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Abstract. Hopfield Neural Network (HNN) is a sort of neural network that is strongly dependent to energy minimization 
of solution. Although HNN managed to solve various optimization problem, the output of HNN suffered from a lack of 
interpretability and variation. This has severely limited the practical usability of HNN in doing logic programming. Inspired 
by random neuron perturbation, Estimation of Distribution Algorithm (EDA) has been proposed to explore various optimal 
neuron state. EDAs employs a probabilistic model to sample the neuron state in order to move toward the various optimal 
location of global minimum energy. In this paper, a new Mutation Hopfield Neural Network (MHNN) will be proposed to 
do k Satisfiability programming. Based on the experimental result, the proposed MHNN has outperformed conventional 
HNN in various performance metric. 

Keywords: Estimation of Distribution Algorithm, Hopfield Neural Network, Satisfiability Logic Programming, 
Probabilistic Model, Mutation 

INTRODUCTION 

Due to the tremendous increase of optimization demand in various disciplines, researchers are continuously 
seeking comprehensive paradigm to address wide range of NP problem. Hopfield Neural Network (HNN) is the 
simplest network that can be used to solve numerous optimization problem [1]. Configurative speaking, HNN is a 
recurrent neural network invented by John Hopfield [2] which made a compelling impact in the field of Artificial 
Neural Network (ANN). There were two school of thoughts concerning the approach of ANN. There are researchers 
who consider ANN as a black box model or symbolic system. In this case, symbolic system increases the 
interpretability of HNN in doing various real-life problem [3]. In that regard, logic learning in HNN has been a primary 
work of [4] and the benefit of the two field of knowledge has been integrated as a single intelligent unit. This work 
proposed an optimized logic learning through synaptic weight called Wan Abdullah method. On a broader perspective, 
logic programming represents symbolic knowledge that will be “learned” by HNN model. The perceived knowledge 
will be stored and retrieved according to the given constraint optimization problem. The pursuit of creating an 
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optimized HNN model were critically harnessed by several researchers [5, 6]. Several interesting logical rules such as 
k Satisfiability (kSAT) [7], Maximum Satisfiability [8] have successfully embedded to HNN. The proposed HNN 
model managed to achieve more that 80% of global minimum energy. Hence, the next perspective has revealed an 
interesting question about the structure of the hybrid HNN that is, what is the global search capability of HNN model? 
Unfortunately, output from HNN experienced lack of variety and HNN only explores few solution spaces. In this case, 
high percentage of solution produced by HNN model will be shifted towards a single solution. 
 

EDA has been widely introduced in various optimization problem to overcome the local minima problem of HNN. 
In the proposed model, probability model act as mutation operator that perturbed the current solution and move the 
current solution to a point beyond the neighborhood searched by the HNN. The perturbation of EDA can generate a 
new starting point to possibly find other global solution. Hu et al. [9] has proposed the combination of EDA and HNN 
in solving aircraft landing scheduling (ALS). The proposed hybrid HNN yielded a better performance than other 
conventional method such as standalone HNN and genetic algorithm. In this paper, we incorporate the global search 
ability of EDA into the HNN; which typically has a power local search capability. Therefore, a new mutation Hopfield 
Neural Network (MHNN) has been proposed to increase the number of global minimum solution as well as to increase 
the variety of final neuron state. This paper is organized as follows. In Section 2, a brief framework of HNN is 
discussed and in Section 3, 2 Satisfiability programming as a logical rule is implemented in HNN. Meanwhile, Section 
4 contains the explanation regarding the structure of Estimation of Distribution Algorithm (EDA). Section 5 and 6 
simulate the capability of MHNN model and concluding remarks regarding this work. 
 

k SATISFIABILITY PROGRAMMING 

k SAT representation is considered as a NP problem or non-deterministic problem. The three components of kSAT 
are summarized by [10] as follows: 

1. Consist of a set of variables, 1 2, ,..., mx x x  

2. A set of literals. A literal is a variable or a negation of a variable, connected by OR  operator. 

3. A set of n  distinct clauses: 1 2, ,..., nC C C . Each clause consists of only literals combined by just logical AND 

. Each clause must consist of k variables. 
 
Each of the variable can only take bipolar value which is 1 or -1 that exemplified the idea of True and False. The 

goal of kSAT logical rule is to determine whether there exists an assignment of truth values to variables that makes 
the following formula satisfiable. The flexibility of kSAT logical rule will make it compatible to the structure of HNN. 
 

HOPFIELD NEURAL NETWORK 

Hopfield Neural Network (HNN) is a simple flexible structure which contain associative content-addressable 
memory. Design of this artificial neural network can memorize huge amount of information and reviewing the same 
from available data [11]. Structurally, HNN consist of a set of N interconnected neuron with symmetrical synaptic 
weight and non-feedback connections. The general updating rule of HNN is given as follows: 

1 if

1 Otherwise

ij j
j

i

G S
S       (1) 

where ijG  is the synaptic weight from unit i  to j . jS  is the state of neuron j  and 0  [12] to ensure the energy of 

the network decrease monotonically. The neurons have bipolar representation 1,1   where 1 is considered as True 

and 1  is considered as False. kSAT can be implemented in HNN by assigning variable to neuron. In this paper, HNN 
model will consider k  2which allows the network to retrieve 2 dimensional neuron configuration.  
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The local field of HNN is denoted by  
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The final neuron state can be classified based on the following  
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1,
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     (3) 

The Lyapunov energy function for the HNN-2SAT is given as 

2 1

1, 1, 1

1
2

N N N

P ij i j i j
i i j j i j i

H G S S G S     (4) 

where the Lyapunov energy function is decrease monotonically [13].  
 

ESTIMATION OF DISTRIBUTION ALGORITHM 

EDA is an evolutionary algorithm that use information obtained during the optimization process to build 
probabilistic models of the distribution of good regions in the search space and use these models to generate new 
solutions [14]. In this paper, the EDA will be implemented during the retrieval phase of HNN-2SAT. Conventional 
HNN has a high possibility to be trapped in local minima as the number of neurons involved increased. The local 
minima problem is caused by neuron oscillation of HNN. In this case, EDA will perturb the current neuron state and 
move the current neuron state to a point beyond the neighborhood searched by the HNN. Structurally, EDA will 
probabilistically explore more solution space in order to allow to escape from the current local optimum [9]. Univariate 
Marginal Gaussian distribution (UMG) is a primary probabilistic model that alter the final neuron state based on the 
probability value. Supplemental details of UMG are available in [15]. The combination of EDA and HNN is 
represented as Mutation Hopfield Neural Network or MHNN. The steps involved in MHNN in given as follows 
 
Step 1: Given a logic program, translate all the clauses in the logic program into Boolean algebra. 
Step 2: The input of HNN ,1 ,2 ,, ,...,i i i i NS S S S is randomly initialized. 

Step 3: The output 1 2 3, , ,...,i Nh h h h h  of the HNN for every ,1 ,2 ,, ,...,i i i i NS S S S  is computed 
Step 4 Calculate mean, variance and joint probability distribution function (JPDF) are defined as [16]: 
Step 5: Normalize the joint probability density function (JPDF). 
Step 6: Obtain the new state iM

iS by using iM
ih  The best solution of iM

iS will be updated using Roulette wheels 
selection [17]. 
Step 7: New output iM

iS  based on iM
ih  will be retained. 

Step 8: Step 2,3,4,5,6,7 and 8 are repeated until 2SATESf NC  where 2SATESf  is the solution of MHNN-2SAT and 
NC is the total number of 2SAT clause. 

 
Generally, the implementation of EDA in HNN during retrieval phase can be shown in Figure 1.  
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FIGURE 1. Flowchart of MHNN-2SATES 

 

PERFORMANCE EVALUATION METRIC 

To test the effectiveness of the proposed method, the performance of all HNN will be evaluated based on error 
analysis, energy analysis and similarity analysis of the retrieval neurons. The equation for Global Minima Ratio [18], 
analysis is given follows: 

 
1

1
P

n

m H
i

Z N
tc

 (5) 

where t is the number of trial, c  is the neuron combination and 
PHN is the number of global minimum energy of the 

proposed model [19]. The equation for root mean squared error (RMSE) is given follows: 
 

 2

min
1

1n
P P

i
i

RMSE H H
n

 (6) 

where the global minimum energy P
iH  is given in equation (4). 

 

Benchmark State 

The key component of analyzing the final state of neuron is by comparing the retrieved state with an “ideal” neuron 
state. In this section, analysis of final state of neuron in HNN-2SAT model will be studied. Benchmark state is defined 
as the ideal neuron state retrieved from the HNN model. The benchmark neuron state is given as follows: 

 
1 ,

1 ,i

M
S

M
 (7) 

where M and M  are positive and negative literal in 2SAT formula respectively. Consider the logical rule reads
2SATP K L M N O P , the benchmark state of the neuron is given as 

1, 1, 1, 1, 1, 1K L M N O PS S S S S S  or max 1,1, 1,1,1, 1iS . Worth mentioning that the final energy 
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of iM
iS  is always global minimum solution or 

max max

min

S Si i
P PH H  [10].  is a tolerance value for energy difference 

in HNN. Since most of the neuron state retrieved in HNN achieve global minimum energy [7], max
iS is a perfect 

benchmark state in comparing the final state of different HNN model. 

Similarity Metrics 

Analyzing the behavior of the final neuron state is a challenging task.  In this section, the final neuron state retrieved 
that corresponds to 2SAT logical rule will be analyzed by using similarity metrics. Several similarity metrices were 
identified to explore the lack of variation of HNN models. In this case, instead of comparing logic with logic, the 
comparison will be made based on the individual neuron state. Hence, the general comparison between benchmark 
state and the final neuron state is as follows: 

 
 max

max , 1,2,....,
i i

i iS S
C S S i n  (8) 

 
The further specification of the variable is defined as follows: 
p is the number of max ,i iS S where both elements have the value 1 in max

i iS SC . 

q is the number of max ,i iS S where max
iS is 1 and iS  is -1 in max

i iS SC . 

r  is the number of max ,i iS S where max
iS is -1 and iS  is 1 in max

i iS SC . 

s  is the number of max ,i iS S where both elements have the value -1 in max
i iS SC . 

The size of the neuron string is given as n p q r s . By using the above information, similarity coefficient 
for all HNN model is given as follows 
Jaccard’s Index [20] 

 max ,i i
pJ S S

p q r
 (9) 

Sokal and Sneath-2 [21]  

 max ,
2i i

pSS S S
p q r

 (10) 

Worth mentioning that, high similarity index signifies low variation of final neuron state compared to benchmark 
neuron state. The aim of this paper is to find HNN model that has the highest variation of final neuron state.  Based 
on the experimental result, the proposed MHNN has outperformed conventional HNN in various performance metrics 
such as Global Minima Ratio, Root Mean Square Error, Jaccard and Sokal and Sneath-2 Index. 
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RESULTS AND DISCUSSION 

 
FIGURE 2. Global Minima Ratio for HNN-2SATES 

Models 
 

FIGURE 3. RMSE for HNN-2SATES Models 
 

 
FIGURE 4. Jaccard Index for HNN-2SATES Models 

 
FIGURE 5. Sokal and Sneath-2 Index for HNN-

2SATES Models 
 
We used Dev C++ as a platform to simulate and train the programs. In our analysis, we presented HNN-2SATES 

[10] and MHNN-2SATES in doing 2SAT logic programming. We use Global Minima Ratio and RMSE to evaluate 
the performance of both HNN-2SATES model. Meanwhile, we use similarity analysis such as Jaccard Index and Sokal 
and Sneath-2 Index to find the model that can produce high variation of final neuron state. The result in Figure 2 until 
Figure 4 allow the following observations: 

 
1. Figure 2 illustrate the graph for the global minima ratio, mZ  from the computer simulation that we have 

carried out. mZ  for HNN-2SATES decrease rapidly as number of neuron increases. This is due to the 
complexity of the HNN-2SATES intensified and more solution trapped in local minima. On the other hand, 

mZ  for MHNN-2SATES approaching 1 because EDA utilizes probabilistic model to achieved global 
solution. The mutation helps the neuron to escape the stable state of HNN an explore other global solution. 

2. From the data obtained in Figure. 3, it is proven that MHNN-2SATES give more accurate solutions since 
the testing error are much closer to zero compared to HNN-2SATES. This is due to the higher stability of 
the neurons during the retrieval phase. Meanwhile, error for HNN-2SATES keep increasing as the number 
of neurons increase because it traps in trial and search. 
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3. From the graphs in Figure. 4 and Figure. 5, MHNN-2SATES will have less similar index value compared 
to HNN-2SATES. Therefore, it can be concluded that MHNN-2SATES has achieved our objective in order 
to increase the variation of the solution and reduce overfitting of final neuron states. 

4. In this case, the neuron retrieved from MHNN-2SATES has a lowest similarity with the benchmark state. 
HNN-2SATES has the highest similarity with the benchmark state. In this case, the HNN-2SATES fails 
to explore more state that lead to global minimum energy. 

5. MHNN-2SATES demonstrates higher value of variation compared to HNN-2SATES model. The variation 
value shows that MHNN-2SATES can locate other state that leads to global minimum energy. The 
updating rule of MHNN-2SATES may increase the accuracy of HNN models. 

 

CONCLUSION 

We have presented EDA in HNN to reduce overfitting and to increase the variation of final neuron states. We can 
validate that, finding optimal solution for HNN-2SAT problem can be efficient and accurate by using EDA mutation 
operator (MHNN-2SATES) compared to conventional HNN (HNN-2SATES). This finding was supported by good 
performance of MHNN-2SATES in term of , RMSE and similarity analysis. In this paper, the similarity index does 

not consider pair of max , 1, 1i iS S . In that regard, other similarity index such as Kulczynski index [22] will be 
able to evaluate the mentioned pair. It will be interesting to note that, the capability of MHNN will be more transparent 
if Kulczynski index has been used. 
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