 

all the help you three. 

To Celina, Viviana and Julia (Morley) for their great dedication and patience with the pollen 

analyses. The third chapter would have been impossible without your contributions! Such a nice 

team. A working environment full of good humor, laughs, smiles and happiness. Great job ladies! 

And a thousand thanks! Celi also for “los chilaquiles”! Vivi por falar em português comigo e me 

ajudar a matar a saudade do Brasil! 

To Siria Biagioni, Christina Setyaningsih, Prof. Hermann Behling and Lyudmila Shumilovskikh 

for the help with the pollen analyses and the great tea! 

To Leonie and Nadine, hiwis that helped with mapping and pollen analyses. Thank you ladies! 

To all my other friends and colleagues in Göttingen and Germany: 

To all that came to the fieldwork to help me! Cristina Ganuza, Guillermo Gallardo, Natascha 

Holube, Jessica Hartinger, Svenja Horstmann, Arne Wenzel, Luigi Saldías, Annika Hass, Ivonne 

Fabian, Christin Viets, Bettina Donkó, Ashley Lyons, Jacqueline Loos, Emmeline Topp, 

Costanze Ohlendorf and Julia Morley. 

To all the friends and colleagues that read my thesis and gave me valuable feedback. I am 

extremely thankful to all of you: Carolina, Anoush, Max Hesselbarth, Ben Pelka, Felix, Cristina, 

Annika, Svenja Bänsch, Kevin Li, Natalia Aristizábal and Annemarie. 

To my dear Dörte and Barbara, the secretaries of the RTG 1644. You were so nice and kind all 

these years. You gave me so much help and advice. Dedicated a lot of time to help me and are so 



 

170 
 

nice. I really appreciate all the help from picking me up at the train station to finding me a place 

to stay. Also with tons of paperwork and answers to so many questions. Infinite thanks! 

To Prof. Kerstin Wiegand and Prof. Thomas Kneib for accepting being part of my companion 

committee and also for being always very nice and polite with me. Also Thomas for the statistical 

help and teaching and Kerstin for the course on spatial statistics. 

To all my good friends in Göttingen. Especially to the Uruguayan (panda) team. Really great 

people who gave me a feeling of belonging and link to my Uruguayan roots. Thanks to all of you 

Natalia, Guillermo, Nicolás, Laura, Mattia, Katha, Sofia, Luigi, Virginia and Hernán. 

To Luigi Saldías for being there and supporting me in this long path. For all the good moments 

and food. Gracias Luigin. 

Also a special thanks to Christin Viets. My beautiful german teacher. You helped me and taught 

me so much these years! What a great friendship! I could not express enough how much you 

helped me. I will be always greatful to you! Gracias profe! 

To Liedson Carneiro for encouraging me for this PhD and for giving me a place to stay when I 

arrived in Europe. Also for offering me the best he had. Thanks Li! I think you are an awesome 

person and a great researcher! 

To my dear friend Julian Dürk, for hosting me in Frankfurt when I arrived and for the great 

friendship. To Kevin Darras for also offering me a place to stay in Göttingen when I needed it. 

To my RTG friends and colleagues for being a very nice group of people and making every 

course and activity that we took together an easy and joyful task. 

To my tennismates Dr. Torsten Pook and Dr. Max Hesselbarth. 

To my handballmates for being so welcoming to the only foreigner in the team. For giving me a 

place and for so many great sport and beer moments spent together. Also for letting me practice 

my german. Go Tuspo! 

 

  



 

171 
 

  

 

 



 

172 
 

Declaration  

 

  

I hereby declare that I have written this doctoral thesis entitled “Plant-pollinator networks in 

fragmented calcareous grasslands” independently, that I have not used other sources or facilities 

other than the ones mentioned, that I have not used unauthorized assistance and that I have not 

submitted this thesis previously in any form for another degree at any university or institution.   

 

  

 

  

 

  

 

  

 

  

 

  

 

Göttingen, June 2020 

 

Felipe Librán Embid 

 

 


