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Depression-associated cognitive impairments are among the most prevalent and persistent symptoms 16 

during remission from a depressive episode and a major risk factor for relapse. Consequently, 17 

development of antidepressant drugs, which also alleviate cognitive impairments, is vital. One such 18 

potential antidepressant is vortioxetine that has been postulated to exhibit both antidepressant and pro-19 

cognitive effects. Hence, we tested vortioxetine for combined antidepressant and pro-cognitive effects in 20 

male Long-Evans rats exposed to the chronic mild stress (CMS) paradigm. This well-established CMS 21 

paradigm evokes cognitive deficits in addition to anhedonia, a core symptom of depression. Learning and 22 

memory performance was assessed in the translational touchscreen version of the paired-associates 23 

learning task. To identify the mechanistic underpinning of the neuro-behavioural results, transcriptional 24 

profiling of genes involved in the stress response, neuronal plasticity and genes of broad relevance in 25 

neuropsychiatric pathologies were assessed. Vortioxetine substantially relieved the anhedonic-like state in 26 

the CMS rats and promoted acquisition of the cognitive test independent of hedonic phenotype, 27 
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potentially due to an altered cognitive strategy. Minor alterations in gene expression profiling in 28 

prefrontal cortex and hippocampus were found. In summary, our findings suggest that vortioxetine 29 

exhibits an antidepressant effect as well as behavioural changes in a translational learning task. 30 

1 Introduction 31 

Worldwide, around 264 million people suffer from major depressive disorder (MDD) making this the 32 

leading burden of disability worldwide1. The recurrent nature of the disease together with insufficient 33 

responses to antidepressant treatment add to the devastating burden of the disease2. Core symptoms of 34 

MDD are a depressed mood and an attenuated anticipation or experience of pleasure (anhedonia). 35 

Additionally, patients suffer from a variable number of associated symptoms, such as impaired cognitive 36 

abilities, which affect primarily attention, executive functions and memory. These cognitive symptoms 37 

persist in 30–60% of treated patients after remission from the affective MDD symptoms. Furthermore, 38 

cognitive impairments are the most persisting residual symptoms of depression and, hence, continue to 39 

decrease daily functioning and quality of life after remission3–6. Moreover, persistent cognitive 40 

impairments augment risk of relapse and are increasingly regarded as a core component rather than an 41 

epiphenomenon of depression7,8. Recovery from cognitive symptoms is associated with a rapid remission 42 

from depression9, further underlining the importance of restoring cognitive impairments when treating 43 

depression. 44 

 However, current antidepressant treatment focuses mainly on alleviating the affective symptoms,  45 

neglecting cognitive impairments10. Therefore, development of novel, pro-cognitive antidepressants is 46 

vital and, hence, a translational drug screening platform for depression-associated cognitive impairments 47 

is essential. In a previous study11, it was demonstrated that the chronic mild stress (CMS) paradigm fulfils 48 

exactly these criteria. The CMS model exhibits the MDD core symptom anhedonia (face validity) evoked 49 

by stress exposure (etiological validity). Additionally, CMS anhedonic-like rats display depression-50 

associated cognitive impairments, indicated by lower performance in a translational touchscreen learning 51 

task, which was not found in CMS resilient, hedonic rats11. Hence, cognitive impairments are specific to 52 
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the depression-like phenotype. In the present study, we follow up by assessing the efficacy of a relatively 53 

novel, multimodal antidepressant on affective symptoms and cognitive deficits in the CMS model. 54 

 Vortioxetine was approved as an antidepressant in 201312. In addition to an antidepressant action, 55 

a pro-cognitive effect was ascribed to vortioxetine due to its multimodal mechanism of action13. In MDD 56 

patients, executive functions, attention, speed of processing, verbal learning and memory functions, as 57 

well as affective symptoms, have been shown to recover after chronic vortioxetine intervention14. In 58 

rodents, vortioxetine improved spatial working memory, visuo-spatial memory and contextual fear 59 

memory besides increasing synaptic plasticity and decreasing behavioural despair15–19. Although the CMS 60 

model shows high predictive validity for antidepressant actions20,21, unexpectedly, vortioxetine was 61 

reported to be ineffective in the CMS model22. Thus, we investigated, in the present study, if vortioxetine 62 

can alleviate the anhedonic-like phenotype of CMS exposed rats using a different route of drug 63 

administration. Moreover, cognition of these rats was assessed in the different paired-associates learning 64 

(dPAL) touchscreen task, a standardized tool in clinical as well as in preclinical research23,24. The rather 65 

novel rodent touchscreen platform involves appetitive operant conditioning and was developed based on 66 

the human Cambridge Neuropsychological Test Automated Battery (CANTAB); the most frequently 67 

applied cognitive assessment tool in depression research4. Finally, hippocampal (HPC) and prefrontal 68 

cortex (PFC) gene expression was analysed to link neurobehavioral alterations with underlying molecular 69 

changes. Genes that are thought to play a role in psychiatric disorders and/or the stress response, such as 70 

the mineralocorticoid receptor (Nr3c2), glucocorticoid receptor (Nr3c1), FK506 binding protein 5 71 

(Fkbp5), glycogen synthase kinase 3 beta (Gsk3b), disrupted in Schizophrenia 1 (Disc1) and brain-72 

derived neurotrophic factor (Bdnf) as well as genes important in cognition and neuronal plasticity, such as 73 

neuroregulin 1 (Nrg1), homer scaffolding protein 1-3 (Homer1-3), Shank 1–3, Spinophilin and Cofilin 1, 74 

were analysed. 75 

 In short, this study aimed to investigate the effect of vortioxetine on the affective state, cognitive 76 

performance and cerebral gene expression. 77 
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2 Materials and Methods 78 

2.1 Animals 79 

Male Long Evans (LE) rats (Janvier Labs, France; n = 242) were 5–6 weeks of age weighing 100–120 g 80 

at arrival. Rats were single housed during the experiment with free access to food and water (unless 81 

otherwise stated) and kept on a 12 h light-dark cycle. All experiments were conducted according to EU 82 

Directive 2010/63/EU, in compliance with the ARRIVE guidelines and approved by the Danish National 83 

Committee for Ethics in Animal Experimentation (2013-15-2934-00814). 84 

2.2 Chronic mild stress paradigm 85 

A 1-h sucrose consumption test (SCT, 1.5%) was carried out weekly to assess the hedonic state of each 86 

rat throughout the experiment (Supplementary Methods). Following three baseline SCTs, rats were 87 

exposed to a number of variable, unpredictable mild stressors in a two-week repeated protocol (Table S1) 88 

to provoke a depressive-like phenotype. 89 

 After five weeks of CMS, stress exposed rats with a SCT index ≤ 0.7 (average of SCTs in week 90 

4-5 normalised to baseline) were categorized anhedonic-like according to an a priori cutoff 25,26 and 91 

remained in the study. 92 

 Following nine weeks of CMS, which included an initial four weeks of drug treatment, a 93 

modified CMS protocol was used (Figure 1A). Stressors were only applied during the nights reserving 94 

daytime for touchscreen assessment. Every Friday, the SCT was carried out followed by 4 h of grouping 95 

and light stressors. Thus, touchscreen testing was discontinued on Fridays. The modified CMS schedule 96 

(Table S2) was changed every second week to prevent habituation to the milder stress protocol. 97 
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98 
Figure 1. Experimental design. (A) Study design. Sucrose consumption tests (SCTs) were conducted throughout the 99 
experiment to measure baseline sucrose intake, stress and drug effects (discriminating high vs low respond to 100 
treatment). Touchscreen testing included food reduction, pre-training, dPAL task acquisition and retention. Rats 101 
were euthanized and brain tissue was collected (X) 1-3 days after dPAL retention test. (B) Touchscreen pre-training. 102 
Passing criteria to move on to the next stage are indicated alongside the arrows. Peanut butter was added to the 103 
screen when the rat entered “must touch” or when performing ≤ 40 touches in the last “must touch” session.  104 

2.3 Drug administration 105 

After five weeks of CMS, 45 and 12 anhedonic-like animals were randomly assigned to treatment with 106 

vortioxetine or vehicle (Figure 1A). Group means and standard deviations of the last SCT index before 107 

treatment start were comparable for treatment and vehicle group. Standard rat chow (Altromin 1324, 108 

Brogaarden, Denmark) was supplemented with vortioxetine (Carbosynth Ltd., UK) at a concentration of 109 

1.8 g/kg rat chow in order to reach a therapeutic dose range with a SERT occupancy above 90%27. 110 

Following four weeks of treatment combined with CMS, rats were subdivided into high responders (10 111 
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rats with highest recovery according to SCT index) and low responders (10 rats with lowest recovery 112 

according to SCT index) and subjected to touchscreen testing. 113 

2.4 Touchscreen operant platform 114 

2.4.1 Food reduction and touchscreen pre-training 115 

After nine weeks of CMS and four weeks of treatment, 40 rats (control, anhedonic-like, responder, low-116 

responder; n = 10/group) were used for touchscreen testing. First, rats were gradually food restricted to 117 

75% of their individual ad libitum consumption (Table S3)11. Body weights were monitored daily to 118 

ensure rats maintain at least 90% of their body weight during food restriction. Additionally, rats were 119 

introduced to peanut butter (Bilka, Denmark) and bacon pellets (45 mg dustless precision pellets, Bio 120 

Serv, Flemington, NJ, USA) used for operant conditioning during touchscreen testing. Pre-training was 121 

conducted after eight days of food restriction. In four steps, rats were conditioned to operate the 122 

touchscreen chamber (Figure 1B). For further details on pre-training and the Bussey-Saksida touchscreen 123 

operant chambers (Campden Instruments Ltd., Loughborough, UK) see Supplementary Method section. 124 

Experimenters carrying out behavioural testing were blinded to group identity. 125 

2.4.2 Paired-associates learning touchscreen task 126 

Cognitive performance was assessed in the dPAL task, in which a specific symbol-location association 127 

needs to be learned. In each trial, only two of the three symbols (spider, flower, plane) would be 128 

displayed, one in its correct location (S+) and the other symbol in an incorrect location (S-) on the 129 

touchscreen. The third window was left blank (Figure S1). A touch to S+ resulted in reward pellet 130 

delivery followed by a 20 s inter-trial interval (ITI). Poking S- was followed by a 5 s time out with house 131 

light on, the ITI and a correction trial (repetition of the incorrect trial until correct). The six trial types 132 

resulting from the stimulus-location association pairs were balanced over the course of a session. dPAL 133 

criterion was achieved by completing 75 trials (excluding correction trials) with at least 60 correct trials 134 
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(≥ 80% accuracy) within 45 min on two consecutive days. Rats that did not acquire the task within 46 135 

session were marked as failing the task by an a priori criterion from a previous study11. 136 

2.4.3 Retention of the dPAL task 137 

Passing the dPAL task was ensued by a 10-day hiatus without touchscreen testing and an increase in food 138 

availability. Rats were then re-tested on the dPAL task for two days to assess long-term memory. 139 

2.5 Cerebral gene expression 140 

A circadian rhythm of BDNF has been reported in certain brain regions28,29. Therefore, the rats were 141 

sacrificed under similar standardized time conditions from 2-4 pm, 1–3 days (Mean=1.3 days) after 142 

completing the dPAL retention testing. To diminish a possible effect of the testing, the rats were 143 

distributed across the four groups at day 1 to 3. The brain was removed and PFC, dorsal and ventral HPC 144 

were dissected and snap frozen on dry-ice. RNA was extracted using the PARIS RNA isolation kit 145 

(Ambion, TX, USA). The samples were processed as previously described30 and real-time qPCR was 146 

performed. A detailed description of RNA extraction and qPCR can be found in Supplementary Methods. 147 

2.6 Statistical Analysis 148 

SCT data were analysed by a two-way ANOVA (time x group), followed by group-wise post-hoc 149 

comparisons. SCT data are displayed and included in the analysis until the time point when the first 150 

animal was terminated after completing the dPAL task. 151 

 Summary statistics of the dPAL task (3.2.1) were analysed by applying two-way ANOVA 152 

(hedonic state x treatment) or by rank aligned two-way ANOVA (indicated with Frank) if assumptions of 153 

normality (assessed with QQ-plots) or homogeneity of variance (assessed with Bartlett’s test) were 154 

violated. Furthermore, one outlier in the control group for median response latency and two outliers 155 

(control and low-responder) for number redundant screen touches were determined by Grubbs (α=0.05) or 156 

ROUT (Q=1%) test (Prism 7, 6 GraphPad Software Inc., CA, USA) and excluded. 157 
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 Repeated measurement data analysing learning behaviour across the task (3.2.2) and learning 158 

behaviour within a session (3.2.3 and Supplementary Results) included all animals (acquiring and failing 159 

dPAL acquisition), whereas retention data (3.2.4) only included animals passing the dPAL task The data 160 

were analysed with repeated measures ANOVA of type III if significant interaction effect was present, 161 

otherwise with type II. Mauchly’s sphericity test, if significant, led to Greenhouse-Geisser (GG) (ε<0.75) 162 

or Huynh-Feldt (HF)-corrected repeated measures ANOVA (indicated with FGG or FHF). Post-hoc 163 

comparisons were Bonferroni-corrected. In a separate analysis of memory and relearning performance 164 

(Supplementary Results), data were analysed by two-way ANOVA as described in summary statistics. 165 

 Normalised target genes were displayed as percent of control group mean (PFC data) or percent 166 

of dorsal HPC control mean (dorsal and ventral HPC data) and analysed by two-way ANOVA as 167 

described in summary statistics. Differences between dorsal and ventral HPC gene expression were 168 

analysed with Student’s t-test. Supplementary Table S5 displays n-number for each gene and group, thus, 169 

the number of outliers removed. 170 

 Statistical significance was accepted at p<0.05, two-tailed. Effect size is reported as eta squared 171 

(η2; summary statistics) or generalised eta squared (η2
G; repeated measures) for cognitive results31. All 172 

post-hoc comparisons were Bonferroni-corrected. Statistical analyses were performed with RStudio 173 

(Version 0.99.892, Boston, USA) and data were displayed with GraphPad Prism 7. 174 

3 Results 175 

3.1 Hedonic-like status in response to CMS and vortioxetine treatment 176 

Following a significant interaction effect of group x time (F(45,540)=5.52, p<0.0001; two-way ANOVA) 177 

and main effects of time (F(15,540)=12.82, p<0.0001) and group (F(3,36)=32.24, p<0.0001), Bonferroni-178 

corrected post-hoc analysis revealed that anhedonic-like rats consumed significantly less sucrose during 179 

all SCTs compared to non-stressed control rats (p<0.0001). Sixty-five percent of treated rats responded 180 

well to vortioxetine and their sucrose intake was not statistically significant different from non-stressed 181 
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controls, but significantly increased compared to untreated, anhedonic-like rats (p<0.0001). Rats that 182 

responded poorly to vortioxetine, thus low-responders, consumed significantly less sucrose than 183 

responders (p<0.0001) or non-stressed controls (p<0.0001), but were not statistically significantly 184 

different to anhedonic-like rats (Figure 2). 185 

 186 

Figure 2. Sucrose consumption test. The consumption index displays the sucrose consumption normalised to 187 
baseline sucrose intake prior to CMS exposure. (A) Start of antidepressant treatment with vortioxetine. (B) Food 188 
restriction for touchscreen testing initiated. (C) Touchscreen pre-training followed by dPAL acquisition. Group 189 
means (± SEM) are displayed. Bonferroni-corrected group comparisons over the entire study are indicated with 190 
****p<0.0001 (n = 10 for all groups). 191 

3.2 Paired-associates learning touchscreen task 192 

3.2.1 Acquisition of the dPAL task 193 

Acquisition of the dPAL task, indicated by the accumulated number of trials over all sessions to reach 194 

criterion for passing, did not differ significantly between groups (Figure 3A). 195 

 Two-way ANOVA revealed that drug treatment increased the number of redundant screen 196 

touches compared to untreated animals (main effect of treatment: F(1,28)=9.98, p=0.004, η2=0.23). This 197 
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treatment effect is possibly driven by a trend in hedonic state x treatment interaction effect (F(1,28)=1.12, 198 

p=0.063, η2=0.08), i.e. responders diverging (Figure 3B). 199 

 Median response latency was altered due to a hedonic state x treatment interaction effect 200 

(F(1,29)=9.03, p=0.005, η2=0.15; Figure 3C). Specifically, anhedonic-like rats (p=0.013), responders 201 

(p=0.0001) and low-responders (p=0.001) responded faster to touchscreen stimuli than non-stressed 202 

control rats. Furthermore, treatment alone reduced median response latency (F(1,29)=17.58, p=0.0002, 203 

η2=0.30; Figure 3C). 204 

 There was no difference in reward collection latency (Figure 3D) or number of correction trials 205 

between groups. Six animals (one non-stressed control, three anhedonic-like rats, one responder and one 206 

low-responder) did not pass dPAL and, thus, were excluded from this analysis. 207 

3.2.2 Learning phase of the dPAL task 208 

To compare learning curves with repeated measures ANOVA, the rats’ variable number of sessions and 209 

trials per session was normalised32. Thus, for each rat, the total number of trials (trials + correction trials) 210 

to learn the dPAL task was split into ten equal bins11. 211 

 The percentage of correct trials (accuracy) increased significantly over time, thus, with increasing 212 

number of bins (FGG(3.00,107.98)=30.08, p<0.0001, η2
G=0.08), indicating task learning. No effect of 213 

group on accuracy was observed (Figure 4A). 214 

 The number of trials performed increased significantly over time with growing bin number 215 

(FGG(3.08,110.85)=47.90, p<0.0001, η2
G=0.10), whereas the number of correction trials decreased 216 

significantly by bin number (FGG(3.08,110.73)=48.37, p<0.0001, η2
G=0.17; Figure 4B). This also 217 

indicates learning of the task, however, no statistically significant differences between groups were 218 

observed. 219 
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 220 
Figure 3. Acquisition of dPAL task. (A) The accumulated number of trials needed to acquire the dPAL task. (B) The 221 
number of additional, i.e. redundant  screen touches per trial (trial or correction trial) averaged across all sessions 222 
for each animal. (C) Median response latency to touchscreen stimuli averaged across all sessions. (D) Reward 223 
collection latency averaged across all sessions. Only animals, which acquire the dPAL task, are analysed and 224 
displayed as individual data points and group means (± SEM). Two-way ANOVA main effects and Bonferroni post-hoc 225 
comparisons are indicated by *p<0.05, **p<0.01, ***p<0.001. 226 

 Control rats responded slower to stimuli compared to anhedonic-like rats (p=0.002), low-227 

responders (p<0.0001) or responders (p<0.0001). However, vortioxetine responders showed the shortest 228 

median response latency compared to controls, anhedonic-like rats (p=0.002) and low-responders 229 

(p=0.029; main effect of group: F(3,36)=3.24, p=0.033, η2
G=0.15). The median response latency 230 

decreased significantly during dPAL acquisition (main effect of time: FGG(4.32, 155.40)=9.14, p<0.0001, 231 

η2
G=0.08; Figure 4C).  232 

 Vortioxetine responders executed the highest number of redundant screen touches per trial 233 

compared to control rats (p<0.0001) and anhedonic-like rats (p<0.0001). Vortioxetine low-responders 234 

also performed more redundant screen touches than control (p=0.022) and anhedonic-like rats (p=0.005; 235 
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main effect of group: F(3,36)=3.10, p=0.039, η2
G=0.13). The number of redundant screen touches 236 

decreased during dPAL acquisition (main effect of time: FGG(2.46,88.45)=5.67, p<0.0001, η2
G=0.06; 237 

Figure 4D). 238 

 Collection latency was not significantly different between groups or over time, suggesting equal 239 

motivation for reward collection and for engaging in the dPAL task. 240 

 241 

 242 

Figure 4. Behavioural parameters during dPAL task acquisition of all animals. (A) Accuracy; percent of correct 243 
choices. (B) Number of trials (black) and number of total trials (trials plus correction trials, grey). (C) Median 244 
response latency. (D) Number of additional, i.e. redundant screen touches per trial. Group means (± SEM) are shown 245 
with ‘+’ indicating a significant difference of the respective group to the three other groups and ‘~’ indicating a 246 
significant difference to controls and anhedonic-like rats (Bonferroni post-hoc comparisons; n = 10 for all groups)). 247 

3.2.3 Learning behaviour within a single dPAL session 248 
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Every single session of an animal was divided into six blocks by reference to the total number of trials 249 

(trials + correction trials). Average performance per block was determined for each animal. This allowed 250 

analysis of learning behaviour within the time course of a session. 251 

 During a session, accuracy did not change significantly over time, nor between groups. The 252 

number of trials executed during a session changed depending on session block (main effect of session 253 

block: F(5,180)=3.38, p=0.006, η2
G=0.02; Supplementary Fig. S2A). For further details see 254 

Supplementary Result Section. 255 

3.2.4 Long-term memory of dPAL task 256 

 Long-term memory performance was assessed by re-testing rats in dPAL following a 10-day 257 

hiatus after dPAL acquisition. Included in the analysis was accuracy of the last session of dPAL 258 

acquisition before the break as well as the two dPAL retention sessions after the break. A trend of an 259 

interaction effect of group x session (FGG(4.28,42.75)=2.10, p=0.066, η2
G=0.05) and a main effect of time 260 

(FGG(1.43,42.75)=8.91, p=0.0004, η2
G=0.36) on  accuracy was observed. Bonferroni post-hoc 261 

comparisons revealed that all groups decreased accuracy of task retention in session one, vortioxetine 262 

responders significantly increased their accuracy on retention session two and all groups continued to 263 

show a lower accuracy on session two compared to passing criterion (Supplementary Fig. S3A). For 264 

further details see Supplementary Result Section. 265 

3.3 Cerebral gene expression 266 

Alterations in gene expression levels were analysed in response to vortioxetine treatment and hedonic 267 

state. Furthermore, differences between dorsal and ventral HPC gene expression were examined. 268 

Regulated genes are presented in Figure 5. Supplementary Table S5 contains all gene expression levels 269 

for the four groups and all tissues. 270 

3.3.1 Prefrontal cortex gene expression 271 
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In the PFC, the expression level of Cofilin 1 was increased in anhedonic-like group (p=0.022) compared 272 

to controls (interaction effect of hedonic state x treatment: Frank(1,28)=5.51, p=0.026). A trend of 273 

treatment reducing expression of Nr3c1 mRNA was observed (F(1,27)=4.07, p=0.054). The mRNA 274 

expression levels of Nr3c2, Fkbp5, Disc1, Gsk3b, Bdnf, Shank 1-3, Homer1-3, Nrg1, and Spinophilin 275 

were not affected. 276 

3.3.2 Hippocampal gene expression 277 

The Gsk3b, Disc1, Shank1, Shank2, and Nrg1 gene expression was higher in the ventral compared to 278 

dorsal HPC (t(35)=-3.13, p=0.004; t(34)=-4.72, p<0.0001; t(34)=-3.99, p=0.0003; t(32)=-3.58, p=0.001; 279 

and t(32)=-5.84, p<0.0001, respectively). For Homer1 the expression was decreased in the ventral 280 

compared to the dorsal HPC (t(35)=3.01, p=0.005). 281 

 In the dorsal HPC, Homer2 gene expression was decreased in groups with anhedonic-like 282 

phenotype (main effect of hedonic state: F(1,33) = 5.63, p=0.024; Figure 5). 283 

 Close to significant trends due to treatment and/or hedonic state were observed for Nr3c2, Disc1, 284 

Gsk3b, Bdnf and Homer3 mRNA levels (Figure 5; statistics in Table S5); with no notable observations on 285 

Fkbp5, Nr3c1, Shank3, Spinophilin, or Cofilin 1 gene expression across tissues, hedonic state or 286 

treatment. 287 
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 288 
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Figure 5. Prefrontal cortex (PFC) and hippocampal (HPC) gene expression levels. Genes of interest are normalised to 289 
reference genes and displayed as percent of control mean for the PFC or as percent of the control mean of the 290 
dorsal HPC for ventral and dorsal HPC tissue. Individual data points as well as group means (± SEM) are displayed. 291 
Statistical significance is indicated for main effects and between tissue differences (angular brackets), and 292 
Bonferroni corrected post-hoc comparisons by ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05; and trends by the 293 
respective number. Bdnf – Brain-derived neurotrophic factor; Disc1 – Disrupted in Schizophrenia 1; Gsk3b – 294 
Glyceraldehyde-3-phosphate dehydrogenase; Homer – Homer scaffolding protein; Nr3c1 – Glucocorticoid receptor; 295 
Nr3c2 – Mineralocorticoid receptor; Nrg1 – Neuroregulin 1. 296 

4 Discussion 297 

In the present CMS study, non-stressed controls, anhedonic-like rats and vortioxetine treated rats were 298 

assessed for hedonic state, cognitive performance and cerebral gene expression profiling. 299 

4.1 Vortioxetine recovers the hedonic state 300 

CMS exposed rats decreased sucrose intake over time, indicating a reduced reward sensitivity and, hence, 301 

mirroring the MDD core symptom anhedonia. Administration of the antidepressant vortioxetine recovered 302 

the hedonic state in a major fraction of anhedonic-like rats (65%), whereas the remaining rats responded 303 

poorly and remained in an anhedonic-like state. Previously vortioxetine was reported to be ineffective 304 

when tested in the CMS model22. However, vortioxetine was administered by intraperitoneal injections 305 

once daily (Mariusz Papp, personal communication), and the relatively short half-life of vortioxetine in 306 

rodents22 may explain for the ineffective treatment outcomes in this study. In the present study 307 

vortioxetine was mixed into the diet and, hence, this route of drug administration ensured a more even 308 

and continuous diurnal drug exposure. In a parallel study using the same dose and route of administration, 309 

we confirmed comparable vortioxetine serum levels (unpublished data) as shown to be therapeutically 310 

relevant27,33. Food restriction necessary for touchscreen training likely resulted in a slightly reduced dose 311 

of vortioxetine. However, this reduction was comparable across animals and groups (Suplementary Fig. 312 

S5). Furthermore, monitoring of the hedonic state with SCTs throughout the study (Figure 2) showed that 313 

vortioxetine responders remained comparable to controls and above the criterion for anhedonia even 314 

during food reduction. 315 



17 

4.2 Vortioxetine affects cognition 316 

In the present study we also investigated whether vortioxetine-induced alleviation of the hedonic state is 317 

associated with alterations in cognitive performance. Vortioxetine has been reported to augment cognitive 318 

functions22 and is believed to be a directly mediated effect rather than caused through remission from 319 

affective symptoms14. In the present study, vortioxetine did not alter primary touchscreen parameters 320 

(accuracy, number of trials) compared to non-stressed controls or anhedonic-like rats. However, we 321 

noticed that three out of ten anhedonic-like rats did not pass the dPAL task within 46 sessions whereas 322 

only one animal failed to pass in any of the other groups. This observation might be attributed to normal 323 

biological variation considering the small group size (n=10). Alternatively, the inability to acquire the 324 

dPAL task might suggest cognitive impairment in the anhedonic-like group and, consequently, a potential 325 

pro-cognitive effect of vortioxetine treatment. Future studies are needed to validate this interpretation. 326 

 Importantly, the latency for collecting reward pellets did not differ between groups. This suggests 327 

equal incentive to consume the reward and presumably to participate in the touchscreen task. Likely, this 328 

behaviour is driven by hunger due to the food restriction accompanying touchscreen testing11. 329 

 Consistently, median response latency was reduced in all CMS-exposed groups compared to 330 

controls. During task acquisition, vortioxetine responders displayed the shortest median response latency 331 

and controls the longest latency. Prolonged median response latency in the control group is consistent 332 

with a previous study25, suggesting increased cognitive appraisal, before executing a choice in control 333 

animals. Consequently, reduced response latency in the anhedonic and mainly in the vortioxetine treated 334 

groups can be considered as impulsive behaviour, executing a less evaluated, spontaneous choice. 335 

Reduced response latency may indicate impaired HPC functioning since inactivation of the dorsal HPC 336 

with lidocaine and scopolamine significantly shortened reaction time in the rat dPAL task as well34 and is 337 

in line with the important role of HPC in visuospatial learning tasks32,35. An alternative explanation might 338 

include a frontostriatal reorganization causing a shift from effortful, goal-directed to habitual behaviour. 339 

Such changes have been observed after stress exposure36 and might explain the reduced response latency 340 
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observed in the present study. Noticeably, responders to vortioxetine treatment displayed the shortest 341 

response latency of all groups suggesting an association between treatment response and decreased 342 

appraisal. 343 

 A shift to habit-like or impulsive behaviour is further supported by the number of redundant 344 

screen touches per trial. Consistently, vortioxetine treated rats executed more redundant touches than any 345 

other group. Thus, vortioxetine seems to increase impulsive or compulsive behaviour. This lack of 346 

inhibitory control may suggest impairments in executive function associated with the PFC37. 347 

 In order to address long-term memory, accuracy was re-tested after a 10-day hiatus subsequent to 348 

passing dPAL. Vortioxetine responders decreased most in accuracy after the 10-day hiatus and performed 349 

significantly worse than low-responders. Hence, a high response to vortioxetine treatment was associated 350 

with reduced memory performance. Interestingly, only the control group restored performance to the 351 

dPAL passing criterion level (≥ 80% accuracy) on the second day of retention. All other groups still 352 

performed below 80% accuracy and the anhedonic-like group even decreased in accuracy on the second 353 

day of retention. 354 

4.3 Altered cerebral gene expression associated with vortioxetine treatment 355 

and hedonic state 356 

Expression levels of genes regulated in neuropsychiatric diseases or associated with neuronal plasticity 357 

were measured in the PFC, dorsal and ventral HPC. Cofilin 1 is a key regulator in growth cone dynamics 358 

and, thus, in neuronal plasticity important for learning and memory38,39. In the PFC, Cofilin 1 expression 359 

was upregulated in anhedonic-like rats compared to controls. Excessive up- or down-regulation of Cofilin 360 

1 was associated with impaired synaptic plasticity and learning deficits 39. Thus, altered Cofilin 1 gene 361 

expression might suggest subthreshold cognitive impairments associated with anhedonia, especially in 362 

untreated rats. 363 

 DISC1 is a scaffolding protein involved in neurodevelopmental signalling and suggested as 364 

candidate gene in neuropsychiatric disorder40,41. In the present study, Disc1 gene expression levels were 365 
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higher in the ventral compared to the dorsal HPC. In the ventral HPC, an interaction trend may indicate a 366 

regulatory association of the hedonic state and vortioxetine treatment on Disc1 gene expression. These 367 

changes support the literature that DISC1 dysregulation is involved in the pathology of mental illnesses 368 

including cognitive deficits and dendritic arborisation42,43. 369 

 DISC1 regulates downstream Gsk3b expression and in the present study, Gsk3b expression was 370 

upregulated in the ventral compared to the dorsal HPC, which might be linked to an increased Disc1 gene 371 

expression. Gsk3b expression is known to be inhibited by most antidepressant treatments, e.g. SSRIs, and 372 

a dysregulation of Gsk3b expression is suggested to be implicated in depression44–47. Gsk3b upregulation 373 

is associated with impairments in spatial memory, attention and long-term potentiation, which are all 374 

important elements in acquisition of the dPAL task48–52. Consequently, borderline increased Gsk3b gene 375 

expression levels in the dorsal HPC in the present study may underlie the observed memory impairments 376 

during dPAL retention in the vortioxetine responder group compared to low-responders.  377 

 Homer proteins, which are scaffolding proteins facilitating post-synaptic signalling, are vital for 378 

learning and memory functions53. Moreover, decreased Homer1 expression is associated with an 379 

enhanced stress response and susceptibility to psychiatric diseases such as MDD54,55. In the present study, 380 

Homer1 was higher expressed in the dorsal than in the ventral HPC, possibly in response to spatial 381 

learning required for dPAL acquisition56. In the dorsal HPC, Homer2 mRNA expression was decreased in 382 

rats with anhedonic phenotype (treated and untreated). Homer2 is required for alcohol-seeking57 and, 383 

thus, reduced seeking of reward in anhedonic-like rats may be reflected by decreased Homer2 levels. 384 

Although Homer3 was upregulated in rat frontal cortex in response to vortioxetine treatment (not 385 

correcting of multiple comparisons)58, only a trend of vortioxetine downregulating Homer3  expression in 386 

the ventral hippocampus was observed in the present study. 387 

Bdnf is involved in neuronal plasticity59, a mechanism which might be upregulated by 388 

vortioxetine treatment58. Moreover, Bdnf expression levels are reduced following stress exposure as well 389 

as in PFC and HPC post-mortem tissue of MDD suicide victims60,61. Furthermore, antidepressant 390 

treatment elevates Bdnf levels and, in turn, treatment efficacy appears dependent on Bdnf levels62–64. 391 
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Consequently, the trend of higher Bdnf levels in the dorsal HPC of vortioxetine treated animals is in 392 

accordance with the literature. 393 

 NR3C2 expression is an important player in the stress response, HPA axis activity and MDD. 394 

Increased NR3C2 function is associated with resilience, whereas decreased NR3C2 levels suggest stress-395 

susceptibility for developing depression65. Hence, the anhedonic phenotype, i.e. susceptibility to CMS 396 

including a low treatment response to vortioxetine, might be linked to a reduced Nr3c2 expression in the 397 

HPC. 398 

 In future studies, it would be interesting to include gene expression 399 

profiling before start of behavioural testing as well as after or, alternatively, a 400 

behaviourally naïve, vortioxetine-treated group can be added  to disentangle 401 

the effects of the learning paradigm from treatment effects.4.4 Touchscreen 402 

testing 403 

To our knowledge, this was the first touchscreen study to show that not only sweet rewards, such as sugar 404 

pellets or milkshakes, generate successful operant conditioning. This might become crucial in addiction, 405 

diabetes or reward studies and expands the applicability of touchscreen testing. Furthermore, continuous 406 

SCTs throughout the experiment revealed the impact of food reduction, treatment and appetitive 407 

touchscreen testing on rodents. 408 

4.5 Conclusion 409 

Our study expands on the relatively new drug treatment approach of antidepressants targeting depression-410 

associated cognitive impairments. Hence, the effect of vortioxetine on the hedonic state, on cognition and 411 

selected gene expression was assessed. In contrast to a previous report (reviewed in Sanchez et al., 412 

201522), we have shown that vortioxetine recovers the hedonic state in anhedonic-like rats and, hence, 413 

demonstrated its efficacy in a well-validated preclinical model of depression26,66,67. Moreover, cognitive 414 

performance was assessed with the touchscreen operant platform, which was developed with focus on its 415 
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translational value. In the present study, the primary readouts did not reveal beneficial cognitive effects of 416 

vortioxetine treatment although it was observed that a higher number of treated rats managed to pass the 417 

dPAL task. Furthermore, effects on behavioural strategy was evident from secondary read-outs. The 418 

potential pro-cognitive effect of vortioxetine requires more detailed evaluation since the observed effects, 419 

such as shortened reaction time and a shift to habitual behaviour might be beneficial in a different context 420 

than what the dPAL touchscreen task is actually designed for addressing. Finally, the most pronounced 421 

alterations in the selected genes were in the dorsal versus the ventral HPC. However, it cannot be 422 

excluded that the learning paradigm has affected the gene expression profiles. 423 
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